1 /* 2 * linux/fs/proc/array.c 3 * 4 * Copyright (C) 1992 by Linus Torvalds 5 * based on ideas by Darren Senn 6 * 7 * Fixes: 8 * Michael. K. Johnson: stat,statm extensions. 9 * <[email protected]> 10 * 11 * Pauline Middelink : Made cmdline,envline only break at '\0's, to 12 * make sure SET_PROCTITLE works. Also removed 13 * bad '!' which forced address recalculation for 14 * EVERY character on the current page. 15 * <[email protected]> 16 * 17 * Danny ter Haar : added cpuinfo 18 * <[email protected]> 19 * 20 * Alessandro Rubini : profile extension. 21 * <[email protected]> 22 * 23 * Jeff Tranter : added BogoMips field to cpuinfo 24 * <[email protected]> 25 * 26 * Bruno Haible : remove 4K limit for the maps file 27 * <[email protected]> 28 * 29 * Yves Arrouye : remove removal of trailing spaces in get_array. 30 * <[email protected]> 31 * 32 * Jerome Forissier : added per-CPU time information to /proc/stat 33 * and /proc/<pid>/cpu extension 34 * <[email protected]> 35 * - Incorporation and non-SMP safe operation 36 * of forissier patch in 2.1.78 by 37 * Hans Marcus <[email protected]> 38 * 39 * [email protected] : /proc/partitions 40 * 41 * 42 * Alan Cox : security fixes. 43 * <[email protected]> 44 * 45 * Al Viro : safe handling of mm_struct 46 * 47 * Gerhard Wichert : added BIGMEM support 48 * Siemens AG <[email protected]> 49 * 50 * Al Viro & Jeff Garzik : moved most of the thing into base.c and 51 * : proc_misc.c. The rest may eventually go into 52 * : base.c too. 53 */ 54 55 #include <linux/types.h> 56 #include <linux/errno.h> 57 #include <linux/time.h> 58 #include <linux/kernel.h> 59 #include <linux/kernel_stat.h> 60 #include <linux/tty.h> 61 #include <linux/string.h> 62 #include <linux/mman.h> 63 #include <linux/proc_fs.h> 64 #include <linux/ioport.h> 65 #include <linux/uaccess.h> 66 #include <linux/io.h> 67 #include <linux/mm.h> 68 #include <linux/hugetlb.h> 69 #include <linux/pagemap.h> 70 #include <linux/swap.h> 71 #include <linux/slab.h> 72 #include <linux/smp.h> 73 #include <linux/signal.h> 74 #include <linux/highmem.h> 75 #include <linux/file.h> 76 #include <linux/fdtable.h> 77 #include <linux/times.h> 78 #include <linux/cpuset.h> 79 #include <linux/rcupdate.h> 80 #include <linux/delayacct.h> 81 #include <linux/seq_file.h> 82 #include <linux/pid_namespace.h> 83 84 #include <asm/pgtable.h> 85 #include <asm/processor.h> 86 #include "internal.h" 87 88 /* Gcc optimizes away "strlen(x)" for constant x */ 89 #define ADDBUF(buffer, string) \ 90 do { memcpy(buffer, string, strlen(string)); \ 91 buffer += strlen(string); } while (0) 92 93 static inline void task_name(struct seq_file *m, struct task_struct *p) 94 { 95 int i; 96 char *buf, *end; 97 char *name; 98 char tcomm[sizeof(p->comm)]; 99 100 get_task_comm(tcomm, p); 101 102 seq_printf(m, "Name:\t"); 103 end = m->buf + m->size; 104 buf = m->buf + m->count; 105 name = tcomm; 106 i = sizeof(tcomm); 107 while (i && (buf < end)) { 108 unsigned char c = *name; 109 name++; 110 i--; 111 *buf = c; 112 if (!c) 113 break; 114 if (c == '\\') { 115 buf++; 116 if (buf < end) 117 *buf++ = c; 118 continue; 119 } 120 if (c == '\n') { 121 *buf++ = '\\'; 122 if (buf < end) 123 *buf++ = 'n'; 124 continue; 125 } 126 buf++; 127 } 128 m->count = buf - m->buf; 129 seq_printf(m, "\n"); 130 } 131 132 /* 133 * The task state array is a strange "bitmap" of 134 * reasons to sleep. Thus "running" is zero, and 135 * you can test for combinations of others with 136 * simple bit tests. 137 */ 138 static const char *task_state_array[] = { 139 "R (running)", /* 0 */ 140 "S (sleeping)", /* 1 */ 141 "D (disk sleep)", /* 2 */ 142 "T (stopped)", /* 4 */ 143 "T (tracing stop)", /* 8 */ 144 "Z (zombie)", /* 16 */ 145 "X (dead)" /* 32 */ 146 }; 147 148 static inline const char *get_task_state(struct task_struct *tsk) 149 { 150 unsigned int state = (tsk->state & TASK_REPORT) | tsk->exit_state; 151 const char **p = &task_state_array[0]; 152 153 while (state) { 154 p++; 155 state >>= 1; 156 } 157 return *p; 158 } 159 160 static inline void task_state(struct seq_file *m, struct pid_namespace *ns, 161 struct pid *pid, struct task_struct *p) 162 { 163 struct group_info *group_info; 164 int g; 165 struct fdtable *fdt = NULL; 166 pid_t ppid, tpid; 167 168 rcu_read_lock(); 169 ppid = pid_alive(p) ? 170 task_tgid_nr_ns(rcu_dereference(p->real_parent), ns) : 0; 171 tpid = pid_alive(p) && p->ptrace ? 172 task_pid_nr_ns(rcu_dereference(p->parent), ns) : 0; 173 seq_printf(m, 174 "State:\t%s\n" 175 "Tgid:\t%d\n" 176 "Pid:\t%d\n" 177 "PPid:\t%d\n" 178 "TracerPid:\t%d\n" 179 "Uid:\t%d\t%d\t%d\t%d\n" 180 "Gid:\t%d\t%d\t%d\t%d\n", 181 get_task_state(p), 182 task_tgid_nr_ns(p, ns), 183 pid_nr_ns(pid, ns), 184 ppid, tpid, 185 p->uid, p->euid, p->suid, p->fsuid, 186 p->gid, p->egid, p->sgid, p->fsgid); 187 188 task_lock(p); 189 if (p->files) 190 fdt = files_fdtable(p->files); 191 seq_printf(m, 192 "FDSize:\t%d\n" 193 "Groups:\t", 194 fdt ? fdt->max_fds : 0); 195 rcu_read_unlock(); 196 197 group_info = p->group_info; 198 get_group_info(group_info); 199 task_unlock(p); 200 201 for (g = 0; g < min(group_info->ngroups, NGROUPS_SMALL); g++) 202 seq_printf(m, "%d ", GROUP_AT(group_info, g)); 203 put_group_info(group_info); 204 205 seq_printf(m, "\n"); 206 } 207 208 static void render_sigset_t(struct seq_file *m, const char *header, 209 sigset_t *set) 210 { 211 int i; 212 213 seq_printf(m, "%s", header); 214 215 i = _NSIG; 216 do { 217 int x = 0; 218 219 i -= 4; 220 if (sigismember(set, i+1)) x |= 1; 221 if (sigismember(set, i+2)) x |= 2; 222 if (sigismember(set, i+3)) x |= 4; 223 if (sigismember(set, i+4)) x |= 8; 224 seq_printf(m, "%x", x); 225 } while (i >= 4); 226 227 seq_printf(m, "\n"); 228 } 229 230 static void collect_sigign_sigcatch(struct task_struct *p, sigset_t *ign, 231 sigset_t *catch) 232 { 233 struct k_sigaction *k; 234 int i; 235 236 k = p->sighand->action; 237 for (i = 1; i <= _NSIG; ++i, ++k) { 238 if (k->sa.sa_handler == SIG_IGN) 239 sigaddset(ign, i); 240 else if (k->sa.sa_handler != SIG_DFL) 241 sigaddset(catch, i); 242 } 243 } 244 245 static inline void task_sig(struct seq_file *m, struct task_struct *p) 246 { 247 unsigned long flags; 248 sigset_t pending, shpending, blocked, ignored, caught; 249 int num_threads = 0; 250 unsigned long qsize = 0; 251 unsigned long qlim = 0; 252 253 sigemptyset(&pending); 254 sigemptyset(&shpending); 255 sigemptyset(&blocked); 256 sigemptyset(&ignored); 257 sigemptyset(&caught); 258 259 rcu_read_lock(); 260 if (lock_task_sighand(p, &flags)) { 261 pending = p->pending.signal; 262 shpending = p->signal->shared_pending.signal; 263 blocked = p->blocked; 264 collect_sigign_sigcatch(p, &ignored, &caught); 265 num_threads = atomic_read(&p->signal->count); 266 qsize = atomic_read(&p->user->sigpending); 267 qlim = p->signal->rlim[RLIMIT_SIGPENDING].rlim_cur; 268 unlock_task_sighand(p, &flags); 269 } 270 rcu_read_unlock(); 271 272 seq_printf(m, "Threads:\t%d\n", num_threads); 273 seq_printf(m, "SigQ:\t%lu/%lu\n", qsize, qlim); 274 275 /* render them all */ 276 render_sigset_t(m, "SigPnd:\t", &pending); 277 render_sigset_t(m, "ShdPnd:\t", &shpending); 278 render_sigset_t(m, "SigBlk:\t", &blocked); 279 render_sigset_t(m, "SigIgn:\t", &ignored); 280 render_sigset_t(m, "SigCgt:\t", &caught); 281 } 282 283 static void render_cap_t(struct seq_file *m, const char *header, 284 kernel_cap_t *a) 285 { 286 unsigned __capi; 287 288 seq_printf(m, "%s", header); 289 CAP_FOR_EACH_U32(__capi) { 290 seq_printf(m, "%08x", 291 a->cap[(_LINUX_CAPABILITY_U32S-1) - __capi]); 292 } 293 seq_printf(m, "\n"); 294 } 295 296 static inline void task_cap(struct seq_file *m, struct task_struct *p) 297 { 298 render_cap_t(m, "CapInh:\t", &p->cap_inheritable); 299 render_cap_t(m, "CapPrm:\t", &p->cap_permitted); 300 render_cap_t(m, "CapEff:\t", &p->cap_effective); 301 } 302 303 static inline void task_context_switch_counts(struct seq_file *m, 304 struct task_struct *p) 305 { 306 seq_printf(m, "voluntary_ctxt_switches:\t%lu\n" 307 "nonvoluntary_ctxt_switches:\t%lu\n", 308 p->nvcsw, 309 p->nivcsw); 310 } 311 312 int proc_pid_status(struct seq_file *m, struct pid_namespace *ns, 313 struct pid *pid, struct task_struct *task) 314 { 315 struct mm_struct *mm = get_task_mm(task); 316 317 task_name(m, task); 318 task_state(m, ns, pid, task); 319 320 if (mm) { 321 task_mem(m, mm); 322 mmput(mm); 323 } 324 task_sig(m, task); 325 task_cap(m, task); 326 cpuset_task_status_allowed(m, task); 327 #if defined(CONFIG_S390) 328 task_show_regs(m, task); 329 #endif 330 task_context_switch_counts(m, task); 331 return 0; 332 } 333 334 /* 335 * Use precise platform statistics if available: 336 */ 337 #ifdef CONFIG_VIRT_CPU_ACCOUNTING 338 static cputime_t task_utime(struct task_struct *p) 339 { 340 return p->utime; 341 } 342 343 static cputime_t task_stime(struct task_struct *p) 344 { 345 return p->stime; 346 } 347 #else 348 static cputime_t task_utime(struct task_struct *p) 349 { 350 clock_t utime = cputime_to_clock_t(p->utime), 351 total = utime + cputime_to_clock_t(p->stime); 352 u64 temp; 353 354 /* 355 * Use CFS's precise accounting: 356 */ 357 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime); 358 359 if (total) { 360 temp *= utime; 361 do_div(temp, total); 362 } 363 utime = (clock_t)temp; 364 365 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime)); 366 return p->prev_utime; 367 } 368 369 static cputime_t task_stime(struct task_struct *p) 370 { 371 clock_t stime; 372 373 /* 374 * Use CFS's precise accounting. (we subtract utime from 375 * the total, to make sure the total observed by userspace 376 * grows monotonically - apps rely on that): 377 */ 378 stime = nsec_to_clock_t(p->se.sum_exec_runtime) - 379 cputime_to_clock_t(task_utime(p)); 380 381 if (stime >= 0) 382 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime)); 383 384 return p->prev_stime; 385 } 386 #endif 387 388 static cputime_t task_gtime(struct task_struct *p) 389 { 390 return p->gtime; 391 } 392 393 static int do_task_stat(struct seq_file *m, struct pid_namespace *ns, 394 struct pid *pid, struct task_struct *task, int whole) 395 { 396 unsigned long vsize, eip, esp, wchan = ~0UL; 397 long priority, nice; 398 int tty_pgrp = -1, tty_nr = 0; 399 sigset_t sigign, sigcatch; 400 char state; 401 pid_t ppid = 0, pgid = -1, sid = -1; 402 int num_threads = 0; 403 struct mm_struct *mm; 404 unsigned long long start_time; 405 unsigned long cmin_flt = 0, cmaj_flt = 0; 406 unsigned long min_flt = 0, maj_flt = 0; 407 cputime_t cutime, cstime, utime, stime; 408 cputime_t cgtime, gtime; 409 unsigned long rsslim = 0; 410 char tcomm[sizeof(task->comm)]; 411 unsigned long flags; 412 413 state = *get_task_state(task); 414 vsize = eip = esp = 0; 415 mm = get_task_mm(task); 416 if (mm) { 417 vsize = task_vsize(mm); 418 eip = KSTK_EIP(task); 419 esp = KSTK_ESP(task); 420 } 421 422 get_task_comm(tcomm, task); 423 424 sigemptyset(&sigign); 425 sigemptyset(&sigcatch); 426 cutime = cstime = utime = stime = cputime_zero; 427 cgtime = gtime = cputime_zero; 428 429 if (lock_task_sighand(task, &flags)) { 430 struct signal_struct *sig = task->signal; 431 432 if (sig->tty) { 433 struct pid *pgrp = tty_get_pgrp(sig->tty); 434 tty_pgrp = pid_nr_ns(pgrp, ns); 435 put_pid(pgrp); 436 tty_nr = new_encode_dev(tty_devnum(sig->tty)); 437 } 438 439 num_threads = atomic_read(&sig->count); 440 collect_sigign_sigcatch(task, &sigign, &sigcatch); 441 442 cmin_flt = sig->cmin_flt; 443 cmaj_flt = sig->cmaj_flt; 444 cutime = sig->cutime; 445 cstime = sig->cstime; 446 cgtime = sig->cgtime; 447 rsslim = sig->rlim[RLIMIT_RSS].rlim_cur; 448 449 /* add up live thread stats at the group level */ 450 if (whole) { 451 struct task_struct *t = task; 452 do { 453 min_flt += t->min_flt; 454 maj_flt += t->maj_flt; 455 utime = cputime_add(utime, task_utime(t)); 456 stime = cputime_add(stime, task_stime(t)); 457 gtime = cputime_add(gtime, task_gtime(t)); 458 t = next_thread(t); 459 } while (t != task); 460 461 min_flt += sig->min_flt; 462 maj_flt += sig->maj_flt; 463 utime = cputime_add(utime, sig->utime); 464 stime = cputime_add(stime, sig->stime); 465 gtime = cputime_add(gtime, sig->gtime); 466 } 467 468 sid = task_session_nr_ns(task, ns); 469 ppid = task_tgid_nr_ns(task->real_parent, ns); 470 pgid = task_pgrp_nr_ns(task, ns); 471 472 unlock_task_sighand(task, &flags); 473 } 474 475 if (!whole || num_threads < 2) 476 wchan = get_wchan(task); 477 if (!whole) { 478 min_flt = task->min_flt; 479 maj_flt = task->maj_flt; 480 utime = task_utime(task); 481 stime = task_stime(task); 482 gtime = task_gtime(task); 483 } 484 485 /* scale priority and nice values from timeslices to -20..20 */ 486 /* to make it look like a "normal" Unix priority/nice value */ 487 priority = task_prio(task); 488 nice = task_nice(task); 489 490 /* Temporary variable needed for gcc-2.96 */ 491 /* convert timespec -> nsec*/ 492 start_time = 493 (unsigned long long)task->real_start_time.tv_sec * NSEC_PER_SEC 494 + task->real_start_time.tv_nsec; 495 /* convert nsec -> ticks */ 496 start_time = nsec_to_clock_t(start_time); 497 498 seq_printf(m, "%d (%s) %c %d %d %d %d %d %u %lu \ 499 %lu %lu %lu %lu %lu %ld %ld %ld %ld %d 0 %llu %lu %ld %lu %lu %lu %lu %lu \ 500 %lu %lu %lu %lu %lu %lu %lu %lu %d %d %u %u %llu %lu %ld\n", 501 pid_nr_ns(pid, ns), 502 tcomm, 503 state, 504 ppid, 505 pgid, 506 sid, 507 tty_nr, 508 tty_pgrp, 509 task->flags, 510 min_flt, 511 cmin_flt, 512 maj_flt, 513 cmaj_flt, 514 cputime_to_clock_t(utime), 515 cputime_to_clock_t(stime), 516 cputime_to_clock_t(cutime), 517 cputime_to_clock_t(cstime), 518 priority, 519 nice, 520 num_threads, 521 start_time, 522 vsize, 523 mm ? get_mm_rss(mm) : 0, 524 rsslim, 525 mm ? mm->start_code : 0, 526 mm ? mm->end_code : 0, 527 mm ? mm->start_stack : 0, 528 esp, 529 eip, 530 /* The signal information here is obsolete. 531 * It must be decimal for Linux 2.0 compatibility. 532 * Use /proc/#/status for real-time signals. 533 */ 534 task->pending.signal.sig[0] & 0x7fffffffUL, 535 task->blocked.sig[0] & 0x7fffffffUL, 536 sigign .sig[0] & 0x7fffffffUL, 537 sigcatch .sig[0] & 0x7fffffffUL, 538 wchan, 539 0UL, 540 0UL, 541 task->exit_signal, 542 task_cpu(task), 543 task->rt_priority, 544 task->policy, 545 (unsigned long long)delayacct_blkio_ticks(task), 546 cputime_to_clock_t(gtime), 547 cputime_to_clock_t(cgtime)); 548 if (mm) 549 mmput(mm); 550 return 0; 551 } 552 553 int proc_tid_stat(struct seq_file *m, struct pid_namespace *ns, 554 struct pid *pid, struct task_struct *task) 555 { 556 return do_task_stat(m, ns, pid, task, 0); 557 } 558 559 int proc_tgid_stat(struct seq_file *m, struct pid_namespace *ns, 560 struct pid *pid, struct task_struct *task) 561 { 562 return do_task_stat(m, ns, pid, task, 1); 563 } 564 565 int proc_pid_statm(struct seq_file *m, struct pid_namespace *ns, 566 struct pid *pid, struct task_struct *task) 567 { 568 int size = 0, resident = 0, shared = 0, text = 0, lib = 0, data = 0; 569 struct mm_struct *mm = get_task_mm(task); 570 571 if (mm) { 572 size = task_statm(mm, &shared, &text, &data, &resident); 573 mmput(mm); 574 } 575 seq_printf(m, "%d %d %d %d %d %d %d\n", 576 size, resident, shared, text, lib, data, 0); 577 578 return 0; 579 } 580