xref: /linux-6.15/fs/f2fs/node.c (revision e23bebc3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/sched/mm.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15 
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "iostat.h"
21 #include <trace/events/f2fs.h>
22 
23 #define on_f2fs_build_free_nids(nm_i) mutex_is_locked(&(nm_i)->build_lock)
24 
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29 
30 /*
31  * Check whether the given nid is within node id range.
32  */
33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35 	if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 		set_sbi_flag(sbi, SBI_NEED_FSCK);
37 		f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 			  __func__, nid);
39 		f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
40 		return -EFSCORRUPTED;
41 	}
42 	return 0;
43 }
44 
45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46 {
47 	struct f2fs_nm_info *nm_i = NM_I(sbi);
48 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
49 	struct sysinfo val;
50 	unsigned long avail_ram;
51 	unsigned long mem_size = 0;
52 	bool res = false;
53 
54 	if (!nm_i)
55 		return true;
56 
57 	si_meminfo(&val);
58 
59 	/* only uses low memory */
60 	avail_ram = val.totalram - val.totalhigh;
61 
62 	/*
63 	 * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively
64 	 */
65 	if (type == FREE_NIDS) {
66 		mem_size = (nm_i->nid_cnt[FREE_NID] *
67 				sizeof(struct free_nid)) >> PAGE_SHIFT;
68 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
69 	} else if (type == NAT_ENTRIES) {
70 		mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
71 				sizeof(struct nat_entry)) >> PAGE_SHIFT;
72 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
73 		if (excess_cached_nats(sbi))
74 			res = false;
75 	} else if (type == DIRTY_DENTS) {
76 		if (sbi->sb->s_bdi->wb.dirty_exceeded)
77 			return false;
78 		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
79 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
80 	} else if (type == INO_ENTRIES) {
81 		int i;
82 
83 		for (i = 0; i < MAX_INO_ENTRY; i++)
84 			mem_size += sbi->im[i].ino_num *
85 						sizeof(struct ino_entry);
86 		mem_size >>= PAGE_SHIFT;
87 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
88 	} else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) {
89 		enum extent_type etype = type == READ_EXTENT_CACHE ?
90 						EX_READ : EX_BLOCK_AGE;
91 		struct extent_tree_info *eti = &sbi->extent_tree[etype];
92 
93 		mem_size = (atomic_read(&eti->total_ext_tree) *
94 				sizeof(struct extent_tree) +
95 				atomic_read(&eti->total_ext_node) *
96 				sizeof(struct extent_node)) >> PAGE_SHIFT;
97 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
98 	} else if (type == DISCARD_CACHE) {
99 		mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
100 				sizeof(struct discard_cmd)) >> PAGE_SHIFT;
101 		res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
102 	} else if (type == COMPRESS_PAGE) {
103 #ifdef CONFIG_F2FS_FS_COMPRESSION
104 		unsigned long free_ram = val.freeram;
105 
106 		/*
107 		 * free memory is lower than watermark or cached page count
108 		 * exceed threshold, deny caching compress page.
109 		 */
110 		res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
111 			(COMPRESS_MAPPING(sbi)->nrpages <
112 			 free_ram * sbi->compress_percent / 100);
113 #else
114 		res = false;
115 #endif
116 	} else {
117 		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
118 			return true;
119 	}
120 	return res;
121 }
122 
123 static void clear_node_page_dirty(struct page *page)
124 {
125 	if (PageDirty(page)) {
126 		f2fs_clear_page_cache_dirty_tag(page_folio(page));
127 		clear_page_dirty_for_io(page);
128 		dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
129 	}
130 	ClearPageUptodate(page);
131 }
132 
133 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
134 {
135 	return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
136 }
137 
138 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
139 {
140 	struct page *src_page;
141 	struct page *dst_page;
142 	pgoff_t dst_off;
143 	void *src_addr;
144 	void *dst_addr;
145 	struct f2fs_nm_info *nm_i = NM_I(sbi);
146 
147 	dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
148 
149 	/* get current nat block page with lock */
150 	src_page = get_current_nat_page(sbi, nid);
151 	if (IS_ERR(src_page))
152 		return src_page;
153 	dst_page = f2fs_grab_meta_page(sbi, dst_off);
154 	f2fs_bug_on(sbi, PageDirty(src_page));
155 
156 	src_addr = page_address(src_page);
157 	dst_addr = page_address(dst_page);
158 	memcpy(dst_addr, src_addr, PAGE_SIZE);
159 	set_page_dirty(dst_page);
160 	f2fs_put_page(src_page, 1);
161 
162 	set_to_next_nat(nm_i, nid);
163 
164 	return dst_page;
165 }
166 
167 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
168 						nid_t nid, bool no_fail)
169 {
170 	struct nat_entry *new;
171 
172 	new = f2fs_kmem_cache_alloc(nat_entry_slab,
173 					GFP_F2FS_ZERO, no_fail, sbi);
174 	if (new) {
175 		nat_set_nid(new, nid);
176 		nat_reset_flag(new);
177 	}
178 	return new;
179 }
180 
181 static void __free_nat_entry(struct nat_entry *e)
182 {
183 	kmem_cache_free(nat_entry_slab, e);
184 }
185 
186 /* must be locked by nat_tree_lock */
187 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
188 	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
189 {
190 	if (no_fail)
191 		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
192 	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
193 		return NULL;
194 
195 	if (raw_ne)
196 		node_info_from_raw_nat(&ne->ni, raw_ne);
197 
198 	spin_lock(&nm_i->nat_list_lock);
199 	list_add_tail(&ne->list, &nm_i->nat_entries);
200 	spin_unlock(&nm_i->nat_list_lock);
201 
202 	nm_i->nat_cnt[TOTAL_NAT]++;
203 	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
204 	return ne;
205 }
206 
207 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
208 {
209 	struct nat_entry *ne;
210 
211 	ne = radix_tree_lookup(&nm_i->nat_root, n);
212 
213 	/* for recent accessed nat entry, move it to tail of lru list */
214 	if (ne && !get_nat_flag(ne, IS_DIRTY)) {
215 		spin_lock(&nm_i->nat_list_lock);
216 		if (!list_empty(&ne->list))
217 			list_move_tail(&ne->list, &nm_i->nat_entries);
218 		spin_unlock(&nm_i->nat_list_lock);
219 	}
220 
221 	return ne;
222 }
223 
224 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
225 		nid_t start, unsigned int nr, struct nat_entry **ep)
226 {
227 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
228 }
229 
230 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
231 {
232 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
233 	nm_i->nat_cnt[TOTAL_NAT]--;
234 	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
235 	__free_nat_entry(e);
236 }
237 
238 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
239 							struct nat_entry *ne)
240 {
241 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
242 	struct nat_entry_set *head;
243 
244 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
245 	if (!head) {
246 		head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
247 						GFP_NOFS, true, NULL);
248 
249 		INIT_LIST_HEAD(&head->entry_list);
250 		INIT_LIST_HEAD(&head->set_list);
251 		head->set = set;
252 		head->entry_cnt = 0;
253 		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
254 	}
255 	return head;
256 }
257 
258 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
259 						struct nat_entry *ne)
260 {
261 	struct nat_entry_set *head;
262 	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
263 
264 	if (!new_ne)
265 		head = __grab_nat_entry_set(nm_i, ne);
266 
267 	/*
268 	 * update entry_cnt in below condition:
269 	 * 1. update NEW_ADDR to valid block address;
270 	 * 2. update old block address to new one;
271 	 */
272 	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
273 				!get_nat_flag(ne, IS_DIRTY)))
274 		head->entry_cnt++;
275 
276 	set_nat_flag(ne, IS_PREALLOC, new_ne);
277 
278 	if (get_nat_flag(ne, IS_DIRTY))
279 		goto refresh_list;
280 
281 	nm_i->nat_cnt[DIRTY_NAT]++;
282 	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
283 	set_nat_flag(ne, IS_DIRTY, true);
284 refresh_list:
285 	spin_lock(&nm_i->nat_list_lock);
286 	if (new_ne)
287 		list_del_init(&ne->list);
288 	else
289 		list_move_tail(&ne->list, &head->entry_list);
290 	spin_unlock(&nm_i->nat_list_lock);
291 }
292 
293 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
294 		struct nat_entry_set *set, struct nat_entry *ne)
295 {
296 	spin_lock(&nm_i->nat_list_lock);
297 	list_move_tail(&ne->list, &nm_i->nat_entries);
298 	spin_unlock(&nm_i->nat_list_lock);
299 
300 	set_nat_flag(ne, IS_DIRTY, false);
301 	set->entry_cnt--;
302 	nm_i->nat_cnt[DIRTY_NAT]--;
303 	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
304 }
305 
306 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
307 		nid_t start, unsigned int nr, struct nat_entry_set **ep)
308 {
309 	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
310 							start, nr);
311 }
312 
313 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
314 {
315 	return NODE_MAPPING(sbi) == page->mapping &&
316 			IS_DNODE(page) && is_cold_node(page);
317 }
318 
319 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
320 {
321 	spin_lock_init(&sbi->fsync_node_lock);
322 	INIT_LIST_HEAD(&sbi->fsync_node_list);
323 	sbi->fsync_seg_id = 0;
324 	sbi->fsync_node_num = 0;
325 }
326 
327 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
328 							struct page *page)
329 {
330 	struct fsync_node_entry *fn;
331 	unsigned long flags;
332 	unsigned int seq_id;
333 
334 	fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
335 					GFP_NOFS, true, NULL);
336 
337 	get_page(page);
338 	fn->page = page;
339 	INIT_LIST_HEAD(&fn->list);
340 
341 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
342 	list_add_tail(&fn->list, &sbi->fsync_node_list);
343 	fn->seq_id = sbi->fsync_seg_id++;
344 	seq_id = fn->seq_id;
345 	sbi->fsync_node_num++;
346 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
347 
348 	return seq_id;
349 }
350 
351 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
352 {
353 	struct fsync_node_entry *fn;
354 	unsigned long flags;
355 
356 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
357 	list_for_each_entry(fn, &sbi->fsync_node_list, list) {
358 		if (fn->page == page) {
359 			list_del(&fn->list);
360 			sbi->fsync_node_num--;
361 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
362 			kmem_cache_free(fsync_node_entry_slab, fn);
363 			put_page(page);
364 			return;
365 		}
366 	}
367 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
368 	f2fs_bug_on(sbi, 1);
369 }
370 
371 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
372 {
373 	unsigned long flags;
374 
375 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
376 	sbi->fsync_seg_id = 0;
377 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
378 }
379 
380 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
381 {
382 	struct f2fs_nm_info *nm_i = NM_I(sbi);
383 	struct nat_entry *e;
384 	bool need = false;
385 
386 	f2fs_down_read(&nm_i->nat_tree_lock);
387 	e = __lookup_nat_cache(nm_i, nid);
388 	if (e) {
389 		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
390 				!get_nat_flag(e, HAS_FSYNCED_INODE))
391 			need = true;
392 	}
393 	f2fs_up_read(&nm_i->nat_tree_lock);
394 	return need;
395 }
396 
397 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
398 {
399 	struct f2fs_nm_info *nm_i = NM_I(sbi);
400 	struct nat_entry *e;
401 	bool is_cp = true;
402 
403 	f2fs_down_read(&nm_i->nat_tree_lock);
404 	e = __lookup_nat_cache(nm_i, nid);
405 	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
406 		is_cp = false;
407 	f2fs_up_read(&nm_i->nat_tree_lock);
408 	return is_cp;
409 }
410 
411 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
412 {
413 	struct f2fs_nm_info *nm_i = NM_I(sbi);
414 	struct nat_entry *e;
415 	bool need_update = true;
416 
417 	f2fs_down_read(&nm_i->nat_tree_lock);
418 	e = __lookup_nat_cache(nm_i, ino);
419 	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
420 			(get_nat_flag(e, IS_CHECKPOINTED) ||
421 			 get_nat_flag(e, HAS_FSYNCED_INODE)))
422 		need_update = false;
423 	f2fs_up_read(&nm_i->nat_tree_lock);
424 	return need_update;
425 }
426 
427 /* must be locked by nat_tree_lock */
428 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
429 						struct f2fs_nat_entry *ne)
430 {
431 	struct f2fs_nm_info *nm_i = NM_I(sbi);
432 	struct nat_entry *new, *e;
433 
434 	/* Let's mitigate lock contention of nat_tree_lock during checkpoint */
435 	if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
436 		return;
437 
438 	new = __alloc_nat_entry(sbi, nid, false);
439 	if (!new)
440 		return;
441 
442 	f2fs_down_write(&nm_i->nat_tree_lock);
443 	e = __lookup_nat_cache(nm_i, nid);
444 	if (!e)
445 		e = __init_nat_entry(nm_i, new, ne, false);
446 	else
447 		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
448 				nat_get_blkaddr(e) !=
449 					le32_to_cpu(ne->block_addr) ||
450 				nat_get_version(e) != ne->version);
451 	f2fs_up_write(&nm_i->nat_tree_lock);
452 	if (e != new)
453 		__free_nat_entry(new);
454 }
455 
456 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
457 			block_t new_blkaddr, bool fsync_done)
458 {
459 	struct f2fs_nm_info *nm_i = NM_I(sbi);
460 	struct nat_entry *e;
461 	struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
462 
463 	f2fs_down_write(&nm_i->nat_tree_lock);
464 	e = __lookup_nat_cache(nm_i, ni->nid);
465 	if (!e) {
466 		e = __init_nat_entry(nm_i, new, NULL, true);
467 		copy_node_info(&e->ni, ni);
468 		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
469 	} else if (new_blkaddr == NEW_ADDR) {
470 		/*
471 		 * when nid is reallocated,
472 		 * previous nat entry can be remained in nat cache.
473 		 * So, reinitialize it with new information.
474 		 */
475 		copy_node_info(&e->ni, ni);
476 		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
477 	}
478 	/* let's free early to reduce memory consumption */
479 	if (e != new)
480 		__free_nat_entry(new);
481 
482 	/* sanity check */
483 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
484 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
485 			new_blkaddr == NULL_ADDR);
486 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
487 			new_blkaddr == NEW_ADDR);
488 	f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
489 			new_blkaddr == NEW_ADDR);
490 
491 	/* increment version no as node is removed */
492 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
493 		unsigned char version = nat_get_version(e);
494 
495 		nat_set_version(e, inc_node_version(version));
496 	}
497 
498 	/* change address */
499 	nat_set_blkaddr(e, new_blkaddr);
500 	if (!__is_valid_data_blkaddr(new_blkaddr))
501 		set_nat_flag(e, IS_CHECKPOINTED, false);
502 	__set_nat_cache_dirty(nm_i, e);
503 
504 	/* update fsync_mark if its inode nat entry is still alive */
505 	if (ni->nid != ni->ino)
506 		e = __lookup_nat_cache(nm_i, ni->ino);
507 	if (e) {
508 		if (fsync_done && ni->nid == ni->ino)
509 			set_nat_flag(e, HAS_FSYNCED_INODE, true);
510 		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
511 	}
512 	f2fs_up_write(&nm_i->nat_tree_lock);
513 }
514 
515 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
516 {
517 	struct f2fs_nm_info *nm_i = NM_I(sbi);
518 	int nr = nr_shrink;
519 
520 	if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
521 		return 0;
522 
523 	spin_lock(&nm_i->nat_list_lock);
524 	while (nr_shrink) {
525 		struct nat_entry *ne;
526 
527 		if (list_empty(&nm_i->nat_entries))
528 			break;
529 
530 		ne = list_first_entry(&nm_i->nat_entries,
531 					struct nat_entry, list);
532 		list_del(&ne->list);
533 		spin_unlock(&nm_i->nat_list_lock);
534 
535 		__del_from_nat_cache(nm_i, ne);
536 		nr_shrink--;
537 
538 		spin_lock(&nm_i->nat_list_lock);
539 	}
540 	spin_unlock(&nm_i->nat_list_lock);
541 
542 	f2fs_up_write(&nm_i->nat_tree_lock);
543 	return nr - nr_shrink;
544 }
545 
546 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
547 				struct node_info *ni, bool checkpoint_context)
548 {
549 	struct f2fs_nm_info *nm_i = NM_I(sbi);
550 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
551 	struct f2fs_journal *journal = curseg->journal;
552 	nid_t start_nid = START_NID(nid);
553 	struct f2fs_nat_block *nat_blk;
554 	struct page *page = NULL;
555 	struct f2fs_nat_entry ne;
556 	struct nat_entry *e;
557 	pgoff_t index;
558 	block_t blkaddr;
559 	int i;
560 
561 	ni->flag = 0;
562 	ni->nid = nid;
563 retry:
564 	/* Check nat cache */
565 	f2fs_down_read(&nm_i->nat_tree_lock);
566 	e = __lookup_nat_cache(nm_i, nid);
567 	if (e) {
568 		ni->ino = nat_get_ino(e);
569 		ni->blk_addr = nat_get_blkaddr(e);
570 		ni->version = nat_get_version(e);
571 		f2fs_up_read(&nm_i->nat_tree_lock);
572 		return 0;
573 	}
574 
575 	/*
576 	 * Check current segment summary by trying to grab journal_rwsem first.
577 	 * This sem is on the critical path on the checkpoint requiring the above
578 	 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
579 	 * while not bothering checkpoint.
580 	 */
581 	if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
582 		down_read(&curseg->journal_rwsem);
583 	} else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
584 				!down_read_trylock(&curseg->journal_rwsem)) {
585 		f2fs_up_read(&nm_i->nat_tree_lock);
586 		goto retry;
587 	}
588 
589 	i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
590 	if (i >= 0) {
591 		ne = nat_in_journal(journal, i);
592 		node_info_from_raw_nat(ni, &ne);
593 	}
594 	up_read(&curseg->journal_rwsem);
595 	if (i >= 0) {
596 		f2fs_up_read(&nm_i->nat_tree_lock);
597 		goto cache;
598 	}
599 
600 	/* Fill node_info from nat page */
601 	index = current_nat_addr(sbi, nid);
602 	f2fs_up_read(&nm_i->nat_tree_lock);
603 
604 	page = f2fs_get_meta_page(sbi, index);
605 	if (IS_ERR(page))
606 		return PTR_ERR(page);
607 
608 	nat_blk = (struct f2fs_nat_block *)page_address(page);
609 	ne = nat_blk->entries[nid - start_nid];
610 	node_info_from_raw_nat(ni, &ne);
611 	f2fs_put_page(page, 1);
612 cache:
613 	blkaddr = le32_to_cpu(ne.block_addr);
614 	if (__is_valid_data_blkaddr(blkaddr) &&
615 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
616 		return -EFAULT;
617 
618 	/* cache nat entry */
619 	cache_nat_entry(sbi, nid, &ne);
620 	return 0;
621 }
622 
623 /*
624  * readahead MAX_RA_NODE number of node pages.
625  */
626 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
627 {
628 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
629 	struct blk_plug plug;
630 	int i, end;
631 	nid_t nid;
632 
633 	blk_start_plug(&plug);
634 
635 	/* Then, try readahead for siblings of the desired node */
636 	end = start + n;
637 	end = min(end, (int)NIDS_PER_BLOCK);
638 	for (i = start; i < end; i++) {
639 		nid = get_nid(parent, i, false);
640 		f2fs_ra_node_page(sbi, nid);
641 	}
642 
643 	blk_finish_plug(&plug);
644 }
645 
646 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
647 {
648 	const long direct_index = ADDRS_PER_INODE(dn->inode);
649 	const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
650 	const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
651 	unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
652 	int cur_level = dn->cur_level;
653 	int max_level = dn->max_level;
654 	pgoff_t base = 0;
655 
656 	if (!dn->max_level)
657 		return pgofs + 1;
658 
659 	while (max_level-- > cur_level)
660 		skipped_unit *= NIDS_PER_BLOCK;
661 
662 	switch (dn->max_level) {
663 	case 3:
664 		base += 2 * indirect_blks;
665 		fallthrough;
666 	case 2:
667 		base += 2 * direct_blks;
668 		fallthrough;
669 	case 1:
670 		base += direct_index;
671 		break;
672 	default:
673 		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
674 	}
675 
676 	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
677 }
678 
679 /*
680  * The maximum depth is four.
681  * Offset[0] will have raw inode offset.
682  */
683 static int get_node_path(struct inode *inode, long block,
684 				int offset[4], unsigned int noffset[4])
685 {
686 	const long direct_index = ADDRS_PER_INODE(inode);
687 	const long direct_blks = ADDRS_PER_BLOCK(inode);
688 	const long dptrs_per_blk = NIDS_PER_BLOCK;
689 	const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
690 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
691 	int n = 0;
692 	int level = 0;
693 
694 	noffset[0] = 0;
695 
696 	if (block < direct_index) {
697 		offset[n] = block;
698 		goto got;
699 	}
700 	block -= direct_index;
701 	if (block < direct_blks) {
702 		offset[n++] = NODE_DIR1_BLOCK;
703 		noffset[n] = 1;
704 		offset[n] = block;
705 		level = 1;
706 		goto got;
707 	}
708 	block -= direct_blks;
709 	if (block < direct_blks) {
710 		offset[n++] = NODE_DIR2_BLOCK;
711 		noffset[n] = 2;
712 		offset[n] = block;
713 		level = 1;
714 		goto got;
715 	}
716 	block -= direct_blks;
717 	if (block < indirect_blks) {
718 		offset[n++] = NODE_IND1_BLOCK;
719 		noffset[n] = 3;
720 		offset[n++] = block / direct_blks;
721 		noffset[n] = 4 + offset[n - 1];
722 		offset[n] = block % direct_blks;
723 		level = 2;
724 		goto got;
725 	}
726 	block -= indirect_blks;
727 	if (block < indirect_blks) {
728 		offset[n++] = NODE_IND2_BLOCK;
729 		noffset[n] = 4 + dptrs_per_blk;
730 		offset[n++] = block / direct_blks;
731 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
732 		offset[n] = block % direct_blks;
733 		level = 2;
734 		goto got;
735 	}
736 	block -= indirect_blks;
737 	if (block < dindirect_blks) {
738 		offset[n++] = NODE_DIND_BLOCK;
739 		noffset[n] = 5 + (dptrs_per_blk * 2);
740 		offset[n++] = block / indirect_blks;
741 		noffset[n] = 6 + (dptrs_per_blk * 2) +
742 			      offset[n - 1] * (dptrs_per_blk + 1);
743 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
744 		noffset[n] = 7 + (dptrs_per_blk * 2) +
745 			      offset[n - 2] * (dptrs_per_blk + 1) +
746 			      offset[n - 1];
747 		offset[n] = block % direct_blks;
748 		level = 3;
749 		goto got;
750 	} else {
751 		return -E2BIG;
752 	}
753 got:
754 	return level;
755 }
756 
757 /*
758  * Caller should call f2fs_put_dnode(dn).
759  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
760  * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
761  */
762 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
763 {
764 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
765 	struct page *npage[4];
766 	struct page *parent = NULL;
767 	int offset[4];
768 	unsigned int noffset[4];
769 	nid_t nids[4];
770 	int level, i = 0;
771 	int err = 0;
772 
773 	level = get_node_path(dn->inode, index, offset, noffset);
774 	if (level < 0)
775 		return level;
776 
777 	nids[0] = dn->inode->i_ino;
778 	npage[0] = dn->inode_page;
779 
780 	if (!npage[0]) {
781 		npage[0] = f2fs_get_node_page(sbi, nids[0]);
782 		if (IS_ERR(npage[0]))
783 			return PTR_ERR(npage[0]);
784 	}
785 
786 	/* if inline_data is set, should not report any block indices */
787 	if (f2fs_has_inline_data(dn->inode) && index) {
788 		err = -ENOENT;
789 		f2fs_put_page(npage[0], 1);
790 		goto release_out;
791 	}
792 
793 	parent = npage[0];
794 	if (level != 0)
795 		nids[1] = get_nid(parent, offset[0], true);
796 	dn->inode_page = npage[0];
797 	dn->inode_page_locked = true;
798 
799 	/* get indirect or direct nodes */
800 	for (i = 1; i <= level; i++) {
801 		bool done = false;
802 
803 		if (!nids[i] && mode == ALLOC_NODE) {
804 			/* alloc new node */
805 			if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
806 				err = -ENOSPC;
807 				goto release_pages;
808 			}
809 
810 			dn->nid = nids[i];
811 			npage[i] = f2fs_new_node_page(dn, noffset[i]);
812 			if (IS_ERR(npage[i])) {
813 				f2fs_alloc_nid_failed(sbi, nids[i]);
814 				err = PTR_ERR(npage[i]);
815 				goto release_pages;
816 			}
817 
818 			set_nid(parent, offset[i - 1], nids[i], i == 1);
819 			f2fs_alloc_nid_done(sbi, nids[i]);
820 			done = true;
821 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
822 			npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
823 			if (IS_ERR(npage[i])) {
824 				err = PTR_ERR(npage[i]);
825 				goto release_pages;
826 			}
827 			done = true;
828 		}
829 		if (i == 1) {
830 			dn->inode_page_locked = false;
831 			unlock_page(parent);
832 		} else {
833 			f2fs_put_page(parent, 1);
834 		}
835 
836 		if (!done) {
837 			npage[i] = f2fs_get_node_page(sbi, nids[i]);
838 			if (IS_ERR(npage[i])) {
839 				err = PTR_ERR(npage[i]);
840 				f2fs_put_page(npage[0], 0);
841 				goto release_out;
842 			}
843 		}
844 		if (i < level) {
845 			parent = npage[i];
846 			nids[i + 1] = get_nid(parent, offset[i], false);
847 		}
848 	}
849 	dn->nid = nids[level];
850 	dn->ofs_in_node = offset[level];
851 	dn->node_page = npage[level];
852 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
853 
854 	if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
855 					f2fs_sb_has_readonly(sbi)) {
856 		unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
857 		unsigned int ofs_in_node = dn->ofs_in_node;
858 		pgoff_t fofs = index;
859 		unsigned int c_len;
860 		block_t blkaddr;
861 
862 		/* should align fofs and ofs_in_node to cluster_size */
863 		if (fofs % cluster_size) {
864 			fofs = round_down(fofs, cluster_size);
865 			ofs_in_node = round_down(ofs_in_node, cluster_size);
866 		}
867 
868 		c_len = f2fs_cluster_blocks_are_contiguous(dn, ofs_in_node);
869 		if (!c_len)
870 			goto out;
871 
872 		blkaddr = data_blkaddr(dn->inode, dn->node_page, ofs_in_node);
873 		if (blkaddr == COMPRESS_ADDR)
874 			blkaddr = data_blkaddr(dn->inode, dn->node_page,
875 						ofs_in_node + 1);
876 
877 		f2fs_update_read_extent_tree_range_compressed(dn->inode,
878 					fofs, blkaddr, cluster_size, c_len);
879 	}
880 out:
881 	return 0;
882 
883 release_pages:
884 	f2fs_put_page(parent, 1);
885 	if (i > 1)
886 		f2fs_put_page(npage[0], 0);
887 release_out:
888 	dn->inode_page = NULL;
889 	dn->node_page = NULL;
890 	if (err == -ENOENT) {
891 		dn->cur_level = i;
892 		dn->max_level = level;
893 		dn->ofs_in_node = offset[level];
894 	}
895 	return err;
896 }
897 
898 static int truncate_node(struct dnode_of_data *dn)
899 {
900 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
901 	struct node_info ni;
902 	int err;
903 	pgoff_t index;
904 
905 	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
906 	if (err)
907 		return err;
908 
909 	if (ni.blk_addr != NEW_ADDR &&
910 		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr, DATA_GENERIC_ENHANCE)) {
911 		f2fs_err_ratelimited(sbi,
912 			"nat entry is corrupted, run fsck to fix it, ino:%u, "
913 			"nid:%u, blkaddr:%u", ni.ino, ni.nid, ni.blk_addr);
914 		set_sbi_flag(sbi, SBI_NEED_FSCK);
915 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NAT);
916 		return -EFSCORRUPTED;
917 	}
918 
919 	/* Deallocate node address */
920 	f2fs_invalidate_blocks(sbi, ni.blk_addr, 1);
921 	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
922 	set_node_addr(sbi, &ni, NULL_ADDR, false);
923 
924 	if (dn->nid == dn->inode->i_ino) {
925 		f2fs_remove_orphan_inode(sbi, dn->nid);
926 		dec_valid_inode_count(sbi);
927 		f2fs_inode_synced(dn->inode);
928 	}
929 
930 	clear_node_page_dirty(dn->node_page);
931 	set_sbi_flag(sbi, SBI_IS_DIRTY);
932 
933 	index = page_folio(dn->node_page)->index;
934 	f2fs_put_page(dn->node_page, 1);
935 
936 	invalidate_mapping_pages(NODE_MAPPING(sbi),
937 			index, index);
938 
939 	dn->node_page = NULL;
940 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
941 
942 	return 0;
943 }
944 
945 static int truncate_dnode(struct dnode_of_data *dn)
946 {
947 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
948 	struct page *page;
949 	int err;
950 
951 	if (dn->nid == 0)
952 		return 1;
953 
954 	/* get direct node */
955 	page = f2fs_get_node_page(sbi, dn->nid);
956 	if (PTR_ERR(page) == -ENOENT)
957 		return 1;
958 	else if (IS_ERR(page))
959 		return PTR_ERR(page);
960 
961 	if (IS_INODE(page) || ino_of_node(page) != dn->inode->i_ino) {
962 		f2fs_err(sbi, "incorrect node reference, ino: %lu, nid: %u, ino_of_node: %u",
963 				dn->inode->i_ino, dn->nid, ino_of_node(page));
964 		set_sbi_flag(sbi, SBI_NEED_FSCK);
965 		f2fs_handle_error(sbi, ERROR_INVALID_NODE_REFERENCE);
966 		f2fs_put_page(page, 1);
967 		return -EFSCORRUPTED;
968 	}
969 
970 	/* Make dnode_of_data for parameter */
971 	dn->node_page = page;
972 	dn->ofs_in_node = 0;
973 	f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
974 	err = truncate_node(dn);
975 	if (err) {
976 		f2fs_put_page(page, 1);
977 		return err;
978 	}
979 
980 	return 1;
981 }
982 
983 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
984 						int ofs, int depth)
985 {
986 	struct dnode_of_data rdn = *dn;
987 	struct page *page;
988 	struct f2fs_node *rn;
989 	nid_t child_nid;
990 	unsigned int child_nofs;
991 	int freed = 0;
992 	int i, ret;
993 
994 	if (dn->nid == 0)
995 		return NIDS_PER_BLOCK + 1;
996 
997 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
998 
999 	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
1000 	if (IS_ERR(page)) {
1001 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
1002 		return PTR_ERR(page);
1003 	}
1004 
1005 	f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
1006 
1007 	rn = F2FS_NODE(page);
1008 	if (depth < 3) {
1009 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
1010 			child_nid = le32_to_cpu(rn->in.nid[i]);
1011 			if (child_nid == 0)
1012 				continue;
1013 			rdn.nid = child_nid;
1014 			ret = truncate_dnode(&rdn);
1015 			if (ret < 0)
1016 				goto out_err;
1017 			if (set_nid(page, i, 0, false))
1018 				dn->node_changed = true;
1019 		}
1020 	} else {
1021 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
1022 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
1023 			child_nid = le32_to_cpu(rn->in.nid[i]);
1024 			if (child_nid == 0) {
1025 				child_nofs += NIDS_PER_BLOCK + 1;
1026 				continue;
1027 			}
1028 			rdn.nid = child_nid;
1029 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
1030 			if (ret == (NIDS_PER_BLOCK + 1)) {
1031 				if (set_nid(page, i, 0, false))
1032 					dn->node_changed = true;
1033 				child_nofs += ret;
1034 			} else if (ret < 0 && ret != -ENOENT) {
1035 				goto out_err;
1036 			}
1037 		}
1038 		freed = child_nofs;
1039 	}
1040 
1041 	if (!ofs) {
1042 		/* remove current indirect node */
1043 		dn->node_page = page;
1044 		ret = truncate_node(dn);
1045 		if (ret)
1046 			goto out_err;
1047 		freed++;
1048 	} else {
1049 		f2fs_put_page(page, 1);
1050 	}
1051 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1052 	return freed;
1053 
1054 out_err:
1055 	f2fs_put_page(page, 1);
1056 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1057 	return ret;
1058 }
1059 
1060 static int truncate_partial_nodes(struct dnode_of_data *dn,
1061 			struct f2fs_inode *ri, int *offset, int depth)
1062 {
1063 	struct page *pages[2];
1064 	nid_t nid[3];
1065 	nid_t child_nid;
1066 	int err = 0;
1067 	int i;
1068 	int idx = depth - 2;
1069 
1070 	nid[0] = get_nid(dn->inode_page, offset[0], true);
1071 	if (!nid[0])
1072 		return 0;
1073 
1074 	/* get indirect nodes in the path */
1075 	for (i = 0; i < idx + 1; i++) {
1076 		/* reference count'll be increased */
1077 		pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1078 		if (IS_ERR(pages[i])) {
1079 			err = PTR_ERR(pages[i]);
1080 			idx = i - 1;
1081 			goto fail;
1082 		}
1083 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1084 	}
1085 
1086 	f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1087 
1088 	/* free direct nodes linked to a partial indirect node */
1089 	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1090 		child_nid = get_nid(pages[idx], i, false);
1091 		if (!child_nid)
1092 			continue;
1093 		dn->nid = child_nid;
1094 		err = truncate_dnode(dn);
1095 		if (err < 0)
1096 			goto fail;
1097 		if (set_nid(pages[idx], i, 0, false))
1098 			dn->node_changed = true;
1099 	}
1100 
1101 	if (offset[idx + 1] == 0) {
1102 		dn->node_page = pages[idx];
1103 		dn->nid = nid[idx];
1104 		err = truncate_node(dn);
1105 		if (err)
1106 			goto fail;
1107 	} else {
1108 		f2fs_put_page(pages[idx], 1);
1109 	}
1110 	offset[idx]++;
1111 	offset[idx + 1] = 0;
1112 	idx--;
1113 fail:
1114 	for (i = idx; i >= 0; i--)
1115 		f2fs_put_page(pages[i], 1);
1116 
1117 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1118 
1119 	return err;
1120 }
1121 
1122 /*
1123  * All the block addresses of data and nodes should be nullified.
1124  */
1125 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1126 {
1127 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1128 	int err = 0, cont = 1;
1129 	int level, offset[4], noffset[4];
1130 	unsigned int nofs = 0;
1131 	struct f2fs_inode *ri;
1132 	struct dnode_of_data dn;
1133 	struct page *page;
1134 
1135 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
1136 
1137 	level = get_node_path(inode, from, offset, noffset);
1138 	if (level <= 0) {
1139 		if (!level) {
1140 			level = -EFSCORRUPTED;
1141 			f2fs_err(sbi, "%s: inode ino=%lx has corrupted node block, from:%lu addrs:%u",
1142 					__func__, inode->i_ino,
1143 					from, ADDRS_PER_INODE(inode));
1144 			set_sbi_flag(sbi, SBI_NEED_FSCK);
1145 		}
1146 		trace_f2fs_truncate_inode_blocks_exit(inode, level);
1147 		return level;
1148 	}
1149 
1150 	page = f2fs_get_node_page(sbi, inode->i_ino);
1151 	if (IS_ERR(page)) {
1152 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1153 		return PTR_ERR(page);
1154 	}
1155 
1156 	set_new_dnode(&dn, inode, page, NULL, 0);
1157 	unlock_page(page);
1158 
1159 	ri = F2FS_INODE(page);
1160 	switch (level) {
1161 	case 0:
1162 	case 1:
1163 		nofs = noffset[1];
1164 		break;
1165 	case 2:
1166 		nofs = noffset[1];
1167 		if (!offset[level - 1])
1168 			goto skip_partial;
1169 		err = truncate_partial_nodes(&dn, ri, offset, level);
1170 		if (err < 0 && err != -ENOENT)
1171 			goto fail;
1172 		nofs += 1 + NIDS_PER_BLOCK;
1173 		break;
1174 	case 3:
1175 		nofs = 5 + 2 * NIDS_PER_BLOCK;
1176 		if (!offset[level - 1])
1177 			goto skip_partial;
1178 		err = truncate_partial_nodes(&dn, ri, offset, level);
1179 		if (err < 0 && err != -ENOENT)
1180 			goto fail;
1181 		break;
1182 	default:
1183 		BUG();
1184 	}
1185 
1186 skip_partial:
1187 	while (cont) {
1188 		dn.nid = get_nid(page, offset[0], true);
1189 		switch (offset[0]) {
1190 		case NODE_DIR1_BLOCK:
1191 		case NODE_DIR2_BLOCK:
1192 			err = truncate_dnode(&dn);
1193 			break;
1194 
1195 		case NODE_IND1_BLOCK:
1196 		case NODE_IND2_BLOCK:
1197 			err = truncate_nodes(&dn, nofs, offset[1], 2);
1198 			break;
1199 
1200 		case NODE_DIND_BLOCK:
1201 			err = truncate_nodes(&dn, nofs, offset[1], 3);
1202 			cont = 0;
1203 			break;
1204 
1205 		default:
1206 			BUG();
1207 		}
1208 		if (err == -ENOENT) {
1209 			set_sbi_flag(F2FS_P_SB(page), SBI_NEED_FSCK);
1210 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1211 			f2fs_err_ratelimited(sbi,
1212 				"truncate node fail, ino:%lu, nid:%u, "
1213 				"offset[0]:%d, offset[1]:%d, nofs:%d",
1214 				inode->i_ino, dn.nid, offset[0],
1215 				offset[1], nofs);
1216 			err = 0;
1217 		}
1218 		if (err < 0)
1219 			goto fail;
1220 		if (offset[1] == 0 && get_nid(page, offset[0], true)) {
1221 			lock_page(page);
1222 			BUG_ON(page->mapping != NODE_MAPPING(sbi));
1223 			set_nid(page, offset[0], 0, true);
1224 			unlock_page(page);
1225 		}
1226 		offset[1] = 0;
1227 		offset[0]++;
1228 		nofs += err;
1229 	}
1230 fail:
1231 	f2fs_put_page(page, 0);
1232 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1233 	return err > 0 ? 0 : err;
1234 }
1235 
1236 /* caller must lock inode page */
1237 int f2fs_truncate_xattr_node(struct inode *inode)
1238 {
1239 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1240 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1241 	struct dnode_of_data dn;
1242 	struct page *npage;
1243 	int err;
1244 
1245 	if (!nid)
1246 		return 0;
1247 
1248 	npage = f2fs_get_node_page(sbi, nid);
1249 	if (IS_ERR(npage))
1250 		return PTR_ERR(npage);
1251 
1252 	set_new_dnode(&dn, inode, NULL, npage, nid);
1253 	err = truncate_node(&dn);
1254 	if (err) {
1255 		f2fs_put_page(npage, 1);
1256 		return err;
1257 	}
1258 
1259 	f2fs_i_xnid_write(inode, 0);
1260 
1261 	return 0;
1262 }
1263 
1264 /*
1265  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1266  * f2fs_unlock_op().
1267  */
1268 int f2fs_remove_inode_page(struct inode *inode)
1269 {
1270 	struct dnode_of_data dn;
1271 	int err;
1272 
1273 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1274 	err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1275 	if (err)
1276 		return err;
1277 
1278 	err = f2fs_truncate_xattr_node(inode);
1279 	if (err) {
1280 		f2fs_put_dnode(&dn);
1281 		return err;
1282 	}
1283 
1284 	/* remove potential inline_data blocks */
1285 	if (!IS_DEVICE_ALIASING(inode) &&
1286 	    (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1287 	     S_ISLNK(inode->i_mode)))
1288 		f2fs_truncate_data_blocks_range(&dn, 1);
1289 
1290 	/* 0 is possible, after f2fs_new_inode() has failed */
1291 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1292 		f2fs_put_dnode(&dn);
1293 		return -EIO;
1294 	}
1295 
1296 	if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1297 		f2fs_warn(F2FS_I_SB(inode),
1298 			"f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1299 			inode->i_ino, (unsigned long long)inode->i_blocks);
1300 		set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1301 	}
1302 
1303 	/* will put inode & node pages */
1304 	err = truncate_node(&dn);
1305 	if (err) {
1306 		f2fs_put_dnode(&dn);
1307 		return err;
1308 	}
1309 	return 0;
1310 }
1311 
1312 struct page *f2fs_new_inode_page(struct inode *inode)
1313 {
1314 	struct dnode_of_data dn;
1315 
1316 	/* allocate inode page for new inode */
1317 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1318 
1319 	/* caller should f2fs_put_page(page, 1); */
1320 	return f2fs_new_node_page(&dn, 0);
1321 }
1322 
1323 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1324 {
1325 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1326 	struct node_info new_ni;
1327 	struct page *page;
1328 	int err;
1329 
1330 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1331 		return ERR_PTR(-EPERM);
1332 
1333 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1334 	if (!page)
1335 		return ERR_PTR(-ENOMEM);
1336 
1337 	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1338 		goto fail;
1339 
1340 #ifdef CONFIG_F2FS_CHECK_FS
1341 	err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1342 	if (err) {
1343 		dec_valid_node_count(sbi, dn->inode, !ofs);
1344 		goto fail;
1345 	}
1346 	if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1347 		err = -EFSCORRUPTED;
1348 		dec_valid_node_count(sbi, dn->inode, !ofs);
1349 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1350 		f2fs_warn_ratelimited(sbi,
1351 			"f2fs_new_node_page: inconsistent nat entry, "
1352 			"ino:%u, nid:%u, blkaddr:%u, ver:%u, flag:%u",
1353 			new_ni.ino, new_ni.nid, new_ni.blk_addr,
1354 			new_ni.version, new_ni.flag);
1355 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NAT);
1356 		goto fail;
1357 	}
1358 #endif
1359 	new_ni.nid = dn->nid;
1360 	new_ni.ino = dn->inode->i_ino;
1361 	new_ni.blk_addr = NULL_ADDR;
1362 	new_ni.flag = 0;
1363 	new_ni.version = 0;
1364 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1365 
1366 	f2fs_wait_on_page_writeback(page, NODE, true, true);
1367 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1368 	set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1369 	if (!PageUptodate(page))
1370 		SetPageUptodate(page);
1371 	if (set_page_dirty(page))
1372 		dn->node_changed = true;
1373 
1374 	if (f2fs_has_xattr_block(ofs))
1375 		f2fs_i_xnid_write(dn->inode, dn->nid);
1376 
1377 	if (ofs == 0)
1378 		inc_valid_inode_count(sbi);
1379 	return page;
1380 fail:
1381 	clear_node_page_dirty(page);
1382 	f2fs_put_page(page, 1);
1383 	return ERR_PTR(err);
1384 }
1385 
1386 /*
1387  * Caller should do after getting the following values.
1388  * 0: f2fs_put_page(page, 0)
1389  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1390  */
1391 static int read_node_page(struct page *page, blk_opf_t op_flags)
1392 {
1393 	struct folio *folio = page_folio(page);
1394 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1395 	struct node_info ni;
1396 	struct f2fs_io_info fio = {
1397 		.sbi = sbi,
1398 		.type = NODE,
1399 		.op = REQ_OP_READ,
1400 		.op_flags = op_flags,
1401 		.page = page,
1402 		.encrypted_page = NULL,
1403 	};
1404 	int err;
1405 
1406 	if (folio_test_uptodate(folio)) {
1407 		if (!f2fs_inode_chksum_verify(sbi, page)) {
1408 			folio_clear_uptodate(folio);
1409 			return -EFSBADCRC;
1410 		}
1411 		return LOCKED_PAGE;
1412 	}
1413 
1414 	err = f2fs_get_node_info(sbi, folio->index, &ni, false);
1415 	if (err)
1416 		return err;
1417 
1418 	/* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1419 	if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1420 		folio_clear_uptodate(folio);
1421 		return -ENOENT;
1422 	}
1423 
1424 	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1425 
1426 	err = f2fs_submit_page_bio(&fio);
1427 
1428 	if (!err)
1429 		f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE);
1430 
1431 	return err;
1432 }
1433 
1434 /*
1435  * Readahead a node page
1436  */
1437 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1438 {
1439 	struct page *apage;
1440 	int err;
1441 
1442 	if (!nid)
1443 		return;
1444 	if (f2fs_check_nid_range(sbi, nid))
1445 		return;
1446 
1447 	apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1448 	if (apage)
1449 		return;
1450 
1451 	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1452 	if (!apage)
1453 		return;
1454 
1455 	err = read_node_page(apage, REQ_RAHEAD);
1456 	f2fs_put_page(apage, err ? 1 : 0);
1457 }
1458 
1459 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1460 					struct page *parent, int start)
1461 {
1462 	struct page *page;
1463 	int err;
1464 
1465 	if (!nid)
1466 		return ERR_PTR(-ENOENT);
1467 	if (f2fs_check_nid_range(sbi, nid))
1468 		return ERR_PTR(-EINVAL);
1469 repeat:
1470 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1471 	if (!page)
1472 		return ERR_PTR(-ENOMEM);
1473 
1474 	err = read_node_page(page, 0);
1475 	if (err < 0) {
1476 		goto out_put_err;
1477 	} else if (err == LOCKED_PAGE) {
1478 		err = 0;
1479 		goto page_hit;
1480 	}
1481 
1482 	if (parent)
1483 		f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1484 
1485 	lock_page(page);
1486 
1487 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1488 		f2fs_put_page(page, 1);
1489 		goto repeat;
1490 	}
1491 
1492 	if (unlikely(!PageUptodate(page))) {
1493 		err = -EIO;
1494 		goto out_err;
1495 	}
1496 
1497 	if (!f2fs_inode_chksum_verify(sbi, page)) {
1498 		err = -EFSBADCRC;
1499 		goto out_err;
1500 	}
1501 page_hit:
1502 	if (likely(nid == nid_of_node(page)))
1503 		return page;
1504 
1505 	f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1506 			  nid, nid_of_node(page), ino_of_node(page),
1507 			  ofs_of_node(page), cpver_of_node(page),
1508 			  next_blkaddr_of_node(page));
1509 	set_sbi_flag(sbi, SBI_NEED_FSCK);
1510 	f2fs_handle_error(sbi, ERROR_INCONSISTENT_FOOTER);
1511 	err = -EFSCORRUPTED;
1512 out_err:
1513 	ClearPageUptodate(page);
1514 out_put_err:
1515 	/* ENOENT comes from read_node_page which is not an error. */
1516 	if (err != -ENOENT)
1517 		f2fs_handle_page_eio(sbi, page_folio(page), NODE);
1518 	f2fs_put_page(page, 1);
1519 	return ERR_PTR(err);
1520 }
1521 
1522 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1523 {
1524 	return __get_node_page(sbi, nid, NULL, 0);
1525 }
1526 
1527 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1528 {
1529 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1530 	nid_t nid = get_nid(parent, start, false);
1531 
1532 	return __get_node_page(sbi, nid, parent, start);
1533 }
1534 
1535 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1536 {
1537 	struct inode *inode;
1538 	struct page *page;
1539 	int ret;
1540 
1541 	/* should flush inline_data before evict_inode */
1542 	inode = ilookup(sbi->sb, ino);
1543 	if (!inode)
1544 		return;
1545 
1546 	page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1547 					FGP_LOCK|FGP_NOWAIT, 0);
1548 	if (!page)
1549 		goto iput_out;
1550 
1551 	if (!PageUptodate(page))
1552 		goto page_out;
1553 
1554 	if (!PageDirty(page))
1555 		goto page_out;
1556 
1557 	if (!clear_page_dirty_for_io(page))
1558 		goto page_out;
1559 
1560 	ret = f2fs_write_inline_data(inode, page_folio(page));
1561 	inode_dec_dirty_pages(inode);
1562 	f2fs_remove_dirty_inode(inode);
1563 	if (ret)
1564 		set_page_dirty(page);
1565 page_out:
1566 	f2fs_put_page(page, 1);
1567 iput_out:
1568 	iput(inode);
1569 }
1570 
1571 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1572 {
1573 	pgoff_t index;
1574 	struct folio_batch fbatch;
1575 	struct page *last_page = NULL;
1576 	int nr_folios;
1577 
1578 	folio_batch_init(&fbatch);
1579 	index = 0;
1580 
1581 	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1582 					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1583 					&fbatch))) {
1584 		int i;
1585 
1586 		for (i = 0; i < nr_folios; i++) {
1587 			struct page *page = &fbatch.folios[i]->page;
1588 
1589 			if (unlikely(f2fs_cp_error(sbi))) {
1590 				f2fs_put_page(last_page, 0);
1591 				folio_batch_release(&fbatch);
1592 				return ERR_PTR(-EIO);
1593 			}
1594 
1595 			if (!IS_DNODE(page) || !is_cold_node(page))
1596 				continue;
1597 			if (ino_of_node(page) != ino)
1598 				continue;
1599 
1600 			lock_page(page);
1601 
1602 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1603 continue_unlock:
1604 				unlock_page(page);
1605 				continue;
1606 			}
1607 			if (ino_of_node(page) != ino)
1608 				goto continue_unlock;
1609 
1610 			if (!PageDirty(page)) {
1611 				/* someone wrote it for us */
1612 				goto continue_unlock;
1613 			}
1614 
1615 			if (last_page)
1616 				f2fs_put_page(last_page, 0);
1617 
1618 			get_page(page);
1619 			last_page = page;
1620 			unlock_page(page);
1621 		}
1622 		folio_batch_release(&fbatch);
1623 		cond_resched();
1624 	}
1625 	return last_page;
1626 }
1627 
1628 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1629 				struct writeback_control *wbc, bool do_balance,
1630 				enum iostat_type io_type, unsigned int *seq_id)
1631 {
1632 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1633 	struct folio *folio = page_folio(page);
1634 	nid_t nid;
1635 	struct node_info ni;
1636 	struct f2fs_io_info fio = {
1637 		.sbi = sbi,
1638 		.ino = ino_of_node(page),
1639 		.type = NODE,
1640 		.op = REQ_OP_WRITE,
1641 		.op_flags = wbc_to_write_flags(wbc),
1642 		.page = page,
1643 		.encrypted_page = NULL,
1644 		.submitted = 0,
1645 		.io_type = io_type,
1646 		.io_wbc = wbc,
1647 	};
1648 	unsigned int seq;
1649 
1650 	trace_f2fs_writepage(folio, NODE);
1651 
1652 	if (unlikely(f2fs_cp_error(sbi))) {
1653 		/* keep node pages in remount-ro mode */
1654 		if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
1655 			goto redirty_out;
1656 		folio_clear_uptodate(folio);
1657 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1658 		folio_unlock(folio);
1659 		return 0;
1660 	}
1661 
1662 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1663 		goto redirty_out;
1664 
1665 	if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1666 			wbc->sync_mode == WB_SYNC_NONE &&
1667 			IS_DNODE(page) && is_cold_node(page))
1668 		goto redirty_out;
1669 
1670 	/* get old block addr of this node page */
1671 	nid = nid_of_node(page);
1672 	f2fs_bug_on(sbi, folio->index != nid);
1673 
1674 	if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1675 		goto redirty_out;
1676 
1677 	if (wbc->for_reclaim) {
1678 		if (!f2fs_down_read_trylock(&sbi->node_write))
1679 			goto redirty_out;
1680 	} else {
1681 		f2fs_down_read(&sbi->node_write);
1682 	}
1683 
1684 	/* This page is already truncated */
1685 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1686 		folio_clear_uptodate(folio);
1687 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1688 		f2fs_up_read(&sbi->node_write);
1689 		folio_unlock(folio);
1690 		return 0;
1691 	}
1692 
1693 	if (__is_valid_data_blkaddr(ni.blk_addr) &&
1694 		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1695 					DATA_GENERIC_ENHANCE)) {
1696 		f2fs_up_read(&sbi->node_write);
1697 		goto redirty_out;
1698 	}
1699 
1700 	if (atomic && !test_opt(sbi, NOBARRIER))
1701 		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1702 
1703 	/* should add to global list before clearing PAGECACHE status */
1704 	if (f2fs_in_warm_node_list(sbi, page)) {
1705 		seq = f2fs_add_fsync_node_entry(sbi, page);
1706 		if (seq_id)
1707 			*seq_id = seq;
1708 	}
1709 
1710 	folio_start_writeback(folio);
1711 
1712 	fio.old_blkaddr = ni.blk_addr;
1713 	f2fs_do_write_node_page(nid, &fio);
1714 	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1715 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1716 	f2fs_up_read(&sbi->node_write);
1717 
1718 	if (wbc->for_reclaim) {
1719 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1720 		submitted = NULL;
1721 	}
1722 
1723 	folio_unlock(folio);
1724 
1725 	if (unlikely(f2fs_cp_error(sbi))) {
1726 		f2fs_submit_merged_write(sbi, NODE);
1727 		submitted = NULL;
1728 	}
1729 	if (submitted)
1730 		*submitted = fio.submitted;
1731 
1732 	if (do_balance)
1733 		f2fs_balance_fs(sbi, false);
1734 	return 0;
1735 
1736 redirty_out:
1737 	folio_redirty_for_writepage(wbc, folio);
1738 	return AOP_WRITEPAGE_ACTIVATE;
1739 }
1740 
1741 int f2fs_move_node_page(struct page *node_page, int gc_type)
1742 {
1743 	int err = 0;
1744 
1745 	if (gc_type == FG_GC) {
1746 		struct writeback_control wbc = {
1747 			.sync_mode = WB_SYNC_ALL,
1748 			.nr_to_write = 1,
1749 			.for_reclaim = 0,
1750 		};
1751 
1752 		f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1753 
1754 		set_page_dirty(node_page);
1755 
1756 		if (!clear_page_dirty_for_io(node_page)) {
1757 			err = -EAGAIN;
1758 			goto out_page;
1759 		}
1760 
1761 		if (__write_node_page(node_page, false, NULL,
1762 					&wbc, false, FS_GC_NODE_IO, NULL)) {
1763 			err = -EAGAIN;
1764 			unlock_page(node_page);
1765 		}
1766 		goto release_page;
1767 	} else {
1768 		/* set page dirty and write it */
1769 		if (!folio_test_writeback(page_folio(node_page)))
1770 			set_page_dirty(node_page);
1771 	}
1772 out_page:
1773 	unlock_page(node_page);
1774 release_page:
1775 	f2fs_put_page(node_page, 0);
1776 	return err;
1777 }
1778 
1779 static int f2fs_write_node_page(struct page *page,
1780 				struct writeback_control *wbc)
1781 {
1782 	return __write_node_page(page, false, NULL, wbc, false,
1783 						FS_NODE_IO, NULL);
1784 }
1785 
1786 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1787 			struct writeback_control *wbc, bool atomic,
1788 			unsigned int *seq_id)
1789 {
1790 	pgoff_t index;
1791 	struct folio_batch fbatch;
1792 	int ret = 0;
1793 	struct page *last_page = NULL;
1794 	bool marked = false;
1795 	nid_t ino = inode->i_ino;
1796 	int nr_folios;
1797 	int nwritten = 0;
1798 
1799 	if (atomic) {
1800 		last_page = last_fsync_dnode(sbi, ino);
1801 		if (IS_ERR_OR_NULL(last_page))
1802 			return PTR_ERR_OR_ZERO(last_page);
1803 	}
1804 retry:
1805 	folio_batch_init(&fbatch);
1806 	index = 0;
1807 
1808 	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1809 					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1810 					&fbatch))) {
1811 		int i;
1812 
1813 		for (i = 0; i < nr_folios; i++) {
1814 			struct folio *folio = fbatch.folios[i];
1815 			bool submitted = false;
1816 
1817 			if (unlikely(f2fs_cp_error(sbi))) {
1818 				f2fs_put_page(last_page, 0);
1819 				folio_batch_release(&fbatch);
1820 				ret = -EIO;
1821 				goto out;
1822 			}
1823 
1824 			if (!IS_DNODE(&folio->page) || !is_cold_node(&folio->page))
1825 				continue;
1826 			if (ino_of_node(&folio->page) != ino)
1827 				continue;
1828 
1829 			folio_lock(folio);
1830 
1831 			if (unlikely(folio->mapping != NODE_MAPPING(sbi))) {
1832 continue_unlock:
1833 				folio_unlock(folio);
1834 				continue;
1835 			}
1836 			if (ino_of_node(&folio->page) != ino)
1837 				goto continue_unlock;
1838 
1839 			if (!folio_test_dirty(folio) && &folio->page != last_page) {
1840 				/* someone wrote it for us */
1841 				goto continue_unlock;
1842 			}
1843 
1844 			f2fs_folio_wait_writeback(folio, NODE, true, true);
1845 
1846 			set_fsync_mark(&folio->page, 0);
1847 			set_dentry_mark(&folio->page, 0);
1848 
1849 			if (!atomic || &folio->page == last_page) {
1850 				set_fsync_mark(&folio->page, 1);
1851 				percpu_counter_inc(&sbi->rf_node_block_count);
1852 				if (IS_INODE(&folio->page)) {
1853 					if (is_inode_flag_set(inode,
1854 								FI_DIRTY_INODE))
1855 						f2fs_update_inode(inode, &folio->page);
1856 					set_dentry_mark(&folio->page,
1857 						f2fs_need_dentry_mark(sbi, ino));
1858 				}
1859 				/* may be written by other thread */
1860 				if (!folio_test_dirty(folio))
1861 					folio_mark_dirty(folio);
1862 			}
1863 
1864 			if (!folio_clear_dirty_for_io(folio))
1865 				goto continue_unlock;
1866 
1867 			ret = __write_node_page(&folio->page, atomic &&
1868 						&folio->page == last_page,
1869 						&submitted, wbc, true,
1870 						FS_NODE_IO, seq_id);
1871 			if (ret) {
1872 				folio_unlock(folio);
1873 				f2fs_put_page(last_page, 0);
1874 				break;
1875 			} else if (submitted) {
1876 				nwritten++;
1877 			}
1878 
1879 			if (&folio->page == last_page) {
1880 				f2fs_folio_put(folio, false);
1881 				marked = true;
1882 				break;
1883 			}
1884 		}
1885 		folio_batch_release(&fbatch);
1886 		cond_resched();
1887 
1888 		if (ret || marked)
1889 			break;
1890 	}
1891 	if (!ret && atomic && !marked) {
1892 		f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1893 			   ino, page_folio(last_page)->index);
1894 		lock_page(last_page);
1895 		f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1896 		set_page_dirty(last_page);
1897 		unlock_page(last_page);
1898 		goto retry;
1899 	}
1900 out:
1901 	if (nwritten)
1902 		f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1903 	return ret ? -EIO : 0;
1904 }
1905 
1906 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1907 {
1908 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1909 	bool clean;
1910 
1911 	if (inode->i_ino != ino)
1912 		return 0;
1913 
1914 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1915 		return 0;
1916 
1917 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1918 	clean = list_empty(&F2FS_I(inode)->gdirty_list);
1919 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1920 
1921 	if (clean)
1922 		return 0;
1923 
1924 	inode = igrab(inode);
1925 	if (!inode)
1926 		return 0;
1927 	return 1;
1928 }
1929 
1930 static bool flush_dirty_inode(struct folio *folio)
1931 {
1932 	struct f2fs_sb_info *sbi = F2FS_F_SB(folio);
1933 	struct inode *inode;
1934 	nid_t ino = ino_of_node(&folio->page);
1935 
1936 	inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1937 	if (!inode)
1938 		return false;
1939 
1940 	f2fs_update_inode(inode, &folio->page);
1941 	folio_unlock(folio);
1942 
1943 	iput(inode);
1944 	return true;
1945 }
1946 
1947 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1948 {
1949 	pgoff_t index = 0;
1950 	struct folio_batch fbatch;
1951 	int nr_folios;
1952 
1953 	folio_batch_init(&fbatch);
1954 
1955 	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1956 					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1957 					&fbatch))) {
1958 		int i;
1959 
1960 		for (i = 0; i < nr_folios; i++) {
1961 			struct folio *folio = fbatch.folios[i];
1962 
1963 			if (!IS_INODE(&folio->page))
1964 				continue;
1965 
1966 			folio_lock(folio);
1967 
1968 			if (unlikely(folio->mapping != NODE_MAPPING(sbi)))
1969 				goto unlock;
1970 			if (!folio_test_dirty(folio))
1971 				goto unlock;
1972 
1973 			/* flush inline_data, if it's async context. */
1974 			if (page_private_inline(&folio->page)) {
1975 				clear_page_private_inline(&folio->page);
1976 				folio_unlock(folio);
1977 				flush_inline_data(sbi, ino_of_node(&folio->page));
1978 				continue;
1979 			}
1980 unlock:
1981 			folio_unlock(folio);
1982 		}
1983 		folio_batch_release(&fbatch);
1984 		cond_resched();
1985 	}
1986 }
1987 
1988 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1989 				struct writeback_control *wbc,
1990 				bool do_balance, enum iostat_type io_type)
1991 {
1992 	pgoff_t index;
1993 	struct folio_batch fbatch;
1994 	int step = 0;
1995 	int nwritten = 0;
1996 	int ret = 0;
1997 	int nr_folios, done = 0;
1998 
1999 	folio_batch_init(&fbatch);
2000 
2001 next_step:
2002 	index = 0;
2003 
2004 	while (!done && (nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi),
2005 				&index, (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
2006 				&fbatch))) {
2007 		int i;
2008 
2009 		for (i = 0; i < nr_folios; i++) {
2010 			struct folio *folio = fbatch.folios[i];
2011 			bool submitted = false;
2012 
2013 			/* give a priority to WB_SYNC threads */
2014 			if (atomic_read(&sbi->wb_sync_req[NODE]) &&
2015 					wbc->sync_mode == WB_SYNC_NONE) {
2016 				done = 1;
2017 				break;
2018 			}
2019 
2020 			/*
2021 			 * flushing sequence with step:
2022 			 * 0. indirect nodes
2023 			 * 1. dentry dnodes
2024 			 * 2. file dnodes
2025 			 */
2026 			if (step == 0 && IS_DNODE(&folio->page))
2027 				continue;
2028 			if (step == 1 && (!IS_DNODE(&folio->page) ||
2029 						is_cold_node(&folio->page)))
2030 				continue;
2031 			if (step == 2 && (!IS_DNODE(&folio->page) ||
2032 						!is_cold_node(&folio->page)))
2033 				continue;
2034 lock_node:
2035 			if (wbc->sync_mode == WB_SYNC_ALL)
2036 				folio_lock(folio);
2037 			else if (!folio_trylock(folio))
2038 				continue;
2039 
2040 			if (unlikely(folio->mapping != NODE_MAPPING(sbi))) {
2041 continue_unlock:
2042 				folio_unlock(folio);
2043 				continue;
2044 			}
2045 
2046 			if (!folio_test_dirty(folio)) {
2047 				/* someone wrote it for us */
2048 				goto continue_unlock;
2049 			}
2050 
2051 			/* flush inline_data/inode, if it's async context. */
2052 			if (!do_balance)
2053 				goto write_node;
2054 
2055 			/* flush inline_data */
2056 			if (page_private_inline(&folio->page)) {
2057 				clear_page_private_inline(&folio->page);
2058 				folio_unlock(folio);
2059 				flush_inline_data(sbi, ino_of_node(&folio->page));
2060 				goto lock_node;
2061 			}
2062 
2063 			/* flush dirty inode */
2064 			if (IS_INODE(&folio->page) && flush_dirty_inode(folio))
2065 				goto lock_node;
2066 write_node:
2067 			f2fs_folio_wait_writeback(folio, NODE, true, true);
2068 
2069 			if (!folio_clear_dirty_for_io(folio))
2070 				goto continue_unlock;
2071 
2072 			set_fsync_mark(&folio->page, 0);
2073 			set_dentry_mark(&folio->page, 0);
2074 
2075 			ret = __write_node_page(&folio->page, false, &submitted,
2076 						wbc, do_balance, io_type, NULL);
2077 			if (ret)
2078 				folio_unlock(folio);
2079 			else if (submitted)
2080 				nwritten++;
2081 
2082 			if (--wbc->nr_to_write == 0)
2083 				break;
2084 		}
2085 		folio_batch_release(&fbatch);
2086 		cond_resched();
2087 
2088 		if (wbc->nr_to_write == 0) {
2089 			step = 2;
2090 			break;
2091 		}
2092 	}
2093 
2094 	if (step < 2) {
2095 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2096 				wbc->sync_mode == WB_SYNC_NONE && step == 1)
2097 			goto out;
2098 		step++;
2099 		goto next_step;
2100 	}
2101 out:
2102 	if (nwritten)
2103 		f2fs_submit_merged_write(sbi, NODE);
2104 
2105 	if (unlikely(f2fs_cp_error(sbi)))
2106 		return -EIO;
2107 	return ret;
2108 }
2109 
2110 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2111 						unsigned int seq_id)
2112 {
2113 	struct fsync_node_entry *fn;
2114 	struct page *page;
2115 	struct list_head *head = &sbi->fsync_node_list;
2116 	unsigned long flags;
2117 	unsigned int cur_seq_id = 0;
2118 
2119 	while (seq_id && cur_seq_id < seq_id) {
2120 		spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2121 		if (list_empty(head)) {
2122 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2123 			break;
2124 		}
2125 		fn = list_first_entry(head, struct fsync_node_entry, list);
2126 		if (fn->seq_id > seq_id) {
2127 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2128 			break;
2129 		}
2130 		cur_seq_id = fn->seq_id;
2131 		page = fn->page;
2132 		get_page(page);
2133 		spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2134 
2135 		f2fs_wait_on_page_writeback(page, NODE, true, false);
2136 
2137 		put_page(page);
2138 	}
2139 
2140 	return filemap_check_errors(NODE_MAPPING(sbi));
2141 }
2142 
2143 static int f2fs_write_node_pages(struct address_space *mapping,
2144 			    struct writeback_control *wbc)
2145 {
2146 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2147 	struct blk_plug plug;
2148 	long diff;
2149 
2150 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2151 		goto skip_write;
2152 
2153 	/* balancing f2fs's metadata in background */
2154 	f2fs_balance_fs_bg(sbi, true);
2155 
2156 	/* collect a number of dirty node pages and write together */
2157 	if (wbc->sync_mode != WB_SYNC_ALL &&
2158 			get_pages(sbi, F2FS_DIRTY_NODES) <
2159 					nr_pages_to_skip(sbi, NODE))
2160 		goto skip_write;
2161 
2162 	if (wbc->sync_mode == WB_SYNC_ALL)
2163 		atomic_inc(&sbi->wb_sync_req[NODE]);
2164 	else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2165 		/* to avoid potential deadlock */
2166 		if (current->plug)
2167 			blk_finish_plug(current->plug);
2168 		goto skip_write;
2169 	}
2170 
2171 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2172 
2173 	diff = nr_pages_to_write(sbi, NODE, wbc);
2174 	blk_start_plug(&plug);
2175 	f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2176 	blk_finish_plug(&plug);
2177 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2178 
2179 	if (wbc->sync_mode == WB_SYNC_ALL)
2180 		atomic_dec(&sbi->wb_sync_req[NODE]);
2181 	return 0;
2182 
2183 skip_write:
2184 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2185 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2186 	return 0;
2187 }
2188 
2189 static bool f2fs_dirty_node_folio(struct address_space *mapping,
2190 		struct folio *folio)
2191 {
2192 	trace_f2fs_set_page_dirty(folio, NODE);
2193 
2194 	if (!folio_test_uptodate(folio))
2195 		folio_mark_uptodate(folio);
2196 #ifdef CONFIG_F2FS_CHECK_FS
2197 	if (IS_INODE(&folio->page))
2198 		f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page);
2199 #endif
2200 	if (filemap_dirty_folio(mapping, folio)) {
2201 		inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2202 		set_page_private_reference(&folio->page);
2203 		return true;
2204 	}
2205 	return false;
2206 }
2207 
2208 /*
2209  * Structure of the f2fs node operations
2210  */
2211 const struct address_space_operations f2fs_node_aops = {
2212 	.writepage	= f2fs_write_node_page,
2213 	.writepages	= f2fs_write_node_pages,
2214 	.dirty_folio	= f2fs_dirty_node_folio,
2215 	.invalidate_folio = f2fs_invalidate_folio,
2216 	.release_folio	= f2fs_release_folio,
2217 	.migrate_folio	= filemap_migrate_folio,
2218 };
2219 
2220 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2221 						nid_t n)
2222 {
2223 	return radix_tree_lookup(&nm_i->free_nid_root, n);
2224 }
2225 
2226 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2227 				struct free_nid *i)
2228 {
2229 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2230 	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2231 
2232 	if (err)
2233 		return err;
2234 
2235 	nm_i->nid_cnt[FREE_NID]++;
2236 	list_add_tail(&i->list, &nm_i->free_nid_list);
2237 	return 0;
2238 }
2239 
2240 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2241 			struct free_nid *i, enum nid_state state)
2242 {
2243 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2244 
2245 	f2fs_bug_on(sbi, state != i->state);
2246 	nm_i->nid_cnt[state]--;
2247 	if (state == FREE_NID)
2248 		list_del(&i->list);
2249 	radix_tree_delete(&nm_i->free_nid_root, i->nid);
2250 }
2251 
2252 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2253 			enum nid_state org_state, enum nid_state dst_state)
2254 {
2255 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2256 
2257 	f2fs_bug_on(sbi, org_state != i->state);
2258 	i->state = dst_state;
2259 	nm_i->nid_cnt[org_state]--;
2260 	nm_i->nid_cnt[dst_state]++;
2261 
2262 	switch (dst_state) {
2263 	case PREALLOC_NID:
2264 		list_del(&i->list);
2265 		break;
2266 	case FREE_NID:
2267 		list_add_tail(&i->list, &nm_i->free_nid_list);
2268 		break;
2269 	default:
2270 		BUG_ON(1);
2271 	}
2272 }
2273 
2274 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2275 {
2276 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2277 	unsigned int i;
2278 	bool ret = true;
2279 
2280 	f2fs_down_read(&nm_i->nat_tree_lock);
2281 	for (i = 0; i < nm_i->nat_blocks; i++) {
2282 		if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2283 			ret = false;
2284 			break;
2285 		}
2286 	}
2287 	f2fs_up_read(&nm_i->nat_tree_lock);
2288 
2289 	return ret;
2290 }
2291 
2292 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2293 							bool set, bool build)
2294 {
2295 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2296 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2297 	unsigned int nid_ofs = nid - START_NID(nid);
2298 
2299 	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2300 		return;
2301 
2302 	if (set) {
2303 		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2304 			return;
2305 		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2306 		nm_i->free_nid_count[nat_ofs]++;
2307 	} else {
2308 		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2309 			return;
2310 		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2311 		if (!build)
2312 			nm_i->free_nid_count[nat_ofs]--;
2313 	}
2314 }
2315 
2316 /* return if the nid is recognized as free */
2317 static bool add_free_nid(struct f2fs_sb_info *sbi,
2318 				nid_t nid, bool build, bool update)
2319 {
2320 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2321 	struct free_nid *i, *e;
2322 	struct nat_entry *ne;
2323 	int err = -EINVAL;
2324 	bool ret = false;
2325 
2326 	/* 0 nid should not be used */
2327 	if (unlikely(nid == 0))
2328 		return false;
2329 
2330 	if (unlikely(f2fs_check_nid_range(sbi, nid)))
2331 		return false;
2332 
2333 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2334 	i->nid = nid;
2335 	i->state = FREE_NID;
2336 
2337 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2338 
2339 	spin_lock(&nm_i->nid_list_lock);
2340 
2341 	if (build) {
2342 		/*
2343 		 *   Thread A             Thread B
2344 		 *  - f2fs_create
2345 		 *   - f2fs_new_inode
2346 		 *    - f2fs_alloc_nid
2347 		 *     - __insert_nid_to_list(PREALLOC_NID)
2348 		 *                     - f2fs_balance_fs_bg
2349 		 *                      - f2fs_build_free_nids
2350 		 *                       - __f2fs_build_free_nids
2351 		 *                        - scan_nat_page
2352 		 *                         - add_free_nid
2353 		 *                          - __lookup_nat_cache
2354 		 *  - f2fs_add_link
2355 		 *   - f2fs_init_inode_metadata
2356 		 *    - f2fs_new_inode_page
2357 		 *     - f2fs_new_node_page
2358 		 *      - set_node_addr
2359 		 *  - f2fs_alloc_nid_done
2360 		 *   - __remove_nid_from_list(PREALLOC_NID)
2361 		 *                         - __insert_nid_to_list(FREE_NID)
2362 		 */
2363 		ne = __lookup_nat_cache(nm_i, nid);
2364 		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2365 				nat_get_blkaddr(ne) != NULL_ADDR))
2366 			goto err_out;
2367 
2368 		e = __lookup_free_nid_list(nm_i, nid);
2369 		if (e) {
2370 			if (e->state == FREE_NID)
2371 				ret = true;
2372 			goto err_out;
2373 		}
2374 	}
2375 	ret = true;
2376 	err = __insert_free_nid(sbi, i);
2377 err_out:
2378 	if (update) {
2379 		update_free_nid_bitmap(sbi, nid, ret, build);
2380 		if (!build)
2381 			nm_i->available_nids++;
2382 	}
2383 	spin_unlock(&nm_i->nid_list_lock);
2384 	radix_tree_preload_end();
2385 
2386 	if (err)
2387 		kmem_cache_free(free_nid_slab, i);
2388 	return ret;
2389 }
2390 
2391 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2392 {
2393 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2394 	struct free_nid *i;
2395 	bool need_free = false;
2396 
2397 	spin_lock(&nm_i->nid_list_lock);
2398 	i = __lookup_free_nid_list(nm_i, nid);
2399 	if (i && i->state == FREE_NID) {
2400 		__remove_free_nid(sbi, i, FREE_NID);
2401 		need_free = true;
2402 	}
2403 	spin_unlock(&nm_i->nid_list_lock);
2404 
2405 	if (need_free)
2406 		kmem_cache_free(free_nid_slab, i);
2407 }
2408 
2409 static int scan_nat_page(struct f2fs_sb_info *sbi,
2410 			struct page *nat_page, nid_t start_nid)
2411 {
2412 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2413 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
2414 	block_t blk_addr;
2415 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2416 	int i;
2417 
2418 	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2419 
2420 	i = start_nid % NAT_ENTRY_PER_BLOCK;
2421 
2422 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2423 		if (unlikely(start_nid >= nm_i->max_nid))
2424 			break;
2425 
2426 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2427 
2428 		if (blk_addr == NEW_ADDR)
2429 			return -EFSCORRUPTED;
2430 
2431 		if (blk_addr == NULL_ADDR) {
2432 			add_free_nid(sbi, start_nid, true, true);
2433 		} else {
2434 			spin_lock(&NM_I(sbi)->nid_list_lock);
2435 			update_free_nid_bitmap(sbi, start_nid, false, true);
2436 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2437 		}
2438 	}
2439 
2440 	return 0;
2441 }
2442 
2443 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2444 {
2445 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2446 	struct f2fs_journal *journal = curseg->journal;
2447 	int i;
2448 
2449 	down_read(&curseg->journal_rwsem);
2450 	for (i = 0; i < nats_in_cursum(journal); i++) {
2451 		block_t addr;
2452 		nid_t nid;
2453 
2454 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2455 		nid = le32_to_cpu(nid_in_journal(journal, i));
2456 		if (addr == NULL_ADDR)
2457 			add_free_nid(sbi, nid, true, false);
2458 		else
2459 			remove_free_nid(sbi, nid);
2460 	}
2461 	up_read(&curseg->journal_rwsem);
2462 }
2463 
2464 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2465 {
2466 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2467 	unsigned int i, idx;
2468 	nid_t nid;
2469 
2470 	f2fs_down_read(&nm_i->nat_tree_lock);
2471 
2472 	for (i = 0; i < nm_i->nat_blocks; i++) {
2473 		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2474 			continue;
2475 		if (!nm_i->free_nid_count[i])
2476 			continue;
2477 		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2478 			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2479 						NAT_ENTRY_PER_BLOCK, idx);
2480 			if (idx >= NAT_ENTRY_PER_BLOCK)
2481 				break;
2482 
2483 			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2484 			add_free_nid(sbi, nid, true, false);
2485 
2486 			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2487 				goto out;
2488 		}
2489 	}
2490 out:
2491 	scan_curseg_cache(sbi);
2492 
2493 	f2fs_up_read(&nm_i->nat_tree_lock);
2494 }
2495 
2496 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2497 						bool sync, bool mount)
2498 {
2499 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2500 	int i = 0, ret;
2501 	nid_t nid = nm_i->next_scan_nid;
2502 
2503 	if (unlikely(nid >= nm_i->max_nid))
2504 		nid = 0;
2505 
2506 	if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2507 		nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2508 
2509 	/* Enough entries */
2510 	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2511 		return 0;
2512 
2513 	if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2514 		return 0;
2515 
2516 	if (!mount) {
2517 		/* try to find free nids in free_nid_bitmap */
2518 		scan_free_nid_bits(sbi);
2519 
2520 		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2521 			return 0;
2522 	}
2523 
2524 	/* readahead nat pages to be scanned */
2525 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2526 							META_NAT, true);
2527 
2528 	f2fs_down_read(&nm_i->nat_tree_lock);
2529 
2530 	while (1) {
2531 		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2532 						nm_i->nat_block_bitmap)) {
2533 			struct page *page = get_current_nat_page(sbi, nid);
2534 
2535 			if (IS_ERR(page)) {
2536 				ret = PTR_ERR(page);
2537 			} else {
2538 				ret = scan_nat_page(sbi, page, nid);
2539 				f2fs_put_page(page, 1);
2540 			}
2541 
2542 			if (ret) {
2543 				f2fs_up_read(&nm_i->nat_tree_lock);
2544 
2545 				if (ret == -EFSCORRUPTED) {
2546 					f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2547 					set_sbi_flag(sbi, SBI_NEED_FSCK);
2548 					f2fs_handle_error(sbi,
2549 						ERROR_INCONSISTENT_NAT);
2550 				}
2551 
2552 				return ret;
2553 			}
2554 		}
2555 
2556 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2557 		if (unlikely(nid >= nm_i->max_nid))
2558 			nid = 0;
2559 
2560 		if (++i >= FREE_NID_PAGES)
2561 			break;
2562 	}
2563 
2564 	/* go to the next free nat pages to find free nids abundantly */
2565 	nm_i->next_scan_nid = nid;
2566 
2567 	/* find free nids from current sum_pages */
2568 	scan_curseg_cache(sbi);
2569 
2570 	f2fs_up_read(&nm_i->nat_tree_lock);
2571 
2572 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2573 					nm_i->ra_nid_pages, META_NAT, false);
2574 
2575 	return 0;
2576 }
2577 
2578 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2579 {
2580 	int ret;
2581 
2582 	mutex_lock(&NM_I(sbi)->build_lock);
2583 	ret = __f2fs_build_free_nids(sbi, sync, mount);
2584 	mutex_unlock(&NM_I(sbi)->build_lock);
2585 
2586 	return ret;
2587 }
2588 
2589 /*
2590  * If this function returns success, caller can obtain a new nid
2591  * from second parameter of this function.
2592  * The returned nid could be used ino as well as nid when inode is created.
2593  */
2594 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2595 {
2596 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2597 	struct free_nid *i = NULL;
2598 retry:
2599 	if (time_to_inject(sbi, FAULT_ALLOC_NID))
2600 		return false;
2601 
2602 	spin_lock(&nm_i->nid_list_lock);
2603 
2604 	if (unlikely(nm_i->available_nids == 0)) {
2605 		spin_unlock(&nm_i->nid_list_lock);
2606 		return false;
2607 	}
2608 
2609 	/* We should not use stale free nids created by f2fs_build_free_nids */
2610 	if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2611 		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2612 		i = list_first_entry(&nm_i->free_nid_list,
2613 					struct free_nid, list);
2614 		*nid = i->nid;
2615 
2616 		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2617 		nm_i->available_nids--;
2618 
2619 		update_free_nid_bitmap(sbi, *nid, false, false);
2620 
2621 		spin_unlock(&nm_i->nid_list_lock);
2622 		return true;
2623 	}
2624 	spin_unlock(&nm_i->nid_list_lock);
2625 
2626 	/* Let's scan nat pages and its caches to get free nids */
2627 	if (!f2fs_build_free_nids(sbi, true, false))
2628 		goto retry;
2629 	return false;
2630 }
2631 
2632 /*
2633  * f2fs_alloc_nid() should be called prior to this function.
2634  */
2635 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2636 {
2637 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2638 	struct free_nid *i;
2639 
2640 	spin_lock(&nm_i->nid_list_lock);
2641 	i = __lookup_free_nid_list(nm_i, nid);
2642 	f2fs_bug_on(sbi, !i);
2643 	__remove_free_nid(sbi, i, PREALLOC_NID);
2644 	spin_unlock(&nm_i->nid_list_lock);
2645 
2646 	kmem_cache_free(free_nid_slab, i);
2647 }
2648 
2649 /*
2650  * f2fs_alloc_nid() should be called prior to this function.
2651  */
2652 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2653 {
2654 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2655 	struct free_nid *i;
2656 	bool need_free = false;
2657 
2658 	if (!nid)
2659 		return;
2660 
2661 	spin_lock(&nm_i->nid_list_lock);
2662 	i = __lookup_free_nid_list(nm_i, nid);
2663 	f2fs_bug_on(sbi, !i);
2664 
2665 	if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2666 		__remove_free_nid(sbi, i, PREALLOC_NID);
2667 		need_free = true;
2668 	} else {
2669 		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2670 	}
2671 
2672 	nm_i->available_nids++;
2673 
2674 	update_free_nid_bitmap(sbi, nid, true, false);
2675 
2676 	spin_unlock(&nm_i->nid_list_lock);
2677 
2678 	if (need_free)
2679 		kmem_cache_free(free_nid_slab, i);
2680 }
2681 
2682 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2683 {
2684 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2685 	int nr = nr_shrink;
2686 
2687 	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2688 		return 0;
2689 
2690 	if (!mutex_trylock(&nm_i->build_lock))
2691 		return 0;
2692 
2693 	while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2694 		struct free_nid *i, *next;
2695 		unsigned int batch = SHRINK_NID_BATCH_SIZE;
2696 
2697 		spin_lock(&nm_i->nid_list_lock);
2698 		list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2699 			if (!nr_shrink || !batch ||
2700 				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2701 				break;
2702 			__remove_free_nid(sbi, i, FREE_NID);
2703 			kmem_cache_free(free_nid_slab, i);
2704 			nr_shrink--;
2705 			batch--;
2706 		}
2707 		spin_unlock(&nm_i->nid_list_lock);
2708 	}
2709 
2710 	mutex_unlock(&nm_i->build_lock);
2711 
2712 	return nr - nr_shrink;
2713 }
2714 
2715 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2716 {
2717 	void *src_addr, *dst_addr;
2718 	size_t inline_size;
2719 	struct page *ipage;
2720 	struct f2fs_inode *ri;
2721 
2722 	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2723 	if (IS_ERR(ipage))
2724 		return PTR_ERR(ipage);
2725 
2726 	ri = F2FS_INODE(page);
2727 	if (ri->i_inline & F2FS_INLINE_XATTR) {
2728 		if (!f2fs_has_inline_xattr(inode)) {
2729 			set_inode_flag(inode, FI_INLINE_XATTR);
2730 			stat_inc_inline_xattr(inode);
2731 		}
2732 	} else {
2733 		if (f2fs_has_inline_xattr(inode)) {
2734 			stat_dec_inline_xattr(inode);
2735 			clear_inode_flag(inode, FI_INLINE_XATTR);
2736 		}
2737 		goto update_inode;
2738 	}
2739 
2740 	dst_addr = inline_xattr_addr(inode, ipage);
2741 	src_addr = inline_xattr_addr(inode, page);
2742 	inline_size = inline_xattr_size(inode);
2743 
2744 	f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2745 	memcpy(dst_addr, src_addr, inline_size);
2746 update_inode:
2747 	f2fs_update_inode(inode, ipage);
2748 	f2fs_put_page(ipage, 1);
2749 	return 0;
2750 }
2751 
2752 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2753 {
2754 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2755 	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2756 	nid_t new_xnid;
2757 	struct dnode_of_data dn;
2758 	struct node_info ni;
2759 	struct page *xpage;
2760 	int err;
2761 
2762 	if (!prev_xnid)
2763 		goto recover_xnid;
2764 
2765 	/* 1: invalidate the previous xattr nid */
2766 	err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2767 	if (err)
2768 		return err;
2769 
2770 	f2fs_invalidate_blocks(sbi, ni.blk_addr, 1);
2771 	dec_valid_node_count(sbi, inode, false);
2772 	set_node_addr(sbi, &ni, NULL_ADDR, false);
2773 
2774 recover_xnid:
2775 	/* 2: update xattr nid in inode */
2776 	if (!f2fs_alloc_nid(sbi, &new_xnid))
2777 		return -ENOSPC;
2778 
2779 	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2780 	xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2781 	if (IS_ERR(xpage)) {
2782 		f2fs_alloc_nid_failed(sbi, new_xnid);
2783 		return PTR_ERR(xpage);
2784 	}
2785 
2786 	f2fs_alloc_nid_done(sbi, new_xnid);
2787 	f2fs_update_inode_page(inode);
2788 
2789 	/* 3: update and set xattr node page dirty */
2790 	if (page) {
2791 		memcpy(F2FS_NODE(xpage), F2FS_NODE(page),
2792 				VALID_XATTR_BLOCK_SIZE);
2793 		set_page_dirty(xpage);
2794 	}
2795 	f2fs_put_page(xpage, 1);
2796 
2797 	return 0;
2798 }
2799 
2800 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2801 {
2802 	struct f2fs_inode *src, *dst;
2803 	nid_t ino = ino_of_node(page);
2804 	struct node_info old_ni, new_ni;
2805 	struct page *ipage;
2806 	int err;
2807 
2808 	err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2809 	if (err)
2810 		return err;
2811 
2812 	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2813 		return -EINVAL;
2814 retry:
2815 	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2816 	if (!ipage) {
2817 		memalloc_retry_wait(GFP_NOFS);
2818 		goto retry;
2819 	}
2820 
2821 	/* Should not use this inode from free nid list */
2822 	remove_free_nid(sbi, ino);
2823 
2824 	if (!PageUptodate(ipage))
2825 		SetPageUptodate(ipage);
2826 	fill_node_footer(ipage, ino, ino, 0, true);
2827 	set_cold_node(ipage, false);
2828 
2829 	src = F2FS_INODE(page);
2830 	dst = F2FS_INODE(ipage);
2831 
2832 	memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2833 	dst->i_size = 0;
2834 	dst->i_blocks = cpu_to_le64(1);
2835 	dst->i_links = cpu_to_le32(1);
2836 	dst->i_xattr_nid = 0;
2837 	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2838 	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2839 		dst->i_extra_isize = src->i_extra_isize;
2840 
2841 		if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2842 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2843 							i_inline_xattr_size))
2844 			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2845 
2846 		if (f2fs_sb_has_project_quota(sbi) &&
2847 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2848 								i_projid))
2849 			dst->i_projid = src->i_projid;
2850 
2851 		if (f2fs_sb_has_inode_crtime(sbi) &&
2852 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2853 							i_crtime_nsec)) {
2854 			dst->i_crtime = src->i_crtime;
2855 			dst->i_crtime_nsec = src->i_crtime_nsec;
2856 		}
2857 	}
2858 
2859 	new_ni = old_ni;
2860 	new_ni.ino = ino;
2861 
2862 	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2863 		WARN_ON(1);
2864 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2865 	inc_valid_inode_count(sbi);
2866 	set_page_dirty(ipage);
2867 	f2fs_put_page(ipage, 1);
2868 	return 0;
2869 }
2870 
2871 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2872 			unsigned int segno, struct f2fs_summary_block *sum)
2873 {
2874 	struct f2fs_node *rn;
2875 	struct f2fs_summary *sum_entry;
2876 	block_t addr;
2877 	int i, idx, last_offset, nrpages;
2878 
2879 	/* scan the node segment */
2880 	last_offset = BLKS_PER_SEG(sbi);
2881 	addr = START_BLOCK(sbi, segno);
2882 	sum_entry = &sum->entries[0];
2883 
2884 	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2885 		nrpages = bio_max_segs(last_offset - i);
2886 
2887 		/* readahead node pages */
2888 		f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2889 
2890 		for (idx = addr; idx < addr + nrpages; idx++) {
2891 			struct page *page = f2fs_get_tmp_page(sbi, idx);
2892 
2893 			if (IS_ERR(page))
2894 				return PTR_ERR(page);
2895 
2896 			rn = F2FS_NODE(page);
2897 			sum_entry->nid = rn->footer.nid;
2898 			sum_entry->version = 0;
2899 			sum_entry->ofs_in_node = 0;
2900 			sum_entry++;
2901 			f2fs_put_page(page, 1);
2902 		}
2903 
2904 		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2905 							addr + nrpages);
2906 	}
2907 	return 0;
2908 }
2909 
2910 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2911 {
2912 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2913 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2914 	struct f2fs_journal *journal = curseg->journal;
2915 	int i;
2916 
2917 	down_write(&curseg->journal_rwsem);
2918 	for (i = 0; i < nats_in_cursum(journal); i++) {
2919 		struct nat_entry *ne;
2920 		struct f2fs_nat_entry raw_ne;
2921 		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2922 
2923 		if (f2fs_check_nid_range(sbi, nid))
2924 			continue;
2925 
2926 		raw_ne = nat_in_journal(journal, i);
2927 
2928 		ne = __lookup_nat_cache(nm_i, nid);
2929 		if (!ne) {
2930 			ne = __alloc_nat_entry(sbi, nid, true);
2931 			__init_nat_entry(nm_i, ne, &raw_ne, true);
2932 		}
2933 
2934 		/*
2935 		 * if a free nat in journal has not been used after last
2936 		 * checkpoint, we should remove it from available nids,
2937 		 * since later we will add it again.
2938 		 */
2939 		if (!get_nat_flag(ne, IS_DIRTY) &&
2940 				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2941 			spin_lock(&nm_i->nid_list_lock);
2942 			nm_i->available_nids--;
2943 			spin_unlock(&nm_i->nid_list_lock);
2944 		}
2945 
2946 		__set_nat_cache_dirty(nm_i, ne);
2947 	}
2948 	update_nats_in_cursum(journal, -i);
2949 	up_write(&curseg->journal_rwsem);
2950 }
2951 
2952 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2953 						struct list_head *head, int max)
2954 {
2955 	struct nat_entry_set *cur;
2956 
2957 	if (nes->entry_cnt >= max)
2958 		goto add_out;
2959 
2960 	list_for_each_entry(cur, head, set_list) {
2961 		if (cur->entry_cnt >= nes->entry_cnt) {
2962 			list_add(&nes->set_list, cur->set_list.prev);
2963 			return;
2964 		}
2965 	}
2966 add_out:
2967 	list_add_tail(&nes->set_list, head);
2968 }
2969 
2970 static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2971 							unsigned int valid)
2972 {
2973 	if (valid == 0) {
2974 		__set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2975 		__clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2976 		return;
2977 	}
2978 
2979 	__clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2980 	if (valid == NAT_ENTRY_PER_BLOCK)
2981 		__set_bit_le(nat_ofs, nm_i->full_nat_bits);
2982 	else
2983 		__clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2984 }
2985 
2986 static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2987 						struct page *page)
2988 {
2989 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2990 	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2991 	struct f2fs_nat_block *nat_blk = page_address(page);
2992 	int valid = 0;
2993 	int i = 0;
2994 
2995 	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
2996 		return;
2997 
2998 	if (nat_index == 0) {
2999 		valid = 1;
3000 		i = 1;
3001 	}
3002 	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
3003 		if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
3004 			valid++;
3005 	}
3006 
3007 	__update_nat_bits(nm_i, nat_index, valid);
3008 }
3009 
3010 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
3011 {
3012 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3013 	unsigned int nat_ofs;
3014 
3015 	f2fs_down_read(&nm_i->nat_tree_lock);
3016 
3017 	for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
3018 		unsigned int valid = 0, nid_ofs = 0;
3019 
3020 		/* handle nid zero due to it should never be used */
3021 		if (unlikely(nat_ofs == 0)) {
3022 			valid = 1;
3023 			nid_ofs = 1;
3024 		}
3025 
3026 		for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
3027 			if (!test_bit_le(nid_ofs,
3028 					nm_i->free_nid_bitmap[nat_ofs]))
3029 				valid++;
3030 		}
3031 
3032 		__update_nat_bits(nm_i, nat_ofs, valid);
3033 	}
3034 
3035 	f2fs_up_read(&nm_i->nat_tree_lock);
3036 }
3037 
3038 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
3039 		struct nat_entry_set *set, struct cp_control *cpc)
3040 {
3041 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3042 	struct f2fs_journal *journal = curseg->journal;
3043 	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
3044 	bool to_journal = true;
3045 	struct f2fs_nat_block *nat_blk;
3046 	struct nat_entry *ne, *cur;
3047 	struct page *page = NULL;
3048 
3049 	/*
3050 	 * there are two steps to flush nat entries:
3051 	 * #1, flush nat entries to journal in current hot data summary block.
3052 	 * #2, flush nat entries to nat page.
3053 	 */
3054 	if ((cpc->reason & CP_UMOUNT) ||
3055 		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3056 		to_journal = false;
3057 
3058 	if (to_journal) {
3059 		down_write(&curseg->journal_rwsem);
3060 	} else {
3061 		page = get_next_nat_page(sbi, start_nid);
3062 		if (IS_ERR(page))
3063 			return PTR_ERR(page);
3064 
3065 		nat_blk = page_address(page);
3066 		f2fs_bug_on(sbi, !nat_blk);
3067 	}
3068 
3069 	/* flush dirty nats in nat entry set */
3070 	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3071 		struct f2fs_nat_entry *raw_ne;
3072 		nid_t nid = nat_get_nid(ne);
3073 		int offset;
3074 
3075 		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3076 
3077 		if (to_journal) {
3078 			offset = f2fs_lookup_journal_in_cursum(journal,
3079 							NAT_JOURNAL, nid, 1);
3080 			f2fs_bug_on(sbi, offset < 0);
3081 			raw_ne = &nat_in_journal(journal, offset);
3082 			nid_in_journal(journal, offset) = cpu_to_le32(nid);
3083 		} else {
3084 			raw_ne = &nat_blk->entries[nid - start_nid];
3085 		}
3086 		raw_nat_from_node_info(raw_ne, &ne->ni);
3087 		nat_reset_flag(ne);
3088 		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
3089 		if (nat_get_blkaddr(ne) == NULL_ADDR) {
3090 			add_free_nid(sbi, nid, false, true);
3091 		} else {
3092 			spin_lock(&NM_I(sbi)->nid_list_lock);
3093 			update_free_nid_bitmap(sbi, nid, false, false);
3094 			spin_unlock(&NM_I(sbi)->nid_list_lock);
3095 		}
3096 	}
3097 
3098 	if (to_journal) {
3099 		up_write(&curseg->journal_rwsem);
3100 	} else {
3101 		update_nat_bits(sbi, start_nid, page);
3102 		f2fs_put_page(page, 1);
3103 	}
3104 
3105 	/* Allow dirty nats by node block allocation in write_begin */
3106 	if (!set->entry_cnt) {
3107 		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3108 		kmem_cache_free(nat_entry_set_slab, set);
3109 	}
3110 	return 0;
3111 }
3112 
3113 /*
3114  * This function is called during the checkpointing process.
3115  */
3116 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3117 {
3118 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3119 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3120 	struct f2fs_journal *journal = curseg->journal;
3121 	struct nat_entry_set *setvec[NAT_VEC_SIZE];
3122 	struct nat_entry_set *set, *tmp;
3123 	unsigned int found;
3124 	nid_t set_idx = 0;
3125 	LIST_HEAD(sets);
3126 	int err = 0;
3127 
3128 	/*
3129 	 * during unmount, let's flush nat_bits before checking
3130 	 * nat_cnt[DIRTY_NAT].
3131 	 */
3132 	if (cpc->reason & CP_UMOUNT) {
3133 		f2fs_down_write(&nm_i->nat_tree_lock);
3134 		remove_nats_in_journal(sbi);
3135 		f2fs_up_write(&nm_i->nat_tree_lock);
3136 	}
3137 
3138 	if (!nm_i->nat_cnt[DIRTY_NAT])
3139 		return 0;
3140 
3141 	f2fs_down_write(&nm_i->nat_tree_lock);
3142 
3143 	/*
3144 	 * if there are no enough space in journal to store dirty nat
3145 	 * entries, remove all entries from journal and merge them
3146 	 * into nat entry set.
3147 	 */
3148 	if (cpc->reason & CP_UMOUNT ||
3149 		!__has_cursum_space(journal,
3150 			nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3151 		remove_nats_in_journal(sbi);
3152 
3153 	while ((found = __gang_lookup_nat_set(nm_i,
3154 					set_idx, NAT_VEC_SIZE, setvec))) {
3155 		unsigned idx;
3156 
3157 		set_idx = setvec[found - 1]->set + 1;
3158 		for (idx = 0; idx < found; idx++)
3159 			__adjust_nat_entry_set(setvec[idx], &sets,
3160 						MAX_NAT_JENTRIES(journal));
3161 	}
3162 
3163 	/* flush dirty nats in nat entry set */
3164 	list_for_each_entry_safe(set, tmp, &sets, set_list) {
3165 		err = __flush_nat_entry_set(sbi, set, cpc);
3166 		if (err)
3167 			break;
3168 	}
3169 
3170 	f2fs_up_write(&nm_i->nat_tree_lock);
3171 	/* Allow dirty nats by node block allocation in write_begin */
3172 
3173 	return err;
3174 }
3175 
3176 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3177 {
3178 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3179 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3180 	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3181 	unsigned int i;
3182 	__u64 cp_ver = cur_cp_version(ckpt);
3183 	block_t nat_bits_addr;
3184 
3185 	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3186 	nm_i->nat_bits = f2fs_kvzalloc(sbi,
3187 			F2FS_BLK_TO_BYTES(nm_i->nat_bits_blocks), GFP_KERNEL);
3188 	if (!nm_i->nat_bits)
3189 		return -ENOMEM;
3190 
3191 	nm_i->full_nat_bits = nm_i->nat_bits + 8;
3192 	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3193 
3194 	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3195 		return 0;
3196 
3197 	nat_bits_addr = __start_cp_addr(sbi) + BLKS_PER_SEG(sbi) -
3198 						nm_i->nat_bits_blocks;
3199 	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3200 		struct page *page;
3201 
3202 		page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3203 		if (IS_ERR(page))
3204 			return PTR_ERR(page);
3205 
3206 		memcpy(nm_i->nat_bits + F2FS_BLK_TO_BYTES(i),
3207 					page_address(page), F2FS_BLKSIZE);
3208 		f2fs_put_page(page, 1);
3209 	}
3210 
3211 	cp_ver |= (cur_cp_crc(ckpt) << 32);
3212 	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3213 		clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3214 		f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3215 			cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3216 		return 0;
3217 	}
3218 
3219 	f2fs_notice(sbi, "Found nat_bits in checkpoint");
3220 	return 0;
3221 }
3222 
3223 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3224 {
3225 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3226 	unsigned int i = 0;
3227 	nid_t nid, last_nid;
3228 
3229 	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3230 		return;
3231 
3232 	for (i = 0; i < nm_i->nat_blocks; i++) {
3233 		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3234 		if (i >= nm_i->nat_blocks)
3235 			break;
3236 
3237 		__set_bit_le(i, nm_i->nat_block_bitmap);
3238 
3239 		nid = i * NAT_ENTRY_PER_BLOCK;
3240 		last_nid = nid + NAT_ENTRY_PER_BLOCK;
3241 
3242 		spin_lock(&NM_I(sbi)->nid_list_lock);
3243 		for (; nid < last_nid; nid++)
3244 			update_free_nid_bitmap(sbi, nid, true, true);
3245 		spin_unlock(&NM_I(sbi)->nid_list_lock);
3246 	}
3247 
3248 	for (i = 0; i < nm_i->nat_blocks; i++) {
3249 		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3250 		if (i >= nm_i->nat_blocks)
3251 			break;
3252 
3253 		__set_bit_le(i, nm_i->nat_block_bitmap);
3254 	}
3255 }
3256 
3257 static int init_node_manager(struct f2fs_sb_info *sbi)
3258 {
3259 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3260 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3261 	unsigned char *version_bitmap;
3262 	unsigned int nat_segs;
3263 	int err;
3264 
3265 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3266 
3267 	/* segment_count_nat includes pair segment so divide to 2. */
3268 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3269 	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3270 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3271 
3272 	/* not used nids: 0, node, meta, (and root counted as valid node) */
3273 	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3274 						F2FS_RESERVED_NODE_NUM;
3275 	nm_i->nid_cnt[FREE_NID] = 0;
3276 	nm_i->nid_cnt[PREALLOC_NID] = 0;
3277 	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3278 	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3279 	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3280 	nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3281 
3282 	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3283 	INIT_LIST_HEAD(&nm_i->free_nid_list);
3284 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3285 	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3286 	INIT_LIST_HEAD(&nm_i->nat_entries);
3287 	spin_lock_init(&nm_i->nat_list_lock);
3288 
3289 	mutex_init(&nm_i->build_lock);
3290 	spin_lock_init(&nm_i->nid_list_lock);
3291 	init_f2fs_rwsem(&nm_i->nat_tree_lock);
3292 
3293 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3294 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3295 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3296 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3297 					GFP_KERNEL);
3298 	if (!nm_i->nat_bitmap)
3299 		return -ENOMEM;
3300 
3301 	err = __get_nat_bitmaps(sbi);
3302 	if (err)
3303 		return err;
3304 
3305 #ifdef CONFIG_F2FS_CHECK_FS
3306 	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3307 					GFP_KERNEL);
3308 	if (!nm_i->nat_bitmap_mir)
3309 		return -ENOMEM;
3310 #endif
3311 
3312 	return 0;
3313 }
3314 
3315 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3316 {
3317 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3318 	int i;
3319 
3320 	nm_i->free_nid_bitmap =
3321 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3322 					      nm_i->nat_blocks),
3323 			      GFP_KERNEL);
3324 	if (!nm_i->free_nid_bitmap)
3325 		return -ENOMEM;
3326 
3327 	for (i = 0; i < nm_i->nat_blocks; i++) {
3328 		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3329 			f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3330 		if (!nm_i->free_nid_bitmap[i])
3331 			return -ENOMEM;
3332 	}
3333 
3334 	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3335 								GFP_KERNEL);
3336 	if (!nm_i->nat_block_bitmap)
3337 		return -ENOMEM;
3338 
3339 	nm_i->free_nid_count =
3340 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3341 					      nm_i->nat_blocks),
3342 			      GFP_KERNEL);
3343 	if (!nm_i->free_nid_count)
3344 		return -ENOMEM;
3345 	return 0;
3346 }
3347 
3348 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3349 {
3350 	int err;
3351 
3352 	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3353 							GFP_KERNEL);
3354 	if (!sbi->nm_info)
3355 		return -ENOMEM;
3356 
3357 	err = init_node_manager(sbi);
3358 	if (err)
3359 		return err;
3360 
3361 	err = init_free_nid_cache(sbi);
3362 	if (err)
3363 		return err;
3364 
3365 	/* load free nid status from nat_bits table */
3366 	load_free_nid_bitmap(sbi);
3367 
3368 	return f2fs_build_free_nids(sbi, true, true);
3369 }
3370 
3371 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3372 {
3373 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3374 	struct free_nid *i, *next_i;
3375 	void *vec[NAT_VEC_SIZE];
3376 	struct nat_entry **natvec = (struct nat_entry **)vec;
3377 	struct nat_entry_set **setvec = (struct nat_entry_set **)vec;
3378 	nid_t nid = 0;
3379 	unsigned int found;
3380 
3381 	if (!nm_i)
3382 		return;
3383 
3384 	/* destroy free nid list */
3385 	spin_lock(&nm_i->nid_list_lock);
3386 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3387 		__remove_free_nid(sbi, i, FREE_NID);
3388 		spin_unlock(&nm_i->nid_list_lock);
3389 		kmem_cache_free(free_nid_slab, i);
3390 		spin_lock(&nm_i->nid_list_lock);
3391 	}
3392 	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3393 	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3394 	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3395 	spin_unlock(&nm_i->nid_list_lock);
3396 
3397 	/* destroy nat cache */
3398 	f2fs_down_write(&nm_i->nat_tree_lock);
3399 	while ((found = __gang_lookup_nat_cache(nm_i,
3400 					nid, NAT_VEC_SIZE, natvec))) {
3401 		unsigned idx;
3402 
3403 		nid = nat_get_nid(natvec[found - 1]) + 1;
3404 		for (idx = 0; idx < found; idx++) {
3405 			spin_lock(&nm_i->nat_list_lock);
3406 			list_del(&natvec[idx]->list);
3407 			spin_unlock(&nm_i->nat_list_lock);
3408 
3409 			__del_from_nat_cache(nm_i, natvec[idx]);
3410 		}
3411 	}
3412 	f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3413 
3414 	/* destroy nat set cache */
3415 	nid = 0;
3416 	memset(vec, 0, sizeof(void *) * NAT_VEC_SIZE);
3417 	while ((found = __gang_lookup_nat_set(nm_i,
3418 					nid, NAT_VEC_SIZE, setvec))) {
3419 		unsigned idx;
3420 
3421 		nid = setvec[found - 1]->set + 1;
3422 		for (idx = 0; idx < found; idx++) {
3423 			/* entry_cnt is not zero, when cp_error was occurred */
3424 			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3425 			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3426 			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3427 		}
3428 	}
3429 	f2fs_up_write(&nm_i->nat_tree_lock);
3430 
3431 	kvfree(nm_i->nat_block_bitmap);
3432 	if (nm_i->free_nid_bitmap) {
3433 		int i;
3434 
3435 		for (i = 0; i < nm_i->nat_blocks; i++)
3436 			kvfree(nm_i->free_nid_bitmap[i]);
3437 		kvfree(nm_i->free_nid_bitmap);
3438 	}
3439 	kvfree(nm_i->free_nid_count);
3440 
3441 	kvfree(nm_i->nat_bitmap);
3442 	kvfree(nm_i->nat_bits);
3443 #ifdef CONFIG_F2FS_CHECK_FS
3444 	kvfree(nm_i->nat_bitmap_mir);
3445 #endif
3446 	sbi->nm_info = NULL;
3447 	kfree(nm_i);
3448 }
3449 
3450 int __init f2fs_create_node_manager_caches(void)
3451 {
3452 	nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3453 			sizeof(struct nat_entry));
3454 	if (!nat_entry_slab)
3455 		goto fail;
3456 
3457 	free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3458 			sizeof(struct free_nid));
3459 	if (!free_nid_slab)
3460 		goto destroy_nat_entry;
3461 
3462 	nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3463 			sizeof(struct nat_entry_set));
3464 	if (!nat_entry_set_slab)
3465 		goto destroy_free_nid;
3466 
3467 	fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3468 			sizeof(struct fsync_node_entry));
3469 	if (!fsync_node_entry_slab)
3470 		goto destroy_nat_entry_set;
3471 	return 0;
3472 
3473 destroy_nat_entry_set:
3474 	kmem_cache_destroy(nat_entry_set_slab);
3475 destroy_free_nid:
3476 	kmem_cache_destroy(free_nid_slab);
3477 destroy_nat_entry:
3478 	kmem_cache_destroy(nat_entry_slab);
3479 fail:
3480 	return -ENOMEM;
3481 }
3482 
3483 void f2fs_destroy_node_manager_caches(void)
3484 {
3485 	kmem_cache_destroy(fsync_node_entry_slab);
3486 	kmem_cache_destroy(nat_entry_set_slab);
3487 	kmem_cache_destroy(free_nid_slab);
3488 	kmem_cache_destroy(nat_entry_slab);
3489 }
3490