1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/exec.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * #!-checking implemented by tytso. 10 */ 11 /* 12 * Demand-loading implemented 01.12.91 - no need to read anything but 13 * the header into memory. The inode of the executable is put into 14 * "current->executable", and page faults do the actual loading. Clean. 15 * 16 * Once more I can proudly say that linux stood up to being changed: it 17 * was less than 2 hours work to get demand-loading completely implemented. 18 * 19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 20 * current->executable is only used by the procfs. This allows a dispatch 21 * table to check for several different types of binary formats. We keep 22 * trying until we recognize the file or we run out of supported binary 23 * formats. 24 */ 25 26 #include <linux/kernel_read_file.h> 27 #include <linux/slab.h> 28 #include <linux/file.h> 29 #include <linux/fdtable.h> 30 #include <linux/mm.h> 31 #include <linux/stat.h> 32 #include <linux/fcntl.h> 33 #include <linux/swap.h> 34 #include <linux/string.h> 35 #include <linux/init.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/coredump.h> 38 #include <linux/sched/signal.h> 39 #include <linux/sched/numa_balancing.h> 40 #include <linux/sched/task.h> 41 #include <linux/pagemap.h> 42 #include <linux/perf_event.h> 43 #include <linux/highmem.h> 44 #include <linux/spinlock.h> 45 #include <linux/key.h> 46 #include <linux/personality.h> 47 #include <linux/binfmts.h> 48 #include <linux/utsname.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/module.h> 51 #include <linux/namei.h> 52 #include <linux/mount.h> 53 #include <linux/security.h> 54 #include <linux/syscalls.h> 55 #include <linux/tsacct_kern.h> 56 #include <linux/cn_proc.h> 57 #include <linux/audit.h> 58 #include <linux/kmod.h> 59 #include <linux/fsnotify.h> 60 #include <linux/fs_struct.h> 61 #include <linux/oom.h> 62 #include <linux/compat.h> 63 #include <linux/vmalloc.h> 64 #include <linux/io_uring.h> 65 #include <linux/syscall_user_dispatch.h> 66 #include <linux/coredump.h> 67 #include <linux/time_namespace.h> 68 #include <linux/user_events.h> 69 #include <linux/rseq.h> 70 #include <linux/ksm.h> 71 72 #include <linux/uaccess.h> 73 #include <asm/mmu_context.h> 74 #include <asm/tlb.h> 75 76 #include <trace/events/task.h> 77 #include "internal.h" 78 79 #include <trace/events/sched.h> 80 81 static int bprm_creds_from_file(struct linux_binprm *bprm); 82 83 int suid_dumpable = 0; 84 85 static LIST_HEAD(formats); 86 static DEFINE_RWLOCK(binfmt_lock); 87 88 void __register_binfmt(struct linux_binfmt * fmt, int insert) 89 { 90 write_lock(&binfmt_lock); 91 insert ? list_add(&fmt->lh, &formats) : 92 list_add_tail(&fmt->lh, &formats); 93 write_unlock(&binfmt_lock); 94 } 95 96 EXPORT_SYMBOL(__register_binfmt); 97 98 void unregister_binfmt(struct linux_binfmt * fmt) 99 { 100 write_lock(&binfmt_lock); 101 list_del(&fmt->lh); 102 write_unlock(&binfmt_lock); 103 } 104 105 EXPORT_SYMBOL(unregister_binfmt); 106 107 static inline void put_binfmt(struct linux_binfmt * fmt) 108 { 109 module_put(fmt->module); 110 } 111 112 bool path_noexec(const struct path *path) 113 { 114 return (path->mnt->mnt_flags & MNT_NOEXEC) || 115 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 116 } 117 118 #ifdef CONFIG_USELIB 119 /* 120 * Note that a shared library must be both readable and executable due to 121 * security reasons. 122 * 123 * Also note that we take the address to load from the file itself. 124 */ 125 SYSCALL_DEFINE1(uselib, const char __user *, library) 126 { 127 struct linux_binfmt *fmt; 128 struct file *file; 129 struct filename *tmp = getname(library); 130 int error = PTR_ERR(tmp); 131 static const struct open_flags uselib_flags = { 132 .open_flag = O_LARGEFILE | O_RDONLY, 133 .acc_mode = MAY_READ | MAY_EXEC, 134 .intent = LOOKUP_OPEN, 135 .lookup_flags = LOOKUP_FOLLOW, 136 }; 137 138 if (IS_ERR(tmp)) 139 goto out; 140 141 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 142 putname(tmp); 143 error = PTR_ERR(file); 144 if (IS_ERR(file)) 145 goto out; 146 147 /* 148 * may_open() has already checked for this, so it should be 149 * impossible to trip now. But we need to be extra cautious 150 * and check again at the very end too. 151 */ 152 error = -EACCES; 153 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 154 path_noexec(&file->f_path))) 155 goto exit; 156 157 error = -ENOEXEC; 158 159 read_lock(&binfmt_lock); 160 list_for_each_entry(fmt, &formats, lh) { 161 if (!fmt->load_shlib) 162 continue; 163 if (!try_module_get(fmt->module)) 164 continue; 165 read_unlock(&binfmt_lock); 166 error = fmt->load_shlib(file); 167 read_lock(&binfmt_lock); 168 put_binfmt(fmt); 169 if (error != -ENOEXEC) 170 break; 171 } 172 read_unlock(&binfmt_lock); 173 exit: 174 fput(file); 175 out: 176 return error; 177 } 178 #endif /* #ifdef CONFIG_USELIB */ 179 180 #ifdef CONFIG_MMU 181 /* 182 * The nascent bprm->mm is not visible until exec_mmap() but it can 183 * use a lot of memory, account these pages in current->mm temporary 184 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 185 * change the counter back via acct_arg_size(0). 186 */ 187 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 188 { 189 struct mm_struct *mm = current->mm; 190 long diff = (long)(pages - bprm->vma_pages); 191 192 if (!mm || !diff) 193 return; 194 195 bprm->vma_pages = pages; 196 add_mm_counter(mm, MM_ANONPAGES, diff); 197 } 198 199 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 200 int write) 201 { 202 struct page *page; 203 struct vm_area_struct *vma = bprm->vma; 204 struct mm_struct *mm = bprm->mm; 205 int ret; 206 207 /* 208 * Avoid relying on expanding the stack down in GUP (which 209 * does not work for STACK_GROWSUP anyway), and just do it 210 * by hand ahead of time. 211 */ 212 if (write && pos < vma->vm_start) { 213 mmap_write_lock(mm); 214 ret = expand_downwards(vma, pos); 215 if (unlikely(ret < 0)) { 216 mmap_write_unlock(mm); 217 return NULL; 218 } 219 mmap_write_downgrade(mm); 220 } else 221 mmap_read_lock(mm); 222 223 /* 224 * We are doing an exec(). 'current' is the process 225 * doing the exec and 'mm' is the new process's mm. 226 */ 227 ret = get_user_pages_remote(mm, pos, 1, 228 write ? FOLL_WRITE : 0, 229 &page, NULL); 230 mmap_read_unlock(mm); 231 if (ret <= 0) 232 return NULL; 233 234 if (write) 235 acct_arg_size(bprm, vma_pages(vma)); 236 237 return page; 238 } 239 240 static void put_arg_page(struct page *page) 241 { 242 put_page(page); 243 } 244 245 static void free_arg_pages(struct linux_binprm *bprm) 246 { 247 } 248 249 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 250 struct page *page) 251 { 252 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 253 } 254 255 static int __bprm_mm_init(struct linux_binprm *bprm) 256 { 257 int err; 258 struct vm_area_struct *vma = NULL; 259 struct mm_struct *mm = bprm->mm; 260 261 bprm->vma = vma = vm_area_alloc(mm); 262 if (!vma) 263 return -ENOMEM; 264 vma_set_anonymous(vma); 265 266 if (mmap_write_lock_killable(mm)) { 267 err = -EINTR; 268 goto err_free; 269 } 270 271 /* 272 * Need to be called with mmap write lock 273 * held, to avoid race with ksmd. 274 */ 275 err = ksm_execve(mm); 276 if (err) 277 goto err_ksm; 278 279 /* 280 * Place the stack at the largest stack address the architecture 281 * supports. Later, we'll move this to an appropriate place. We don't 282 * use STACK_TOP because that can depend on attributes which aren't 283 * configured yet. 284 */ 285 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 286 vma->vm_end = STACK_TOP_MAX; 287 vma->vm_start = vma->vm_end - PAGE_SIZE; 288 vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP); 289 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 290 291 err = insert_vm_struct(mm, vma); 292 if (err) 293 goto err; 294 295 mm->stack_vm = mm->total_vm = 1; 296 mmap_write_unlock(mm); 297 bprm->p = vma->vm_end - sizeof(void *); 298 return 0; 299 err: 300 ksm_exit(mm); 301 err_ksm: 302 mmap_write_unlock(mm); 303 err_free: 304 bprm->vma = NULL; 305 vm_area_free(vma); 306 return err; 307 } 308 309 static bool valid_arg_len(struct linux_binprm *bprm, long len) 310 { 311 return len <= MAX_ARG_STRLEN; 312 } 313 314 #else 315 316 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 317 { 318 } 319 320 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 321 int write) 322 { 323 struct page *page; 324 325 page = bprm->page[pos / PAGE_SIZE]; 326 if (!page && write) { 327 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 328 if (!page) 329 return NULL; 330 bprm->page[pos / PAGE_SIZE] = page; 331 } 332 333 return page; 334 } 335 336 static void put_arg_page(struct page *page) 337 { 338 } 339 340 static void free_arg_page(struct linux_binprm *bprm, int i) 341 { 342 if (bprm->page[i]) { 343 __free_page(bprm->page[i]); 344 bprm->page[i] = NULL; 345 } 346 } 347 348 static void free_arg_pages(struct linux_binprm *bprm) 349 { 350 int i; 351 352 for (i = 0; i < MAX_ARG_PAGES; i++) 353 free_arg_page(bprm, i); 354 } 355 356 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 357 struct page *page) 358 { 359 } 360 361 static int __bprm_mm_init(struct linux_binprm *bprm) 362 { 363 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 364 return 0; 365 } 366 367 static bool valid_arg_len(struct linux_binprm *bprm, long len) 368 { 369 return len <= bprm->p; 370 } 371 372 #endif /* CONFIG_MMU */ 373 374 /* 375 * Create a new mm_struct and populate it with a temporary stack 376 * vm_area_struct. We don't have enough context at this point to set the stack 377 * flags, permissions, and offset, so we use temporary values. We'll update 378 * them later in setup_arg_pages(). 379 */ 380 static int bprm_mm_init(struct linux_binprm *bprm) 381 { 382 int err; 383 struct mm_struct *mm = NULL; 384 385 bprm->mm = mm = mm_alloc(); 386 err = -ENOMEM; 387 if (!mm) 388 goto err; 389 390 /* Save current stack limit for all calculations made during exec. */ 391 task_lock(current->group_leader); 392 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 393 task_unlock(current->group_leader); 394 395 err = __bprm_mm_init(bprm); 396 if (err) 397 goto err; 398 399 return 0; 400 401 err: 402 if (mm) { 403 bprm->mm = NULL; 404 mmdrop(mm); 405 } 406 407 return err; 408 } 409 410 struct user_arg_ptr { 411 #ifdef CONFIG_COMPAT 412 bool is_compat; 413 #endif 414 union { 415 const char __user *const __user *native; 416 #ifdef CONFIG_COMPAT 417 const compat_uptr_t __user *compat; 418 #endif 419 } ptr; 420 }; 421 422 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 423 { 424 const char __user *native; 425 426 #ifdef CONFIG_COMPAT 427 if (unlikely(argv.is_compat)) { 428 compat_uptr_t compat; 429 430 if (get_user(compat, argv.ptr.compat + nr)) 431 return ERR_PTR(-EFAULT); 432 433 return compat_ptr(compat); 434 } 435 #endif 436 437 if (get_user(native, argv.ptr.native + nr)) 438 return ERR_PTR(-EFAULT); 439 440 return native; 441 } 442 443 /* 444 * count() counts the number of strings in array ARGV. 445 */ 446 static int count(struct user_arg_ptr argv, int max) 447 { 448 int i = 0; 449 450 if (argv.ptr.native != NULL) { 451 for (;;) { 452 const char __user *p = get_user_arg_ptr(argv, i); 453 454 if (!p) 455 break; 456 457 if (IS_ERR(p)) 458 return -EFAULT; 459 460 if (i >= max) 461 return -E2BIG; 462 ++i; 463 464 if (fatal_signal_pending(current)) 465 return -ERESTARTNOHAND; 466 cond_resched(); 467 } 468 } 469 return i; 470 } 471 472 static int count_strings_kernel(const char *const *argv) 473 { 474 int i; 475 476 if (!argv) 477 return 0; 478 479 for (i = 0; argv[i]; ++i) { 480 if (i >= MAX_ARG_STRINGS) 481 return -E2BIG; 482 if (fatal_signal_pending(current)) 483 return -ERESTARTNOHAND; 484 cond_resched(); 485 } 486 return i; 487 } 488 489 static inline int bprm_set_stack_limit(struct linux_binprm *bprm, 490 unsigned long limit) 491 { 492 #ifdef CONFIG_MMU 493 /* Avoid a pathological bprm->p. */ 494 if (bprm->p < limit) 495 return -E2BIG; 496 bprm->argmin = bprm->p - limit; 497 #endif 498 return 0; 499 } 500 static inline bool bprm_hit_stack_limit(struct linux_binprm *bprm) 501 { 502 #ifdef CONFIG_MMU 503 return bprm->p < bprm->argmin; 504 #else 505 return false; 506 #endif 507 } 508 509 /* 510 * Calculate bprm->argmin from: 511 * - _STK_LIM 512 * - ARG_MAX 513 * - bprm->rlim_stack.rlim_cur 514 * - bprm->argc 515 * - bprm->envc 516 * - bprm->p 517 */ 518 static int bprm_stack_limits(struct linux_binprm *bprm) 519 { 520 unsigned long limit, ptr_size; 521 522 /* 523 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 524 * (whichever is smaller) for the argv+env strings. 525 * This ensures that: 526 * - the remaining binfmt code will not run out of stack space, 527 * - the program will have a reasonable amount of stack left 528 * to work from. 529 */ 530 limit = _STK_LIM / 4 * 3; 531 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 532 /* 533 * We've historically supported up to 32 pages (ARG_MAX) 534 * of argument strings even with small stacks 535 */ 536 limit = max_t(unsigned long, limit, ARG_MAX); 537 /* Reject totally pathological counts. */ 538 if (bprm->argc < 0 || bprm->envc < 0) 539 return -E2BIG; 540 /* 541 * We must account for the size of all the argv and envp pointers to 542 * the argv and envp strings, since they will also take up space in 543 * the stack. They aren't stored until much later when we can't 544 * signal to the parent that the child has run out of stack space. 545 * Instead, calculate it here so it's possible to fail gracefully. 546 * 547 * In the case of argc = 0, make sure there is space for adding a 548 * empty string (which will bump argc to 1), to ensure confused 549 * userspace programs don't start processing from argv[1], thinking 550 * argc can never be 0, to keep them from walking envp by accident. 551 * See do_execveat_common(). 552 */ 553 if (check_add_overflow(max(bprm->argc, 1), bprm->envc, &ptr_size) || 554 check_mul_overflow(ptr_size, sizeof(void *), &ptr_size)) 555 return -E2BIG; 556 if (limit <= ptr_size) 557 return -E2BIG; 558 limit -= ptr_size; 559 560 return bprm_set_stack_limit(bprm, limit); 561 } 562 563 /* 564 * 'copy_strings()' copies argument/environment strings from the old 565 * processes's memory to the new process's stack. The call to get_user_pages() 566 * ensures the destination page is created and not swapped out. 567 */ 568 static int copy_strings(int argc, struct user_arg_ptr argv, 569 struct linux_binprm *bprm) 570 { 571 struct page *kmapped_page = NULL; 572 char *kaddr = NULL; 573 unsigned long kpos = 0; 574 int ret; 575 576 while (argc-- > 0) { 577 const char __user *str; 578 int len; 579 unsigned long pos; 580 581 ret = -EFAULT; 582 str = get_user_arg_ptr(argv, argc); 583 if (IS_ERR(str)) 584 goto out; 585 586 len = strnlen_user(str, MAX_ARG_STRLEN); 587 if (!len) 588 goto out; 589 590 ret = -E2BIG; 591 if (!valid_arg_len(bprm, len)) 592 goto out; 593 594 /* We're going to work our way backwards. */ 595 pos = bprm->p; 596 str += len; 597 bprm->p -= len; 598 if (bprm_hit_stack_limit(bprm)) 599 goto out; 600 601 while (len > 0) { 602 int offset, bytes_to_copy; 603 604 if (fatal_signal_pending(current)) { 605 ret = -ERESTARTNOHAND; 606 goto out; 607 } 608 cond_resched(); 609 610 offset = pos % PAGE_SIZE; 611 if (offset == 0) 612 offset = PAGE_SIZE; 613 614 bytes_to_copy = offset; 615 if (bytes_to_copy > len) 616 bytes_to_copy = len; 617 618 offset -= bytes_to_copy; 619 pos -= bytes_to_copy; 620 str -= bytes_to_copy; 621 len -= bytes_to_copy; 622 623 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 624 struct page *page; 625 626 page = get_arg_page(bprm, pos, 1); 627 if (!page) { 628 ret = -E2BIG; 629 goto out; 630 } 631 632 if (kmapped_page) { 633 flush_dcache_page(kmapped_page); 634 kunmap_local(kaddr); 635 put_arg_page(kmapped_page); 636 } 637 kmapped_page = page; 638 kaddr = kmap_local_page(kmapped_page); 639 kpos = pos & PAGE_MASK; 640 flush_arg_page(bprm, kpos, kmapped_page); 641 } 642 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 643 ret = -EFAULT; 644 goto out; 645 } 646 } 647 } 648 ret = 0; 649 out: 650 if (kmapped_page) { 651 flush_dcache_page(kmapped_page); 652 kunmap_local(kaddr); 653 put_arg_page(kmapped_page); 654 } 655 return ret; 656 } 657 658 /* 659 * Copy and argument/environment string from the kernel to the processes stack. 660 */ 661 int copy_string_kernel(const char *arg, struct linux_binprm *bprm) 662 { 663 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */; 664 unsigned long pos = bprm->p; 665 666 if (len == 0) 667 return -EFAULT; 668 if (!valid_arg_len(bprm, len)) 669 return -E2BIG; 670 671 /* We're going to work our way backwards. */ 672 arg += len; 673 bprm->p -= len; 674 if (bprm_hit_stack_limit(bprm)) 675 return -E2BIG; 676 677 while (len > 0) { 678 unsigned int bytes_to_copy = min_t(unsigned int, len, 679 min_not_zero(offset_in_page(pos), PAGE_SIZE)); 680 struct page *page; 681 682 pos -= bytes_to_copy; 683 arg -= bytes_to_copy; 684 len -= bytes_to_copy; 685 686 page = get_arg_page(bprm, pos, 1); 687 if (!page) 688 return -E2BIG; 689 flush_arg_page(bprm, pos & PAGE_MASK, page); 690 memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy); 691 put_arg_page(page); 692 } 693 694 return 0; 695 } 696 EXPORT_SYMBOL(copy_string_kernel); 697 698 static int copy_strings_kernel(int argc, const char *const *argv, 699 struct linux_binprm *bprm) 700 { 701 while (argc-- > 0) { 702 int ret = copy_string_kernel(argv[argc], bprm); 703 if (ret < 0) 704 return ret; 705 if (fatal_signal_pending(current)) 706 return -ERESTARTNOHAND; 707 cond_resched(); 708 } 709 return 0; 710 } 711 712 #ifdef CONFIG_MMU 713 714 /* 715 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 716 * the binfmt code determines where the new stack should reside, we shift it to 717 * its final location. The process proceeds as follows: 718 * 719 * 1) Use shift to calculate the new vma endpoints. 720 * 2) Extend vma to cover both the old and new ranges. This ensures the 721 * arguments passed to subsequent functions are consistent. 722 * 3) Move vma's page tables to the new range. 723 * 4) Free up any cleared pgd range. 724 * 5) Shrink the vma to cover only the new range. 725 */ 726 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 727 { 728 struct mm_struct *mm = vma->vm_mm; 729 unsigned long old_start = vma->vm_start; 730 unsigned long old_end = vma->vm_end; 731 unsigned long length = old_end - old_start; 732 unsigned long new_start = old_start - shift; 733 unsigned long new_end = old_end - shift; 734 VMA_ITERATOR(vmi, mm, new_start); 735 struct vm_area_struct *next; 736 struct mmu_gather tlb; 737 738 BUG_ON(new_start > new_end); 739 740 /* 741 * ensure there are no vmas between where we want to go 742 * and where we are 743 */ 744 if (vma != vma_next(&vmi)) 745 return -EFAULT; 746 747 vma_iter_prev_range(&vmi); 748 /* 749 * cover the whole range: [new_start, old_end) 750 */ 751 if (vma_expand(&vmi, vma, new_start, old_end, vma->vm_pgoff, NULL)) 752 return -ENOMEM; 753 754 /* 755 * move the page tables downwards, on failure we rely on 756 * process cleanup to remove whatever mess we made. 757 */ 758 if (length != move_page_tables(vma, old_start, 759 vma, new_start, length, false, true)) 760 return -ENOMEM; 761 762 lru_add_drain(); 763 tlb_gather_mmu(&tlb, mm); 764 next = vma_next(&vmi); 765 if (new_end > old_start) { 766 /* 767 * when the old and new regions overlap clear from new_end. 768 */ 769 free_pgd_range(&tlb, new_end, old_end, new_end, 770 next ? next->vm_start : USER_PGTABLES_CEILING); 771 } else { 772 /* 773 * otherwise, clean from old_start; this is done to not touch 774 * the address space in [new_end, old_start) some architectures 775 * have constraints on va-space that make this illegal (IA64) - 776 * for the others its just a little faster. 777 */ 778 free_pgd_range(&tlb, old_start, old_end, new_end, 779 next ? next->vm_start : USER_PGTABLES_CEILING); 780 } 781 tlb_finish_mmu(&tlb); 782 783 vma_prev(&vmi); 784 /* Shrink the vma to just the new range */ 785 return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff); 786 } 787 788 /* 789 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 790 * the stack is optionally relocated, and some extra space is added. 791 */ 792 int setup_arg_pages(struct linux_binprm *bprm, 793 unsigned long stack_top, 794 int executable_stack) 795 { 796 unsigned long ret; 797 unsigned long stack_shift; 798 struct mm_struct *mm = current->mm; 799 struct vm_area_struct *vma = bprm->vma; 800 struct vm_area_struct *prev = NULL; 801 unsigned long vm_flags; 802 unsigned long stack_base; 803 unsigned long stack_size; 804 unsigned long stack_expand; 805 unsigned long rlim_stack; 806 struct mmu_gather tlb; 807 struct vma_iterator vmi; 808 809 #ifdef CONFIG_STACK_GROWSUP 810 /* Limit stack size */ 811 stack_base = bprm->rlim_stack.rlim_max; 812 813 stack_base = calc_max_stack_size(stack_base); 814 815 /* Add space for stack randomization. */ 816 if (current->flags & PF_RANDOMIZE) 817 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 818 819 /* Make sure we didn't let the argument array grow too large. */ 820 if (vma->vm_end - vma->vm_start > stack_base) 821 return -ENOMEM; 822 823 stack_base = PAGE_ALIGN(stack_top - stack_base); 824 825 stack_shift = vma->vm_start - stack_base; 826 mm->arg_start = bprm->p - stack_shift; 827 bprm->p = vma->vm_end - stack_shift; 828 #else 829 stack_top = arch_align_stack(stack_top); 830 stack_top = PAGE_ALIGN(stack_top); 831 832 if (unlikely(stack_top < mmap_min_addr) || 833 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 834 return -ENOMEM; 835 836 stack_shift = vma->vm_end - stack_top; 837 838 bprm->p -= stack_shift; 839 mm->arg_start = bprm->p; 840 #endif 841 842 if (bprm->loader) 843 bprm->loader -= stack_shift; 844 bprm->exec -= stack_shift; 845 846 if (mmap_write_lock_killable(mm)) 847 return -EINTR; 848 849 vm_flags = VM_STACK_FLAGS; 850 851 /* 852 * Adjust stack execute permissions; explicitly enable for 853 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 854 * (arch default) otherwise. 855 */ 856 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 857 vm_flags |= VM_EXEC; 858 else if (executable_stack == EXSTACK_DISABLE_X) 859 vm_flags &= ~VM_EXEC; 860 vm_flags |= mm->def_flags; 861 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 862 863 vma_iter_init(&vmi, mm, vma->vm_start); 864 865 tlb_gather_mmu(&tlb, mm); 866 ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end, 867 vm_flags); 868 tlb_finish_mmu(&tlb); 869 870 if (ret) 871 goto out_unlock; 872 BUG_ON(prev != vma); 873 874 if (unlikely(vm_flags & VM_EXEC)) { 875 pr_warn_once("process '%pD4' started with executable stack\n", 876 bprm->file); 877 } 878 879 /* Move stack pages down in memory. */ 880 if (stack_shift) { 881 ret = shift_arg_pages(vma, stack_shift); 882 if (ret) 883 goto out_unlock; 884 } 885 886 /* mprotect_fixup is overkill to remove the temporary stack flags */ 887 vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP); 888 889 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 890 stack_size = vma->vm_end - vma->vm_start; 891 /* 892 * Align this down to a page boundary as expand_stack 893 * will align it up. 894 */ 895 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 896 897 stack_expand = min(rlim_stack, stack_size + stack_expand); 898 899 #ifdef CONFIG_STACK_GROWSUP 900 stack_base = vma->vm_start + stack_expand; 901 #else 902 stack_base = vma->vm_end - stack_expand; 903 #endif 904 current->mm->start_stack = bprm->p; 905 ret = expand_stack_locked(vma, stack_base); 906 if (ret) 907 ret = -EFAULT; 908 909 out_unlock: 910 mmap_write_unlock(mm); 911 return ret; 912 } 913 EXPORT_SYMBOL(setup_arg_pages); 914 915 #else 916 917 /* 918 * Transfer the program arguments and environment from the holding pages 919 * onto the stack. The provided stack pointer is adjusted accordingly. 920 */ 921 int transfer_args_to_stack(struct linux_binprm *bprm, 922 unsigned long *sp_location) 923 { 924 unsigned long index, stop, sp; 925 int ret = 0; 926 927 stop = bprm->p >> PAGE_SHIFT; 928 sp = *sp_location; 929 930 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 931 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 932 char *src = kmap_local_page(bprm->page[index]) + offset; 933 sp -= PAGE_SIZE - offset; 934 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 935 ret = -EFAULT; 936 kunmap_local(src); 937 if (ret) 938 goto out; 939 } 940 941 bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE; 942 *sp_location = sp; 943 944 out: 945 return ret; 946 } 947 EXPORT_SYMBOL(transfer_args_to_stack); 948 949 #endif /* CONFIG_MMU */ 950 951 /* 952 * On success, caller must call do_close_execat() on the returned 953 * struct file to close it. 954 */ 955 static struct file *do_open_execat(int fd, struct filename *name, int flags) 956 { 957 struct file *file; 958 int err; 959 struct open_flags open_exec_flags = { 960 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 961 .acc_mode = MAY_EXEC, 962 .intent = LOOKUP_OPEN, 963 .lookup_flags = LOOKUP_FOLLOW, 964 }; 965 966 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 967 return ERR_PTR(-EINVAL); 968 if (flags & AT_SYMLINK_NOFOLLOW) 969 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 970 if (flags & AT_EMPTY_PATH) 971 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 972 973 file = do_filp_open(fd, name, &open_exec_flags); 974 if (IS_ERR(file)) 975 goto out; 976 977 /* 978 * may_open() has already checked for this, so it should be 979 * impossible to trip now. But we need to be extra cautious 980 * and check again at the very end too. 981 */ 982 err = -EACCES; 983 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 984 path_noexec(&file->f_path))) 985 goto exit; 986 987 out: 988 return file; 989 990 exit: 991 fput(file); 992 return ERR_PTR(err); 993 } 994 995 /** 996 * open_exec - Open a path name for execution 997 * 998 * @name: path name to open with the intent of executing it. 999 * 1000 * Returns ERR_PTR on failure or allocated struct file on success. 1001 * 1002 * As this is a wrapper for the internal do_open_execat(). Also see 1003 * do_close_execat(). 1004 */ 1005 struct file *open_exec(const char *name) 1006 { 1007 struct filename *filename = getname_kernel(name); 1008 struct file *f = ERR_CAST(filename); 1009 1010 if (!IS_ERR(filename)) { 1011 f = do_open_execat(AT_FDCWD, filename, 0); 1012 putname(filename); 1013 } 1014 return f; 1015 } 1016 EXPORT_SYMBOL(open_exec); 1017 1018 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC) 1019 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 1020 { 1021 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 1022 if (res > 0) 1023 flush_icache_user_range(addr, addr + len); 1024 return res; 1025 } 1026 EXPORT_SYMBOL(read_code); 1027 #endif 1028 1029 /* 1030 * Maps the mm_struct mm into the current task struct. 1031 * On success, this function returns with exec_update_lock 1032 * held for writing. 1033 */ 1034 static int exec_mmap(struct mm_struct *mm) 1035 { 1036 struct task_struct *tsk; 1037 struct mm_struct *old_mm, *active_mm; 1038 int ret; 1039 1040 /* Notify parent that we're no longer interested in the old VM */ 1041 tsk = current; 1042 old_mm = current->mm; 1043 exec_mm_release(tsk, old_mm); 1044 1045 ret = down_write_killable(&tsk->signal->exec_update_lock); 1046 if (ret) 1047 return ret; 1048 1049 if (old_mm) { 1050 /* 1051 * If there is a pending fatal signal perhaps a signal 1052 * whose default action is to create a coredump get 1053 * out and die instead of going through with the exec. 1054 */ 1055 ret = mmap_read_lock_killable(old_mm); 1056 if (ret) { 1057 up_write(&tsk->signal->exec_update_lock); 1058 return ret; 1059 } 1060 } 1061 1062 task_lock(tsk); 1063 membarrier_exec_mmap(mm); 1064 1065 local_irq_disable(); 1066 active_mm = tsk->active_mm; 1067 tsk->active_mm = mm; 1068 tsk->mm = mm; 1069 mm_init_cid(mm); 1070 /* 1071 * This prevents preemption while active_mm is being loaded and 1072 * it and mm are being updated, which could cause problems for 1073 * lazy tlb mm refcounting when these are updated by context 1074 * switches. Not all architectures can handle irqs off over 1075 * activate_mm yet. 1076 */ 1077 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1078 local_irq_enable(); 1079 activate_mm(active_mm, mm); 1080 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1081 local_irq_enable(); 1082 lru_gen_add_mm(mm); 1083 task_unlock(tsk); 1084 lru_gen_use_mm(mm); 1085 if (old_mm) { 1086 mmap_read_unlock(old_mm); 1087 BUG_ON(active_mm != old_mm); 1088 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1089 mm_update_next_owner(old_mm); 1090 mmput(old_mm); 1091 return 0; 1092 } 1093 mmdrop_lazy_tlb(active_mm); 1094 return 0; 1095 } 1096 1097 static int de_thread(struct task_struct *tsk) 1098 { 1099 struct signal_struct *sig = tsk->signal; 1100 struct sighand_struct *oldsighand = tsk->sighand; 1101 spinlock_t *lock = &oldsighand->siglock; 1102 1103 if (thread_group_empty(tsk)) 1104 goto no_thread_group; 1105 1106 /* 1107 * Kill all other threads in the thread group. 1108 */ 1109 spin_lock_irq(lock); 1110 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) { 1111 /* 1112 * Another group action in progress, just 1113 * return so that the signal is processed. 1114 */ 1115 spin_unlock_irq(lock); 1116 return -EAGAIN; 1117 } 1118 1119 sig->group_exec_task = tsk; 1120 sig->notify_count = zap_other_threads(tsk); 1121 if (!thread_group_leader(tsk)) 1122 sig->notify_count--; 1123 1124 while (sig->notify_count) { 1125 __set_current_state(TASK_KILLABLE); 1126 spin_unlock_irq(lock); 1127 schedule(); 1128 if (__fatal_signal_pending(tsk)) 1129 goto killed; 1130 spin_lock_irq(lock); 1131 } 1132 spin_unlock_irq(lock); 1133 1134 /* 1135 * At this point all other threads have exited, all we have to 1136 * do is to wait for the thread group leader to become inactive, 1137 * and to assume its PID: 1138 */ 1139 if (!thread_group_leader(tsk)) { 1140 struct task_struct *leader = tsk->group_leader; 1141 1142 for (;;) { 1143 cgroup_threadgroup_change_begin(tsk); 1144 write_lock_irq(&tasklist_lock); 1145 /* 1146 * Do this under tasklist_lock to ensure that 1147 * exit_notify() can't miss ->group_exec_task 1148 */ 1149 sig->notify_count = -1; 1150 if (likely(leader->exit_state)) 1151 break; 1152 __set_current_state(TASK_KILLABLE); 1153 write_unlock_irq(&tasklist_lock); 1154 cgroup_threadgroup_change_end(tsk); 1155 schedule(); 1156 if (__fatal_signal_pending(tsk)) 1157 goto killed; 1158 } 1159 1160 /* 1161 * The only record we have of the real-time age of a 1162 * process, regardless of execs it's done, is start_time. 1163 * All the past CPU time is accumulated in signal_struct 1164 * from sister threads now dead. But in this non-leader 1165 * exec, nothing survives from the original leader thread, 1166 * whose birth marks the true age of this process now. 1167 * When we take on its identity by switching to its PID, we 1168 * also take its birthdate (always earlier than our own). 1169 */ 1170 tsk->start_time = leader->start_time; 1171 tsk->start_boottime = leader->start_boottime; 1172 1173 BUG_ON(!same_thread_group(leader, tsk)); 1174 /* 1175 * An exec() starts a new thread group with the 1176 * TGID of the previous thread group. Rehash the 1177 * two threads with a switched PID, and release 1178 * the former thread group leader: 1179 */ 1180 1181 /* Become a process group leader with the old leader's pid. 1182 * The old leader becomes a thread of the this thread group. 1183 */ 1184 exchange_tids(tsk, leader); 1185 transfer_pid(leader, tsk, PIDTYPE_TGID); 1186 transfer_pid(leader, tsk, PIDTYPE_PGID); 1187 transfer_pid(leader, tsk, PIDTYPE_SID); 1188 1189 list_replace_rcu(&leader->tasks, &tsk->tasks); 1190 list_replace_init(&leader->sibling, &tsk->sibling); 1191 1192 tsk->group_leader = tsk; 1193 leader->group_leader = tsk; 1194 1195 tsk->exit_signal = SIGCHLD; 1196 leader->exit_signal = -1; 1197 1198 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1199 leader->exit_state = EXIT_DEAD; 1200 /* 1201 * We are going to release_task()->ptrace_unlink() silently, 1202 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1203 * the tracer won't block again waiting for this thread. 1204 */ 1205 if (unlikely(leader->ptrace)) 1206 __wake_up_parent(leader, leader->parent); 1207 write_unlock_irq(&tasklist_lock); 1208 cgroup_threadgroup_change_end(tsk); 1209 1210 release_task(leader); 1211 } 1212 1213 sig->group_exec_task = NULL; 1214 sig->notify_count = 0; 1215 1216 no_thread_group: 1217 /* we have changed execution domain */ 1218 tsk->exit_signal = SIGCHLD; 1219 1220 BUG_ON(!thread_group_leader(tsk)); 1221 return 0; 1222 1223 killed: 1224 /* protects against exit_notify() and __exit_signal() */ 1225 read_lock(&tasklist_lock); 1226 sig->group_exec_task = NULL; 1227 sig->notify_count = 0; 1228 read_unlock(&tasklist_lock); 1229 return -EAGAIN; 1230 } 1231 1232 1233 /* 1234 * This function makes sure the current process has its own signal table, 1235 * so that flush_signal_handlers can later reset the handlers without 1236 * disturbing other processes. (Other processes might share the signal 1237 * table via the CLONE_SIGHAND option to clone().) 1238 */ 1239 static int unshare_sighand(struct task_struct *me) 1240 { 1241 struct sighand_struct *oldsighand = me->sighand; 1242 1243 if (refcount_read(&oldsighand->count) != 1) { 1244 struct sighand_struct *newsighand; 1245 /* 1246 * This ->sighand is shared with the CLONE_SIGHAND 1247 * but not CLONE_THREAD task, switch to the new one. 1248 */ 1249 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1250 if (!newsighand) 1251 return -ENOMEM; 1252 1253 refcount_set(&newsighand->count, 1); 1254 1255 write_lock_irq(&tasklist_lock); 1256 spin_lock(&oldsighand->siglock); 1257 memcpy(newsighand->action, oldsighand->action, 1258 sizeof(newsighand->action)); 1259 rcu_assign_pointer(me->sighand, newsighand); 1260 spin_unlock(&oldsighand->siglock); 1261 write_unlock_irq(&tasklist_lock); 1262 1263 __cleanup_sighand(oldsighand); 1264 } 1265 return 0; 1266 } 1267 1268 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk) 1269 { 1270 task_lock(tsk); 1271 /* Always NUL terminated and zero-padded */ 1272 strscpy_pad(buf, tsk->comm, buf_size); 1273 task_unlock(tsk); 1274 return buf; 1275 } 1276 EXPORT_SYMBOL_GPL(__get_task_comm); 1277 1278 /* 1279 * These functions flushes out all traces of the currently running executable 1280 * so that a new one can be started 1281 */ 1282 1283 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1284 { 1285 task_lock(tsk); 1286 trace_task_rename(tsk, buf); 1287 strscpy_pad(tsk->comm, buf, sizeof(tsk->comm)); 1288 task_unlock(tsk); 1289 perf_event_comm(tsk, exec); 1290 } 1291 1292 /* 1293 * Calling this is the point of no return. None of the failures will be 1294 * seen by userspace since either the process is already taking a fatal 1295 * signal (via de_thread() or coredump), or will have SEGV raised 1296 * (after exec_mmap()) by search_binary_handler (see below). 1297 */ 1298 int begin_new_exec(struct linux_binprm * bprm) 1299 { 1300 struct task_struct *me = current; 1301 int retval; 1302 1303 /* Once we are committed compute the creds */ 1304 retval = bprm_creds_from_file(bprm); 1305 if (retval) 1306 return retval; 1307 1308 /* 1309 * This tracepoint marks the point before flushing the old exec where 1310 * the current task is still unchanged, but errors are fatal (point of 1311 * no return). The later "sched_process_exec" tracepoint is called after 1312 * the current task has successfully switched to the new exec. 1313 */ 1314 trace_sched_prepare_exec(current, bprm); 1315 1316 /* 1317 * Ensure all future errors are fatal. 1318 */ 1319 bprm->point_of_no_return = true; 1320 1321 /* 1322 * Make this the only thread in the thread group. 1323 */ 1324 retval = de_thread(me); 1325 if (retval) 1326 goto out; 1327 1328 /* 1329 * Cancel any io_uring activity across execve 1330 */ 1331 io_uring_task_cancel(); 1332 1333 /* Ensure the files table is not shared. */ 1334 retval = unshare_files(); 1335 if (retval) 1336 goto out; 1337 1338 /* 1339 * Must be called _before_ exec_mmap() as bprm->mm is 1340 * not visible until then. Doing it here also ensures 1341 * we don't race against replace_mm_exe_file(). 1342 */ 1343 retval = set_mm_exe_file(bprm->mm, bprm->file); 1344 if (retval) 1345 goto out; 1346 1347 /* If the binary is not readable then enforce mm->dumpable=0 */ 1348 would_dump(bprm, bprm->file); 1349 if (bprm->have_execfd) 1350 would_dump(bprm, bprm->executable); 1351 1352 /* 1353 * Release all of the old mmap stuff 1354 */ 1355 acct_arg_size(bprm, 0); 1356 retval = exec_mmap(bprm->mm); 1357 if (retval) 1358 goto out; 1359 1360 bprm->mm = NULL; 1361 1362 retval = exec_task_namespaces(); 1363 if (retval) 1364 goto out_unlock; 1365 1366 #ifdef CONFIG_POSIX_TIMERS 1367 spin_lock_irq(&me->sighand->siglock); 1368 posix_cpu_timers_exit(me); 1369 spin_unlock_irq(&me->sighand->siglock); 1370 exit_itimers(me); 1371 flush_itimer_signals(); 1372 #endif 1373 1374 /* 1375 * Make the signal table private. 1376 */ 1377 retval = unshare_sighand(me); 1378 if (retval) 1379 goto out_unlock; 1380 1381 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | 1382 PF_NOFREEZE | PF_NO_SETAFFINITY); 1383 flush_thread(); 1384 me->personality &= ~bprm->per_clear; 1385 1386 clear_syscall_work_syscall_user_dispatch(me); 1387 1388 /* 1389 * We have to apply CLOEXEC before we change whether the process is 1390 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1391 * trying to access the should-be-closed file descriptors of a process 1392 * undergoing exec(2). 1393 */ 1394 do_close_on_exec(me->files); 1395 1396 if (bprm->secureexec) { 1397 /* Make sure parent cannot signal privileged process. */ 1398 me->pdeath_signal = 0; 1399 1400 /* 1401 * For secureexec, reset the stack limit to sane default to 1402 * avoid bad behavior from the prior rlimits. This has to 1403 * happen before arch_pick_mmap_layout(), which examines 1404 * RLIMIT_STACK, but after the point of no return to avoid 1405 * needing to clean up the change on failure. 1406 */ 1407 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1408 bprm->rlim_stack.rlim_cur = _STK_LIM; 1409 } 1410 1411 me->sas_ss_sp = me->sas_ss_size = 0; 1412 1413 /* 1414 * Figure out dumpability. Note that this checking only of current 1415 * is wrong, but userspace depends on it. This should be testing 1416 * bprm->secureexec instead. 1417 */ 1418 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1419 !(uid_eq(current_euid(), current_uid()) && 1420 gid_eq(current_egid(), current_gid()))) 1421 set_dumpable(current->mm, suid_dumpable); 1422 else 1423 set_dumpable(current->mm, SUID_DUMP_USER); 1424 1425 perf_event_exec(); 1426 __set_task_comm(me, kbasename(bprm->filename), true); 1427 1428 /* An exec changes our domain. We are no longer part of the thread 1429 group */ 1430 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1); 1431 flush_signal_handlers(me, 0); 1432 1433 retval = set_cred_ucounts(bprm->cred); 1434 if (retval < 0) 1435 goto out_unlock; 1436 1437 /* 1438 * install the new credentials for this executable 1439 */ 1440 security_bprm_committing_creds(bprm); 1441 1442 commit_creds(bprm->cred); 1443 bprm->cred = NULL; 1444 1445 /* 1446 * Disable monitoring for regular users 1447 * when executing setuid binaries. Must 1448 * wait until new credentials are committed 1449 * by commit_creds() above 1450 */ 1451 if (get_dumpable(me->mm) != SUID_DUMP_USER) 1452 perf_event_exit_task(me); 1453 /* 1454 * cred_guard_mutex must be held at least to this point to prevent 1455 * ptrace_attach() from altering our determination of the task's 1456 * credentials; any time after this it may be unlocked. 1457 */ 1458 security_bprm_committed_creds(bprm); 1459 1460 /* Pass the opened binary to the interpreter. */ 1461 if (bprm->have_execfd) { 1462 retval = get_unused_fd_flags(0); 1463 if (retval < 0) 1464 goto out_unlock; 1465 fd_install(retval, bprm->executable); 1466 bprm->executable = NULL; 1467 bprm->execfd = retval; 1468 } 1469 return 0; 1470 1471 out_unlock: 1472 up_write(&me->signal->exec_update_lock); 1473 if (!bprm->cred) 1474 mutex_unlock(&me->signal->cred_guard_mutex); 1475 1476 out: 1477 return retval; 1478 } 1479 EXPORT_SYMBOL(begin_new_exec); 1480 1481 void would_dump(struct linux_binprm *bprm, struct file *file) 1482 { 1483 struct inode *inode = file_inode(file); 1484 struct mnt_idmap *idmap = file_mnt_idmap(file); 1485 if (inode_permission(idmap, inode, MAY_READ) < 0) { 1486 struct user_namespace *old, *user_ns; 1487 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1488 1489 /* Ensure mm->user_ns contains the executable */ 1490 user_ns = old = bprm->mm->user_ns; 1491 while ((user_ns != &init_user_ns) && 1492 !privileged_wrt_inode_uidgid(user_ns, idmap, inode)) 1493 user_ns = user_ns->parent; 1494 1495 if (old != user_ns) { 1496 bprm->mm->user_ns = get_user_ns(user_ns); 1497 put_user_ns(old); 1498 } 1499 } 1500 } 1501 EXPORT_SYMBOL(would_dump); 1502 1503 void setup_new_exec(struct linux_binprm * bprm) 1504 { 1505 /* Setup things that can depend upon the personality */ 1506 struct task_struct *me = current; 1507 1508 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack); 1509 1510 arch_setup_new_exec(); 1511 1512 /* Set the new mm task size. We have to do that late because it may 1513 * depend on TIF_32BIT which is only updated in flush_thread() on 1514 * some architectures like powerpc 1515 */ 1516 me->mm->task_size = TASK_SIZE; 1517 up_write(&me->signal->exec_update_lock); 1518 mutex_unlock(&me->signal->cred_guard_mutex); 1519 } 1520 EXPORT_SYMBOL(setup_new_exec); 1521 1522 /* Runs immediately before start_thread() takes over. */ 1523 void finalize_exec(struct linux_binprm *bprm) 1524 { 1525 /* Store any stack rlimit changes before starting thread. */ 1526 task_lock(current->group_leader); 1527 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1528 task_unlock(current->group_leader); 1529 } 1530 EXPORT_SYMBOL(finalize_exec); 1531 1532 /* 1533 * Prepare credentials and lock ->cred_guard_mutex. 1534 * setup_new_exec() commits the new creds and drops the lock. 1535 * Or, if exec fails before, free_bprm() should release ->cred 1536 * and unlock. 1537 */ 1538 static int prepare_bprm_creds(struct linux_binprm *bprm) 1539 { 1540 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1541 return -ERESTARTNOINTR; 1542 1543 bprm->cred = prepare_exec_creds(); 1544 if (likely(bprm->cred)) 1545 return 0; 1546 1547 mutex_unlock(¤t->signal->cred_guard_mutex); 1548 return -ENOMEM; 1549 } 1550 1551 /* Matches do_open_execat() */ 1552 static void do_close_execat(struct file *file) 1553 { 1554 if (file) 1555 fput(file); 1556 } 1557 1558 static void free_bprm(struct linux_binprm *bprm) 1559 { 1560 if (bprm->mm) { 1561 acct_arg_size(bprm, 0); 1562 mmput(bprm->mm); 1563 } 1564 free_arg_pages(bprm); 1565 if (bprm->cred) { 1566 mutex_unlock(¤t->signal->cred_guard_mutex); 1567 abort_creds(bprm->cred); 1568 } 1569 do_close_execat(bprm->file); 1570 if (bprm->executable) 1571 fput(bprm->executable); 1572 /* If a binfmt changed the interp, free it. */ 1573 if (bprm->interp != bprm->filename) 1574 kfree(bprm->interp); 1575 kfree(bprm->fdpath); 1576 kfree(bprm); 1577 } 1578 1579 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename, int flags) 1580 { 1581 struct linux_binprm *bprm; 1582 struct file *file; 1583 int retval = -ENOMEM; 1584 1585 file = do_open_execat(fd, filename, flags); 1586 if (IS_ERR(file)) 1587 return ERR_CAST(file); 1588 1589 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1590 if (!bprm) { 1591 do_close_execat(file); 1592 return ERR_PTR(-ENOMEM); 1593 } 1594 1595 bprm->file = file; 1596 1597 if (fd == AT_FDCWD || filename->name[0] == '/') { 1598 bprm->filename = filename->name; 1599 } else { 1600 if (filename->name[0] == '\0') 1601 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1602 else 1603 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1604 fd, filename->name); 1605 if (!bprm->fdpath) 1606 goto out_free; 1607 1608 /* 1609 * Record that a name derived from an O_CLOEXEC fd will be 1610 * inaccessible after exec. This allows the code in exec to 1611 * choose to fail when the executable is not mmaped into the 1612 * interpreter and an open file descriptor is not passed to 1613 * the interpreter. This makes for a better user experience 1614 * than having the interpreter start and then immediately fail 1615 * when it finds the executable is inaccessible. 1616 */ 1617 if (get_close_on_exec(fd)) 1618 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1619 1620 bprm->filename = bprm->fdpath; 1621 } 1622 bprm->interp = bprm->filename; 1623 1624 retval = bprm_mm_init(bprm); 1625 if (!retval) 1626 return bprm; 1627 1628 out_free: 1629 free_bprm(bprm); 1630 return ERR_PTR(retval); 1631 } 1632 1633 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1634 { 1635 /* If a binfmt changed the interp, free it first. */ 1636 if (bprm->interp != bprm->filename) 1637 kfree(bprm->interp); 1638 bprm->interp = kstrdup(interp, GFP_KERNEL); 1639 if (!bprm->interp) 1640 return -ENOMEM; 1641 return 0; 1642 } 1643 EXPORT_SYMBOL(bprm_change_interp); 1644 1645 /* 1646 * determine how safe it is to execute the proposed program 1647 * - the caller must hold ->cred_guard_mutex to protect against 1648 * PTRACE_ATTACH or seccomp thread-sync 1649 */ 1650 static void check_unsafe_exec(struct linux_binprm *bprm) 1651 { 1652 struct task_struct *p = current, *t; 1653 unsigned n_fs; 1654 1655 if (p->ptrace) 1656 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1657 1658 /* 1659 * This isn't strictly necessary, but it makes it harder for LSMs to 1660 * mess up. 1661 */ 1662 if (task_no_new_privs(current)) 1663 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1664 1665 /* 1666 * If another task is sharing our fs, we cannot safely 1667 * suid exec because the differently privileged task 1668 * will be able to manipulate the current directory, etc. 1669 * It would be nice to force an unshare instead... 1670 */ 1671 n_fs = 1; 1672 spin_lock(&p->fs->lock); 1673 rcu_read_lock(); 1674 for_other_threads(p, t) { 1675 if (t->fs == p->fs) 1676 n_fs++; 1677 } 1678 rcu_read_unlock(); 1679 1680 /* "users" and "in_exec" locked for copy_fs() */ 1681 if (p->fs->users > n_fs) 1682 bprm->unsafe |= LSM_UNSAFE_SHARE; 1683 else 1684 p->fs->in_exec = 1; 1685 spin_unlock(&p->fs->lock); 1686 } 1687 1688 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file) 1689 { 1690 /* Handle suid and sgid on files */ 1691 struct mnt_idmap *idmap; 1692 struct inode *inode = file_inode(file); 1693 unsigned int mode; 1694 vfsuid_t vfsuid; 1695 vfsgid_t vfsgid; 1696 int err; 1697 1698 if (!mnt_may_suid(file->f_path.mnt)) 1699 return; 1700 1701 if (task_no_new_privs(current)) 1702 return; 1703 1704 mode = READ_ONCE(inode->i_mode); 1705 if (!(mode & (S_ISUID|S_ISGID))) 1706 return; 1707 1708 idmap = file_mnt_idmap(file); 1709 1710 /* Be careful if suid/sgid is set */ 1711 inode_lock(inode); 1712 1713 /* Atomically reload and check mode/uid/gid now that lock held. */ 1714 mode = inode->i_mode; 1715 vfsuid = i_uid_into_vfsuid(idmap, inode); 1716 vfsgid = i_gid_into_vfsgid(idmap, inode); 1717 err = inode_permission(idmap, inode, MAY_EXEC); 1718 inode_unlock(inode); 1719 1720 /* Did the exec bit vanish out from under us? Give up. */ 1721 if (err) 1722 return; 1723 1724 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1725 if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) || 1726 !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid)) 1727 return; 1728 1729 if (mode & S_ISUID) { 1730 bprm->per_clear |= PER_CLEAR_ON_SETID; 1731 bprm->cred->euid = vfsuid_into_kuid(vfsuid); 1732 } 1733 1734 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1735 bprm->per_clear |= PER_CLEAR_ON_SETID; 1736 bprm->cred->egid = vfsgid_into_kgid(vfsgid); 1737 } 1738 } 1739 1740 /* 1741 * Compute brpm->cred based upon the final binary. 1742 */ 1743 static int bprm_creds_from_file(struct linux_binprm *bprm) 1744 { 1745 /* Compute creds based on which file? */ 1746 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file; 1747 1748 bprm_fill_uid(bprm, file); 1749 return security_bprm_creds_from_file(bprm, file); 1750 } 1751 1752 /* 1753 * Fill the binprm structure from the inode. 1754 * Read the first BINPRM_BUF_SIZE bytes 1755 * 1756 * This may be called multiple times for binary chains (scripts for example). 1757 */ 1758 static int prepare_binprm(struct linux_binprm *bprm) 1759 { 1760 loff_t pos = 0; 1761 1762 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1763 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1764 } 1765 1766 /* 1767 * Arguments are '\0' separated strings found at the location bprm->p 1768 * points to; chop off the first by relocating brpm->p to right after 1769 * the first '\0' encountered. 1770 */ 1771 int remove_arg_zero(struct linux_binprm *bprm) 1772 { 1773 unsigned long offset; 1774 char *kaddr; 1775 struct page *page; 1776 1777 if (!bprm->argc) 1778 return 0; 1779 1780 do { 1781 offset = bprm->p & ~PAGE_MASK; 1782 page = get_arg_page(bprm, bprm->p, 0); 1783 if (!page) 1784 return -EFAULT; 1785 kaddr = kmap_local_page(page); 1786 1787 for (; offset < PAGE_SIZE && kaddr[offset]; 1788 offset++, bprm->p++) 1789 ; 1790 1791 kunmap_local(kaddr); 1792 put_arg_page(page); 1793 } while (offset == PAGE_SIZE); 1794 1795 bprm->p++; 1796 bprm->argc--; 1797 1798 return 0; 1799 } 1800 EXPORT_SYMBOL(remove_arg_zero); 1801 1802 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1803 /* 1804 * cycle the list of binary formats handler, until one recognizes the image 1805 */ 1806 static int search_binary_handler(struct linux_binprm *bprm) 1807 { 1808 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1809 struct linux_binfmt *fmt; 1810 int retval; 1811 1812 retval = prepare_binprm(bprm); 1813 if (retval < 0) 1814 return retval; 1815 1816 retval = security_bprm_check(bprm); 1817 if (retval) 1818 return retval; 1819 1820 retval = -ENOENT; 1821 retry: 1822 read_lock(&binfmt_lock); 1823 list_for_each_entry(fmt, &formats, lh) { 1824 if (!try_module_get(fmt->module)) 1825 continue; 1826 read_unlock(&binfmt_lock); 1827 1828 retval = fmt->load_binary(bprm); 1829 1830 read_lock(&binfmt_lock); 1831 put_binfmt(fmt); 1832 if (bprm->point_of_no_return || (retval != -ENOEXEC)) { 1833 read_unlock(&binfmt_lock); 1834 return retval; 1835 } 1836 } 1837 read_unlock(&binfmt_lock); 1838 1839 if (need_retry) { 1840 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1841 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1842 return retval; 1843 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1844 return retval; 1845 need_retry = false; 1846 goto retry; 1847 } 1848 1849 return retval; 1850 } 1851 1852 /* binfmt handlers will call back into begin_new_exec() on success. */ 1853 static int exec_binprm(struct linux_binprm *bprm) 1854 { 1855 pid_t old_pid, old_vpid; 1856 int ret, depth; 1857 1858 /* Need to fetch pid before load_binary changes it */ 1859 old_pid = current->pid; 1860 rcu_read_lock(); 1861 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1862 rcu_read_unlock(); 1863 1864 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1865 for (depth = 0;; depth++) { 1866 struct file *exec; 1867 if (depth > 5) 1868 return -ELOOP; 1869 1870 ret = search_binary_handler(bprm); 1871 if (ret < 0) 1872 return ret; 1873 if (!bprm->interpreter) 1874 break; 1875 1876 exec = bprm->file; 1877 bprm->file = bprm->interpreter; 1878 bprm->interpreter = NULL; 1879 1880 if (unlikely(bprm->have_execfd)) { 1881 if (bprm->executable) { 1882 fput(exec); 1883 return -ENOEXEC; 1884 } 1885 bprm->executable = exec; 1886 } else 1887 fput(exec); 1888 } 1889 1890 audit_bprm(bprm); 1891 trace_sched_process_exec(current, old_pid, bprm); 1892 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1893 proc_exec_connector(current); 1894 return 0; 1895 } 1896 1897 static int bprm_execve(struct linux_binprm *bprm) 1898 { 1899 int retval; 1900 1901 retval = prepare_bprm_creds(bprm); 1902 if (retval) 1903 return retval; 1904 1905 /* 1906 * Check for unsafe execution states before exec_binprm(), which 1907 * will call back into begin_new_exec(), into bprm_creds_from_file(), 1908 * where setuid-ness is evaluated. 1909 */ 1910 check_unsafe_exec(bprm); 1911 current->in_execve = 1; 1912 sched_mm_cid_before_execve(current); 1913 1914 sched_exec(); 1915 1916 /* Set the unchanging part of bprm->cred */ 1917 retval = security_bprm_creds_for_exec(bprm); 1918 if (retval) 1919 goto out; 1920 1921 retval = exec_binprm(bprm); 1922 if (retval < 0) 1923 goto out; 1924 1925 sched_mm_cid_after_execve(current); 1926 /* execve succeeded */ 1927 current->fs->in_exec = 0; 1928 current->in_execve = 0; 1929 rseq_execve(current); 1930 user_events_execve(current); 1931 acct_update_integrals(current); 1932 task_numa_free(current, false); 1933 return retval; 1934 1935 out: 1936 /* 1937 * If past the point of no return ensure the code never 1938 * returns to the userspace process. Use an existing fatal 1939 * signal if present otherwise terminate the process with 1940 * SIGSEGV. 1941 */ 1942 if (bprm->point_of_no_return && !fatal_signal_pending(current)) 1943 force_fatal_sig(SIGSEGV); 1944 1945 sched_mm_cid_after_execve(current); 1946 current->fs->in_exec = 0; 1947 current->in_execve = 0; 1948 1949 return retval; 1950 } 1951 1952 static int do_execveat_common(int fd, struct filename *filename, 1953 struct user_arg_ptr argv, 1954 struct user_arg_ptr envp, 1955 int flags) 1956 { 1957 struct linux_binprm *bprm; 1958 int retval; 1959 1960 if (IS_ERR(filename)) 1961 return PTR_ERR(filename); 1962 1963 /* 1964 * We move the actual failure in case of RLIMIT_NPROC excess from 1965 * set*uid() to execve() because too many poorly written programs 1966 * don't check setuid() return code. Here we additionally recheck 1967 * whether NPROC limit is still exceeded. 1968 */ 1969 if ((current->flags & PF_NPROC_EXCEEDED) && 1970 is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 1971 retval = -EAGAIN; 1972 goto out_ret; 1973 } 1974 1975 /* We're below the limit (still or again), so we don't want to make 1976 * further execve() calls fail. */ 1977 current->flags &= ~PF_NPROC_EXCEEDED; 1978 1979 bprm = alloc_bprm(fd, filename, flags); 1980 if (IS_ERR(bprm)) { 1981 retval = PTR_ERR(bprm); 1982 goto out_ret; 1983 } 1984 1985 retval = count(argv, MAX_ARG_STRINGS); 1986 if (retval == 0) 1987 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n", 1988 current->comm, bprm->filename); 1989 if (retval < 0) 1990 goto out_free; 1991 bprm->argc = retval; 1992 1993 retval = count(envp, MAX_ARG_STRINGS); 1994 if (retval < 0) 1995 goto out_free; 1996 bprm->envc = retval; 1997 1998 retval = bprm_stack_limits(bprm); 1999 if (retval < 0) 2000 goto out_free; 2001 2002 retval = copy_string_kernel(bprm->filename, bprm); 2003 if (retval < 0) 2004 goto out_free; 2005 bprm->exec = bprm->p; 2006 2007 retval = copy_strings(bprm->envc, envp, bprm); 2008 if (retval < 0) 2009 goto out_free; 2010 2011 retval = copy_strings(bprm->argc, argv, bprm); 2012 if (retval < 0) 2013 goto out_free; 2014 2015 /* 2016 * When argv is empty, add an empty string ("") as argv[0] to 2017 * ensure confused userspace programs that start processing 2018 * from argv[1] won't end up walking envp. See also 2019 * bprm_stack_limits(). 2020 */ 2021 if (bprm->argc == 0) { 2022 retval = copy_string_kernel("", bprm); 2023 if (retval < 0) 2024 goto out_free; 2025 bprm->argc = 1; 2026 } 2027 2028 retval = bprm_execve(bprm); 2029 out_free: 2030 free_bprm(bprm); 2031 2032 out_ret: 2033 putname(filename); 2034 return retval; 2035 } 2036 2037 int kernel_execve(const char *kernel_filename, 2038 const char *const *argv, const char *const *envp) 2039 { 2040 struct filename *filename; 2041 struct linux_binprm *bprm; 2042 int fd = AT_FDCWD; 2043 int retval; 2044 2045 /* It is non-sense for kernel threads to call execve */ 2046 if (WARN_ON_ONCE(current->flags & PF_KTHREAD)) 2047 return -EINVAL; 2048 2049 filename = getname_kernel(kernel_filename); 2050 if (IS_ERR(filename)) 2051 return PTR_ERR(filename); 2052 2053 bprm = alloc_bprm(fd, filename, 0); 2054 if (IS_ERR(bprm)) { 2055 retval = PTR_ERR(bprm); 2056 goto out_ret; 2057 } 2058 2059 retval = count_strings_kernel(argv); 2060 if (WARN_ON_ONCE(retval == 0)) 2061 retval = -EINVAL; 2062 if (retval < 0) 2063 goto out_free; 2064 bprm->argc = retval; 2065 2066 retval = count_strings_kernel(envp); 2067 if (retval < 0) 2068 goto out_free; 2069 bprm->envc = retval; 2070 2071 retval = bprm_stack_limits(bprm); 2072 if (retval < 0) 2073 goto out_free; 2074 2075 retval = copy_string_kernel(bprm->filename, bprm); 2076 if (retval < 0) 2077 goto out_free; 2078 bprm->exec = bprm->p; 2079 2080 retval = copy_strings_kernel(bprm->envc, envp, bprm); 2081 if (retval < 0) 2082 goto out_free; 2083 2084 retval = copy_strings_kernel(bprm->argc, argv, bprm); 2085 if (retval < 0) 2086 goto out_free; 2087 2088 retval = bprm_execve(bprm); 2089 out_free: 2090 free_bprm(bprm); 2091 out_ret: 2092 putname(filename); 2093 return retval; 2094 } 2095 2096 static int do_execve(struct filename *filename, 2097 const char __user *const __user *__argv, 2098 const char __user *const __user *__envp) 2099 { 2100 struct user_arg_ptr argv = { .ptr.native = __argv }; 2101 struct user_arg_ptr envp = { .ptr.native = __envp }; 2102 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2103 } 2104 2105 static int do_execveat(int fd, struct filename *filename, 2106 const char __user *const __user *__argv, 2107 const char __user *const __user *__envp, 2108 int flags) 2109 { 2110 struct user_arg_ptr argv = { .ptr.native = __argv }; 2111 struct user_arg_ptr envp = { .ptr.native = __envp }; 2112 2113 return do_execveat_common(fd, filename, argv, envp, flags); 2114 } 2115 2116 #ifdef CONFIG_COMPAT 2117 static int compat_do_execve(struct filename *filename, 2118 const compat_uptr_t __user *__argv, 2119 const compat_uptr_t __user *__envp) 2120 { 2121 struct user_arg_ptr argv = { 2122 .is_compat = true, 2123 .ptr.compat = __argv, 2124 }; 2125 struct user_arg_ptr envp = { 2126 .is_compat = true, 2127 .ptr.compat = __envp, 2128 }; 2129 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2130 } 2131 2132 static int compat_do_execveat(int fd, struct filename *filename, 2133 const compat_uptr_t __user *__argv, 2134 const compat_uptr_t __user *__envp, 2135 int flags) 2136 { 2137 struct user_arg_ptr argv = { 2138 .is_compat = true, 2139 .ptr.compat = __argv, 2140 }; 2141 struct user_arg_ptr envp = { 2142 .is_compat = true, 2143 .ptr.compat = __envp, 2144 }; 2145 return do_execveat_common(fd, filename, argv, envp, flags); 2146 } 2147 #endif 2148 2149 void set_binfmt(struct linux_binfmt *new) 2150 { 2151 struct mm_struct *mm = current->mm; 2152 2153 if (mm->binfmt) 2154 module_put(mm->binfmt->module); 2155 2156 mm->binfmt = new; 2157 if (new) 2158 __module_get(new->module); 2159 } 2160 EXPORT_SYMBOL(set_binfmt); 2161 2162 /* 2163 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 2164 */ 2165 void set_dumpable(struct mm_struct *mm, int value) 2166 { 2167 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 2168 return; 2169 2170 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value); 2171 } 2172 2173 SYSCALL_DEFINE3(execve, 2174 const char __user *, filename, 2175 const char __user *const __user *, argv, 2176 const char __user *const __user *, envp) 2177 { 2178 return do_execve(getname(filename), argv, envp); 2179 } 2180 2181 SYSCALL_DEFINE5(execveat, 2182 int, fd, const char __user *, filename, 2183 const char __user *const __user *, argv, 2184 const char __user *const __user *, envp, 2185 int, flags) 2186 { 2187 return do_execveat(fd, 2188 getname_uflags(filename, flags), 2189 argv, envp, flags); 2190 } 2191 2192 #ifdef CONFIG_COMPAT 2193 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 2194 const compat_uptr_t __user *, argv, 2195 const compat_uptr_t __user *, envp) 2196 { 2197 return compat_do_execve(getname(filename), argv, envp); 2198 } 2199 2200 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 2201 const char __user *, filename, 2202 const compat_uptr_t __user *, argv, 2203 const compat_uptr_t __user *, envp, 2204 int, flags) 2205 { 2206 return compat_do_execveat(fd, 2207 getname_uflags(filename, flags), 2208 argv, envp, flags); 2209 } 2210 #endif 2211 2212 #ifdef CONFIG_SYSCTL 2213 2214 static int proc_dointvec_minmax_coredump(const struct ctl_table *table, int write, 2215 void *buffer, size_t *lenp, loff_t *ppos) 2216 { 2217 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2218 2219 if (!error) 2220 validate_coredump_safety(); 2221 return error; 2222 } 2223 2224 static struct ctl_table fs_exec_sysctls[] = { 2225 { 2226 .procname = "suid_dumpable", 2227 .data = &suid_dumpable, 2228 .maxlen = sizeof(int), 2229 .mode = 0644, 2230 .proc_handler = proc_dointvec_minmax_coredump, 2231 .extra1 = SYSCTL_ZERO, 2232 .extra2 = SYSCTL_TWO, 2233 }, 2234 }; 2235 2236 static int __init init_fs_exec_sysctls(void) 2237 { 2238 register_sysctl_init("fs", fs_exec_sysctls); 2239 return 0; 2240 } 2241 2242 fs_initcall(init_fs_exec_sysctls); 2243 #endif /* CONFIG_SYSCTL */ 2244 2245 #ifdef CONFIG_EXEC_KUNIT_TEST 2246 #include "tests/exec_kunit.c" 2247 #endif 2248