1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/mm.h> 29 #include <linux/stat.h> 30 #include <linux/fcntl.h> 31 #include <linux/swap.h> 32 #include <linux/string.h> 33 #include <linux/init.h> 34 #include <linux/pagemap.h> 35 #include <linux/perf_event.h> 36 #include <linux/highmem.h> 37 #include <linux/spinlock.h> 38 #include <linux/key.h> 39 #include <linux/personality.h> 40 #include <linux/binfmts.h> 41 #include <linux/utsname.h> 42 #include <linux/pid_namespace.h> 43 #include <linux/module.h> 44 #include <linux/namei.h> 45 #include <linux/mount.h> 46 #include <linux/security.h> 47 #include <linux/syscalls.h> 48 #include <linux/tsacct_kern.h> 49 #include <linux/cn_proc.h> 50 #include <linux/audit.h> 51 #include <linux/tracehook.h> 52 #include <linux/kmod.h> 53 #include <linux/fsnotify.h> 54 #include <linux/fs_struct.h> 55 #include <linux/pipe_fs_i.h> 56 #include <linux/oom.h> 57 #include <linux/compat.h> 58 59 #include <asm/uaccess.h> 60 #include <asm/mmu_context.h> 61 #include <asm/tlb.h> 62 63 #include <trace/events/task.h> 64 #include "internal.h" 65 66 #include <trace/events/sched.h> 67 68 int suid_dumpable = 0; 69 70 static LIST_HEAD(formats); 71 static DEFINE_RWLOCK(binfmt_lock); 72 73 void __register_binfmt(struct linux_binfmt * fmt, int insert) 74 { 75 BUG_ON(!fmt); 76 if (WARN_ON(!fmt->load_binary)) 77 return; 78 write_lock(&binfmt_lock); 79 insert ? list_add(&fmt->lh, &formats) : 80 list_add_tail(&fmt->lh, &formats); 81 write_unlock(&binfmt_lock); 82 } 83 84 EXPORT_SYMBOL(__register_binfmt); 85 86 void unregister_binfmt(struct linux_binfmt * fmt) 87 { 88 write_lock(&binfmt_lock); 89 list_del(&fmt->lh); 90 write_unlock(&binfmt_lock); 91 } 92 93 EXPORT_SYMBOL(unregister_binfmt); 94 95 static inline void put_binfmt(struct linux_binfmt * fmt) 96 { 97 module_put(fmt->module); 98 } 99 100 #ifdef CONFIG_USELIB 101 /* 102 * Note that a shared library must be both readable and executable due to 103 * security reasons. 104 * 105 * Also note that we take the address to load from from the file itself. 106 */ 107 SYSCALL_DEFINE1(uselib, const char __user *, library) 108 { 109 struct linux_binfmt *fmt; 110 struct file *file; 111 struct filename *tmp = getname(library); 112 int error = PTR_ERR(tmp); 113 static const struct open_flags uselib_flags = { 114 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 115 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN, 116 .intent = LOOKUP_OPEN, 117 .lookup_flags = LOOKUP_FOLLOW, 118 }; 119 120 if (IS_ERR(tmp)) 121 goto out; 122 123 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 124 putname(tmp); 125 error = PTR_ERR(file); 126 if (IS_ERR(file)) 127 goto out; 128 129 error = -EINVAL; 130 if (!S_ISREG(file_inode(file)->i_mode)) 131 goto exit; 132 133 error = -EACCES; 134 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 135 goto exit; 136 137 fsnotify_open(file); 138 139 error = -ENOEXEC; 140 141 read_lock(&binfmt_lock); 142 list_for_each_entry(fmt, &formats, lh) { 143 if (!fmt->load_shlib) 144 continue; 145 if (!try_module_get(fmt->module)) 146 continue; 147 read_unlock(&binfmt_lock); 148 error = fmt->load_shlib(file); 149 read_lock(&binfmt_lock); 150 put_binfmt(fmt); 151 if (error != -ENOEXEC) 152 break; 153 } 154 read_unlock(&binfmt_lock); 155 exit: 156 fput(file); 157 out: 158 return error; 159 } 160 #endif /* #ifdef CONFIG_USELIB */ 161 162 #ifdef CONFIG_MMU 163 /* 164 * The nascent bprm->mm is not visible until exec_mmap() but it can 165 * use a lot of memory, account these pages in current->mm temporary 166 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 167 * change the counter back via acct_arg_size(0). 168 */ 169 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 170 { 171 struct mm_struct *mm = current->mm; 172 long diff = (long)(pages - bprm->vma_pages); 173 174 if (!mm || !diff) 175 return; 176 177 bprm->vma_pages = pages; 178 add_mm_counter(mm, MM_ANONPAGES, diff); 179 } 180 181 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 182 int write) 183 { 184 struct page *page; 185 int ret; 186 187 #ifdef CONFIG_STACK_GROWSUP 188 if (write) { 189 ret = expand_downwards(bprm->vma, pos); 190 if (ret < 0) 191 return NULL; 192 } 193 #endif 194 ret = get_user_pages(current, bprm->mm, pos, 195 1, write, 1, &page, NULL); 196 if (ret <= 0) 197 return NULL; 198 199 if (write) { 200 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 201 struct rlimit *rlim; 202 203 acct_arg_size(bprm, size / PAGE_SIZE); 204 205 /* 206 * We've historically supported up to 32 pages (ARG_MAX) 207 * of argument strings even with small stacks 208 */ 209 if (size <= ARG_MAX) 210 return page; 211 212 /* 213 * Limit to 1/4-th the stack size for the argv+env strings. 214 * This ensures that: 215 * - the remaining binfmt code will not run out of stack space, 216 * - the program will have a reasonable amount of stack left 217 * to work from. 218 */ 219 rlim = current->signal->rlim; 220 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) { 221 put_page(page); 222 return NULL; 223 } 224 } 225 226 return page; 227 } 228 229 static void put_arg_page(struct page *page) 230 { 231 put_page(page); 232 } 233 234 static void free_arg_page(struct linux_binprm *bprm, int i) 235 { 236 } 237 238 static void free_arg_pages(struct linux_binprm *bprm) 239 { 240 } 241 242 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 243 struct page *page) 244 { 245 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 246 } 247 248 static int __bprm_mm_init(struct linux_binprm *bprm) 249 { 250 int err; 251 struct vm_area_struct *vma = NULL; 252 struct mm_struct *mm = bprm->mm; 253 254 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 255 if (!vma) 256 return -ENOMEM; 257 258 down_write(&mm->mmap_sem); 259 vma->vm_mm = mm; 260 261 /* 262 * Place the stack at the largest stack address the architecture 263 * supports. Later, we'll move this to an appropriate place. We don't 264 * use STACK_TOP because that can depend on attributes which aren't 265 * configured yet. 266 */ 267 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 268 vma->vm_end = STACK_TOP_MAX; 269 vma->vm_start = vma->vm_end - PAGE_SIZE; 270 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 271 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 272 INIT_LIST_HEAD(&vma->anon_vma_chain); 273 274 err = insert_vm_struct(mm, vma); 275 if (err) 276 goto err; 277 278 mm->stack_vm = mm->total_vm = 1; 279 up_write(&mm->mmap_sem); 280 bprm->p = vma->vm_end - sizeof(void *); 281 return 0; 282 err: 283 up_write(&mm->mmap_sem); 284 bprm->vma = NULL; 285 kmem_cache_free(vm_area_cachep, vma); 286 return err; 287 } 288 289 static bool valid_arg_len(struct linux_binprm *bprm, long len) 290 { 291 return len <= MAX_ARG_STRLEN; 292 } 293 294 #else 295 296 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 297 { 298 } 299 300 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 301 int write) 302 { 303 struct page *page; 304 305 page = bprm->page[pos / PAGE_SIZE]; 306 if (!page && write) { 307 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 308 if (!page) 309 return NULL; 310 bprm->page[pos / PAGE_SIZE] = page; 311 } 312 313 return page; 314 } 315 316 static void put_arg_page(struct page *page) 317 { 318 } 319 320 static void free_arg_page(struct linux_binprm *bprm, int i) 321 { 322 if (bprm->page[i]) { 323 __free_page(bprm->page[i]); 324 bprm->page[i] = NULL; 325 } 326 } 327 328 static void free_arg_pages(struct linux_binprm *bprm) 329 { 330 int i; 331 332 for (i = 0; i < MAX_ARG_PAGES; i++) 333 free_arg_page(bprm, i); 334 } 335 336 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 337 struct page *page) 338 { 339 } 340 341 static int __bprm_mm_init(struct linux_binprm *bprm) 342 { 343 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 344 return 0; 345 } 346 347 static bool valid_arg_len(struct linux_binprm *bprm, long len) 348 { 349 return len <= bprm->p; 350 } 351 352 #endif /* CONFIG_MMU */ 353 354 /* 355 * Create a new mm_struct and populate it with a temporary stack 356 * vm_area_struct. We don't have enough context at this point to set the stack 357 * flags, permissions, and offset, so we use temporary values. We'll update 358 * them later in setup_arg_pages(). 359 */ 360 static int bprm_mm_init(struct linux_binprm *bprm) 361 { 362 int err; 363 struct mm_struct *mm = NULL; 364 365 bprm->mm = mm = mm_alloc(); 366 err = -ENOMEM; 367 if (!mm) 368 goto err; 369 370 err = init_new_context(current, mm); 371 if (err) 372 goto err; 373 374 err = __bprm_mm_init(bprm); 375 if (err) 376 goto err; 377 378 return 0; 379 380 err: 381 if (mm) { 382 bprm->mm = NULL; 383 mmdrop(mm); 384 } 385 386 return err; 387 } 388 389 struct user_arg_ptr { 390 #ifdef CONFIG_COMPAT 391 bool is_compat; 392 #endif 393 union { 394 const char __user *const __user *native; 395 #ifdef CONFIG_COMPAT 396 const compat_uptr_t __user *compat; 397 #endif 398 } ptr; 399 }; 400 401 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 402 { 403 const char __user *native; 404 405 #ifdef CONFIG_COMPAT 406 if (unlikely(argv.is_compat)) { 407 compat_uptr_t compat; 408 409 if (get_user(compat, argv.ptr.compat + nr)) 410 return ERR_PTR(-EFAULT); 411 412 return compat_ptr(compat); 413 } 414 #endif 415 416 if (get_user(native, argv.ptr.native + nr)) 417 return ERR_PTR(-EFAULT); 418 419 return native; 420 } 421 422 /* 423 * count() counts the number of strings in array ARGV. 424 */ 425 static int count(struct user_arg_ptr argv, int max) 426 { 427 int i = 0; 428 429 if (argv.ptr.native != NULL) { 430 for (;;) { 431 const char __user *p = get_user_arg_ptr(argv, i); 432 433 if (!p) 434 break; 435 436 if (IS_ERR(p)) 437 return -EFAULT; 438 439 if (i >= max) 440 return -E2BIG; 441 ++i; 442 443 if (fatal_signal_pending(current)) 444 return -ERESTARTNOHAND; 445 cond_resched(); 446 } 447 } 448 return i; 449 } 450 451 /* 452 * 'copy_strings()' copies argument/environment strings from the old 453 * processes's memory to the new process's stack. The call to get_user_pages() 454 * ensures the destination page is created and not swapped out. 455 */ 456 static int copy_strings(int argc, struct user_arg_ptr argv, 457 struct linux_binprm *bprm) 458 { 459 struct page *kmapped_page = NULL; 460 char *kaddr = NULL; 461 unsigned long kpos = 0; 462 int ret; 463 464 while (argc-- > 0) { 465 const char __user *str; 466 int len; 467 unsigned long pos; 468 469 ret = -EFAULT; 470 str = get_user_arg_ptr(argv, argc); 471 if (IS_ERR(str)) 472 goto out; 473 474 len = strnlen_user(str, MAX_ARG_STRLEN); 475 if (!len) 476 goto out; 477 478 ret = -E2BIG; 479 if (!valid_arg_len(bprm, len)) 480 goto out; 481 482 /* We're going to work our way backwords. */ 483 pos = bprm->p; 484 str += len; 485 bprm->p -= len; 486 487 while (len > 0) { 488 int offset, bytes_to_copy; 489 490 if (fatal_signal_pending(current)) { 491 ret = -ERESTARTNOHAND; 492 goto out; 493 } 494 cond_resched(); 495 496 offset = pos % PAGE_SIZE; 497 if (offset == 0) 498 offset = PAGE_SIZE; 499 500 bytes_to_copy = offset; 501 if (bytes_to_copy > len) 502 bytes_to_copy = len; 503 504 offset -= bytes_to_copy; 505 pos -= bytes_to_copy; 506 str -= bytes_to_copy; 507 len -= bytes_to_copy; 508 509 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 510 struct page *page; 511 512 page = get_arg_page(bprm, pos, 1); 513 if (!page) { 514 ret = -E2BIG; 515 goto out; 516 } 517 518 if (kmapped_page) { 519 flush_kernel_dcache_page(kmapped_page); 520 kunmap(kmapped_page); 521 put_arg_page(kmapped_page); 522 } 523 kmapped_page = page; 524 kaddr = kmap(kmapped_page); 525 kpos = pos & PAGE_MASK; 526 flush_arg_page(bprm, kpos, kmapped_page); 527 } 528 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 529 ret = -EFAULT; 530 goto out; 531 } 532 } 533 } 534 ret = 0; 535 out: 536 if (kmapped_page) { 537 flush_kernel_dcache_page(kmapped_page); 538 kunmap(kmapped_page); 539 put_arg_page(kmapped_page); 540 } 541 return ret; 542 } 543 544 /* 545 * Like copy_strings, but get argv and its values from kernel memory. 546 */ 547 int copy_strings_kernel(int argc, const char *const *__argv, 548 struct linux_binprm *bprm) 549 { 550 int r; 551 mm_segment_t oldfs = get_fs(); 552 struct user_arg_ptr argv = { 553 .ptr.native = (const char __user *const __user *)__argv, 554 }; 555 556 set_fs(KERNEL_DS); 557 r = copy_strings(argc, argv, bprm); 558 set_fs(oldfs); 559 560 return r; 561 } 562 EXPORT_SYMBOL(copy_strings_kernel); 563 564 #ifdef CONFIG_MMU 565 566 /* 567 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 568 * the binfmt code determines where the new stack should reside, we shift it to 569 * its final location. The process proceeds as follows: 570 * 571 * 1) Use shift to calculate the new vma endpoints. 572 * 2) Extend vma to cover both the old and new ranges. This ensures the 573 * arguments passed to subsequent functions are consistent. 574 * 3) Move vma's page tables to the new range. 575 * 4) Free up any cleared pgd range. 576 * 5) Shrink the vma to cover only the new range. 577 */ 578 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 579 { 580 struct mm_struct *mm = vma->vm_mm; 581 unsigned long old_start = vma->vm_start; 582 unsigned long old_end = vma->vm_end; 583 unsigned long length = old_end - old_start; 584 unsigned long new_start = old_start - shift; 585 unsigned long new_end = old_end - shift; 586 struct mmu_gather tlb; 587 588 BUG_ON(new_start > new_end); 589 590 /* 591 * ensure there are no vmas between where we want to go 592 * and where we are 593 */ 594 if (vma != find_vma(mm, new_start)) 595 return -EFAULT; 596 597 /* 598 * cover the whole range: [new_start, old_end) 599 */ 600 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 601 return -ENOMEM; 602 603 /* 604 * move the page tables downwards, on failure we rely on 605 * process cleanup to remove whatever mess we made. 606 */ 607 if (length != move_page_tables(vma, old_start, 608 vma, new_start, length, false)) 609 return -ENOMEM; 610 611 lru_add_drain(); 612 tlb_gather_mmu(&tlb, mm, old_start, old_end); 613 if (new_end > old_start) { 614 /* 615 * when the old and new regions overlap clear from new_end. 616 */ 617 free_pgd_range(&tlb, new_end, old_end, new_end, 618 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 619 } else { 620 /* 621 * otherwise, clean from old_start; this is done to not touch 622 * the address space in [new_end, old_start) some architectures 623 * have constraints on va-space that make this illegal (IA64) - 624 * for the others its just a little faster. 625 */ 626 free_pgd_range(&tlb, old_start, old_end, new_end, 627 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 628 } 629 tlb_finish_mmu(&tlb, old_start, old_end); 630 631 /* 632 * Shrink the vma to just the new range. Always succeeds. 633 */ 634 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 635 636 return 0; 637 } 638 639 /* 640 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 641 * the stack is optionally relocated, and some extra space is added. 642 */ 643 int setup_arg_pages(struct linux_binprm *bprm, 644 unsigned long stack_top, 645 int executable_stack) 646 { 647 unsigned long ret; 648 unsigned long stack_shift; 649 struct mm_struct *mm = current->mm; 650 struct vm_area_struct *vma = bprm->vma; 651 struct vm_area_struct *prev = NULL; 652 unsigned long vm_flags; 653 unsigned long stack_base; 654 unsigned long stack_size; 655 unsigned long stack_expand; 656 unsigned long rlim_stack; 657 658 #ifdef CONFIG_STACK_GROWSUP 659 /* Limit stack size to 1GB */ 660 stack_base = rlimit_max(RLIMIT_STACK); 661 if (stack_base > (1 << 30)) 662 stack_base = 1 << 30; 663 664 /* Make sure we didn't let the argument array grow too large. */ 665 if (vma->vm_end - vma->vm_start > stack_base) 666 return -ENOMEM; 667 668 stack_base = PAGE_ALIGN(stack_top - stack_base); 669 670 stack_shift = vma->vm_start - stack_base; 671 mm->arg_start = bprm->p - stack_shift; 672 bprm->p = vma->vm_end - stack_shift; 673 #else 674 stack_top = arch_align_stack(stack_top); 675 stack_top = PAGE_ALIGN(stack_top); 676 677 if (unlikely(stack_top < mmap_min_addr) || 678 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 679 return -ENOMEM; 680 681 stack_shift = vma->vm_end - stack_top; 682 683 bprm->p -= stack_shift; 684 mm->arg_start = bprm->p; 685 #endif 686 687 if (bprm->loader) 688 bprm->loader -= stack_shift; 689 bprm->exec -= stack_shift; 690 691 down_write(&mm->mmap_sem); 692 vm_flags = VM_STACK_FLAGS; 693 694 /* 695 * Adjust stack execute permissions; explicitly enable for 696 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 697 * (arch default) otherwise. 698 */ 699 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 700 vm_flags |= VM_EXEC; 701 else if (executable_stack == EXSTACK_DISABLE_X) 702 vm_flags &= ~VM_EXEC; 703 vm_flags |= mm->def_flags; 704 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 705 706 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 707 vm_flags); 708 if (ret) 709 goto out_unlock; 710 BUG_ON(prev != vma); 711 712 /* Move stack pages down in memory. */ 713 if (stack_shift) { 714 ret = shift_arg_pages(vma, stack_shift); 715 if (ret) 716 goto out_unlock; 717 } 718 719 /* mprotect_fixup is overkill to remove the temporary stack flags */ 720 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 721 722 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 723 stack_size = vma->vm_end - vma->vm_start; 724 /* 725 * Align this down to a page boundary as expand_stack 726 * will align it up. 727 */ 728 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK; 729 #ifdef CONFIG_STACK_GROWSUP 730 if (stack_size + stack_expand > rlim_stack) 731 stack_base = vma->vm_start + rlim_stack; 732 else 733 stack_base = vma->vm_end + stack_expand; 734 #else 735 if (stack_size + stack_expand > rlim_stack) 736 stack_base = vma->vm_end - rlim_stack; 737 else 738 stack_base = vma->vm_start - stack_expand; 739 #endif 740 current->mm->start_stack = bprm->p; 741 ret = expand_stack(vma, stack_base); 742 if (ret) 743 ret = -EFAULT; 744 745 out_unlock: 746 up_write(&mm->mmap_sem); 747 return ret; 748 } 749 EXPORT_SYMBOL(setup_arg_pages); 750 751 #endif /* CONFIG_MMU */ 752 753 static struct file *do_open_exec(struct filename *name) 754 { 755 struct file *file; 756 int err; 757 static const struct open_flags open_exec_flags = { 758 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 759 .acc_mode = MAY_EXEC | MAY_OPEN, 760 .intent = LOOKUP_OPEN, 761 .lookup_flags = LOOKUP_FOLLOW, 762 }; 763 764 file = do_filp_open(AT_FDCWD, name, &open_exec_flags); 765 if (IS_ERR(file)) 766 goto out; 767 768 err = -EACCES; 769 if (!S_ISREG(file_inode(file)->i_mode)) 770 goto exit; 771 772 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 773 goto exit; 774 775 fsnotify_open(file); 776 777 err = deny_write_access(file); 778 if (err) 779 goto exit; 780 781 out: 782 return file; 783 784 exit: 785 fput(file); 786 return ERR_PTR(err); 787 } 788 789 struct file *open_exec(const char *name) 790 { 791 struct filename tmp = { .name = name }; 792 return do_open_exec(&tmp); 793 } 794 EXPORT_SYMBOL(open_exec); 795 796 int kernel_read(struct file *file, loff_t offset, 797 char *addr, unsigned long count) 798 { 799 mm_segment_t old_fs; 800 loff_t pos = offset; 801 int result; 802 803 old_fs = get_fs(); 804 set_fs(get_ds()); 805 /* The cast to a user pointer is valid due to the set_fs() */ 806 result = vfs_read(file, (void __user *)addr, count, &pos); 807 set_fs(old_fs); 808 return result; 809 } 810 811 EXPORT_SYMBOL(kernel_read); 812 813 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 814 { 815 ssize_t res = file->f_op->read(file, (void __user *)addr, len, &pos); 816 if (res > 0) 817 flush_icache_range(addr, addr + len); 818 return res; 819 } 820 EXPORT_SYMBOL(read_code); 821 822 static int exec_mmap(struct mm_struct *mm) 823 { 824 struct task_struct *tsk; 825 struct mm_struct * old_mm, *active_mm; 826 827 /* Notify parent that we're no longer interested in the old VM */ 828 tsk = current; 829 old_mm = current->mm; 830 mm_release(tsk, old_mm); 831 832 if (old_mm) { 833 sync_mm_rss(old_mm); 834 /* 835 * Make sure that if there is a core dump in progress 836 * for the old mm, we get out and die instead of going 837 * through with the exec. We must hold mmap_sem around 838 * checking core_state and changing tsk->mm. 839 */ 840 down_read(&old_mm->mmap_sem); 841 if (unlikely(old_mm->core_state)) { 842 up_read(&old_mm->mmap_sem); 843 return -EINTR; 844 } 845 } 846 task_lock(tsk); 847 active_mm = tsk->active_mm; 848 tsk->mm = mm; 849 tsk->active_mm = mm; 850 activate_mm(active_mm, mm); 851 task_unlock(tsk); 852 if (old_mm) { 853 up_read(&old_mm->mmap_sem); 854 BUG_ON(active_mm != old_mm); 855 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 856 mm_update_next_owner(old_mm); 857 mmput(old_mm); 858 return 0; 859 } 860 mmdrop(active_mm); 861 return 0; 862 } 863 864 /* 865 * This function makes sure the current process has its own signal table, 866 * so that flush_signal_handlers can later reset the handlers without 867 * disturbing other processes. (Other processes might share the signal 868 * table via the CLONE_SIGHAND option to clone().) 869 */ 870 static int de_thread(struct task_struct *tsk) 871 { 872 struct signal_struct *sig = tsk->signal; 873 struct sighand_struct *oldsighand = tsk->sighand; 874 spinlock_t *lock = &oldsighand->siglock; 875 876 if (thread_group_empty(tsk)) 877 goto no_thread_group; 878 879 /* 880 * Kill all other threads in the thread group. 881 */ 882 spin_lock_irq(lock); 883 if (signal_group_exit(sig)) { 884 /* 885 * Another group action in progress, just 886 * return so that the signal is processed. 887 */ 888 spin_unlock_irq(lock); 889 return -EAGAIN; 890 } 891 892 sig->group_exit_task = tsk; 893 sig->notify_count = zap_other_threads(tsk); 894 if (!thread_group_leader(tsk)) 895 sig->notify_count--; 896 897 while (sig->notify_count) { 898 __set_current_state(TASK_KILLABLE); 899 spin_unlock_irq(lock); 900 schedule(); 901 if (unlikely(__fatal_signal_pending(tsk))) 902 goto killed; 903 spin_lock_irq(lock); 904 } 905 spin_unlock_irq(lock); 906 907 /* 908 * At this point all other threads have exited, all we have to 909 * do is to wait for the thread group leader to become inactive, 910 * and to assume its PID: 911 */ 912 if (!thread_group_leader(tsk)) { 913 struct task_struct *leader = tsk->group_leader; 914 915 sig->notify_count = -1; /* for exit_notify() */ 916 for (;;) { 917 threadgroup_change_begin(tsk); 918 write_lock_irq(&tasklist_lock); 919 if (likely(leader->exit_state)) 920 break; 921 __set_current_state(TASK_KILLABLE); 922 write_unlock_irq(&tasklist_lock); 923 threadgroup_change_end(tsk); 924 schedule(); 925 if (unlikely(__fatal_signal_pending(tsk))) 926 goto killed; 927 } 928 929 /* 930 * The only record we have of the real-time age of a 931 * process, regardless of execs it's done, is start_time. 932 * All the past CPU time is accumulated in signal_struct 933 * from sister threads now dead. But in this non-leader 934 * exec, nothing survives from the original leader thread, 935 * whose birth marks the true age of this process now. 936 * When we take on its identity by switching to its PID, we 937 * also take its birthdate (always earlier than our own). 938 */ 939 tsk->start_time = leader->start_time; 940 tsk->real_start_time = leader->real_start_time; 941 942 BUG_ON(!same_thread_group(leader, tsk)); 943 BUG_ON(has_group_leader_pid(tsk)); 944 /* 945 * An exec() starts a new thread group with the 946 * TGID of the previous thread group. Rehash the 947 * two threads with a switched PID, and release 948 * the former thread group leader: 949 */ 950 951 /* Become a process group leader with the old leader's pid. 952 * The old leader becomes a thread of the this thread group. 953 * Note: The old leader also uses this pid until release_task 954 * is called. Odd but simple and correct. 955 */ 956 tsk->pid = leader->pid; 957 change_pid(tsk, PIDTYPE_PID, task_pid(leader)); 958 transfer_pid(leader, tsk, PIDTYPE_PGID); 959 transfer_pid(leader, tsk, PIDTYPE_SID); 960 961 list_replace_rcu(&leader->tasks, &tsk->tasks); 962 list_replace_init(&leader->sibling, &tsk->sibling); 963 964 tsk->group_leader = tsk; 965 leader->group_leader = tsk; 966 967 tsk->exit_signal = SIGCHLD; 968 leader->exit_signal = -1; 969 970 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 971 leader->exit_state = EXIT_DEAD; 972 973 /* 974 * We are going to release_task()->ptrace_unlink() silently, 975 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 976 * the tracer wont't block again waiting for this thread. 977 */ 978 if (unlikely(leader->ptrace)) 979 __wake_up_parent(leader, leader->parent); 980 write_unlock_irq(&tasklist_lock); 981 threadgroup_change_end(tsk); 982 983 release_task(leader); 984 } 985 986 sig->group_exit_task = NULL; 987 sig->notify_count = 0; 988 989 no_thread_group: 990 /* we have changed execution domain */ 991 tsk->exit_signal = SIGCHLD; 992 993 exit_itimers(sig); 994 flush_itimer_signals(); 995 996 if (atomic_read(&oldsighand->count) != 1) { 997 struct sighand_struct *newsighand; 998 /* 999 * This ->sighand is shared with the CLONE_SIGHAND 1000 * but not CLONE_THREAD task, switch to the new one. 1001 */ 1002 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1003 if (!newsighand) 1004 return -ENOMEM; 1005 1006 atomic_set(&newsighand->count, 1); 1007 memcpy(newsighand->action, oldsighand->action, 1008 sizeof(newsighand->action)); 1009 1010 write_lock_irq(&tasklist_lock); 1011 spin_lock(&oldsighand->siglock); 1012 rcu_assign_pointer(tsk->sighand, newsighand); 1013 spin_unlock(&oldsighand->siglock); 1014 write_unlock_irq(&tasklist_lock); 1015 1016 __cleanup_sighand(oldsighand); 1017 } 1018 1019 BUG_ON(!thread_group_leader(tsk)); 1020 return 0; 1021 1022 killed: 1023 /* protects against exit_notify() and __exit_signal() */ 1024 read_lock(&tasklist_lock); 1025 sig->group_exit_task = NULL; 1026 sig->notify_count = 0; 1027 read_unlock(&tasklist_lock); 1028 return -EAGAIN; 1029 } 1030 1031 char *get_task_comm(char *buf, struct task_struct *tsk) 1032 { 1033 /* buf must be at least sizeof(tsk->comm) in size */ 1034 task_lock(tsk); 1035 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 1036 task_unlock(tsk); 1037 return buf; 1038 } 1039 EXPORT_SYMBOL_GPL(get_task_comm); 1040 1041 /* 1042 * These functions flushes out all traces of the currently running executable 1043 * so that a new one can be started 1044 */ 1045 1046 void set_task_comm(struct task_struct *tsk, char *buf) 1047 { 1048 task_lock(tsk); 1049 trace_task_rename(tsk, buf); 1050 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1051 task_unlock(tsk); 1052 perf_event_comm(tsk); 1053 } 1054 1055 static void filename_to_taskname(char *tcomm, const char *fn, unsigned int len) 1056 { 1057 int i, ch; 1058 1059 /* Copies the binary name from after last slash */ 1060 for (i = 0; (ch = *(fn++)) != '\0';) { 1061 if (ch == '/') 1062 i = 0; /* overwrite what we wrote */ 1063 else 1064 if (i < len - 1) 1065 tcomm[i++] = ch; 1066 } 1067 tcomm[i] = '\0'; 1068 } 1069 1070 int flush_old_exec(struct linux_binprm * bprm) 1071 { 1072 int retval; 1073 1074 /* 1075 * Make sure we have a private signal table and that 1076 * we are unassociated from the previous thread group. 1077 */ 1078 retval = de_thread(current); 1079 if (retval) 1080 goto out; 1081 1082 set_mm_exe_file(bprm->mm, bprm->file); 1083 1084 filename_to_taskname(bprm->tcomm, bprm->filename, sizeof(bprm->tcomm)); 1085 /* 1086 * Release all of the old mmap stuff 1087 */ 1088 acct_arg_size(bprm, 0); 1089 retval = exec_mmap(bprm->mm); 1090 if (retval) 1091 goto out; 1092 1093 bprm->mm = NULL; /* We're using it now */ 1094 1095 set_fs(USER_DS); 1096 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | 1097 PF_NOFREEZE | PF_NO_SETAFFINITY); 1098 flush_thread(); 1099 current->personality &= ~bprm->per_clear; 1100 1101 return 0; 1102 1103 out: 1104 return retval; 1105 } 1106 EXPORT_SYMBOL(flush_old_exec); 1107 1108 void would_dump(struct linux_binprm *bprm, struct file *file) 1109 { 1110 if (inode_permission(file_inode(file), MAY_READ) < 0) 1111 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1112 } 1113 EXPORT_SYMBOL(would_dump); 1114 1115 void setup_new_exec(struct linux_binprm * bprm) 1116 { 1117 arch_pick_mmap_layout(current->mm); 1118 1119 /* This is the point of no return */ 1120 current->sas_ss_sp = current->sas_ss_size = 0; 1121 1122 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid())) 1123 set_dumpable(current->mm, SUID_DUMP_USER); 1124 else 1125 set_dumpable(current->mm, suid_dumpable); 1126 1127 set_task_comm(current, bprm->tcomm); 1128 1129 /* Set the new mm task size. We have to do that late because it may 1130 * depend on TIF_32BIT which is only updated in flush_thread() on 1131 * some architectures like powerpc 1132 */ 1133 current->mm->task_size = TASK_SIZE; 1134 1135 /* install the new credentials */ 1136 if (!uid_eq(bprm->cred->uid, current_euid()) || 1137 !gid_eq(bprm->cred->gid, current_egid())) { 1138 current->pdeath_signal = 0; 1139 } else { 1140 would_dump(bprm, bprm->file); 1141 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) 1142 set_dumpable(current->mm, suid_dumpable); 1143 } 1144 1145 /* An exec changes our domain. We are no longer part of the thread 1146 group */ 1147 current->self_exec_id++; 1148 flush_signal_handlers(current, 0); 1149 do_close_on_exec(current->files); 1150 } 1151 EXPORT_SYMBOL(setup_new_exec); 1152 1153 /* 1154 * Prepare credentials and lock ->cred_guard_mutex. 1155 * install_exec_creds() commits the new creds and drops the lock. 1156 * Or, if exec fails before, free_bprm() should release ->cred and 1157 * and unlock. 1158 */ 1159 int prepare_bprm_creds(struct linux_binprm *bprm) 1160 { 1161 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1162 return -ERESTARTNOINTR; 1163 1164 bprm->cred = prepare_exec_creds(); 1165 if (likely(bprm->cred)) 1166 return 0; 1167 1168 mutex_unlock(¤t->signal->cred_guard_mutex); 1169 return -ENOMEM; 1170 } 1171 1172 static void free_bprm(struct linux_binprm *bprm) 1173 { 1174 free_arg_pages(bprm); 1175 if (bprm->cred) { 1176 mutex_unlock(¤t->signal->cred_guard_mutex); 1177 abort_creds(bprm->cred); 1178 } 1179 if (bprm->file) { 1180 allow_write_access(bprm->file); 1181 fput(bprm->file); 1182 } 1183 /* If a binfmt changed the interp, free it. */ 1184 if (bprm->interp != bprm->filename) 1185 kfree(bprm->interp); 1186 kfree(bprm); 1187 } 1188 1189 int bprm_change_interp(char *interp, struct linux_binprm *bprm) 1190 { 1191 /* If a binfmt changed the interp, free it first. */ 1192 if (bprm->interp != bprm->filename) 1193 kfree(bprm->interp); 1194 bprm->interp = kstrdup(interp, GFP_KERNEL); 1195 if (!bprm->interp) 1196 return -ENOMEM; 1197 return 0; 1198 } 1199 EXPORT_SYMBOL(bprm_change_interp); 1200 1201 /* 1202 * install the new credentials for this executable 1203 */ 1204 void install_exec_creds(struct linux_binprm *bprm) 1205 { 1206 security_bprm_committing_creds(bprm); 1207 1208 commit_creds(bprm->cred); 1209 bprm->cred = NULL; 1210 1211 /* 1212 * Disable monitoring for regular users 1213 * when executing setuid binaries. Must 1214 * wait until new credentials are committed 1215 * by commit_creds() above 1216 */ 1217 if (get_dumpable(current->mm) != SUID_DUMP_USER) 1218 perf_event_exit_task(current); 1219 /* 1220 * cred_guard_mutex must be held at least to this point to prevent 1221 * ptrace_attach() from altering our determination of the task's 1222 * credentials; any time after this it may be unlocked. 1223 */ 1224 security_bprm_committed_creds(bprm); 1225 mutex_unlock(¤t->signal->cred_guard_mutex); 1226 } 1227 EXPORT_SYMBOL(install_exec_creds); 1228 1229 /* 1230 * determine how safe it is to execute the proposed program 1231 * - the caller must hold ->cred_guard_mutex to protect against 1232 * PTRACE_ATTACH 1233 */ 1234 static void check_unsafe_exec(struct linux_binprm *bprm) 1235 { 1236 struct task_struct *p = current, *t; 1237 unsigned n_fs; 1238 1239 if (p->ptrace) { 1240 if (p->ptrace & PT_PTRACE_CAP) 1241 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP; 1242 else 1243 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1244 } 1245 1246 /* 1247 * This isn't strictly necessary, but it makes it harder for LSMs to 1248 * mess up. 1249 */ 1250 if (current->no_new_privs) 1251 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1252 1253 t = p; 1254 n_fs = 1; 1255 spin_lock(&p->fs->lock); 1256 rcu_read_lock(); 1257 while_each_thread(p, t) { 1258 if (t->fs == p->fs) 1259 n_fs++; 1260 } 1261 rcu_read_unlock(); 1262 1263 if (p->fs->users > n_fs) 1264 bprm->unsafe |= LSM_UNSAFE_SHARE; 1265 else 1266 p->fs->in_exec = 1; 1267 spin_unlock(&p->fs->lock); 1268 } 1269 1270 /* 1271 * Fill the binprm structure from the inode. 1272 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1273 * 1274 * This may be called multiple times for binary chains (scripts for example). 1275 */ 1276 int prepare_binprm(struct linux_binprm *bprm) 1277 { 1278 struct inode *inode = file_inode(bprm->file); 1279 umode_t mode = inode->i_mode; 1280 int retval; 1281 1282 1283 /* clear any previous set[ug]id data from a previous binary */ 1284 bprm->cred->euid = current_euid(); 1285 bprm->cred->egid = current_egid(); 1286 1287 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) && 1288 !current->no_new_privs && 1289 kuid_has_mapping(bprm->cred->user_ns, inode->i_uid) && 1290 kgid_has_mapping(bprm->cred->user_ns, inode->i_gid)) { 1291 /* Set-uid? */ 1292 if (mode & S_ISUID) { 1293 bprm->per_clear |= PER_CLEAR_ON_SETID; 1294 bprm->cred->euid = inode->i_uid; 1295 } 1296 1297 /* Set-gid? */ 1298 /* 1299 * If setgid is set but no group execute bit then this 1300 * is a candidate for mandatory locking, not a setgid 1301 * executable. 1302 */ 1303 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1304 bprm->per_clear |= PER_CLEAR_ON_SETID; 1305 bprm->cred->egid = inode->i_gid; 1306 } 1307 } 1308 1309 /* fill in binprm security blob */ 1310 retval = security_bprm_set_creds(bprm); 1311 if (retval) 1312 return retval; 1313 bprm->cred_prepared = 1; 1314 1315 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1316 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE); 1317 } 1318 1319 EXPORT_SYMBOL(prepare_binprm); 1320 1321 /* 1322 * Arguments are '\0' separated strings found at the location bprm->p 1323 * points to; chop off the first by relocating brpm->p to right after 1324 * the first '\0' encountered. 1325 */ 1326 int remove_arg_zero(struct linux_binprm *bprm) 1327 { 1328 int ret = 0; 1329 unsigned long offset; 1330 char *kaddr; 1331 struct page *page; 1332 1333 if (!bprm->argc) 1334 return 0; 1335 1336 do { 1337 offset = bprm->p & ~PAGE_MASK; 1338 page = get_arg_page(bprm, bprm->p, 0); 1339 if (!page) { 1340 ret = -EFAULT; 1341 goto out; 1342 } 1343 kaddr = kmap_atomic(page); 1344 1345 for (; offset < PAGE_SIZE && kaddr[offset]; 1346 offset++, bprm->p++) 1347 ; 1348 1349 kunmap_atomic(kaddr); 1350 put_arg_page(page); 1351 1352 if (offset == PAGE_SIZE) 1353 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); 1354 } while (offset == PAGE_SIZE); 1355 1356 bprm->p++; 1357 bprm->argc--; 1358 ret = 0; 1359 1360 out: 1361 return ret; 1362 } 1363 EXPORT_SYMBOL(remove_arg_zero); 1364 1365 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1366 /* 1367 * cycle the list of binary formats handler, until one recognizes the image 1368 */ 1369 int search_binary_handler(struct linux_binprm *bprm) 1370 { 1371 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1372 struct linux_binfmt *fmt; 1373 int retval; 1374 1375 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1376 if (bprm->recursion_depth > 5) 1377 return -ELOOP; 1378 1379 retval = security_bprm_check(bprm); 1380 if (retval) 1381 return retval; 1382 1383 retval = -ENOENT; 1384 retry: 1385 read_lock(&binfmt_lock); 1386 list_for_each_entry(fmt, &formats, lh) { 1387 if (!try_module_get(fmt->module)) 1388 continue; 1389 read_unlock(&binfmt_lock); 1390 bprm->recursion_depth++; 1391 retval = fmt->load_binary(bprm); 1392 bprm->recursion_depth--; 1393 if (retval >= 0 || retval != -ENOEXEC || 1394 bprm->mm == NULL || bprm->file == NULL) { 1395 put_binfmt(fmt); 1396 return retval; 1397 } 1398 read_lock(&binfmt_lock); 1399 put_binfmt(fmt); 1400 } 1401 read_unlock(&binfmt_lock); 1402 1403 if (need_retry && retval == -ENOEXEC) { 1404 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1405 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1406 return retval; 1407 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1408 return retval; 1409 need_retry = false; 1410 goto retry; 1411 } 1412 1413 return retval; 1414 } 1415 EXPORT_SYMBOL(search_binary_handler); 1416 1417 static int exec_binprm(struct linux_binprm *bprm) 1418 { 1419 pid_t old_pid, old_vpid; 1420 int ret; 1421 1422 /* Need to fetch pid before load_binary changes it */ 1423 old_pid = current->pid; 1424 rcu_read_lock(); 1425 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1426 rcu_read_unlock(); 1427 1428 ret = search_binary_handler(bprm); 1429 if (ret >= 0) { 1430 audit_bprm(bprm); 1431 trace_sched_process_exec(current, old_pid, bprm); 1432 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1433 proc_exec_connector(current); 1434 } 1435 1436 return ret; 1437 } 1438 1439 /* 1440 * sys_execve() executes a new program. 1441 */ 1442 static int do_execve_common(struct filename *filename, 1443 struct user_arg_ptr argv, 1444 struct user_arg_ptr envp) 1445 { 1446 struct linux_binprm *bprm; 1447 struct file *file; 1448 struct files_struct *displaced; 1449 int retval; 1450 1451 if (IS_ERR(filename)) 1452 return PTR_ERR(filename); 1453 1454 /* 1455 * We move the actual failure in case of RLIMIT_NPROC excess from 1456 * set*uid() to execve() because too many poorly written programs 1457 * don't check setuid() return code. Here we additionally recheck 1458 * whether NPROC limit is still exceeded. 1459 */ 1460 if ((current->flags & PF_NPROC_EXCEEDED) && 1461 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) { 1462 retval = -EAGAIN; 1463 goto out_ret; 1464 } 1465 1466 /* We're below the limit (still or again), so we don't want to make 1467 * further execve() calls fail. */ 1468 current->flags &= ~PF_NPROC_EXCEEDED; 1469 1470 retval = unshare_files(&displaced); 1471 if (retval) 1472 goto out_ret; 1473 1474 retval = -ENOMEM; 1475 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1476 if (!bprm) 1477 goto out_files; 1478 1479 retval = prepare_bprm_creds(bprm); 1480 if (retval) 1481 goto out_free; 1482 1483 check_unsafe_exec(bprm); 1484 current->in_execve = 1; 1485 1486 file = do_open_exec(filename); 1487 retval = PTR_ERR(file); 1488 if (IS_ERR(file)) 1489 goto out_unmark; 1490 1491 sched_exec(); 1492 1493 bprm->file = file; 1494 bprm->filename = bprm->interp = filename->name; 1495 1496 retval = bprm_mm_init(bprm); 1497 if (retval) 1498 goto out_unmark; 1499 1500 bprm->argc = count(argv, MAX_ARG_STRINGS); 1501 if ((retval = bprm->argc) < 0) 1502 goto out; 1503 1504 bprm->envc = count(envp, MAX_ARG_STRINGS); 1505 if ((retval = bprm->envc) < 0) 1506 goto out; 1507 1508 retval = prepare_binprm(bprm); 1509 if (retval < 0) 1510 goto out; 1511 1512 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1513 if (retval < 0) 1514 goto out; 1515 1516 bprm->exec = bprm->p; 1517 retval = copy_strings(bprm->envc, envp, bprm); 1518 if (retval < 0) 1519 goto out; 1520 1521 retval = copy_strings(bprm->argc, argv, bprm); 1522 if (retval < 0) 1523 goto out; 1524 1525 retval = exec_binprm(bprm); 1526 if (retval < 0) 1527 goto out; 1528 1529 /* execve succeeded */ 1530 current->fs->in_exec = 0; 1531 current->in_execve = 0; 1532 acct_update_integrals(current); 1533 task_numa_free(current); 1534 free_bprm(bprm); 1535 putname(filename); 1536 if (displaced) 1537 put_files_struct(displaced); 1538 return retval; 1539 1540 out: 1541 if (bprm->mm) { 1542 acct_arg_size(bprm, 0); 1543 mmput(bprm->mm); 1544 } 1545 1546 out_unmark: 1547 current->fs->in_exec = 0; 1548 current->in_execve = 0; 1549 1550 out_free: 1551 free_bprm(bprm); 1552 1553 out_files: 1554 if (displaced) 1555 reset_files_struct(displaced); 1556 out_ret: 1557 putname(filename); 1558 return retval; 1559 } 1560 1561 int do_execve(struct filename *filename, 1562 const char __user *const __user *__argv, 1563 const char __user *const __user *__envp) 1564 { 1565 struct user_arg_ptr argv = { .ptr.native = __argv }; 1566 struct user_arg_ptr envp = { .ptr.native = __envp }; 1567 return do_execve_common(filename, argv, envp); 1568 } 1569 1570 #ifdef CONFIG_COMPAT 1571 static int compat_do_execve(struct filename *filename, 1572 const compat_uptr_t __user *__argv, 1573 const compat_uptr_t __user *__envp) 1574 { 1575 struct user_arg_ptr argv = { 1576 .is_compat = true, 1577 .ptr.compat = __argv, 1578 }; 1579 struct user_arg_ptr envp = { 1580 .is_compat = true, 1581 .ptr.compat = __envp, 1582 }; 1583 return do_execve_common(filename, argv, envp); 1584 } 1585 #endif 1586 1587 void set_binfmt(struct linux_binfmt *new) 1588 { 1589 struct mm_struct *mm = current->mm; 1590 1591 if (mm->binfmt) 1592 module_put(mm->binfmt->module); 1593 1594 mm->binfmt = new; 1595 if (new) 1596 __module_get(new->module); 1597 } 1598 EXPORT_SYMBOL(set_binfmt); 1599 1600 /* 1601 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 1602 */ 1603 void set_dumpable(struct mm_struct *mm, int value) 1604 { 1605 unsigned long old, new; 1606 1607 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 1608 return; 1609 1610 do { 1611 old = ACCESS_ONCE(mm->flags); 1612 new = (old & ~MMF_DUMPABLE_MASK) | value; 1613 } while (cmpxchg(&mm->flags, old, new) != old); 1614 } 1615 1616 SYSCALL_DEFINE3(execve, 1617 const char __user *, filename, 1618 const char __user *const __user *, argv, 1619 const char __user *const __user *, envp) 1620 { 1621 return do_execve(getname(filename), argv, envp); 1622 } 1623 #ifdef CONFIG_COMPAT 1624 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 1625 const compat_uptr_t __user *, argv, 1626 const compat_uptr_t __user *, envp) 1627 { 1628 return compat_do_execve(getname(filename), argv, envp); 1629 } 1630 #endif 1631