1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/node.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/mpage.h> 11 #include <linux/sched/mm.h> 12 #include <linux/blkdev.h> 13 #include <linux/pagevec.h> 14 #include <linux/swap.h> 15 16 #include "f2fs.h" 17 #include "node.h" 18 #include "segment.h" 19 #include "xattr.h" 20 #include "iostat.h" 21 #include <trace/events/f2fs.h> 22 23 #define on_f2fs_build_free_nids(nm_i) mutex_is_locked(&(nm_i)->build_lock) 24 25 static struct kmem_cache *nat_entry_slab; 26 static struct kmem_cache *free_nid_slab; 27 static struct kmem_cache *nat_entry_set_slab; 28 static struct kmem_cache *fsync_node_entry_slab; 29 30 /* 31 * Check whether the given nid is within node id range. 32 */ 33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 34 { 35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) { 36 set_sbi_flag(sbi, SBI_NEED_FSCK); 37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.", 38 __func__, nid); 39 f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE); 40 return -EFSCORRUPTED; 41 } 42 return 0; 43 } 44 45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type) 46 { 47 struct f2fs_nm_info *nm_i = NM_I(sbi); 48 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 49 struct sysinfo val; 50 unsigned long avail_ram; 51 unsigned long mem_size = 0; 52 bool res = false; 53 54 if (!nm_i) 55 return true; 56 57 si_meminfo(&val); 58 59 /* only uses low memory */ 60 avail_ram = val.totalram - val.totalhigh; 61 62 /* 63 * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively 64 */ 65 if (type == FREE_NIDS) { 66 mem_size = (nm_i->nid_cnt[FREE_NID] * 67 sizeof(struct free_nid)) >> PAGE_SHIFT; 68 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 69 } else if (type == NAT_ENTRIES) { 70 mem_size = (nm_i->nat_cnt[TOTAL_NAT] * 71 sizeof(struct nat_entry)) >> PAGE_SHIFT; 72 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 73 if (excess_cached_nats(sbi)) 74 res = false; 75 } else if (type == DIRTY_DENTS) { 76 if (sbi->sb->s_bdi->wb.dirty_exceeded) 77 return false; 78 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS); 79 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 80 } else if (type == INO_ENTRIES) { 81 int i; 82 83 for (i = 0; i < MAX_INO_ENTRY; i++) 84 mem_size += sbi->im[i].ino_num * 85 sizeof(struct ino_entry); 86 mem_size >>= PAGE_SHIFT; 87 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 88 } else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) { 89 enum extent_type etype = type == READ_EXTENT_CACHE ? 90 EX_READ : EX_BLOCK_AGE; 91 struct extent_tree_info *eti = &sbi->extent_tree[etype]; 92 93 mem_size = (atomic_read(&eti->total_ext_tree) * 94 sizeof(struct extent_tree) + 95 atomic_read(&eti->total_ext_node) * 96 sizeof(struct extent_node)) >> PAGE_SHIFT; 97 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 98 } else if (type == DISCARD_CACHE) { 99 mem_size = (atomic_read(&dcc->discard_cmd_cnt) * 100 sizeof(struct discard_cmd)) >> PAGE_SHIFT; 101 res = mem_size < (avail_ram * nm_i->ram_thresh / 100); 102 } else if (type == COMPRESS_PAGE) { 103 #ifdef CONFIG_F2FS_FS_COMPRESSION 104 unsigned long free_ram = val.freeram; 105 106 /* 107 * free memory is lower than watermark or cached page count 108 * exceed threshold, deny caching compress page. 109 */ 110 res = (free_ram > avail_ram * sbi->compress_watermark / 100) && 111 (COMPRESS_MAPPING(sbi)->nrpages < 112 free_ram * sbi->compress_percent / 100); 113 #else 114 res = false; 115 #endif 116 } else { 117 if (!sbi->sb->s_bdi->wb.dirty_exceeded) 118 return true; 119 } 120 return res; 121 } 122 123 static void clear_node_page_dirty(struct page *page) 124 { 125 if (PageDirty(page)) { 126 f2fs_clear_page_cache_dirty_tag(page_folio(page)); 127 clear_page_dirty_for_io(page); 128 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); 129 } 130 ClearPageUptodate(page); 131 } 132 133 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 134 { 135 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid)); 136 } 137 138 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 139 { 140 struct page *src_page; 141 struct page *dst_page; 142 pgoff_t dst_off; 143 void *src_addr; 144 void *dst_addr; 145 struct f2fs_nm_info *nm_i = NM_I(sbi); 146 147 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid)); 148 149 /* get current nat block page with lock */ 150 src_page = get_current_nat_page(sbi, nid); 151 if (IS_ERR(src_page)) 152 return src_page; 153 dst_page = f2fs_grab_meta_page(sbi, dst_off); 154 f2fs_bug_on(sbi, PageDirty(src_page)); 155 156 src_addr = page_address(src_page); 157 dst_addr = page_address(dst_page); 158 memcpy(dst_addr, src_addr, PAGE_SIZE); 159 set_page_dirty(dst_page); 160 f2fs_put_page(src_page, 1); 161 162 set_to_next_nat(nm_i, nid); 163 164 return dst_page; 165 } 166 167 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi, 168 nid_t nid, bool no_fail) 169 { 170 struct nat_entry *new; 171 172 new = f2fs_kmem_cache_alloc(nat_entry_slab, 173 GFP_F2FS_ZERO, no_fail, sbi); 174 if (new) { 175 nat_set_nid(new, nid); 176 nat_reset_flag(new); 177 } 178 return new; 179 } 180 181 static void __free_nat_entry(struct nat_entry *e) 182 { 183 kmem_cache_free(nat_entry_slab, e); 184 } 185 186 /* must be locked by nat_tree_lock */ 187 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i, 188 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail) 189 { 190 if (no_fail) 191 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne); 192 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne)) 193 return NULL; 194 195 if (raw_ne) 196 node_info_from_raw_nat(&ne->ni, raw_ne); 197 198 spin_lock(&nm_i->nat_list_lock); 199 list_add_tail(&ne->list, &nm_i->nat_entries); 200 spin_unlock(&nm_i->nat_list_lock); 201 202 nm_i->nat_cnt[TOTAL_NAT]++; 203 nm_i->nat_cnt[RECLAIMABLE_NAT]++; 204 return ne; 205 } 206 207 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) 208 { 209 struct nat_entry *ne; 210 211 ne = radix_tree_lookup(&nm_i->nat_root, n); 212 213 /* for recent accessed nat entry, move it to tail of lru list */ 214 if (ne && !get_nat_flag(ne, IS_DIRTY)) { 215 spin_lock(&nm_i->nat_list_lock); 216 if (!list_empty(&ne->list)) 217 list_move_tail(&ne->list, &nm_i->nat_entries); 218 spin_unlock(&nm_i->nat_list_lock); 219 } 220 221 return ne; 222 } 223 224 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, 225 nid_t start, unsigned int nr, struct nat_entry **ep) 226 { 227 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); 228 } 229 230 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) 231 { 232 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); 233 nm_i->nat_cnt[TOTAL_NAT]--; 234 nm_i->nat_cnt[RECLAIMABLE_NAT]--; 235 __free_nat_entry(e); 236 } 237 238 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i, 239 struct nat_entry *ne) 240 { 241 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); 242 struct nat_entry_set *head; 243 244 head = radix_tree_lookup(&nm_i->nat_set_root, set); 245 if (!head) { 246 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, 247 GFP_NOFS, true, NULL); 248 249 INIT_LIST_HEAD(&head->entry_list); 250 INIT_LIST_HEAD(&head->set_list); 251 head->set = set; 252 head->entry_cnt = 0; 253 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head); 254 } 255 return head; 256 } 257 258 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i, 259 struct nat_entry *ne) 260 { 261 struct nat_entry_set *head; 262 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR; 263 264 if (!new_ne) 265 head = __grab_nat_entry_set(nm_i, ne); 266 267 /* 268 * update entry_cnt in below condition: 269 * 1. update NEW_ADDR to valid block address; 270 * 2. update old block address to new one; 271 */ 272 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) || 273 !get_nat_flag(ne, IS_DIRTY))) 274 head->entry_cnt++; 275 276 set_nat_flag(ne, IS_PREALLOC, new_ne); 277 278 if (get_nat_flag(ne, IS_DIRTY)) 279 goto refresh_list; 280 281 nm_i->nat_cnt[DIRTY_NAT]++; 282 nm_i->nat_cnt[RECLAIMABLE_NAT]--; 283 set_nat_flag(ne, IS_DIRTY, true); 284 refresh_list: 285 spin_lock(&nm_i->nat_list_lock); 286 if (new_ne) 287 list_del_init(&ne->list); 288 else 289 list_move_tail(&ne->list, &head->entry_list); 290 spin_unlock(&nm_i->nat_list_lock); 291 } 292 293 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i, 294 struct nat_entry_set *set, struct nat_entry *ne) 295 { 296 spin_lock(&nm_i->nat_list_lock); 297 list_move_tail(&ne->list, &nm_i->nat_entries); 298 spin_unlock(&nm_i->nat_list_lock); 299 300 set_nat_flag(ne, IS_DIRTY, false); 301 set->entry_cnt--; 302 nm_i->nat_cnt[DIRTY_NAT]--; 303 nm_i->nat_cnt[RECLAIMABLE_NAT]++; 304 } 305 306 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i, 307 nid_t start, unsigned int nr, struct nat_entry_set **ep) 308 { 309 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep, 310 start, nr); 311 } 312 313 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, const struct folio *folio) 314 { 315 return NODE_MAPPING(sbi) == folio->mapping && 316 IS_DNODE(&folio->page) && is_cold_node(&folio->page); 317 } 318 319 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi) 320 { 321 spin_lock_init(&sbi->fsync_node_lock); 322 INIT_LIST_HEAD(&sbi->fsync_node_list); 323 sbi->fsync_seg_id = 0; 324 sbi->fsync_node_num = 0; 325 } 326 327 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi, 328 struct page *page) 329 { 330 struct fsync_node_entry *fn; 331 unsigned long flags; 332 unsigned int seq_id; 333 334 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, 335 GFP_NOFS, true, NULL); 336 337 get_page(page); 338 fn->page = page; 339 INIT_LIST_HEAD(&fn->list); 340 341 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 342 list_add_tail(&fn->list, &sbi->fsync_node_list); 343 fn->seq_id = sbi->fsync_seg_id++; 344 seq_id = fn->seq_id; 345 sbi->fsync_node_num++; 346 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 347 348 return seq_id; 349 } 350 351 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page) 352 { 353 struct fsync_node_entry *fn; 354 unsigned long flags; 355 356 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 357 list_for_each_entry(fn, &sbi->fsync_node_list, list) { 358 if (fn->page == page) { 359 list_del(&fn->list); 360 sbi->fsync_node_num--; 361 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 362 kmem_cache_free(fsync_node_entry_slab, fn); 363 put_page(page); 364 return; 365 } 366 } 367 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 368 f2fs_bug_on(sbi, 1); 369 } 370 371 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi) 372 { 373 unsigned long flags; 374 375 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 376 sbi->fsync_seg_id = 0; 377 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 378 } 379 380 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid) 381 { 382 struct f2fs_nm_info *nm_i = NM_I(sbi); 383 struct nat_entry *e; 384 bool need = false; 385 386 f2fs_down_read(&nm_i->nat_tree_lock); 387 e = __lookup_nat_cache(nm_i, nid); 388 if (e) { 389 if (!get_nat_flag(e, IS_CHECKPOINTED) && 390 !get_nat_flag(e, HAS_FSYNCED_INODE)) 391 need = true; 392 } 393 f2fs_up_read(&nm_i->nat_tree_lock); 394 return need; 395 } 396 397 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) 398 { 399 struct f2fs_nm_info *nm_i = NM_I(sbi); 400 struct nat_entry *e; 401 bool is_cp = true; 402 403 f2fs_down_read(&nm_i->nat_tree_lock); 404 e = __lookup_nat_cache(nm_i, nid); 405 if (e && !get_nat_flag(e, IS_CHECKPOINTED)) 406 is_cp = false; 407 f2fs_up_read(&nm_i->nat_tree_lock); 408 return is_cp; 409 } 410 411 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino) 412 { 413 struct f2fs_nm_info *nm_i = NM_I(sbi); 414 struct nat_entry *e; 415 bool need_update = true; 416 417 f2fs_down_read(&nm_i->nat_tree_lock); 418 e = __lookup_nat_cache(nm_i, ino); 419 if (e && get_nat_flag(e, HAS_LAST_FSYNC) && 420 (get_nat_flag(e, IS_CHECKPOINTED) || 421 get_nat_flag(e, HAS_FSYNCED_INODE))) 422 need_update = false; 423 f2fs_up_read(&nm_i->nat_tree_lock); 424 return need_update; 425 } 426 427 /* must be locked by nat_tree_lock */ 428 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid, 429 struct f2fs_nat_entry *ne) 430 { 431 struct f2fs_nm_info *nm_i = NM_I(sbi); 432 struct nat_entry *new, *e; 433 434 /* Let's mitigate lock contention of nat_tree_lock during checkpoint */ 435 if (f2fs_rwsem_is_locked(&sbi->cp_global_sem)) 436 return; 437 438 new = __alloc_nat_entry(sbi, nid, false); 439 if (!new) 440 return; 441 442 f2fs_down_write(&nm_i->nat_tree_lock); 443 e = __lookup_nat_cache(nm_i, nid); 444 if (!e) 445 e = __init_nat_entry(nm_i, new, ne, false); 446 else 447 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) || 448 nat_get_blkaddr(e) != 449 le32_to_cpu(ne->block_addr) || 450 nat_get_version(e) != ne->version); 451 f2fs_up_write(&nm_i->nat_tree_lock); 452 if (e != new) 453 __free_nat_entry(new); 454 } 455 456 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, 457 block_t new_blkaddr, bool fsync_done) 458 { 459 struct f2fs_nm_info *nm_i = NM_I(sbi); 460 struct nat_entry *e; 461 struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true); 462 463 f2fs_down_write(&nm_i->nat_tree_lock); 464 e = __lookup_nat_cache(nm_i, ni->nid); 465 if (!e) { 466 e = __init_nat_entry(nm_i, new, NULL, true); 467 copy_node_info(&e->ni, ni); 468 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR); 469 } else if (new_blkaddr == NEW_ADDR) { 470 /* 471 * when nid is reallocated, 472 * previous nat entry can be remained in nat cache. 473 * So, reinitialize it with new information. 474 */ 475 copy_node_info(&e->ni, ni); 476 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR); 477 } 478 /* let's free early to reduce memory consumption */ 479 if (e != new) 480 __free_nat_entry(new); 481 482 /* sanity check */ 483 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr); 484 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR && 485 new_blkaddr == NULL_ADDR); 486 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR && 487 new_blkaddr == NEW_ADDR); 488 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) && 489 new_blkaddr == NEW_ADDR); 490 491 /* increment version no as node is removed */ 492 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { 493 unsigned char version = nat_get_version(e); 494 495 nat_set_version(e, inc_node_version(version)); 496 } 497 498 /* change address */ 499 nat_set_blkaddr(e, new_blkaddr); 500 if (!__is_valid_data_blkaddr(new_blkaddr)) 501 set_nat_flag(e, IS_CHECKPOINTED, false); 502 __set_nat_cache_dirty(nm_i, e); 503 504 /* update fsync_mark if its inode nat entry is still alive */ 505 if (ni->nid != ni->ino) 506 e = __lookup_nat_cache(nm_i, ni->ino); 507 if (e) { 508 if (fsync_done && ni->nid == ni->ino) 509 set_nat_flag(e, HAS_FSYNCED_INODE, true); 510 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done); 511 } 512 f2fs_up_write(&nm_i->nat_tree_lock); 513 } 514 515 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) 516 { 517 struct f2fs_nm_info *nm_i = NM_I(sbi); 518 int nr = nr_shrink; 519 520 if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock)) 521 return 0; 522 523 spin_lock(&nm_i->nat_list_lock); 524 while (nr_shrink) { 525 struct nat_entry *ne; 526 527 if (list_empty(&nm_i->nat_entries)) 528 break; 529 530 ne = list_first_entry(&nm_i->nat_entries, 531 struct nat_entry, list); 532 list_del(&ne->list); 533 spin_unlock(&nm_i->nat_list_lock); 534 535 __del_from_nat_cache(nm_i, ne); 536 nr_shrink--; 537 538 spin_lock(&nm_i->nat_list_lock); 539 } 540 spin_unlock(&nm_i->nat_list_lock); 541 542 f2fs_up_write(&nm_i->nat_tree_lock); 543 return nr - nr_shrink; 544 } 545 546 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 547 struct node_info *ni, bool checkpoint_context) 548 { 549 struct f2fs_nm_info *nm_i = NM_I(sbi); 550 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 551 struct f2fs_journal *journal = curseg->journal; 552 nid_t start_nid = START_NID(nid); 553 struct f2fs_nat_block *nat_blk; 554 struct page *page = NULL; 555 struct f2fs_nat_entry ne; 556 struct nat_entry *e; 557 pgoff_t index; 558 block_t blkaddr; 559 int i; 560 561 ni->flag = 0; 562 ni->nid = nid; 563 retry: 564 /* Check nat cache */ 565 f2fs_down_read(&nm_i->nat_tree_lock); 566 e = __lookup_nat_cache(nm_i, nid); 567 if (e) { 568 ni->ino = nat_get_ino(e); 569 ni->blk_addr = nat_get_blkaddr(e); 570 ni->version = nat_get_version(e); 571 f2fs_up_read(&nm_i->nat_tree_lock); 572 return 0; 573 } 574 575 /* 576 * Check current segment summary by trying to grab journal_rwsem first. 577 * This sem is on the critical path on the checkpoint requiring the above 578 * nat_tree_lock. Therefore, we should retry, if we failed to grab here 579 * while not bothering checkpoint. 580 */ 581 if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) { 582 down_read(&curseg->journal_rwsem); 583 } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) || 584 !down_read_trylock(&curseg->journal_rwsem)) { 585 f2fs_up_read(&nm_i->nat_tree_lock); 586 goto retry; 587 } 588 589 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0); 590 if (i >= 0) { 591 ne = nat_in_journal(journal, i); 592 node_info_from_raw_nat(ni, &ne); 593 } 594 up_read(&curseg->journal_rwsem); 595 if (i >= 0) { 596 f2fs_up_read(&nm_i->nat_tree_lock); 597 goto cache; 598 } 599 600 /* Fill node_info from nat page */ 601 index = current_nat_addr(sbi, nid); 602 f2fs_up_read(&nm_i->nat_tree_lock); 603 604 page = f2fs_get_meta_page(sbi, index); 605 if (IS_ERR(page)) 606 return PTR_ERR(page); 607 608 nat_blk = (struct f2fs_nat_block *)page_address(page); 609 ne = nat_blk->entries[nid - start_nid]; 610 node_info_from_raw_nat(ni, &ne); 611 f2fs_put_page(page, 1); 612 cache: 613 blkaddr = le32_to_cpu(ne.block_addr); 614 if (__is_valid_data_blkaddr(blkaddr) && 615 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) 616 return -EFAULT; 617 618 /* cache nat entry */ 619 cache_nat_entry(sbi, nid, &ne); 620 return 0; 621 } 622 623 /* 624 * readahead MAX_RA_NODE number of node pages. 625 */ 626 static void f2fs_ra_node_pages(struct page *parent, int start, int n) 627 { 628 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 629 struct blk_plug plug; 630 int i, end; 631 nid_t nid; 632 633 blk_start_plug(&plug); 634 635 /* Then, try readahead for siblings of the desired node */ 636 end = start + n; 637 end = min(end, (int)NIDS_PER_BLOCK); 638 for (i = start; i < end; i++) { 639 nid = get_nid(parent, i, false); 640 f2fs_ra_node_page(sbi, nid); 641 } 642 643 blk_finish_plug(&plug); 644 } 645 646 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs) 647 { 648 const long direct_index = ADDRS_PER_INODE(dn->inode); 649 const long direct_blks = ADDRS_PER_BLOCK(dn->inode); 650 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK; 651 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode); 652 int cur_level = dn->cur_level; 653 int max_level = dn->max_level; 654 pgoff_t base = 0; 655 656 if (!dn->max_level) 657 return pgofs + 1; 658 659 while (max_level-- > cur_level) 660 skipped_unit *= NIDS_PER_BLOCK; 661 662 switch (dn->max_level) { 663 case 3: 664 base += 2 * indirect_blks; 665 fallthrough; 666 case 2: 667 base += 2 * direct_blks; 668 fallthrough; 669 case 1: 670 base += direct_index; 671 break; 672 default: 673 f2fs_bug_on(F2FS_I_SB(dn->inode), 1); 674 } 675 676 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base; 677 } 678 679 /* 680 * The maximum depth is four. 681 * Offset[0] will have raw inode offset. 682 */ 683 static int get_node_path(struct inode *inode, long block, 684 int offset[4], unsigned int noffset[4]) 685 { 686 const long direct_index = ADDRS_PER_INODE(inode); 687 const long direct_blks = ADDRS_PER_BLOCK(inode); 688 const long dptrs_per_blk = NIDS_PER_BLOCK; 689 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK; 690 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; 691 int n = 0; 692 int level = 0; 693 694 noffset[0] = 0; 695 696 if (block < direct_index) { 697 offset[n] = block; 698 goto got; 699 } 700 block -= direct_index; 701 if (block < direct_blks) { 702 offset[n++] = NODE_DIR1_BLOCK; 703 noffset[n] = 1; 704 offset[n] = block; 705 level = 1; 706 goto got; 707 } 708 block -= direct_blks; 709 if (block < direct_blks) { 710 offset[n++] = NODE_DIR2_BLOCK; 711 noffset[n] = 2; 712 offset[n] = block; 713 level = 1; 714 goto got; 715 } 716 block -= direct_blks; 717 if (block < indirect_blks) { 718 offset[n++] = NODE_IND1_BLOCK; 719 noffset[n] = 3; 720 offset[n++] = block / direct_blks; 721 noffset[n] = 4 + offset[n - 1]; 722 offset[n] = block % direct_blks; 723 level = 2; 724 goto got; 725 } 726 block -= indirect_blks; 727 if (block < indirect_blks) { 728 offset[n++] = NODE_IND2_BLOCK; 729 noffset[n] = 4 + dptrs_per_blk; 730 offset[n++] = block / direct_blks; 731 noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; 732 offset[n] = block % direct_blks; 733 level = 2; 734 goto got; 735 } 736 block -= indirect_blks; 737 if (block < dindirect_blks) { 738 offset[n++] = NODE_DIND_BLOCK; 739 noffset[n] = 5 + (dptrs_per_blk * 2); 740 offset[n++] = block / indirect_blks; 741 noffset[n] = 6 + (dptrs_per_blk * 2) + 742 offset[n - 1] * (dptrs_per_blk + 1); 743 offset[n++] = (block / direct_blks) % dptrs_per_blk; 744 noffset[n] = 7 + (dptrs_per_blk * 2) + 745 offset[n - 2] * (dptrs_per_blk + 1) + 746 offset[n - 1]; 747 offset[n] = block % direct_blks; 748 level = 3; 749 goto got; 750 } else { 751 return -E2BIG; 752 } 753 got: 754 return level; 755 } 756 757 /* 758 * Caller should call f2fs_put_dnode(dn). 759 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and 760 * f2fs_unlock_op() only if mode is set with ALLOC_NODE. 761 */ 762 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) 763 { 764 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 765 struct page *npage[4]; 766 struct page *parent = NULL; 767 int offset[4]; 768 unsigned int noffset[4]; 769 nid_t nids[4]; 770 int level, i = 0; 771 int err = 0; 772 773 level = get_node_path(dn->inode, index, offset, noffset); 774 if (level < 0) 775 return level; 776 777 nids[0] = dn->inode->i_ino; 778 npage[0] = dn->inode_page; 779 780 if (!npage[0]) { 781 npage[0] = f2fs_get_node_page(sbi, nids[0]); 782 if (IS_ERR(npage[0])) 783 return PTR_ERR(npage[0]); 784 } 785 786 /* if inline_data is set, should not report any block indices */ 787 if (f2fs_has_inline_data(dn->inode) && index) { 788 err = -ENOENT; 789 f2fs_put_page(npage[0], 1); 790 goto release_out; 791 } 792 793 parent = npage[0]; 794 if (level != 0) 795 nids[1] = get_nid(parent, offset[0], true); 796 dn->inode_page = npage[0]; 797 dn->inode_page_locked = true; 798 799 /* get indirect or direct nodes */ 800 for (i = 1; i <= level; i++) { 801 bool done = false; 802 803 if (!nids[i] && mode == ALLOC_NODE) { 804 /* alloc new node */ 805 if (!f2fs_alloc_nid(sbi, &(nids[i]))) { 806 err = -ENOSPC; 807 goto release_pages; 808 } 809 810 dn->nid = nids[i]; 811 npage[i] = f2fs_new_node_page(dn, noffset[i]); 812 if (IS_ERR(npage[i])) { 813 f2fs_alloc_nid_failed(sbi, nids[i]); 814 err = PTR_ERR(npage[i]); 815 goto release_pages; 816 } 817 818 set_nid(parent, offset[i - 1], nids[i], i == 1); 819 f2fs_alloc_nid_done(sbi, nids[i]); 820 done = true; 821 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { 822 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]); 823 if (IS_ERR(npage[i])) { 824 err = PTR_ERR(npage[i]); 825 goto release_pages; 826 } 827 done = true; 828 } 829 if (i == 1) { 830 dn->inode_page_locked = false; 831 unlock_page(parent); 832 } else { 833 f2fs_put_page(parent, 1); 834 } 835 836 if (!done) { 837 npage[i] = f2fs_get_node_page(sbi, nids[i]); 838 if (IS_ERR(npage[i])) { 839 err = PTR_ERR(npage[i]); 840 f2fs_put_page(npage[0], 0); 841 goto release_out; 842 } 843 } 844 if (i < level) { 845 parent = npage[i]; 846 nids[i + 1] = get_nid(parent, offset[i], false); 847 } 848 } 849 dn->nid = nids[level]; 850 dn->ofs_in_node = offset[level]; 851 dn->node_page = npage[level]; 852 dn->data_blkaddr = f2fs_data_blkaddr(dn); 853 854 if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) && 855 f2fs_sb_has_readonly(sbi)) { 856 unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 857 unsigned int ofs_in_node = dn->ofs_in_node; 858 pgoff_t fofs = index; 859 unsigned int c_len; 860 block_t blkaddr; 861 862 /* should align fofs and ofs_in_node to cluster_size */ 863 if (fofs % cluster_size) { 864 fofs = round_down(fofs, cluster_size); 865 ofs_in_node = round_down(ofs_in_node, cluster_size); 866 } 867 868 c_len = f2fs_cluster_blocks_are_contiguous(dn, ofs_in_node); 869 if (!c_len) 870 goto out; 871 872 blkaddr = data_blkaddr(dn->inode, dn->node_page, ofs_in_node); 873 if (blkaddr == COMPRESS_ADDR) 874 blkaddr = data_blkaddr(dn->inode, dn->node_page, 875 ofs_in_node + 1); 876 877 f2fs_update_read_extent_tree_range_compressed(dn->inode, 878 fofs, blkaddr, cluster_size, c_len); 879 } 880 out: 881 return 0; 882 883 release_pages: 884 f2fs_put_page(parent, 1); 885 if (i > 1) 886 f2fs_put_page(npage[0], 0); 887 release_out: 888 dn->inode_page = NULL; 889 dn->node_page = NULL; 890 if (err == -ENOENT) { 891 dn->cur_level = i; 892 dn->max_level = level; 893 dn->ofs_in_node = offset[level]; 894 } 895 return err; 896 } 897 898 static int truncate_node(struct dnode_of_data *dn) 899 { 900 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 901 struct node_info ni; 902 int err; 903 pgoff_t index; 904 905 err = f2fs_get_node_info(sbi, dn->nid, &ni, false); 906 if (err) 907 return err; 908 909 if (ni.blk_addr != NEW_ADDR && 910 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, DATA_GENERIC_ENHANCE)) { 911 f2fs_err_ratelimited(sbi, 912 "nat entry is corrupted, run fsck to fix it, ino:%u, " 913 "nid:%u, blkaddr:%u", ni.ino, ni.nid, ni.blk_addr); 914 set_sbi_flag(sbi, SBI_NEED_FSCK); 915 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NAT); 916 return -EFSCORRUPTED; 917 } 918 919 /* Deallocate node address */ 920 f2fs_invalidate_blocks(sbi, ni.blk_addr, 1); 921 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino); 922 set_node_addr(sbi, &ni, NULL_ADDR, false); 923 924 if (dn->nid == dn->inode->i_ino) { 925 f2fs_remove_orphan_inode(sbi, dn->nid); 926 dec_valid_inode_count(sbi); 927 f2fs_inode_synced(dn->inode); 928 } 929 930 clear_node_page_dirty(dn->node_page); 931 set_sbi_flag(sbi, SBI_IS_DIRTY); 932 933 index = page_folio(dn->node_page)->index; 934 f2fs_put_page(dn->node_page, 1); 935 936 invalidate_mapping_pages(NODE_MAPPING(sbi), 937 index, index); 938 939 dn->node_page = NULL; 940 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); 941 942 return 0; 943 } 944 945 static int truncate_dnode(struct dnode_of_data *dn) 946 { 947 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 948 struct page *page; 949 int err; 950 951 if (dn->nid == 0) 952 return 1; 953 954 /* get direct node */ 955 page = f2fs_get_node_page(sbi, dn->nid); 956 if (PTR_ERR(page) == -ENOENT) 957 return 1; 958 else if (IS_ERR(page)) 959 return PTR_ERR(page); 960 961 if (IS_INODE(page) || ino_of_node(page) != dn->inode->i_ino) { 962 f2fs_err(sbi, "incorrect node reference, ino: %lu, nid: %u, ino_of_node: %u", 963 dn->inode->i_ino, dn->nid, ino_of_node(page)); 964 set_sbi_flag(sbi, SBI_NEED_FSCK); 965 f2fs_handle_error(sbi, ERROR_INVALID_NODE_REFERENCE); 966 f2fs_put_page(page, 1); 967 return -EFSCORRUPTED; 968 } 969 970 /* Make dnode_of_data for parameter */ 971 dn->node_page = page; 972 dn->ofs_in_node = 0; 973 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode)); 974 err = truncate_node(dn); 975 if (err) { 976 f2fs_put_page(page, 1); 977 return err; 978 } 979 980 return 1; 981 } 982 983 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, 984 int ofs, int depth) 985 { 986 struct dnode_of_data rdn = *dn; 987 struct page *page; 988 struct f2fs_node *rn; 989 nid_t child_nid; 990 unsigned int child_nofs; 991 int freed = 0; 992 int i, ret; 993 994 if (dn->nid == 0) 995 return NIDS_PER_BLOCK + 1; 996 997 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); 998 999 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid); 1000 if (IS_ERR(page)) { 1001 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); 1002 return PTR_ERR(page); 1003 } 1004 1005 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK); 1006 1007 rn = F2FS_NODE(page); 1008 if (depth < 3) { 1009 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { 1010 child_nid = le32_to_cpu(rn->in.nid[i]); 1011 if (child_nid == 0) 1012 continue; 1013 rdn.nid = child_nid; 1014 ret = truncate_dnode(&rdn); 1015 if (ret < 0) 1016 goto out_err; 1017 if (set_nid(page, i, 0, false)) 1018 dn->node_changed = true; 1019 } 1020 } else { 1021 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; 1022 for (i = ofs; i < NIDS_PER_BLOCK; i++) { 1023 child_nid = le32_to_cpu(rn->in.nid[i]); 1024 if (child_nid == 0) { 1025 child_nofs += NIDS_PER_BLOCK + 1; 1026 continue; 1027 } 1028 rdn.nid = child_nid; 1029 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); 1030 if (ret == (NIDS_PER_BLOCK + 1)) { 1031 if (set_nid(page, i, 0, false)) 1032 dn->node_changed = true; 1033 child_nofs += ret; 1034 } else if (ret < 0 && ret != -ENOENT) { 1035 goto out_err; 1036 } 1037 } 1038 freed = child_nofs; 1039 } 1040 1041 if (!ofs) { 1042 /* remove current indirect node */ 1043 dn->node_page = page; 1044 ret = truncate_node(dn); 1045 if (ret) 1046 goto out_err; 1047 freed++; 1048 } else { 1049 f2fs_put_page(page, 1); 1050 } 1051 trace_f2fs_truncate_nodes_exit(dn->inode, freed); 1052 return freed; 1053 1054 out_err: 1055 f2fs_put_page(page, 1); 1056 trace_f2fs_truncate_nodes_exit(dn->inode, ret); 1057 return ret; 1058 } 1059 1060 static int truncate_partial_nodes(struct dnode_of_data *dn, 1061 struct f2fs_inode *ri, int *offset, int depth) 1062 { 1063 struct page *pages[2]; 1064 nid_t nid[3]; 1065 nid_t child_nid; 1066 int err = 0; 1067 int i; 1068 int idx = depth - 2; 1069 1070 nid[0] = get_nid(dn->inode_page, offset[0], true); 1071 if (!nid[0]) 1072 return 0; 1073 1074 /* get indirect nodes in the path */ 1075 for (i = 0; i < idx + 1; i++) { 1076 /* reference count'll be increased */ 1077 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]); 1078 if (IS_ERR(pages[i])) { 1079 err = PTR_ERR(pages[i]); 1080 idx = i - 1; 1081 goto fail; 1082 } 1083 nid[i + 1] = get_nid(pages[i], offset[i + 1], false); 1084 } 1085 1086 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK); 1087 1088 /* free direct nodes linked to a partial indirect node */ 1089 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) { 1090 child_nid = get_nid(pages[idx], i, false); 1091 if (!child_nid) 1092 continue; 1093 dn->nid = child_nid; 1094 err = truncate_dnode(dn); 1095 if (err < 0) 1096 goto fail; 1097 if (set_nid(pages[idx], i, 0, false)) 1098 dn->node_changed = true; 1099 } 1100 1101 if (offset[idx + 1] == 0) { 1102 dn->node_page = pages[idx]; 1103 dn->nid = nid[idx]; 1104 err = truncate_node(dn); 1105 if (err) 1106 goto fail; 1107 } else { 1108 f2fs_put_page(pages[idx], 1); 1109 } 1110 offset[idx]++; 1111 offset[idx + 1] = 0; 1112 idx--; 1113 fail: 1114 for (i = idx; i >= 0; i--) 1115 f2fs_put_page(pages[i], 1); 1116 1117 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); 1118 1119 return err; 1120 } 1121 1122 /* 1123 * All the block addresses of data and nodes should be nullified. 1124 */ 1125 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from) 1126 { 1127 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1128 int err = 0, cont = 1; 1129 int level, offset[4], noffset[4]; 1130 unsigned int nofs = 0; 1131 struct f2fs_inode *ri; 1132 struct dnode_of_data dn; 1133 struct folio *folio; 1134 1135 trace_f2fs_truncate_inode_blocks_enter(inode, from); 1136 1137 level = get_node_path(inode, from, offset, noffset); 1138 if (level <= 0) { 1139 if (!level) { 1140 level = -EFSCORRUPTED; 1141 f2fs_err(sbi, "%s: inode ino=%lx has corrupted node block, from:%lu addrs:%u", 1142 __func__, inode->i_ino, 1143 from, ADDRS_PER_INODE(inode)); 1144 set_sbi_flag(sbi, SBI_NEED_FSCK); 1145 } 1146 trace_f2fs_truncate_inode_blocks_exit(inode, level); 1147 return level; 1148 } 1149 1150 folio = f2fs_get_node_folio(sbi, inode->i_ino); 1151 if (IS_ERR(folio)) { 1152 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(folio)); 1153 return PTR_ERR(folio); 1154 } 1155 1156 set_new_dnode(&dn, inode, &folio->page, NULL, 0); 1157 folio_unlock(folio); 1158 1159 ri = F2FS_INODE(&folio->page); 1160 switch (level) { 1161 case 0: 1162 case 1: 1163 nofs = noffset[1]; 1164 break; 1165 case 2: 1166 nofs = noffset[1]; 1167 if (!offset[level - 1]) 1168 goto skip_partial; 1169 err = truncate_partial_nodes(&dn, ri, offset, level); 1170 if (err < 0 && err != -ENOENT) 1171 goto fail; 1172 nofs += 1 + NIDS_PER_BLOCK; 1173 break; 1174 case 3: 1175 nofs = 5 + 2 * NIDS_PER_BLOCK; 1176 if (!offset[level - 1]) 1177 goto skip_partial; 1178 err = truncate_partial_nodes(&dn, ri, offset, level); 1179 if (err < 0 && err != -ENOENT) 1180 goto fail; 1181 break; 1182 default: 1183 BUG(); 1184 } 1185 1186 skip_partial: 1187 while (cont) { 1188 dn.nid = get_nid(&folio->page, offset[0], true); 1189 switch (offset[0]) { 1190 case NODE_DIR1_BLOCK: 1191 case NODE_DIR2_BLOCK: 1192 err = truncate_dnode(&dn); 1193 break; 1194 1195 case NODE_IND1_BLOCK: 1196 case NODE_IND2_BLOCK: 1197 err = truncate_nodes(&dn, nofs, offset[1], 2); 1198 break; 1199 1200 case NODE_DIND_BLOCK: 1201 err = truncate_nodes(&dn, nofs, offset[1], 3); 1202 cont = 0; 1203 break; 1204 1205 default: 1206 BUG(); 1207 } 1208 if (err == -ENOENT) { 1209 set_sbi_flag(F2FS_F_SB(folio), SBI_NEED_FSCK); 1210 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1211 f2fs_err_ratelimited(sbi, 1212 "truncate node fail, ino:%lu, nid:%u, " 1213 "offset[0]:%d, offset[1]:%d, nofs:%d", 1214 inode->i_ino, dn.nid, offset[0], 1215 offset[1], nofs); 1216 err = 0; 1217 } 1218 if (err < 0) 1219 goto fail; 1220 if (offset[1] == 0 && get_nid(&folio->page, offset[0], true)) { 1221 folio_lock(folio); 1222 BUG_ON(folio->mapping != NODE_MAPPING(sbi)); 1223 set_nid(&folio->page, offset[0], 0, true); 1224 folio_unlock(folio); 1225 } 1226 offset[1] = 0; 1227 offset[0]++; 1228 nofs += err; 1229 } 1230 fail: 1231 f2fs_folio_put(folio, false); 1232 trace_f2fs_truncate_inode_blocks_exit(inode, err); 1233 return err > 0 ? 0 : err; 1234 } 1235 1236 /* caller must lock inode page */ 1237 int f2fs_truncate_xattr_node(struct inode *inode) 1238 { 1239 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1240 nid_t nid = F2FS_I(inode)->i_xattr_nid; 1241 struct dnode_of_data dn; 1242 struct page *npage; 1243 int err; 1244 1245 if (!nid) 1246 return 0; 1247 1248 npage = f2fs_get_node_page(sbi, nid); 1249 if (IS_ERR(npage)) 1250 return PTR_ERR(npage); 1251 1252 set_new_dnode(&dn, inode, NULL, npage, nid); 1253 err = truncate_node(&dn); 1254 if (err) { 1255 f2fs_put_page(npage, 1); 1256 return err; 1257 } 1258 1259 f2fs_i_xnid_write(inode, 0); 1260 1261 return 0; 1262 } 1263 1264 /* 1265 * Caller should grab and release a rwsem by calling f2fs_lock_op() and 1266 * f2fs_unlock_op(). 1267 */ 1268 int f2fs_remove_inode_page(struct inode *inode) 1269 { 1270 struct dnode_of_data dn; 1271 int err; 1272 1273 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1274 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE); 1275 if (err) 1276 return err; 1277 1278 err = f2fs_truncate_xattr_node(inode); 1279 if (err) { 1280 f2fs_put_dnode(&dn); 1281 return err; 1282 } 1283 1284 /* remove potential inline_data blocks */ 1285 if (!IS_DEVICE_ALIASING(inode) && 1286 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1287 S_ISLNK(inode->i_mode))) 1288 f2fs_truncate_data_blocks_range(&dn, 1); 1289 1290 /* 0 is possible, after f2fs_new_inode() has failed */ 1291 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 1292 f2fs_put_dnode(&dn); 1293 return -EIO; 1294 } 1295 1296 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) { 1297 f2fs_warn(F2FS_I_SB(inode), 1298 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu", 1299 inode->i_ino, (unsigned long long)inode->i_blocks); 1300 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK); 1301 } 1302 1303 /* will put inode & node pages */ 1304 err = truncate_node(&dn); 1305 if (err) { 1306 f2fs_put_dnode(&dn); 1307 return err; 1308 } 1309 return 0; 1310 } 1311 1312 struct page *f2fs_new_inode_page(struct inode *inode) 1313 { 1314 struct dnode_of_data dn; 1315 1316 /* allocate inode page for new inode */ 1317 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1318 1319 /* caller should f2fs_put_page(page, 1); */ 1320 return f2fs_new_node_page(&dn, 0); 1321 } 1322 1323 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs) 1324 { 1325 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1326 struct node_info new_ni; 1327 struct page *page; 1328 int err; 1329 1330 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1331 return ERR_PTR(-EPERM); 1332 1333 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false); 1334 if (!page) 1335 return ERR_PTR(-ENOMEM); 1336 1337 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs)))) 1338 goto fail; 1339 1340 #ifdef CONFIG_F2FS_CHECK_FS 1341 err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false); 1342 if (err) { 1343 dec_valid_node_count(sbi, dn->inode, !ofs); 1344 goto fail; 1345 } 1346 if (unlikely(new_ni.blk_addr != NULL_ADDR)) { 1347 err = -EFSCORRUPTED; 1348 dec_valid_node_count(sbi, dn->inode, !ofs); 1349 set_sbi_flag(sbi, SBI_NEED_FSCK); 1350 f2fs_warn_ratelimited(sbi, 1351 "f2fs_new_node_page: inconsistent nat entry, " 1352 "ino:%u, nid:%u, blkaddr:%u, ver:%u, flag:%u", 1353 new_ni.ino, new_ni.nid, new_ni.blk_addr, 1354 new_ni.version, new_ni.flag); 1355 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NAT); 1356 goto fail; 1357 } 1358 #endif 1359 new_ni.nid = dn->nid; 1360 new_ni.ino = dn->inode->i_ino; 1361 new_ni.blk_addr = NULL_ADDR; 1362 new_ni.flag = 0; 1363 new_ni.version = 0; 1364 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 1365 1366 f2fs_wait_on_page_writeback(page, NODE, true, true); 1367 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); 1368 set_cold_node(page, S_ISDIR(dn->inode->i_mode)); 1369 if (!PageUptodate(page)) 1370 SetPageUptodate(page); 1371 if (set_page_dirty(page)) 1372 dn->node_changed = true; 1373 1374 if (f2fs_has_xattr_block(ofs)) 1375 f2fs_i_xnid_write(dn->inode, dn->nid); 1376 1377 if (ofs == 0) 1378 inc_valid_inode_count(sbi); 1379 return page; 1380 fail: 1381 clear_node_page_dirty(page); 1382 f2fs_put_page(page, 1); 1383 return ERR_PTR(err); 1384 } 1385 1386 /* 1387 * Caller should do after getting the following values. 1388 * 0: f2fs_put_page(page, 0) 1389 * LOCKED_PAGE or error: f2fs_put_page(page, 1) 1390 */ 1391 static int read_node_page(struct page *page, blk_opf_t op_flags) 1392 { 1393 struct folio *folio = page_folio(page); 1394 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1395 struct node_info ni; 1396 struct f2fs_io_info fio = { 1397 .sbi = sbi, 1398 .type = NODE, 1399 .op = REQ_OP_READ, 1400 .op_flags = op_flags, 1401 .page = page, 1402 .encrypted_page = NULL, 1403 }; 1404 int err; 1405 1406 if (folio_test_uptodate(folio)) { 1407 if (!f2fs_inode_chksum_verify(sbi, page)) { 1408 folio_clear_uptodate(folio); 1409 return -EFSBADCRC; 1410 } 1411 return LOCKED_PAGE; 1412 } 1413 1414 err = f2fs_get_node_info(sbi, folio->index, &ni, false); 1415 if (err) 1416 return err; 1417 1418 /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */ 1419 if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) { 1420 folio_clear_uptodate(folio); 1421 return -ENOENT; 1422 } 1423 1424 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr; 1425 1426 err = f2fs_submit_page_bio(&fio); 1427 1428 if (!err) 1429 f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE); 1430 1431 return err; 1432 } 1433 1434 /* 1435 * Readahead a node page 1436 */ 1437 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) 1438 { 1439 struct page *apage; 1440 int err; 1441 1442 if (!nid) 1443 return; 1444 if (f2fs_check_nid_range(sbi, nid)) 1445 return; 1446 1447 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid); 1448 if (apage) 1449 return; 1450 1451 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1452 if (!apage) 1453 return; 1454 1455 err = read_node_page(apage, REQ_RAHEAD); 1456 f2fs_put_page(apage, err ? 1 : 0); 1457 } 1458 1459 static struct folio *__get_node_folio(struct f2fs_sb_info *sbi, pgoff_t nid, 1460 struct page *parent, int start) 1461 { 1462 struct folio *folio; 1463 int err; 1464 1465 if (!nid) 1466 return ERR_PTR(-ENOENT); 1467 if (f2fs_check_nid_range(sbi, nid)) 1468 return ERR_PTR(-EINVAL); 1469 repeat: 1470 folio = f2fs_grab_cache_folio(NODE_MAPPING(sbi), nid, false); 1471 if (IS_ERR(folio)) 1472 return folio; 1473 1474 err = read_node_page(&folio->page, 0); 1475 if (err < 0) { 1476 goto out_put_err; 1477 } else if (err == LOCKED_PAGE) { 1478 err = 0; 1479 goto page_hit; 1480 } 1481 1482 if (parent) 1483 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE); 1484 1485 folio_lock(folio); 1486 1487 if (unlikely(folio->mapping != NODE_MAPPING(sbi))) { 1488 f2fs_folio_put(folio, true); 1489 goto repeat; 1490 } 1491 1492 if (unlikely(!folio_test_uptodate(folio))) { 1493 err = -EIO; 1494 goto out_err; 1495 } 1496 1497 if (!f2fs_inode_chksum_verify(sbi, &folio->page)) { 1498 err = -EFSBADCRC; 1499 goto out_err; 1500 } 1501 page_hit: 1502 if (likely(nid == nid_of_node(&folio->page))) 1503 return folio; 1504 1505 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]", 1506 nid, nid_of_node(&folio->page), ino_of_node(&folio->page), 1507 ofs_of_node(&folio->page), cpver_of_node(&folio->page), 1508 next_blkaddr_of_node(&folio->page)); 1509 set_sbi_flag(sbi, SBI_NEED_FSCK); 1510 f2fs_handle_error(sbi, ERROR_INCONSISTENT_FOOTER); 1511 err = -EFSCORRUPTED; 1512 out_err: 1513 folio_clear_uptodate(folio); 1514 out_put_err: 1515 /* ENOENT comes from read_node_page which is not an error. */ 1516 if (err != -ENOENT) 1517 f2fs_handle_page_eio(sbi, folio, NODE); 1518 f2fs_folio_put(folio, true); 1519 return ERR_PTR(err); 1520 } 1521 1522 struct folio *f2fs_get_node_folio(struct f2fs_sb_info *sbi, pgoff_t nid) 1523 { 1524 return __get_node_folio(sbi, nid, NULL, 0); 1525 } 1526 1527 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) 1528 { 1529 struct folio *folio = __get_node_folio(sbi, nid, NULL, 0); 1530 1531 return &folio->page; 1532 } 1533 1534 struct page *f2fs_get_node_page_ra(struct page *parent, int start) 1535 { 1536 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 1537 nid_t nid = get_nid(parent, start, false); 1538 struct folio *folio = __get_node_folio(sbi, nid, parent, start); 1539 1540 return &folio->page; 1541 } 1542 1543 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino) 1544 { 1545 struct inode *inode; 1546 struct page *page; 1547 int ret; 1548 1549 /* should flush inline_data before evict_inode */ 1550 inode = ilookup(sbi->sb, ino); 1551 if (!inode) 1552 return; 1553 1554 page = f2fs_pagecache_get_page(inode->i_mapping, 0, 1555 FGP_LOCK|FGP_NOWAIT, 0); 1556 if (!page) 1557 goto iput_out; 1558 1559 if (!PageUptodate(page)) 1560 goto page_out; 1561 1562 if (!PageDirty(page)) 1563 goto page_out; 1564 1565 if (!clear_page_dirty_for_io(page)) 1566 goto page_out; 1567 1568 ret = f2fs_write_inline_data(inode, page_folio(page)); 1569 inode_dec_dirty_pages(inode); 1570 f2fs_remove_dirty_inode(inode); 1571 if (ret) 1572 set_page_dirty(page); 1573 page_out: 1574 f2fs_put_page(page, 1); 1575 iput_out: 1576 iput(inode); 1577 } 1578 1579 static struct folio *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino) 1580 { 1581 pgoff_t index; 1582 struct folio_batch fbatch; 1583 struct folio *last_folio = NULL; 1584 int nr_folios; 1585 1586 folio_batch_init(&fbatch); 1587 index = 0; 1588 1589 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index, 1590 (pgoff_t)-1, PAGECACHE_TAG_DIRTY, 1591 &fbatch))) { 1592 int i; 1593 1594 for (i = 0; i < nr_folios; i++) { 1595 struct folio *folio = fbatch.folios[i]; 1596 1597 if (unlikely(f2fs_cp_error(sbi))) { 1598 f2fs_folio_put(last_folio, false); 1599 folio_batch_release(&fbatch); 1600 return ERR_PTR(-EIO); 1601 } 1602 1603 if (!IS_DNODE(&folio->page) || !is_cold_node(&folio->page)) 1604 continue; 1605 if (ino_of_node(&folio->page) != ino) 1606 continue; 1607 1608 folio_lock(folio); 1609 1610 if (unlikely(folio->mapping != NODE_MAPPING(sbi))) { 1611 continue_unlock: 1612 folio_unlock(folio); 1613 continue; 1614 } 1615 if (ino_of_node(&folio->page) != ino) 1616 goto continue_unlock; 1617 1618 if (!folio_test_dirty(folio)) { 1619 /* someone wrote it for us */ 1620 goto continue_unlock; 1621 } 1622 1623 if (last_folio) 1624 f2fs_folio_put(last_folio, false); 1625 1626 folio_get(folio); 1627 last_folio = folio; 1628 folio_unlock(folio); 1629 } 1630 folio_batch_release(&fbatch); 1631 cond_resched(); 1632 } 1633 return last_folio; 1634 } 1635 1636 static int __write_node_page(struct page *page, bool atomic, bool *submitted, 1637 struct writeback_control *wbc, bool do_balance, 1638 enum iostat_type io_type, unsigned int *seq_id) 1639 { 1640 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1641 struct folio *folio = page_folio(page); 1642 nid_t nid; 1643 struct node_info ni; 1644 struct f2fs_io_info fio = { 1645 .sbi = sbi, 1646 .ino = ino_of_node(page), 1647 .type = NODE, 1648 .op = REQ_OP_WRITE, 1649 .op_flags = wbc_to_write_flags(wbc), 1650 .page = page, 1651 .encrypted_page = NULL, 1652 .submitted = 0, 1653 .io_type = io_type, 1654 .io_wbc = wbc, 1655 }; 1656 unsigned int seq; 1657 1658 trace_f2fs_writepage(folio, NODE); 1659 1660 if (unlikely(f2fs_cp_error(sbi))) { 1661 /* keep node pages in remount-ro mode */ 1662 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY) 1663 goto redirty_out; 1664 folio_clear_uptodate(folio); 1665 dec_page_count(sbi, F2FS_DIRTY_NODES); 1666 folio_unlock(folio); 1667 return 0; 1668 } 1669 1670 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1671 goto redirty_out; 1672 1673 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 1674 wbc->sync_mode == WB_SYNC_NONE && 1675 IS_DNODE(page) && is_cold_node(page)) 1676 goto redirty_out; 1677 1678 /* get old block addr of this node page */ 1679 nid = nid_of_node(page); 1680 f2fs_bug_on(sbi, folio->index != nid); 1681 1682 if (f2fs_get_node_info(sbi, nid, &ni, !do_balance)) 1683 goto redirty_out; 1684 1685 if (wbc->for_reclaim) { 1686 if (!f2fs_down_read_trylock(&sbi->node_write)) 1687 goto redirty_out; 1688 } else { 1689 f2fs_down_read(&sbi->node_write); 1690 } 1691 1692 /* This page is already truncated */ 1693 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1694 folio_clear_uptodate(folio); 1695 dec_page_count(sbi, F2FS_DIRTY_NODES); 1696 f2fs_up_read(&sbi->node_write); 1697 folio_unlock(folio); 1698 return 0; 1699 } 1700 1701 if (__is_valid_data_blkaddr(ni.blk_addr) && 1702 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, 1703 DATA_GENERIC_ENHANCE)) { 1704 f2fs_up_read(&sbi->node_write); 1705 goto redirty_out; 1706 } 1707 1708 if (atomic && !test_opt(sbi, NOBARRIER)) 1709 fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 1710 1711 /* should add to global list before clearing PAGECACHE status */ 1712 if (f2fs_in_warm_node_list(sbi, folio)) { 1713 seq = f2fs_add_fsync_node_entry(sbi, page); 1714 if (seq_id) 1715 *seq_id = seq; 1716 } 1717 1718 folio_start_writeback(folio); 1719 1720 fio.old_blkaddr = ni.blk_addr; 1721 f2fs_do_write_node_page(nid, &fio); 1722 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page)); 1723 dec_page_count(sbi, F2FS_DIRTY_NODES); 1724 f2fs_up_read(&sbi->node_write); 1725 1726 if (wbc->for_reclaim) { 1727 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE); 1728 submitted = NULL; 1729 } 1730 1731 folio_unlock(folio); 1732 1733 if (unlikely(f2fs_cp_error(sbi))) { 1734 f2fs_submit_merged_write(sbi, NODE); 1735 submitted = NULL; 1736 } 1737 if (submitted) 1738 *submitted = fio.submitted; 1739 1740 if (do_balance) 1741 f2fs_balance_fs(sbi, false); 1742 return 0; 1743 1744 redirty_out: 1745 folio_redirty_for_writepage(wbc, folio); 1746 return AOP_WRITEPAGE_ACTIVATE; 1747 } 1748 1749 int f2fs_move_node_page(struct page *node_page, int gc_type) 1750 { 1751 int err = 0; 1752 1753 if (gc_type == FG_GC) { 1754 struct writeback_control wbc = { 1755 .sync_mode = WB_SYNC_ALL, 1756 .nr_to_write = 1, 1757 .for_reclaim = 0, 1758 }; 1759 1760 f2fs_wait_on_page_writeback(node_page, NODE, true, true); 1761 1762 set_page_dirty(node_page); 1763 1764 if (!clear_page_dirty_for_io(node_page)) { 1765 err = -EAGAIN; 1766 goto out_page; 1767 } 1768 1769 if (__write_node_page(node_page, false, NULL, 1770 &wbc, false, FS_GC_NODE_IO, NULL)) { 1771 err = -EAGAIN; 1772 unlock_page(node_page); 1773 } 1774 goto release_page; 1775 } else { 1776 /* set page dirty and write it */ 1777 if (!folio_test_writeback(page_folio(node_page))) 1778 set_page_dirty(node_page); 1779 } 1780 out_page: 1781 unlock_page(node_page); 1782 release_page: 1783 f2fs_put_page(node_page, 0); 1784 return err; 1785 } 1786 1787 static int f2fs_write_node_page(struct page *page, 1788 struct writeback_control *wbc) 1789 { 1790 return __write_node_page(page, false, NULL, wbc, false, 1791 FS_NODE_IO, NULL); 1792 } 1793 1794 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 1795 struct writeback_control *wbc, bool atomic, 1796 unsigned int *seq_id) 1797 { 1798 pgoff_t index; 1799 struct folio_batch fbatch; 1800 int ret = 0; 1801 struct folio *last_folio = NULL; 1802 bool marked = false; 1803 nid_t ino = inode->i_ino; 1804 int nr_folios; 1805 int nwritten = 0; 1806 1807 if (atomic) { 1808 last_folio = last_fsync_dnode(sbi, ino); 1809 if (IS_ERR_OR_NULL(last_folio)) 1810 return PTR_ERR_OR_ZERO(last_folio); 1811 } 1812 retry: 1813 folio_batch_init(&fbatch); 1814 index = 0; 1815 1816 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index, 1817 (pgoff_t)-1, PAGECACHE_TAG_DIRTY, 1818 &fbatch))) { 1819 int i; 1820 1821 for (i = 0; i < nr_folios; i++) { 1822 struct folio *folio = fbatch.folios[i]; 1823 bool submitted = false; 1824 1825 if (unlikely(f2fs_cp_error(sbi))) { 1826 f2fs_folio_put(last_folio, false); 1827 folio_batch_release(&fbatch); 1828 ret = -EIO; 1829 goto out; 1830 } 1831 1832 if (!IS_DNODE(&folio->page) || !is_cold_node(&folio->page)) 1833 continue; 1834 if (ino_of_node(&folio->page) != ino) 1835 continue; 1836 1837 folio_lock(folio); 1838 1839 if (unlikely(folio->mapping != NODE_MAPPING(sbi))) { 1840 continue_unlock: 1841 folio_unlock(folio); 1842 continue; 1843 } 1844 if (ino_of_node(&folio->page) != ino) 1845 goto continue_unlock; 1846 1847 if (!folio_test_dirty(folio) && folio != last_folio) { 1848 /* someone wrote it for us */ 1849 goto continue_unlock; 1850 } 1851 1852 f2fs_folio_wait_writeback(folio, NODE, true, true); 1853 1854 set_fsync_mark(&folio->page, 0); 1855 set_dentry_mark(&folio->page, 0); 1856 1857 if (!atomic || folio == last_folio) { 1858 set_fsync_mark(&folio->page, 1); 1859 percpu_counter_inc(&sbi->rf_node_block_count); 1860 if (IS_INODE(&folio->page)) { 1861 if (is_inode_flag_set(inode, 1862 FI_DIRTY_INODE)) 1863 f2fs_update_inode(inode, &folio->page); 1864 set_dentry_mark(&folio->page, 1865 f2fs_need_dentry_mark(sbi, ino)); 1866 } 1867 /* may be written by other thread */ 1868 if (!folio_test_dirty(folio)) 1869 folio_mark_dirty(folio); 1870 } 1871 1872 if (!folio_clear_dirty_for_io(folio)) 1873 goto continue_unlock; 1874 1875 ret = __write_node_page(&folio->page, atomic && 1876 folio == last_folio, 1877 &submitted, wbc, true, 1878 FS_NODE_IO, seq_id); 1879 if (ret) { 1880 folio_unlock(folio); 1881 f2fs_folio_put(last_folio, false); 1882 break; 1883 } else if (submitted) { 1884 nwritten++; 1885 } 1886 1887 if (folio == last_folio) { 1888 f2fs_folio_put(folio, false); 1889 marked = true; 1890 break; 1891 } 1892 } 1893 folio_batch_release(&fbatch); 1894 cond_resched(); 1895 1896 if (ret || marked) 1897 break; 1898 } 1899 if (!ret && atomic && !marked) { 1900 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx", 1901 ino, last_folio->index); 1902 folio_lock(last_folio); 1903 f2fs_folio_wait_writeback(last_folio, NODE, true, true); 1904 folio_mark_dirty(last_folio); 1905 folio_unlock(last_folio); 1906 goto retry; 1907 } 1908 out: 1909 if (nwritten) 1910 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE); 1911 return ret ? -EIO : 0; 1912 } 1913 1914 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data) 1915 { 1916 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1917 bool clean; 1918 1919 if (inode->i_ino != ino) 1920 return 0; 1921 1922 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) 1923 return 0; 1924 1925 spin_lock(&sbi->inode_lock[DIRTY_META]); 1926 clean = list_empty(&F2FS_I(inode)->gdirty_list); 1927 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1928 1929 if (clean) 1930 return 0; 1931 1932 inode = igrab(inode); 1933 if (!inode) 1934 return 0; 1935 return 1; 1936 } 1937 1938 static bool flush_dirty_inode(struct folio *folio) 1939 { 1940 struct f2fs_sb_info *sbi = F2FS_F_SB(folio); 1941 struct inode *inode; 1942 nid_t ino = ino_of_node(&folio->page); 1943 1944 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL); 1945 if (!inode) 1946 return false; 1947 1948 f2fs_update_inode(inode, &folio->page); 1949 folio_unlock(folio); 1950 1951 iput(inode); 1952 return true; 1953 } 1954 1955 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi) 1956 { 1957 pgoff_t index = 0; 1958 struct folio_batch fbatch; 1959 int nr_folios; 1960 1961 folio_batch_init(&fbatch); 1962 1963 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index, 1964 (pgoff_t)-1, PAGECACHE_TAG_DIRTY, 1965 &fbatch))) { 1966 int i; 1967 1968 for (i = 0; i < nr_folios; i++) { 1969 struct folio *folio = fbatch.folios[i]; 1970 1971 if (!IS_INODE(&folio->page)) 1972 continue; 1973 1974 folio_lock(folio); 1975 1976 if (unlikely(folio->mapping != NODE_MAPPING(sbi))) 1977 goto unlock; 1978 if (!folio_test_dirty(folio)) 1979 goto unlock; 1980 1981 /* flush inline_data, if it's async context. */ 1982 if (page_private_inline(&folio->page)) { 1983 clear_page_private_inline(&folio->page); 1984 folio_unlock(folio); 1985 flush_inline_data(sbi, ino_of_node(&folio->page)); 1986 continue; 1987 } 1988 unlock: 1989 folio_unlock(folio); 1990 } 1991 folio_batch_release(&fbatch); 1992 cond_resched(); 1993 } 1994 } 1995 1996 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 1997 struct writeback_control *wbc, 1998 bool do_balance, enum iostat_type io_type) 1999 { 2000 pgoff_t index; 2001 struct folio_batch fbatch; 2002 int step = 0; 2003 int nwritten = 0; 2004 int ret = 0; 2005 int nr_folios, done = 0; 2006 2007 folio_batch_init(&fbatch); 2008 2009 next_step: 2010 index = 0; 2011 2012 while (!done && (nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), 2013 &index, (pgoff_t)-1, PAGECACHE_TAG_DIRTY, 2014 &fbatch))) { 2015 int i; 2016 2017 for (i = 0; i < nr_folios; i++) { 2018 struct folio *folio = fbatch.folios[i]; 2019 bool submitted = false; 2020 2021 /* give a priority to WB_SYNC threads */ 2022 if (atomic_read(&sbi->wb_sync_req[NODE]) && 2023 wbc->sync_mode == WB_SYNC_NONE) { 2024 done = 1; 2025 break; 2026 } 2027 2028 /* 2029 * flushing sequence with step: 2030 * 0. indirect nodes 2031 * 1. dentry dnodes 2032 * 2. file dnodes 2033 */ 2034 if (step == 0 && IS_DNODE(&folio->page)) 2035 continue; 2036 if (step == 1 && (!IS_DNODE(&folio->page) || 2037 is_cold_node(&folio->page))) 2038 continue; 2039 if (step == 2 && (!IS_DNODE(&folio->page) || 2040 !is_cold_node(&folio->page))) 2041 continue; 2042 lock_node: 2043 if (wbc->sync_mode == WB_SYNC_ALL) 2044 folio_lock(folio); 2045 else if (!folio_trylock(folio)) 2046 continue; 2047 2048 if (unlikely(folio->mapping != NODE_MAPPING(sbi))) { 2049 continue_unlock: 2050 folio_unlock(folio); 2051 continue; 2052 } 2053 2054 if (!folio_test_dirty(folio)) { 2055 /* someone wrote it for us */ 2056 goto continue_unlock; 2057 } 2058 2059 /* flush inline_data/inode, if it's async context. */ 2060 if (!do_balance) 2061 goto write_node; 2062 2063 /* flush inline_data */ 2064 if (page_private_inline(&folio->page)) { 2065 clear_page_private_inline(&folio->page); 2066 folio_unlock(folio); 2067 flush_inline_data(sbi, ino_of_node(&folio->page)); 2068 goto lock_node; 2069 } 2070 2071 /* flush dirty inode */ 2072 if (IS_INODE(&folio->page) && flush_dirty_inode(folio)) 2073 goto lock_node; 2074 write_node: 2075 f2fs_folio_wait_writeback(folio, NODE, true, true); 2076 2077 if (!folio_clear_dirty_for_io(folio)) 2078 goto continue_unlock; 2079 2080 set_fsync_mark(&folio->page, 0); 2081 set_dentry_mark(&folio->page, 0); 2082 2083 ret = __write_node_page(&folio->page, false, &submitted, 2084 wbc, do_balance, io_type, NULL); 2085 if (ret) 2086 folio_unlock(folio); 2087 else if (submitted) 2088 nwritten++; 2089 2090 if (--wbc->nr_to_write == 0) 2091 break; 2092 } 2093 folio_batch_release(&fbatch); 2094 cond_resched(); 2095 2096 if (wbc->nr_to_write == 0) { 2097 step = 2; 2098 break; 2099 } 2100 } 2101 2102 if (step < 2) { 2103 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2104 wbc->sync_mode == WB_SYNC_NONE && step == 1) 2105 goto out; 2106 step++; 2107 goto next_step; 2108 } 2109 out: 2110 if (nwritten) 2111 f2fs_submit_merged_write(sbi, NODE); 2112 2113 if (unlikely(f2fs_cp_error(sbi))) 2114 return -EIO; 2115 return ret; 2116 } 2117 2118 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 2119 unsigned int seq_id) 2120 { 2121 struct fsync_node_entry *fn; 2122 struct page *page; 2123 struct list_head *head = &sbi->fsync_node_list; 2124 unsigned long flags; 2125 unsigned int cur_seq_id = 0; 2126 2127 while (seq_id && cur_seq_id < seq_id) { 2128 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 2129 if (list_empty(head)) { 2130 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2131 break; 2132 } 2133 fn = list_first_entry(head, struct fsync_node_entry, list); 2134 if (fn->seq_id > seq_id) { 2135 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2136 break; 2137 } 2138 cur_seq_id = fn->seq_id; 2139 page = fn->page; 2140 get_page(page); 2141 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2142 2143 f2fs_wait_on_page_writeback(page, NODE, true, false); 2144 2145 put_page(page); 2146 } 2147 2148 return filemap_check_errors(NODE_MAPPING(sbi)); 2149 } 2150 2151 static int f2fs_write_node_pages(struct address_space *mapping, 2152 struct writeback_control *wbc) 2153 { 2154 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2155 struct blk_plug plug; 2156 long diff; 2157 2158 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2159 goto skip_write; 2160 2161 /* balancing f2fs's metadata in background */ 2162 f2fs_balance_fs_bg(sbi, true); 2163 2164 /* collect a number of dirty node pages and write together */ 2165 if (wbc->sync_mode != WB_SYNC_ALL && 2166 get_pages(sbi, F2FS_DIRTY_NODES) < 2167 nr_pages_to_skip(sbi, NODE)) 2168 goto skip_write; 2169 2170 if (wbc->sync_mode == WB_SYNC_ALL) 2171 atomic_inc(&sbi->wb_sync_req[NODE]); 2172 else if (atomic_read(&sbi->wb_sync_req[NODE])) { 2173 /* to avoid potential deadlock */ 2174 if (current->plug) 2175 blk_finish_plug(current->plug); 2176 goto skip_write; 2177 } 2178 2179 trace_f2fs_writepages(mapping->host, wbc, NODE); 2180 2181 diff = nr_pages_to_write(sbi, NODE, wbc); 2182 blk_start_plug(&plug); 2183 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO); 2184 blk_finish_plug(&plug); 2185 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); 2186 2187 if (wbc->sync_mode == WB_SYNC_ALL) 2188 atomic_dec(&sbi->wb_sync_req[NODE]); 2189 return 0; 2190 2191 skip_write: 2192 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES); 2193 trace_f2fs_writepages(mapping->host, wbc, NODE); 2194 return 0; 2195 } 2196 2197 static bool f2fs_dirty_node_folio(struct address_space *mapping, 2198 struct folio *folio) 2199 { 2200 trace_f2fs_set_page_dirty(folio, NODE); 2201 2202 if (!folio_test_uptodate(folio)) 2203 folio_mark_uptodate(folio); 2204 #ifdef CONFIG_F2FS_CHECK_FS 2205 if (IS_INODE(&folio->page)) 2206 f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page); 2207 #endif 2208 if (filemap_dirty_folio(mapping, folio)) { 2209 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES); 2210 set_page_private_reference(&folio->page); 2211 return true; 2212 } 2213 return false; 2214 } 2215 2216 /* 2217 * Structure of the f2fs node operations 2218 */ 2219 const struct address_space_operations f2fs_node_aops = { 2220 .writepage = f2fs_write_node_page, 2221 .writepages = f2fs_write_node_pages, 2222 .dirty_folio = f2fs_dirty_node_folio, 2223 .invalidate_folio = f2fs_invalidate_folio, 2224 .release_folio = f2fs_release_folio, 2225 .migrate_folio = filemap_migrate_folio, 2226 }; 2227 2228 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i, 2229 nid_t n) 2230 { 2231 return radix_tree_lookup(&nm_i->free_nid_root, n); 2232 } 2233 2234 static int __insert_free_nid(struct f2fs_sb_info *sbi, 2235 struct free_nid *i) 2236 { 2237 struct f2fs_nm_info *nm_i = NM_I(sbi); 2238 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i); 2239 2240 if (err) 2241 return err; 2242 2243 nm_i->nid_cnt[FREE_NID]++; 2244 list_add_tail(&i->list, &nm_i->free_nid_list); 2245 return 0; 2246 } 2247 2248 static void __remove_free_nid(struct f2fs_sb_info *sbi, 2249 struct free_nid *i, enum nid_state state) 2250 { 2251 struct f2fs_nm_info *nm_i = NM_I(sbi); 2252 2253 f2fs_bug_on(sbi, state != i->state); 2254 nm_i->nid_cnt[state]--; 2255 if (state == FREE_NID) 2256 list_del(&i->list); 2257 radix_tree_delete(&nm_i->free_nid_root, i->nid); 2258 } 2259 2260 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i, 2261 enum nid_state org_state, enum nid_state dst_state) 2262 { 2263 struct f2fs_nm_info *nm_i = NM_I(sbi); 2264 2265 f2fs_bug_on(sbi, org_state != i->state); 2266 i->state = dst_state; 2267 nm_i->nid_cnt[org_state]--; 2268 nm_i->nid_cnt[dst_state]++; 2269 2270 switch (dst_state) { 2271 case PREALLOC_NID: 2272 list_del(&i->list); 2273 break; 2274 case FREE_NID: 2275 list_add_tail(&i->list, &nm_i->free_nid_list); 2276 break; 2277 default: 2278 BUG_ON(1); 2279 } 2280 } 2281 2282 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi) 2283 { 2284 struct f2fs_nm_info *nm_i = NM_I(sbi); 2285 unsigned int i; 2286 bool ret = true; 2287 2288 f2fs_down_read(&nm_i->nat_tree_lock); 2289 for (i = 0; i < nm_i->nat_blocks; i++) { 2290 if (!test_bit_le(i, nm_i->nat_block_bitmap)) { 2291 ret = false; 2292 break; 2293 } 2294 } 2295 f2fs_up_read(&nm_i->nat_tree_lock); 2296 2297 return ret; 2298 } 2299 2300 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid, 2301 bool set, bool build) 2302 { 2303 struct f2fs_nm_info *nm_i = NM_I(sbi); 2304 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid); 2305 unsigned int nid_ofs = nid - START_NID(nid); 2306 2307 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap)) 2308 return; 2309 2310 if (set) { 2311 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) 2312 return; 2313 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 2314 nm_i->free_nid_count[nat_ofs]++; 2315 } else { 2316 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) 2317 return; 2318 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 2319 if (!build) 2320 nm_i->free_nid_count[nat_ofs]--; 2321 } 2322 } 2323 2324 /* return if the nid is recognized as free */ 2325 static bool add_free_nid(struct f2fs_sb_info *sbi, 2326 nid_t nid, bool build, bool update) 2327 { 2328 struct f2fs_nm_info *nm_i = NM_I(sbi); 2329 struct free_nid *i, *e; 2330 struct nat_entry *ne; 2331 int err = -EINVAL; 2332 bool ret = false; 2333 2334 /* 0 nid should not be used */ 2335 if (unlikely(nid == 0)) 2336 return false; 2337 2338 if (unlikely(f2fs_check_nid_range(sbi, nid))) 2339 return false; 2340 2341 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL); 2342 i->nid = nid; 2343 i->state = FREE_NID; 2344 2345 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 2346 2347 spin_lock(&nm_i->nid_list_lock); 2348 2349 if (build) { 2350 /* 2351 * Thread A Thread B 2352 * - f2fs_create 2353 * - f2fs_new_inode 2354 * - f2fs_alloc_nid 2355 * - __insert_nid_to_list(PREALLOC_NID) 2356 * - f2fs_balance_fs_bg 2357 * - f2fs_build_free_nids 2358 * - __f2fs_build_free_nids 2359 * - scan_nat_page 2360 * - add_free_nid 2361 * - __lookup_nat_cache 2362 * - f2fs_add_link 2363 * - f2fs_init_inode_metadata 2364 * - f2fs_new_inode_page 2365 * - f2fs_new_node_page 2366 * - set_node_addr 2367 * - f2fs_alloc_nid_done 2368 * - __remove_nid_from_list(PREALLOC_NID) 2369 * - __insert_nid_to_list(FREE_NID) 2370 */ 2371 ne = __lookup_nat_cache(nm_i, nid); 2372 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) || 2373 nat_get_blkaddr(ne) != NULL_ADDR)) 2374 goto err_out; 2375 2376 e = __lookup_free_nid_list(nm_i, nid); 2377 if (e) { 2378 if (e->state == FREE_NID) 2379 ret = true; 2380 goto err_out; 2381 } 2382 } 2383 ret = true; 2384 err = __insert_free_nid(sbi, i); 2385 err_out: 2386 if (update) { 2387 update_free_nid_bitmap(sbi, nid, ret, build); 2388 if (!build) 2389 nm_i->available_nids++; 2390 } 2391 spin_unlock(&nm_i->nid_list_lock); 2392 radix_tree_preload_end(); 2393 2394 if (err) 2395 kmem_cache_free(free_nid_slab, i); 2396 return ret; 2397 } 2398 2399 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid) 2400 { 2401 struct f2fs_nm_info *nm_i = NM_I(sbi); 2402 struct free_nid *i; 2403 bool need_free = false; 2404 2405 spin_lock(&nm_i->nid_list_lock); 2406 i = __lookup_free_nid_list(nm_i, nid); 2407 if (i && i->state == FREE_NID) { 2408 __remove_free_nid(sbi, i, FREE_NID); 2409 need_free = true; 2410 } 2411 spin_unlock(&nm_i->nid_list_lock); 2412 2413 if (need_free) 2414 kmem_cache_free(free_nid_slab, i); 2415 } 2416 2417 static int scan_nat_page(struct f2fs_sb_info *sbi, 2418 struct page *nat_page, nid_t start_nid) 2419 { 2420 struct f2fs_nm_info *nm_i = NM_I(sbi); 2421 struct f2fs_nat_block *nat_blk = page_address(nat_page); 2422 block_t blk_addr; 2423 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid); 2424 int i; 2425 2426 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap); 2427 2428 i = start_nid % NAT_ENTRY_PER_BLOCK; 2429 2430 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { 2431 if (unlikely(start_nid >= nm_i->max_nid)) 2432 break; 2433 2434 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); 2435 2436 if (blk_addr == NEW_ADDR) 2437 return -EFSCORRUPTED; 2438 2439 if (blk_addr == NULL_ADDR) { 2440 add_free_nid(sbi, start_nid, true, true); 2441 } else { 2442 spin_lock(&NM_I(sbi)->nid_list_lock); 2443 update_free_nid_bitmap(sbi, start_nid, false, true); 2444 spin_unlock(&NM_I(sbi)->nid_list_lock); 2445 } 2446 } 2447 2448 return 0; 2449 } 2450 2451 static void scan_curseg_cache(struct f2fs_sb_info *sbi) 2452 { 2453 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2454 struct f2fs_journal *journal = curseg->journal; 2455 int i; 2456 2457 down_read(&curseg->journal_rwsem); 2458 for (i = 0; i < nats_in_cursum(journal); i++) { 2459 block_t addr; 2460 nid_t nid; 2461 2462 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr); 2463 nid = le32_to_cpu(nid_in_journal(journal, i)); 2464 if (addr == NULL_ADDR) 2465 add_free_nid(sbi, nid, true, false); 2466 else 2467 remove_free_nid(sbi, nid); 2468 } 2469 up_read(&curseg->journal_rwsem); 2470 } 2471 2472 static void scan_free_nid_bits(struct f2fs_sb_info *sbi) 2473 { 2474 struct f2fs_nm_info *nm_i = NM_I(sbi); 2475 unsigned int i, idx; 2476 nid_t nid; 2477 2478 f2fs_down_read(&nm_i->nat_tree_lock); 2479 2480 for (i = 0; i < nm_i->nat_blocks; i++) { 2481 if (!test_bit_le(i, nm_i->nat_block_bitmap)) 2482 continue; 2483 if (!nm_i->free_nid_count[i]) 2484 continue; 2485 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) { 2486 idx = find_next_bit_le(nm_i->free_nid_bitmap[i], 2487 NAT_ENTRY_PER_BLOCK, idx); 2488 if (idx >= NAT_ENTRY_PER_BLOCK) 2489 break; 2490 2491 nid = i * NAT_ENTRY_PER_BLOCK + idx; 2492 add_free_nid(sbi, nid, true, false); 2493 2494 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS) 2495 goto out; 2496 } 2497 } 2498 out: 2499 scan_curseg_cache(sbi); 2500 2501 f2fs_up_read(&nm_i->nat_tree_lock); 2502 } 2503 2504 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi, 2505 bool sync, bool mount) 2506 { 2507 struct f2fs_nm_info *nm_i = NM_I(sbi); 2508 int i = 0, ret; 2509 nid_t nid = nm_i->next_scan_nid; 2510 2511 if (unlikely(nid >= nm_i->max_nid)) 2512 nid = 0; 2513 2514 if (unlikely(nid % NAT_ENTRY_PER_BLOCK)) 2515 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK; 2516 2517 /* Enough entries */ 2518 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) 2519 return 0; 2520 2521 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS)) 2522 return 0; 2523 2524 if (!mount) { 2525 /* try to find free nids in free_nid_bitmap */ 2526 scan_free_nid_bits(sbi); 2527 2528 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) 2529 return 0; 2530 } 2531 2532 /* readahead nat pages to be scanned */ 2533 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, 2534 META_NAT, true); 2535 2536 f2fs_down_read(&nm_i->nat_tree_lock); 2537 2538 while (1) { 2539 if (!test_bit_le(NAT_BLOCK_OFFSET(nid), 2540 nm_i->nat_block_bitmap)) { 2541 struct page *page = get_current_nat_page(sbi, nid); 2542 2543 if (IS_ERR(page)) { 2544 ret = PTR_ERR(page); 2545 } else { 2546 ret = scan_nat_page(sbi, page, nid); 2547 f2fs_put_page(page, 1); 2548 } 2549 2550 if (ret) { 2551 f2fs_up_read(&nm_i->nat_tree_lock); 2552 2553 if (ret == -EFSCORRUPTED) { 2554 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it"); 2555 set_sbi_flag(sbi, SBI_NEED_FSCK); 2556 f2fs_handle_error(sbi, 2557 ERROR_INCONSISTENT_NAT); 2558 } 2559 2560 return ret; 2561 } 2562 } 2563 2564 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); 2565 if (unlikely(nid >= nm_i->max_nid)) 2566 nid = 0; 2567 2568 if (++i >= FREE_NID_PAGES) 2569 break; 2570 } 2571 2572 /* go to the next free nat pages to find free nids abundantly */ 2573 nm_i->next_scan_nid = nid; 2574 2575 /* find free nids from current sum_pages */ 2576 scan_curseg_cache(sbi); 2577 2578 f2fs_up_read(&nm_i->nat_tree_lock); 2579 2580 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid), 2581 nm_i->ra_nid_pages, META_NAT, false); 2582 2583 return 0; 2584 } 2585 2586 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount) 2587 { 2588 int ret; 2589 2590 mutex_lock(&NM_I(sbi)->build_lock); 2591 ret = __f2fs_build_free_nids(sbi, sync, mount); 2592 mutex_unlock(&NM_I(sbi)->build_lock); 2593 2594 return ret; 2595 } 2596 2597 /* 2598 * If this function returns success, caller can obtain a new nid 2599 * from second parameter of this function. 2600 * The returned nid could be used ino as well as nid when inode is created. 2601 */ 2602 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) 2603 { 2604 struct f2fs_nm_info *nm_i = NM_I(sbi); 2605 struct free_nid *i = NULL; 2606 retry: 2607 if (time_to_inject(sbi, FAULT_ALLOC_NID)) 2608 return false; 2609 2610 spin_lock(&nm_i->nid_list_lock); 2611 2612 if (unlikely(nm_i->available_nids == 0)) { 2613 spin_unlock(&nm_i->nid_list_lock); 2614 return false; 2615 } 2616 2617 /* We should not use stale free nids created by f2fs_build_free_nids */ 2618 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) { 2619 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list)); 2620 i = list_first_entry(&nm_i->free_nid_list, 2621 struct free_nid, list); 2622 *nid = i->nid; 2623 2624 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID); 2625 nm_i->available_nids--; 2626 2627 update_free_nid_bitmap(sbi, *nid, false, false); 2628 2629 spin_unlock(&nm_i->nid_list_lock); 2630 return true; 2631 } 2632 spin_unlock(&nm_i->nid_list_lock); 2633 2634 /* Let's scan nat pages and its caches to get free nids */ 2635 if (!f2fs_build_free_nids(sbi, true, false)) 2636 goto retry; 2637 return false; 2638 } 2639 2640 /* 2641 * f2fs_alloc_nid() should be called prior to this function. 2642 */ 2643 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) 2644 { 2645 struct f2fs_nm_info *nm_i = NM_I(sbi); 2646 struct free_nid *i; 2647 2648 spin_lock(&nm_i->nid_list_lock); 2649 i = __lookup_free_nid_list(nm_i, nid); 2650 f2fs_bug_on(sbi, !i); 2651 __remove_free_nid(sbi, i, PREALLOC_NID); 2652 spin_unlock(&nm_i->nid_list_lock); 2653 2654 kmem_cache_free(free_nid_slab, i); 2655 } 2656 2657 /* 2658 * f2fs_alloc_nid() should be called prior to this function. 2659 */ 2660 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) 2661 { 2662 struct f2fs_nm_info *nm_i = NM_I(sbi); 2663 struct free_nid *i; 2664 bool need_free = false; 2665 2666 if (!nid) 2667 return; 2668 2669 spin_lock(&nm_i->nid_list_lock); 2670 i = __lookup_free_nid_list(nm_i, nid); 2671 f2fs_bug_on(sbi, !i); 2672 2673 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) { 2674 __remove_free_nid(sbi, i, PREALLOC_NID); 2675 need_free = true; 2676 } else { 2677 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID); 2678 } 2679 2680 nm_i->available_nids++; 2681 2682 update_free_nid_bitmap(sbi, nid, true, false); 2683 2684 spin_unlock(&nm_i->nid_list_lock); 2685 2686 if (need_free) 2687 kmem_cache_free(free_nid_slab, i); 2688 } 2689 2690 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink) 2691 { 2692 struct f2fs_nm_info *nm_i = NM_I(sbi); 2693 int nr = nr_shrink; 2694 2695 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) 2696 return 0; 2697 2698 if (!mutex_trylock(&nm_i->build_lock)) 2699 return 0; 2700 2701 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) { 2702 struct free_nid *i, *next; 2703 unsigned int batch = SHRINK_NID_BATCH_SIZE; 2704 2705 spin_lock(&nm_i->nid_list_lock); 2706 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) { 2707 if (!nr_shrink || !batch || 2708 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) 2709 break; 2710 __remove_free_nid(sbi, i, FREE_NID); 2711 kmem_cache_free(free_nid_slab, i); 2712 nr_shrink--; 2713 batch--; 2714 } 2715 spin_unlock(&nm_i->nid_list_lock); 2716 } 2717 2718 mutex_unlock(&nm_i->build_lock); 2719 2720 return nr - nr_shrink; 2721 } 2722 2723 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page) 2724 { 2725 void *src_addr, *dst_addr; 2726 size_t inline_size; 2727 struct page *ipage; 2728 struct f2fs_inode *ri; 2729 2730 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); 2731 if (IS_ERR(ipage)) 2732 return PTR_ERR(ipage); 2733 2734 ri = F2FS_INODE(page); 2735 if (ri->i_inline & F2FS_INLINE_XATTR) { 2736 if (!f2fs_has_inline_xattr(inode)) { 2737 set_inode_flag(inode, FI_INLINE_XATTR); 2738 stat_inc_inline_xattr(inode); 2739 } 2740 } else { 2741 if (f2fs_has_inline_xattr(inode)) { 2742 stat_dec_inline_xattr(inode); 2743 clear_inode_flag(inode, FI_INLINE_XATTR); 2744 } 2745 goto update_inode; 2746 } 2747 2748 dst_addr = inline_xattr_addr(inode, ipage); 2749 src_addr = inline_xattr_addr(inode, page); 2750 inline_size = inline_xattr_size(inode); 2751 2752 f2fs_wait_on_page_writeback(ipage, NODE, true, true); 2753 memcpy(dst_addr, src_addr, inline_size); 2754 update_inode: 2755 f2fs_update_inode(inode, ipage); 2756 f2fs_put_page(ipage, 1); 2757 return 0; 2758 } 2759 2760 int f2fs_recover_xattr_data(struct inode *inode, struct page *page) 2761 { 2762 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2763 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid; 2764 nid_t new_xnid; 2765 struct dnode_of_data dn; 2766 struct node_info ni; 2767 struct page *xpage; 2768 int err; 2769 2770 if (!prev_xnid) 2771 goto recover_xnid; 2772 2773 /* 1: invalidate the previous xattr nid */ 2774 err = f2fs_get_node_info(sbi, prev_xnid, &ni, false); 2775 if (err) 2776 return err; 2777 2778 f2fs_invalidate_blocks(sbi, ni.blk_addr, 1); 2779 dec_valid_node_count(sbi, inode, false); 2780 set_node_addr(sbi, &ni, NULL_ADDR, false); 2781 2782 recover_xnid: 2783 /* 2: update xattr nid in inode */ 2784 if (!f2fs_alloc_nid(sbi, &new_xnid)) 2785 return -ENOSPC; 2786 2787 set_new_dnode(&dn, inode, NULL, NULL, new_xnid); 2788 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET); 2789 if (IS_ERR(xpage)) { 2790 f2fs_alloc_nid_failed(sbi, new_xnid); 2791 return PTR_ERR(xpage); 2792 } 2793 2794 f2fs_alloc_nid_done(sbi, new_xnid); 2795 f2fs_update_inode_page(inode); 2796 2797 /* 3: update and set xattr node page dirty */ 2798 if (page) { 2799 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), 2800 VALID_XATTR_BLOCK_SIZE); 2801 set_page_dirty(xpage); 2802 } 2803 f2fs_put_page(xpage, 1); 2804 2805 return 0; 2806 } 2807 2808 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) 2809 { 2810 struct f2fs_inode *src, *dst; 2811 nid_t ino = ino_of_node(page); 2812 struct node_info old_ni, new_ni; 2813 struct page *ipage; 2814 int err; 2815 2816 err = f2fs_get_node_info(sbi, ino, &old_ni, false); 2817 if (err) 2818 return err; 2819 2820 if (unlikely(old_ni.blk_addr != NULL_ADDR)) 2821 return -EINVAL; 2822 retry: 2823 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false); 2824 if (!ipage) { 2825 memalloc_retry_wait(GFP_NOFS); 2826 goto retry; 2827 } 2828 2829 /* Should not use this inode from free nid list */ 2830 remove_free_nid(sbi, ino); 2831 2832 if (!PageUptodate(ipage)) 2833 SetPageUptodate(ipage); 2834 fill_node_footer(ipage, ino, ino, 0, true); 2835 set_cold_node(ipage, false); 2836 2837 src = F2FS_INODE(page); 2838 dst = F2FS_INODE(ipage); 2839 2840 memcpy(dst, src, offsetof(struct f2fs_inode, i_ext)); 2841 dst->i_size = 0; 2842 dst->i_blocks = cpu_to_le64(1); 2843 dst->i_links = cpu_to_le32(1); 2844 dst->i_xattr_nid = 0; 2845 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR); 2846 if (dst->i_inline & F2FS_EXTRA_ATTR) { 2847 dst->i_extra_isize = src->i_extra_isize; 2848 2849 if (f2fs_sb_has_flexible_inline_xattr(sbi) && 2850 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2851 i_inline_xattr_size)) 2852 dst->i_inline_xattr_size = src->i_inline_xattr_size; 2853 2854 if (f2fs_sb_has_project_quota(sbi) && 2855 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2856 i_projid)) 2857 dst->i_projid = src->i_projid; 2858 2859 if (f2fs_sb_has_inode_crtime(sbi) && 2860 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2861 i_crtime_nsec)) { 2862 dst->i_crtime = src->i_crtime; 2863 dst->i_crtime_nsec = src->i_crtime_nsec; 2864 } 2865 } 2866 2867 new_ni = old_ni; 2868 new_ni.ino = ino; 2869 2870 if (unlikely(inc_valid_node_count(sbi, NULL, true))) 2871 WARN_ON(1); 2872 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 2873 inc_valid_inode_count(sbi); 2874 set_page_dirty(ipage); 2875 f2fs_put_page(ipage, 1); 2876 return 0; 2877 } 2878 2879 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 2880 unsigned int segno, struct f2fs_summary_block *sum) 2881 { 2882 struct f2fs_node *rn; 2883 struct f2fs_summary *sum_entry; 2884 block_t addr; 2885 int i, idx, last_offset, nrpages; 2886 2887 /* scan the node segment */ 2888 last_offset = BLKS_PER_SEG(sbi); 2889 addr = START_BLOCK(sbi, segno); 2890 sum_entry = &sum->entries[0]; 2891 2892 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) { 2893 nrpages = bio_max_segs(last_offset - i); 2894 2895 /* readahead node pages */ 2896 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true); 2897 2898 for (idx = addr; idx < addr + nrpages; idx++) { 2899 struct page *page = f2fs_get_tmp_page(sbi, idx); 2900 2901 if (IS_ERR(page)) 2902 return PTR_ERR(page); 2903 2904 rn = F2FS_NODE(page); 2905 sum_entry->nid = rn->footer.nid; 2906 sum_entry->version = 0; 2907 sum_entry->ofs_in_node = 0; 2908 sum_entry++; 2909 f2fs_put_page(page, 1); 2910 } 2911 2912 invalidate_mapping_pages(META_MAPPING(sbi), addr, 2913 addr + nrpages); 2914 } 2915 return 0; 2916 } 2917 2918 static void remove_nats_in_journal(struct f2fs_sb_info *sbi) 2919 { 2920 struct f2fs_nm_info *nm_i = NM_I(sbi); 2921 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2922 struct f2fs_journal *journal = curseg->journal; 2923 int i; 2924 2925 down_write(&curseg->journal_rwsem); 2926 for (i = 0; i < nats_in_cursum(journal); i++) { 2927 struct nat_entry *ne; 2928 struct f2fs_nat_entry raw_ne; 2929 nid_t nid = le32_to_cpu(nid_in_journal(journal, i)); 2930 2931 if (f2fs_check_nid_range(sbi, nid)) 2932 continue; 2933 2934 raw_ne = nat_in_journal(journal, i); 2935 2936 ne = __lookup_nat_cache(nm_i, nid); 2937 if (!ne) { 2938 ne = __alloc_nat_entry(sbi, nid, true); 2939 __init_nat_entry(nm_i, ne, &raw_ne, true); 2940 } 2941 2942 /* 2943 * if a free nat in journal has not been used after last 2944 * checkpoint, we should remove it from available nids, 2945 * since later we will add it again. 2946 */ 2947 if (!get_nat_flag(ne, IS_DIRTY) && 2948 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) { 2949 spin_lock(&nm_i->nid_list_lock); 2950 nm_i->available_nids--; 2951 spin_unlock(&nm_i->nid_list_lock); 2952 } 2953 2954 __set_nat_cache_dirty(nm_i, ne); 2955 } 2956 update_nats_in_cursum(journal, -i); 2957 up_write(&curseg->journal_rwsem); 2958 } 2959 2960 static void __adjust_nat_entry_set(struct nat_entry_set *nes, 2961 struct list_head *head, int max) 2962 { 2963 struct nat_entry_set *cur; 2964 2965 if (nes->entry_cnt >= max) 2966 goto add_out; 2967 2968 list_for_each_entry(cur, head, set_list) { 2969 if (cur->entry_cnt >= nes->entry_cnt) { 2970 list_add(&nes->set_list, cur->set_list.prev); 2971 return; 2972 } 2973 } 2974 add_out: 2975 list_add_tail(&nes->set_list, head); 2976 } 2977 2978 static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs, 2979 unsigned int valid) 2980 { 2981 if (valid == 0) { 2982 __set_bit_le(nat_ofs, nm_i->empty_nat_bits); 2983 __clear_bit_le(nat_ofs, nm_i->full_nat_bits); 2984 return; 2985 } 2986 2987 __clear_bit_le(nat_ofs, nm_i->empty_nat_bits); 2988 if (valid == NAT_ENTRY_PER_BLOCK) 2989 __set_bit_le(nat_ofs, nm_i->full_nat_bits); 2990 else 2991 __clear_bit_le(nat_ofs, nm_i->full_nat_bits); 2992 } 2993 2994 static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid, 2995 struct page *page) 2996 { 2997 struct f2fs_nm_info *nm_i = NM_I(sbi); 2998 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK; 2999 struct f2fs_nat_block *nat_blk = page_address(page); 3000 int valid = 0; 3001 int i = 0; 3002 3003 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) 3004 return; 3005 3006 if (nat_index == 0) { 3007 valid = 1; 3008 i = 1; 3009 } 3010 for (; i < NAT_ENTRY_PER_BLOCK; i++) { 3011 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR) 3012 valid++; 3013 } 3014 3015 __update_nat_bits(nm_i, nat_index, valid); 3016 } 3017 3018 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi) 3019 { 3020 struct f2fs_nm_info *nm_i = NM_I(sbi); 3021 unsigned int nat_ofs; 3022 3023 f2fs_down_read(&nm_i->nat_tree_lock); 3024 3025 for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) { 3026 unsigned int valid = 0, nid_ofs = 0; 3027 3028 /* handle nid zero due to it should never be used */ 3029 if (unlikely(nat_ofs == 0)) { 3030 valid = 1; 3031 nid_ofs = 1; 3032 } 3033 3034 for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) { 3035 if (!test_bit_le(nid_ofs, 3036 nm_i->free_nid_bitmap[nat_ofs])) 3037 valid++; 3038 } 3039 3040 __update_nat_bits(nm_i, nat_ofs, valid); 3041 } 3042 3043 f2fs_up_read(&nm_i->nat_tree_lock); 3044 } 3045 3046 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi, 3047 struct nat_entry_set *set, struct cp_control *cpc) 3048 { 3049 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 3050 struct f2fs_journal *journal = curseg->journal; 3051 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK; 3052 bool to_journal = true; 3053 struct f2fs_nat_block *nat_blk; 3054 struct nat_entry *ne, *cur; 3055 struct page *page = NULL; 3056 3057 /* 3058 * there are two steps to flush nat entries: 3059 * #1, flush nat entries to journal in current hot data summary block. 3060 * #2, flush nat entries to nat page. 3061 */ 3062 if ((cpc->reason & CP_UMOUNT) || 3063 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL)) 3064 to_journal = false; 3065 3066 if (to_journal) { 3067 down_write(&curseg->journal_rwsem); 3068 } else { 3069 page = get_next_nat_page(sbi, start_nid); 3070 if (IS_ERR(page)) 3071 return PTR_ERR(page); 3072 3073 nat_blk = page_address(page); 3074 f2fs_bug_on(sbi, !nat_blk); 3075 } 3076 3077 /* flush dirty nats in nat entry set */ 3078 list_for_each_entry_safe(ne, cur, &set->entry_list, list) { 3079 struct f2fs_nat_entry *raw_ne; 3080 nid_t nid = nat_get_nid(ne); 3081 int offset; 3082 3083 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR); 3084 3085 if (to_journal) { 3086 offset = f2fs_lookup_journal_in_cursum(journal, 3087 NAT_JOURNAL, nid, 1); 3088 f2fs_bug_on(sbi, offset < 0); 3089 raw_ne = &nat_in_journal(journal, offset); 3090 nid_in_journal(journal, offset) = cpu_to_le32(nid); 3091 } else { 3092 raw_ne = &nat_blk->entries[nid - start_nid]; 3093 } 3094 raw_nat_from_node_info(raw_ne, &ne->ni); 3095 nat_reset_flag(ne); 3096 __clear_nat_cache_dirty(NM_I(sbi), set, ne); 3097 if (nat_get_blkaddr(ne) == NULL_ADDR) { 3098 add_free_nid(sbi, nid, false, true); 3099 } else { 3100 spin_lock(&NM_I(sbi)->nid_list_lock); 3101 update_free_nid_bitmap(sbi, nid, false, false); 3102 spin_unlock(&NM_I(sbi)->nid_list_lock); 3103 } 3104 } 3105 3106 if (to_journal) { 3107 up_write(&curseg->journal_rwsem); 3108 } else { 3109 update_nat_bits(sbi, start_nid, page); 3110 f2fs_put_page(page, 1); 3111 } 3112 3113 /* Allow dirty nats by node block allocation in write_begin */ 3114 if (!set->entry_cnt) { 3115 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set); 3116 kmem_cache_free(nat_entry_set_slab, set); 3117 } 3118 return 0; 3119 } 3120 3121 /* 3122 * This function is called during the checkpointing process. 3123 */ 3124 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 3125 { 3126 struct f2fs_nm_info *nm_i = NM_I(sbi); 3127 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 3128 struct f2fs_journal *journal = curseg->journal; 3129 struct nat_entry_set *setvec[NAT_VEC_SIZE]; 3130 struct nat_entry_set *set, *tmp; 3131 unsigned int found; 3132 nid_t set_idx = 0; 3133 LIST_HEAD(sets); 3134 int err = 0; 3135 3136 /* 3137 * during unmount, let's flush nat_bits before checking 3138 * nat_cnt[DIRTY_NAT]. 3139 */ 3140 if (cpc->reason & CP_UMOUNT) { 3141 f2fs_down_write(&nm_i->nat_tree_lock); 3142 remove_nats_in_journal(sbi); 3143 f2fs_up_write(&nm_i->nat_tree_lock); 3144 } 3145 3146 if (!nm_i->nat_cnt[DIRTY_NAT]) 3147 return 0; 3148 3149 f2fs_down_write(&nm_i->nat_tree_lock); 3150 3151 /* 3152 * if there are no enough space in journal to store dirty nat 3153 * entries, remove all entries from journal and merge them 3154 * into nat entry set. 3155 */ 3156 if (cpc->reason & CP_UMOUNT || 3157 !__has_cursum_space(journal, 3158 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL)) 3159 remove_nats_in_journal(sbi); 3160 3161 while ((found = __gang_lookup_nat_set(nm_i, 3162 set_idx, NAT_VEC_SIZE, setvec))) { 3163 unsigned idx; 3164 3165 set_idx = setvec[found - 1]->set + 1; 3166 for (idx = 0; idx < found; idx++) 3167 __adjust_nat_entry_set(setvec[idx], &sets, 3168 MAX_NAT_JENTRIES(journal)); 3169 } 3170 3171 /* flush dirty nats in nat entry set */ 3172 list_for_each_entry_safe(set, tmp, &sets, set_list) { 3173 err = __flush_nat_entry_set(sbi, set, cpc); 3174 if (err) 3175 break; 3176 } 3177 3178 f2fs_up_write(&nm_i->nat_tree_lock); 3179 /* Allow dirty nats by node block allocation in write_begin */ 3180 3181 return err; 3182 } 3183 3184 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi) 3185 { 3186 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3187 struct f2fs_nm_info *nm_i = NM_I(sbi); 3188 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE; 3189 unsigned int i; 3190 __u64 cp_ver = cur_cp_version(ckpt); 3191 block_t nat_bits_addr; 3192 3193 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); 3194 nm_i->nat_bits = f2fs_kvzalloc(sbi, 3195 F2FS_BLK_TO_BYTES(nm_i->nat_bits_blocks), GFP_KERNEL); 3196 if (!nm_i->nat_bits) 3197 return -ENOMEM; 3198 3199 nm_i->full_nat_bits = nm_i->nat_bits + 8; 3200 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes; 3201 3202 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) 3203 return 0; 3204 3205 nat_bits_addr = __start_cp_addr(sbi) + BLKS_PER_SEG(sbi) - 3206 nm_i->nat_bits_blocks; 3207 for (i = 0; i < nm_i->nat_bits_blocks; i++) { 3208 struct page *page; 3209 3210 page = f2fs_get_meta_page(sbi, nat_bits_addr++); 3211 if (IS_ERR(page)) 3212 return PTR_ERR(page); 3213 3214 memcpy(nm_i->nat_bits + F2FS_BLK_TO_BYTES(i), 3215 page_address(page), F2FS_BLKSIZE); 3216 f2fs_put_page(page, 1); 3217 } 3218 3219 cp_ver |= (cur_cp_crc(ckpt) << 32); 3220 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) { 3221 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 3222 f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)", 3223 cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits)); 3224 return 0; 3225 } 3226 3227 f2fs_notice(sbi, "Found nat_bits in checkpoint"); 3228 return 0; 3229 } 3230 3231 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi) 3232 { 3233 struct f2fs_nm_info *nm_i = NM_I(sbi); 3234 unsigned int i = 0; 3235 nid_t nid, last_nid; 3236 3237 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) 3238 return; 3239 3240 for (i = 0; i < nm_i->nat_blocks; i++) { 3241 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i); 3242 if (i >= nm_i->nat_blocks) 3243 break; 3244 3245 __set_bit_le(i, nm_i->nat_block_bitmap); 3246 3247 nid = i * NAT_ENTRY_PER_BLOCK; 3248 last_nid = nid + NAT_ENTRY_PER_BLOCK; 3249 3250 spin_lock(&NM_I(sbi)->nid_list_lock); 3251 for (; nid < last_nid; nid++) 3252 update_free_nid_bitmap(sbi, nid, true, true); 3253 spin_unlock(&NM_I(sbi)->nid_list_lock); 3254 } 3255 3256 for (i = 0; i < nm_i->nat_blocks; i++) { 3257 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i); 3258 if (i >= nm_i->nat_blocks) 3259 break; 3260 3261 __set_bit_le(i, nm_i->nat_block_bitmap); 3262 } 3263 } 3264 3265 static int init_node_manager(struct f2fs_sb_info *sbi) 3266 { 3267 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); 3268 struct f2fs_nm_info *nm_i = NM_I(sbi); 3269 unsigned char *version_bitmap; 3270 unsigned int nat_segs; 3271 int err; 3272 3273 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); 3274 3275 /* segment_count_nat includes pair segment so divide to 2. */ 3276 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; 3277 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); 3278 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks; 3279 3280 /* not used nids: 0, node, meta, (and root counted as valid node) */ 3281 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count - 3282 F2FS_RESERVED_NODE_NUM; 3283 nm_i->nid_cnt[FREE_NID] = 0; 3284 nm_i->nid_cnt[PREALLOC_NID] = 0; 3285 nm_i->ram_thresh = DEF_RAM_THRESHOLD; 3286 nm_i->ra_nid_pages = DEF_RA_NID_PAGES; 3287 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD; 3288 nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS; 3289 3290 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC); 3291 INIT_LIST_HEAD(&nm_i->free_nid_list); 3292 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO); 3293 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO); 3294 INIT_LIST_HEAD(&nm_i->nat_entries); 3295 spin_lock_init(&nm_i->nat_list_lock); 3296 3297 mutex_init(&nm_i->build_lock); 3298 spin_lock_init(&nm_i->nid_list_lock); 3299 init_f2fs_rwsem(&nm_i->nat_tree_lock); 3300 3301 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 3302 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); 3303 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); 3304 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, 3305 GFP_KERNEL); 3306 if (!nm_i->nat_bitmap) 3307 return -ENOMEM; 3308 3309 if (!test_opt(sbi, NAT_BITS)) 3310 disable_nat_bits(sbi, true); 3311 3312 err = __get_nat_bitmaps(sbi); 3313 if (err) 3314 return err; 3315 3316 #ifdef CONFIG_F2FS_CHECK_FS 3317 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size, 3318 GFP_KERNEL); 3319 if (!nm_i->nat_bitmap_mir) 3320 return -ENOMEM; 3321 #endif 3322 3323 return 0; 3324 } 3325 3326 static int init_free_nid_cache(struct f2fs_sb_info *sbi) 3327 { 3328 struct f2fs_nm_info *nm_i = NM_I(sbi); 3329 int i; 3330 3331 nm_i->free_nid_bitmap = 3332 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *), 3333 nm_i->nat_blocks), 3334 GFP_KERNEL); 3335 if (!nm_i->free_nid_bitmap) 3336 return -ENOMEM; 3337 3338 for (i = 0; i < nm_i->nat_blocks; i++) { 3339 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi, 3340 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL); 3341 if (!nm_i->free_nid_bitmap[i]) 3342 return -ENOMEM; 3343 } 3344 3345 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8, 3346 GFP_KERNEL); 3347 if (!nm_i->nat_block_bitmap) 3348 return -ENOMEM; 3349 3350 nm_i->free_nid_count = 3351 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short), 3352 nm_i->nat_blocks), 3353 GFP_KERNEL); 3354 if (!nm_i->free_nid_count) 3355 return -ENOMEM; 3356 return 0; 3357 } 3358 3359 int f2fs_build_node_manager(struct f2fs_sb_info *sbi) 3360 { 3361 int err; 3362 3363 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info), 3364 GFP_KERNEL); 3365 if (!sbi->nm_info) 3366 return -ENOMEM; 3367 3368 err = init_node_manager(sbi); 3369 if (err) 3370 return err; 3371 3372 err = init_free_nid_cache(sbi); 3373 if (err) 3374 return err; 3375 3376 /* load free nid status from nat_bits table */ 3377 load_free_nid_bitmap(sbi); 3378 3379 return f2fs_build_free_nids(sbi, true, true); 3380 } 3381 3382 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi) 3383 { 3384 struct f2fs_nm_info *nm_i = NM_I(sbi); 3385 struct free_nid *i, *next_i; 3386 void *vec[NAT_VEC_SIZE]; 3387 struct nat_entry **natvec = (struct nat_entry **)vec; 3388 struct nat_entry_set **setvec = (struct nat_entry_set **)vec; 3389 nid_t nid = 0; 3390 unsigned int found; 3391 3392 if (!nm_i) 3393 return; 3394 3395 /* destroy free nid list */ 3396 spin_lock(&nm_i->nid_list_lock); 3397 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { 3398 __remove_free_nid(sbi, i, FREE_NID); 3399 spin_unlock(&nm_i->nid_list_lock); 3400 kmem_cache_free(free_nid_slab, i); 3401 spin_lock(&nm_i->nid_list_lock); 3402 } 3403 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]); 3404 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]); 3405 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list)); 3406 spin_unlock(&nm_i->nid_list_lock); 3407 3408 /* destroy nat cache */ 3409 f2fs_down_write(&nm_i->nat_tree_lock); 3410 while ((found = __gang_lookup_nat_cache(nm_i, 3411 nid, NAT_VEC_SIZE, natvec))) { 3412 unsigned idx; 3413 3414 nid = nat_get_nid(natvec[found - 1]) + 1; 3415 for (idx = 0; idx < found; idx++) { 3416 spin_lock(&nm_i->nat_list_lock); 3417 list_del(&natvec[idx]->list); 3418 spin_unlock(&nm_i->nat_list_lock); 3419 3420 __del_from_nat_cache(nm_i, natvec[idx]); 3421 } 3422 } 3423 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]); 3424 3425 /* destroy nat set cache */ 3426 nid = 0; 3427 memset(vec, 0, sizeof(void *) * NAT_VEC_SIZE); 3428 while ((found = __gang_lookup_nat_set(nm_i, 3429 nid, NAT_VEC_SIZE, setvec))) { 3430 unsigned idx; 3431 3432 nid = setvec[found - 1]->set + 1; 3433 for (idx = 0; idx < found; idx++) { 3434 /* entry_cnt is not zero, when cp_error was occurred */ 3435 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list)); 3436 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set); 3437 kmem_cache_free(nat_entry_set_slab, setvec[idx]); 3438 } 3439 } 3440 f2fs_up_write(&nm_i->nat_tree_lock); 3441 3442 kvfree(nm_i->nat_block_bitmap); 3443 if (nm_i->free_nid_bitmap) { 3444 int i; 3445 3446 for (i = 0; i < nm_i->nat_blocks; i++) 3447 kvfree(nm_i->free_nid_bitmap[i]); 3448 kvfree(nm_i->free_nid_bitmap); 3449 } 3450 kvfree(nm_i->free_nid_count); 3451 3452 kvfree(nm_i->nat_bitmap); 3453 kvfree(nm_i->nat_bits); 3454 #ifdef CONFIG_F2FS_CHECK_FS 3455 kvfree(nm_i->nat_bitmap_mir); 3456 #endif 3457 sbi->nm_info = NULL; 3458 kfree(nm_i); 3459 } 3460 3461 int __init f2fs_create_node_manager_caches(void) 3462 { 3463 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry", 3464 sizeof(struct nat_entry)); 3465 if (!nat_entry_slab) 3466 goto fail; 3467 3468 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid", 3469 sizeof(struct free_nid)); 3470 if (!free_nid_slab) 3471 goto destroy_nat_entry; 3472 3473 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set", 3474 sizeof(struct nat_entry_set)); 3475 if (!nat_entry_set_slab) 3476 goto destroy_free_nid; 3477 3478 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry", 3479 sizeof(struct fsync_node_entry)); 3480 if (!fsync_node_entry_slab) 3481 goto destroy_nat_entry_set; 3482 return 0; 3483 3484 destroy_nat_entry_set: 3485 kmem_cache_destroy(nat_entry_set_slab); 3486 destroy_free_nid: 3487 kmem_cache_destroy(free_nid_slab); 3488 destroy_nat_entry: 3489 kmem_cache_destroy(nat_entry_slab); 3490 fail: 3491 return -ENOMEM; 3492 } 3493 3494 void f2fs_destroy_node_manager_caches(void) 3495 { 3496 kmem_cache_destroy(fsync_node_entry_slab); 3497 kmem_cache_destroy(nat_entry_set_slab); 3498 kmem_cache_destroy(free_nid_slab); 3499 kmem_cache_destroy(nat_entry_slab); 3500 } 3501