xref: /linux-6.15/fs/f2fs/node.c (revision cffaa097)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/sched/mm.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15 
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "iostat.h"
21 #include <trace/events/f2fs.h>
22 
23 #define on_f2fs_build_free_nids(nm_i) mutex_is_locked(&(nm_i)->build_lock)
24 
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29 
30 /*
31  * Check whether the given nid is within node id range.
32  */
33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35 	if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 		set_sbi_flag(sbi, SBI_NEED_FSCK);
37 		f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 			  __func__, nid);
39 		f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
40 		return -EFSCORRUPTED;
41 	}
42 	return 0;
43 }
44 
45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46 {
47 	struct f2fs_nm_info *nm_i = NM_I(sbi);
48 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
49 	struct sysinfo val;
50 	unsigned long avail_ram;
51 	unsigned long mem_size = 0;
52 	bool res = false;
53 
54 	if (!nm_i)
55 		return true;
56 
57 	si_meminfo(&val);
58 
59 	/* only uses low memory */
60 	avail_ram = val.totalram - val.totalhigh;
61 
62 	/*
63 	 * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively
64 	 */
65 	if (type == FREE_NIDS) {
66 		mem_size = (nm_i->nid_cnt[FREE_NID] *
67 				sizeof(struct free_nid)) >> PAGE_SHIFT;
68 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
69 	} else if (type == NAT_ENTRIES) {
70 		mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
71 				sizeof(struct nat_entry)) >> PAGE_SHIFT;
72 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
73 		if (excess_cached_nats(sbi))
74 			res = false;
75 	} else if (type == DIRTY_DENTS) {
76 		if (sbi->sb->s_bdi->wb.dirty_exceeded)
77 			return false;
78 		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
79 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
80 	} else if (type == INO_ENTRIES) {
81 		int i;
82 
83 		for (i = 0; i < MAX_INO_ENTRY; i++)
84 			mem_size += sbi->im[i].ino_num *
85 						sizeof(struct ino_entry);
86 		mem_size >>= PAGE_SHIFT;
87 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
88 	} else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) {
89 		enum extent_type etype = type == READ_EXTENT_CACHE ?
90 						EX_READ : EX_BLOCK_AGE;
91 		struct extent_tree_info *eti = &sbi->extent_tree[etype];
92 
93 		mem_size = (atomic_read(&eti->total_ext_tree) *
94 				sizeof(struct extent_tree) +
95 				atomic_read(&eti->total_ext_node) *
96 				sizeof(struct extent_node)) >> PAGE_SHIFT;
97 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
98 	} else if (type == DISCARD_CACHE) {
99 		mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
100 				sizeof(struct discard_cmd)) >> PAGE_SHIFT;
101 		res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
102 	} else if (type == COMPRESS_PAGE) {
103 #ifdef CONFIG_F2FS_FS_COMPRESSION
104 		unsigned long free_ram = val.freeram;
105 
106 		/*
107 		 * free memory is lower than watermark or cached page count
108 		 * exceed threshold, deny caching compress page.
109 		 */
110 		res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
111 			(COMPRESS_MAPPING(sbi)->nrpages <
112 			 free_ram * sbi->compress_percent / 100);
113 #else
114 		res = false;
115 #endif
116 	} else {
117 		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
118 			return true;
119 	}
120 	return res;
121 }
122 
123 static void clear_node_page_dirty(struct page *page)
124 {
125 	if (PageDirty(page)) {
126 		f2fs_clear_page_cache_dirty_tag(page_folio(page));
127 		clear_page_dirty_for_io(page);
128 		dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
129 	}
130 	ClearPageUptodate(page);
131 }
132 
133 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
134 {
135 	return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
136 }
137 
138 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
139 {
140 	struct page *src_page;
141 	struct page *dst_page;
142 	pgoff_t dst_off;
143 	void *src_addr;
144 	void *dst_addr;
145 	struct f2fs_nm_info *nm_i = NM_I(sbi);
146 
147 	dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
148 
149 	/* get current nat block page with lock */
150 	src_page = get_current_nat_page(sbi, nid);
151 	if (IS_ERR(src_page))
152 		return src_page;
153 	dst_page = f2fs_grab_meta_page(sbi, dst_off);
154 	f2fs_bug_on(sbi, PageDirty(src_page));
155 
156 	src_addr = page_address(src_page);
157 	dst_addr = page_address(dst_page);
158 	memcpy(dst_addr, src_addr, PAGE_SIZE);
159 	set_page_dirty(dst_page);
160 	f2fs_put_page(src_page, 1);
161 
162 	set_to_next_nat(nm_i, nid);
163 
164 	return dst_page;
165 }
166 
167 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
168 						nid_t nid, bool no_fail)
169 {
170 	struct nat_entry *new;
171 
172 	new = f2fs_kmem_cache_alloc(nat_entry_slab,
173 					GFP_F2FS_ZERO, no_fail, sbi);
174 	if (new) {
175 		nat_set_nid(new, nid);
176 		nat_reset_flag(new);
177 	}
178 	return new;
179 }
180 
181 static void __free_nat_entry(struct nat_entry *e)
182 {
183 	kmem_cache_free(nat_entry_slab, e);
184 }
185 
186 /* must be locked by nat_tree_lock */
187 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
188 	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
189 {
190 	if (no_fail)
191 		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
192 	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
193 		return NULL;
194 
195 	if (raw_ne)
196 		node_info_from_raw_nat(&ne->ni, raw_ne);
197 
198 	spin_lock(&nm_i->nat_list_lock);
199 	list_add_tail(&ne->list, &nm_i->nat_entries);
200 	spin_unlock(&nm_i->nat_list_lock);
201 
202 	nm_i->nat_cnt[TOTAL_NAT]++;
203 	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
204 	return ne;
205 }
206 
207 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
208 {
209 	struct nat_entry *ne;
210 
211 	ne = radix_tree_lookup(&nm_i->nat_root, n);
212 
213 	/* for recent accessed nat entry, move it to tail of lru list */
214 	if (ne && !get_nat_flag(ne, IS_DIRTY)) {
215 		spin_lock(&nm_i->nat_list_lock);
216 		if (!list_empty(&ne->list))
217 			list_move_tail(&ne->list, &nm_i->nat_entries);
218 		spin_unlock(&nm_i->nat_list_lock);
219 	}
220 
221 	return ne;
222 }
223 
224 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
225 		nid_t start, unsigned int nr, struct nat_entry **ep)
226 {
227 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
228 }
229 
230 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
231 {
232 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
233 	nm_i->nat_cnt[TOTAL_NAT]--;
234 	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
235 	__free_nat_entry(e);
236 }
237 
238 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
239 							struct nat_entry *ne)
240 {
241 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
242 	struct nat_entry_set *head;
243 
244 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
245 	if (!head) {
246 		head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
247 						GFP_NOFS, true, NULL);
248 
249 		INIT_LIST_HEAD(&head->entry_list);
250 		INIT_LIST_HEAD(&head->set_list);
251 		head->set = set;
252 		head->entry_cnt = 0;
253 		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
254 	}
255 	return head;
256 }
257 
258 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
259 						struct nat_entry *ne)
260 {
261 	struct nat_entry_set *head;
262 	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
263 
264 	if (!new_ne)
265 		head = __grab_nat_entry_set(nm_i, ne);
266 
267 	/*
268 	 * update entry_cnt in below condition:
269 	 * 1. update NEW_ADDR to valid block address;
270 	 * 2. update old block address to new one;
271 	 */
272 	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
273 				!get_nat_flag(ne, IS_DIRTY)))
274 		head->entry_cnt++;
275 
276 	set_nat_flag(ne, IS_PREALLOC, new_ne);
277 
278 	if (get_nat_flag(ne, IS_DIRTY))
279 		goto refresh_list;
280 
281 	nm_i->nat_cnt[DIRTY_NAT]++;
282 	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
283 	set_nat_flag(ne, IS_DIRTY, true);
284 refresh_list:
285 	spin_lock(&nm_i->nat_list_lock);
286 	if (new_ne)
287 		list_del_init(&ne->list);
288 	else
289 		list_move_tail(&ne->list, &head->entry_list);
290 	spin_unlock(&nm_i->nat_list_lock);
291 }
292 
293 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
294 		struct nat_entry_set *set, struct nat_entry *ne)
295 {
296 	spin_lock(&nm_i->nat_list_lock);
297 	list_move_tail(&ne->list, &nm_i->nat_entries);
298 	spin_unlock(&nm_i->nat_list_lock);
299 
300 	set_nat_flag(ne, IS_DIRTY, false);
301 	set->entry_cnt--;
302 	nm_i->nat_cnt[DIRTY_NAT]--;
303 	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
304 }
305 
306 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
307 		nid_t start, unsigned int nr, struct nat_entry_set **ep)
308 {
309 	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
310 							start, nr);
311 }
312 
313 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
314 {
315 	return NODE_MAPPING(sbi) == page->mapping &&
316 			IS_DNODE(page) && is_cold_node(page);
317 }
318 
319 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
320 {
321 	spin_lock_init(&sbi->fsync_node_lock);
322 	INIT_LIST_HEAD(&sbi->fsync_node_list);
323 	sbi->fsync_seg_id = 0;
324 	sbi->fsync_node_num = 0;
325 }
326 
327 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
328 							struct page *page)
329 {
330 	struct fsync_node_entry *fn;
331 	unsigned long flags;
332 	unsigned int seq_id;
333 
334 	fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
335 					GFP_NOFS, true, NULL);
336 
337 	get_page(page);
338 	fn->page = page;
339 	INIT_LIST_HEAD(&fn->list);
340 
341 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
342 	list_add_tail(&fn->list, &sbi->fsync_node_list);
343 	fn->seq_id = sbi->fsync_seg_id++;
344 	seq_id = fn->seq_id;
345 	sbi->fsync_node_num++;
346 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
347 
348 	return seq_id;
349 }
350 
351 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
352 {
353 	struct fsync_node_entry *fn;
354 	unsigned long flags;
355 
356 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
357 	list_for_each_entry(fn, &sbi->fsync_node_list, list) {
358 		if (fn->page == page) {
359 			list_del(&fn->list);
360 			sbi->fsync_node_num--;
361 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
362 			kmem_cache_free(fsync_node_entry_slab, fn);
363 			put_page(page);
364 			return;
365 		}
366 	}
367 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
368 	f2fs_bug_on(sbi, 1);
369 }
370 
371 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
372 {
373 	unsigned long flags;
374 
375 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
376 	sbi->fsync_seg_id = 0;
377 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
378 }
379 
380 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
381 {
382 	struct f2fs_nm_info *nm_i = NM_I(sbi);
383 	struct nat_entry *e;
384 	bool need = false;
385 
386 	f2fs_down_read(&nm_i->nat_tree_lock);
387 	e = __lookup_nat_cache(nm_i, nid);
388 	if (e) {
389 		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
390 				!get_nat_flag(e, HAS_FSYNCED_INODE))
391 			need = true;
392 	}
393 	f2fs_up_read(&nm_i->nat_tree_lock);
394 	return need;
395 }
396 
397 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
398 {
399 	struct f2fs_nm_info *nm_i = NM_I(sbi);
400 	struct nat_entry *e;
401 	bool is_cp = true;
402 
403 	f2fs_down_read(&nm_i->nat_tree_lock);
404 	e = __lookup_nat_cache(nm_i, nid);
405 	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
406 		is_cp = false;
407 	f2fs_up_read(&nm_i->nat_tree_lock);
408 	return is_cp;
409 }
410 
411 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
412 {
413 	struct f2fs_nm_info *nm_i = NM_I(sbi);
414 	struct nat_entry *e;
415 	bool need_update = true;
416 
417 	f2fs_down_read(&nm_i->nat_tree_lock);
418 	e = __lookup_nat_cache(nm_i, ino);
419 	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
420 			(get_nat_flag(e, IS_CHECKPOINTED) ||
421 			 get_nat_flag(e, HAS_FSYNCED_INODE)))
422 		need_update = false;
423 	f2fs_up_read(&nm_i->nat_tree_lock);
424 	return need_update;
425 }
426 
427 /* must be locked by nat_tree_lock */
428 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
429 						struct f2fs_nat_entry *ne)
430 {
431 	struct f2fs_nm_info *nm_i = NM_I(sbi);
432 	struct nat_entry *new, *e;
433 
434 	/* Let's mitigate lock contention of nat_tree_lock during checkpoint */
435 	if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
436 		return;
437 
438 	new = __alloc_nat_entry(sbi, nid, false);
439 	if (!new)
440 		return;
441 
442 	f2fs_down_write(&nm_i->nat_tree_lock);
443 	e = __lookup_nat_cache(nm_i, nid);
444 	if (!e)
445 		e = __init_nat_entry(nm_i, new, ne, false);
446 	else
447 		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
448 				nat_get_blkaddr(e) !=
449 					le32_to_cpu(ne->block_addr) ||
450 				nat_get_version(e) != ne->version);
451 	f2fs_up_write(&nm_i->nat_tree_lock);
452 	if (e != new)
453 		__free_nat_entry(new);
454 }
455 
456 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
457 			block_t new_blkaddr, bool fsync_done)
458 {
459 	struct f2fs_nm_info *nm_i = NM_I(sbi);
460 	struct nat_entry *e;
461 	struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
462 
463 	f2fs_down_write(&nm_i->nat_tree_lock);
464 	e = __lookup_nat_cache(nm_i, ni->nid);
465 	if (!e) {
466 		e = __init_nat_entry(nm_i, new, NULL, true);
467 		copy_node_info(&e->ni, ni);
468 		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
469 	} else if (new_blkaddr == NEW_ADDR) {
470 		/*
471 		 * when nid is reallocated,
472 		 * previous nat entry can be remained in nat cache.
473 		 * So, reinitialize it with new information.
474 		 */
475 		copy_node_info(&e->ni, ni);
476 		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
477 	}
478 	/* let's free early to reduce memory consumption */
479 	if (e != new)
480 		__free_nat_entry(new);
481 
482 	/* sanity check */
483 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
484 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
485 			new_blkaddr == NULL_ADDR);
486 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
487 			new_blkaddr == NEW_ADDR);
488 	f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
489 			new_blkaddr == NEW_ADDR);
490 
491 	/* increment version no as node is removed */
492 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
493 		unsigned char version = nat_get_version(e);
494 
495 		nat_set_version(e, inc_node_version(version));
496 	}
497 
498 	/* change address */
499 	nat_set_blkaddr(e, new_blkaddr);
500 	if (!__is_valid_data_blkaddr(new_blkaddr))
501 		set_nat_flag(e, IS_CHECKPOINTED, false);
502 	__set_nat_cache_dirty(nm_i, e);
503 
504 	/* update fsync_mark if its inode nat entry is still alive */
505 	if (ni->nid != ni->ino)
506 		e = __lookup_nat_cache(nm_i, ni->ino);
507 	if (e) {
508 		if (fsync_done && ni->nid == ni->ino)
509 			set_nat_flag(e, HAS_FSYNCED_INODE, true);
510 		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
511 	}
512 	f2fs_up_write(&nm_i->nat_tree_lock);
513 }
514 
515 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
516 {
517 	struct f2fs_nm_info *nm_i = NM_I(sbi);
518 	int nr = nr_shrink;
519 
520 	if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
521 		return 0;
522 
523 	spin_lock(&nm_i->nat_list_lock);
524 	while (nr_shrink) {
525 		struct nat_entry *ne;
526 
527 		if (list_empty(&nm_i->nat_entries))
528 			break;
529 
530 		ne = list_first_entry(&nm_i->nat_entries,
531 					struct nat_entry, list);
532 		list_del(&ne->list);
533 		spin_unlock(&nm_i->nat_list_lock);
534 
535 		__del_from_nat_cache(nm_i, ne);
536 		nr_shrink--;
537 
538 		spin_lock(&nm_i->nat_list_lock);
539 	}
540 	spin_unlock(&nm_i->nat_list_lock);
541 
542 	f2fs_up_write(&nm_i->nat_tree_lock);
543 	return nr - nr_shrink;
544 }
545 
546 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
547 				struct node_info *ni, bool checkpoint_context)
548 {
549 	struct f2fs_nm_info *nm_i = NM_I(sbi);
550 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
551 	struct f2fs_journal *journal = curseg->journal;
552 	nid_t start_nid = START_NID(nid);
553 	struct f2fs_nat_block *nat_blk;
554 	struct page *page = NULL;
555 	struct f2fs_nat_entry ne;
556 	struct nat_entry *e;
557 	pgoff_t index;
558 	block_t blkaddr;
559 	int i;
560 
561 	ni->nid = nid;
562 retry:
563 	/* Check nat cache */
564 	f2fs_down_read(&nm_i->nat_tree_lock);
565 	e = __lookup_nat_cache(nm_i, nid);
566 	if (e) {
567 		ni->ino = nat_get_ino(e);
568 		ni->blk_addr = nat_get_blkaddr(e);
569 		ni->version = nat_get_version(e);
570 		f2fs_up_read(&nm_i->nat_tree_lock);
571 		return 0;
572 	}
573 
574 	/*
575 	 * Check current segment summary by trying to grab journal_rwsem first.
576 	 * This sem is on the critical path on the checkpoint requiring the above
577 	 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
578 	 * while not bothering checkpoint.
579 	 */
580 	if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
581 		down_read(&curseg->journal_rwsem);
582 	} else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
583 				!down_read_trylock(&curseg->journal_rwsem)) {
584 		f2fs_up_read(&nm_i->nat_tree_lock);
585 		goto retry;
586 	}
587 
588 	i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
589 	if (i >= 0) {
590 		ne = nat_in_journal(journal, i);
591 		node_info_from_raw_nat(ni, &ne);
592 	}
593 	up_read(&curseg->journal_rwsem);
594 	if (i >= 0) {
595 		f2fs_up_read(&nm_i->nat_tree_lock);
596 		goto cache;
597 	}
598 
599 	/* Fill node_info from nat page */
600 	index = current_nat_addr(sbi, nid);
601 	f2fs_up_read(&nm_i->nat_tree_lock);
602 
603 	page = f2fs_get_meta_page(sbi, index);
604 	if (IS_ERR(page))
605 		return PTR_ERR(page);
606 
607 	nat_blk = (struct f2fs_nat_block *)page_address(page);
608 	ne = nat_blk->entries[nid - start_nid];
609 	node_info_from_raw_nat(ni, &ne);
610 	f2fs_put_page(page, 1);
611 cache:
612 	blkaddr = le32_to_cpu(ne.block_addr);
613 	if (__is_valid_data_blkaddr(blkaddr) &&
614 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
615 		return -EFAULT;
616 
617 	/* cache nat entry */
618 	cache_nat_entry(sbi, nid, &ne);
619 	return 0;
620 }
621 
622 /*
623  * readahead MAX_RA_NODE number of node pages.
624  */
625 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
626 {
627 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
628 	struct blk_plug plug;
629 	int i, end;
630 	nid_t nid;
631 
632 	blk_start_plug(&plug);
633 
634 	/* Then, try readahead for siblings of the desired node */
635 	end = start + n;
636 	end = min(end, (int)NIDS_PER_BLOCK);
637 	for (i = start; i < end; i++) {
638 		nid = get_nid(parent, i, false);
639 		f2fs_ra_node_page(sbi, nid);
640 	}
641 
642 	blk_finish_plug(&plug);
643 }
644 
645 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
646 {
647 	const long direct_index = ADDRS_PER_INODE(dn->inode);
648 	const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
649 	const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
650 	unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
651 	int cur_level = dn->cur_level;
652 	int max_level = dn->max_level;
653 	pgoff_t base = 0;
654 
655 	if (!dn->max_level)
656 		return pgofs + 1;
657 
658 	while (max_level-- > cur_level)
659 		skipped_unit *= NIDS_PER_BLOCK;
660 
661 	switch (dn->max_level) {
662 	case 3:
663 		base += 2 * indirect_blks;
664 		fallthrough;
665 	case 2:
666 		base += 2 * direct_blks;
667 		fallthrough;
668 	case 1:
669 		base += direct_index;
670 		break;
671 	default:
672 		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
673 	}
674 
675 	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
676 }
677 
678 /*
679  * The maximum depth is four.
680  * Offset[0] will have raw inode offset.
681  */
682 static int get_node_path(struct inode *inode, long block,
683 				int offset[4], unsigned int noffset[4])
684 {
685 	const long direct_index = ADDRS_PER_INODE(inode);
686 	const long direct_blks = ADDRS_PER_BLOCK(inode);
687 	const long dptrs_per_blk = NIDS_PER_BLOCK;
688 	const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
689 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
690 	int n = 0;
691 	int level = 0;
692 
693 	noffset[0] = 0;
694 
695 	if (block < direct_index) {
696 		offset[n] = block;
697 		goto got;
698 	}
699 	block -= direct_index;
700 	if (block < direct_blks) {
701 		offset[n++] = NODE_DIR1_BLOCK;
702 		noffset[n] = 1;
703 		offset[n] = block;
704 		level = 1;
705 		goto got;
706 	}
707 	block -= direct_blks;
708 	if (block < direct_blks) {
709 		offset[n++] = NODE_DIR2_BLOCK;
710 		noffset[n] = 2;
711 		offset[n] = block;
712 		level = 1;
713 		goto got;
714 	}
715 	block -= direct_blks;
716 	if (block < indirect_blks) {
717 		offset[n++] = NODE_IND1_BLOCK;
718 		noffset[n] = 3;
719 		offset[n++] = block / direct_blks;
720 		noffset[n] = 4 + offset[n - 1];
721 		offset[n] = block % direct_blks;
722 		level = 2;
723 		goto got;
724 	}
725 	block -= indirect_blks;
726 	if (block < indirect_blks) {
727 		offset[n++] = NODE_IND2_BLOCK;
728 		noffset[n] = 4 + dptrs_per_blk;
729 		offset[n++] = block / direct_blks;
730 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
731 		offset[n] = block % direct_blks;
732 		level = 2;
733 		goto got;
734 	}
735 	block -= indirect_blks;
736 	if (block < dindirect_blks) {
737 		offset[n++] = NODE_DIND_BLOCK;
738 		noffset[n] = 5 + (dptrs_per_blk * 2);
739 		offset[n++] = block / indirect_blks;
740 		noffset[n] = 6 + (dptrs_per_blk * 2) +
741 			      offset[n - 1] * (dptrs_per_blk + 1);
742 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
743 		noffset[n] = 7 + (dptrs_per_blk * 2) +
744 			      offset[n - 2] * (dptrs_per_blk + 1) +
745 			      offset[n - 1];
746 		offset[n] = block % direct_blks;
747 		level = 3;
748 		goto got;
749 	} else {
750 		return -E2BIG;
751 	}
752 got:
753 	return level;
754 }
755 
756 /*
757  * Caller should call f2fs_put_dnode(dn).
758  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
759  * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
760  */
761 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
762 {
763 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
764 	struct page *npage[4];
765 	struct page *parent = NULL;
766 	int offset[4];
767 	unsigned int noffset[4];
768 	nid_t nids[4];
769 	int level, i = 0;
770 	int err = 0;
771 
772 	level = get_node_path(dn->inode, index, offset, noffset);
773 	if (level < 0)
774 		return level;
775 
776 	nids[0] = dn->inode->i_ino;
777 	npage[0] = dn->inode_page;
778 
779 	if (!npage[0]) {
780 		npage[0] = f2fs_get_node_page(sbi, nids[0]);
781 		if (IS_ERR(npage[0]))
782 			return PTR_ERR(npage[0]);
783 	}
784 
785 	/* if inline_data is set, should not report any block indices */
786 	if (f2fs_has_inline_data(dn->inode) && index) {
787 		err = -ENOENT;
788 		f2fs_put_page(npage[0], 1);
789 		goto release_out;
790 	}
791 
792 	parent = npage[0];
793 	if (level != 0)
794 		nids[1] = get_nid(parent, offset[0], true);
795 	dn->inode_page = npage[0];
796 	dn->inode_page_locked = true;
797 
798 	/* get indirect or direct nodes */
799 	for (i = 1; i <= level; i++) {
800 		bool done = false;
801 
802 		if (!nids[i] && mode == ALLOC_NODE) {
803 			/* alloc new node */
804 			if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
805 				err = -ENOSPC;
806 				goto release_pages;
807 			}
808 
809 			dn->nid = nids[i];
810 			npage[i] = f2fs_new_node_page(dn, noffset[i]);
811 			if (IS_ERR(npage[i])) {
812 				f2fs_alloc_nid_failed(sbi, nids[i]);
813 				err = PTR_ERR(npage[i]);
814 				goto release_pages;
815 			}
816 
817 			set_nid(parent, offset[i - 1], nids[i], i == 1);
818 			f2fs_alloc_nid_done(sbi, nids[i]);
819 			done = true;
820 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
821 			npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
822 			if (IS_ERR(npage[i])) {
823 				err = PTR_ERR(npage[i]);
824 				goto release_pages;
825 			}
826 			done = true;
827 		}
828 		if (i == 1) {
829 			dn->inode_page_locked = false;
830 			unlock_page(parent);
831 		} else {
832 			f2fs_put_page(parent, 1);
833 		}
834 
835 		if (!done) {
836 			npage[i] = f2fs_get_node_page(sbi, nids[i]);
837 			if (IS_ERR(npage[i])) {
838 				err = PTR_ERR(npage[i]);
839 				f2fs_put_page(npage[0], 0);
840 				goto release_out;
841 			}
842 		}
843 		if (i < level) {
844 			parent = npage[i];
845 			nids[i + 1] = get_nid(parent, offset[i], false);
846 		}
847 	}
848 	dn->nid = nids[level];
849 	dn->ofs_in_node = offset[level];
850 	dn->node_page = npage[level];
851 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
852 
853 	if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
854 					f2fs_sb_has_readonly(sbi)) {
855 		unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
856 		unsigned int ofs_in_node = dn->ofs_in_node;
857 		pgoff_t fofs = index;
858 		unsigned int c_len;
859 		block_t blkaddr;
860 
861 		/* should align fofs and ofs_in_node to cluster_size */
862 		if (fofs % cluster_size) {
863 			fofs = round_down(fofs, cluster_size);
864 			ofs_in_node = round_down(ofs_in_node, cluster_size);
865 		}
866 
867 		c_len = f2fs_cluster_blocks_are_contiguous(dn, ofs_in_node);
868 		if (!c_len)
869 			goto out;
870 
871 		blkaddr = data_blkaddr(dn->inode, dn->node_page, ofs_in_node);
872 		if (blkaddr == COMPRESS_ADDR)
873 			blkaddr = data_blkaddr(dn->inode, dn->node_page,
874 						ofs_in_node + 1);
875 
876 		f2fs_update_read_extent_tree_range_compressed(dn->inode,
877 					fofs, blkaddr, cluster_size, c_len);
878 	}
879 out:
880 	return 0;
881 
882 release_pages:
883 	f2fs_put_page(parent, 1);
884 	if (i > 1)
885 		f2fs_put_page(npage[0], 0);
886 release_out:
887 	dn->inode_page = NULL;
888 	dn->node_page = NULL;
889 	if (err == -ENOENT) {
890 		dn->cur_level = i;
891 		dn->max_level = level;
892 		dn->ofs_in_node = offset[level];
893 	}
894 	return err;
895 }
896 
897 static int truncate_node(struct dnode_of_data *dn)
898 {
899 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
900 	struct node_info ni;
901 	int err;
902 	pgoff_t index;
903 
904 	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
905 	if (err)
906 		return err;
907 
908 	if (ni.blk_addr != NEW_ADDR &&
909 		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr, DATA_GENERIC_ENHANCE)) {
910 		f2fs_err_ratelimited(sbi,
911 			"nat entry is corrupted, run fsck to fix it, ino:%u, "
912 			"nid:%u, blkaddr:%u", ni.ino, ni.nid, ni.blk_addr);
913 		set_sbi_flag(sbi, SBI_NEED_FSCK);
914 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NAT);
915 		return -EFSCORRUPTED;
916 	}
917 
918 	/* Deallocate node address */
919 	f2fs_invalidate_blocks(sbi, ni.blk_addr);
920 	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
921 	set_node_addr(sbi, &ni, NULL_ADDR, false);
922 
923 	if (dn->nid == dn->inode->i_ino) {
924 		f2fs_remove_orphan_inode(sbi, dn->nid);
925 		dec_valid_inode_count(sbi);
926 		f2fs_inode_synced(dn->inode);
927 	}
928 
929 	clear_node_page_dirty(dn->node_page);
930 	set_sbi_flag(sbi, SBI_IS_DIRTY);
931 
932 	index = page_folio(dn->node_page)->index;
933 	f2fs_put_page(dn->node_page, 1);
934 
935 	invalidate_mapping_pages(NODE_MAPPING(sbi),
936 			index, index);
937 
938 	dn->node_page = NULL;
939 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
940 
941 	return 0;
942 }
943 
944 static int truncate_dnode(struct dnode_of_data *dn)
945 {
946 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
947 	struct page *page;
948 	int err;
949 
950 	if (dn->nid == 0)
951 		return 1;
952 
953 	/* get direct node */
954 	page = f2fs_get_node_page(sbi, dn->nid);
955 	if (PTR_ERR(page) == -ENOENT)
956 		return 1;
957 	else if (IS_ERR(page))
958 		return PTR_ERR(page);
959 
960 	if (IS_INODE(page) || ino_of_node(page) != dn->inode->i_ino) {
961 		f2fs_err(sbi, "incorrect node reference, ino: %lu, nid: %u, ino_of_node: %u",
962 				dn->inode->i_ino, dn->nid, ino_of_node(page));
963 		set_sbi_flag(sbi, SBI_NEED_FSCK);
964 		f2fs_handle_error(sbi, ERROR_INVALID_NODE_REFERENCE);
965 		f2fs_put_page(page, 1);
966 		return -EFSCORRUPTED;
967 	}
968 
969 	/* Make dnode_of_data for parameter */
970 	dn->node_page = page;
971 	dn->ofs_in_node = 0;
972 	f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
973 	err = truncate_node(dn);
974 	if (err) {
975 		f2fs_put_page(page, 1);
976 		return err;
977 	}
978 
979 	return 1;
980 }
981 
982 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
983 						int ofs, int depth)
984 {
985 	struct dnode_of_data rdn = *dn;
986 	struct page *page;
987 	struct f2fs_node *rn;
988 	nid_t child_nid;
989 	unsigned int child_nofs;
990 	int freed = 0;
991 	int i, ret;
992 
993 	if (dn->nid == 0)
994 		return NIDS_PER_BLOCK + 1;
995 
996 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
997 
998 	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
999 	if (IS_ERR(page)) {
1000 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
1001 		return PTR_ERR(page);
1002 	}
1003 
1004 	f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
1005 
1006 	rn = F2FS_NODE(page);
1007 	if (depth < 3) {
1008 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
1009 			child_nid = le32_to_cpu(rn->in.nid[i]);
1010 			if (child_nid == 0)
1011 				continue;
1012 			rdn.nid = child_nid;
1013 			ret = truncate_dnode(&rdn);
1014 			if (ret < 0)
1015 				goto out_err;
1016 			if (set_nid(page, i, 0, false))
1017 				dn->node_changed = true;
1018 		}
1019 	} else {
1020 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
1021 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
1022 			child_nid = le32_to_cpu(rn->in.nid[i]);
1023 			if (child_nid == 0) {
1024 				child_nofs += NIDS_PER_BLOCK + 1;
1025 				continue;
1026 			}
1027 			rdn.nid = child_nid;
1028 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
1029 			if (ret == (NIDS_PER_BLOCK + 1)) {
1030 				if (set_nid(page, i, 0, false))
1031 					dn->node_changed = true;
1032 				child_nofs += ret;
1033 			} else if (ret < 0 && ret != -ENOENT) {
1034 				goto out_err;
1035 			}
1036 		}
1037 		freed = child_nofs;
1038 	}
1039 
1040 	if (!ofs) {
1041 		/* remove current indirect node */
1042 		dn->node_page = page;
1043 		ret = truncate_node(dn);
1044 		if (ret)
1045 			goto out_err;
1046 		freed++;
1047 	} else {
1048 		f2fs_put_page(page, 1);
1049 	}
1050 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1051 	return freed;
1052 
1053 out_err:
1054 	f2fs_put_page(page, 1);
1055 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1056 	return ret;
1057 }
1058 
1059 static int truncate_partial_nodes(struct dnode_of_data *dn,
1060 			struct f2fs_inode *ri, int *offset, int depth)
1061 {
1062 	struct page *pages[2];
1063 	nid_t nid[3];
1064 	nid_t child_nid;
1065 	int err = 0;
1066 	int i;
1067 	int idx = depth - 2;
1068 
1069 	nid[0] = get_nid(dn->inode_page, offset[0], true);
1070 	if (!nid[0])
1071 		return 0;
1072 
1073 	/* get indirect nodes in the path */
1074 	for (i = 0; i < idx + 1; i++) {
1075 		/* reference count'll be increased */
1076 		pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1077 		if (IS_ERR(pages[i])) {
1078 			err = PTR_ERR(pages[i]);
1079 			idx = i - 1;
1080 			goto fail;
1081 		}
1082 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1083 	}
1084 
1085 	f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1086 
1087 	/* free direct nodes linked to a partial indirect node */
1088 	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1089 		child_nid = get_nid(pages[idx], i, false);
1090 		if (!child_nid)
1091 			continue;
1092 		dn->nid = child_nid;
1093 		err = truncate_dnode(dn);
1094 		if (err < 0)
1095 			goto fail;
1096 		if (set_nid(pages[idx], i, 0, false))
1097 			dn->node_changed = true;
1098 	}
1099 
1100 	if (offset[idx + 1] == 0) {
1101 		dn->node_page = pages[idx];
1102 		dn->nid = nid[idx];
1103 		err = truncate_node(dn);
1104 		if (err)
1105 			goto fail;
1106 	} else {
1107 		f2fs_put_page(pages[idx], 1);
1108 	}
1109 	offset[idx]++;
1110 	offset[idx + 1] = 0;
1111 	idx--;
1112 fail:
1113 	for (i = idx; i >= 0; i--)
1114 		f2fs_put_page(pages[i], 1);
1115 
1116 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1117 
1118 	return err;
1119 }
1120 
1121 /*
1122  * All the block addresses of data and nodes should be nullified.
1123  */
1124 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1125 {
1126 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1127 	int err = 0, cont = 1;
1128 	int level, offset[4], noffset[4];
1129 	unsigned int nofs = 0;
1130 	struct f2fs_inode *ri;
1131 	struct dnode_of_data dn;
1132 	struct page *page;
1133 
1134 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
1135 
1136 	level = get_node_path(inode, from, offset, noffset);
1137 	if (level < 0) {
1138 		trace_f2fs_truncate_inode_blocks_exit(inode, level);
1139 		return level;
1140 	}
1141 
1142 	page = f2fs_get_node_page(sbi, inode->i_ino);
1143 	if (IS_ERR(page)) {
1144 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1145 		return PTR_ERR(page);
1146 	}
1147 
1148 	set_new_dnode(&dn, inode, page, NULL, 0);
1149 	unlock_page(page);
1150 
1151 	ri = F2FS_INODE(page);
1152 	switch (level) {
1153 	case 0:
1154 	case 1:
1155 		nofs = noffset[1];
1156 		break;
1157 	case 2:
1158 		nofs = noffset[1];
1159 		if (!offset[level - 1])
1160 			goto skip_partial;
1161 		err = truncate_partial_nodes(&dn, ri, offset, level);
1162 		if (err < 0 && err != -ENOENT)
1163 			goto fail;
1164 		nofs += 1 + NIDS_PER_BLOCK;
1165 		break;
1166 	case 3:
1167 		nofs = 5 + 2 * NIDS_PER_BLOCK;
1168 		if (!offset[level - 1])
1169 			goto skip_partial;
1170 		err = truncate_partial_nodes(&dn, ri, offset, level);
1171 		if (err < 0 && err != -ENOENT)
1172 			goto fail;
1173 		break;
1174 	default:
1175 		BUG();
1176 	}
1177 
1178 skip_partial:
1179 	while (cont) {
1180 		dn.nid = get_nid(page, offset[0], true);
1181 		switch (offset[0]) {
1182 		case NODE_DIR1_BLOCK:
1183 		case NODE_DIR2_BLOCK:
1184 			err = truncate_dnode(&dn);
1185 			break;
1186 
1187 		case NODE_IND1_BLOCK:
1188 		case NODE_IND2_BLOCK:
1189 			err = truncate_nodes(&dn, nofs, offset[1], 2);
1190 			break;
1191 
1192 		case NODE_DIND_BLOCK:
1193 			err = truncate_nodes(&dn, nofs, offset[1], 3);
1194 			cont = 0;
1195 			break;
1196 
1197 		default:
1198 			BUG();
1199 		}
1200 		if (err == -ENOENT) {
1201 			set_sbi_flag(F2FS_P_SB(page), SBI_NEED_FSCK);
1202 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1203 			f2fs_err_ratelimited(sbi,
1204 				"truncate node fail, ino:%lu, nid:%u, "
1205 				"offset[0]:%d, offset[1]:%d, nofs:%d",
1206 				inode->i_ino, dn.nid, offset[0],
1207 				offset[1], nofs);
1208 			err = 0;
1209 		}
1210 		if (err < 0)
1211 			goto fail;
1212 		if (offset[1] == 0 && get_nid(page, offset[0], true)) {
1213 			lock_page(page);
1214 			BUG_ON(page->mapping != NODE_MAPPING(sbi));
1215 			set_nid(page, offset[0], 0, true);
1216 			unlock_page(page);
1217 		}
1218 		offset[1] = 0;
1219 		offset[0]++;
1220 		nofs += err;
1221 	}
1222 fail:
1223 	f2fs_put_page(page, 0);
1224 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1225 	return err > 0 ? 0 : err;
1226 }
1227 
1228 /* caller must lock inode page */
1229 int f2fs_truncate_xattr_node(struct inode *inode)
1230 {
1231 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1232 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1233 	struct dnode_of_data dn;
1234 	struct page *npage;
1235 	int err;
1236 
1237 	if (!nid)
1238 		return 0;
1239 
1240 	npage = f2fs_get_node_page(sbi, nid);
1241 	if (IS_ERR(npage))
1242 		return PTR_ERR(npage);
1243 
1244 	set_new_dnode(&dn, inode, NULL, npage, nid);
1245 	err = truncate_node(&dn);
1246 	if (err) {
1247 		f2fs_put_page(npage, 1);
1248 		return err;
1249 	}
1250 
1251 	f2fs_i_xnid_write(inode, 0);
1252 
1253 	return 0;
1254 }
1255 
1256 /*
1257  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1258  * f2fs_unlock_op().
1259  */
1260 int f2fs_remove_inode_page(struct inode *inode)
1261 {
1262 	struct dnode_of_data dn;
1263 	int err;
1264 
1265 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1266 	err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1267 	if (err)
1268 		return err;
1269 
1270 	err = f2fs_truncate_xattr_node(inode);
1271 	if (err) {
1272 		f2fs_put_dnode(&dn);
1273 		return err;
1274 	}
1275 
1276 	/* remove potential inline_data blocks */
1277 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1278 				S_ISLNK(inode->i_mode))
1279 		f2fs_truncate_data_blocks_range(&dn, 1);
1280 
1281 	/* 0 is possible, after f2fs_new_inode() has failed */
1282 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1283 		f2fs_put_dnode(&dn);
1284 		return -EIO;
1285 	}
1286 
1287 	if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1288 		f2fs_warn(F2FS_I_SB(inode),
1289 			"f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1290 			inode->i_ino, (unsigned long long)inode->i_blocks);
1291 		set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1292 	}
1293 
1294 	/* will put inode & node pages */
1295 	err = truncate_node(&dn);
1296 	if (err) {
1297 		f2fs_put_dnode(&dn);
1298 		return err;
1299 	}
1300 	return 0;
1301 }
1302 
1303 struct page *f2fs_new_inode_page(struct inode *inode)
1304 {
1305 	struct dnode_of_data dn;
1306 
1307 	/* allocate inode page for new inode */
1308 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1309 
1310 	/* caller should f2fs_put_page(page, 1); */
1311 	return f2fs_new_node_page(&dn, 0);
1312 }
1313 
1314 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1315 {
1316 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1317 	struct node_info new_ni;
1318 	struct page *page;
1319 	int err;
1320 
1321 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1322 		return ERR_PTR(-EPERM);
1323 
1324 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1325 	if (!page)
1326 		return ERR_PTR(-ENOMEM);
1327 
1328 	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1329 		goto fail;
1330 
1331 #ifdef CONFIG_F2FS_CHECK_FS
1332 	err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1333 	if (err) {
1334 		dec_valid_node_count(sbi, dn->inode, !ofs);
1335 		goto fail;
1336 	}
1337 	if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1338 		err = -EFSCORRUPTED;
1339 		dec_valid_node_count(sbi, dn->inode, !ofs);
1340 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1341 		f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1342 		goto fail;
1343 	}
1344 #endif
1345 	new_ni.nid = dn->nid;
1346 	new_ni.ino = dn->inode->i_ino;
1347 	new_ni.blk_addr = NULL_ADDR;
1348 	new_ni.flag = 0;
1349 	new_ni.version = 0;
1350 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1351 
1352 	f2fs_wait_on_page_writeback(page, NODE, true, true);
1353 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1354 	set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1355 	if (!PageUptodate(page))
1356 		SetPageUptodate(page);
1357 	if (set_page_dirty(page))
1358 		dn->node_changed = true;
1359 
1360 	if (f2fs_has_xattr_block(ofs))
1361 		f2fs_i_xnid_write(dn->inode, dn->nid);
1362 
1363 	if (ofs == 0)
1364 		inc_valid_inode_count(sbi);
1365 	return page;
1366 fail:
1367 	clear_node_page_dirty(page);
1368 	f2fs_put_page(page, 1);
1369 	return ERR_PTR(err);
1370 }
1371 
1372 /*
1373  * Caller should do after getting the following values.
1374  * 0: f2fs_put_page(page, 0)
1375  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1376  */
1377 static int read_node_page(struct page *page, blk_opf_t op_flags)
1378 {
1379 	struct folio *folio = page_folio(page);
1380 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1381 	struct node_info ni;
1382 	struct f2fs_io_info fio = {
1383 		.sbi = sbi,
1384 		.type = NODE,
1385 		.op = REQ_OP_READ,
1386 		.op_flags = op_flags,
1387 		.page = page,
1388 		.encrypted_page = NULL,
1389 	};
1390 	int err;
1391 
1392 	if (folio_test_uptodate(folio)) {
1393 		if (!f2fs_inode_chksum_verify(sbi, page)) {
1394 			folio_clear_uptodate(folio);
1395 			return -EFSBADCRC;
1396 		}
1397 		return LOCKED_PAGE;
1398 	}
1399 
1400 	err = f2fs_get_node_info(sbi, folio->index, &ni, false);
1401 	if (err)
1402 		return err;
1403 
1404 	/* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1405 	if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1406 		folio_clear_uptodate(folio);
1407 		return -ENOENT;
1408 	}
1409 
1410 	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1411 
1412 	err = f2fs_submit_page_bio(&fio);
1413 
1414 	if (!err)
1415 		f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE);
1416 
1417 	return err;
1418 }
1419 
1420 /*
1421  * Readahead a node page
1422  */
1423 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1424 {
1425 	struct page *apage;
1426 	int err;
1427 
1428 	if (!nid)
1429 		return;
1430 	if (f2fs_check_nid_range(sbi, nid))
1431 		return;
1432 
1433 	apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1434 	if (apage)
1435 		return;
1436 
1437 	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1438 	if (!apage)
1439 		return;
1440 
1441 	err = read_node_page(apage, REQ_RAHEAD);
1442 	f2fs_put_page(apage, err ? 1 : 0);
1443 }
1444 
1445 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1446 					struct page *parent, int start)
1447 {
1448 	struct page *page;
1449 	int err;
1450 
1451 	if (!nid)
1452 		return ERR_PTR(-ENOENT);
1453 	if (f2fs_check_nid_range(sbi, nid))
1454 		return ERR_PTR(-EINVAL);
1455 repeat:
1456 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1457 	if (!page)
1458 		return ERR_PTR(-ENOMEM);
1459 
1460 	err = read_node_page(page, 0);
1461 	if (err < 0) {
1462 		goto out_put_err;
1463 	} else if (err == LOCKED_PAGE) {
1464 		err = 0;
1465 		goto page_hit;
1466 	}
1467 
1468 	if (parent)
1469 		f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1470 
1471 	lock_page(page);
1472 
1473 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1474 		f2fs_put_page(page, 1);
1475 		goto repeat;
1476 	}
1477 
1478 	if (unlikely(!PageUptodate(page))) {
1479 		err = -EIO;
1480 		goto out_err;
1481 	}
1482 
1483 	if (!f2fs_inode_chksum_verify(sbi, page)) {
1484 		err = -EFSBADCRC;
1485 		goto out_err;
1486 	}
1487 page_hit:
1488 	if (likely(nid == nid_of_node(page)))
1489 		return page;
1490 
1491 	f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1492 			  nid, nid_of_node(page), ino_of_node(page),
1493 			  ofs_of_node(page), cpver_of_node(page),
1494 			  next_blkaddr_of_node(page));
1495 	set_sbi_flag(sbi, SBI_NEED_FSCK);
1496 	f2fs_handle_error(sbi, ERROR_INCONSISTENT_FOOTER);
1497 	err = -EFSCORRUPTED;
1498 out_err:
1499 	ClearPageUptodate(page);
1500 out_put_err:
1501 	/* ENOENT comes from read_node_page which is not an error. */
1502 	if (err != -ENOENT)
1503 		f2fs_handle_page_eio(sbi, page_folio(page), NODE);
1504 	f2fs_put_page(page, 1);
1505 	return ERR_PTR(err);
1506 }
1507 
1508 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1509 {
1510 	return __get_node_page(sbi, nid, NULL, 0);
1511 }
1512 
1513 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1514 {
1515 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1516 	nid_t nid = get_nid(parent, start, false);
1517 
1518 	return __get_node_page(sbi, nid, parent, start);
1519 }
1520 
1521 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1522 {
1523 	struct inode *inode;
1524 	struct page *page;
1525 	int ret;
1526 
1527 	/* should flush inline_data before evict_inode */
1528 	inode = ilookup(sbi->sb, ino);
1529 	if (!inode)
1530 		return;
1531 
1532 	page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1533 					FGP_LOCK|FGP_NOWAIT, 0);
1534 	if (!page)
1535 		goto iput_out;
1536 
1537 	if (!PageUptodate(page))
1538 		goto page_out;
1539 
1540 	if (!PageDirty(page))
1541 		goto page_out;
1542 
1543 	if (!clear_page_dirty_for_io(page))
1544 		goto page_out;
1545 
1546 	ret = f2fs_write_inline_data(inode, page_folio(page));
1547 	inode_dec_dirty_pages(inode);
1548 	f2fs_remove_dirty_inode(inode);
1549 	if (ret)
1550 		set_page_dirty(page);
1551 page_out:
1552 	f2fs_put_page(page, 1);
1553 iput_out:
1554 	iput(inode);
1555 }
1556 
1557 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1558 {
1559 	pgoff_t index;
1560 	struct folio_batch fbatch;
1561 	struct page *last_page = NULL;
1562 	int nr_folios;
1563 
1564 	folio_batch_init(&fbatch);
1565 	index = 0;
1566 
1567 	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1568 					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1569 					&fbatch))) {
1570 		int i;
1571 
1572 		for (i = 0; i < nr_folios; i++) {
1573 			struct page *page = &fbatch.folios[i]->page;
1574 
1575 			if (unlikely(f2fs_cp_error(sbi))) {
1576 				f2fs_put_page(last_page, 0);
1577 				folio_batch_release(&fbatch);
1578 				return ERR_PTR(-EIO);
1579 			}
1580 
1581 			if (!IS_DNODE(page) || !is_cold_node(page))
1582 				continue;
1583 			if (ino_of_node(page) != ino)
1584 				continue;
1585 
1586 			lock_page(page);
1587 
1588 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1589 continue_unlock:
1590 				unlock_page(page);
1591 				continue;
1592 			}
1593 			if (ino_of_node(page) != ino)
1594 				goto continue_unlock;
1595 
1596 			if (!PageDirty(page)) {
1597 				/* someone wrote it for us */
1598 				goto continue_unlock;
1599 			}
1600 
1601 			if (last_page)
1602 				f2fs_put_page(last_page, 0);
1603 
1604 			get_page(page);
1605 			last_page = page;
1606 			unlock_page(page);
1607 		}
1608 		folio_batch_release(&fbatch);
1609 		cond_resched();
1610 	}
1611 	return last_page;
1612 }
1613 
1614 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1615 				struct writeback_control *wbc, bool do_balance,
1616 				enum iostat_type io_type, unsigned int *seq_id)
1617 {
1618 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1619 	struct folio *folio = page_folio(page);
1620 	nid_t nid;
1621 	struct node_info ni;
1622 	struct f2fs_io_info fio = {
1623 		.sbi = sbi,
1624 		.ino = ino_of_node(page),
1625 		.type = NODE,
1626 		.op = REQ_OP_WRITE,
1627 		.op_flags = wbc_to_write_flags(wbc),
1628 		.page = page,
1629 		.encrypted_page = NULL,
1630 		.submitted = 0,
1631 		.io_type = io_type,
1632 		.io_wbc = wbc,
1633 	};
1634 	unsigned int seq;
1635 
1636 	trace_f2fs_writepage(folio, NODE);
1637 
1638 	if (unlikely(f2fs_cp_error(sbi))) {
1639 		/* keep node pages in remount-ro mode */
1640 		if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
1641 			goto redirty_out;
1642 		folio_clear_uptodate(folio);
1643 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1644 		folio_unlock(folio);
1645 		return 0;
1646 	}
1647 
1648 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1649 		goto redirty_out;
1650 
1651 	if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1652 			wbc->sync_mode == WB_SYNC_NONE &&
1653 			IS_DNODE(page) && is_cold_node(page))
1654 		goto redirty_out;
1655 
1656 	/* get old block addr of this node page */
1657 	nid = nid_of_node(page);
1658 	f2fs_bug_on(sbi, folio->index != nid);
1659 
1660 	if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1661 		goto redirty_out;
1662 
1663 	if (wbc->for_reclaim) {
1664 		if (!f2fs_down_read_trylock(&sbi->node_write))
1665 			goto redirty_out;
1666 	} else {
1667 		f2fs_down_read(&sbi->node_write);
1668 	}
1669 
1670 	/* This page is already truncated */
1671 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1672 		folio_clear_uptodate(folio);
1673 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1674 		f2fs_up_read(&sbi->node_write);
1675 		folio_unlock(folio);
1676 		return 0;
1677 	}
1678 
1679 	if (__is_valid_data_blkaddr(ni.blk_addr) &&
1680 		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1681 					DATA_GENERIC_ENHANCE)) {
1682 		f2fs_up_read(&sbi->node_write);
1683 		goto redirty_out;
1684 	}
1685 
1686 	if (atomic && !test_opt(sbi, NOBARRIER))
1687 		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1688 
1689 	/* should add to global list before clearing PAGECACHE status */
1690 	if (f2fs_in_warm_node_list(sbi, page)) {
1691 		seq = f2fs_add_fsync_node_entry(sbi, page);
1692 		if (seq_id)
1693 			*seq_id = seq;
1694 	}
1695 
1696 	folio_start_writeback(folio);
1697 
1698 	fio.old_blkaddr = ni.blk_addr;
1699 	f2fs_do_write_node_page(nid, &fio);
1700 	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1701 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1702 	f2fs_up_read(&sbi->node_write);
1703 
1704 	if (wbc->for_reclaim) {
1705 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1706 		submitted = NULL;
1707 	}
1708 
1709 	folio_unlock(folio);
1710 
1711 	if (unlikely(f2fs_cp_error(sbi))) {
1712 		f2fs_submit_merged_write(sbi, NODE);
1713 		submitted = NULL;
1714 	}
1715 	if (submitted)
1716 		*submitted = fio.submitted;
1717 
1718 	if (do_balance)
1719 		f2fs_balance_fs(sbi, false);
1720 	return 0;
1721 
1722 redirty_out:
1723 	folio_redirty_for_writepage(wbc, folio);
1724 	return AOP_WRITEPAGE_ACTIVATE;
1725 }
1726 
1727 int f2fs_move_node_page(struct page *node_page, int gc_type)
1728 {
1729 	int err = 0;
1730 
1731 	if (gc_type == FG_GC) {
1732 		struct writeback_control wbc = {
1733 			.sync_mode = WB_SYNC_ALL,
1734 			.nr_to_write = 1,
1735 			.for_reclaim = 0,
1736 		};
1737 
1738 		f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1739 
1740 		set_page_dirty(node_page);
1741 
1742 		if (!clear_page_dirty_for_io(node_page)) {
1743 			err = -EAGAIN;
1744 			goto out_page;
1745 		}
1746 
1747 		if (__write_node_page(node_page, false, NULL,
1748 					&wbc, false, FS_GC_NODE_IO, NULL)) {
1749 			err = -EAGAIN;
1750 			unlock_page(node_page);
1751 		}
1752 		goto release_page;
1753 	} else {
1754 		/* set page dirty and write it */
1755 		if (!folio_test_writeback(page_folio(node_page)))
1756 			set_page_dirty(node_page);
1757 	}
1758 out_page:
1759 	unlock_page(node_page);
1760 release_page:
1761 	f2fs_put_page(node_page, 0);
1762 	return err;
1763 }
1764 
1765 static int f2fs_write_node_page(struct page *page,
1766 				struct writeback_control *wbc)
1767 {
1768 	return __write_node_page(page, false, NULL, wbc, false,
1769 						FS_NODE_IO, NULL);
1770 }
1771 
1772 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1773 			struct writeback_control *wbc, bool atomic,
1774 			unsigned int *seq_id)
1775 {
1776 	pgoff_t index;
1777 	struct folio_batch fbatch;
1778 	int ret = 0;
1779 	struct page *last_page = NULL;
1780 	bool marked = false;
1781 	nid_t ino = inode->i_ino;
1782 	int nr_folios;
1783 	int nwritten = 0;
1784 
1785 	if (atomic) {
1786 		last_page = last_fsync_dnode(sbi, ino);
1787 		if (IS_ERR_OR_NULL(last_page))
1788 			return PTR_ERR_OR_ZERO(last_page);
1789 	}
1790 retry:
1791 	folio_batch_init(&fbatch);
1792 	index = 0;
1793 
1794 	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1795 					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1796 					&fbatch))) {
1797 		int i;
1798 
1799 		for (i = 0; i < nr_folios; i++) {
1800 			struct page *page = &fbatch.folios[i]->page;
1801 			bool submitted = false;
1802 
1803 			if (unlikely(f2fs_cp_error(sbi))) {
1804 				f2fs_put_page(last_page, 0);
1805 				folio_batch_release(&fbatch);
1806 				ret = -EIO;
1807 				goto out;
1808 			}
1809 
1810 			if (!IS_DNODE(page) || !is_cold_node(page))
1811 				continue;
1812 			if (ino_of_node(page) != ino)
1813 				continue;
1814 
1815 			lock_page(page);
1816 
1817 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1818 continue_unlock:
1819 				unlock_page(page);
1820 				continue;
1821 			}
1822 			if (ino_of_node(page) != ino)
1823 				goto continue_unlock;
1824 
1825 			if (!PageDirty(page) && page != last_page) {
1826 				/* someone wrote it for us */
1827 				goto continue_unlock;
1828 			}
1829 
1830 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1831 
1832 			set_fsync_mark(page, 0);
1833 			set_dentry_mark(page, 0);
1834 
1835 			if (!atomic || page == last_page) {
1836 				set_fsync_mark(page, 1);
1837 				percpu_counter_inc(&sbi->rf_node_block_count);
1838 				if (IS_INODE(page)) {
1839 					if (is_inode_flag_set(inode,
1840 								FI_DIRTY_INODE))
1841 						f2fs_update_inode(inode, page);
1842 					set_dentry_mark(page,
1843 						f2fs_need_dentry_mark(sbi, ino));
1844 				}
1845 				/* may be written by other thread */
1846 				if (!PageDirty(page))
1847 					set_page_dirty(page);
1848 			}
1849 
1850 			if (!clear_page_dirty_for_io(page))
1851 				goto continue_unlock;
1852 
1853 			ret = __write_node_page(page, atomic &&
1854 						page == last_page,
1855 						&submitted, wbc, true,
1856 						FS_NODE_IO, seq_id);
1857 			if (ret) {
1858 				unlock_page(page);
1859 				f2fs_put_page(last_page, 0);
1860 				break;
1861 			} else if (submitted) {
1862 				nwritten++;
1863 			}
1864 
1865 			if (page == last_page) {
1866 				f2fs_put_page(page, 0);
1867 				marked = true;
1868 				break;
1869 			}
1870 		}
1871 		folio_batch_release(&fbatch);
1872 		cond_resched();
1873 
1874 		if (ret || marked)
1875 			break;
1876 	}
1877 	if (!ret && atomic && !marked) {
1878 		f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1879 			   ino, page_folio(last_page)->index);
1880 		lock_page(last_page);
1881 		f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1882 		set_page_dirty(last_page);
1883 		unlock_page(last_page);
1884 		goto retry;
1885 	}
1886 out:
1887 	if (nwritten)
1888 		f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1889 	return ret ? -EIO : 0;
1890 }
1891 
1892 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1893 {
1894 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1895 	bool clean;
1896 
1897 	if (inode->i_ino != ino)
1898 		return 0;
1899 
1900 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1901 		return 0;
1902 
1903 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1904 	clean = list_empty(&F2FS_I(inode)->gdirty_list);
1905 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1906 
1907 	if (clean)
1908 		return 0;
1909 
1910 	inode = igrab(inode);
1911 	if (!inode)
1912 		return 0;
1913 	return 1;
1914 }
1915 
1916 static bool flush_dirty_inode(struct page *page)
1917 {
1918 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1919 	struct inode *inode;
1920 	nid_t ino = ino_of_node(page);
1921 
1922 	inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1923 	if (!inode)
1924 		return false;
1925 
1926 	f2fs_update_inode(inode, page);
1927 	unlock_page(page);
1928 
1929 	iput(inode);
1930 	return true;
1931 }
1932 
1933 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1934 {
1935 	pgoff_t index = 0;
1936 	struct folio_batch fbatch;
1937 	int nr_folios;
1938 
1939 	folio_batch_init(&fbatch);
1940 
1941 	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1942 					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1943 					&fbatch))) {
1944 		int i;
1945 
1946 		for (i = 0; i < nr_folios; i++) {
1947 			struct page *page = &fbatch.folios[i]->page;
1948 
1949 			if (!IS_INODE(page))
1950 				continue;
1951 
1952 			lock_page(page);
1953 
1954 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1955 continue_unlock:
1956 				unlock_page(page);
1957 				continue;
1958 			}
1959 
1960 			if (!PageDirty(page)) {
1961 				/* someone wrote it for us */
1962 				goto continue_unlock;
1963 			}
1964 
1965 			/* flush inline_data, if it's async context. */
1966 			if (page_private_inline(page)) {
1967 				clear_page_private_inline(page);
1968 				unlock_page(page);
1969 				flush_inline_data(sbi, ino_of_node(page));
1970 				continue;
1971 			}
1972 			unlock_page(page);
1973 		}
1974 		folio_batch_release(&fbatch);
1975 		cond_resched();
1976 	}
1977 }
1978 
1979 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1980 				struct writeback_control *wbc,
1981 				bool do_balance, enum iostat_type io_type)
1982 {
1983 	pgoff_t index;
1984 	struct folio_batch fbatch;
1985 	int step = 0;
1986 	int nwritten = 0;
1987 	int ret = 0;
1988 	int nr_folios, done = 0;
1989 
1990 	folio_batch_init(&fbatch);
1991 
1992 next_step:
1993 	index = 0;
1994 
1995 	while (!done && (nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi),
1996 				&index, (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1997 				&fbatch))) {
1998 		int i;
1999 
2000 		for (i = 0; i < nr_folios; i++) {
2001 			struct page *page = &fbatch.folios[i]->page;
2002 			bool submitted = false;
2003 
2004 			/* give a priority to WB_SYNC threads */
2005 			if (atomic_read(&sbi->wb_sync_req[NODE]) &&
2006 					wbc->sync_mode == WB_SYNC_NONE) {
2007 				done = 1;
2008 				break;
2009 			}
2010 
2011 			/*
2012 			 * flushing sequence with step:
2013 			 * 0. indirect nodes
2014 			 * 1. dentry dnodes
2015 			 * 2. file dnodes
2016 			 */
2017 			if (step == 0 && IS_DNODE(page))
2018 				continue;
2019 			if (step == 1 && (!IS_DNODE(page) ||
2020 						is_cold_node(page)))
2021 				continue;
2022 			if (step == 2 && (!IS_DNODE(page) ||
2023 						!is_cold_node(page)))
2024 				continue;
2025 lock_node:
2026 			if (wbc->sync_mode == WB_SYNC_ALL)
2027 				lock_page(page);
2028 			else if (!trylock_page(page))
2029 				continue;
2030 
2031 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
2032 continue_unlock:
2033 				unlock_page(page);
2034 				continue;
2035 			}
2036 
2037 			if (!PageDirty(page)) {
2038 				/* someone wrote it for us */
2039 				goto continue_unlock;
2040 			}
2041 
2042 			/* flush inline_data/inode, if it's async context. */
2043 			if (!do_balance)
2044 				goto write_node;
2045 
2046 			/* flush inline_data */
2047 			if (page_private_inline(page)) {
2048 				clear_page_private_inline(page);
2049 				unlock_page(page);
2050 				flush_inline_data(sbi, ino_of_node(page));
2051 				goto lock_node;
2052 			}
2053 
2054 			/* flush dirty inode */
2055 			if (IS_INODE(page) && flush_dirty_inode(page))
2056 				goto lock_node;
2057 write_node:
2058 			f2fs_wait_on_page_writeback(page, NODE, true, true);
2059 
2060 			if (!clear_page_dirty_for_io(page))
2061 				goto continue_unlock;
2062 
2063 			set_fsync_mark(page, 0);
2064 			set_dentry_mark(page, 0);
2065 
2066 			ret = __write_node_page(page, false, &submitted,
2067 						wbc, do_balance, io_type, NULL);
2068 			if (ret)
2069 				unlock_page(page);
2070 			else if (submitted)
2071 				nwritten++;
2072 
2073 			if (--wbc->nr_to_write == 0)
2074 				break;
2075 		}
2076 		folio_batch_release(&fbatch);
2077 		cond_resched();
2078 
2079 		if (wbc->nr_to_write == 0) {
2080 			step = 2;
2081 			break;
2082 		}
2083 	}
2084 
2085 	if (step < 2) {
2086 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2087 				wbc->sync_mode == WB_SYNC_NONE && step == 1)
2088 			goto out;
2089 		step++;
2090 		goto next_step;
2091 	}
2092 out:
2093 	if (nwritten)
2094 		f2fs_submit_merged_write(sbi, NODE);
2095 
2096 	if (unlikely(f2fs_cp_error(sbi)))
2097 		return -EIO;
2098 	return ret;
2099 }
2100 
2101 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2102 						unsigned int seq_id)
2103 {
2104 	struct fsync_node_entry *fn;
2105 	struct page *page;
2106 	struct list_head *head = &sbi->fsync_node_list;
2107 	unsigned long flags;
2108 	unsigned int cur_seq_id = 0;
2109 
2110 	while (seq_id && cur_seq_id < seq_id) {
2111 		spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2112 		if (list_empty(head)) {
2113 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2114 			break;
2115 		}
2116 		fn = list_first_entry(head, struct fsync_node_entry, list);
2117 		if (fn->seq_id > seq_id) {
2118 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2119 			break;
2120 		}
2121 		cur_seq_id = fn->seq_id;
2122 		page = fn->page;
2123 		get_page(page);
2124 		spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2125 
2126 		f2fs_wait_on_page_writeback(page, NODE, true, false);
2127 
2128 		put_page(page);
2129 	}
2130 
2131 	return filemap_check_errors(NODE_MAPPING(sbi));
2132 }
2133 
2134 static int f2fs_write_node_pages(struct address_space *mapping,
2135 			    struct writeback_control *wbc)
2136 {
2137 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2138 	struct blk_plug plug;
2139 	long diff;
2140 
2141 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2142 		goto skip_write;
2143 
2144 	/* balancing f2fs's metadata in background */
2145 	f2fs_balance_fs_bg(sbi, true);
2146 
2147 	/* collect a number of dirty node pages and write together */
2148 	if (wbc->sync_mode != WB_SYNC_ALL &&
2149 			get_pages(sbi, F2FS_DIRTY_NODES) <
2150 					nr_pages_to_skip(sbi, NODE))
2151 		goto skip_write;
2152 
2153 	if (wbc->sync_mode == WB_SYNC_ALL)
2154 		atomic_inc(&sbi->wb_sync_req[NODE]);
2155 	else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2156 		/* to avoid potential deadlock */
2157 		if (current->plug)
2158 			blk_finish_plug(current->plug);
2159 		goto skip_write;
2160 	}
2161 
2162 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2163 
2164 	diff = nr_pages_to_write(sbi, NODE, wbc);
2165 	blk_start_plug(&plug);
2166 	f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2167 	blk_finish_plug(&plug);
2168 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2169 
2170 	if (wbc->sync_mode == WB_SYNC_ALL)
2171 		atomic_dec(&sbi->wb_sync_req[NODE]);
2172 	return 0;
2173 
2174 skip_write:
2175 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2176 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2177 	return 0;
2178 }
2179 
2180 static bool f2fs_dirty_node_folio(struct address_space *mapping,
2181 		struct folio *folio)
2182 {
2183 	trace_f2fs_set_page_dirty(folio, NODE);
2184 
2185 	if (!folio_test_uptodate(folio))
2186 		folio_mark_uptodate(folio);
2187 #ifdef CONFIG_F2FS_CHECK_FS
2188 	if (IS_INODE(&folio->page))
2189 		f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page);
2190 #endif
2191 	if (filemap_dirty_folio(mapping, folio)) {
2192 		inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2193 		set_page_private_reference(&folio->page);
2194 		return true;
2195 	}
2196 	return false;
2197 }
2198 
2199 /*
2200  * Structure of the f2fs node operations
2201  */
2202 const struct address_space_operations f2fs_node_aops = {
2203 	.writepage	= f2fs_write_node_page,
2204 	.writepages	= f2fs_write_node_pages,
2205 	.dirty_folio	= f2fs_dirty_node_folio,
2206 	.invalidate_folio = f2fs_invalidate_folio,
2207 	.release_folio	= f2fs_release_folio,
2208 	.migrate_folio	= filemap_migrate_folio,
2209 };
2210 
2211 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2212 						nid_t n)
2213 {
2214 	return radix_tree_lookup(&nm_i->free_nid_root, n);
2215 }
2216 
2217 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2218 				struct free_nid *i)
2219 {
2220 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2221 	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2222 
2223 	if (err)
2224 		return err;
2225 
2226 	nm_i->nid_cnt[FREE_NID]++;
2227 	list_add_tail(&i->list, &nm_i->free_nid_list);
2228 	return 0;
2229 }
2230 
2231 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2232 			struct free_nid *i, enum nid_state state)
2233 {
2234 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2235 
2236 	f2fs_bug_on(sbi, state != i->state);
2237 	nm_i->nid_cnt[state]--;
2238 	if (state == FREE_NID)
2239 		list_del(&i->list);
2240 	radix_tree_delete(&nm_i->free_nid_root, i->nid);
2241 }
2242 
2243 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2244 			enum nid_state org_state, enum nid_state dst_state)
2245 {
2246 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2247 
2248 	f2fs_bug_on(sbi, org_state != i->state);
2249 	i->state = dst_state;
2250 	nm_i->nid_cnt[org_state]--;
2251 	nm_i->nid_cnt[dst_state]++;
2252 
2253 	switch (dst_state) {
2254 	case PREALLOC_NID:
2255 		list_del(&i->list);
2256 		break;
2257 	case FREE_NID:
2258 		list_add_tail(&i->list, &nm_i->free_nid_list);
2259 		break;
2260 	default:
2261 		BUG_ON(1);
2262 	}
2263 }
2264 
2265 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2266 {
2267 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2268 	unsigned int i;
2269 	bool ret = true;
2270 
2271 	f2fs_down_read(&nm_i->nat_tree_lock);
2272 	for (i = 0; i < nm_i->nat_blocks; i++) {
2273 		if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2274 			ret = false;
2275 			break;
2276 		}
2277 	}
2278 	f2fs_up_read(&nm_i->nat_tree_lock);
2279 
2280 	return ret;
2281 }
2282 
2283 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2284 							bool set, bool build)
2285 {
2286 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2287 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2288 	unsigned int nid_ofs = nid - START_NID(nid);
2289 
2290 	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2291 		return;
2292 
2293 	if (set) {
2294 		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2295 			return;
2296 		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2297 		nm_i->free_nid_count[nat_ofs]++;
2298 	} else {
2299 		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2300 			return;
2301 		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2302 		if (!build)
2303 			nm_i->free_nid_count[nat_ofs]--;
2304 	}
2305 }
2306 
2307 /* return if the nid is recognized as free */
2308 static bool add_free_nid(struct f2fs_sb_info *sbi,
2309 				nid_t nid, bool build, bool update)
2310 {
2311 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2312 	struct free_nid *i, *e;
2313 	struct nat_entry *ne;
2314 	int err = -EINVAL;
2315 	bool ret = false;
2316 
2317 	/* 0 nid should not be used */
2318 	if (unlikely(nid == 0))
2319 		return false;
2320 
2321 	if (unlikely(f2fs_check_nid_range(sbi, nid)))
2322 		return false;
2323 
2324 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2325 	i->nid = nid;
2326 	i->state = FREE_NID;
2327 
2328 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2329 
2330 	spin_lock(&nm_i->nid_list_lock);
2331 
2332 	if (build) {
2333 		/*
2334 		 *   Thread A             Thread B
2335 		 *  - f2fs_create
2336 		 *   - f2fs_new_inode
2337 		 *    - f2fs_alloc_nid
2338 		 *     - __insert_nid_to_list(PREALLOC_NID)
2339 		 *                     - f2fs_balance_fs_bg
2340 		 *                      - f2fs_build_free_nids
2341 		 *                       - __f2fs_build_free_nids
2342 		 *                        - scan_nat_page
2343 		 *                         - add_free_nid
2344 		 *                          - __lookup_nat_cache
2345 		 *  - f2fs_add_link
2346 		 *   - f2fs_init_inode_metadata
2347 		 *    - f2fs_new_inode_page
2348 		 *     - f2fs_new_node_page
2349 		 *      - set_node_addr
2350 		 *  - f2fs_alloc_nid_done
2351 		 *   - __remove_nid_from_list(PREALLOC_NID)
2352 		 *                         - __insert_nid_to_list(FREE_NID)
2353 		 */
2354 		ne = __lookup_nat_cache(nm_i, nid);
2355 		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2356 				nat_get_blkaddr(ne) != NULL_ADDR))
2357 			goto err_out;
2358 
2359 		e = __lookup_free_nid_list(nm_i, nid);
2360 		if (e) {
2361 			if (e->state == FREE_NID)
2362 				ret = true;
2363 			goto err_out;
2364 		}
2365 	}
2366 	ret = true;
2367 	err = __insert_free_nid(sbi, i);
2368 err_out:
2369 	if (update) {
2370 		update_free_nid_bitmap(sbi, nid, ret, build);
2371 		if (!build)
2372 			nm_i->available_nids++;
2373 	}
2374 	spin_unlock(&nm_i->nid_list_lock);
2375 	radix_tree_preload_end();
2376 
2377 	if (err)
2378 		kmem_cache_free(free_nid_slab, i);
2379 	return ret;
2380 }
2381 
2382 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2383 {
2384 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2385 	struct free_nid *i;
2386 	bool need_free = false;
2387 
2388 	spin_lock(&nm_i->nid_list_lock);
2389 	i = __lookup_free_nid_list(nm_i, nid);
2390 	if (i && i->state == FREE_NID) {
2391 		__remove_free_nid(sbi, i, FREE_NID);
2392 		need_free = true;
2393 	}
2394 	spin_unlock(&nm_i->nid_list_lock);
2395 
2396 	if (need_free)
2397 		kmem_cache_free(free_nid_slab, i);
2398 }
2399 
2400 static int scan_nat_page(struct f2fs_sb_info *sbi,
2401 			struct page *nat_page, nid_t start_nid)
2402 {
2403 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2404 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
2405 	block_t blk_addr;
2406 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2407 	int i;
2408 
2409 	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2410 
2411 	i = start_nid % NAT_ENTRY_PER_BLOCK;
2412 
2413 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2414 		if (unlikely(start_nid >= nm_i->max_nid))
2415 			break;
2416 
2417 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2418 
2419 		if (blk_addr == NEW_ADDR)
2420 			return -EFSCORRUPTED;
2421 
2422 		if (blk_addr == NULL_ADDR) {
2423 			add_free_nid(sbi, start_nid, true, true);
2424 		} else {
2425 			spin_lock(&NM_I(sbi)->nid_list_lock);
2426 			update_free_nid_bitmap(sbi, start_nid, false, true);
2427 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2428 		}
2429 	}
2430 
2431 	return 0;
2432 }
2433 
2434 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2435 {
2436 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2437 	struct f2fs_journal *journal = curseg->journal;
2438 	int i;
2439 
2440 	down_read(&curseg->journal_rwsem);
2441 	for (i = 0; i < nats_in_cursum(journal); i++) {
2442 		block_t addr;
2443 		nid_t nid;
2444 
2445 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2446 		nid = le32_to_cpu(nid_in_journal(journal, i));
2447 		if (addr == NULL_ADDR)
2448 			add_free_nid(sbi, nid, true, false);
2449 		else
2450 			remove_free_nid(sbi, nid);
2451 	}
2452 	up_read(&curseg->journal_rwsem);
2453 }
2454 
2455 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2456 {
2457 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2458 	unsigned int i, idx;
2459 	nid_t nid;
2460 
2461 	f2fs_down_read(&nm_i->nat_tree_lock);
2462 
2463 	for (i = 0; i < nm_i->nat_blocks; i++) {
2464 		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2465 			continue;
2466 		if (!nm_i->free_nid_count[i])
2467 			continue;
2468 		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2469 			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2470 						NAT_ENTRY_PER_BLOCK, idx);
2471 			if (idx >= NAT_ENTRY_PER_BLOCK)
2472 				break;
2473 
2474 			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2475 			add_free_nid(sbi, nid, true, false);
2476 
2477 			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2478 				goto out;
2479 		}
2480 	}
2481 out:
2482 	scan_curseg_cache(sbi);
2483 
2484 	f2fs_up_read(&nm_i->nat_tree_lock);
2485 }
2486 
2487 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2488 						bool sync, bool mount)
2489 {
2490 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2491 	int i = 0, ret;
2492 	nid_t nid = nm_i->next_scan_nid;
2493 
2494 	if (unlikely(nid >= nm_i->max_nid))
2495 		nid = 0;
2496 
2497 	if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2498 		nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2499 
2500 	/* Enough entries */
2501 	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2502 		return 0;
2503 
2504 	if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2505 		return 0;
2506 
2507 	if (!mount) {
2508 		/* try to find free nids in free_nid_bitmap */
2509 		scan_free_nid_bits(sbi);
2510 
2511 		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2512 			return 0;
2513 	}
2514 
2515 	/* readahead nat pages to be scanned */
2516 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2517 							META_NAT, true);
2518 
2519 	f2fs_down_read(&nm_i->nat_tree_lock);
2520 
2521 	while (1) {
2522 		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2523 						nm_i->nat_block_bitmap)) {
2524 			struct page *page = get_current_nat_page(sbi, nid);
2525 
2526 			if (IS_ERR(page)) {
2527 				ret = PTR_ERR(page);
2528 			} else {
2529 				ret = scan_nat_page(sbi, page, nid);
2530 				f2fs_put_page(page, 1);
2531 			}
2532 
2533 			if (ret) {
2534 				f2fs_up_read(&nm_i->nat_tree_lock);
2535 
2536 				if (ret == -EFSCORRUPTED) {
2537 					f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2538 					set_sbi_flag(sbi, SBI_NEED_FSCK);
2539 					f2fs_handle_error(sbi,
2540 						ERROR_INCONSISTENT_NAT);
2541 				}
2542 
2543 				return ret;
2544 			}
2545 		}
2546 
2547 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2548 		if (unlikely(nid >= nm_i->max_nid))
2549 			nid = 0;
2550 
2551 		if (++i >= FREE_NID_PAGES)
2552 			break;
2553 	}
2554 
2555 	/* go to the next free nat pages to find free nids abundantly */
2556 	nm_i->next_scan_nid = nid;
2557 
2558 	/* find free nids from current sum_pages */
2559 	scan_curseg_cache(sbi);
2560 
2561 	f2fs_up_read(&nm_i->nat_tree_lock);
2562 
2563 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2564 					nm_i->ra_nid_pages, META_NAT, false);
2565 
2566 	return 0;
2567 }
2568 
2569 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2570 {
2571 	int ret;
2572 
2573 	mutex_lock(&NM_I(sbi)->build_lock);
2574 	ret = __f2fs_build_free_nids(sbi, sync, mount);
2575 	mutex_unlock(&NM_I(sbi)->build_lock);
2576 
2577 	return ret;
2578 }
2579 
2580 /*
2581  * If this function returns success, caller can obtain a new nid
2582  * from second parameter of this function.
2583  * The returned nid could be used ino as well as nid when inode is created.
2584  */
2585 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2586 {
2587 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2588 	struct free_nid *i = NULL;
2589 retry:
2590 	if (time_to_inject(sbi, FAULT_ALLOC_NID))
2591 		return false;
2592 
2593 	spin_lock(&nm_i->nid_list_lock);
2594 
2595 	if (unlikely(nm_i->available_nids == 0)) {
2596 		spin_unlock(&nm_i->nid_list_lock);
2597 		return false;
2598 	}
2599 
2600 	/* We should not use stale free nids created by f2fs_build_free_nids */
2601 	if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2602 		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2603 		i = list_first_entry(&nm_i->free_nid_list,
2604 					struct free_nid, list);
2605 		*nid = i->nid;
2606 
2607 		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2608 		nm_i->available_nids--;
2609 
2610 		update_free_nid_bitmap(sbi, *nid, false, false);
2611 
2612 		spin_unlock(&nm_i->nid_list_lock);
2613 		return true;
2614 	}
2615 	spin_unlock(&nm_i->nid_list_lock);
2616 
2617 	/* Let's scan nat pages and its caches to get free nids */
2618 	if (!f2fs_build_free_nids(sbi, true, false))
2619 		goto retry;
2620 	return false;
2621 }
2622 
2623 /*
2624  * f2fs_alloc_nid() should be called prior to this function.
2625  */
2626 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2627 {
2628 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2629 	struct free_nid *i;
2630 
2631 	spin_lock(&nm_i->nid_list_lock);
2632 	i = __lookup_free_nid_list(nm_i, nid);
2633 	f2fs_bug_on(sbi, !i);
2634 	__remove_free_nid(sbi, i, PREALLOC_NID);
2635 	spin_unlock(&nm_i->nid_list_lock);
2636 
2637 	kmem_cache_free(free_nid_slab, i);
2638 }
2639 
2640 /*
2641  * f2fs_alloc_nid() should be called prior to this function.
2642  */
2643 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2644 {
2645 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2646 	struct free_nid *i;
2647 	bool need_free = false;
2648 
2649 	if (!nid)
2650 		return;
2651 
2652 	spin_lock(&nm_i->nid_list_lock);
2653 	i = __lookup_free_nid_list(nm_i, nid);
2654 	f2fs_bug_on(sbi, !i);
2655 
2656 	if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2657 		__remove_free_nid(sbi, i, PREALLOC_NID);
2658 		need_free = true;
2659 	} else {
2660 		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2661 	}
2662 
2663 	nm_i->available_nids++;
2664 
2665 	update_free_nid_bitmap(sbi, nid, true, false);
2666 
2667 	spin_unlock(&nm_i->nid_list_lock);
2668 
2669 	if (need_free)
2670 		kmem_cache_free(free_nid_slab, i);
2671 }
2672 
2673 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2674 {
2675 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2676 	int nr = nr_shrink;
2677 
2678 	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2679 		return 0;
2680 
2681 	if (!mutex_trylock(&nm_i->build_lock))
2682 		return 0;
2683 
2684 	while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2685 		struct free_nid *i, *next;
2686 		unsigned int batch = SHRINK_NID_BATCH_SIZE;
2687 
2688 		spin_lock(&nm_i->nid_list_lock);
2689 		list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2690 			if (!nr_shrink || !batch ||
2691 				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2692 				break;
2693 			__remove_free_nid(sbi, i, FREE_NID);
2694 			kmem_cache_free(free_nid_slab, i);
2695 			nr_shrink--;
2696 			batch--;
2697 		}
2698 		spin_unlock(&nm_i->nid_list_lock);
2699 	}
2700 
2701 	mutex_unlock(&nm_i->build_lock);
2702 
2703 	return nr - nr_shrink;
2704 }
2705 
2706 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2707 {
2708 	void *src_addr, *dst_addr;
2709 	size_t inline_size;
2710 	struct page *ipage;
2711 	struct f2fs_inode *ri;
2712 
2713 	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2714 	if (IS_ERR(ipage))
2715 		return PTR_ERR(ipage);
2716 
2717 	ri = F2FS_INODE(page);
2718 	if (ri->i_inline & F2FS_INLINE_XATTR) {
2719 		if (!f2fs_has_inline_xattr(inode)) {
2720 			set_inode_flag(inode, FI_INLINE_XATTR);
2721 			stat_inc_inline_xattr(inode);
2722 		}
2723 	} else {
2724 		if (f2fs_has_inline_xattr(inode)) {
2725 			stat_dec_inline_xattr(inode);
2726 			clear_inode_flag(inode, FI_INLINE_XATTR);
2727 		}
2728 		goto update_inode;
2729 	}
2730 
2731 	dst_addr = inline_xattr_addr(inode, ipage);
2732 	src_addr = inline_xattr_addr(inode, page);
2733 	inline_size = inline_xattr_size(inode);
2734 
2735 	f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2736 	memcpy(dst_addr, src_addr, inline_size);
2737 update_inode:
2738 	f2fs_update_inode(inode, ipage);
2739 	f2fs_put_page(ipage, 1);
2740 	return 0;
2741 }
2742 
2743 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2744 {
2745 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2746 	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2747 	nid_t new_xnid;
2748 	struct dnode_of_data dn;
2749 	struct node_info ni;
2750 	struct page *xpage;
2751 	int err;
2752 
2753 	if (!prev_xnid)
2754 		goto recover_xnid;
2755 
2756 	/* 1: invalidate the previous xattr nid */
2757 	err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2758 	if (err)
2759 		return err;
2760 
2761 	f2fs_invalidate_blocks(sbi, ni.blk_addr);
2762 	dec_valid_node_count(sbi, inode, false);
2763 	set_node_addr(sbi, &ni, NULL_ADDR, false);
2764 
2765 recover_xnid:
2766 	/* 2: update xattr nid in inode */
2767 	if (!f2fs_alloc_nid(sbi, &new_xnid))
2768 		return -ENOSPC;
2769 
2770 	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2771 	xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2772 	if (IS_ERR(xpage)) {
2773 		f2fs_alloc_nid_failed(sbi, new_xnid);
2774 		return PTR_ERR(xpage);
2775 	}
2776 
2777 	f2fs_alloc_nid_done(sbi, new_xnid);
2778 	f2fs_update_inode_page(inode);
2779 
2780 	/* 3: update and set xattr node page dirty */
2781 	if (page) {
2782 		memcpy(F2FS_NODE(xpage), F2FS_NODE(page),
2783 				VALID_XATTR_BLOCK_SIZE);
2784 		set_page_dirty(xpage);
2785 	}
2786 	f2fs_put_page(xpage, 1);
2787 
2788 	return 0;
2789 }
2790 
2791 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2792 {
2793 	struct f2fs_inode *src, *dst;
2794 	nid_t ino = ino_of_node(page);
2795 	struct node_info old_ni, new_ni;
2796 	struct page *ipage;
2797 	int err;
2798 
2799 	err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2800 	if (err)
2801 		return err;
2802 
2803 	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2804 		return -EINVAL;
2805 retry:
2806 	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2807 	if (!ipage) {
2808 		memalloc_retry_wait(GFP_NOFS);
2809 		goto retry;
2810 	}
2811 
2812 	/* Should not use this inode from free nid list */
2813 	remove_free_nid(sbi, ino);
2814 
2815 	if (!PageUptodate(ipage))
2816 		SetPageUptodate(ipage);
2817 	fill_node_footer(ipage, ino, ino, 0, true);
2818 	set_cold_node(ipage, false);
2819 
2820 	src = F2FS_INODE(page);
2821 	dst = F2FS_INODE(ipage);
2822 
2823 	memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2824 	dst->i_size = 0;
2825 	dst->i_blocks = cpu_to_le64(1);
2826 	dst->i_links = cpu_to_le32(1);
2827 	dst->i_xattr_nid = 0;
2828 	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2829 	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2830 		dst->i_extra_isize = src->i_extra_isize;
2831 
2832 		if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2833 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2834 							i_inline_xattr_size))
2835 			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2836 
2837 		if (f2fs_sb_has_project_quota(sbi) &&
2838 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2839 								i_projid))
2840 			dst->i_projid = src->i_projid;
2841 
2842 		if (f2fs_sb_has_inode_crtime(sbi) &&
2843 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2844 							i_crtime_nsec)) {
2845 			dst->i_crtime = src->i_crtime;
2846 			dst->i_crtime_nsec = src->i_crtime_nsec;
2847 		}
2848 	}
2849 
2850 	new_ni = old_ni;
2851 	new_ni.ino = ino;
2852 
2853 	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2854 		WARN_ON(1);
2855 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2856 	inc_valid_inode_count(sbi);
2857 	set_page_dirty(ipage);
2858 	f2fs_put_page(ipage, 1);
2859 	return 0;
2860 }
2861 
2862 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2863 			unsigned int segno, struct f2fs_summary_block *sum)
2864 {
2865 	struct f2fs_node *rn;
2866 	struct f2fs_summary *sum_entry;
2867 	block_t addr;
2868 	int i, idx, last_offset, nrpages;
2869 
2870 	/* scan the node segment */
2871 	last_offset = BLKS_PER_SEG(sbi);
2872 	addr = START_BLOCK(sbi, segno);
2873 	sum_entry = &sum->entries[0];
2874 
2875 	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2876 		nrpages = bio_max_segs(last_offset - i);
2877 
2878 		/* readahead node pages */
2879 		f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2880 
2881 		for (idx = addr; idx < addr + nrpages; idx++) {
2882 			struct page *page = f2fs_get_tmp_page(sbi, idx);
2883 
2884 			if (IS_ERR(page))
2885 				return PTR_ERR(page);
2886 
2887 			rn = F2FS_NODE(page);
2888 			sum_entry->nid = rn->footer.nid;
2889 			sum_entry->version = 0;
2890 			sum_entry->ofs_in_node = 0;
2891 			sum_entry++;
2892 			f2fs_put_page(page, 1);
2893 		}
2894 
2895 		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2896 							addr + nrpages);
2897 	}
2898 	return 0;
2899 }
2900 
2901 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2902 {
2903 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2904 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2905 	struct f2fs_journal *journal = curseg->journal;
2906 	int i;
2907 
2908 	down_write(&curseg->journal_rwsem);
2909 	for (i = 0; i < nats_in_cursum(journal); i++) {
2910 		struct nat_entry *ne;
2911 		struct f2fs_nat_entry raw_ne;
2912 		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2913 
2914 		if (f2fs_check_nid_range(sbi, nid))
2915 			continue;
2916 
2917 		raw_ne = nat_in_journal(journal, i);
2918 
2919 		ne = __lookup_nat_cache(nm_i, nid);
2920 		if (!ne) {
2921 			ne = __alloc_nat_entry(sbi, nid, true);
2922 			__init_nat_entry(nm_i, ne, &raw_ne, true);
2923 		}
2924 
2925 		/*
2926 		 * if a free nat in journal has not been used after last
2927 		 * checkpoint, we should remove it from available nids,
2928 		 * since later we will add it again.
2929 		 */
2930 		if (!get_nat_flag(ne, IS_DIRTY) &&
2931 				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2932 			spin_lock(&nm_i->nid_list_lock);
2933 			nm_i->available_nids--;
2934 			spin_unlock(&nm_i->nid_list_lock);
2935 		}
2936 
2937 		__set_nat_cache_dirty(nm_i, ne);
2938 	}
2939 	update_nats_in_cursum(journal, -i);
2940 	up_write(&curseg->journal_rwsem);
2941 }
2942 
2943 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2944 						struct list_head *head, int max)
2945 {
2946 	struct nat_entry_set *cur;
2947 
2948 	if (nes->entry_cnt >= max)
2949 		goto add_out;
2950 
2951 	list_for_each_entry(cur, head, set_list) {
2952 		if (cur->entry_cnt >= nes->entry_cnt) {
2953 			list_add(&nes->set_list, cur->set_list.prev);
2954 			return;
2955 		}
2956 	}
2957 add_out:
2958 	list_add_tail(&nes->set_list, head);
2959 }
2960 
2961 static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2962 							unsigned int valid)
2963 {
2964 	if (valid == 0) {
2965 		__set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2966 		__clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2967 		return;
2968 	}
2969 
2970 	__clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2971 	if (valid == NAT_ENTRY_PER_BLOCK)
2972 		__set_bit_le(nat_ofs, nm_i->full_nat_bits);
2973 	else
2974 		__clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2975 }
2976 
2977 static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2978 						struct page *page)
2979 {
2980 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2981 	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2982 	struct f2fs_nat_block *nat_blk = page_address(page);
2983 	int valid = 0;
2984 	int i = 0;
2985 
2986 	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
2987 		return;
2988 
2989 	if (nat_index == 0) {
2990 		valid = 1;
2991 		i = 1;
2992 	}
2993 	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2994 		if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2995 			valid++;
2996 	}
2997 
2998 	__update_nat_bits(nm_i, nat_index, valid);
2999 }
3000 
3001 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
3002 {
3003 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3004 	unsigned int nat_ofs;
3005 
3006 	f2fs_down_read(&nm_i->nat_tree_lock);
3007 
3008 	for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
3009 		unsigned int valid = 0, nid_ofs = 0;
3010 
3011 		/* handle nid zero due to it should never be used */
3012 		if (unlikely(nat_ofs == 0)) {
3013 			valid = 1;
3014 			nid_ofs = 1;
3015 		}
3016 
3017 		for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
3018 			if (!test_bit_le(nid_ofs,
3019 					nm_i->free_nid_bitmap[nat_ofs]))
3020 				valid++;
3021 		}
3022 
3023 		__update_nat_bits(nm_i, nat_ofs, valid);
3024 	}
3025 
3026 	f2fs_up_read(&nm_i->nat_tree_lock);
3027 }
3028 
3029 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
3030 		struct nat_entry_set *set, struct cp_control *cpc)
3031 {
3032 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3033 	struct f2fs_journal *journal = curseg->journal;
3034 	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
3035 	bool to_journal = true;
3036 	struct f2fs_nat_block *nat_blk;
3037 	struct nat_entry *ne, *cur;
3038 	struct page *page = NULL;
3039 
3040 	/*
3041 	 * there are two steps to flush nat entries:
3042 	 * #1, flush nat entries to journal in current hot data summary block.
3043 	 * #2, flush nat entries to nat page.
3044 	 */
3045 	if ((cpc->reason & CP_UMOUNT) ||
3046 		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3047 		to_journal = false;
3048 
3049 	if (to_journal) {
3050 		down_write(&curseg->journal_rwsem);
3051 	} else {
3052 		page = get_next_nat_page(sbi, start_nid);
3053 		if (IS_ERR(page))
3054 			return PTR_ERR(page);
3055 
3056 		nat_blk = page_address(page);
3057 		f2fs_bug_on(sbi, !nat_blk);
3058 	}
3059 
3060 	/* flush dirty nats in nat entry set */
3061 	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3062 		struct f2fs_nat_entry *raw_ne;
3063 		nid_t nid = nat_get_nid(ne);
3064 		int offset;
3065 
3066 		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3067 
3068 		if (to_journal) {
3069 			offset = f2fs_lookup_journal_in_cursum(journal,
3070 							NAT_JOURNAL, nid, 1);
3071 			f2fs_bug_on(sbi, offset < 0);
3072 			raw_ne = &nat_in_journal(journal, offset);
3073 			nid_in_journal(journal, offset) = cpu_to_le32(nid);
3074 		} else {
3075 			raw_ne = &nat_blk->entries[nid - start_nid];
3076 		}
3077 		raw_nat_from_node_info(raw_ne, &ne->ni);
3078 		nat_reset_flag(ne);
3079 		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
3080 		if (nat_get_blkaddr(ne) == NULL_ADDR) {
3081 			add_free_nid(sbi, nid, false, true);
3082 		} else {
3083 			spin_lock(&NM_I(sbi)->nid_list_lock);
3084 			update_free_nid_bitmap(sbi, nid, false, false);
3085 			spin_unlock(&NM_I(sbi)->nid_list_lock);
3086 		}
3087 	}
3088 
3089 	if (to_journal) {
3090 		up_write(&curseg->journal_rwsem);
3091 	} else {
3092 		update_nat_bits(sbi, start_nid, page);
3093 		f2fs_put_page(page, 1);
3094 	}
3095 
3096 	/* Allow dirty nats by node block allocation in write_begin */
3097 	if (!set->entry_cnt) {
3098 		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3099 		kmem_cache_free(nat_entry_set_slab, set);
3100 	}
3101 	return 0;
3102 }
3103 
3104 /*
3105  * This function is called during the checkpointing process.
3106  */
3107 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3108 {
3109 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3110 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3111 	struct f2fs_journal *journal = curseg->journal;
3112 	struct nat_entry_set *setvec[NAT_VEC_SIZE];
3113 	struct nat_entry_set *set, *tmp;
3114 	unsigned int found;
3115 	nid_t set_idx = 0;
3116 	LIST_HEAD(sets);
3117 	int err = 0;
3118 
3119 	/*
3120 	 * during unmount, let's flush nat_bits before checking
3121 	 * nat_cnt[DIRTY_NAT].
3122 	 */
3123 	if (cpc->reason & CP_UMOUNT) {
3124 		f2fs_down_write(&nm_i->nat_tree_lock);
3125 		remove_nats_in_journal(sbi);
3126 		f2fs_up_write(&nm_i->nat_tree_lock);
3127 	}
3128 
3129 	if (!nm_i->nat_cnt[DIRTY_NAT])
3130 		return 0;
3131 
3132 	f2fs_down_write(&nm_i->nat_tree_lock);
3133 
3134 	/*
3135 	 * if there are no enough space in journal to store dirty nat
3136 	 * entries, remove all entries from journal and merge them
3137 	 * into nat entry set.
3138 	 */
3139 	if (cpc->reason & CP_UMOUNT ||
3140 		!__has_cursum_space(journal,
3141 			nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3142 		remove_nats_in_journal(sbi);
3143 
3144 	while ((found = __gang_lookup_nat_set(nm_i,
3145 					set_idx, NAT_VEC_SIZE, setvec))) {
3146 		unsigned idx;
3147 
3148 		set_idx = setvec[found - 1]->set + 1;
3149 		for (idx = 0; idx < found; idx++)
3150 			__adjust_nat_entry_set(setvec[idx], &sets,
3151 						MAX_NAT_JENTRIES(journal));
3152 	}
3153 
3154 	/* flush dirty nats in nat entry set */
3155 	list_for_each_entry_safe(set, tmp, &sets, set_list) {
3156 		err = __flush_nat_entry_set(sbi, set, cpc);
3157 		if (err)
3158 			break;
3159 	}
3160 
3161 	f2fs_up_write(&nm_i->nat_tree_lock);
3162 	/* Allow dirty nats by node block allocation in write_begin */
3163 
3164 	return err;
3165 }
3166 
3167 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3168 {
3169 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3170 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3171 	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3172 	unsigned int i;
3173 	__u64 cp_ver = cur_cp_version(ckpt);
3174 	block_t nat_bits_addr;
3175 
3176 	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3177 	nm_i->nat_bits = f2fs_kvzalloc(sbi,
3178 			F2FS_BLK_TO_BYTES(nm_i->nat_bits_blocks), GFP_KERNEL);
3179 	if (!nm_i->nat_bits)
3180 		return -ENOMEM;
3181 
3182 	nm_i->full_nat_bits = nm_i->nat_bits + 8;
3183 	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3184 
3185 	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3186 		return 0;
3187 
3188 	nat_bits_addr = __start_cp_addr(sbi) + BLKS_PER_SEG(sbi) -
3189 						nm_i->nat_bits_blocks;
3190 	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3191 		struct page *page;
3192 
3193 		page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3194 		if (IS_ERR(page))
3195 			return PTR_ERR(page);
3196 
3197 		memcpy(nm_i->nat_bits + F2FS_BLK_TO_BYTES(i),
3198 					page_address(page), F2FS_BLKSIZE);
3199 		f2fs_put_page(page, 1);
3200 	}
3201 
3202 	cp_ver |= (cur_cp_crc(ckpt) << 32);
3203 	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3204 		clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3205 		f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3206 			cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3207 		return 0;
3208 	}
3209 
3210 	f2fs_notice(sbi, "Found nat_bits in checkpoint");
3211 	return 0;
3212 }
3213 
3214 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3215 {
3216 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3217 	unsigned int i = 0;
3218 	nid_t nid, last_nid;
3219 
3220 	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3221 		return;
3222 
3223 	for (i = 0; i < nm_i->nat_blocks; i++) {
3224 		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3225 		if (i >= nm_i->nat_blocks)
3226 			break;
3227 
3228 		__set_bit_le(i, nm_i->nat_block_bitmap);
3229 
3230 		nid = i * NAT_ENTRY_PER_BLOCK;
3231 		last_nid = nid + NAT_ENTRY_PER_BLOCK;
3232 
3233 		spin_lock(&NM_I(sbi)->nid_list_lock);
3234 		for (; nid < last_nid; nid++)
3235 			update_free_nid_bitmap(sbi, nid, true, true);
3236 		spin_unlock(&NM_I(sbi)->nid_list_lock);
3237 	}
3238 
3239 	for (i = 0; i < nm_i->nat_blocks; i++) {
3240 		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3241 		if (i >= nm_i->nat_blocks)
3242 			break;
3243 
3244 		__set_bit_le(i, nm_i->nat_block_bitmap);
3245 	}
3246 }
3247 
3248 static int init_node_manager(struct f2fs_sb_info *sbi)
3249 {
3250 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3251 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3252 	unsigned char *version_bitmap;
3253 	unsigned int nat_segs;
3254 	int err;
3255 
3256 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3257 
3258 	/* segment_count_nat includes pair segment so divide to 2. */
3259 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3260 	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3261 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3262 
3263 	/* not used nids: 0, node, meta, (and root counted as valid node) */
3264 	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3265 						F2FS_RESERVED_NODE_NUM;
3266 	nm_i->nid_cnt[FREE_NID] = 0;
3267 	nm_i->nid_cnt[PREALLOC_NID] = 0;
3268 	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3269 	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3270 	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3271 	nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3272 
3273 	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3274 	INIT_LIST_HEAD(&nm_i->free_nid_list);
3275 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3276 	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3277 	INIT_LIST_HEAD(&nm_i->nat_entries);
3278 	spin_lock_init(&nm_i->nat_list_lock);
3279 
3280 	mutex_init(&nm_i->build_lock);
3281 	spin_lock_init(&nm_i->nid_list_lock);
3282 	init_f2fs_rwsem(&nm_i->nat_tree_lock);
3283 
3284 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3285 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3286 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3287 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3288 					GFP_KERNEL);
3289 	if (!nm_i->nat_bitmap)
3290 		return -ENOMEM;
3291 
3292 	err = __get_nat_bitmaps(sbi);
3293 	if (err)
3294 		return err;
3295 
3296 #ifdef CONFIG_F2FS_CHECK_FS
3297 	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3298 					GFP_KERNEL);
3299 	if (!nm_i->nat_bitmap_mir)
3300 		return -ENOMEM;
3301 #endif
3302 
3303 	return 0;
3304 }
3305 
3306 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3307 {
3308 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3309 	int i;
3310 
3311 	nm_i->free_nid_bitmap =
3312 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3313 					      nm_i->nat_blocks),
3314 			      GFP_KERNEL);
3315 	if (!nm_i->free_nid_bitmap)
3316 		return -ENOMEM;
3317 
3318 	for (i = 0; i < nm_i->nat_blocks; i++) {
3319 		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3320 			f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3321 		if (!nm_i->free_nid_bitmap[i])
3322 			return -ENOMEM;
3323 	}
3324 
3325 	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3326 								GFP_KERNEL);
3327 	if (!nm_i->nat_block_bitmap)
3328 		return -ENOMEM;
3329 
3330 	nm_i->free_nid_count =
3331 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3332 					      nm_i->nat_blocks),
3333 			      GFP_KERNEL);
3334 	if (!nm_i->free_nid_count)
3335 		return -ENOMEM;
3336 	return 0;
3337 }
3338 
3339 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3340 {
3341 	int err;
3342 
3343 	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3344 							GFP_KERNEL);
3345 	if (!sbi->nm_info)
3346 		return -ENOMEM;
3347 
3348 	err = init_node_manager(sbi);
3349 	if (err)
3350 		return err;
3351 
3352 	err = init_free_nid_cache(sbi);
3353 	if (err)
3354 		return err;
3355 
3356 	/* load free nid status from nat_bits table */
3357 	load_free_nid_bitmap(sbi);
3358 
3359 	return f2fs_build_free_nids(sbi, true, true);
3360 }
3361 
3362 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3363 {
3364 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3365 	struct free_nid *i, *next_i;
3366 	void *vec[NAT_VEC_SIZE];
3367 	struct nat_entry **natvec = (struct nat_entry **)vec;
3368 	struct nat_entry_set **setvec = (struct nat_entry_set **)vec;
3369 	nid_t nid = 0;
3370 	unsigned int found;
3371 
3372 	if (!nm_i)
3373 		return;
3374 
3375 	/* destroy free nid list */
3376 	spin_lock(&nm_i->nid_list_lock);
3377 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3378 		__remove_free_nid(sbi, i, FREE_NID);
3379 		spin_unlock(&nm_i->nid_list_lock);
3380 		kmem_cache_free(free_nid_slab, i);
3381 		spin_lock(&nm_i->nid_list_lock);
3382 	}
3383 	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3384 	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3385 	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3386 	spin_unlock(&nm_i->nid_list_lock);
3387 
3388 	/* destroy nat cache */
3389 	f2fs_down_write(&nm_i->nat_tree_lock);
3390 	while ((found = __gang_lookup_nat_cache(nm_i,
3391 					nid, NAT_VEC_SIZE, natvec))) {
3392 		unsigned idx;
3393 
3394 		nid = nat_get_nid(natvec[found - 1]) + 1;
3395 		for (idx = 0; idx < found; idx++) {
3396 			spin_lock(&nm_i->nat_list_lock);
3397 			list_del(&natvec[idx]->list);
3398 			spin_unlock(&nm_i->nat_list_lock);
3399 
3400 			__del_from_nat_cache(nm_i, natvec[idx]);
3401 		}
3402 	}
3403 	f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3404 
3405 	/* destroy nat set cache */
3406 	nid = 0;
3407 	memset(vec, 0, sizeof(void *) * NAT_VEC_SIZE);
3408 	while ((found = __gang_lookup_nat_set(nm_i,
3409 					nid, NAT_VEC_SIZE, setvec))) {
3410 		unsigned idx;
3411 
3412 		nid = setvec[found - 1]->set + 1;
3413 		for (idx = 0; idx < found; idx++) {
3414 			/* entry_cnt is not zero, when cp_error was occurred */
3415 			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3416 			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3417 			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3418 		}
3419 	}
3420 	f2fs_up_write(&nm_i->nat_tree_lock);
3421 
3422 	kvfree(nm_i->nat_block_bitmap);
3423 	if (nm_i->free_nid_bitmap) {
3424 		int i;
3425 
3426 		for (i = 0; i < nm_i->nat_blocks; i++)
3427 			kvfree(nm_i->free_nid_bitmap[i]);
3428 		kvfree(nm_i->free_nid_bitmap);
3429 	}
3430 	kvfree(nm_i->free_nid_count);
3431 
3432 	kvfree(nm_i->nat_bitmap);
3433 	kvfree(nm_i->nat_bits);
3434 #ifdef CONFIG_F2FS_CHECK_FS
3435 	kvfree(nm_i->nat_bitmap_mir);
3436 #endif
3437 	sbi->nm_info = NULL;
3438 	kfree(nm_i);
3439 }
3440 
3441 int __init f2fs_create_node_manager_caches(void)
3442 {
3443 	nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3444 			sizeof(struct nat_entry));
3445 	if (!nat_entry_slab)
3446 		goto fail;
3447 
3448 	free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3449 			sizeof(struct free_nid));
3450 	if (!free_nid_slab)
3451 		goto destroy_nat_entry;
3452 
3453 	nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3454 			sizeof(struct nat_entry_set));
3455 	if (!nat_entry_set_slab)
3456 		goto destroy_free_nid;
3457 
3458 	fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3459 			sizeof(struct fsync_node_entry));
3460 	if (!fsync_node_entry_slab)
3461 		goto destroy_nat_entry_set;
3462 	return 0;
3463 
3464 destroy_nat_entry_set:
3465 	kmem_cache_destroy(nat_entry_set_slab);
3466 destroy_free_nid:
3467 	kmem_cache_destroy(free_nid_slab);
3468 destroy_nat_entry:
3469 	kmem_cache_destroy(nat_entry_slab);
3470 fail:
3471 	return -ENOMEM;
3472 }
3473 
3474 void f2fs_destroy_node_manager_caches(void)
3475 {
3476 	kmem_cache_destroy(fsync_node_entry_slab);
3477 	kmem_cache_destroy(nat_entry_set_slab);
3478 	kmem_cache_destroy(free_nid_slab);
3479 	kmem_cache_destroy(nat_entry_slab);
3480 }
3481