xref: /linux-6.15/fs/f2fs/node.c (revision c2ecba02)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/sched/mm.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15 
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "iostat.h"
21 #include <trace/events/f2fs.h>
22 
23 #define on_f2fs_build_free_nids(nm_i) mutex_is_locked(&(nm_i)->build_lock)
24 
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29 
30 /*
31  * Check whether the given nid is within node id range.
32  */
33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35 	if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 		set_sbi_flag(sbi, SBI_NEED_FSCK);
37 		f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 			  __func__, nid);
39 		f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
40 		return -EFSCORRUPTED;
41 	}
42 	return 0;
43 }
44 
45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46 {
47 	struct f2fs_nm_info *nm_i = NM_I(sbi);
48 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
49 	struct sysinfo val;
50 	unsigned long avail_ram;
51 	unsigned long mem_size = 0;
52 	bool res = false;
53 
54 	if (!nm_i)
55 		return true;
56 
57 	si_meminfo(&val);
58 
59 	/* only uses low memory */
60 	avail_ram = val.totalram - val.totalhigh;
61 
62 	/*
63 	 * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively
64 	 */
65 	if (type == FREE_NIDS) {
66 		mem_size = (nm_i->nid_cnt[FREE_NID] *
67 				sizeof(struct free_nid)) >> PAGE_SHIFT;
68 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
69 	} else if (type == NAT_ENTRIES) {
70 		mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
71 				sizeof(struct nat_entry)) >> PAGE_SHIFT;
72 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
73 		if (excess_cached_nats(sbi))
74 			res = false;
75 	} else if (type == DIRTY_DENTS) {
76 		if (sbi->sb->s_bdi->wb.dirty_exceeded)
77 			return false;
78 		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
79 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
80 	} else if (type == INO_ENTRIES) {
81 		int i;
82 
83 		for (i = 0; i < MAX_INO_ENTRY; i++)
84 			mem_size += sbi->im[i].ino_num *
85 						sizeof(struct ino_entry);
86 		mem_size >>= PAGE_SHIFT;
87 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
88 	} else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) {
89 		enum extent_type etype = type == READ_EXTENT_CACHE ?
90 						EX_READ : EX_BLOCK_AGE;
91 		struct extent_tree_info *eti = &sbi->extent_tree[etype];
92 
93 		mem_size = (atomic_read(&eti->total_ext_tree) *
94 				sizeof(struct extent_tree) +
95 				atomic_read(&eti->total_ext_node) *
96 				sizeof(struct extent_node)) >> PAGE_SHIFT;
97 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
98 	} else if (type == DISCARD_CACHE) {
99 		mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
100 				sizeof(struct discard_cmd)) >> PAGE_SHIFT;
101 		res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
102 	} else if (type == COMPRESS_PAGE) {
103 #ifdef CONFIG_F2FS_FS_COMPRESSION
104 		unsigned long free_ram = val.freeram;
105 
106 		/*
107 		 * free memory is lower than watermark or cached page count
108 		 * exceed threshold, deny caching compress page.
109 		 */
110 		res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
111 			(COMPRESS_MAPPING(sbi)->nrpages <
112 			 free_ram * sbi->compress_percent / 100);
113 #else
114 		res = false;
115 #endif
116 	} else {
117 		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
118 			return true;
119 	}
120 	return res;
121 }
122 
123 static void clear_node_page_dirty(struct page *page)
124 {
125 	if (PageDirty(page)) {
126 		f2fs_clear_page_cache_dirty_tag(page_folio(page));
127 		clear_page_dirty_for_io(page);
128 		dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
129 	}
130 	ClearPageUptodate(page);
131 }
132 
133 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
134 {
135 	return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
136 }
137 
138 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
139 {
140 	struct page *src_page;
141 	struct page *dst_page;
142 	pgoff_t dst_off;
143 	void *src_addr;
144 	void *dst_addr;
145 	struct f2fs_nm_info *nm_i = NM_I(sbi);
146 
147 	dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
148 
149 	/* get current nat block page with lock */
150 	src_page = get_current_nat_page(sbi, nid);
151 	if (IS_ERR(src_page))
152 		return src_page;
153 	dst_page = f2fs_grab_meta_page(sbi, dst_off);
154 	f2fs_bug_on(sbi, PageDirty(src_page));
155 
156 	src_addr = page_address(src_page);
157 	dst_addr = page_address(dst_page);
158 	memcpy(dst_addr, src_addr, PAGE_SIZE);
159 	set_page_dirty(dst_page);
160 	f2fs_put_page(src_page, 1);
161 
162 	set_to_next_nat(nm_i, nid);
163 
164 	return dst_page;
165 }
166 
167 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
168 						nid_t nid, bool no_fail)
169 {
170 	struct nat_entry *new;
171 
172 	new = f2fs_kmem_cache_alloc(nat_entry_slab,
173 					GFP_F2FS_ZERO, no_fail, sbi);
174 	if (new) {
175 		nat_set_nid(new, nid);
176 		nat_reset_flag(new);
177 	}
178 	return new;
179 }
180 
181 static void __free_nat_entry(struct nat_entry *e)
182 {
183 	kmem_cache_free(nat_entry_slab, e);
184 }
185 
186 /* must be locked by nat_tree_lock */
187 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
188 	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
189 {
190 	if (no_fail)
191 		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
192 	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
193 		return NULL;
194 
195 	if (raw_ne)
196 		node_info_from_raw_nat(&ne->ni, raw_ne);
197 
198 	spin_lock(&nm_i->nat_list_lock);
199 	list_add_tail(&ne->list, &nm_i->nat_entries);
200 	spin_unlock(&nm_i->nat_list_lock);
201 
202 	nm_i->nat_cnt[TOTAL_NAT]++;
203 	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
204 	return ne;
205 }
206 
207 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
208 {
209 	struct nat_entry *ne;
210 
211 	ne = radix_tree_lookup(&nm_i->nat_root, n);
212 
213 	/* for recent accessed nat entry, move it to tail of lru list */
214 	if (ne && !get_nat_flag(ne, IS_DIRTY)) {
215 		spin_lock(&nm_i->nat_list_lock);
216 		if (!list_empty(&ne->list))
217 			list_move_tail(&ne->list, &nm_i->nat_entries);
218 		spin_unlock(&nm_i->nat_list_lock);
219 	}
220 
221 	return ne;
222 }
223 
224 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
225 		nid_t start, unsigned int nr, struct nat_entry **ep)
226 {
227 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
228 }
229 
230 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
231 {
232 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
233 	nm_i->nat_cnt[TOTAL_NAT]--;
234 	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
235 	__free_nat_entry(e);
236 }
237 
238 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
239 							struct nat_entry *ne)
240 {
241 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
242 	struct nat_entry_set *head;
243 
244 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
245 	if (!head) {
246 		head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
247 						GFP_NOFS, true, NULL);
248 
249 		INIT_LIST_HEAD(&head->entry_list);
250 		INIT_LIST_HEAD(&head->set_list);
251 		head->set = set;
252 		head->entry_cnt = 0;
253 		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
254 	}
255 	return head;
256 }
257 
258 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
259 						struct nat_entry *ne)
260 {
261 	struct nat_entry_set *head;
262 	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
263 
264 	if (!new_ne)
265 		head = __grab_nat_entry_set(nm_i, ne);
266 
267 	/*
268 	 * update entry_cnt in below condition:
269 	 * 1. update NEW_ADDR to valid block address;
270 	 * 2. update old block address to new one;
271 	 */
272 	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
273 				!get_nat_flag(ne, IS_DIRTY)))
274 		head->entry_cnt++;
275 
276 	set_nat_flag(ne, IS_PREALLOC, new_ne);
277 
278 	if (get_nat_flag(ne, IS_DIRTY))
279 		goto refresh_list;
280 
281 	nm_i->nat_cnt[DIRTY_NAT]++;
282 	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
283 	set_nat_flag(ne, IS_DIRTY, true);
284 refresh_list:
285 	spin_lock(&nm_i->nat_list_lock);
286 	if (new_ne)
287 		list_del_init(&ne->list);
288 	else
289 		list_move_tail(&ne->list, &head->entry_list);
290 	spin_unlock(&nm_i->nat_list_lock);
291 }
292 
293 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
294 		struct nat_entry_set *set, struct nat_entry *ne)
295 {
296 	spin_lock(&nm_i->nat_list_lock);
297 	list_move_tail(&ne->list, &nm_i->nat_entries);
298 	spin_unlock(&nm_i->nat_list_lock);
299 
300 	set_nat_flag(ne, IS_DIRTY, false);
301 	set->entry_cnt--;
302 	nm_i->nat_cnt[DIRTY_NAT]--;
303 	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
304 }
305 
306 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
307 		nid_t start, unsigned int nr, struct nat_entry_set **ep)
308 {
309 	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
310 							start, nr);
311 }
312 
313 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, const struct folio *folio)
314 {
315 	return NODE_MAPPING(sbi) == folio->mapping &&
316 			IS_DNODE(&folio->page) && is_cold_node(&folio->page);
317 }
318 
319 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
320 {
321 	spin_lock_init(&sbi->fsync_node_lock);
322 	INIT_LIST_HEAD(&sbi->fsync_node_list);
323 	sbi->fsync_seg_id = 0;
324 	sbi->fsync_node_num = 0;
325 }
326 
327 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
328 							struct page *page)
329 {
330 	struct fsync_node_entry *fn;
331 	unsigned long flags;
332 	unsigned int seq_id;
333 
334 	fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
335 					GFP_NOFS, true, NULL);
336 
337 	get_page(page);
338 	fn->page = page;
339 	INIT_LIST_HEAD(&fn->list);
340 
341 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
342 	list_add_tail(&fn->list, &sbi->fsync_node_list);
343 	fn->seq_id = sbi->fsync_seg_id++;
344 	seq_id = fn->seq_id;
345 	sbi->fsync_node_num++;
346 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
347 
348 	return seq_id;
349 }
350 
351 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
352 {
353 	struct fsync_node_entry *fn;
354 	unsigned long flags;
355 
356 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
357 	list_for_each_entry(fn, &sbi->fsync_node_list, list) {
358 		if (fn->page == page) {
359 			list_del(&fn->list);
360 			sbi->fsync_node_num--;
361 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
362 			kmem_cache_free(fsync_node_entry_slab, fn);
363 			put_page(page);
364 			return;
365 		}
366 	}
367 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
368 	f2fs_bug_on(sbi, 1);
369 }
370 
371 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
372 {
373 	unsigned long flags;
374 
375 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
376 	sbi->fsync_seg_id = 0;
377 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
378 }
379 
380 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
381 {
382 	struct f2fs_nm_info *nm_i = NM_I(sbi);
383 	struct nat_entry *e;
384 	bool need = false;
385 
386 	f2fs_down_read(&nm_i->nat_tree_lock);
387 	e = __lookup_nat_cache(nm_i, nid);
388 	if (e) {
389 		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
390 				!get_nat_flag(e, HAS_FSYNCED_INODE))
391 			need = true;
392 	}
393 	f2fs_up_read(&nm_i->nat_tree_lock);
394 	return need;
395 }
396 
397 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
398 {
399 	struct f2fs_nm_info *nm_i = NM_I(sbi);
400 	struct nat_entry *e;
401 	bool is_cp = true;
402 
403 	f2fs_down_read(&nm_i->nat_tree_lock);
404 	e = __lookup_nat_cache(nm_i, nid);
405 	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
406 		is_cp = false;
407 	f2fs_up_read(&nm_i->nat_tree_lock);
408 	return is_cp;
409 }
410 
411 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
412 {
413 	struct f2fs_nm_info *nm_i = NM_I(sbi);
414 	struct nat_entry *e;
415 	bool need_update = true;
416 
417 	f2fs_down_read(&nm_i->nat_tree_lock);
418 	e = __lookup_nat_cache(nm_i, ino);
419 	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
420 			(get_nat_flag(e, IS_CHECKPOINTED) ||
421 			 get_nat_flag(e, HAS_FSYNCED_INODE)))
422 		need_update = false;
423 	f2fs_up_read(&nm_i->nat_tree_lock);
424 	return need_update;
425 }
426 
427 /* must be locked by nat_tree_lock */
428 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
429 						struct f2fs_nat_entry *ne)
430 {
431 	struct f2fs_nm_info *nm_i = NM_I(sbi);
432 	struct nat_entry *new, *e;
433 
434 	/* Let's mitigate lock contention of nat_tree_lock during checkpoint */
435 	if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
436 		return;
437 
438 	new = __alloc_nat_entry(sbi, nid, false);
439 	if (!new)
440 		return;
441 
442 	f2fs_down_write(&nm_i->nat_tree_lock);
443 	e = __lookup_nat_cache(nm_i, nid);
444 	if (!e)
445 		e = __init_nat_entry(nm_i, new, ne, false);
446 	else
447 		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
448 				nat_get_blkaddr(e) !=
449 					le32_to_cpu(ne->block_addr) ||
450 				nat_get_version(e) != ne->version);
451 	f2fs_up_write(&nm_i->nat_tree_lock);
452 	if (e != new)
453 		__free_nat_entry(new);
454 }
455 
456 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
457 			block_t new_blkaddr, bool fsync_done)
458 {
459 	struct f2fs_nm_info *nm_i = NM_I(sbi);
460 	struct nat_entry *e;
461 	struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
462 
463 	f2fs_down_write(&nm_i->nat_tree_lock);
464 	e = __lookup_nat_cache(nm_i, ni->nid);
465 	if (!e) {
466 		e = __init_nat_entry(nm_i, new, NULL, true);
467 		copy_node_info(&e->ni, ni);
468 		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
469 	} else if (new_blkaddr == NEW_ADDR) {
470 		/*
471 		 * when nid is reallocated,
472 		 * previous nat entry can be remained in nat cache.
473 		 * So, reinitialize it with new information.
474 		 */
475 		copy_node_info(&e->ni, ni);
476 		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
477 	}
478 	/* let's free early to reduce memory consumption */
479 	if (e != new)
480 		__free_nat_entry(new);
481 
482 	/* sanity check */
483 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
484 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
485 			new_blkaddr == NULL_ADDR);
486 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
487 			new_blkaddr == NEW_ADDR);
488 	f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
489 			new_blkaddr == NEW_ADDR);
490 
491 	/* increment version no as node is removed */
492 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
493 		unsigned char version = nat_get_version(e);
494 
495 		nat_set_version(e, inc_node_version(version));
496 	}
497 
498 	/* change address */
499 	nat_set_blkaddr(e, new_blkaddr);
500 	if (!__is_valid_data_blkaddr(new_blkaddr))
501 		set_nat_flag(e, IS_CHECKPOINTED, false);
502 	__set_nat_cache_dirty(nm_i, e);
503 
504 	/* update fsync_mark if its inode nat entry is still alive */
505 	if (ni->nid != ni->ino)
506 		e = __lookup_nat_cache(nm_i, ni->ino);
507 	if (e) {
508 		if (fsync_done && ni->nid == ni->ino)
509 			set_nat_flag(e, HAS_FSYNCED_INODE, true);
510 		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
511 	}
512 	f2fs_up_write(&nm_i->nat_tree_lock);
513 }
514 
515 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
516 {
517 	struct f2fs_nm_info *nm_i = NM_I(sbi);
518 	int nr = nr_shrink;
519 
520 	if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
521 		return 0;
522 
523 	spin_lock(&nm_i->nat_list_lock);
524 	while (nr_shrink) {
525 		struct nat_entry *ne;
526 
527 		if (list_empty(&nm_i->nat_entries))
528 			break;
529 
530 		ne = list_first_entry(&nm_i->nat_entries,
531 					struct nat_entry, list);
532 		list_del(&ne->list);
533 		spin_unlock(&nm_i->nat_list_lock);
534 
535 		__del_from_nat_cache(nm_i, ne);
536 		nr_shrink--;
537 
538 		spin_lock(&nm_i->nat_list_lock);
539 	}
540 	spin_unlock(&nm_i->nat_list_lock);
541 
542 	f2fs_up_write(&nm_i->nat_tree_lock);
543 	return nr - nr_shrink;
544 }
545 
546 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
547 				struct node_info *ni, bool checkpoint_context)
548 {
549 	struct f2fs_nm_info *nm_i = NM_I(sbi);
550 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
551 	struct f2fs_journal *journal = curseg->journal;
552 	nid_t start_nid = START_NID(nid);
553 	struct f2fs_nat_block *nat_blk;
554 	struct page *page = NULL;
555 	struct f2fs_nat_entry ne;
556 	struct nat_entry *e;
557 	pgoff_t index;
558 	block_t blkaddr;
559 	int i;
560 
561 	ni->flag = 0;
562 	ni->nid = nid;
563 retry:
564 	/* Check nat cache */
565 	f2fs_down_read(&nm_i->nat_tree_lock);
566 	e = __lookup_nat_cache(nm_i, nid);
567 	if (e) {
568 		ni->ino = nat_get_ino(e);
569 		ni->blk_addr = nat_get_blkaddr(e);
570 		ni->version = nat_get_version(e);
571 		f2fs_up_read(&nm_i->nat_tree_lock);
572 		return 0;
573 	}
574 
575 	/*
576 	 * Check current segment summary by trying to grab journal_rwsem first.
577 	 * This sem is on the critical path on the checkpoint requiring the above
578 	 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
579 	 * while not bothering checkpoint.
580 	 */
581 	if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
582 		down_read(&curseg->journal_rwsem);
583 	} else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
584 				!down_read_trylock(&curseg->journal_rwsem)) {
585 		f2fs_up_read(&nm_i->nat_tree_lock);
586 		goto retry;
587 	}
588 
589 	i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
590 	if (i >= 0) {
591 		ne = nat_in_journal(journal, i);
592 		node_info_from_raw_nat(ni, &ne);
593 	}
594 	up_read(&curseg->journal_rwsem);
595 	if (i >= 0) {
596 		f2fs_up_read(&nm_i->nat_tree_lock);
597 		goto cache;
598 	}
599 
600 	/* Fill node_info from nat page */
601 	index = current_nat_addr(sbi, nid);
602 	f2fs_up_read(&nm_i->nat_tree_lock);
603 
604 	page = f2fs_get_meta_page(sbi, index);
605 	if (IS_ERR(page))
606 		return PTR_ERR(page);
607 
608 	nat_blk = (struct f2fs_nat_block *)page_address(page);
609 	ne = nat_blk->entries[nid - start_nid];
610 	node_info_from_raw_nat(ni, &ne);
611 	f2fs_put_page(page, 1);
612 cache:
613 	blkaddr = le32_to_cpu(ne.block_addr);
614 	if (__is_valid_data_blkaddr(blkaddr) &&
615 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
616 		return -EFAULT;
617 
618 	/* cache nat entry */
619 	cache_nat_entry(sbi, nid, &ne);
620 	return 0;
621 }
622 
623 /*
624  * readahead MAX_RA_NODE number of node pages.
625  */
626 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
627 {
628 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
629 	struct blk_plug plug;
630 	int i, end;
631 	nid_t nid;
632 
633 	blk_start_plug(&plug);
634 
635 	/* Then, try readahead for siblings of the desired node */
636 	end = start + n;
637 	end = min(end, (int)NIDS_PER_BLOCK);
638 	for (i = start; i < end; i++) {
639 		nid = get_nid(parent, i, false);
640 		f2fs_ra_node_page(sbi, nid);
641 	}
642 
643 	blk_finish_plug(&plug);
644 }
645 
646 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
647 {
648 	const long direct_index = ADDRS_PER_INODE(dn->inode);
649 	const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
650 	const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
651 	unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
652 	int cur_level = dn->cur_level;
653 	int max_level = dn->max_level;
654 	pgoff_t base = 0;
655 
656 	if (!dn->max_level)
657 		return pgofs + 1;
658 
659 	while (max_level-- > cur_level)
660 		skipped_unit *= NIDS_PER_BLOCK;
661 
662 	switch (dn->max_level) {
663 	case 3:
664 		base += 2 * indirect_blks;
665 		fallthrough;
666 	case 2:
667 		base += 2 * direct_blks;
668 		fallthrough;
669 	case 1:
670 		base += direct_index;
671 		break;
672 	default:
673 		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
674 	}
675 
676 	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
677 }
678 
679 /*
680  * The maximum depth is four.
681  * Offset[0] will have raw inode offset.
682  */
683 static int get_node_path(struct inode *inode, long block,
684 				int offset[4], unsigned int noffset[4])
685 {
686 	const long direct_index = ADDRS_PER_INODE(inode);
687 	const long direct_blks = ADDRS_PER_BLOCK(inode);
688 	const long dptrs_per_blk = NIDS_PER_BLOCK;
689 	const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
690 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
691 	int n = 0;
692 	int level = 0;
693 
694 	noffset[0] = 0;
695 
696 	if (block < direct_index) {
697 		offset[n] = block;
698 		goto got;
699 	}
700 	block -= direct_index;
701 	if (block < direct_blks) {
702 		offset[n++] = NODE_DIR1_BLOCK;
703 		noffset[n] = 1;
704 		offset[n] = block;
705 		level = 1;
706 		goto got;
707 	}
708 	block -= direct_blks;
709 	if (block < direct_blks) {
710 		offset[n++] = NODE_DIR2_BLOCK;
711 		noffset[n] = 2;
712 		offset[n] = block;
713 		level = 1;
714 		goto got;
715 	}
716 	block -= direct_blks;
717 	if (block < indirect_blks) {
718 		offset[n++] = NODE_IND1_BLOCK;
719 		noffset[n] = 3;
720 		offset[n++] = block / direct_blks;
721 		noffset[n] = 4 + offset[n - 1];
722 		offset[n] = block % direct_blks;
723 		level = 2;
724 		goto got;
725 	}
726 	block -= indirect_blks;
727 	if (block < indirect_blks) {
728 		offset[n++] = NODE_IND2_BLOCK;
729 		noffset[n] = 4 + dptrs_per_blk;
730 		offset[n++] = block / direct_blks;
731 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
732 		offset[n] = block % direct_blks;
733 		level = 2;
734 		goto got;
735 	}
736 	block -= indirect_blks;
737 	if (block < dindirect_blks) {
738 		offset[n++] = NODE_DIND_BLOCK;
739 		noffset[n] = 5 + (dptrs_per_blk * 2);
740 		offset[n++] = block / indirect_blks;
741 		noffset[n] = 6 + (dptrs_per_blk * 2) +
742 			      offset[n - 1] * (dptrs_per_blk + 1);
743 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
744 		noffset[n] = 7 + (dptrs_per_blk * 2) +
745 			      offset[n - 2] * (dptrs_per_blk + 1) +
746 			      offset[n - 1];
747 		offset[n] = block % direct_blks;
748 		level = 3;
749 		goto got;
750 	} else {
751 		return -E2BIG;
752 	}
753 got:
754 	return level;
755 }
756 
757 /*
758  * Caller should call f2fs_put_dnode(dn).
759  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
760  * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
761  */
762 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
763 {
764 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
765 	struct page *npage[4];
766 	struct page *parent = NULL;
767 	int offset[4];
768 	unsigned int noffset[4];
769 	nid_t nids[4];
770 	int level, i = 0;
771 	int err = 0;
772 
773 	level = get_node_path(dn->inode, index, offset, noffset);
774 	if (level < 0)
775 		return level;
776 
777 	nids[0] = dn->inode->i_ino;
778 	npage[0] = dn->inode_page;
779 
780 	if (!npage[0]) {
781 		npage[0] = f2fs_get_node_page(sbi, nids[0]);
782 		if (IS_ERR(npage[0]))
783 			return PTR_ERR(npage[0]);
784 	}
785 
786 	/* if inline_data is set, should not report any block indices */
787 	if (f2fs_has_inline_data(dn->inode) && index) {
788 		err = -ENOENT;
789 		f2fs_put_page(npage[0], 1);
790 		goto release_out;
791 	}
792 
793 	parent = npage[0];
794 	if (level != 0)
795 		nids[1] = get_nid(parent, offset[0], true);
796 	dn->inode_page = npage[0];
797 	dn->inode_page_locked = true;
798 
799 	/* get indirect or direct nodes */
800 	for (i = 1; i <= level; i++) {
801 		bool done = false;
802 
803 		if (!nids[i] && mode == ALLOC_NODE) {
804 			/* alloc new node */
805 			if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
806 				err = -ENOSPC;
807 				goto release_pages;
808 			}
809 
810 			dn->nid = nids[i];
811 			npage[i] = f2fs_new_node_page(dn, noffset[i]);
812 			if (IS_ERR(npage[i])) {
813 				f2fs_alloc_nid_failed(sbi, nids[i]);
814 				err = PTR_ERR(npage[i]);
815 				goto release_pages;
816 			}
817 
818 			set_nid(parent, offset[i - 1], nids[i], i == 1);
819 			f2fs_alloc_nid_done(sbi, nids[i]);
820 			done = true;
821 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
822 			npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
823 			if (IS_ERR(npage[i])) {
824 				err = PTR_ERR(npage[i]);
825 				goto release_pages;
826 			}
827 			done = true;
828 		}
829 		if (i == 1) {
830 			dn->inode_page_locked = false;
831 			unlock_page(parent);
832 		} else {
833 			f2fs_put_page(parent, 1);
834 		}
835 
836 		if (!done) {
837 			npage[i] = f2fs_get_node_page(sbi, nids[i]);
838 			if (IS_ERR(npage[i])) {
839 				err = PTR_ERR(npage[i]);
840 				f2fs_put_page(npage[0], 0);
841 				goto release_out;
842 			}
843 		}
844 		if (i < level) {
845 			parent = npage[i];
846 			nids[i + 1] = get_nid(parent, offset[i], false);
847 		}
848 	}
849 	dn->nid = nids[level];
850 	dn->ofs_in_node = offset[level];
851 	dn->node_page = npage[level];
852 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
853 
854 	if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
855 					f2fs_sb_has_readonly(sbi)) {
856 		unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
857 		unsigned int ofs_in_node = dn->ofs_in_node;
858 		pgoff_t fofs = index;
859 		unsigned int c_len;
860 		block_t blkaddr;
861 
862 		/* should align fofs and ofs_in_node to cluster_size */
863 		if (fofs % cluster_size) {
864 			fofs = round_down(fofs, cluster_size);
865 			ofs_in_node = round_down(ofs_in_node, cluster_size);
866 		}
867 
868 		c_len = f2fs_cluster_blocks_are_contiguous(dn, ofs_in_node);
869 		if (!c_len)
870 			goto out;
871 
872 		blkaddr = data_blkaddr(dn->inode, dn->node_page, ofs_in_node);
873 		if (blkaddr == COMPRESS_ADDR)
874 			blkaddr = data_blkaddr(dn->inode, dn->node_page,
875 						ofs_in_node + 1);
876 
877 		f2fs_update_read_extent_tree_range_compressed(dn->inode,
878 					fofs, blkaddr, cluster_size, c_len);
879 	}
880 out:
881 	return 0;
882 
883 release_pages:
884 	f2fs_put_page(parent, 1);
885 	if (i > 1)
886 		f2fs_put_page(npage[0], 0);
887 release_out:
888 	dn->inode_page = NULL;
889 	dn->node_page = NULL;
890 	if (err == -ENOENT) {
891 		dn->cur_level = i;
892 		dn->max_level = level;
893 		dn->ofs_in_node = offset[level];
894 	}
895 	return err;
896 }
897 
898 static int truncate_node(struct dnode_of_data *dn)
899 {
900 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
901 	struct node_info ni;
902 	int err;
903 	pgoff_t index;
904 
905 	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
906 	if (err)
907 		return err;
908 
909 	if (ni.blk_addr != NEW_ADDR &&
910 		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr, DATA_GENERIC_ENHANCE)) {
911 		f2fs_err_ratelimited(sbi,
912 			"nat entry is corrupted, run fsck to fix it, ino:%u, "
913 			"nid:%u, blkaddr:%u", ni.ino, ni.nid, ni.blk_addr);
914 		set_sbi_flag(sbi, SBI_NEED_FSCK);
915 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NAT);
916 		return -EFSCORRUPTED;
917 	}
918 
919 	/* Deallocate node address */
920 	f2fs_invalidate_blocks(sbi, ni.blk_addr, 1);
921 	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
922 	set_node_addr(sbi, &ni, NULL_ADDR, false);
923 
924 	if (dn->nid == dn->inode->i_ino) {
925 		f2fs_remove_orphan_inode(sbi, dn->nid);
926 		dec_valid_inode_count(sbi);
927 		f2fs_inode_synced(dn->inode);
928 	}
929 
930 	clear_node_page_dirty(dn->node_page);
931 	set_sbi_flag(sbi, SBI_IS_DIRTY);
932 
933 	index = page_folio(dn->node_page)->index;
934 	f2fs_put_page(dn->node_page, 1);
935 
936 	invalidate_mapping_pages(NODE_MAPPING(sbi),
937 			index, index);
938 
939 	dn->node_page = NULL;
940 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
941 
942 	return 0;
943 }
944 
945 static int truncate_dnode(struct dnode_of_data *dn)
946 {
947 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
948 	struct page *page;
949 	int err;
950 
951 	if (dn->nid == 0)
952 		return 1;
953 
954 	/* get direct node */
955 	page = f2fs_get_node_page(sbi, dn->nid);
956 	if (PTR_ERR(page) == -ENOENT)
957 		return 1;
958 	else if (IS_ERR(page))
959 		return PTR_ERR(page);
960 
961 	if (IS_INODE(page) || ino_of_node(page) != dn->inode->i_ino) {
962 		f2fs_err(sbi, "incorrect node reference, ino: %lu, nid: %u, ino_of_node: %u",
963 				dn->inode->i_ino, dn->nid, ino_of_node(page));
964 		set_sbi_flag(sbi, SBI_NEED_FSCK);
965 		f2fs_handle_error(sbi, ERROR_INVALID_NODE_REFERENCE);
966 		f2fs_put_page(page, 1);
967 		return -EFSCORRUPTED;
968 	}
969 
970 	/* Make dnode_of_data for parameter */
971 	dn->node_page = page;
972 	dn->ofs_in_node = 0;
973 	f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
974 	err = truncate_node(dn);
975 	if (err) {
976 		f2fs_put_page(page, 1);
977 		return err;
978 	}
979 
980 	return 1;
981 }
982 
983 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
984 						int ofs, int depth)
985 {
986 	struct dnode_of_data rdn = *dn;
987 	struct page *page;
988 	struct f2fs_node *rn;
989 	nid_t child_nid;
990 	unsigned int child_nofs;
991 	int freed = 0;
992 	int i, ret;
993 
994 	if (dn->nid == 0)
995 		return NIDS_PER_BLOCK + 1;
996 
997 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
998 
999 	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
1000 	if (IS_ERR(page)) {
1001 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
1002 		return PTR_ERR(page);
1003 	}
1004 
1005 	f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
1006 
1007 	rn = F2FS_NODE(page);
1008 	if (depth < 3) {
1009 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
1010 			child_nid = le32_to_cpu(rn->in.nid[i]);
1011 			if (child_nid == 0)
1012 				continue;
1013 			rdn.nid = child_nid;
1014 			ret = truncate_dnode(&rdn);
1015 			if (ret < 0)
1016 				goto out_err;
1017 			if (set_nid(page, i, 0, false))
1018 				dn->node_changed = true;
1019 		}
1020 	} else {
1021 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
1022 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
1023 			child_nid = le32_to_cpu(rn->in.nid[i]);
1024 			if (child_nid == 0) {
1025 				child_nofs += NIDS_PER_BLOCK + 1;
1026 				continue;
1027 			}
1028 			rdn.nid = child_nid;
1029 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
1030 			if (ret == (NIDS_PER_BLOCK + 1)) {
1031 				if (set_nid(page, i, 0, false))
1032 					dn->node_changed = true;
1033 				child_nofs += ret;
1034 			} else if (ret < 0 && ret != -ENOENT) {
1035 				goto out_err;
1036 			}
1037 		}
1038 		freed = child_nofs;
1039 	}
1040 
1041 	if (!ofs) {
1042 		/* remove current indirect node */
1043 		dn->node_page = page;
1044 		ret = truncate_node(dn);
1045 		if (ret)
1046 			goto out_err;
1047 		freed++;
1048 	} else {
1049 		f2fs_put_page(page, 1);
1050 	}
1051 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1052 	return freed;
1053 
1054 out_err:
1055 	f2fs_put_page(page, 1);
1056 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1057 	return ret;
1058 }
1059 
1060 static int truncate_partial_nodes(struct dnode_of_data *dn,
1061 			struct f2fs_inode *ri, int *offset, int depth)
1062 {
1063 	struct page *pages[2];
1064 	nid_t nid[3];
1065 	nid_t child_nid;
1066 	int err = 0;
1067 	int i;
1068 	int idx = depth - 2;
1069 
1070 	nid[0] = get_nid(dn->inode_page, offset[0], true);
1071 	if (!nid[0])
1072 		return 0;
1073 
1074 	/* get indirect nodes in the path */
1075 	for (i = 0; i < idx + 1; i++) {
1076 		/* reference count'll be increased */
1077 		pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1078 		if (IS_ERR(pages[i])) {
1079 			err = PTR_ERR(pages[i]);
1080 			idx = i - 1;
1081 			goto fail;
1082 		}
1083 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1084 	}
1085 
1086 	f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1087 
1088 	/* free direct nodes linked to a partial indirect node */
1089 	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1090 		child_nid = get_nid(pages[idx], i, false);
1091 		if (!child_nid)
1092 			continue;
1093 		dn->nid = child_nid;
1094 		err = truncate_dnode(dn);
1095 		if (err < 0)
1096 			goto fail;
1097 		if (set_nid(pages[idx], i, 0, false))
1098 			dn->node_changed = true;
1099 	}
1100 
1101 	if (offset[idx + 1] == 0) {
1102 		dn->node_page = pages[idx];
1103 		dn->nid = nid[idx];
1104 		err = truncate_node(dn);
1105 		if (err)
1106 			goto fail;
1107 	} else {
1108 		f2fs_put_page(pages[idx], 1);
1109 	}
1110 	offset[idx]++;
1111 	offset[idx + 1] = 0;
1112 	idx--;
1113 fail:
1114 	for (i = idx; i >= 0; i--)
1115 		f2fs_put_page(pages[i], 1);
1116 
1117 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1118 
1119 	return err;
1120 }
1121 
1122 /*
1123  * All the block addresses of data and nodes should be nullified.
1124  */
1125 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1126 {
1127 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1128 	int err = 0, cont = 1;
1129 	int level, offset[4], noffset[4];
1130 	unsigned int nofs = 0;
1131 	struct f2fs_inode *ri;
1132 	struct dnode_of_data dn;
1133 	struct folio *folio;
1134 
1135 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
1136 
1137 	level = get_node_path(inode, from, offset, noffset);
1138 	if (level <= 0) {
1139 		if (!level) {
1140 			level = -EFSCORRUPTED;
1141 			f2fs_err(sbi, "%s: inode ino=%lx has corrupted node block, from:%lu addrs:%u",
1142 					__func__, inode->i_ino,
1143 					from, ADDRS_PER_INODE(inode));
1144 			set_sbi_flag(sbi, SBI_NEED_FSCK);
1145 		}
1146 		trace_f2fs_truncate_inode_blocks_exit(inode, level);
1147 		return level;
1148 	}
1149 
1150 	folio = f2fs_get_node_folio(sbi, inode->i_ino);
1151 	if (IS_ERR(folio)) {
1152 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(folio));
1153 		return PTR_ERR(folio);
1154 	}
1155 
1156 	set_new_dnode(&dn, inode, &folio->page, NULL, 0);
1157 	folio_unlock(folio);
1158 
1159 	ri = F2FS_INODE(&folio->page);
1160 	switch (level) {
1161 	case 0:
1162 	case 1:
1163 		nofs = noffset[1];
1164 		break;
1165 	case 2:
1166 		nofs = noffset[1];
1167 		if (!offset[level - 1])
1168 			goto skip_partial;
1169 		err = truncate_partial_nodes(&dn, ri, offset, level);
1170 		if (err < 0 && err != -ENOENT)
1171 			goto fail;
1172 		nofs += 1 + NIDS_PER_BLOCK;
1173 		break;
1174 	case 3:
1175 		nofs = 5 + 2 * NIDS_PER_BLOCK;
1176 		if (!offset[level - 1])
1177 			goto skip_partial;
1178 		err = truncate_partial_nodes(&dn, ri, offset, level);
1179 		if (err < 0 && err != -ENOENT)
1180 			goto fail;
1181 		break;
1182 	default:
1183 		BUG();
1184 	}
1185 
1186 skip_partial:
1187 	while (cont) {
1188 		dn.nid = get_nid(&folio->page, offset[0], true);
1189 		switch (offset[0]) {
1190 		case NODE_DIR1_BLOCK:
1191 		case NODE_DIR2_BLOCK:
1192 			err = truncate_dnode(&dn);
1193 			break;
1194 
1195 		case NODE_IND1_BLOCK:
1196 		case NODE_IND2_BLOCK:
1197 			err = truncate_nodes(&dn, nofs, offset[1], 2);
1198 			break;
1199 
1200 		case NODE_DIND_BLOCK:
1201 			err = truncate_nodes(&dn, nofs, offset[1], 3);
1202 			cont = 0;
1203 			break;
1204 
1205 		default:
1206 			BUG();
1207 		}
1208 		if (err == -ENOENT) {
1209 			set_sbi_flag(F2FS_F_SB(folio), SBI_NEED_FSCK);
1210 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1211 			f2fs_err_ratelimited(sbi,
1212 				"truncate node fail, ino:%lu, nid:%u, "
1213 				"offset[0]:%d, offset[1]:%d, nofs:%d",
1214 				inode->i_ino, dn.nid, offset[0],
1215 				offset[1], nofs);
1216 			err = 0;
1217 		}
1218 		if (err < 0)
1219 			goto fail;
1220 		if (offset[1] == 0 && get_nid(&folio->page, offset[0], true)) {
1221 			folio_lock(folio);
1222 			BUG_ON(folio->mapping != NODE_MAPPING(sbi));
1223 			set_nid(&folio->page, offset[0], 0, true);
1224 			folio_unlock(folio);
1225 		}
1226 		offset[1] = 0;
1227 		offset[0]++;
1228 		nofs += err;
1229 	}
1230 fail:
1231 	f2fs_folio_put(folio, false);
1232 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1233 	return err > 0 ? 0 : err;
1234 }
1235 
1236 /* caller must lock inode page */
1237 int f2fs_truncate_xattr_node(struct inode *inode)
1238 {
1239 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1240 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1241 	struct dnode_of_data dn;
1242 	struct page *npage;
1243 	int err;
1244 
1245 	if (!nid)
1246 		return 0;
1247 
1248 	npage = f2fs_get_node_page(sbi, nid);
1249 	if (IS_ERR(npage))
1250 		return PTR_ERR(npage);
1251 
1252 	set_new_dnode(&dn, inode, NULL, npage, nid);
1253 	err = truncate_node(&dn);
1254 	if (err) {
1255 		f2fs_put_page(npage, 1);
1256 		return err;
1257 	}
1258 
1259 	f2fs_i_xnid_write(inode, 0);
1260 
1261 	return 0;
1262 }
1263 
1264 /*
1265  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1266  * f2fs_unlock_op().
1267  */
1268 int f2fs_remove_inode_page(struct inode *inode)
1269 {
1270 	struct dnode_of_data dn;
1271 	int err;
1272 
1273 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1274 	err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1275 	if (err)
1276 		return err;
1277 
1278 	err = f2fs_truncate_xattr_node(inode);
1279 	if (err) {
1280 		f2fs_put_dnode(&dn);
1281 		return err;
1282 	}
1283 
1284 	/* remove potential inline_data blocks */
1285 	if (!IS_DEVICE_ALIASING(inode) &&
1286 	    (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1287 	     S_ISLNK(inode->i_mode)))
1288 		f2fs_truncate_data_blocks_range(&dn, 1);
1289 
1290 	/* 0 is possible, after f2fs_new_inode() has failed */
1291 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1292 		f2fs_put_dnode(&dn);
1293 		return -EIO;
1294 	}
1295 
1296 	if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1297 		f2fs_warn(F2FS_I_SB(inode),
1298 			"f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1299 			inode->i_ino, (unsigned long long)inode->i_blocks);
1300 		set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1301 	}
1302 
1303 	/* will put inode & node pages */
1304 	err = truncate_node(&dn);
1305 	if (err) {
1306 		f2fs_put_dnode(&dn);
1307 		return err;
1308 	}
1309 	return 0;
1310 }
1311 
1312 struct page *f2fs_new_inode_page(struct inode *inode)
1313 {
1314 	struct dnode_of_data dn;
1315 
1316 	/* allocate inode page for new inode */
1317 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1318 
1319 	/* caller should f2fs_put_page(page, 1); */
1320 	return f2fs_new_node_page(&dn, 0);
1321 }
1322 
1323 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1324 {
1325 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1326 	struct node_info new_ni;
1327 	struct page *page;
1328 	int err;
1329 
1330 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1331 		return ERR_PTR(-EPERM);
1332 
1333 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1334 	if (!page)
1335 		return ERR_PTR(-ENOMEM);
1336 
1337 	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1338 		goto fail;
1339 
1340 #ifdef CONFIG_F2FS_CHECK_FS
1341 	err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1342 	if (err) {
1343 		dec_valid_node_count(sbi, dn->inode, !ofs);
1344 		goto fail;
1345 	}
1346 	if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1347 		err = -EFSCORRUPTED;
1348 		dec_valid_node_count(sbi, dn->inode, !ofs);
1349 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1350 		f2fs_warn_ratelimited(sbi,
1351 			"f2fs_new_node_page: inconsistent nat entry, "
1352 			"ino:%u, nid:%u, blkaddr:%u, ver:%u, flag:%u",
1353 			new_ni.ino, new_ni.nid, new_ni.blk_addr,
1354 			new_ni.version, new_ni.flag);
1355 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NAT);
1356 		goto fail;
1357 	}
1358 #endif
1359 	new_ni.nid = dn->nid;
1360 	new_ni.ino = dn->inode->i_ino;
1361 	new_ni.blk_addr = NULL_ADDR;
1362 	new_ni.flag = 0;
1363 	new_ni.version = 0;
1364 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1365 
1366 	f2fs_wait_on_page_writeback(page, NODE, true, true);
1367 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1368 	set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1369 	if (!PageUptodate(page))
1370 		SetPageUptodate(page);
1371 	if (set_page_dirty(page))
1372 		dn->node_changed = true;
1373 
1374 	if (f2fs_has_xattr_block(ofs))
1375 		f2fs_i_xnid_write(dn->inode, dn->nid);
1376 
1377 	if (ofs == 0)
1378 		inc_valid_inode_count(sbi);
1379 	return page;
1380 fail:
1381 	clear_node_page_dirty(page);
1382 	f2fs_put_page(page, 1);
1383 	return ERR_PTR(err);
1384 }
1385 
1386 /*
1387  * Caller should do after getting the following values.
1388  * 0: f2fs_put_page(page, 0)
1389  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1390  */
1391 static int read_node_page(struct page *page, blk_opf_t op_flags)
1392 {
1393 	struct folio *folio = page_folio(page);
1394 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1395 	struct node_info ni;
1396 	struct f2fs_io_info fio = {
1397 		.sbi = sbi,
1398 		.type = NODE,
1399 		.op = REQ_OP_READ,
1400 		.op_flags = op_flags,
1401 		.page = page,
1402 		.encrypted_page = NULL,
1403 	};
1404 	int err;
1405 
1406 	if (folio_test_uptodate(folio)) {
1407 		if (!f2fs_inode_chksum_verify(sbi, page)) {
1408 			folio_clear_uptodate(folio);
1409 			return -EFSBADCRC;
1410 		}
1411 		return LOCKED_PAGE;
1412 	}
1413 
1414 	err = f2fs_get_node_info(sbi, folio->index, &ni, false);
1415 	if (err)
1416 		return err;
1417 
1418 	/* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1419 	if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1420 		folio_clear_uptodate(folio);
1421 		return -ENOENT;
1422 	}
1423 
1424 	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1425 
1426 	err = f2fs_submit_page_bio(&fio);
1427 
1428 	if (!err)
1429 		f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE);
1430 
1431 	return err;
1432 }
1433 
1434 /*
1435  * Readahead a node page
1436  */
1437 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1438 {
1439 	struct page *apage;
1440 	int err;
1441 
1442 	if (!nid)
1443 		return;
1444 	if (f2fs_check_nid_range(sbi, nid))
1445 		return;
1446 
1447 	apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1448 	if (apage)
1449 		return;
1450 
1451 	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1452 	if (!apage)
1453 		return;
1454 
1455 	err = read_node_page(apage, REQ_RAHEAD);
1456 	f2fs_put_page(apage, err ? 1 : 0);
1457 }
1458 
1459 static struct folio *__get_node_folio(struct f2fs_sb_info *sbi, pgoff_t nid,
1460 					struct page *parent, int start)
1461 {
1462 	struct folio *folio;
1463 	int err;
1464 
1465 	if (!nid)
1466 		return ERR_PTR(-ENOENT);
1467 	if (f2fs_check_nid_range(sbi, nid))
1468 		return ERR_PTR(-EINVAL);
1469 repeat:
1470 	folio = f2fs_grab_cache_folio(NODE_MAPPING(sbi), nid, false);
1471 	if (IS_ERR(folio))
1472 		return folio;
1473 
1474 	err = read_node_page(&folio->page, 0);
1475 	if (err < 0) {
1476 		goto out_put_err;
1477 	} else if (err == LOCKED_PAGE) {
1478 		err = 0;
1479 		goto page_hit;
1480 	}
1481 
1482 	if (parent)
1483 		f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1484 
1485 	folio_lock(folio);
1486 
1487 	if (unlikely(folio->mapping != NODE_MAPPING(sbi))) {
1488 		f2fs_folio_put(folio, true);
1489 		goto repeat;
1490 	}
1491 
1492 	if (unlikely(!folio_test_uptodate(folio))) {
1493 		err = -EIO;
1494 		goto out_err;
1495 	}
1496 
1497 	if (!f2fs_inode_chksum_verify(sbi, &folio->page)) {
1498 		err = -EFSBADCRC;
1499 		goto out_err;
1500 	}
1501 page_hit:
1502 	if (likely(nid == nid_of_node(&folio->page)))
1503 		return folio;
1504 
1505 	f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1506 			  nid, nid_of_node(&folio->page), ino_of_node(&folio->page),
1507 			  ofs_of_node(&folio->page), cpver_of_node(&folio->page),
1508 			  next_blkaddr_of_node(&folio->page));
1509 	set_sbi_flag(sbi, SBI_NEED_FSCK);
1510 	f2fs_handle_error(sbi, ERROR_INCONSISTENT_FOOTER);
1511 	err = -EFSCORRUPTED;
1512 out_err:
1513 	folio_clear_uptodate(folio);
1514 out_put_err:
1515 	/* ENOENT comes from read_node_page which is not an error. */
1516 	if (err != -ENOENT)
1517 		f2fs_handle_page_eio(sbi, folio, NODE);
1518 	f2fs_folio_put(folio, true);
1519 	return ERR_PTR(err);
1520 }
1521 
1522 struct folio *f2fs_get_node_folio(struct f2fs_sb_info *sbi, pgoff_t nid)
1523 {
1524 	return __get_node_folio(sbi, nid, NULL, 0);
1525 }
1526 
1527 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1528 {
1529 	struct folio *folio = __get_node_folio(sbi, nid, NULL, 0);
1530 
1531 	return &folio->page;
1532 }
1533 
1534 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1535 {
1536 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1537 	nid_t nid = get_nid(parent, start, false);
1538 	struct folio *folio = __get_node_folio(sbi, nid, parent, start);
1539 
1540 	return &folio->page;
1541 }
1542 
1543 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1544 {
1545 	struct inode *inode;
1546 	struct page *page;
1547 	int ret;
1548 
1549 	/* should flush inline_data before evict_inode */
1550 	inode = ilookup(sbi->sb, ino);
1551 	if (!inode)
1552 		return;
1553 
1554 	page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1555 					FGP_LOCK|FGP_NOWAIT, 0);
1556 	if (!page)
1557 		goto iput_out;
1558 
1559 	if (!PageUptodate(page))
1560 		goto page_out;
1561 
1562 	if (!PageDirty(page))
1563 		goto page_out;
1564 
1565 	if (!clear_page_dirty_for_io(page))
1566 		goto page_out;
1567 
1568 	ret = f2fs_write_inline_data(inode, page_folio(page));
1569 	inode_dec_dirty_pages(inode);
1570 	f2fs_remove_dirty_inode(inode);
1571 	if (ret)
1572 		set_page_dirty(page);
1573 page_out:
1574 	f2fs_put_page(page, 1);
1575 iput_out:
1576 	iput(inode);
1577 }
1578 
1579 static struct folio *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1580 {
1581 	pgoff_t index;
1582 	struct folio_batch fbatch;
1583 	struct folio *last_folio = NULL;
1584 	int nr_folios;
1585 
1586 	folio_batch_init(&fbatch);
1587 	index = 0;
1588 
1589 	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1590 					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1591 					&fbatch))) {
1592 		int i;
1593 
1594 		for (i = 0; i < nr_folios; i++) {
1595 			struct folio *folio = fbatch.folios[i];
1596 
1597 			if (unlikely(f2fs_cp_error(sbi))) {
1598 				f2fs_folio_put(last_folio, false);
1599 				folio_batch_release(&fbatch);
1600 				return ERR_PTR(-EIO);
1601 			}
1602 
1603 			if (!IS_DNODE(&folio->page) || !is_cold_node(&folio->page))
1604 				continue;
1605 			if (ino_of_node(&folio->page) != ino)
1606 				continue;
1607 
1608 			folio_lock(folio);
1609 
1610 			if (unlikely(folio->mapping != NODE_MAPPING(sbi))) {
1611 continue_unlock:
1612 				folio_unlock(folio);
1613 				continue;
1614 			}
1615 			if (ino_of_node(&folio->page) != ino)
1616 				goto continue_unlock;
1617 
1618 			if (!folio_test_dirty(folio)) {
1619 				/* someone wrote it for us */
1620 				goto continue_unlock;
1621 			}
1622 
1623 			if (last_folio)
1624 				f2fs_folio_put(last_folio, false);
1625 
1626 			folio_get(folio);
1627 			last_folio = folio;
1628 			folio_unlock(folio);
1629 		}
1630 		folio_batch_release(&fbatch);
1631 		cond_resched();
1632 	}
1633 	return last_folio;
1634 }
1635 
1636 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1637 				struct writeback_control *wbc, bool do_balance,
1638 				enum iostat_type io_type, unsigned int *seq_id)
1639 {
1640 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1641 	struct folio *folio = page_folio(page);
1642 	nid_t nid;
1643 	struct node_info ni;
1644 	struct f2fs_io_info fio = {
1645 		.sbi = sbi,
1646 		.ino = ino_of_node(page),
1647 		.type = NODE,
1648 		.op = REQ_OP_WRITE,
1649 		.op_flags = wbc_to_write_flags(wbc),
1650 		.page = page,
1651 		.encrypted_page = NULL,
1652 		.submitted = 0,
1653 		.io_type = io_type,
1654 		.io_wbc = wbc,
1655 	};
1656 	unsigned int seq;
1657 
1658 	trace_f2fs_writepage(folio, NODE);
1659 
1660 	if (unlikely(f2fs_cp_error(sbi))) {
1661 		/* keep node pages in remount-ro mode */
1662 		if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
1663 			goto redirty_out;
1664 		folio_clear_uptodate(folio);
1665 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1666 		folio_unlock(folio);
1667 		return 0;
1668 	}
1669 
1670 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1671 		goto redirty_out;
1672 
1673 	if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1674 			wbc->sync_mode == WB_SYNC_NONE &&
1675 			IS_DNODE(page) && is_cold_node(page))
1676 		goto redirty_out;
1677 
1678 	/* get old block addr of this node page */
1679 	nid = nid_of_node(page);
1680 	f2fs_bug_on(sbi, folio->index != nid);
1681 
1682 	if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1683 		goto redirty_out;
1684 
1685 	if (wbc->for_reclaim) {
1686 		if (!f2fs_down_read_trylock(&sbi->node_write))
1687 			goto redirty_out;
1688 	} else {
1689 		f2fs_down_read(&sbi->node_write);
1690 	}
1691 
1692 	/* This page is already truncated */
1693 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1694 		folio_clear_uptodate(folio);
1695 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1696 		f2fs_up_read(&sbi->node_write);
1697 		folio_unlock(folio);
1698 		return 0;
1699 	}
1700 
1701 	if (__is_valid_data_blkaddr(ni.blk_addr) &&
1702 		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1703 					DATA_GENERIC_ENHANCE)) {
1704 		f2fs_up_read(&sbi->node_write);
1705 		goto redirty_out;
1706 	}
1707 
1708 	if (atomic && !test_opt(sbi, NOBARRIER))
1709 		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1710 
1711 	/* should add to global list before clearing PAGECACHE status */
1712 	if (f2fs_in_warm_node_list(sbi, folio)) {
1713 		seq = f2fs_add_fsync_node_entry(sbi, page);
1714 		if (seq_id)
1715 			*seq_id = seq;
1716 	}
1717 
1718 	folio_start_writeback(folio);
1719 
1720 	fio.old_blkaddr = ni.blk_addr;
1721 	f2fs_do_write_node_page(nid, &fio);
1722 	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1723 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1724 	f2fs_up_read(&sbi->node_write);
1725 
1726 	if (wbc->for_reclaim) {
1727 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1728 		submitted = NULL;
1729 	}
1730 
1731 	folio_unlock(folio);
1732 
1733 	if (unlikely(f2fs_cp_error(sbi))) {
1734 		f2fs_submit_merged_write(sbi, NODE);
1735 		submitted = NULL;
1736 	}
1737 	if (submitted)
1738 		*submitted = fio.submitted;
1739 
1740 	if (do_balance)
1741 		f2fs_balance_fs(sbi, false);
1742 	return 0;
1743 
1744 redirty_out:
1745 	folio_redirty_for_writepage(wbc, folio);
1746 	return AOP_WRITEPAGE_ACTIVATE;
1747 }
1748 
1749 int f2fs_move_node_page(struct page *node_page, int gc_type)
1750 {
1751 	int err = 0;
1752 
1753 	if (gc_type == FG_GC) {
1754 		struct writeback_control wbc = {
1755 			.sync_mode = WB_SYNC_ALL,
1756 			.nr_to_write = 1,
1757 			.for_reclaim = 0,
1758 		};
1759 
1760 		f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1761 
1762 		set_page_dirty(node_page);
1763 
1764 		if (!clear_page_dirty_for_io(node_page)) {
1765 			err = -EAGAIN;
1766 			goto out_page;
1767 		}
1768 
1769 		if (__write_node_page(node_page, false, NULL,
1770 					&wbc, false, FS_GC_NODE_IO, NULL)) {
1771 			err = -EAGAIN;
1772 			unlock_page(node_page);
1773 		}
1774 		goto release_page;
1775 	} else {
1776 		/* set page dirty and write it */
1777 		if (!folio_test_writeback(page_folio(node_page)))
1778 			set_page_dirty(node_page);
1779 	}
1780 out_page:
1781 	unlock_page(node_page);
1782 release_page:
1783 	f2fs_put_page(node_page, 0);
1784 	return err;
1785 }
1786 
1787 static int f2fs_write_node_page(struct page *page,
1788 				struct writeback_control *wbc)
1789 {
1790 	return __write_node_page(page, false, NULL, wbc, false,
1791 						FS_NODE_IO, NULL);
1792 }
1793 
1794 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1795 			struct writeback_control *wbc, bool atomic,
1796 			unsigned int *seq_id)
1797 {
1798 	pgoff_t index;
1799 	struct folio_batch fbatch;
1800 	int ret = 0;
1801 	struct folio *last_folio = NULL;
1802 	bool marked = false;
1803 	nid_t ino = inode->i_ino;
1804 	int nr_folios;
1805 	int nwritten = 0;
1806 
1807 	if (atomic) {
1808 		last_folio = last_fsync_dnode(sbi, ino);
1809 		if (IS_ERR_OR_NULL(last_folio))
1810 			return PTR_ERR_OR_ZERO(last_folio);
1811 	}
1812 retry:
1813 	folio_batch_init(&fbatch);
1814 	index = 0;
1815 
1816 	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1817 					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1818 					&fbatch))) {
1819 		int i;
1820 
1821 		for (i = 0; i < nr_folios; i++) {
1822 			struct folio *folio = fbatch.folios[i];
1823 			bool submitted = false;
1824 
1825 			if (unlikely(f2fs_cp_error(sbi))) {
1826 				f2fs_folio_put(last_folio, false);
1827 				folio_batch_release(&fbatch);
1828 				ret = -EIO;
1829 				goto out;
1830 			}
1831 
1832 			if (!IS_DNODE(&folio->page) || !is_cold_node(&folio->page))
1833 				continue;
1834 			if (ino_of_node(&folio->page) != ino)
1835 				continue;
1836 
1837 			folio_lock(folio);
1838 
1839 			if (unlikely(folio->mapping != NODE_MAPPING(sbi))) {
1840 continue_unlock:
1841 				folio_unlock(folio);
1842 				continue;
1843 			}
1844 			if (ino_of_node(&folio->page) != ino)
1845 				goto continue_unlock;
1846 
1847 			if (!folio_test_dirty(folio) && folio != last_folio) {
1848 				/* someone wrote it for us */
1849 				goto continue_unlock;
1850 			}
1851 
1852 			f2fs_folio_wait_writeback(folio, NODE, true, true);
1853 
1854 			set_fsync_mark(&folio->page, 0);
1855 			set_dentry_mark(&folio->page, 0);
1856 
1857 			if (!atomic || folio == last_folio) {
1858 				set_fsync_mark(&folio->page, 1);
1859 				percpu_counter_inc(&sbi->rf_node_block_count);
1860 				if (IS_INODE(&folio->page)) {
1861 					if (is_inode_flag_set(inode,
1862 								FI_DIRTY_INODE))
1863 						f2fs_update_inode(inode, &folio->page);
1864 					set_dentry_mark(&folio->page,
1865 						f2fs_need_dentry_mark(sbi, ino));
1866 				}
1867 				/* may be written by other thread */
1868 				if (!folio_test_dirty(folio))
1869 					folio_mark_dirty(folio);
1870 			}
1871 
1872 			if (!folio_clear_dirty_for_io(folio))
1873 				goto continue_unlock;
1874 
1875 			ret = __write_node_page(&folio->page, atomic &&
1876 						folio == last_folio,
1877 						&submitted, wbc, true,
1878 						FS_NODE_IO, seq_id);
1879 			if (ret) {
1880 				folio_unlock(folio);
1881 				f2fs_folio_put(last_folio, false);
1882 				break;
1883 			} else if (submitted) {
1884 				nwritten++;
1885 			}
1886 
1887 			if (folio == last_folio) {
1888 				f2fs_folio_put(folio, false);
1889 				marked = true;
1890 				break;
1891 			}
1892 		}
1893 		folio_batch_release(&fbatch);
1894 		cond_resched();
1895 
1896 		if (ret || marked)
1897 			break;
1898 	}
1899 	if (!ret && atomic && !marked) {
1900 		f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1901 			   ino, last_folio->index);
1902 		folio_lock(last_folio);
1903 		f2fs_folio_wait_writeback(last_folio, NODE, true, true);
1904 		folio_mark_dirty(last_folio);
1905 		folio_unlock(last_folio);
1906 		goto retry;
1907 	}
1908 out:
1909 	if (nwritten)
1910 		f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1911 	return ret ? -EIO : 0;
1912 }
1913 
1914 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1915 {
1916 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1917 	bool clean;
1918 
1919 	if (inode->i_ino != ino)
1920 		return 0;
1921 
1922 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1923 		return 0;
1924 
1925 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1926 	clean = list_empty(&F2FS_I(inode)->gdirty_list);
1927 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1928 
1929 	if (clean)
1930 		return 0;
1931 
1932 	inode = igrab(inode);
1933 	if (!inode)
1934 		return 0;
1935 	return 1;
1936 }
1937 
1938 static bool flush_dirty_inode(struct folio *folio)
1939 {
1940 	struct f2fs_sb_info *sbi = F2FS_F_SB(folio);
1941 	struct inode *inode;
1942 	nid_t ino = ino_of_node(&folio->page);
1943 
1944 	inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1945 	if (!inode)
1946 		return false;
1947 
1948 	f2fs_update_inode(inode, &folio->page);
1949 	folio_unlock(folio);
1950 
1951 	iput(inode);
1952 	return true;
1953 }
1954 
1955 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1956 {
1957 	pgoff_t index = 0;
1958 	struct folio_batch fbatch;
1959 	int nr_folios;
1960 
1961 	folio_batch_init(&fbatch);
1962 
1963 	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1964 					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1965 					&fbatch))) {
1966 		int i;
1967 
1968 		for (i = 0; i < nr_folios; i++) {
1969 			struct folio *folio = fbatch.folios[i];
1970 
1971 			if (!IS_INODE(&folio->page))
1972 				continue;
1973 
1974 			folio_lock(folio);
1975 
1976 			if (unlikely(folio->mapping != NODE_MAPPING(sbi)))
1977 				goto unlock;
1978 			if (!folio_test_dirty(folio))
1979 				goto unlock;
1980 
1981 			/* flush inline_data, if it's async context. */
1982 			if (page_private_inline(&folio->page)) {
1983 				clear_page_private_inline(&folio->page);
1984 				folio_unlock(folio);
1985 				flush_inline_data(sbi, ino_of_node(&folio->page));
1986 				continue;
1987 			}
1988 unlock:
1989 			folio_unlock(folio);
1990 		}
1991 		folio_batch_release(&fbatch);
1992 		cond_resched();
1993 	}
1994 }
1995 
1996 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1997 				struct writeback_control *wbc,
1998 				bool do_balance, enum iostat_type io_type)
1999 {
2000 	pgoff_t index;
2001 	struct folio_batch fbatch;
2002 	int step = 0;
2003 	int nwritten = 0;
2004 	int ret = 0;
2005 	int nr_folios, done = 0;
2006 
2007 	folio_batch_init(&fbatch);
2008 
2009 next_step:
2010 	index = 0;
2011 
2012 	while (!done && (nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi),
2013 				&index, (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
2014 				&fbatch))) {
2015 		int i;
2016 
2017 		for (i = 0; i < nr_folios; i++) {
2018 			struct folio *folio = fbatch.folios[i];
2019 			bool submitted = false;
2020 
2021 			/* give a priority to WB_SYNC threads */
2022 			if (atomic_read(&sbi->wb_sync_req[NODE]) &&
2023 					wbc->sync_mode == WB_SYNC_NONE) {
2024 				done = 1;
2025 				break;
2026 			}
2027 
2028 			/*
2029 			 * flushing sequence with step:
2030 			 * 0. indirect nodes
2031 			 * 1. dentry dnodes
2032 			 * 2. file dnodes
2033 			 */
2034 			if (step == 0 && IS_DNODE(&folio->page))
2035 				continue;
2036 			if (step == 1 && (!IS_DNODE(&folio->page) ||
2037 						is_cold_node(&folio->page)))
2038 				continue;
2039 			if (step == 2 && (!IS_DNODE(&folio->page) ||
2040 						!is_cold_node(&folio->page)))
2041 				continue;
2042 lock_node:
2043 			if (wbc->sync_mode == WB_SYNC_ALL)
2044 				folio_lock(folio);
2045 			else if (!folio_trylock(folio))
2046 				continue;
2047 
2048 			if (unlikely(folio->mapping != NODE_MAPPING(sbi))) {
2049 continue_unlock:
2050 				folio_unlock(folio);
2051 				continue;
2052 			}
2053 
2054 			if (!folio_test_dirty(folio)) {
2055 				/* someone wrote it for us */
2056 				goto continue_unlock;
2057 			}
2058 
2059 			/* flush inline_data/inode, if it's async context. */
2060 			if (!do_balance)
2061 				goto write_node;
2062 
2063 			/* flush inline_data */
2064 			if (page_private_inline(&folio->page)) {
2065 				clear_page_private_inline(&folio->page);
2066 				folio_unlock(folio);
2067 				flush_inline_data(sbi, ino_of_node(&folio->page));
2068 				goto lock_node;
2069 			}
2070 
2071 			/* flush dirty inode */
2072 			if (IS_INODE(&folio->page) && flush_dirty_inode(folio))
2073 				goto lock_node;
2074 write_node:
2075 			f2fs_folio_wait_writeback(folio, NODE, true, true);
2076 
2077 			if (!folio_clear_dirty_for_io(folio))
2078 				goto continue_unlock;
2079 
2080 			set_fsync_mark(&folio->page, 0);
2081 			set_dentry_mark(&folio->page, 0);
2082 
2083 			ret = __write_node_page(&folio->page, false, &submitted,
2084 						wbc, do_balance, io_type, NULL);
2085 			if (ret)
2086 				folio_unlock(folio);
2087 			else if (submitted)
2088 				nwritten++;
2089 
2090 			if (--wbc->nr_to_write == 0)
2091 				break;
2092 		}
2093 		folio_batch_release(&fbatch);
2094 		cond_resched();
2095 
2096 		if (wbc->nr_to_write == 0) {
2097 			step = 2;
2098 			break;
2099 		}
2100 	}
2101 
2102 	if (step < 2) {
2103 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2104 				wbc->sync_mode == WB_SYNC_NONE && step == 1)
2105 			goto out;
2106 		step++;
2107 		goto next_step;
2108 	}
2109 out:
2110 	if (nwritten)
2111 		f2fs_submit_merged_write(sbi, NODE);
2112 
2113 	if (unlikely(f2fs_cp_error(sbi)))
2114 		return -EIO;
2115 	return ret;
2116 }
2117 
2118 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2119 						unsigned int seq_id)
2120 {
2121 	struct fsync_node_entry *fn;
2122 	struct page *page;
2123 	struct list_head *head = &sbi->fsync_node_list;
2124 	unsigned long flags;
2125 	unsigned int cur_seq_id = 0;
2126 
2127 	while (seq_id && cur_seq_id < seq_id) {
2128 		spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2129 		if (list_empty(head)) {
2130 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2131 			break;
2132 		}
2133 		fn = list_first_entry(head, struct fsync_node_entry, list);
2134 		if (fn->seq_id > seq_id) {
2135 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2136 			break;
2137 		}
2138 		cur_seq_id = fn->seq_id;
2139 		page = fn->page;
2140 		get_page(page);
2141 		spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2142 
2143 		f2fs_wait_on_page_writeback(page, NODE, true, false);
2144 
2145 		put_page(page);
2146 	}
2147 
2148 	return filemap_check_errors(NODE_MAPPING(sbi));
2149 }
2150 
2151 static int f2fs_write_node_pages(struct address_space *mapping,
2152 			    struct writeback_control *wbc)
2153 {
2154 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2155 	struct blk_plug plug;
2156 	long diff;
2157 
2158 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2159 		goto skip_write;
2160 
2161 	/* balancing f2fs's metadata in background */
2162 	f2fs_balance_fs_bg(sbi, true);
2163 
2164 	/* collect a number of dirty node pages and write together */
2165 	if (wbc->sync_mode != WB_SYNC_ALL &&
2166 			get_pages(sbi, F2FS_DIRTY_NODES) <
2167 					nr_pages_to_skip(sbi, NODE))
2168 		goto skip_write;
2169 
2170 	if (wbc->sync_mode == WB_SYNC_ALL)
2171 		atomic_inc(&sbi->wb_sync_req[NODE]);
2172 	else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2173 		/* to avoid potential deadlock */
2174 		if (current->plug)
2175 			blk_finish_plug(current->plug);
2176 		goto skip_write;
2177 	}
2178 
2179 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2180 
2181 	diff = nr_pages_to_write(sbi, NODE, wbc);
2182 	blk_start_plug(&plug);
2183 	f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2184 	blk_finish_plug(&plug);
2185 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2186 
2187 	if (wbc->sync_mode == WB_SYNC_ALL)
2188 		atomic_dec(&sbi->wb_sync_req[NODE]);
2189 	return 0;
2190 
2191 skip_write:
2192 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2193 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2194 	return 0;
2195 }
2196 
2197 static bool f2fs_dirty_node_folio(struct address_space *mapping,
2198 		struct folio *folio)
2199 {
2200 	trace_f2fs_set_page_dirty(folio, NODE);
2201 
2202 	if (!folio_test_uptodate(folio))
2203 		folio_mark_uptodate(folio);
2204 #ifdef CONFIG_F2FS_CHECK_FS
2205 	if (IS_INODE(&folio->page))
2206 		f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page);
2207 #endif
2208 	if (filemap_dirty_folio(mapping, folio)) {
2209 		inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2210 		set_page_private_reference(&folio->page);
2211 		return true;
2212 	}
2213 	return false;
2214 }
2215 
2216 /*
2217  * Structure of the f2fs node operations
2218  */
2219 const struct address_space_operations f2fs_node_aops = {
2220 	.writepage	= f2fs_write_node_page,
2221 	.writepages	= f2fs_write_node_pages,
2222 	.dirty_folio	= f2fs_dirty_node_folio,
2223 	.invalidate_folio = f2fs_invalidate_folio,
2224 	.release_folio	= f2fs_release_folio,
2225 	.migrate_folio	= filemap_migrate_folio,
2226 };
2227 
2228 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2229 						nid_t n)
2230 {
2231 	return radix_tree_lookup(&nm_i->free_nid_root, n);
2232 }
2233 
2234 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2235 				struct free_nid *i)
2236 {
2237 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2238 	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2239 
2240 	if (err)
2241 		return err;
2242 
2243 	nm_i->nid_cnt[FREE_NID]++;
2244 	list_add_tail(&i->list, &nm_i->free_nid_list);
2245 	return 0;
2246 }
2247 
2248 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2249 			struct free_nid *i, enum nid_state state)
2250 {
2251 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2252 
2253 	f2fs_bug_on(sbi, state != i->state);
2254 	nm_i->nid_cnt[state]--;
2255 	if (state == FREE_NID)
2256 		list_del(&i->list);
2257 	radix_tree_delete(&nm_i->free_nid_root, i->nid);
2258 }
2259 
2260 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2261 			enum nid_state org_state, enum nid_state dst_state)
2262 {
2263 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2264 
2265 	f2fs_bug_on(sbi, org_state != i->state);
2266 	i->state = dst_state;
2267 	nm_i->nid_cnt[org_state]--;
2268 	nm_i->nid_cnt[dst_state]++;
2269 
2270 	switch (dst_state) {
2271 	case PREALLOC_NID:
2272 		list_del(&i->list);
2273 		break;
2274 	case FREE_NID:
2275 		list_add_tail(&i->list, &nm_i->free_nid_list);
2276 		break;
2277 	default:
2278 		BUG_ON(1);
2279 	}
2280 }
2281 
2282 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2283 {
2284 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2285 	unsigned int i;
2286 	bool ret = true;
2287 
2288 	f2fs_down_read(&nm_i->nat_tree_lock);
2289 	for (i = 0; i < nm_i->nat_blocks; i++) {
2290 		if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2291 			ret = false;
2292 			break;
2293 		}
2294 	}
2295 	f2fs_up_read(&nm_i->nat_tree_lock);
2296 
2297 	return ret;
2298 }
2299 
2300 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2301 							bool set, bool build)
2302 {
2303 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2304 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2305 	unsigned int nid_ofs = nid - START_NID(nid);
2306 
2307 	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2308 		return;
2309 
2310 	if (set) {
2311 		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2312 			return;
2313 		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2314 		nm_i->free_nid_count[nat_ofs]++;
2315 	} else {
2316 		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2317 			return;
2318 		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2319 		if (!build)
2320 			nm_i->free_nid_count[nat_ofs]--;
2321 	}
2322 }
2323 
2324 /* return if the nid is recognized as free */
2325 static bool add_free_nid(struct f2fs_sb_info *sbi,
2326 				nid_t nid, bool build, bool update)
2327 {
2328 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2329 	struct free_nid *i, *e;
2330 	struct nat_entry *ne;
2331 	int err = -EINVAL;
2332 	bool ret = false;
2333 
2334 	/* 0 nid should not be used */
2335 	if (unlikely(nid == 0))
2336 		return false;
2337 
2338 	if (unlikely(f2fs_check_nid_range(sbi, nid)))
2339 		return false;
2340 
2341 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2342 	i->nid = nid;
2343 	i->state = FREE_NID;
2344 
2345 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2346 
2347 	spin_lock(&nm_i->nid_list_lock);
2348 
2349 	if (build) {
2350 		/*
2351 		 *   Thread A             Thread B
2352 		 *  - f2fs_create
2353 		 *   - f2fs_new_inode
2354 		 *    - f2fs_alloc_nid
2355 		 *     - __insert_nid_to_list(PREALLOC_NID)
2356 		 *                     - f2fs_balance_fs_bg
2357 		 *                      - f2fs_build_free_nids
2358 		 *                       - __f2fs_build_free_nids
2359 		 *                        - scan_nat_page
2360 		 *                         - add_free_nid
2361 		 *                          - __lookup_nat_cache
2362 		 *  - f2fs_add_link
2363 		 *   - f2fs_init_inode_metadata
2364 		 *    - f2fs_new_inode_page
2365 		 *     - f2fs_new_node_page
2366 		 *      - set_node_addr
2367 		 *  - f2fs_alloc_nid_done
2368 		 *   - __remove_nid_from_list(PREALLOC_NID)
2369 		 *                         - __insert_nid_to_list(FREE_NID)
2370 		 */
2371 		ne = __lookup_nat_cache(nm_i, nid);
2372 		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2373 				nat_get_blkaddr(ne) != NULL_ADDR))
2374 			goto err_out;
2375 
2376 		e = __lookup_free_nid_list(nm_i, nid);
2377 		if (e) {
2378 			if (e->state == FREE_NID)
2379 				ret = true;
2380 			goto err_out;
2381 		}
2382 	}
2383 	ret = true;
2384 	err = __insert_free_nid(sbi, i);
2385 err_out:
2386 	if (update) {
2387 		update_free_nid_bitmap(sbi, nid, ret, build);
2388 		if (!build)
2389 			nm_i->available_nids++;
2390 	}
2391 	spin_unlock(&nm_i->nid_list_lock);
2392 	radix_tree_preload_end();
2393 
2394 	if (err)
2395 		kmem_cache_free(free_nid_slab, i);
2396 	return ret;
2397 }
2398 
2399 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2400 {
2401 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2402 	struct free_nid *i;
2403 	bool need_free = false;
2404 
2405 	spin_lock(&nm_i->nid_list_lock);
2406 	i = __lookup_free_nid_list(nm_i, nid);
2407 	if (i && i->state == FREE_NID) {
2408 		__remove_free_nid(sbi, i, FREE_NID);
2409 		need_free = true;
2410 	}
2411 	spin_unlock(&nm_i->nid_list_lock);
2412 
2413 	if (need_free)
2414 		kmem_cache_free(free_nid_slab, i);
2415 }
2416 
2417 static int scan_nat_page(struct f2fs_sb_info *sbi,
2418 			struct page *nat_page, nid_t start_nid)
2419 {
2420 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2421 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
2422 	block_t blk_addr;
2423 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2424 	int i;
2425 
2426 	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2427 
2428 	i = start_nid % NAT_ENTRY_PER_BLOCK;
2429 
2430 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2431 		if (unlikely(start_nid >= nm_i->max_nid))
2432 			break;
2433 
2434 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2435 
2436 		if (blk_addr == NEW_ADDR)
2437 			return -EFSCORRUPTED;
2438 
2439 		if (blk_addr == NULL_ADDR) {
2440 			add_free_nid(sbi, start_nid, true, true);
2441 		} else {
2442 			spin_lock(&NM_I(sbi)->nid_list_lock);
2443 			update_free_nid_bitmap(sbi, start_nid, false, true);
2444 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2445 		}
2446 	}
2447 
2448 	return 0;
2449 }
2450 
2451 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2452 {
2453 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2454 	struct f2fs_journal *journal = curseg->journal;
2455 	int i;
2456 
2457 	down_read(&curseg->journal_rwsem);
2458 	for (i = 0; i < nats_in_cursum(journal); i++) {
2459 		block_t addr;
2460 		nid_t nid;
2461 
2462 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2463 		nid = le32_to_cpu(nid_in_journal(journal, i));
2464 		if (addr == NULL_ADDR)
2465 			add_free_nid(sbi, nid, true, false);
2466 		else
2467 			remove_free_nid(sbi, nid);
2468 	}
2469 	up_read(&curseg->journal_rwsem);
2470 }
2471 
2472 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2473 {
2474 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2475 	unsigned int i, idx;
2476 	nid_t nid;
2477 
2478 	f2fs_down_read(&nm_i->nat_tree_lock);
2479 
2480 	for (i = 0; i < nm_i->nat_blocks; i++) {
2481 		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2482 			continue;
2483 		if (!nm_i->free_nid_count[i])
2484 			continue;
2485 		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2486 			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2487 						NAT_ENTRY_PER_BLOCK, idx);
2488 			if (idx >= NAT_ENTRY_PER_BLOCK)
2489 				break;
2490 
2491 			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2492 			add_free_nid(sbi, nid, true, false);
2493 
2494 			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2495 				goto out;
2496 		}
2497 	}
2498 out:
2499 	scan_curseg_cache(sbi);
2500 
2501 	f2fs_up_read(&nm_i->nat_tree_lock);
2502 }
2503 
2504 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2505 						bool sync, bool mount)
2506 {
2507 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2508 	int i = 0, ret;
2509 	nid_t nid = nm_i->next_scan_nid;
2510 
2511 	if (unlikely(nid >= nm_i->max_nid))
2512 		nid = 0;
2513 
2514 	if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2515 		nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2516 
2517 	/* Enough entries */
2518 	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2519 		return 0;
2520 
2521 	if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2522 		return 0;
2523 
2524 	if (!mount) {
2525 		/* try to find free nids in free_nid_bitmap */
2526 		scan_free_nid_bits(sbi);
2527 
2528 		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2529 			return 0;
2530 	}
2531 
2532 	/* readahead nat pages to be scanned */
2533 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2534 							META_NAT, true);
2535 
2536 	f2fs_down_read(&nm_i->nat_tree_lock);
2537 
2538 	while (1) {
2539 		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2540 						nm_i->nat_block_bitmap)) {
2541 			struct page *page = get_current_nat_page(sbi, nid);
2542 
2543 			if (IS_ERR(page)) {
2544 				ret = PTR_ERR(page);
2545 			} else {
2546 				ret = scan_nat_page(sbi, page, nid);
2547 				f2fs_put_page(page, 1);
2548 			}
2549 
2550 			if (ret) {
2551 				f2fs_up_read(&nm_i->nat_tree_lock);
2552 
2553 				if (ret == -EFSCORRUPTED) {
2554 					f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2555 					set_sbi_flag(sbi, SBI_NEED_FSCK);
2556 					f2fs_handle_error(sbi,
2557 						ERROR_INCONSISTENT_NAT);
2558 				}
2559 
2560 				return ret;
2561 			}
2562 		}
2563 
2564 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2565 		if (unlikely(nid >= nm_i->max_nid))
2566 			nid = 0;
2567 
2568 		if (++i >= FREE_NID_PAGES)
2569 			break;
2570 	}
2571 
2572 	/* go to the next free nat pages to find free nids abundantly */
2573 	nm_i->next_scan_nid = nid;
2574 
2575 	/* find free nids from current sum_pages */
2576 	scan_curseg_cache(sbi);
2577 
2578 	f2fs_up_read(&nm_i->nat_tree_lock);
2579 
2580 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2581 					nm_i->ra_nid_pages, META_NAT, false);
2582 
2583 	return 0;
2584 }
2585 
2586 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2587 {
2588 	int ret;
2589 
2590 	mutex_lock(&NM_I(sbi)->build_lock);
2591 	ret = __f2fs_build_free_nids(sbi, sync, mount);
2592 	mutex_unlock(&NM_I(sbi)->build_lock);
2593 
2594 	return ret;
2595 }
2596 
2597 /*
2598  * If this function returns success, caller can obtain a new nid
2599  * from second parameter of this function.
2600  * The returned nid could be used ino as well as nid when inode is created.
2601  */
2602 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2603 {
2604 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2605 	struct free_nid *i = NULL;
2606 retry:
2607 	if (time_to_inject(sbi, FAULT_ALLOC_NID))
2608 		return false;
2609 
2610 	spin_lock(&nm_i->nid_list_lock);
2611 
2612 	if (unlikely(nm_i->available_nids == 0)) {
2613 		spin_unlock(&nm_i->nid_list_lock);
2614 		return false;
2615 	}
2616 
2617 	/* We should not use stale free nids created by f2fs_build_free_nids */
2618 	if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2619 		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2620 		i = list_first_entry(&nm_i->free_nid_list,
2621 					struct free_nid, list);
2622 		*nid = i->nid;
2623 
2624 		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2625 		nm_i->available_nids--;
2626 
2627 		update_free_nid_bitmap(sbi, *nid, false, false);
2628 
2629 		spin_unlock(&nm_i->nid_list_lock);
2630 		return true;
2631 	}
2632 	spin_unlock(&nm_i->nid_list_lock);
2633 
2634 	/* Let's scan nat pages and its caches to get free nids */
2635 	if (!f2fs_build_free_nids(sbi, true, false))
2636 		goto retry;
2637 	return false;
2638 }
2639 
2640 /*
2641  * f2fs_alloc_nid() should be called prior to this function.
2642  */
2643 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2644 {
2645 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2646 	struct free_nid *i;
2647 
2648 	spin_lock(&nm_i->nid_list_lock);
2649 	i = __lookup_free_nid_list(nm_i, nid);
2650 	f2fs_bug_on(sbi, !i);
2651 	__remove_free_nid(sbi, i, PREALLOC_NID);
2652 	spin_unlock(&nm_i->nid_list_lock);
2653 
2654 	kmem_cache_free(free_nid_slab, i);
2655 }
2656 
2657 /*
2658  * f2fs_alloc_nid() should be called prior to this function.
2659  */
2660 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2661 {
2662 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2663 	struct free_nid *i;
2664 	bool need_free = false;
2665 
2666 	if (!nid)
2667 		return;
2668 
2669 	spin_lock(&nm_i->nid_list_lock);
2670 	i = __lookup_free_nid_list(nm_i, nid);
2671 	f2fs_bug_on(sbi, !i);
2672 
2673 	if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2674 		__remove_free_nid(sbi, i, PREALLOC_NID);
2675 		need_free = true;
2676 	} else {
2677 		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2678 	}
2679 
2680 	nm_i->available_nids++;
2681 
2682 	update_free_nid_bitmap(sbi, nid, true, false);
2683 
2684 	spin_unlock(&nm_i->nid_list_lock);
2685 
2686 	if (need_free)
2687 		kmem_cache_free(free_nid_slab, i);
2688 }
2689 
2690 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2691 {
2692 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2693 	int nr = nr_shrink;
2694 
2695 	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2696 		return 0;
2697 
2698 	if (!mutex_trylock(&nm_i->build_lock))
2699 		return 0;
2700 
2701 	while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2702 		struct free_nid *i, *next;
2703 		unsigned int batch = SHRINK_NID_BATCH_SIZE;
2704 
2705 		spin_lock(&nm_i->nid_list_lock);
2706 		list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2707 			if (!nr_shrink || !batch ||
2708 				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2709 				break;
2710 			__remove_free_nid(sbi, i, FREE_NID);
2711 			kmem_cache_free(free_nid_slab, i);
2712 			nr_shrink--;
2713 			batch--;
2714 		}
2715 		spin_unlock(&nm_i->nid_list_lock);
2716 	}
2717 
2718 	mutex_unlock(&nm_i->build_lock);
2719 
2720 	return nr - nr_shrink;
2721 }
2722 
2723 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2724 {
2725 	void *src_addr, *dst_addr;
2726 	size_t inline_size;
2727 	struct page *ipage;
2728 	struct f2fs_inode *ri;
2729 
2730 	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2731 	if (IS_ERR(ipage))
2732 		return PTR_ERR(ipage);
2733 
2734 	ri = F2FS_INODE(page);
2735 	if (ri->i_inline & F2FS_INLINE_XATTR) {
2736 		if (!f2fs_has_inline_xattr(inode)) {
2737 			set_inode_flag(inode, FI_INLINE_XATTR);
2738 			stat_inc_inline_xattr(inode);
2739 		}
2740 	} else {
2741 		if (f2fs_has_inline_xattr(inode)) {
2742 			stat_dec_inline_xattr(inode);
2743 			clear_inode_flag(inode, FI_INLINE_XATTR);
2744 		}
2745 		goto update_inode;
2746 	}
2747 
2748 	dst_addr = inline_xattr_addr(inode, ipage);
2749 	src_addr = inline_xattr_addr(inode, page);
2750 	inline_size = inline_xattr_size(inode);
2751 
2752 	f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2753 	memcpy(dst_addr, src_addr, inline_size);
2754 update_inode:
2755 	f2fs_update_inode(inode, ipage);
2756 	f2fs_put_page(ipage, 1);
2757 	return 0;
2758 }
2759 
2760 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2761 {
2762 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2763 	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2764 	nid_t new_xnid;
2765 	struct dnode_of_data dn;
2766 	struct node_info ni;
2767 	struct page *xpage;
2768 	int err;
2769 
2770 	if (!prev_xnid)
2771 		goto recover_xnid;
2772 
2773 	/* 1: invalidate the previous xattr nid */
2774 	err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2775 	if (err)
2776 		return err;
2777 
2778 	f2fs_invalidate_blocks(sbi, ni.blk_addr, 1);
2779 	dec_valid_node_count(sbi, inode, false);
2780 	set_node_addr(sbi, &ni, NULL_ADDR, false);
2781 
2782 recover_xnid:
2783 	/* 2: update xattr nid in inode */
2784 	if (!f2fs_alloc_nid(sbi, &new_xnid))
2785 		return -ENOSPC;
2786 
2787 	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2788 	xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2789 	if (IS_ERR(xpage)) {
2790 		f2fs_alloc_nid_failed(sbi, new_xnid);
2791 		return PTR_ERR(xpage);
2792 	}
2793 
2794 	f2fs_alloc_nid_done(sbi, new_xnid);
2795 	f2fs_update_inode_page(inode);
2796 
2797 	/* 3: update and set xattr node page dirty */
2798 	if (page) {
2799 		memcpy(F2FS_NODE(xpage), F2FS_NODE(page),
2800 				VALID_XATTR_BLOCK_SIZE);
2801 		set_page_dirty(xpage);
2802 	}
2803 	f2fs_put_page(xpage, 1);
2804 
2805 	return 0;
2806 }
2807 
2808 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2809 {
2810 	struct f2fs_inode *src, *dst;
2811 	nid_t ino = ino_of_node(page);
2812 	struct node_info old_ni, new_ni;
2813 	struct page *ipage;
2814 	int err;
2815 
2816 	err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2817 	if (err)
2818 		return err;
2819 
2820 	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2821 		return -EINVAL;
2822 retry:
2823 	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2824 	if (!ipage) {
2825 		memalloc_retry_wait(GFP_NOFS);
2826 		goto retry;
2827 	}
2828 
2829 	/* Should not use this inode from free nid list */
2830 	remove_free_nid(sbi, ino);
2831 
2832 	if (!PageUptodate(ipage))
2833 		SetPageUptodate(ipage);
2834 	fill_node_footer(ipage, ino, ino, 0, true);
2835 	set_cold_node(ipage, false);
2836 
2837 	src = F2FS_INODE(page);
2838 	dst = F2FS_INODE(ipage);
2839 
2840 	memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2841 	dst->i_size = 0;
2842 	dst->i_blocks = cpu_to_le64(1);
2843 	dst->i_links = cpu_to_le32(1);
2844 	dst->i_xattr_nid = 0;
2845 	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2846 	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2847 		dst->i_extra_isize = src->i_extra_isize;
2848 
2849 		if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2850 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2851 							i_inline_xattr_size))
2852 			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2853 
2854 		if (f2fs_sb_has_project_quota(sbi) &&
2855 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2856 								i_projid))
2857 			dst->i_projid = src->i_projid;
2858 
2859 		if (f2fs_sb_has_inode_crtime(sbi) &&
2860 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2861 							i_crtime_nsec)) {
2862 			dst->i_crtime = src->i_crtime;
2863 			dst->i_crtime_nsec = src->i_crtime_nsec;
2864 		}
2865 	}
2866 
2867 	new_ni = old_ni;
2868 	new_ni.ino = ino;
2869 
2870 	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2871 		WARN_ON(1);
2872 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2873 	inc_valid_inode_count(sbi);
2874 	set_page_dirty(ipage);
2875 	f2fs_put_page(ipage, 1);
2876 	return 0;
2877 }
2878 
2879 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2880 			unsigned int segno, struct f2fs_summary_block *sum)
2881 {
2882 	struct f2fs_node *rn;
2883 	struct f2fs_summary *sum_entry;
2884 	block_t addr;
2885 	int i, idx, last_offset, nrpages;
2886 
2887 	/* scan the node segment */
2888 	last_offset = BLKS_PER_SEG(sbi);
2889 	addr = START_BLOCK(sbi, segno);
2890 	sum_entry = &sum->entries[0];
2891 
2892 	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2893 		nrpages = bio_max_segs(last_offset - i);
2894 
2895 		/* readahead node pages */
2896 		f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2897 
2898 		for (idx = addr; idx < addr + nrpages; idx++) {
2899 			struct page *page = f2fs_get_tmp_page(sbi, idx);
2900 
2901 			if (IS_ERR(page))
2902 				return PTR_ERR(page);
2903 
2904 			rn = F2FS_NODE(page);
2905 			sum_entry->nid = rn->footer.nid;
2906 			sum_entry->version = 0;
2907 			sum_entry->ofs_in_node = 0;
2908 			sum_entry++;
2909 			f2fs_put_page(page, 1);
2910 		}
2911 
2912 		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2913 							addr + nrpages);
2914 	}
2915 	return 0;
2916 }
2917 
2918 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2919 {
2920 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2921 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2922 	struct f2fs_journal *journal = curseg->journal;
2923 	int i;
2924 
2925 	down_write(&curseg->journal_rwsem);
2926 	for (i = 0; i < nats_in_cursum(journal); i++) {
2927 		struct nat_entry *ne;
2928 		struct f2fs_nat_entry raw_ne;
2929 		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2930 
2931 		if (f2fs_check_nid_range(sbi, nid))
2932 			continue;
2933 
2934 		raw_ne = nat_in_journal(journal, i);
2935 
2936 		ne = __lookup_nat_cache(nm_i, nid);
2937 		if (!ne) {
2938 			ne = __alloc_nat_entry(sbi, nid, true);
2939 			__init_nat_entry(nm_i, ne, &raw_ne, true);
2940 		}
2941 
2942 		/*
2943 		 * if a free nat in journal has not been used after last
2944 		 * checkpoint, we should remove it from available nids,
2945 		 * since later we will add it again.
2946 		 */
2947 		if (!get_nat_flag(ne, IS_DIRTY) &&
2948 				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2949 			spin_lock(&nm_i->nid_list_lock);
2950 			nm_i->available_nids--;
2951 			spin_unlock(&nm_i->nid_list_lock);
2952 		}
2953 
2954 		__set_nat_cache_dirty(nm_i, ne);
2955 	}
2956 	update_nats_in_cursum(journal, -i);
2957 	up_write(&curseg->journal_rwsem);
2958 }
2959 
2960 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2961 						struct list_head *head, int max)
2962 {
2963 	struct nat_entry_set *cur;
2964 
2965 	if (nes->entry_cnt >= max)
2966 		goto add_out;
2967 
2968 	list_for_each_entry(cur, head, set_list) {
2969 		if (cur->entry_cnt >= nes->entry_cnt) {
2970 			list_add(&nes->set_list, cur->set_list.prev);
2971 			return;
2972 		}
2973 	}
2974 add_out:
2975 	list_add_tail(&nes->set_list, head);
2976 }
2977 
2978 static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2979 							unsigned int valid)
2980 {
2981 	if (valid == 0) {
2982 		__set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2983 		__clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2984 		return;
2985 	}
2986 
2987 	__clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2988 	if (valid == NAT_ENTRY_PER_BLOCK)
2989 		__set_bit_le(nat_ofs, nm_i->full_nat_bits);
2990 	else
2991 		__clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2992 }
2993 
2994 static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2995 						struct page *page)
2996 {
2997 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2998 	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2999 	struct f2fs_nat_block *nat_blk = page_address(page);
3000 	int valid = 0;
3001 	int i = 0;
3002 
3003 	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3004 		return;
3005 
3006 	if (nat_index == 0) {
3007 		valid = 1;
3008 		i = 1;
3009 	}
3010 	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
3011 		if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
3012 			valid++;
3013 	}
3014 
3015 	__update_nat_bits(nm_i, nat_index, valid);
3016 }
3017 
3018 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
3019 {
3020 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3021 	unsigned int nat_ofs;
3022 
3023 	f2fs_down_read(&nm_i->nat_tree_lock);
3024 
3025 	for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
3026 		unsigned int valid = 0, nid_ofs = 0;
3027 
3028 		/* handle nid zero due to it should never be used */
3029 		if (unlikely(nat_ofs == 0)) {
3030 			valid = 1;
3031 			nid_ofs = 1;
3032 		}
3033 
3034 		for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
3035 			if (!test_bit_le(nid_ofs,
3036 					nm_i->free_nid_bitmap[nat_ofs]))
3037 				valid++;
3038 		}
3039 
3040 		__update_nat_bits(nm_i, nat_ofs, valid);
3041 	}
3042 
3043 	f2fs_up_read(&nm_i->nat_tree_lock);
3044 }
3045 
3046 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
3047 		struct nat_entry_set *set, struct cp_control *cpc)
3048 {
3049 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3050 	struct f2fs_journal *journal = curseg->journal;
3051 	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
3052 	bool to_journal = true;
3053 	struct f2fs_nat_block *nat_blk;
3054 	struct nat_entry *ne, *cur;
3055 	struct page *page = NULL;
3056 
3057 	/*
3058 	 * there are two steps to flush nat entries:
3059 	 * #1, flush nat entries to journal in current hot data summary block.
3060 	 * #2, flush nat entries to nat page.
3061 	 */
3062 	if ((cpc->reason & CP_UMOUNT) ||
3063 		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3064 		to_journal = false;
3065 
3066 	if (to_journal) {
3067 		down_write(&curseg->journal_rwsem);
3068 	} else {
3069 		page = get_next_nat_page(sbi, start_nid);
3070 		if (IS_ERR(page))
3071 			return PTR_ERR(page);
3072 
3073 		nat_blk = page_address(page);
3074 		f2fs_bug_on(sbi, !nat_blk);
3075 	}
3076 
3077 	/* flush dirty nats in nat entry set */
3078 	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3079 		struct f2fs_nat_entry *raw_ne;
3080 		nid_t nid = nat_get_nid(ne);
3081 		int offset;
3082 
3083 		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3084 
3085 		if (to_journal) {
3086 			offset = f2fs_lookup_journal_in_cursum(journal,
3087 							NAT_JOURNAL, nid, 1);
3088 			f2fs_bug_on(sbi, offset < 0);
3089 			raw_ne = &nat_in_journal(journal, offset);
3090 			nid_in_journal(journal, offset) = cpu_to_le32(nid);
3091 		} else {
3092 			raw_ne = &nat_blk->entries[nid - start_nid];
3093 		}
3094 		raw_nat_from_node_info(raw_ne, &ne->ni);
3095 		nat_reset_flag(ne);
3096 		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
3097 		if (nat_get_blkaddr(ne) == NULL_ADDR) {
3098 			add_free_nid(sbi, nid, false, true);
3099 		} else {
3100 			spin_lock(&NM_I(sbi)->nid_list_lock);
3101 			update_free_nid_bitmap(sbi, nid, false, false);
3102 			spin_unlock(&NM_I(sbi)->nid_list_lock);
3103 		}
3104 	}
3105 
3106 	if (to_journal) {
3107 		up_write(&curseg->journal_rwsem);
3108 	} else {
3109 		update_nat_bits(sbi, start_nid, page);
3110 		f2fs_put_page(page, 1);
3111 	}
3112 
3113 	/* Allow dirty nats by node block allocation in write_begin */
3114 	if (!set->entry_cnt) {
3115 		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3116 		kmem_cache_free(nat_entry_set_slab, set);
3117 	}
3118 	return 0;
3119 }
3120 
3121 /*
3122  * This function is called during the checkpointing process.
3123  */
3124 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3125 {
3126 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3127 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3128 	struct f2fs_journal *journal = curseg->journal;
3129 	struct nat_entry_set *setvec[NAT_VEC_SIZE];
3130 	struct nat_entry_set *set, *tmp;
3131 	unsigned int found;
3132 	nid_t set_idx = 0;
3133 	LIST_HEAD(sets);
3134 	int err = 0;
3135 
3136 	/*
3137 	 * during unmount, let's flush nat_bits before checking
3138 	 * nat_cnt[DIRTY_NAT].
3139 	 */
3140 	if (cpc->reason & CP_UMOUNT) {
3141 		f2fs_down_write(&nm_i->nat_tree_lock);
3142 		remove_nats_in_journal(sbi);
3143 		f2fs_up_write(&nm_i->nat_tree_lock);
3144 	}
3145 
3146 	if (!nm_i->nat_cnt[DIRTY_NAT])
3147 		return 0;
3148 
3149 	f2fs_down_write(&nm_i->nat_tree_lock);
3150 
3151 	/*
3152 	 * if there are no enough space in journal to store dirty nat
3153 	 * entries, remove all entries from journal and merge them
3154 	 * into nat entry set.
3155 	 */
3156 	if (cpc->reason & CP_UMOUNT ||
3157 		!__has_cursum_space(journal,
3158 			nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3159 		remove_nats_in_journal(sbi);
3160 
3161 	while ((found = __gang_lookup_nat_set(nm_i,
3162 					set_idx, NAT_VEC_SIZE, setvec))) {
3163 		unsigned idx;
3164 
3165 		set_idx = setvec[found - 1]->set + 1;
3166 		for (idx = 0; idx < found; idx++)
3167 			__adjust_nat_entry_set(setvec[idx], &sets,
3168 						MAX_NAT_JENTRIES(journal));
3169 	}
3170 
3171 	/* flush dirty nats in nat entry set */
3172 	list_for_each_entry_safe(set, tmp, &sets, set_list) {
3173 		err = __flush_nat_entry_set(sbi, set, cpc);
3174 		if (err)
3175 			break;
3176 	}
3177 
3178 	f2fs_up_write(&nm_i->nat_tree_lock);
3179 	/* Allow dirty nats by node block allocation in write_begin */
3180 
3181 	return err;
3182 }
3183 
3184 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3185 {
3186 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3187 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3188 	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3189 	unsigned int i;
3190 	__u64 cp_ver = cur_cp_version(ckpt);
3191 	block_t nat_bits_addr;
3192 
3193 	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3194 	nm_i->nat_bits = f2fs_kvzalloc(sbi,
3195 			F2FS_BLK_TO_BYTES(nm_i->nat_bits_blocks), GFP_KERNEL);
3196 	if (!nm_i->nat_bits)
3197 		return -ENOMEM;
3198 
3199 	nm_i->full_nat_bits = nm_i->nat_bits + 8;
3200 	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3201 
3202 	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3203 		return 0;
3204 
3205 	nat_bits_addr = __start_cp_addr(sbi) + BLKS_PER_SEG(sbi) -
3206 						nm_i->nat_bits_blocks;
3207 	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3208 		struct page *page;
3209 
3210 		page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3211 		if (IS_ERR(page))
3212 			return PTR_ERR(page);
3213 
3214 		memcpy(nm_i->nat_bits + F2FS_BLK_TO_BYTES(i),
3215 					page_address(page), F2FS_BLKSIZE);
3216 		f2fs_put_page(page, 1);
3217 	}
3218 
3219 	cp_ver |= (cur_cp_crc(ckpt) << 32);
3220 	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3221 		clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3222 		f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3223 			cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3224 		return 0;
3225 	}
3226 
3227 	f2fs_notice(sbi, "Found nat_bits in checkpoint");
3228 	return 0;
3229 }
3230 
3231 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3232 {
3233 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3234 	unsigned int i = 0;
3235 	nid_t nid, last_nid;
3236 
3237 	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3238 		return;
3239 
3240 	for (i = 0; i < nm_i->nat_blocks; i++) {
3241 		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3242 		if (i >= nm_i->nat_blocks)
3243 			break;
3244 
3245 		__set_bit_le(i, nm_i->nat_block_bitmap);
3246 
3247 		nid = i * NAT_ENTRY_PER_BLOCK;
3248 		last_nid = nid + NAT_ENTRY_PER_BLOCK;
3249 
3250 		spin_lock(&NM_I(sbi)->nid_list_lock);
3251 		for (; nid < last_nid; nid++)
3252 			update_free_nid_bitmap(sbi, nid, true, true);
3253 		spin_unlock(&NM_I(sbi)->nid_list_lock);
3254 	}
3255 
3256 	for (i = 0; i < nm_i->nat_blocks; i++) {
3257 		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3258 		if (i >= nm_i->nat_blocks)
3259 			break;
3260 
3261 		__set_bit_le(i, nm_i->nat_block_bitmap);
3262 	}
3263 }
3264 
3265 static int init_node_manager(struct f2fs_sb_info *sbi)
3266 {
3267 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3268 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3269 	unsigned char *version_bitmap;
3270 	unsigned int nat_segs;
3271 	int err;
3272 
3273 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3274 
3275 	/* segment_count_nat includes pair segment so divide to 2. */
3276 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3277 	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3278 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3279 
3280 	/* not used nids: 0, node, meta, (and root counted as valid node) */
3281 	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3282 						F2FS_RESERVED_NODE_NUM;
3283 	nm_i->nid_cnt[FREE_NID] = 0;
3284 	nm_i->nid_cnt[PREALLOC_NID] = 0;
3285 	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3286 	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3287 	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3288 	nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3289 
3290 	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3291 	INIT_LIST_HEAD(&nm_i->free_nid_list);
3292 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3293 	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3294 	INIT_LIST_HEAD(&nm_i->nat_entries);
3295 	spin_lock_init(&nm_i->nat_list_lock);
3296 
3297 	mutex_init(&nm_i->build_lock);
3298 	spin_lock_init(&nm_i->nid_list_lock);
3299 	init_f2fs_rwsem(&nm_i->nat_tree_lock);
3300 
3301 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3302 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3303 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3304 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3305 					GFP_KERNEL);
3306 	if (!nm_i->nat_bitmap)
3307 		return -ENOMEM;
3308 
3309 	if (!test_opt(sbi, NAT_BITS))
3310 		disable_nat_bits(sbi, true);
3311 
3312 	err = __get_nat_bitmaps(sbi);
3313 	if (err)
3314 		return err;
3315 
3316 #ifdef CONFIG_F2FS_CHECK_FS
3317 	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3318 					GFP_KERNEL);
3319 	if (!nm_i->nat_bitmap_mir)
3320 		return -ENOMEM;
3321 #endif
3322 
3323 	return 0;
3324 }
3325 
3326 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3327 {
3328 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3329 	int i;
3330 
3331 	nm_i->free_nid_bitmap =
3332 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3333 					      nm_i->nat_blocks),
3334 			      GFP_KERNEL);
3335 	if (!nm_i->free_nid_bitmap)
3336 		return -ENOMEM;
3337 
3338 	for (i = 0; i < nm_i->nat_blocks; i++) {
3339 		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3340 			f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3341 		if (!nm_i->free_nid_bitmap[i])
3342 			return -ENOMEM;
3343 	}
3344 
3345 	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3346 								GFP_KERNEL);
3347 	if (!nm_i->nat_block_bitmap)
3348 		return -ENOMEM;
3349 
3350 	nm_i->free_nid_count =
3351 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3352 					      nm_i->nat_blocks),
3353 			      GFP_KERNEL);
3354 	if (!nm_i->free_nid_count)
3355 		return -ENOMEM;
3356 	return 0;
3357 }
3358 
3359 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3360 {
3361 	int err;
3362 
3363 	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3364 							GFP_KERNEL);
3365 	if (!sbi->nm_info)
3366 		return -ENOMEM;
3367 
3368 	err = init_node_manager(sbi);
3369 	if (err)
3370 		return err;
3371 
3372 	err = init_free_nid_cache(sbi);
3373 	if (err)
3374 		return err;
3375 
3376 	/* load free nid status from nat_bits table */
3377 	load_free_nid_bitmap(sbi);
3378 
3379 	return f2fs_build_free_nids(sbi, true, true);
3380 }
3381 
3382 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3383 {
3384 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3385 	struct free_nid *i, *next_i;
3386 	void *vec[NAT_VEC_SIZE];
3387 	struct nat_entry **natvec = (struct nat_entry **)vec;
3388 	struct nat_entry_set **setvec = (struct nat_entry_set **)vec;
3389 	nid_t nid = 0;
3390 	unsigned int found;
3391 
3392 	if (!nm_i)
3393 		return;
3394 
3395 	/* destroy free nid list */
3396 	spin_lock(&nm_i->nid_list_lock);
3397 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3398 		__remove_free_nid(sbi, i, FREE_NID);
3399 		spin_unlock(&nm_i->nid_list_lock);
3400 		kmem_cache_free(free_nid_slab, i);
3401 		spin_lock(&nm_i->nid_list_lock);
3402 	}
3403 	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3404 	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3405 	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3406 	spin_unlock(&nm_i->nid_list_lock);
3407 
3408 	/* destroy nat cache */
3409 	f2fs_down_write(&nm_i->nat_tree_lock);
3410 	while ((found = __gang_lookup_nat_cache(nm_i,
3411 					nid, NAT_VEC_SIZE, natvec))) {
3412 		unsigned idx;
3413 
3414 		nid = nat_get_nid(natvec[found - 1]) + 1;
3415 		for (idx = 0; idx < found; idx++) {
3416 			spin_lock(&nm_i->nat_list_lock);
3417 			list_del(&natvec[idx]->list);
3418 			spin_unlock(&nm_i->nat_list_lock);
3419 
3420 			__del_from_nat_cache(nm_i, natvec[idx]);
3421 		}
3422 	}
3423 	f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3424 
3425 	/* destroy nat set cache */
3426 	nid = 0;
3427 	memset(vec, 0, sizeof(void *) * NAT_VEC_SIZE);
3428 	while ((found = __gang_lookup_nat_set(nm_i,
3429 					nid, NAT_VEC_SIZE, setvec))) {
3430 		unsigned idx;
3431 
3432 		nid = setvec[found - 1]->set + 1;
3433 		for (idx = 0; idx < found; idx++) {
3434 			/* entry_cnt is not zero, when cp_error was occurred */
3435 			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3436 			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3437 			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3438 		}
3439 	}
3440 	f2fs_up_write(&nm_i->nat_tree_lock);
3441 
3442 	kvfree(nm_i->nat_block_bitmap);
3443 	if (nm_i->free_nid_bitmap) {
3444 		int i;
3445 
3446 		for (i = 0; i < nm_i->nat_blocks; i++)
3447 			kvfree(nm_i->free_nid_bitmap[i]);
3448 		kvfree(nm_i->free_nid_bitmap);
3449 	}
3450 	kvfree(nm_i->free_nid_count);
3451 
3452 	kvfree(nm_i->nat_bitmap);
3453 	kvfree(nm_i->nat_bits);
3454 #ifdef CONFIG_F2FS_CHECK_FS
3455 	kvfree(nm_i->nat_bitmap_mir);
3456 #endif
3457 	sbi->nm_info = NULL;
3458 	kfree(nm_i);
3459 }
3460 
3461 int __init f2fs_create_node_manager_caches(void)
3462 {
3463 	nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3464 			sizeof(struct nat_entry));
3465 	if (!nat_entry_slab)
3466 		goto fail;
3467 
3468 	free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3469 			sizeof(struct free_nid));
3470 	if (!free_nid_slab)
3471 		goto destroy_nat_entry;
3472 
3473 	nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3474 			sizeof(struct nat_entry_set));
3475 	if (!nat_entry_set_slab)
3476 		goto destroy_free_nid;
3477 
3478 	fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3479 			sizeof(struct fsync_node_entry));
3480 	if (!fsync_node_entry_slab)
3481 		goto destroy_nat_entry_set;
3482 	return 0;
3483 
3484 destroy_nat_entry_set:
3485 	kmem_cache_destroy(nat_entry_set_slab);
3486 destroy_free_nid:
3487 	kmem_cache_destroy(free_nid_slab);
3488 destroy_nat_entry:
3489 	kmem_cache_destroy(nat_entry_slab);
3490 fail:
3491 	return -ENOMEM;
3492 }
3493 
3494 void f2fs_destroy_node_manager_caches(void)
3495 {
3496 	kmem_cache_destroy(fsync_node_entry_slab);
3497 	kmem_cache_destroy(nat_entry_set_slab);
3498 	kmem_cache_destroy(free_nid_slab);
3499 	kmem_cache_destroy(nat_entry_slab);
3500 }
3501