xref: /linux-6.15/fs/exec.c (revision e9107f88)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52 #include <linux/kmod.h>
53 #include <linux/fsnotify.h>
54 #include <linux/fs_struct.h>
55 #include <linux/pipe_fs_i.h>
56 #include <linux/oom.h>
57 #include <linux/compat.h>
58 
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62 
63 #include <trace/events/task.h>
64 #include "internal.h"
65 
66 #include <trace/events/sched.h>
67 
68 int suid_dumpable = 0;
69 
70 static LIST_HEAD(formats);
71 static DEFINE_RWLOCK(binfmt_lock);
72 
73 void __register_binfmt(struct linux_binfmt * fmt, int insert)
74 {
75 	BUG_ON(!fmt);
76 	if (WARN_ON(!fmt->load_binary))
77 		return;
78 	write_lock(&binfmt_lock);
79 	insert ? list_add(&fmt->lh, &formats) :
80 		 list_add_tail(&fmt->lh, &formats);
81 	write_unlock(&binfmt_lock);
82 }
83 
84 EXPORT_SYMBOL(__register_binfmt);
85 
86 void unregister_binfmt(struct linux_binfmt * fmt)
87 {
88 	write_lock(&binfmt_lock);
89 	list_del(&fmt->lh);
90 	write_unlock(&binfmt_lock);
91 }
92 
93 EXPORT_SYMBOL(unregister_binfmt);
94 
95 static inline void put_binfmt(struct linux_binfmt * fmt)
96 {
97 	module_put(fmt->module);
98 }
99 
100 #ifdef CONFIG_USELIB
101 /*
102  * Note that a shared library must be both readable and executable due to
103  * security reasons.
104  *
105  * Also note that we take the address to load from from the file itself.
106  */
107 SYSCALL_DEFINE1(uselib, const char __user *, library)
108 {
109 	struct linux_binfmt *fmt;
110 	struct file *file;
111 	struct filename *tmp = getname(library);
112 	int error = PTR_ERR(tmp);
113 	static const struct open_flags uselib_flags = {
114 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
115 		.acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
116 		.intent = LOOKUP_OPEN,
117 		.lookup_flags = LOOKUP_FOLLOW,
118 	};
119 
120 	if (IS_ERR(tmp))
121 		goto out;
122 
123 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
124 	putname(tmp);
125 	error = PTR_ERR(file);
126 	if (IS_ERR(file))
127 		goto out;
128 
129 	error = -EINVAL;
130 	if (!S_ISREG(file_inode(file)->i_mode))
131 		goto exit;
132 
133 	error = -EACCES;
134 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
135 		goto exit;
136 
137 	fsnotify_open(file);
138 
139 	error = -ENOEXEC;
140 
141 	read_lock(&binfmt_lock);
142 	list_for_each_entry(fmt, &formats, lh) {
143 		if (!fmt->load_shlib)
144 			continue;
145 		if (!try_module_get(fmt->module))
146 			continue;
147 		read_unlock(&binfmt_lock);
148 		error = fmt->load_shlib(file);
149 		read_lock(&binfmt_lock);
150 		put_binfmt(fmt);
151 		if (error != -ENOEXEC)
152 			break;
153 	}
154 	read_unlock(&binfmt_lock);
155 exit:
156 	fput(file);
157 out:
158   	return error;
159 }
160 #endif /* #ifdef CONFIG_USELIB */
161 
162 #ifdef CONFIG_MMU
163 /*
164  * The nascent bprm->mm is not visible until exec_mmap() but it can
165  * use a lot of memory, account these pages in current->mm temporary
166  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
167  * change the counter back via acct_arg_size(0).
168  */
169 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
170 {
171 	struct mm_struct *mm = current->mm;
172 	long diff = (long)(pages - bprm->vma_pages);
173 
174 	if (!mm || !diff)
175 		return;
176 
177 	bprm->vma_pages = pages;
178 	add_mm_counter(mm, MM_ANONPAGES, diff);
179 }
180 
181 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
182 		int write)
183 {
184 	struct page *page;
185 	int ret;
186 
187 #ifdef CONFIG_STACK_GROWSUP
188 	if (write) {
189 		ret = expand_downwards(bprm->vma, pos);
190 		if (ret < 0)
191 			return NULL;
192 	}
193 #endif
194 	ret = get_user_pages(current, bprm->mm, pos,
195 			1, write, 1, &page, NULL);
196 	if (ret <= 0)
197 		return NULL;
198 
199 	if (write) {
200 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
201 		struct rlimit *rlim;
202 
203 		acct_arg_size(bprm, size / PAGE_SIZE);
204 
205 		/*
206 		 * We've historically supported up to 32 pages (ARG_MAX)
207 		 * of argument strings even with small stacks
208 		 */
209 		if (size <= ARG_MAX)
210 			return page;
211 
212 		/*
213 		 * Limit to 1/4-th the stack size for the argv+env strings.
214 		 * This ensures that:
215 		 *  - the remaining binfmt code will not run out of stack space,
216 		 *  - the program will have a reasonable amount of stack left
217 		 *    to work from.
218 		 */
219 		rlim = current->signal->rlim;
220 		if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
221 			put_page(page);
222 			return NULL;
223 		}
224 	}
225 
226 	return page;
227 }
228 
229 static void put_arg_page(struct page *page)
230 {
231 	put_page(page);
232 }
233 
234 static void free_arg_page(struct linux_binprm *bprm, int i)
235 {
236 }
237 
238 static void free_arg_pages(struct linux_binprm *bprm)
239 {
240 }
241 
242 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
243 		struct page *page)
244 {
245 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
246 }
247 
248 static int __bprm_mm_init(struct linux_binprm *bprm)
249 {
250 	int err;
251 	struct vm_area_struct *vma = NULL;
252 	struct mm_struct *mm = bprm->mm;
253 
254 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
255 	if (!vma)
256 		return -ENOMEM;
257 
258 	down_write(&mm->mmap_sem);
259 	vma->vm_mm = mm;
260 
261 	/*
262 	 * Place the stack at the largest stack address the architecture
263 	 * supports. Later, we'll move this to an appropriate place. We don't
264 	 * use STACK_TOP because that can depend on attributes which aren't
265 	 * configured yet.
266 	 */
267 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
268 	vma->vm_end = STACK_TOP_MAX;
269 	vma->vm_start = vma->vm_end - PAGE_SIZE;
270 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
271 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
272 	INIT_LIST_HEAD(&vma->anon_vma_chain);
273 
274 	err = insert_vm_struct(mm, vma);
275 	if (err)
276 		goto err;
277 
278 	mm->stack_vm = mm->total_vm = 1;
279 	up_write(&mm->mmap_sem);
280 	bprm->p = vma->vm_end - sizeof(void *);
281 	return 0;
282 err:
283 	up_write(&mm->mmap_sem);
284 	bprm->vma = NULL;
285 	kmem_cache_free(vm_area_cachep, vma);
286 	return err;
287 }
288 
289 static bool valid_arg_len(struct linux_binprm *bprm, long len)
290 {
291 	return len <= MAX_ARG_STRLEN;
292 }
293 
294 #else
295 
296 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
297 {
298 }
299 
300 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
301 		int write)
302 {
303 	struct page *page;
304 
305 	page = bprm->page[pos / PAGE_SIZE];
306 	if (!page && write) {
307 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
308 		if (!page)
309 			return NULL;
310 		bprm->page[pos / PAGE_SIZE] = page;
311 	}
312 
313 	return page;
314 }
315 
316 static void put_arg_page(struct page *page)
317 {
318 }
319 
320 static void free_arg_page(struct linux_binprm *bprm, int i)
321 {
322 	if (bprm->page[i]) {
323 		__free_page(bprm->page[i]);
324 		bprm->page[i] = NULL;
325 	}
326 }
327 
328 static void free_arg_pages(struct linux_binprm *bprm)
329 {
330 	int i;
331 
332 	for (i = 0; i < MAX_ARG_PAGES; i++)
333 		free_arg_page(bprm, i);
334 }
335 
336 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
337 		struct page *page)
338 {
339 }
340 
341 static int __bprm_mm_init(struct linux_binprm *bprm)
342 {
343 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
344 	return 0;
345 }
346 
347 static bool valid_arg_len(struct linux_binprm *bprm, long len)
348 {
349 	return len <= bprm->p;
350 }
351 
352 #endif /* CONFIG_MMU */
353 
354 /*
355  * Create a new mm_struct and populate it with a temporary stack
356  * vm_area_struct.  We don't have enough context at this point to set the stack
357  * flags, permissions, and offset, so we use temporary values.  We'll update
358  * them later in setup_arg_pages().
359  */
360 static int bprm_mm_init(struct linux_binprm *bprm)
361 {
362 	int err;
363 	struct mm_struct *mm = NULL;
364 
365 	bprm->mm = mm = mm_alloc();
366 	err = -ENOMEM;
367 	if (!mm)
368 		goto err;
369 
370 	err = init_new_context(current, mm);
371 	if (err)
372 		goto err;
373 
374 	err = __bprm_mm_init(bprm);
375 	if (err)
376 		goto err;
377 
378 	return 0;
379 
380 err:
381 	if (mm) {
382 		bprm->mm = NULL;
383 		mmdrop(mm);
384 	}
385 
386 	return err;
387 }
388 
389 struct user_arg_ptr {
390 #ifdef CONFIG_COMPAT
391 	bool is_compat;
392 #endif
393 	union {
394 		const char __user *const __user *native;
395 #ifdef CONFIG_COMPAT
396 		const compat_uptr_t __user *compat;
397 #endif
398 	} ptr;
399 };
400 
401 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
402 {
403 	const char __user *native;
404 
405 #ifdef CONFIG_COMPAT
406 	if (unlikely(argv.is_compat)) {
407 		compat_uptr_t compat;
408 
409 		if (get_user(compat, argv.ptr.compat + nr))
410 			return ERR_PTR(-EFAULT);
411 
412 		return compat_ptr(compat);
413 	}
414 #endif
415 
416 	if (get_user(native, argv.ptr.native + nr))
417 		return ERR_PTR(-EFAULT);
418 
419 	return native;
420 }
421 
422 /*
423  * count() counts the number of strings in array ARGV.
424  */
425 static int count(struct user_arg_ptr argv, int max)
426 {
427 	int i = 0;
428 
429 	if (argv.ptr.native != NULL) {
430 		for (;;) {
431 			const char __user *p = get_user_arg_ptr(argv, i);
432 
433 			if (!p)
434 				break;
435 
436 			if (IS_ERR(p))
437 				return -EFAULT;
438 
439 			if (i >= max)
440 				return -E2BIG;
441 			++i;
442 
443 			if (fatal_signal_pending(current))
444 				return -ERESTARTNOHAND;
445 			cond_resched();
446 		}
447 	}
448 	return i;
449 }
450 
451 /*
452  * 'copy_strings()' copies argument/environment strings from the old
453  * processes's memory to the new process's stack.  The call to get_user_pages()
454  * ensures the destination page is created and not swapped out.
455  */
456 static int copy_strings(int argc, struct user_arg_ptr argv,
457 			struct linux_binprm *bprm)
458 {
459 	struct page *kmapped_page = NULL;
460 	char *kaddr = NULL;
461 	unsigned long kpos = 0;
462 	int ret;
463 
464 	while (argc-- > 0) {
465 		const char __user *str;
466 		int len;
467 		unsigned long pos;
468 
469 		ret = -EFAULT;
470 		str = get_user_arg_ptr(argv, argc);
471 		if (IS_ERR(str))
472 			goto out;
473 
474 		len = strnlen_user(str, MAX_ARG_STRLEN);
475 		if (!len)
476 			goto out;
477 
478 		ret = -E2BIG;
479 		if (!valid_arg_len(bprm, len))
480 			goto out;
481 
482 		/* We're going to work our way backwords. */
483 		pos = bprm->p;
484 		str += len;
485 		bprm->p -= len;
486 
487 		while (len > 0) {
488 			int offset, bytes_to_copy;
489 
490 			if (fatal_signal_pending(current)) {
491 				ret = -ERESTARTNOHAND;
492 				goto out;
493 			}
494 			cond_resched();
495 
496 			offset = pos % PAGE_SIZE;
497 			if (offset == 0)
498 				offset = PAGE_SIZE;
499 
500 			bytes_to_copy = offset;
501 			if (bytes_to_copy > len)
502 				bytes_to_copy = len;
503 
504 			offset -= bytes_to_copy;
505 			pos -= bytes_to_copy;
506 			str -= bytes_to_copy;
507 			len -= bytes_to_copy;
508 
509 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
510 				struct page *page;
511 
512 				page = get_arg_page(bprm, pos, 1);
513 				if (!page) {
514 					ret = -E2BIG;
515 					goto out;
516 				}
517 
518 				if (kmapped_page) {
519 					flush_kernel_dcache_page(kmapped_page);
520 					kunmap(kmapped_page);
521 					put_arg_page(kmapped_page);
522 				}
523 				kmapped_page = page;
524 				kaddr = kmap(kmapped_page);
525 				kpos = pos & PAGE_MASK;
526 				flush_arg_page(bprm, kpos, kmapped_page);
527 			}
528 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
529 				ret = -EFAULT;
530 				goto out;
531 			}
532 		}
533 	}
534 	ret = 0;
535 out:
536 	if (kmapped_page) {
537 		flush_kernel_dcache_page(kmapped_page);
538 		kunmap(kmapped_page);
539 		put_arg_page(kmapped_page);
540 	}
541 	return ret;
542 }
543 
544 /*
545  * Like copy_strings, but get argv and its values from kernel memory.
546  */
547 int copy_strings_kernel(int argc, const char *const *__argv,
548 			struct linux_binprm *bprm)
549 {
550 	int r;
551 	mm_segment_t oldfs = get_fs();
552 	struct user_arg_ptr argv = {
553 		.ptr.native = (const char __user *const  __user *)__argv,
554 	};
555 
556 	set_fs(KERNEL_DS);
557 	r = copy_strings(argc, argv, bprm);
558 	set_fs(oldfs);
559 
560 	return r;
561 }
562 EXPORT_SYMBOL(copy_strings_kernel);
563 
564 #ifdef CONFIG_MMU
565 
566 /*
567  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
568  * the binfmt code determines where the new stack should reside, we shift it to
569  * its final location.  The process proceeds as follows:
570  *
571  * 1) Use shift to calculate the new vma endpoints.
572  * 2) Extend vma to cover both the old and new ranges.  This ensures the
573  *    arguments passed to subsequent functions are consistent.
574  * 3) Move vma's page tables to the new range.
575  * 4) Free up any cleared pgd range.
576  * 5) Shrink the vma to cover only the new range.
577  */
578 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
579 {
580 	struct mm_struct *mm = vma->vm_mm;
581 	unsigned long old_start = vma->vm_start;
582 	unsigned long old_end = vma->vm_end;
583 	unsigned long length = old_end - old_start;
584 	unsigned long new_start = old_start - shift;
585 	unsigned long new_end = old_end - shift;
586 	struct mmu_gather tlb;
587 
588 	BUG_ON(new_start > new_end);
589 
590 	/*
591 	 * ensure there are no vmas between where we want to go
592 	 * and where we are
593 	 */
594 	if (vma != find_vma(mm, new_start))
595 		return -EFAULT;
596 
597 	/*
598 	 * cover the whole range: [new_start, old_end)
599 	 */
600 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
601 		return -ENOMEM;
602 
603 	/*
604 	 * move the page tables downwards, on failure we rely on
605 	 * process cleanup to remove whatever mess we made.
606 	 */
607 	if (length != move_page_tables(vma, old_start,
608 				       vma, new_start, length, false))
609 		return -ENOMEM;
610 
611 	lru_add_drain();
612 	tlb_gather_mmu(&tlb, mm, old_start, old_end);
613 	if (new_end > old_start) {
614 		/*
615 		 * when the old and new regions overlap clear from new_end.
616 		 */
617 		free_pgd_range(&tlb, new_end, old_end, new_end,
618 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
619 	} else {
620 		/*
621 		 * otherwise, clean from old_start; this is done to not touch
622 		 * the address space in [new_end, old_start) some architectures
623 		 * have constraints on va-space that make this illegal (IA64) -
624 		 * for the others its just a little faster.
625 		 */
626 		free_pgd_range(&tlb, old_start, old_end, new_end,
627 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
628 	}
629 	tlb_finish_mmu(&tlb, old_start, old_end);
630 
631 	/*
632 	 * Shrink the vma to just the new range.  Always succeeds.
633 	 */
634 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
635 
636 	return 0;
637 }
638 
639 /*
640  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
641  * the stack is optionally relocated, and some extra space is added.
642  */
643 int setup_arg_pages(struct linux_binprm *bprm,
644 		    unsigned long stack_top,
645 		    int executable_stack)
646 {
647 	unsigned long ret;
648 	unsigned long stack_shift;
649 	struct mm_struct *mm = current->mm;
650 	struct vm_area_struct *vma = bprm->vma;
651 	struct vm_area_struct *prev = NULL;
652 	unsigned long vm_flags;
653 	unsigned long stack_base;
654 	unsigned long stack_size;
655 	unsigned long stack_expand;
656 	unsigned long rlim_stack;
657 
658 #ifdef CONFIG_STACK_GROWSUP
659 	/* Limit stack size to 1GB */
660 	stack_base = rlimit_max(RLIMIT_STACK);
661 	if (stack_base > (1 << 30))
662 		stack_base = 1 << 30;
663 
664 	/* Make sure we didn't let the argument array grow too large. */
665 	if (vma->vm_end - vma->vm_start > stack_base)
666 		return -ENOMEM;
667 
668 	stack_base = PAGE_ALIGN(stack_top - stack_base);
669 
670 	stack_shift = vma->vm_start - stack_base;
671 	mm->arg_start = bprm->p - stack_shift;
672 	bprm->p = vma->vm_end - stack_shift;
673 #else
674 	stack_top = arch_align_stack(stack_top);
675 	stack_top = PAGE_ALIGN(stack_top);
676 
677 	if (unlikely(stack_top < mmap_min_addr) ||
678 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
679 		return -ENOMEM;
680 
681 	stack_shift = vma->vm_end - stack_top;
682 
683 	bprm->p -= stack_shift;
684 	mm->arg_start = bprm->p;
685 #endif
686 
687 	if (bprm->loader)
688 		bprm->loader -= stack_shift;
689 	bprm->exec -= stack_shift;
690 
691 	down_write(&mm->mmap_sem);
692 	vm_flags = VM_STACK_FLAGS;
693 
694 	/*
695 	 * Adjust stack execute permissions; explicitly enable for
696 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
697 	 * (arch default) otherwise.
698 	 */
699 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
700 		vm_flags |= VM_EXEC;
701 	else if (executable_stack == EXSTACK_DISABLE_X)
702 		vm_flags &= ~VM_EXEC;
703 	vm_flags |= mm->def_flags;
704 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
705 
706 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
707 			vm_flags);
708 	if (ret)
709 		goto out_unlock;
710 	BUG_ON(prev != vma);
711 
712 	/* Move stack pages down in memory. */
713 	if (stack_shift) {
714 		ret = shift_arg_pages(vma, stack_shift);
715 		if (ret)
716 			goto out_unlock;
717 	}
718 
719 	/* mprotect_fixup is overkill to remove the temporary stack flags */
720 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
721 
722 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
723 	stack_size = vma->vm_end - vma->vm_start;
724 	/*
725 	 * Align this down to a page boundary as expand_stack
726 	 * will align it up.
727 	 */
728 	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
729 #ifdef CONFIG_STACK_GROWSUP
730 	if (stack_size + stack_expand > rlim_stack)
731 		stack_base = vma->vm_start + rlim_stack;
732 	else
733 		stack_base = vma->vm_end + stack_expand;
734 #else
735 	if (stack_size + stack_expand > rlim_stack)
736 		stack_base = vma->vm_end - rlim_stack;
737 	else
738 		stack_base = vma->vm_start - stack_expand;
739 #endif
740 	current->mm->start_stack = bprm->p;
741 	ret = expand_stack(vma, stack_base);
742 	if (ret)
743 		ret = -EFAULT;
744 
745 out_unlock:
746 	up_write(&mm->mmap_sem);
747 	return ret;
748 }
749 EXPORT_SYMBOL(setup_arg_pages);
750 
751 #endif /* CONFIG_MMU */
752 
753 static struct file *do_open_exec(struct filename *name)
754 {
755 	struct file *file;
756 	int err;
757 	static const struct open_flags open_exec_flags = {
758 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
759 		.acc_mode = MAY_EXEC | MAY_OPEN,
760 		.intent = LOOKUP_OPEN,
761 		.lookup_flags = LOOKUP_FOLLOW,
762 	};
763 
764 	file = do_filp_open(AT_FDCWD, name, &open_exec_flags);
765 	if (IS_ERR(file))
766 		goto out;
767 
768 	err = -EACCES;
769 	if (!S_ISREG(file_inode(file)->i_mode))
770 		goto exit;
771 
772 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
773 		goto exit;
774 
775 	fsnotify_open(file);
776 
777 	err = deny_write_access(file);
778 	if (err)
779 		goto exit;
780 
781 out:
782 	return file;
783 
784 exit:
785 	fput(file);
786 	return ERR_PTR(err);
787 }
788 
789 struct file *open_exec(const char *name)
790 {
791 	struct filename tmp = { .name = name };
792 	return do_open_exec(&tmp);
793 }
794 EXPORT_SYMBOL(open_exec);
795 
796 int kernel_read(struct file *file, loff_t offset,
797 		char *addr, unsigned long count)
798 {
799 	mm_segment_t old_fs;
800 	loff_t pos = offset;
801 	int result;
802 
803 	old_fs = get_fs();
804 	set_fs(get_ds());
805 	/* The cast to a user pointer is valid due to the set_fs() */
806 	result = vfs_read(file, (void __user *)addr, count, &pos);
807 	set_fs(old_fs);
808 	return result;
809 }
810 
811 EXPORT_SYMBOL(kernel_read);
812 
813 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
814 {
815 	ssize_t res = file->f_op->read(file, (void __user *)addr, len, &pos);
816 	if (res > 0)
817 		flush_icache_range(addr, addr + len);
818 	return res;
819 }
820 EXPORT_SYMBOL(read_code);
821 
822 static int exec_mmap(struct mm_struct *mm)
823 {
824 	struct task_struct *tsk;
825 	struct mm_struct * old_mm, *active_mm;
826 
827 	/* Notify parent that we're no longer interested in the old VM */
828 	tsk = current;
829 	old_mm = current->mm;
830 	mm_release(tsk, old_mm);
831 
832 	if (old_mm) {
833 		sync_mm_rss(old_mm);
834 		/*
835 		 * Make sure that if there is a core dump in progress
836 		 * for the old mm, we get out and die instead of going
837 		 * through with the exec.  We must hold mmap_sem around
838 		 * checking core_state and changing tsk->mm.
839 		 */
840 		down_read(&old_mm->mmap_sem);
841 		if (unlikely(old_mm->core_state)) {
842 			up_read(&old_mm->mmap_sem);
843 			return -EINTR;
844 		}
845 	}
846 	task_lock(tsk);
847 	active_mm = tsk->active_mm;
848 	tsk->mm = mm;
849 	tsk->active_mm = mm;
850 	activate_mm(active_mm, mm);
851 	task_unlock(tsk);
852 	if (old_mm) {
853 		up_read(&old_mm->mmap_sem);
854 		BUG_ON(active_mm != old_mm);
855 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
856 		mm_update_next_owner(old_mm);
857 		mmput(old_mm);
858 		return 0;
859 	}
860 	mmdrop(active_mm);
861 	return 0;
862 }
863 
864 /*
865  * This function makes sure the current process has its own signal table,
866  * so that flush_signal_handlers can later reset the handlers without
867  * disturbing other processes.  (Other processes might share the signal
868  * table via the CLONE_SIGHAND option to clone().)
869  */
870 static int de_thread(struct task_struct *tsk)
871 {
872 	struct signal_struct *sig = tsk->signal;
873 	struct sighand_struct *oldsighand = tsk->sighand;
874 	spinlock_t *lock = &oldsighand->siglock;
875 
876 	if (thread_group_empty(tsk))
877 		goto no_thread_group;
878 
879 	/*
880 	 * Kill all other threads in the thread group.
881 	 */
882 	spin_lock_irq(lock);
883 	if (signal_group_exit(sig)) {
884 		/*
885 		 * Another group action in progress, just
886 		 * return so that the signal is processed.
887 		 */
888 		spin_unlock_irq(lock);
889 		return -EAGAIN;
890 	}
891 
892 	sig->group_exit_task = tsk;
893 	sig->notify_count = zap_other_threads(tsk);
894 	if (!thread_group_leader(tsk))
895 		sig->notify_count--;
896 
897 	while (sig->notify_count) {
898 		__set_current_state(TASK_KILLABLE);
899 		spin_unlock_irq(lock);
900 		schedule();
901 		if (unlikely(__fatal_signal_pending(tsk)))
902 			goto killed;
903 		spin_lock_irq(lock);
904 	}
905 	spin_unlock_irq(lock);
906 
907 	/*
908 	 * At this point all other threads have exited, all we have to
909 	 * do is to wait for the thread group leader to become inactive,
910 	 * and to assume its PID:
911 	 */
912 	if (!thread_group_leader(tsk)) {
913 		struct task_struct *leader = tsk->group_leader;
914 
915 		sig->notify_count = -1;	/* for exit_notify() */
916 		for (;;) {
917 			threadgroup_change_begin(tsk);
918 			write_lock_irq(&tasklist_lock);
919 			if (likely(leader->exit_state))
920 				break;
921 			__set_current_state(TASK_KILLABLE);
922 			write_unlock_irq(&tasklist_lock);
923 			threadgroup_change_end(tsk);
924 			schedule();
925 			if (unlikely(__fatal_signal_pending(tsk)))
926 				goto killed;
927 		}
928 
929 		/*
930 		 * The only record we have of the real-time age of a
931 		 * process, regardless of execs it's done, is start_time.
932 		 * All the past CPU time is accumulated in signal_struct
933 		 * from sister threads now dead.  But in this non-leader
934 		 * exec, nothing survives from the original leader thread,
935 		 * whose birth marks the true age of this process now.
936 		 * When we take on its identity by switching to its PID, we
937 		 * also take its birthdate (always earlier than our own).
938 		 */
939 		tsk->start_time = leader->start_time;
940 		tsk->real_start_time = leader->real_start_time;
941 
942 		BUG_ON(!same_thread_group(leader, tsk));
943 		BUG_ON(has_group_leader_pid(tsk));
944 		/*
945 		 * An exec() starts a new thread group with the
946 		 * TGID of the previous thread group. Rehash the
947 		 * two threads with a switched PID, and release
948 		 * the former thread group leader:
949 		 */
950 
951 		/* Become a process group leader with the old leader's pid.
952 		 * The old leader becomes a thread of the this thread group.
953 		 * Note: The old leader also uses this pid until release_task
954 		 *       is called.  Odd but simple and correct.
955 		 */
956 		tsk->pid = leader->pid;
957 		change_pid(tsk, PIDTYPE_PID, task_pid(leader));
958 		transfer_pid(leader, tsk, PIDTYPE_PGID);
959 		transfer_pid(leader, tsk, PIDTYPE_SID);
960 
961 		list_replace_rcu(&leader->tasks, &tsk->tasks);
962 		list_replace_init(&leader->sibling, &tsk->sibling);
963 
964 		tsk->group_leader = tsk;
965 		leader->group_leader = tsk;
966 
967 		tsk->exit_signal = SIGCHLD;
968 		leader->exit_signal = -1;
969 
970 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
971 		leader->exit_state = EXIT_DEAD;
972 
973 		/*
974 		 * We are going to release_task()->ptrace_unlink() silently,
975 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
976 		 * the tracer wont't block again waiting for this thread.
977 		 */
978 		if (unlikely(leader->ptrace))
979 			__wake_up_parent(leader, leader->parent);
980 		write_unlock_irq(&tasklist_lock);
981 		threadgroup_change_end(tsk);
982 
983 		release_task(leader);
984 	}
985 
986 	sig->group_exit_task = NULL;
987 	sig->notify_count = 0;
988 
989 no_thread_group:
990 	/* we have changed execution domain */
991 	tsk->exit_signal = SIGCHLD;
992 
993 	exit_itimers(sig);
994 	flush_itimer_signals();
995 
996 	if (atomic_read(&oldsighand->count) != 1) {
997 		struct sighand_struct *newsighand;
998 		/*
999 		 * This ->sighand is shared with the CLONE_SIGHAND
1000 		 * but not CLONE_THREAD task, switch to the new one.
1001 		 */
1002 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1003 		if (!newsighand)
1004 			return -ENOMEM;
1005 
1006 		atomic_set(&newsighand->count, 1);
1007 		memcpy(newsighand->action, oldsighand->action,
1008 		       sizeof(newsighand->action));
1009 
1010 		write_lock_irq(&tasklist_lock);
1011 		spin_lock(&oldsighand->siglock);
1012 		rcu_assign_pointer(tsk->sighand, newsighand);
1013 		spin_unlock(&oldsighand->siglock);
1014 		write_unlock_irq(&tasklist_lock);
1015 
1016 		__cleanup_sighand(oldsighand);
1017 	}
1018 
1019 	BUG_ON(!thread_group_leader(tsk));
1020 	return 0;
1021 
1022 killed:
1023 	/* protects against exit_notify() and __exit_signal() */
1024 	read_lock(&tasklist_lock);
1025 	sig->group_exit_task = NULL;
1026 	sig->notify_count = 0;
1027 	read_unlock(&tasklist_lock);
1028 	return -EAGAIN;
1029 }
1030 
1031 char *get_task_comm(char *buf, struct task_struct *tsk)
1032 {
1033 	/* buf must be at least sizeof(tsk->comm) in size */
1034 	task_lock(tsk);
1035 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
1036 	task_unlock(tsk);
1037 	return buf;
1038 }
1039 EXPORT_SYMBOL_GPL(get_task_comm);
1040 
1041 /*
1042  * These functions flushes out all traces of the currently running executable
1043  * so that a new one can be started
1044  */
1045 
1046 void set_task_comm(struct task_struct *tsk, char *buf)
1047 {
1048 	task_lock(tsk);
1049 	trace_task_rename(tsk, buf);
1050 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1051 	task_unlock(tsk);
1052 	perf_event_comm(tsk);
1053 }
1054 
1055 static void filename_to_taskname(char *tcomm, const char *fn, unsigned int len)
1056 {
1057 	int i, ch;
1058 
1059 	/* Copies the binary name from after last slash */
1060 	for (i = 0; (ch = *(fn++)) != '\0';) {
1061 		if (ch == '/')
1062 			i = 0; /* overwrite what we wrote */
1063 		else
1064 			if (i < len - 1)
1065 				tcomm[i++] = ch;
1066 	}
1067 	tcomm[i] = '\0';
1068 }
1069 
1070 int flush_old_exec(struct linux_binprm * bprm)
1071 {
1072 	int retval;
1073 
1074 	/*
1075 	 * Make sure we have a private signal table and that
1076 	 * we are unassociated from the previous thread group.
1077 	 */
1078 	retval = de_thread(current);
1079 	if (retval)
1080 		goto out;
1081 
1082 	set_mm_exe_file(bprm->mm, bprm->file);
1083 
1084 	filename_to_taskname(bprm->tcomm, bprm->filename, sizeof(bprm->tcomm));
1085 	/*
1086 	 * Release all of the old mmap stuff
1087 	 */
1088 	acct_arg_size(bprm, 0);
1089 	retval = exec_mmap(bprm->mm);
1090 	if (retval)
1091 		goto out;
1092 
1093 	bprm->mm = NULL;		/* We're using it now */
1094 
1095 	set_fs(USER_DS);
1096 	current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1097 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1098 	flush_thread();
1099 	current->personality &= ~bprm->per_clear;
1100 
1101 	return 0;
1102 
1103 out:
1104 	return retval;
1105 }
1106 EXPORT_SYMBOL(flush_old_exec);
1107 
1108 void would_dump(struct linux_binprm *bprm, struct file *file)
1109 {
1110 	if (inode_permission(file_inode(file), MAY_READ) < 0)
1111 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1112 }
1113 EXPORT_SYMBOL(would_dump);
1114 
1115 void setup_new_exec(struct linux_binprm * bprm)
1116 {
1117 	arch_pick_mmap_layout(current->mm);
1118 
1119 	/* This is the point of no return */
1120 	current->sas_ss_sp = current->sas_ss_size = 0;
1121 
1122 	if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1123 		set_dumpable(current->mm, SUID_DUMP_USER);
1124 	else
1125 		set_dumpable(current->mm, suid_dumpable);
1126 
1127 	set_task_comm(current, bprm->tcomm);
1128 
1129 	/* Set the new mm task size. We have to do that late because it may
1130 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1131 	 * some architectures like powerpc
1132 	 */
1133 	current->mm->task_size = TASK_SIZE;
1134 
1135 	/* install the new credentials */
1136 	if (!uid_eq(bprm->cred->uid, current_euid()) ||
1137 	    !gid_eq(bprm->cred->gid, current_egid())) {
1138 		current->pdeath_signal = 0;
1139 	} else {
1140 		would_dump(bprm, bprm->file);
1141 		if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1142 			set_dumpable(current->mm, suid_dumpable);
1143 	}
1144 
1145 	/* An exec changes our domain. We are no longer part of the thread
1146 	   group */
1147 	current->self_exec_id++;
1148 	flush_signal_handlers(current, 0);
1149 	do_close_on_exec(current->files);
1150 }
1151 EXPORT_SYMBOL(setup_new_exec);
1152 
1153 /*
1154  * Prepare credentials and lock ->cred_guard_mutex.
1155  * install_exec_creds() commits the new creds and drops the lock.
1156  * Or, if exec fails before, free_bprm() should release ->cred and
1157  * and unlock.
1158  */
1159 int prepare_bprm_creds(struct linux_binprm *bprm)
1160 {
1161 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1162 		return -ERESTARTNOINTR;
1163 
1164 	bprm->cred = prepare_exec_creds();
1165 	if (likely(bprm->cred))
1166 		return 0;
1167 
1168 	mutex_unlock(&current->signal->cred_guard_mutex);
1169 	return -ENOMEM;
1170 }
1171 
1172 static void free_bprm(struct linux_binprm *bprm)
1173 {
1174 	free_arg_pages(bprm);
1175 	if (bprm->cred) {
1176 		mutex_unlock(&current->signal->cred_guard_mutex);
1177 		abort_creds(bprm->cred);
1178 	}
1179 	if (bprm->file) {
1180 		allow_write_access(bprm->file);
1181 		fput(bprm->file);
1182 	}
1183 	/* If a binfmt changed the interp, free it. */
1184 	if (bprm->interp != bprm->filename)
1185 		kfree(bprm->interp);
1186 	kfree(bprm);
1187 }
1188 
1189 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1190 {
1191 	/* If a binfmt changed the interp, free it first. */
1192 	if (bprm->interp != bprm->filename)
1193 		kfree(bprm->interp);
1194 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1195 	if (!bprm->interp)
1196 		return -ENOMEM;
1197 	return 0;
1198 }
1199 EXPORT_SYMBOL(bprm_change_interp);
1200 
1201 /*
1202  * install the new credentials for this executable
1203  */
1204 void install_exec_creds(struct linux_binprm *bprm)
1205 {
1206 	security_bprm_committing_creds(bprm);
1207 
1208 	commit_creds(bprm->cred);
1209 	bprm->cred = NULL;
1210 
1211 	/*
1212 	 * Disable monitoring for regular users
1213 	 * when executing setuid binaries. Must
1214 	 * wait until new credentials are committed
1215 	 * by commit_creds() above
1216 	 */
1217 	if (get_dumpable(current->mm) != SUID_DUMP_USER)
1218 		perf_event_exit_task(current);
1219 	/*
1220 	 * cred_guard_mutex must be held at least to this point to prevent
1221 	 * ptrace_attach() from altering our determination of the task's
1222 	 * credentials; any time after this it may be unlocked.
1223 	 */
1224 	security_bprm_committed_creds(bprm);
1225 	mutex_unlock(&current->signal->cred_guard_mutex);
1226 }
1227 EXPORT_SYMBOL(install_exec_creds);
1228 
1229 /*
1230  * determine how safe it is to execute the proposed program
1231  * - the caller must hold ->cred_guard_mutex to protect against
1232  *   PTRACE_ATTACH
1233  */
1234 static void check_unsafe_exec(struct linux_binprm *bprm)
1235 {
1236 	struct task_struct *p = current, *t;
1237 	unsigned n_fs;
1238 
1239 	if (p->ptrace) {
1240 		if (p->ptrace & PT_PTRACE_CAP)
1241 			bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1242 		else
1243 			bprm->unsafe |= LSM_UNSAFE_PTRACE;
1244 	}
1245 
1246 	/*
1247 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1248 	 * mess up.
1249 	 */
1250 	if (current->no_new_privs)
1251 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1252 
1253 	t = p;
1254 	n_fs = 1;
1255 	spin_lock(&p->fs->lock);
1256 	rcu_read_lock();
1257 	while_each_thread(p, t) {
1258 		if (t->fs == p->fs)
1259 			n_fs++;
1260 	}
1261 	rcu_read_unlock();
1262 
1263 	if (p->fs->users > n_fs)
1264 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1265 	else
1266 		p->fs->in_exec = 1;
1267 	spin_unlock(&p->fs->lock);
1268 }
1269 
1270 /*
1271  * Fill the binprm structure from the inode.
1272  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1273  *
1274  * This may be called multiple times for binary chains (scripts for example).
1275  */
1276 int prepare_binprm(struct linux_binprm *bprm)
1277 {
1278 	struct inode *inode = file_inode(bprm->file);
1279 	umode_t mode = inode->i_mode;
1280 	int retval;
1281 
1282 
1283 	/* clear any previous set[ug]id data from a previous binary */
1284 	bprm->cred->euid = current_euid();
1285 	bprm->cred->egid = current_egid();
1286 
1287 	if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) &&
1288 	    !current->no_new_privs &&
1289 	    kuid_has_mapping(bprm->cred->user_ns, inode->i_uid) &&
1290 	    kgid_has_mapping(bprm->cred->user_ns, inode->i_gid)) {
1291 		/* Set-uid? */
1292 		if (mode & S_ISUID) {
1293 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1294 			bprm->cred->euid = inode->i_uid;
1295 		}
1296 
1297 		/* Set-gid? */
1298 		/*
1299 		 * If setgid is set but no group execute bit then this
1300 		 * is a candidate for mandatory locking, not a setgid
1301 		 * executable.
1302 		 */
1303 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1304 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1305 			bprm->cred->egid = inode->i_gid;
1306 		}
1307 	}
1308 
1309 	/* fill in binprm security blob */
1310 	retval = security_bprm_set_creds(bprm);
1311 	if (retval)
1312 		return retval;
1313 	bprm->cred_prepared = 1;
1314 
1315 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1316 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1317 }
1318 
1319 EXPORT_SYMBOL(prepare_binprm);
1320 
1321 /*
1322  * Arguments are '\0' separated strings found at the location bprm->p
1323  * points to; chop off the first by relocating brpm->p to right after
1324  * the first '\0' encountered.
1325  */
1326 int remove_arg_zero(struct linux_binprm *bprm)
1327 {
1328 	int ret = 0;
1329 	unsigned long offset;
1330 	char *kaddr;
1331 	struct page *page;
1332 
1333 	if (!bprm->argc)
1334 		return 0;
1335 
1336 	do {
1337 		offset = bprm->p & ~PAGE_MASK;
1338 		page = get_arg_page(bprm, bprm->p, 0);
1339 		if (!page) {
1340 			ret = -EFAULT;
1341 			goto out;
1342 		}
1343 		kaddr = kmap_atomic(page);
1344 
1345 		for (; offset < PAGE_SIZE && kaddr[offset];
1346 				offset++, bprm->p++)
1347 			;
1348 
1349 		kunmap_atomic(kaddr);
1350 		put_arg_page(page);
1351 
1352 		if (offset == PAGE_SIZE)
1353 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1354 	} while (offset == PAGE_SIZE);
1355 
1356 	bprm->p++;
1357 	bprm->argc--;
1358 	ret = 0;
1359 
1360 out:
1361 	return ret;
1362 }
1363 EXPORT_SYMBOL(remove_arg_zero);
1364 
1365 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1366 /*
1367  * cycle the list of binary formats handler, until one recognizes the image
1368  */
1369 int search_binary_handler(struct linux_binprm *bprm)
1370 {
1371 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1372 	struct linux_binfmt *fmt;
1373 	int retval;
1374 
1375 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1376 	if (bprm->recursion_depth > 5)
1377 		return -ELOOP;
1378 
1379 	retval = security_bprm_check(bprm);
1380 	if (retval)
1381 		return retval;
1382 
1383 	retval = -ENOENT;
1384  retry:
1385 	read_lock(&binfmt_lock);
1386 	list_for_each_entry(fmt, &formats, lh) {
1387 		if (!try_module_get(fmt->module))
1388 			continue;
1389 		read_unlock(&binfmt_lock);
1390 		bprm->recursion_depth++;
1391 		retval = fmt->load_binary(bprm);
1392 		bprm->recursion_depth--;
1393 		if (retval >= 0 || retval != -ENOEXEC ||
1394 		    bprm->mm == NULL || bprm->file == NULL) {
1395 			put_binfmt(fmt);
1396 			return retval;
1397 		}
1398 		read_lock(&binfmt_lock);
1399 		put_binfmt(fmt);
1400 	}
1401 	read_unlock(&binfmt_lock);
1402 
1403 	if (need_retry && retval == -ENOEXEC) {
1404 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1405 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1406 			return retval;
1407 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1408 			return retval;
1409 		need_retry = false;
1410 		goto retry;
1411 	}
1412 
1413 	return retval;
1414 }
1415 EXPORT_SYMBOL(search_binary_handler);
1416 
1417 static int exec_binprm(struct linux_binprm *bprm)
1418 {
1419 	pid_t old_pid, old_vpid;
1420 	int ret;
1421 
1422 	/* Need to fetch pid before load_binary changes it */
1423 	old_pid = current->pid;
1424 	rcu_read_lock();
1425 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1426 	rcu_read_unlock();
1427 
1428 	ret = search_binary_handler(bprm);
1429 	if (ret >= 0) {
1430 		audit_bprm(bprm);
1431 		trace_sched_process_exec(current, old_pid, bprm);
1432 		ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1433 		proc_exec_connector(current);
1434 	}
1435 
1436 	return ret;
1437 }
1438 
1439 /*
1440  * sys_execve() executes a new program.
1441  */
1442 static int do_execve_common(struct filename *filename,
1443 				struct user_arg_ptr argv,
1444 				struct user_arg_ptr envp)
1445 {
1446 	struct linux_binprm *bprm;
1447 	struct file *file;
1448 	struct files_struct *displaced;
1449 	int retval;
1450 
1451 	if (IS_ERR(filename))
1452 		return PTR_ERR(filename);
1453 
1454 	/*
1455 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1456 	 * set*uid() to execve() because too many poorly written programs
1457 	 * don't check setuid() return code.  Here we additionally recheck
1458 	 * whether NPROC limit is still exceeded.
1459 	 */
1460 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1461 	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1462 		retval = -EAGAIN;
1463 		goto out_ret;
1464 	}
1465 
1466 	/* We're below the limit (still or again), so we don't want to make
1467 	 * further execve() calls fail. */
1468 	current->flags &= ~PF_NPROC_EXCEEDED;
1469 
1470 	retval = unshare_files(&displaced);
1471 	if (retval)
1472 		goto out_ret;
1473 
1474 	retval = -ENOMEM;
1475 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1476 	if (!bprm)
1477 		goto out_files;
1478 
1479 	retval = prepare_bprm_creds(bprm);
1480 	if (retval)
1481 		goto out_free;
1482 
1483 	check_unsafe_exec(bprm);
1484 	current->in_execve = 1;
1485 
1486 	file = do_open_exec(filename);
1487 	retval = PTR_ERR(file);
1488 	if (IS_ERR(file))
1489 		goto out_unmark;
1490 
1491 	sched_exec();
1492 
1493 	bprm->file = file;
1494 	bprm->filename = bprm->interp = filename->name;
1495 
1496 	retval = bprm_mm_init(bprm);
1497 	if (retval)
1498 		goto out_unmark;
1499 
1500 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1501 	if ((retval = bprm->argc) < 0)
1502 		goto out;
1503 
1504 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1505 	if ((retval = bprm->envc) < 0)
1506 		goto out;
1507 
1508 	retval = prepare_binprm(bprm);
1509 	if (retval < 0)
1510 		goto out;
1511 
1512 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1513 	if (retval < 0)
1514 		goto out;
1515 
1516 	bprm->exec = bprm->p;
1517 	retval = copy_strings(bprm->envc, envp, bprm);
1518 	if (retval < 0)
1519 		goto out;
1520 
1521 	retval = copy_strings(bprm->argc, argv, bprm);
1522 	if (retval < 0)
1523 		goto out;
1524 
1525 	retval = exec_binprm(bprm);
1526 	if (retval < 0)
1527 		goto out;
1528 
1529 	/* execve succeeded */
1530 	current->fs->in_exec = 0;
1531 	current->in_execve = 0;
1532 	acct_update_integrals(current);
1533 	task_numa_free(current);
1534 	free_bprm(bprm);
1535 	putname(filename);
1536 	if (displaced)
1537 		put_files_struct(displaced);
1538 	return retval;
1539 
1540 out:
1541 	if (bprm->mm) {
1542 		acct_arg_size(bprm, 0);
1543 		mmput(bprm->mm);
1544 	}
1545 
1546 out_unmark:
1547 	current->fs->in_exec = 0;
1548 	current->in_execve = 0;
1549 
1550 out_free:
1551 	free_bprm(bprm);
1552 
1553 out_files:
1554 	if (displaced)
1555 		reset_files_struct(displaced);
1556 out_ret:
1557 	putname(filename);
1558 	return retval;
1559 }
1560 
1561 int do_execve(struct filename *filename,
1562 	const char __user *const __user *__argv,
1563 	const char __user *const __user *__envp)
1564 {
1565 	struct user_arg_ptr argv = { .ptr.native = __argv };
1566 	struct user_arg_ptr envp = { .ptr.native = __envp };
1567 	return do_execve_common(filename, argv, envp);
1568 }
1569 
1570 #ifdef CONFIG_COMPAT
1571 static int compat_do_execve(struct filename *filename,
1572 	const compat_uptr_t __user *__argv,
1573 	const compat_uptr_t __user *__envp)
1574 {
1575 	struct user_arg_ptr argv = {
1576 		.is_compat = true,
1577 		.ptr.compat = __argv,
1578 	};
1579 	struct user_arg_ptr envp = {
1580 		.is_compat = true,
1581 		.ptr.compat = __envp,
1582 	};
1583 	return do_execve_common(filename, argv, envp);
1584 }
1585 #endif
1586 
1587 void set_binfmt(struct linux_binfmt *new)
1588 {
1589 	struct mm_struct *mm = current->mm;
1590 
1591 	if (mm->binfmt)
1592 		module_put(mm->binfmt->module);
1593 
1594 	mm->binfmt = new;
1595 	if (new)
1596 		__module_get(new->module);
1597 }
1598 EXPORT_SYMBOL(set_binfmt);
1599 
1600 /*
1601  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1602  */
1603 void set_dumpable(struct mm_struct *mm, int value)
1604 {
1605 	unsigned long old, new;
1606 
1607 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1608 		return;
1609 
1610 	do {
1611 		old = ACCESS_ONCE(mm->flags);
1612 		new = (old & ~MMF_DUMPABLE_MASK) | value;
1613 	} while (cmpxchg(&mm->flags, old, new) != old);
1614 }
1615 
1616 SYSCALL_DEFINE3(execve,
1617 		const char __user *, filename,
1618 		const char __user *const __user *, argv,
1619 		const char __user *const __user *, envp)
1620 {
1621 	return do_execve(getname(filename), argv, envp);
1622 }
1623 #ifdef CONFIG_COMPAT
1624 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1625 	const compat_uptr_t __user *, argv,
1626 	const compat_uptr_t __user *, envp)
1627 {
1628 	return compat_do_execve(getname(filename), argv, envp);
1629 }
1630 #endif
1631