xref: /linux-6.15/fs/exec.c (revision fc5dfebc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25 
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/oom.h>
62 #include <linux/compat.h>
63 #include <linux/vmalloc.h>
64 #include <linux/io_uring.h>
65 #include <linux/syscall_user_dispatch.h>
66 #include <linux/coredump.h>
67 #include <linux/time_namespace.h>
68 
69 #include <linux/uaccess.h>
70 #include <asm/mmu_context.h>
71 #include <asm/tlb.h>
72 
73 #include <trace/events/task.h>
74 #include "internal.h"
75 
76 #include <trace/events/sched.h>
77 
78 static int bprm_creds_from_file(struct linux_binprm *bprm);
79 
80 int suid_dumpable = 0;
81 
82 static LIST_HEAD(formats);
83 static DEFINE_RWLOCK(binfmt_lock);
84 
85 void __register_binfmt(struct linux_binfmt * fmt, int insert)
86 {
87 	write_lock(&binfmt_lock);
88 	insert ? list_add(&fmt->lh, &formats) :
89 		 list_add_tail(&fmt->lh, &formats);
90 	write_unlock(&binfmt_lock);
91 }
92 
93 EXPORT_SYMBOL(__register_binfmt);
94 
95 void unregister_binfmt(struct linux_binfmt * fmt)
96 {
97 	write_lock(&binfmt_lock);
98 	list_del(&fmt->lh);
99 	write_unlock(&binfmt_lock);
100 }
101 
102 EXPORT_SYMBOL(unregister_binfmt);
103 
104 static inline void put_binfmt(struct linux_binfmt * fmt)
105 {
106 	module_put(fmt->module);
107 }
108 
109 bool path_noexec(const struct path *path)
110 {
111 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
112 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
113 }
114 
115 #ifdef CONFIG_USELIB
116 /*
117  * Note that a shared library must be both readable and executable due to
118  * security reasons.
119  *
120  * Also note that we take the address to load from the file itself.
121  */
122 SYSCALL_DEFINE1(uselib, const char __user *, library)
123 {
124 	struct linux_binfmt *fmt;
125 	struct file *file;
126 	struct filename *tmp = getname(library);
127 	int error = PTR_ERR(tmp);
128 	static const struct open_flags uselib_flags = {
129 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
130 		.acc_mode = MAY_READ | MAY_EXEC,
131 		.intent = LOOKUP_OPEN,
132 		.lookup_flags = LOOKUP_FOLLOW,
133 	};
134 
135 	if (IS_ERR(tmp))
136 		goto out;
137 
138 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
139 	putname(tmp);
140 	error = PTR_ERR(file);
141 	if (IS_ERR(file))
142 		goto out;
143 
144 	/*
145 	 * may_open() has already checked for this, so it should be
146 	 * impossible to trip now. But we need to be extra cautious
147 	 * and check again at the very end too.
148 	 */
149 	error = -EACCES;
150 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
151 			 path_noexec(&file->f_path)))
152 		goto exit;
153 
154 	fsnotify_open(file);
155 
156 	error = -ENOEXEC;
157 
158 	read_lock(&binfmt_lock);
159 	list_for_each_entry(fmt, &formats, lh) {
160 		if (!fmt->load_shlib)
161 			continue;
162 		if (!try_module_get(fmt->module))
163 			continue;
164 		read_unlock(&binfmt_lock);
165 		error = fmt->load_shlib(file);
166 		read_lock(&binfmt_lock);
167 		put_binfmt(fmt);
168 		if (error != -ENOEXEC)
169 			break;
170 	}
171 	read_unlock(&binfmt_lock);
172 exit:
173 	fput(file);
174 out:
175   	return error;
176 }
177 #endif /* #ifdef CONFIG_USELIB */
178 
179 #ifdef CONFIG_MMU
180 /*
181  * The nascent bprm->mm is not visible until exec_mmap() but it can
182  * use a lot of memory, account these pages in current->mm temporary
183  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
184  * change the counter back via acct_arg_size(0).
185  */
186 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
187 {
188 	struct mm_struct *mm = current->mm;
189 	long diff = (long)(pages - bprm->vma_pages);
190 
191 	if (!mm || !diff)
192 		return;
193 
194 	bprm->vma_pages = pages;
195 	add_mm_counter(mm, MM_ANONPAGES, diff);
196 }
197 
198 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
199 		int write)
200 {
201 	struct page *page;
202 	int ret;
203 	unsigned int gup_flags = FOLL_FORCE;
204 
205 #ifdef CONFIG_STACK_GROWSUP
206 	if (write) {
207 		ret = expand_downwards(bprm->vma, pos);
208 		if (ret < 0)
209 			return NULL;
210 	}
211 #endif
212 
213 	if (write)
214 		gup_flags |= FOLL_WRITE;
215 
216 	/*
217 	 * We are doing an exec().  'current' is the process
218 	 * doing the exec and bprm->mm is the new process's mm.
219 	 */
220 	mmap_read_lock(bprm->mm);
221 	ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
222 			&page, NULL, NULL);
223 	mmap_read_unlock(bprm->mm);
224 	if (ret <= 0)
225 		return NULL;
226 
227 	if (write)
228 		acct_arg_size(bprm, vma_pages(bprm->vma));
229 
230 	return page;
231 }
232 
233 static void put_arg_page(struct page *page)
234 {
235 	put_page(page);
236 }
237 
238 static void free_arg_pages(struct linux_binprm *bprm)
239 {
240 }
241 
242 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
243 		struct page *page)
244 {
245 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
246 }
247 
248 static int __bprm_mm_init(struct linux_binprm *bprm)
249 {
250 	int err;
251 	struct vm_area_struct *vma = NULL;
252 	struct mm_struct *mm = bprm->mm;
253 
254 	bprm->vma = vma = vm_area_alloc(mm);
255 	if (!vma)
256 		return -ENOMEM;
257 	vma_set_anonymous(vma);
258 
259 	if (mmap_write_lock_killable(mm)) {
260 		err = -EINTR;
261 		goto err_free;
262 	}
263 
264 	/*
265 	 * Place the stack at the largest stack address the architecture
266 	 * supports. Later, we'll move this to an appropriate place. We don't
267 	 * use STACK_TOP because that can depend on attributes which aren't
268 	 * configured yet.
269 	 */
270 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
271 	vma->vm_end = STACK_TOP_MAX;
272 	vma->vm_start = vma->vm_end - PAGE_SIZE;
273 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
274 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
275 
276 	err = insert_vm_struct(mm, vma);
277 	if (err)
278 		goto err;
279 
280 	mm->stack_vm = mm->total_vm = 1;
281 	mmap_write_unlock(mm);
282 	bprm->p = vma->vm_end - sizeof(void *);
283 	return 0;
284 err:
285 	mmap_write_unlock(mm);
286 err_free:
287 	bprm->vma = NULL;
288 	vm_area_free(vma);
289 	return err;
290 }
291 
292 static bool valid_arg_len(struct linux_binprm *bprm, long len)
293 {
294 	return len <= MAX_ARG_STRLEN;
295 }
296 
297 #else
298 
299 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
300 {
301 }
302 
303 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
304 		int write)
305 {
306 	struct page *page;
307 
308 	page = bprm->page[pos / PAGE_SIZE];
309 	if (!page && write) {
310 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
311 		if (!page)
312 			return NULL;
313 		bprm->page[pos / PAGE_SIZE] = page;
314 	}
315 
316 	return page;
317 }
318 
319 static void put_arg_page(struct page *page)
320 {
321 }
322 
323 static void free_arg_page(struct linux_binprm *bprm, int i)
324 {
325 	if (bprm->page[i]) {
326 		__free_page(bprm->page[i]);
327 		bprm->page[i] = NULL;
328 	}
329 }
330 
331 static void free_arg_pages(struct linux_binprm *bprm)
332 {
333 	int i;
334 
335 	for (i = 0; i < MAX_ARG_PAGES; i++)
336 		free_arg_page(bprm, i);
337 }
338 
339 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
340 		struct page *page)
341 {
342 }
343 
344 static int __bprm_mm_init(struct linux_binprm *bprm)
345 {
346 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
347 	return 0;
348 }
349 
350 static bool valid_arg_len(struct linux_binprm *bprm, long len)
351 {
352 	return len <= bprm->p;
353 }
354 
355 #endif /* CONFIG_MMU */
356 
357 /*
358  * Create a new mm_struct and populate it with a temporary stack
359  * vm_area_struct.  We don't have enough context at this point to set the stack
360  * flags, permissions, and offset, so we use temporary values.  We'll update
361  * them later in setup_arg_pages().
362  */
363 static int bprm_mm_init(struct linux_binprm *bprm)
364 {
365 	int err;
366 	struct mm_struct *mm = NULL;
367 
368 	bprm->mm = mm = mm_alloc();
369 	err = -ENOMEM;
370 	if (!mm)
371 		goto err;
372 
373 	/* Save current stack limit for all calculations made during exec. */
374 	task_lock(current->group_leader);
375 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
376 	task_unlock(current->group_leader);
377 
378 	err = __bprm_mm_init(bprm);
379 	if (err)
380 		goto err;
381 
382 	return 0;
383 
384 err:
385 	if (mm) {
386 		bprm->mm = NULL;
387 		mmdrop(mm);
388 	}
389 
390 	return err;
391 }
392 
393 struct user_arg_ptr {
394 #ifdef CONFIG_COMPAT
395 	bool is_compat;
396 #endif
397 	union {
398 		const char __user *const __user *native;
399 #ifdef CONFIG_COMPAT
400 		const compat_uptr_t __user *compat;
401 #endif
402 	} ptr;
403 };
404 
405 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
406 {
407 	const char __user *native;
408 
409 #ifdef CONFIG_COMPAT
410 	if (unlikely(argv.is_compat)) {
411 		compat_uptr_t compat;
412 
413 		if (get_user(compat, argv.ptr.compat + nr))
414 			return ERR_PTR(-EFAULT);
415 
416 		return compat_ptr(compat);
417 	}
418 #endif
419 
420 	if (get_user(native, argv.ptr.native + nr))
421 		return ERR_PTR(-EFAULT);
422 
423 	return native;
424 }
425 
426 /*
427  * count() counts the number of strings in array ARGV.
428  */
429 static int count(struct user_arg_ptr argv, int max)
430 {
431 	int i = 0;
432 
433 	if (argv.ptr.native != NULL) {
434 		for (;;) {
435 			const char __user *p = get_user_arg_ptr(argv, i);
436 
437 			if (!p)
438 				break;
439 
440 			if (IS_ERR(p))
441 				return -EFAULT;
442 
443 			if (i >= max)
444 				return -E2BIG;
445 			++i;
446 
447 			if (fatal_signal_pending(current))
448 				return -ERESTARTNOHAND;
449 			cond_resched();
450 		}
451 	}
452 	return i;
453 }
454 
455 static int count_strings_kernel(const char *const *argv)
456 {
457 	int i;
458 
459 	if (!argv)
460 		return 0;
461 
462 	for (i = 0; argv[i]; ++i) {
463 		if (i >= MAX_ARG_STRINGS)
464 			return -E2BIG;
465 		if (fatal_signal_pending(current))
466 			return -ERESTARTNOHAND;
467 		cond_resched();
468 	}
469 	return i;
470 }
471 
472 static int bprm_stack_limits(struct linux_binprm *bprm)
473 {
474 	unsigned long limit, ptr_size;
475 
476 	/*
477 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
478 	 * (whichever is smaller) for the argv+env strings.
479 	 * This ensures that:
480 	 *  - the remaining binfmt code will not run out of stack space,
481 	 *  - the program will have a reasonable amount of stack left
482 	 *    to work from.
483 	 */
484 	limit = _STK_LIM / 4 * 3;
485 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
486 	/*
487 	 * We've historically supported up to 32 pages (ARG_MAX)
488 	 * of argument strings even with small stacks
489 	 */
490 	limit = max_t(unsigned long, limit, ARG_MAX);
491 	/*
492 	 * We must account for the size of all the argv and envp pointers to
493 	 * the argv and envp strings, since they will also take up space in
494 	 * the stack. They aren't stored until much later when we can't
495 	 * signal to the parent that the child has run out of stack space.
496 	 * Instead, calculate it here so it's possible to fail gracefully.
497 	 *
498 	 * In the case of argc = 0, make sure there is space for adding a
499 	 * empty string (which will bump argc to 1), to ensure confused
500 	 * userspace programs don't start processing from argv[1], thinking
501 	 * argc can never be 0, to keep them from walking envp by accident.
502 	 * See do_execveat_common().
503 	 */
504 	ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
505 	if (limit <= ptr_size)
506 		return -E2BIG;
507 	limit -= ptr_size;
508 
509 	bprm->argmin = bprm->p - limit;
510 	return 0;
511 }
512 
513 /*
514  * 'copy_strings()' copies argument/environment strings from the old
515  * processes's memory to the new process's stack.  The call to get_user_pages()
516  * ensures the destination page is created and not swapped out.
517  */
518 static int copy_strings(int argc, struct user_arg_ptr argv,
519 			struct linux_binprm *bprm)
520 {
521 	struct page *kmapped_page = NULL;
522 	char *kaddr = NULL;
523 	unsigned long kpos = 0;
524 	int ret;
525 
526 	while (argc-- > 0) {
527 		const char __user *str;
528 		int len;
529 		unsigned long pos;
530 
531 		ret = -EFAULT;
532 		str = get_user_arg_ptr(argv, argc);
533 		if (IS_ERR(str))
534 			goto out;
535 
536 		len = strnlen_user(str, MAX_ARG_STRLEN);
537 		if (!len)
538 			goto out;
539 
540 		ret = -E2BIG;
541 		if (!valid_arg_len(bprm, len))
542 			goto out;
543 
544 		/* We're going to work our way backwards. */
545 		pos = bprm->p;
546 		str += len;
547 		bprm->p -= len;
548 #ifdef CONFIG_MMU
549 		if (bprm->p < bprm->argmin)
550 			goto out;
551 #endif
552 
553 		while (len > 0) {
554 			int offset, bytes_to_copy;
555 
556 			if (fatal_signal_pending(current)) {
557 				ret = -ERESTARTNOHAND;
558 				goto out;
559 			}
560 			cond_resched();
561 
562 			offset = pos % PAGE_SIZE;
563 			if (offset == 0)
564 				offset = PAGE_SIZE;
565 
566 			bytes_to_copy = offset;
567 			if (bytes_to_copy > len)
568 				bytes_to_copy = len;
569 
570 			offset -= bytes_to_copy;
571 			pos -= bytes_to_copy;
572 			str -= bytes_to_copy;
573 			len -= bytes_to_copy;
574 
575 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
576 				struct page *page;
577 
578 				page = get_arg_page(bprm, pos, 1);
579 				if (!page) {
580 					ret = -E2BIG;
581 					goto out;
582 				}
583 
584 				if (kmapped_page) {
585 					flush_dcache_page(kmapped_page);
586 					kunmap_local(kaddr);
587 					put_arg_page(kmapped_page);
588 				}
589 				kmapped_page = page;
590 				kaddr = kmap_local_page(kmapped_page);
591 				kpos = pos & PAGE_MASK;
592 				flush_arg_page(bprm, kpos, kmapped_page);
593 			}
594 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
595 				ret = -EFAULT;
596 				goto out;
597 			}
598 		}
599 	}
600 	ret = 0;
601 out:
602 	if (kmapped_page) {
603 		flush_dcache_page(kmapped_page);
604 		kunmap_local(kaddr);
605 		put_arg_page(kmapped_page);
606 	}
607 	return ret;
608 }
609 
610 /*
611  * Copy and argument/environment string from the kernel to the processes stack.
612  */
613 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
614 {
615 	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
616 	unsigned long pos = bprm->p;
617 
618 	if (len == 0)
619 		return -EFAULT;
620 	if (!valid_arg_len(bprm, len))
621 		return -E2BIG;
622 
623 	/* We're going to work our way backwards. */
624 	arg += len;
625 	bprm->p -= len;
626 	if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
627 		return -E2BIG;
628 
629 	while (len > 0) {
630 		unsigned int bytes_to_copy = min_t(unsigned int, len,
631 				min_not_zero(offset_in_page(pos), PAGE_SIZE));
632 		struct page *page;
633 
634 		pos -= bytes_to_copy;
635 		arg -= bytes_to_copy;
636 		len -= bytes_to_copy;
637 
638 		page = get_arg_page(bprm, pos, 1);
639 		if (!page)
640 			return -E2BIG;
641 		flush_arg_page(bprm, pos & PAGE_MASK, page);
642 		memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
643 		put_arg_page(page);
644 	}
645 
646 	return 0;
647 }
648 EXPORT_SYMBOL(copy_string_kernel);
649 
650 static int copy_strings_kernel(int argc, const char *const *argv,
651 			       struct linux_binprm *bprm)
652 {
653 	while (argc-- > 0) {
654 		int ret = copy_string_kernel(argv[argc], bprm);
655 		if (ret < 0)
656 			return ret;
657 		if (fatal_signal_pending(current))
658 			return -ERESTARTNOHAND;
659 		cond_resched();
660 	}
661 	return 0;
662 }
663 
664 #ifdef CONFIG_MMU
665 
666 /*
667  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
668  * the binfmt code determines where the new stack should reside, we shift it to
669  * its final location.  The process proceeds as follows:
670  *
671  * 1) Use shift to calculate the new vma endpoints.
672  * 2) Extend vma to cover both the old and new ranges.  This ensures the
673  *    arguments passed to subsequent functions are consistent.
674  * 3) Move vma's page tables to the new range.
675  * 4) Free up any cleared pgd range.
676  * 5) Shrink the vma to cover only the new range.
677  */
678 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
679 {
680 	struct mm_struct *mm = vma->vm_mm;
681 	unsigned long old_start = vma->vm_start;
682 	unsigned long old_end = vma->vm_end;
683 	unsigned long length = old_end - old_start;
684 	unsigned long new_start = old_start - shift;
685 	unsigned long new_end = old_end - shift;
686 	VMA_ITERATOR(vmi, mm, new_start);
687 	struct vm_area_struct *next;
688 	struct mmu_gather tlb;
689 
690 	BUG_ON(new_start > new_end);
691 
692 	/*
693 	 * ensure there are no vmas between where we want to go
694 	 * and where we are
695 	 */
696 	if (vma != vma_next(&vmi))
697 		return -EFAULT;
698 
699 	/*
700 	 * cover the whole range: [new_start, old_end)
701 	 */
702 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
703 		return -ENOMEM;
704 
705 	/*
706 	 * move the page tables downwards, on failure we rely on
707 	 * process cleanup to remove whatever mess we made.
708 	 */
709 	if (length != move_page_tables(vma, old_start,
710 				       vma, new_start, length, false))
711 		return -ENOMEM;
712 
713 	lru_add_drain();
714 	tlb_gather_mmu(&tlb, mm);
715 	next = vma_next(&vmi);
716 	if (new_end > old_start) {
717 		/*
718 		 * when the old and new regions overlap clear from new_end.
719 		 */
720 		free_pgd_range(&tlb, new_end, old_end, new_end,
721 			next ? next->vm_start : USER_PGTABLES_CEILING);
722 	} else {
723 		/*
724 		 * otherwise, clean from old_start; this is done to not touch
725 		 * the address space in [new_end, old_start) some architectures
726 		 * have constraints on va-space that make this illegal (IA64) -
727 		 * for the others its just a little faster.
728 		 */
729 		free_pgd_range(&tlb, old_start, old_end, new_end,
730 			next ? next->vm_start : USER_PGTABLES_CEILING);
731 	}
732 	tlb_finish_mmu(&tlb);
733 
734 	/*
735 	 * Shrink the vma to just the new range.  Always succeeds.
736 	 */
737 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
738 
739 	return 0;
740 }
741 
742 /*
743  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
744  * the stack is optionally relocated, and some extra space is added.
745  */
746 int setup_arg_pages(struct linux_binprm *bprm,
747 		    unsigned long stack_top,
748 		    int executable_stack)
749 {
750 	unsigned long ret;
751 	unsigned long stack_shift;
752 	struct mm_struct *mm = current->mm;
753 	struct vm_area_struct *vma = bprm->vma;
754 	struct vm_area_struct *prev = NULL;
755 	unsigned long vm_flags;
756 	unsigned long stack_base;
757 	unsigned long stack_size;
758 	unsigned long stack_expand;
759 	unsigned long rlim_stack;
760 	struct mmu_gather tlb;
761 
762 #ifdef CONFIG_STACK_GROWSUP
763 	/* Limit stack size */
764 	stack_base = bprm->rlim_stack.rlim_max;
765 
766 	stack_base = calc_max_stack_size(stack_base);
767 
768 	/* Add space for stack randomization. */
769 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
770 
771 	/* Make sure we didn't let the argument array grow too large. */
772 	if (vma->vm_end - vma->vm_start > stack_base)
773 		return -ENOMEM;
774 
775 	stack_base = PAGE_ALIGN(stack_top - stack_base);
776 
777 	stack_shift = vma->vm_start - stack_base;
778 	mm->arg_start = bprm->p - stack_shift;
779 	bprm->p = vma->vm_end - stack_shift;
780 #else
781 	stack_top = arch_align_stack(stack_top);
782 	stack_top = PAGE_ALIGN(stack_top);
783 
784 	if (unlikely(stack_top < mmap_min_addr) ||
785 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
786 		return -ENOMEM;
787 
788 	stack_shift = vma->vm_end - stack_top;
789 
790 	bprm->p -= stack_shift;
791 	mm->arg_start = bprm->p;
792 #endif
793 
794 	if (bprm->loader)
795 		bprm->loader -= stack_shift;
796 	bprm->exec -= stack_shift;
797 
798 	if (mmap_write_lock_killable(mm))
799 		return -EINTR;
800 
801 	vm_flags = VM_STACK_FLAGS;
802 
803 	/*
804 	 * Adjust stack execute permissions; explicitly enable for
805 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
806 	 * (arch default) otherwise.
807 	 */
808 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
809 		vm_flags |= VM_EXEC;
810 	else if (executable_stack == EXSTACK_DISABLE_X)
811 		vm_flags &= ~VM_EXEC;
812 	vm_flags |= mm->def_flags;
813 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
814 
815 	tlb_gather_mmu(&tlb, mm);
816 	ret = mprotect_fixup(&tlb, vma, &prev, vma->vm_start, vma->vm_end,
817 			vm_flags);
818 	tlb_finish_mmu(&tlb);
819 
820 	if (ret)
821 		goto out_unlock;
822 	BUG_ON(prev != vma);
823 
824 	if (unlikely(vm_flags & VM_EXEC)) {
825 		pr_warn_once("process '%pD4' started with executable stack\n",
826 			     bprm->file);
827 	}
828 
829 	/* Move stack pages down in memory. */
830 	if (stack_shift) {
831 		ret = shift_arg_pages(vma, stack_shift);
832 		if (ret)
833 			goto out_unlock;
834 	}
835 
836 	/* mprotect_fixup is overkill to remove the temporary stack flags */
837 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
838 
839 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
840 	stack_size = vma->vm_end - vma->vm_start;
841 	/*
842 	 * Align this down to a page boundary as expand_stack
843 	 * will align it up.
844 	 */
845 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
846 #ifdef CONFIG_STACK_GROWSUP
847 	if (stack_size + stack_expand > rlim_stack)
848 		stack_base = vma->vm_start + rlim_stack;
849 	else
850 		stack_base = vma->vm_end + stack_expand;
851 #else
852 	if (stack_size + stack_expand > rlim_stack)
853 		stack_base = vma->vm_end - rlim_stack;
854 	else
855 		stack_base = vma->vm_start - stack_expand;
856 #endif
857 	current->mm->start_stack = bprm->p;
858 	ret = expand_stack(vma, stack_base);
859 	if (ret)
860 		ret = -EFAULT;
861 
862 out_unlock:
863 	mmap_write_unlock(mm);
864 	return ret;
865 }
866 EXPORT_SYMBOL(setup_arg_pages);
867 
868 #else
869 
870 /*
871  * Transfer the program arguments and environment from the holding pages
872  * onto the stack. The provided stack pointer is adjusted accordingly.
873  */
874 int transfer_args_to_stack(struct linux_binprm *bprm,
875 			   unsigned long *sp_location)
876 {
877 	unsigned long index, stop, sp;
878 	int ret = 0;
879 
880 	stop = bprm->p >> PAGE_SHIFT;
881 	sp = *sp_location;
882 
883 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
884 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
885 		char *src = kmap_local_page(bprm->page[index]) + offset;
886 		sp -= PAGE_SIZE - offset;
887 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
888 			ret = -EFAULT;
889 		kunmap_local(src);
890 		if (ret)
891 			goto out;
892 	}
893 
894 	*sp_location = sp;
895 
896 out:
897 	return ret;
898 }
899 EXPORT_SYMBOL(transfer_args_to_stack);
900 
901 #endif /* CONFIG_MMU */
902 
903 static struct file *do_open_execat(int fd, struct filename *name, int flags)
904 {
905 	struct file *file;
906 	int err;
907 	struct open_flags open_exec_flags = {
908 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
909 		.acc_mode = MAY_EXEC,
910 		.intent = LOOKUP_OPEN,
911 		.lookup_flags = LOOKUP_FOLLOW,
912 	};
913 
914 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
915 		return ERR_PTR(-EINVAL);
916 	if (flags & AT_SYMLINK_NOFOLLOW)
917 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
918 	if (flags & AT_EMPTY_PATH)
919 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
920 
921 	file = do_filp_open(fd, name, &open_exec_flags);
922 	if (IS_ERR(file))
923 		goto out;
924 
925 	/*
926 	 * may_open() has already checked for this, so it should be
927 	 * impossible to trip now. But we need to be extra cautious
928 	 * and check again at the very end too.
929 	 */
930 	err = -EACCES;
931 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
932 			 path_noexec(&file->f_path)))
933 		goto exit;
934 
935 	err = deny_write_access(file);
936 	if (err)
937 		goto exit;
938 
939 	if (name->name[0] != '\0')
940 		fsnotify_open(file);
941 
942 out:
943 	return file;
944 
945 exit:
946 	fput(file);
947 	return ERR_PTR(err);
948 }
949 
950 struct file *open_exec(const char *name)
951 {
952 	struct filename *filename = getname_kernel(name);
953 	struct file *f = ERR_CAST(filename);
954 
955 	if (!IS_ERR(filename)) {
956 		f = do_open_execat(AT_FDCWD, filename, 0);
957 		putname(filename);
958 	}
959 	return f;
960 }
961 EXPORT_SYMBOL(open_exec);
962 
963 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
964     defined(CONFIG_BINFMT_ELF_FDPIC)
965 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
966 {
967 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
968 	if (res > 0)
969 		flush_icache_user_range(addr, addr + len);
970 	return res;
971 }
972 EXPORT_SYMBOL(read_code);
973 #endif
974 
975 /*
976  * Maps the mm_struct mm into the current task struct.
977  * On success, this function returns with exec_update_lock
978  * held for writing.
979  */
980 static int exec_mmap(struct mm_struct *mm)
981 {
982 	struct task_struct *tsk;
983 	struct mm_struct *old_mm, *active_mm;
984 	bool vfork;
985 	int ret;
986 
987 	/* Notify parent that we're no longer interested in the old VM */
988 	tsk = current;
989 	vfork = !!tsk->vfork_done;
990 	old_mm = current->mm;
991 	exec_mm_release(tsk, old_mm);
992 	if (old_mm)
993 		sync_mm_rss(old_mm);
994 
995 	ret = down_write_killable(&tsk->signal->exec_update_lock);
996 	if (ret)
997 		return ret;
998 
999 	if (old_mm) {
1000 		/*
1001 		 * If there is a pending fatal signal perhaps a signal
1002 		 * whose default action is to create a coredump get
1003 		 * out and die instead of going through with the exec.
1004 		 */
1005 		ret = mmap_read_lock_killable(old_mm);
1006 		if (ret) {
1007 			up_write(&tsk->signal->exec_update_lock);
1008 			return ret;
1009 		}
1010 	}
1011 
1012 	task_lock(tsk);
1013 	membarrier_exec_mmap(mm);
1014 
1015 	local_irq_disable();
1016 	active_mm = tsk->active_mm;
1017 	tsk->active_mm = mm;
1018 	tsk->mm = mm;
1019 	lru_gen_add_mm(mm);
1020 	/*
1021 	 * This prevents preemption while active_mm is being loaded and
1022 	 * it and mm are being updated, which could cause problems for
1023 	 * lazy tlb mm refcounting when these are updated by context
1024 	 * switches. Not all architectures can handle irqs off over
1025 	 * activate_mm yet.
1026 	 */
1027 	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1028 		local_irq_enable();
1029 	activate_mm(active_mm, mm);
1030 	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1031 		local_irq_enable();
1032 	task_unlock(tsk);
1033 	lru_gen_use_mm(mm);
1034 
1035 	if (vfork)
1036 		timens_on_fork(tsk->nsproxy, tsk);
1037 
1038 	if (old_mm) {
1039 		mmap_read_unlock(old_mm);
1040 		BUG_ON(active_mm != old_mm);
1041 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1042 		mm_update_next_owner(old_mm);
1043 		mmput(old_mm);
1044 		return 0;
1045 	}
1046 	mmdrop(active_mm);
1047 	return 0;
1048 }
1049 
1050 static int de_thread(struct task_struct *tsk)
1051 {
1052 	struct signal_struct *sig = tsk->signal;
1053 	struct sighand_struct *oldsighand = tsk->sighand;
1054 	spinlock_t *lock = &oldsighand->siglock;
1055 
1056 	if (thread_group_empty(tsk))
1057 		goto no_thread_group;
1058 
1059 	/*
1060 	 * Kill all other threads in the thread group.
1061 	 */
1062 	spin_lock_irq(lock);
1063 	if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1064 		/*
1065 		 * Another group action in progress, just
1066 		 * return so that the signal is processed.
1067 		 */
1068 		spin_unlock_irq(lock);
1069 		return -EAGAIN;
1070 	}
1071 
1072 	sig->group_exec_task = tsk;
1073 	sig->notify_count = zap_other_threads(tsk);
1074 	if (!thread_group_leader(tsk))
1075 		sig->notify_count--;
1076 
1077 	while (sig->notify_count) {
1078 		__set_current_state(TASK_KILLABLE);
1079 		spin_unlock_irq(lock);
1080 		schedule();
1081 		if (__fatal_signal_pending(tsk))
1082 			goto killed;
1083 		spin_lock_irq(lock);
1084 	}
1085 	spin_unlock_irq(lock);
1086 
1087 	/*
1088 	 * At this point all other threads have exited, all we have to
1089 	 * do is to wait for the thread group leader to become inactive,
1090 	 * and to assume its PID:
1091 	 */
1092 	if (!thread_group_leader(tsk)) {
1093 		struct task_struct *leader = tsk->group_leader;
1094 
1095 		for (;;) {
1096 			cgroup_threadgroup_change_begin(tsk);
1097 			write_lock_irq(&tasklist_lock);
1098 			/*
1099 			 * Do this under tasklist_lock to ensure that
1100 			 * exit_notify() can't miss ->group_exec_task
1101 			 */
1102 			sig->notify_count = -1;
1103 			if (likely(leader->exit_state))
1104 				break;
1105 			__set_current_state(TASK_KILLABLE);
1106 			write_unlock_irq(&tasklist_lock);
1107 			cgroup_threadgroup_change_end(tsk);
1108 			schedule();
1109 			if (__fatal_signal_pending(tsk))
1110 				goto killed;
1111 		}
1112 
1113 		/*
1114 		 * The only record we have of the real-time age of a
1115 		 * process, regardless of execs it's done, is start_time.
1116 		 * All the past CPU time is accumulated in signal_struct
1117 		 * from sister threads now dead.  But in this non-leader
1118 		 * exec, nothing survives from the original leader thread,
1119 		 * whose birth marks the true age of this process now.
1120 		 * When we take on its identity by switching to its PID, we
1121 		 * also take its birthdate (always earlier than our own).
1122 		 */
1123 		tsk->start_time = leader->start_time;
1124 		tsk->start_boottime = leader->start_boottime;
1125 
1126 		BUG_ON(!same_thread_group(leader, tsk));
1127 		/*
1128 		 * An exec() starts a new thread group with the
1129 		 * TGID of the previous thread group. Rehash the
1130 		 * two threads with a switched PID, and release
1131 		 * the former thread group leader:
1132 		 */
1133 
1134 		/* Become a process group leader with the old leader's pid.
1135 		 * The old leader becomes a thread of the this thread group.
1136 		 */
1137 		exchange_tids(tsk, leader);
1138 		transfer_pid(leader, tsk, PIDTYPE_TGID);
1139 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1140 		transfer_pid(leader, tsk, PIDTYPE_SID);
1141 
1142 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1143 		list_replace_init(&leader->sibling, &tsk->sibling);
1144 
1145 		tsk->group_leader = tsk;
1146 		leader->group_leader = tsk;
1147 
1148 		tsk->exit_signal = SIGCHLD;
1149 		leader->exit_signal = -1;
1150 
1151 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1152 		leader->exit_state = EXIT_DEAD;
1153 
1154 		/*
1155 		 * We are going to release_task()->ptrace_unlink() silently,
1156 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1157 		 * the tracer won't block again waiting for this thread.
1158 		 */
1159 		if (unlikely(leader->ptrace))
1160 			__wake_up_parent(leader, leader->parent);
1161 		write_unlock_irq(&tasklist_lock);
1162 		cgroup_threadgroup_change_end(tsk);
1163 
1164 		release_task(leader);
1165 	}
1166 
1167 	sig->group_exec_task = NULL;
1168 	sig->notify_count = 0;
1169 
1170 no_thread_group:
1171 	/* we have changed execution domain */
1172 	tsk->exit_signal = SIGCHLD;
1173 
1174 	BUG_ON(!thread_group_leader(tsk));
1175 	return 0;
1176 
1177 killed:
1178 	/* protects against exit_notify() and __exit_signal() */
1179 	read_lock(&tasklist_lock);
1180 	sig->group_exec_task = NULL;
1181 	sig->notify_count = 0;
1182 	read_unlock(&tasklist_lock);
1183 	return -EAGAIN;
1184 }
1185 
1186 
1187 /*
1188  * This function makes sure the current process has its own signal table,
1189  * so that flush_signal_handlers can later reset the handlers without
1190  * disturbing other processes.  (Other processes might share the signal
1191  * table via the CLONE_SIGHAND option to clone().)
1192  */
1193 static int unshare_sighand(struct task_struct *me)
1194 {
1195 	struct sighand_struct *oldsighand = me->sighand;
1196 
1197 	if (refcount_read(&oldsighand->count) != 1) {
1198 		struct sighand_struct *newsighand;
1199 		/*
1200 		 * This ->sighand is shared with the CLONE_SIGHAND
1201 		 * but not CLONE_THREAD task, switch to the new one.
1202 		 */
1203 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1204 		if (!newsighand)
1205 			return -ENOMEM;
1206 
1207 		refcount_set(&newsighand->count, 1);
1208 		memcpy(newsighand->action, oldsighand->action,
1209 		       sizeof(newsighand->action));
1210 
1211 		write_lock_irq(&tasklist_lock);
1212 		spin_lock(&oldsighand->siglock);
1213 		rcu_assign_pointer(me->sighand, newsighand);
1214 		spin_unlock(&oldsighand->siglock);
1215 		write_unlock_irq(&tasklist_lock);
1216 
1217 		__cleanup_sighand(oldsighand);
1218 	}
1219 	return 0;
1220 }
1221 
1222 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1223 {
1224 	task_lock(tsk);
1225 	/* Always NUL terminated and zero-padded */
1226 	strscpy_pad(buf, tsk->comm, buf_size);
1227 	task_unlock(tsk);
1228 	return buf;
1229 }
1230 EXPORT_SYMBOL_GPL(__get_task_comm);
1231 
1232 /*
1233  * These functions flushes out all traces of the currently running executable
1234  * so that a new one can be started
1235  */
1236 
1237 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1238 {
1239 	task_lock(tsk);
1240 	trace_task_rename(tsk, buf);
1241 	strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1242 	task_unlock(tsk);
1243 	perf_event_comm(tsk, exec);
1244 }
1245 
1246 /*
1247  * Calling this is the point of no return. None of the failures will be
1248  * seen by userspace since either the process is already taking a fatal
1249  * signal (via de_thread() or coredump), or will have SEGV raised
1250  * (after exec_mmap()) by search_binary_handler (see below).
1251  */
1252 int begin_new_exec(struct linux_binprm * bprm)
1253 {
1254 	struct task_struct *me = current;
1255 	int retval;
1256 
1257 	/* Once we are committed compute the creds */
1258 	retval = bprm_creds_from_file(bprm);
1259 	if (retval)
1260 		return retval;
1261 
1262 	/*
1263 	 * Ensure all future errors are fatal.
1264 	 */
1265 	bprm->point_of_no_return = true;
1266 
1267 	/*
1268 	 * Make this the only thread in the thread group.
1269 	 */
1270 	retval = de_thread(me);
1271 	if (retval)
1272 		goto out;
1273 
1274 	/*
1275 	 * Cancel any io_uring activity across execve
1276 	 */
1277 	io_uring_task_cancel();
1278 
1279 	/* Ensure the files table is not shared. */
1280 	retval = unshare_files();
1281 	if (retval)
1282 		goto out;
1283 
1284 	/*
1285 	 * Must be called _before_ exec_mmap() as bprm->mm is
1286 	 * not visible until then. This also enables the update
1287 	 * to be lockless.
1288 	 */
1289 	retval = set_mm_exe_file(bprm->mm, bprm->file);
1290 	if (retval)
1291 		goto out;
1292 
1293 	/* If the binary is not readable then enforce mm->dumpable=0 */
1294 	would_dump(bprm, bprm->file);
1295 	if (bprm->have_execfd)
1296 		would_dump(bprm, bprm->executable);
1297 
1298 	/*
1299 	 * Release all of the old mmap stuff
1300 	 */
1301 	acct_arg_size(bprm, 0);
1302 	retval = exec_mmap(bprm->mm);
1303 	if (retval)
1304 		goto out;
1305 
1306 	bprm->mm = NULL;
1307 
1308 #ifdef CONFIG_POSIX_TIMERS
1309 	spin_lock_irq(&me->sighand->siglock);
1310 	posix_cpu_timers_exit(me);
1311 	spin_unlock_irq(&me->sighand->siglock);
1312 	exit_itimers(me);
1313 	flush_itimer_signals();
1314 #endif
1315 
1316 	/*
1317 	 * Make the signal table private.
1318 	 */
1319 	retval = unshare_sighand(me);
1320 	if (retval)
1321 		goto out_unlock;
1322 
1323 	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1324 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1325 	flush_thread();
1326 	me->personality &= ~bprm->per_clear;
1327 
1328 	clear_syscall_work_syscall_user_dispatch(me);
1329 
1330 	/*
1331 	 * We have to apply CLOEXEC before we change whether the process is
1332 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1333 	 * trying to access the should-be-closed file descriptors of a process
1334 	 * undergoing exec(2).
1335 	 */
1336 	do_close_on_exec(me->files);
1337 
1338 	if (bprm->secureexec) {
1339 		/* Make sure parent cannot signal privileged process. */
1340 		me->pdeath_signal = 0;
1341 
1342 		/*
1343 		 * For secureexec, reset the stack limit to sane default to
1344 		 * avoid bad behavior from the prior rlimits. This has to
1345 		 * happen before arch_pick_mmap_layout(), which examines
1346 		 * RLIMIT_STACK, but after the point of no return to avoid
1347 		 * needing to clean up the change on failure.
1348 		 */
1349 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1350 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1351 	}
1352 
1353 	me->sas_ss_sp = me->sas_ss_size = 0;
1354 
1355 	/*
1356 	 * Figure out dumpability. Note that this checking only of current
1357 	 * is wrong, but userspace depends on it. This should be testing
1358 	 * bprm->secureexec instead.
1359 	 */
1360 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1361 	    !(uid_eq(current_euid(), current_uid()) &&
1362 	      gid_eq(current_egid(), current_gid())))
1363 		set_dumpable(current->mm, suid_dumpable);
1364 	else
1365 		set_dumpable(current->mm, SUID_DUMP_USER);
1366 
1367 	perf_event_exec();
1368 	__set_task_comm(me, kbasename(bprm->filename), true);
1369 
1370 	/* An exec changes our domain. We are no longer part of the thread
1371 	   group */
1372 	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1373 	flush_signal_handlers(me, 0);
1374 
1375 	retval = set_cred_ucounts(bprm->cred);
1376 	if (retval < 0)
1377 		goto out_unlock;
1378 
1379 	/*
1380 	 * install the new credentials for this executable
1381 	 */
1382 	security_bprm_committing_creds(bprm);
1383 
1384 	commit_creds(bprm->cred);
1385 	bprm->cred = NULL;
1386 
1387 	/*
1388 	 * Disable monitoring for regular users
1389 	 * when executing setuid binaries. Must
1390 	 * wait until new credentials are committed
1391 	 * by commit_creds() above
1392 	 */
1393 	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1394 		perf_event_exit_task(me);
1395 	/*
1396 	 * cred_guard_mutex must be held at least to this point to prevent
1397 	 * ptrace_attach() from altering our determination of the task's
1398 	 * credentials; any time after this it may be unlocked.
1399 	 */
1400 	security_bprm_committed_creds(bprm);
1401 
1402 	/* Pass the opened binary to the interpreter. */
1403 	if (bprm->have_execfd) {
1404 		retval = get_unused_fd_flags(0);
1405 		if (retval < 0)
1406 			goto out_unlock;
1407 		fd_install(retval, bprm->executable);
1408 		bprm->executable = NULL;
1409 		bprm->execfd = retval;
1410 	}
1411 	return 0;
1412 
1413 out_unlock:
1414 	up_write(&me->signal->exec_update_lock);
1415 out:
1416 	return retval;
1417 }
1418 EXPORT_SYMBOL(begin_new_exec);
1419 
1420 void would_dump(struct linux_binprm *bprm, struct file *file)
1421 {
1422 	struct inode *inode = file_inode(file);
1423 	struct user_namespace *mnt_userns = file_mnt_user_ns(file);
1424 	if (inode_permission(mnt_userns, inode, MAY_READ) < 0) {
1425 		struct user_namespace *old, *user_ns;
1426 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1427 
1428 		/* Ensure mm->user_ns contains the executable */
1429 		user_ns = old = bprm->mm->user_ns;
1430 		while ((user_ns != &init_user_ns) &&
1431 		       !privileged_wrt_inode_uidgid(user_ns, mnt_userns, inode))
1432 			user_ns = user_ns->parent;
1433 
1434 		if (old != user_ns) {
1435 			bprm->mm->user_ns = get_user_ns(user_ns);
1436 			put_user_ns(old);
1437 		}
1438 	}
1439 }
1440 EXPORT_SYMBOL(would_dump);
1441 
1442 void setup_new_exec(struct linux_binprm * bprm)
1443 {
1444 	/* Setup things that can depend upon the personality */
1445 	struct task_struct *me = current;
1446 
1447 	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1448 
1449 	arch_setup_new_exec();
1450 
1451 	/* Set the new mm task size. We have to do that late because it may
1452 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1453 	 * some architectures like powerpc
1454 	 */
1455 	me->mm->task_size = TASK_SIZE;
1456 	up_write(&me->signal->exec_update_lock);
1457 	mutex_unlock(&me->signal->cred_guard_mutex);
1458 }
1459 EXPORT_SYMBOL(setup_new_exec);
1460 
1461 /* Runs immediately before start_thread() takes over. */
1462 void finalize_exec(struct linux_binprm *bprm)
1463 {
1464 	/* Store any stack rlimit changes before starting thread. */
1465 	task_lock(current->group_leader);
1466 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1467 	task_unlock(current->group_leader);
1468 }
1469 EXPORT_SYMBOL(finalize_exec);
1470 
1471 /*
1472  * Prepare credentials and lock ->cred_guard_mutex.
1473  * setup_new_exec() commits the new creds and drops the lock.
1474  * Or, if exec fails before, free_bprm() should release ->cred
1475  * and unlock.
1476  */
1477 static int prepare_bprm_creds(struct linux_binprm *bprm)
1478 {
1479 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1480 		return -ERESTARTNOINTR;
1481 
1482 	bprm->cred = prepare_exec_creds();
1483 	if (likely(bprm->cred))
1484 		return 0;
1485 
1486 	mutex_unlock(&current->signal->cred_guard_mutex);
1487 	return -ENOMEM;
1488 }
1489 
1490 static void free_bprm(struct linux_binprm *bprm)
1491 {
1492 	if (bprm->mm) {
1493 		acct_arg_size(bprm, 0);
1494 		mmput(bprm->mm);
1495 	}
1496 	free_arg_pages(bprm);
1497 	if (bprm->cred) {
1498 		mutex_unlock(&current->signal->cred_guard_mutex);
1499 		abort_creds(bprm->cred);
1500 	}
1501 	if (bprm->file) {
1502 		allow_write_access(bprm->file);
1503 		fput(bprm->file);
1504 	}
1505 	if (bprm->executable)
1506 		fput(bprm->executable);
1507 	/* If a binfmt changed the interp, free it. */
1508 	if (bprm->interp != bprm->filename)
1509 		kfree(bprm->interp);
1510 	kfree(bprm->fdpath);
1511 	kfree(bprm);
1512 }
1513 
1514 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1515 {
1516 	struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1517 	int retval = -ENOMEM;
1518 	if (!bprm)
1519 		goto out;
1520 
1521 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1522 		bprm->filename = filename->name;
1523 	} else {
1524 		if (filename->name[0] == '\0')
1525 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1526 		else
1527 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1528 						  fd, filename->name);
1529 		if (!bprm->fdpath)
1530 			goto out_free;
1531 
1532 		bprm->filename = bprm->fdpath;
1533 	}
1534 	bprm->interp = bprm->filename;
1535 
1536 	retval = bprm_mm_init(bprm);
1537 	if (retval)
1538 		goto out_free;
1539 	return bprm;
1540 
1541 out_free:
1542 	free_bprm(bprm);
1543 out:
1544 	return ERR_PTR(retval);
1545 }
1546 
1547 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1548 {
1549 	/* If a binfmt changed the interp, free it first. */
1550 	if (bprm->interp != bprm->filename)
1551 		kfree(bprm->interp);
1552 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1553 	if (!bprm->interp)
1554 		return -ENOMEM;
1555 	return 0;
1556 }
1557 EXPORT_SYMBOL(bprm_change_interp);
1558 
1559 /*
1560  * determine how safe it is to execute the proposed program
1561  * - the caller must hold ->cred_guard_mutex to protect against
1562  *   PTRACE_ATTACH or seccomp thread-sync
1563  */
1564 static void check_unsafe_exec(struct linux_binprm *bprm)
1565 {
1566 	struct task_struct *p = current, *t;
1567 	unsigned n_fs;
1568 
1569 	if (p->ptrace)
1570 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1571 
1572 	/*
1573 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1574 	 * mess up.
1575 	 */
1576 	if (task_no_new_privs(current))
1577 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1578 
1579 	t = p;
1580 	n_fs = 1;
1581 	spin_lock(&p->fs->lock);
1582 	rcu_read_lock();
1583 	while_each_thread(p, t) {
1584 		if (t->fs == p->fs)
1585 			n_fs++;
1586 	}
1587 	rcu_read_unlock();
1588 
1589 	if (p->fs->users > n_fs)
1590 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1591 	else
1592 		p->fs->in_exec = 1;
1593 	spin_unlock(&p->fs->lock);
1594 }
1595 
1596 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1597 {
1598 	/* Handle suid and sgid on files */
1599 	struct user_namespace *mnt_userns;
1600 	struct inode *inode;
1601 	unsigned int mode;
1602 	kuid_t uid;
1603 	kgid_t gid;
1604 
1605 	if (!mnt_may_suid(file->f_path.mnt))
1606 		return;
1607 
1608 	if (task_no_new_privs(current))
1609 		return;
1610 
1611 	inode = file->f_path.dentry->d_inode;
1612 	mode = READ_ONCE(inode->i_mode);
1613 	if (!(mode & (S_ISUID|S_ISGID)))
1614 		return;
1615 
1616 	mnt_userns = file_mnt_user_ns(file);
1617 
1618 	/* Be careful if suid/sgid is set */
1619 	inode_lock(inode);
1620 
1621 	/* reload atomically mode/uid/gid now that lock held */
1622 	mode = inode->i_mode;
1623 	uid = i_uid_into_mnt(mnt_userns, inode);
1624 	gid = i_gid_into_mnt(mnt_userns, inode);
1625 	inode_unlock(inode);
1626 
1627 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1628 	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1629 		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1630 		return;
1631 
1632 	if (mode & S_ISUID) {
1633 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1634 		bprm->cred->euid = uid;
1635 	}
1636 
1637 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1638 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1639 		bprm->cred->egid = gid;
1640 	}
1641 }
1642 
1643 /*
1644  * Compute brpm->cred based upon the final binary.
1645  */
1646 static int bprm_creds_from_file(struct linux_binprm *bprm)
1647 {
1648 	/* Compute creds based on which file? */
1649 	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1650 
1651 	bprm_fill_uid(bprm, file);
1652 	return security_bprm_creds_from_file(bprm, file);
1653 }
1654 
1655 /*
1656  * Fill the binprm structure from the inode.
1657  * Read the first BINPRM_BUF_SIZE bytes
1658  *
1659  * This may be called multiple times for binary chains (scripts for example).
1660  */
1661 static int prepare_binprm(struct linux_binprm *bprm)
1662 {
1663 	loff_t pos = 0;
1664 
1665 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1666 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1667 }
1668 
1669 /*
1670  * Arguments are '\0' separated strings found at the location bprm->p
1671  * points to; chop off the first by relocating brpm->p to right after
1672  * the first '\0' encountered.
1673  */
1674 int remove_arg_zero(struct linux_binprm *bprm)
1675 {
1676 	int ret = 0;
1677 	unsigned long offset;
1678 	char *kaddr;
1679 	struct page *page;
1680 
1681 	if (!bprm->argc)
1682 		return 0;
1683 
1684 	do {
1685 		offset = bprm->p & ~PAGE_MASK;
1686 		page = get_arg_page(bprm, bprm->p, 0);
1687 		if (!page) {
1688 			ret = -EFAULT;
1689 			goto out;
1690 		}
1691 		kaddr = kmap_local_page(page);
1692 
1693 		for (; offset < PAGE_SIZE && kaddr[offset];
1694 				offset++, bprm->p++)
1695 			;
1696 
1697 		kunmap_local(kaddr);
1698 		put_arg_page(page);
1699 	} while (offset == PAGE_SIZE);
1700 
1701 	bprm->p++;
1702 	bprm->argc--;
1703 	ret = 0;
1704 
1705 out:
1706 	return ret;
1707 }
1708 EXPORT_SYMBOL(remove_arg_zero);
1709 
1710 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1711 /*
1712  * cycle the list of binary formats handler, until one recognizes the image
1713  */
1714 static int search_binary_handler(struct linux_binprm *bprm)
1715 {
1716 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1717 	struct linux_binfmt *fmt;
1718 	int retval;
1719 
1720 	retval = prepare_binprm(bprm);
1721 	if (retval < 0)
1722 		return retval;
1723 
1724 	retval = security_bprm_check(bprm);
1725 	if (retval)
1726 		return retval;
1727 
1728 	retval = -ENOENT;
1729  retry:
1730 	read_lock(&binfmt_lock);
1731 	list_for_each_entry(fmt, &formats, lh) {
1732 		if (!try_module_get(fmt->module))
1733 			continue;
1734 		read_unlock(&binfmt_lock);
1735 
1736 		retval = fmt->load_binary(bprm);
1737 
1738 		read_lock(&binfmt_lock);
1739 		put_binfmt(fmt);
1740 		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1741 			read_unlock(&binfmt_lock);
1742 			return retval;
1743 		}
1744 	}
1745 	read_unlock(&binfmt_lock);
1746 
1747 	if (need_retry) {
1748 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1749 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1750 			return retval;
1751 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1752 			return retval;
1753 		need_retry = false;
1754 		goto retry;
1755 	}
1756 
1757 	return retval;
1758 }
1759 
1760 static int exec_binprm(struct linux_binprm *bprm)
1761 {
1762 	pid_t old_pid, old_vpid;
1763 	int ret, depth;
1764 
1765 	/* Need to fetch pid before load_binary changes it */
1766 	old_pid = current->pid;
1767 	rcu_read_lock();
1768 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1769 	rcu_read_unlock();
1770 
1771 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1772 	for (depth = 0;; depth++) {
1773 		struct file *exec;
1774 		if (depth > 5)
1775 			return -ELOOP;
1776 
1777 		ret = search_binary_handler(bprm);
1778 		if (ret < 0)
1779 			return ret;
1780 		if (!bprm->interpreter)
1781 			break;
1782 
1783 		exec = bprm->file;
1784 		bprm->file = bprm->interpreter;
1785 		bprm->interpreter = NULL;
1786 
1787 		allow_write_access(exec);
1788 		if (unlikely(bprm->have_execfd)) {
1789 			if (bprm->executable) {
1790 				fput(exec);
1791 				return -ENOEXEC;
1792 			}
1793 			bprm->executable = exec;
1794 		} else
1795 			fput(exec);
1796 	}
1797 
1798 	audit_bprm(bprm);
1799 	trace_sched_process_exec(current, old_pid, bprm);
1800 	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1801 	proc_exec_connector(current);
1802 	return 0;
1803 }
1804 
1805 /*
1806  * sys_execve() executes a new program.
1807  */
1808 static int bprm_execve(struct linux_binprm *bprm,
1809 		       int fd, struct filename *filename, int flags)
1810 {
1811 	struct file *file;
1812 	int retval;
1813 
1814 	retval = prepare_bprm_creds(bprm);
1815 	if (retval)
1816 		return retval;
1817 
1818 	check_unsafe_exec(bprm);
1819 	current->in_execve = 1;
1820 
1821 	file = do_open_execat(fd, filename, flags);
1822 	retval = PTR_ERR(file);
1823 	if (IS_ERR(file))
1824 		goto out_unmark;
1825 
1826 	sched_exec();
1827 
1828 	bprm->file = file;
1829 	/*
1830 	 * Record that a name derived from an O_CLOEXEC fd will be
1831 	 * inaccessible after exec.  This allows the code in exec to
1832 	 * choose to fail when the executable is not mmaped into the
1833 	 * interpreter and an open file descriptor is not passed to
1834 	 * the interpreter.  This makes for a better user experience
1835 	 * than having the interpreter start and then immediately fail
1836 	 * when it finds the executable is inaccessible.
1837 	 */
1838 	if (bprm->fdpath && get_close_on_exec(fd))
1839 		bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1840 
1841 	/* Set the unchanging part of bprm->cred */
1842 	retval = security_bprm_creds_for_exec(bprm);
1843 	if (retval)
1844 		goto out;
1845 
1846 	retval = exec_binprm(bprm);
1847 	if (retval < 0)
1848 		goto out;
1849 
1850 	/* execve succeeded */
1851 	current->fs->in_exec = 0;
1852 	current->in_execve = 0;
1853 	rseq_execve(current);
1854 	acct_update_integrals(current);
1855 	task_numa_free(current, false);
1856 	return retval;
1857 
1858 out:
1859 	/*
1860 	 * If past the point of no return ensure the code never
1861 	 * returns to the userspace process.  Use an existing fatal
1862 	 * signal if present otherwise terminate the process with
1863 	 * SIGSEGV.
1864 	 */
1865 	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1866 		force_fatal_sig(SIGSEGV);
1867 
1868 out_unmark:
1869 	current->fs->in_exec = 0;
1870 	current->in_execve = 0;
1871 
1872 	return retval;
1873 }
1874 
1875 static int do_execveat_common(int fd, struct filename *filename,
1876 			      struct user_arg_ptr argv,
1877 			      struct user_arg_ptr envp,
1878 			      int flags)
1879 {
1880 	struct linux_binprm *bprm;
1881 	int retval;
1882 
1883 	if (IS_ERR(filename))
1884 		return PTR_ERR(filename);
1885 
1886 	/*
1887 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1888 	 * set*uid() to execve() because too many poorly written programs
1889 	 * don't check setuid() return code.  Here we additionally recheck
1890 	 * whether NPROC limit is still exceeded.
1891 	 */
1892 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1893 	    is_ucounts_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1894 		retval = -EAGAIN;
1895 		goto out_ret;
1896 	}
1897 
1898 	/* We're below the limit (still or again), so we don't want to make
1899 	 * further execve() calls fail. */
1900 	current->flags &= ~PF_NPROC_EXCEEDED;
1901 
1902 	bprm = alloc_bprm(fd, filename);
1903 	if (IS_ERR(bprm)) {
1904 		retval = PTR_ERR(bprm);
1905 		goto out_ret;
1906 	}
1907 
1908 	retval = count(argv, MAX_ARG_STRINGS);
1909 	if (retval == 0)
1910 		pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1911 			     current->comm, bprm->filename);
1912 	if (retval < 0)
1913 		goto out_free;
1914 	bprm->argc = retval;
1915 
1916 	retval = count(envp, MAX_ARG_STRINGS);
1917 	if (retval < 0)
1918 		goto out_free;
1919 	bprm->envc = retval;
1920 
1921 	retval = bprm_stack_limits(bprm);
1922 	if (retval < 0)
1923 		goto out_free;
1924 
1925 	retval = copy_string_kernel(bprm->filename, bprm);
1926 	if (retval < 0)
1927 		goto out_free;
1928 	bprm->exec = bprm->p;
1929 
1930 	retval = copy_strings(bprm->envc, envp, bprm);
1931 	if (retval < 0)
1932 		goto out_free;
1933 
1934 	retval = copy_strings(bprm->argc, argv, bprm);
1935 	if (retval < 0)
1936 		goto out_free;
1937 
1938 	/*
1939 	 * When argv is empty, add an empty string ("") as argv[0] to
1940 	 * ensure confused userspace programs that start processing
1941 	 * from argv[1] won't end up walking envp. See also
1942 	 * bprm_stack_limits().
1943 	 */
1944 	if (bprm->argc == 0) {
1945 		retval = copy_string_kernel("", bprm);
1946 		if (retval < 0)
1947 			goto out_free;
1948 		bprm->argc = 1;
1949 	}
1950 
1951 	retval = bprm_execve(bprm, fd, filename, flags);
1952 out_free:
1953 	free_bprm(bprm);
1954 
1955 out_ret:
1956 	putname(filename);
1957 	return retval;
1958 }
1959 
1960 int kernel_execve(const char *kernel_filename,
1961 		  const char *const *argv, const char *const *envp)
1962 {
1963 	struct filename *filename;
1964 	struct linux_binprm *bprm;
1965 	int fd = AT_FDCWD;
1966 	int retval;
1967 
1968 	/* It is non-sense for kernel threads to call execve */
1969 	if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
1970 		return -EINVAL;
1971 
1972 	filename = getname_kernel(kernel_filename);
1973 	if (IS_ERR(filename))
1974 		return PTR_ERR(filename);
1975 
1976 	bprm = alloc_bprm(fd, filename);
1977 	if (IS_ERR(bprm)) {
1978 		retval = PTR_ERR(bprm);
1979 		goto out_ret;
1980 	}
1981 
1982 	retval = count_strings_kernel(argv);
1983 	if (WARN_ON_ONCE(retval == 0))
1984 		retval = -EINVAL;
1985 	if (retval < 0)
1986 		goto out_free;
1987 	bprm->argc = retval;
1988 
1989 	retval = count_strings_kernel(envp);
1990 	if (retval < 0)
1991 		goto out_free;
1992 	bprm->envc = retval;
1993 
1994 	retval = bprm_stack_limits(bprm);
1995 	if (retval < 0)
1996 		goto out_free;
1997 
1998 	retval = copy_string_kernel(bprm->filename, bprm);
1999 	if (retval < 0)
2000 		goto out_free;
2001 	bprm->exec = bprm->p;
2002 
2003 	retval = copy_strings_kernel(bprm->envc, envp, bprm);
2004 	if (retval < 0)
2005 		goto out_free;
2006 
2007 	retval = copy_strings_kernel(bprm->argc, argv, bprm);
2008 	if (retval < 0)
2009 		goto out_free;
2010 
2011 	retval = bprm_execve(bprm, fd, filename, 0);
2012 out_free:
2013 	free_bprm(bprm);
2014 out_ret:
2015 	putname(filename);
2016 	return retval;
2017 }
2018 
2019 static int do_execve(struct filename *filename,
2020 	const char __user *const __user *__argv,
2021 	const char __user *const __user *__envp)
2022 {
2023 	struct user_arg_ptr argv = { .ptr.native = __argv };
2024 	struct user_arg_ptr envp = { .ptr.native = __envp };
2025 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2026 }
2027 
2028 static int do_execveat(int fd, struct filename *filename,
2029 		const char __user *const __user *__argv,
2030 		const char __user *const __user *__envp,
2031 		int flags)
2032 {
2033 	struct user_arg_ptr argv = { .ptr.native = __argv };
2034 	struct user_arg_ptr envp = { .ptr.native = __envp };
2035 
2036 	return do_execveat_common(fd, filename, argv, envp, flags);
2037 }
2038 
2039 #ifdef CONFIG_COMPAT
2040 static int compat_do_execve(struct filename *filename,
2041 	const compat_uptr_t __user *__argv,
2042 	const compat_uptr_t __user *__envp)
2043 {
2044 	struct user_arg_ptr argv = {
2045 		.is_compat = true,
2046 		.ptr.compat = __argv,
2047 	};
2048 	struct user_arg_ptr envp = {
2049 		.is_compat = true,
2050 		.ptr.compat = __envp,
2051 	};
2052 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2053 }
2054 
2055 static int compat_do_execveat(int fd, struct filename *filename,
2056 			      const compat_uptr_t __user *__argv,
2057 			      const compat_uptr_t __user *__envp,
2058 			      int flags)
2059 {
2060 	struct user_arg_ptr argv = {
2061 		.is_compat = true,
2062 		.ptr.compat = __argv,
2063 	};
2064 	struct user_arg_ptr envp = {
2065 		.is_compat = true,
2066 		.ptr.compat = __envp,
2067 	};
2068 	return do_execveat_common(fd, filename, argv, envp, flags);
2069 }
2070 #endif
2071 
2072 void set_binfmt(struct linux_binfmt *new)
2073 {
2074 	struct mm_struct *mm = current->mm;
2075 
2076 	if (mm->binfmt)
2077 		module_put(mm->binfmt->module);
2078 
2079 	mm->binfmt = new;
2080 	if (new)
2081 		__module_get(new->module);
2082 }
2083 EXPORT_SYMBOL(set_binfmt);
2084 
2085 /*
2086  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2087  */
2088 void set_dumpable(struct mm_struct *mm, int value)
2089 {
2090 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2091 		return;
2092 
2093 	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2094 }
2095 
2096 SYSCALL_DEFINE3(execve,
2097 		const char __user *, filename,
2098 		const char __user *const __user *, argv,
2099 		const char __user *const __user *, envp)
2100 {
2101 	return do_execve(getname(filename), argv, envp);
2102 }
2103 
2104 SYSCALL_DEFINE5(execveat,
2105 		int, fd, const char __user *, filename,
2106 		const char __user *const __user *, argv,
2107 		const char __user *const __user *, envp,
2108 		int, flags)
2109 {
2110 	return do_execveat(fd,
2111 			   getname_uflags(filename, flags),
2112 			   argv, envp, flags);
2113 }
2114 
2115 #ifdef CONFIG_COMPAT
2116 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2117 	const compat_uptr_t __user *, argv,
2118 	const compat_uptr_t __user *, envp)
2119 {
2120 	return compat_do_execve(getname(filename), argv, envp);
2121 }
2122 
2123 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2124 		       const char __user *, filename,
2125 		       const compat_uptr_t __user *, argv,
2126 		       const compat_uptr_t __user *, envp,
2127 		       int,  flags)
2128 {
2129 	return compat_do_execveat(fd,
2130 				  getname_uflags(filename, flags),
2131 				  argv, envp, flags);
2132 }
2133 #endif
2134 
2135 #ifdef CONFIG_SYSCTL
2136 
2137 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
2138 		void *buffer, size_t *lenp, loff_t *ppos)
2139 {
2140 	int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2141 
2142 	if (!error)
2143 		validate_coredump_safety();
2144 	return error;
2145 }
2146 
2147 static struct ctl_table fs_exec_sysctls[] = {
2148 	{
2149 		.procname	= "suid_dumpable",
2150 		.data		= &suid_dumpable,
2151 		.maxlen		= sizeof(int),
2152 		.mode		= 0644,
2153 		.proc_handler	= proc_dointvec_minmax_coredump,
2154 		.extra1		= SYSCTL_ZERO,
2155 		.extra2		= SYSCTL_TWO,
2156 	},
2157 	{ }
2158 };
2159 
2160 static int __init init_fs_exec_sysctls(void)
2161 {
2162 	register_sysctl_init("fs", fs_exec_sysctls);
2163 	return 0;
2164 }
2165 
2166 fs_initcall(init_fs_exec_sysctls);
2167 #endif /* CONFIG_SYSCTL */
2168