xref: /linux-6.15/fs/exec.c (revision dc9af82e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25 
26 #include <linux/slab.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/mm.h>
30 #include <linux/vmacache.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/tracehook.h>
59 #include <linux/kmod.h>
60 #include <linux/fsnotify.h>
61 #include <linux/fs_struct.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
65 
66 #include <linux/uaccess.h>
67 #include <asm/mmu_context.h>
68 #include <asm/tlb.h>
69 
70 #include <trace/events/task.h>
71 #include "internal.h"
72 
73 #include <trace/events/sched.h>
74 
75 static int bprm_creds_from_file(struct linux_binprm *bprm);
76 
77 int suid_dumpable = 0;
78 
79 static LIST_HEAD(formats);
80 static DEFINE_RWLOCK(binfmt_lock);
81 
82 void __register_binfmt(struct linux_binfmt * fmt, int insert)
83 {
84 	BUG_ON(!fmt);
85 	if (WARN_ON(!fmt->load_binary))
86 		return;
87 	write_lock(&binfmt_lock);
88 	insert ? list_add(&fmt->lh, &formats) :
89 		 list_add_tail(&fmt->lh, &formats);
90 	write_unlock(&binfmt_lock);
91 }
92 
93 EXPORT_SYMBOL(__register_binfmt);
94 
95 void unregister_binfmt(struct linux_binfmt * fmt)
96 {
97 	write_lock(&binfmt_lock);
98 	list_del(&fmt->lh);
99 	write_unlock(&binfmt_lock);
100 }
101 
102 EXPORT_SYMBOL(unregister_binfmt);
103 
104 static inline void put_binfmt(struct linux_binfmt * fmt)
105 {
106 	module_put(fmt->module);
107 }
108 
109 bool path_noexec(const struct path *path)
110 {
111 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
112 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
113 }
114 
115 #ifdef CONFIG_USELIB
116 /*
117  * Note that a shared library must be both readable and executable due to
118  * security reasons.
119  *
120  * Also note that we take the address to load from from the file itself.
121  */
122 SYSCALL_DEFINE1(uselib, const char __user *, library)
123 {
124 	struct linux_binfmt *fmt;
125 	struct file *file;
126 	struct filename *tmp = getname(library);
127 	int error = PTR_ERR(tmp);
128 	static const struct open_flags uselib_flags = {
129 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
130 		.acc_mode = MAY_READ | MAY_EXEC,
131 		.intent = LOOKUP_OPEN,
132 		.lookup_flags = LOOKUP_FOLLOW,
133 	};
134 
135 	if (IS_ERR(tmp))
136 		goto out;
137 
138 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
139 	putname(tmp);
140 	error = PTR_ERR(file);
141 	if (IS_ERR(file))
142 		goto out;
143 
144 	/*
145 	 * may_open() has already checked for this, so it should be
146 	 * impossible to trip now. But we need to be extra cautious
147 	 * and check again at the very end too.
148 	 */
149 	error = -EACCES;
150 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
151 			 path_noexec(&file->f_path)))
152 		goto exit;
153 
154 	fsnotify_open(file);
155 
156 	error = -ENOEXEC;
157 
158 	read_lock(&binfmt_lock);
159 	list_for_each_entry(fmt, &formats, lh) {
160 		if (!fmt->load_shlib)
161 			continue;
162 		if (!try_module_get(fmt->module))
163 			continue;
164 		read_unlock(&binfmt_lock);
165 		error = fmt->load_shlib(file);
166 		read_lock(&binfmt_lock);
167 		put_binfmt(fmt);
168 		if (error != -ENOEXEC)
169 			break;
170 	}
171 	read_unlock(&binfmt_lock);
172 exit:
173 	fput(file);
174 out:
175   	return error;
176 }
177 #endif /* #ifdef CONFIG_USELIB */
178 
179 #ifdef CONFIG_MMU
180 /*
181  * The nascent bprm->mm is not visible until exec_mmap() but it can
182  * use a lot of memory, account these pages in current->mm temporary
183  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
184  * change the counter back via acct_arg_size(0).
185  */
186 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
187 {
188 	struct mm_struct *mm = current->mm;
189 	long diff = (long)(pages - bprm->vma_pages);
190 
191 	if (!mm || !diff)
192 		return;
193 
194 	bprm->vma_pages = pages;
195 	add_mm_counter(mm, MM_ANONPAGES, diff);
196 }
197 
198 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
199 		int write)
200 {
201 	struct page *page;
202 	int ret;
203 	unsigned int gup_flags = FOLL_FORCE;
204 
205 #ifdef CONFIG_STACK_GROWSUP
206 	if (write) {
207 		ret = expand_downwards(bprm->vma, pos);
208 		if (ret < 0)
209 			return NULL;
210 	}
211 #endif
212 
213 	if (write)
214 		gup_flags |= FOLL_WRITE;
215 
216 	/*
217 	 * We are doing an exec().  'current' is the process
218 	 * doing the exec and bprm->mm is the new process's mm.
219 	 */
220 	ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
221 			&page, NULL, NULL);
222 	if (ret <= 0)
223 		return NULL;
224 
225 	if (write)
226 		acct_arg_size(bprm, vma_pages(bprm->vma));
227 
228 	return page;
229 }
230 
231 static void put_arg_page(struct page *page)
232 {
233 	put_page(page);
234 }
235 
236 static void free_arg_pages(struct linux_binprm *bprm)
237 {
238 }
239 
240 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
241 		struct page *page)
242 {
243 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
244 }
245 
246 static int __bprm_mm_init(struct linux_binprm *bprm)
247 {
248 	int err;
249 	struct vm_area_struct *vma = NULL;
250 	struct mm_struct *mm = bprm->mm;
251 
252 	bprm->vma = vma = vm_area_alloc(mm);
253 	if (!vma)
254 		return -ENOMEM;
255 	vma_set_anonymous(vma);
256 
257 	if (mmap_write_lock_killable(mm)) {
258 		err = -EINTR;
259 		goto err_free;
260 	}
261 
262 	/*
263 	 * Place the stack at the largest stack address the architecture
264 	 * supports. Later, we'll move this to an appropriate place. We don't
265 	 * use STACK_TOP because that can depend on attributes which aren't
266 	 * configured yet.
267 	 */
268 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
269 	vma->vm_end = STACK_TOP_MAX;
270 	vma->vm_start = vma->vm_end - PAGE_SIZE;
271 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
272 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
273 
274 	err = insert_vm_struct(mm, vma);
275 	if (err)
276 		goto err;
277 
278 	mm->stack_vm = mm->total_vm = 1;
279 	mmap_write_unlock(mm);
280 	bprm->p = vma->vm_end - sizeof(void *);
281 	return 0;
282 err:
283 	mmap_write_unlock(mm);
284 err_free:
285 	bprm->vma = NULL;
286 	vm_area_free(vma);
287 	return err;
288 }
289 
290 static bool valid_arg_len(struct linux_binprm *bprm, long len)
291 {
292 	return len <= MAX_ARG_STRLEN;
293 }
294 
295 #else
296 
297 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
298 {
299 }
300 
301 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
302 		int write)
303 {
304 	struct page *page;
305 
306 	page = bprm->page[pos / PAGE_SIZE];
307 	if (!page && write) {
308 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
309 		if (!page)
310 			return NULL;
311 		bprm->page[pos / PAGE_SIZE] = page;
312 	}
313 
314 	return page;
315 }
316 
317 static void put_arg_page(struct page *page)
318 {
319 }
320 
321 static void free_arg_page(struct linux_binprm *bprm, int i)
322 {
323 	if (bprm->page[i]) {
324 		__free_page(bprm->page[i]);
325 		bprm->page[i] = NULL;
326 	}
327 }
328 
329 static void free_arg_pages(struct linux_binprm *bprm)
330 {
331 	int i;
332 
333 	for (i = 0; i < MAX_ARG_PAGES; i++)
334 		free_arg_page(bprm, i);
335 }
336 
337 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
338 		struct page *page)
339 {
340 }
341 
342 static int __bprm_mm_init(struct linux_binprm *bprm)
343 {
344 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
345 	return 0;
346 }
347 
348 static bool valid_arg_len(struct linux_binprm *bprm, long len)
349 {
350 	return len <= bprm->p;
351 }
352 
353 #endif /* CONFIG_MMU */
354 
355 /*
356  * Create a new mm_struct and populate it with a temporary stack
357  * vm_area_struct.  We don't have enough context at this point to set the stack
358  * flags, permissions, and offset, so we use temporary values.  We'll update
359  * them later in setup_arg_pages().
360  */
361 static int bprm_mm_init(struct linux_binprm *bprm)
362 {
363 	int err;
364 	struct mm_struct *mm = NULL;
365 
366 	bprm->mm = mm = mm_alloc();
367 	err = -ENOMEM;
368 	if (!mm)
369 		goto err;
370 
371 	/* Save current stack limit for all calculations made during exec. */
372 	task_lock(current->group_leader);
373 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
374 	task_unlock(current->group_leader);
375 
376 	err = __bprm_mm_init(bprm);
377 	if (err)
378 		goto err;
379 
380 	return 0;
381 
382 err:
383 	if (mm) {
384 		bprm->mm = NULL;
385 		mmdrop(mm);
386 	}
387 
388 	return err;
389 }
390 
391 struct user_arg_ptr {
392 #ifdef CONFIG_COMPAT
393 	bool is_compat;
394 #endif
395 	union {
396 		const char __user *const __user *native;
397 #ifdef CONFIG_COMPAT
398 		const compat_uptr_t __user *compat;
399 #endif
400 	} ptr;
401 };
402 
403 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
404 {
405 	const char __user *native;
406 
407 #ifdef CONFIG_COMPAT
408 	if (unlikely(argv.is_compat)) {
409 		compat_uptr_t compat;
410 
411 		if (get_user(compat, argv.ptr.compat + nr))
412 			return ERR_PTR(-EFAULT);
413 
414 		return compat_ptr(compat);
415 	}
416 #endif
417 
418 	if (get_user(native, argv.ptr.native + nr))
419 		return ERR_PTR(-EFAULT);
420 
421 	return native;
422 }
423 
424 /*
425  * count() counts the number of strings in array ARGV.
426  */
427 static int count(struct user_arg_ptr argv, int max)
428 {
429 	int i = 0;
430 
431 	if (argv.ptr.native != NULL) {
432 		for (;;) {
433 			const char __user *p = get_user_arg_ptr(argv, i);
434 
435 			if (!p)
436 				break;
437 
438 			if (IS_ERR(p))
439 				return -EFAULT;
440 
441 			if (i >= max)
442 				return -E2BIG;
443 			++i;
444 
445 			if (fatal_signal_pending(current))
446 				return -ERESTARTNOHAND;
447 			cond_resched();
448 		}
449 	}
450 	return i;
451 }
452 
453 static int count_strings_kernel(const char *const *argv)
454 {
455 	int i;
456 
457 	if (!argv)
458 		return 0;
459 
460 	for (i = 0; argv[i]; ++i) {
461 		if (i >= MAX_ARG_STRINGS)
462 			return -E2BIG;
463 		if (fatal_signal_pending(current))
464 			return -ERESTARTNOHAND;
465 		cond_resched();
466 	}
467 	return i;
468 }
469 
470 static int bprm_stack_limits(struct linux_binprm *bprm)
471 {
472 	unsigned long limit, ptr_size;
473 
474 	/*
475 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
476 	 * (whichever is smaller) for the argv+env strings.
477 	 * This ensures that:
478 	 *  - the remaining binfmt code will not run out of stack space,
479 	 *  - the program will have a reasonable amount of stack left
480 	 *    to work from.
481 	 */
482 	limit = _STK_LIM / 4 * 3;
483 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
484 	/*
485 	 * We've historically supported up to 32 pages (ARG_MAX)
486 	 * of argument strings even with small stacks
487 	 */
488 	limit = max_t(unsigned long, limit, ARG_MAX);
489 	/*
490 	 * We must account for the size of all the argv and envp pointers to
491 	 * the argv and envp strings, since they will also take up space in
492 	 * the stack. They aren't stored until much later when we can't
493 	 * signal to the parent that the child has run out of stack space.
494 	 * Instead, calculate it here so it's possible to fail gracefully.
495 	 */
496 	ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
497 	if (limit <= ptr_size)
498 		return -E2BIG;
499 	limit -= ptr_size;
500 
501 	bprm->argmin = bprm->p - limit;
502 	return 0;
503 }
504 
505 /*
506  * 'copy_strings()' copies argument/environment strings from the old
507  * processes's memory to the new process's stack.  The call to get_user_pages()
508  * ensures the destination page is created and not swapped out.
509  */
510 static int copy_strings(int argc, struct user_arg_ptr argv,
511 			struct linux_binprm *bprm)
512 {
513 	struct page *kmapped_page = NULL;
514 	char *kaddr = NULL;
515 	unsigned long kpos = 0;
516 	int ret;
517 
518 	while (argc-- > 0) {
519 		const char __user *str;
520 		int len;
521 		unsigned long pos;
522 
523 		ret = -EFAULT;
524 		str = get_user_arg_ptr(argv, argc);
525 		if (IS_ERR(str))
526 			goto out;
527 
528 		len = strnlen_user(str, MAX_ARG_STRLEN);
529 		if (!len)
530 			goto out;
531 
532 		ret = -E2BIG;
533 		if (!valid_arg_len(bprm, len))
534 			goto out;
535 
536 		/* We're going to work our way backwords. */
537 		pos = bprm->p;
538 		str += len;
539 		bprm->p -= len;
540 #ifdef CONFIG_MMU
541 		if (bprm->p < bprm->argmin)
542 			goto out;
543 #endif
544 
545 		while (len > 0) {
546 			int offset, bytes_to_copy;
547 
548 			if (fatal_signal_pending(current)) {
549 				ret = -ERESTARTNOHAND;
550 				goto out;
551 			}
552 			cond_resched();
553 
554 			offset = pos % PAGE_SIZE;
555 			if (offset == 0)
556 				offset = PAGE_SIZE;
557 
558 			bytes_to_copy = offset;
559 			if (bytes_to_copy > len)
560 				bytes_to_copy = len;
561 
562 			offset -= bytes_to_copy;
563 			pos -= bytes_to_copy;
564 			str -= bytes_to_copy;
565 			len -= bytes_to_copy;
566 
567 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
568 				struct page *page;
569 
570 				page = get_arg_page(bprm, pos, 1);
571 				if (!page) {
572 					ret = -E2BIG;
573 					goto out;
574 				}
575 
576 				if (kmapped_page) {
577 					flush_kernel_dcache_page(kmapped_page);
578 					kunmap(kmapped_page);
579 					put_arg_page(kmapped_page);
580 				}
581 				kmapped_page = page;
582 				kaddr = kmap(kmapped_page);
583 				kpos = pos & PAGE_MASK;
584 				flush_arg_page(bprm, kpos, kmapped_page);
585 			}
586 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
587 				ret = -EFAULT;
588 				goto out;
589 			}
590 		}
591 	}
592 	ret = 0;
593 out:
594 	if (kmapped_page) {
595 		flush_kernel_dcache_page(kmapped_page);
596 		kunmap(kmapped_page);
597 		put_arg_page(kmapped_page);
598 	}
599 	return ret;
600 }
601 
602 /*
603  * Copy and argument/environment string from the kernel to the processes stack.
604  */
605 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
606 {
607 	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
608 	unsigned long pos = bprm->p;
609 
610 	if (len == 0)
611 		return -EFAULT;
612 	if (!valid_arg_len(bprm, len))
613 		return -E2BIG;
614 
615 	/* We're going to work our way backwards. */
616 	arg += len;
617 	bprm->p -= len;
618 	if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
619 		return -E2BIG;
620 
621 	while (len > 0) {
622 		unsigned int bytes_to_copy = min_t(unsigned int, len,
623 				min_not_zero(offset_in_page(pos), PAGE_SIZE));
624 		struct page *page;
625 		char *kaddr;
626 
627 		pos -= bytes_to_copy;
628 		arg -= bytes_to_copy;
629 		len -= bytes_to_copy;
630 
631 		page = get_arg_page(bprm, pos, 1);
632 		if (!page)
633 			return -E2BIG;
634 		kaddr = kmap_atomic(page);
635 		flush_arg_page(bprm, pos & PAGE_MASK, page);
636 		memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy);
637 		flush_kernel_dcache_page(page);
638 		kunmap_atomic(kaddr);
639 		put_arg_page(page);
640 	}
641 
642 	return 0;
643 }
644 EXPORT_SYMBOL(copy_string_kernel);
645 
646 static int copy_strings_kernel(int argc, const char *const *argv,
647 			       struct linux_binprm *bprm)
648 {
649 	while (argc-- > 0) {
650 		int ret = copy_string_kernel(argv[argc], bprm);
651 		if (ret < 0)
652 			return ret;
653 		if (fatal_signal_pending(current))
654 			return -ERESTARTNOHAND;
655 		cond_resched();
656 	}
657 	return 0;
658 }
659 
660 #ifdef CONFIG_MMU
661 
662 /*
663  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
664  * the binfmt code determines where the new stack should reside, we shift it to
665  * its final location.  The process proceeds as follows:
666  *
667  * 1) Use shift to calculate the new vma endpoints.
668  * 2) Extend vma to cover both the old and new ranges.  This ensures the
669  *    arguments passed to subsequent functions are consistent.
670  * 3) Move vma's page tables to the new range.
671  * 4) Free up any cleared pgd range.
672  * 5) Shrink the vma to cover only the new range.
673  */
674 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
675 {
676 	struct mm_struct *mm = vma->vm_mm;
677 	unsigned long old_start = vma->vm_start;
678 	unsigned long old_end = vma->vm_end;
679 	unsigned long length = old_end - old_start;
680 	unsigned long new_start = old_start - shift;
681 	unsigned long new_end = old_end - shift;
682 	struct mmu_gather tlb;
683 
684 	BUG_ON(new_start > new_end);
685 
686 	/*
687 	 * ensure there are no vmas between where we want to go
688 	 * and where we are
689 	 */
690 	if (vma != find_vma(mm, new_start))
691 		return -EFAULT;
692 
693 	/*
694 	 * cover the whole range: [new_start, old_end)
695 	 */
696 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
697 		return -ENOMEM;
698 
699 	/*
700 	 * move the page tables downwards, on failure we rely on
701 	 * process cleanup to remove whatever mess we made.
702 	 */
703 	if (length != move_page_tables(vma, old_start,
704 				       vma, new_start, length, false))
705 		return -ENOMEM;
706 
707 	lru_add_drain();
708 	tlb_gather_mmu(&tlb, mm, old_start, old_end);
709 	if (new_end > old_start) {
710 		/*
711 		 * when the old and new regions overlap clear from new_end.
712 		 */
713 		free_pgd_range(&tlb, new_end, old_end, new_end,
714 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
715 	} else {
716 		/*
717 		 * otherwise, clean from old_start; this is done to not touch
718 		 * the address space in [new_end, old_start) some architectures
719 		 * have constraints on va-space that make this illegal (IA64) -
720 		 * for the others its just a little faster.
721 		 */
722 		free_pgd_range(&tlb, old_start, old_end, new_end,
723 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
724 	}
725 	tlb_finish_mmu(&tlb, old_start, old_end);
726 
727 	/*
728 	 * Shrink the vma to just the new range.  Always succeeds.
729 	 */
730 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
731 
732 	return 0;
733 }
734 
735 /*
736  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
737  * the stack is optionally relocated, and some extra space is added.
738  */
739 int setup_arg_pages(struct linux_binprm *bprm,
740 		    unsigned long stack_top,
741 		    int executable_stack)
742 {
743 	unsigned long ret;
744 	unsigned long stack_shift;
745 	struct mm_struct *mm = current->mm;
746 	struct vm_area_struct *vma = bprm->vma;
747 	struct vm_area_struct *prev = NULL;
748 	unsigned long vm_flags;
749 	unsigned long stack_base;
750 	unsigned long stack_size;
751 	unsigned long stack_expand;
752 	unsigned long rlim_stack;
753 
754 #ifdef CONFIG_STACK_GROWSUP
755 	/* Limit stack size */
756 	stack_base = bprm->rlim_stack.rlim_max;
757 	if (stack_base > STACK_SIZE_MAX)
758 		stack_base = STACK_SIZE_MAX;
759 
760 	/* Add space for stack randomization. */
761 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
762 
763 	/* Make sure we didn't let the argument array grow too large. */
764 	if (vma->vm_end - vma->vm_start > stack_base)
765 		return -ENOMEM;
766 
767 	stack_base = PAGE_ALIGN(stack_top - stack_base);
768 
769 	stack_shift = vma->vm_start - stack_base;
770 	mm->arg_start = bprm->p - stack_shift;
771 	bprm->p = vma->vm_end - stack_shift;
772 #else
773 	stack_top = arch_align_stack(stack_top);
774 	stack_top = PAGE_ALIGN(stack_top);
775 
776 	if (unlikely(stack_top < mmap_min_addr) ||
777 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
778 		return -ENOMEM;
779 
780 	stack_shift = vma->vm_end - stack_top;
781 
782 	bprm->p -= stack_shift;
783 	mm->arg_start = bprm->p;
784 #endif
785 
786 	if (bprm->loader)
787 		bprm->loader -= stack_shift;
788 	bprm->exec -= stack_shift;
789 
790 	if (mmap_write_lock_killable(mm))
791 		return -EINTR;
792 
793 	vm_flags = VM_STACK_FLAGS;
794 
795 	/*
796 	 * Adjust stack execute permissions; explicitly enable for
797 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
798 	 * (arch default) otherwise.
799 	 */
800 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
801 		vm_flags |= VM_EXEC;
802 	else if (executable_stack == EXSTACK_DISABLE_X)
803 		vm_flags &= ~VM_EXEC;
804 	vm_flags |= mm->def_flags;
805 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
806 
807 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
808 			vm_flags);
809 	if (ret)
810 		goto out_unlock;
811 	BUG_ON(prev != vma);
812 
813 	if (unlikely(vm_flags & VM_EXEC)) {
814 		pr_warn_once("process '%pD4' started with executable stack\n",
815 			     bprm->file);
816 	}
817 
818 	/* Move stack pages down in memory. */
819 	if (stack_shift) {
820 		ret = shift_arg_pages(vma, stack_shift);
821 		if (ret)
822 			goto out_unlock;
823 	}
824 
825 	/* mprotect_fixup is overkill to remove the temporary stack flags */
826 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
827 
828 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
829 	stack_size = vma->vm_end - vma->vm_start;
830 	/*
831 	 * Align this down to a page boundary as expand_stack
832 	 * will align it up.
833 	 */
834 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
835 #ifdef CONFIG_STACK_GROWSUP
836 	if (stack_size + stack_expand > rlim_stack)
837 		stack_base = vma->vm_start + rlim_stack;
838 	else
839 		stack_base = vma->vm_end + stack_expand;
840 #else
841 	if (stack_size + stack_expand > rlim_stack)
842 		stack_base = vma->vm_end - rlim_stack;
843 	else
844 		stack_base = vma->vm_start - stack_expand;
845 #endif
846 	current->mm->start_stack = bprm->p;
847 	ret = expand_stack(vma, stack_base);
848 	if (ret)
849 		ret = -EFAULT;
850 
851 out_unlock:
852 	mmap_write_unlock(mm);
853 	return ret;
854 }
855 EXPORT_SYMBOL(setup_arg_pages);
856 
857 #else
858 
859 /*
860  * Transfer the program arguments and environment from the holding pages
861  * onto the stack. The provided stack pointer is adjusted accordingly.
862  */
863 int transfer_args_to_stack(struct linux_binprm *bprm,
864 			   unsigned long *sp_location)
865 {
866 	unsigned long index, stop, sp;
867 	int ret = 0;
868 
869 	stop = bprm->p >> PAGE_SHIFT;
870 	sp = *sp_location;
871 
872 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
873 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
874 		char *src = kmap(bprm->page[index]) + offset;
875 		sp -= PAGE_SIZE - offset;
876 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
877 			ret = -EFAULT;
878 		kunmap(bprm->page[index]);
879 		if (ret)
880 			goto out;
881 	}
882 
883 	*sp_location = sp;
884 
885 out:
886 	return ret;
887 }
888 EXPORT_SYMBOL(transfer_args_to_stack);
889 
890 #endif /* CONFIG_MMU */
891 
892 static struct file *do_open_execat(int fd, struct filename *name, int flags)
893 {
894 	struct file *file;
895 	int err;
896 	struct open_flags open_exec_flags = {
897 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
898 		.acc_mode = MAY_EXEC,
899 		.intent = LOOKUP_OPEN,
900 		.lookup_flags = LOOKUP_FOLLOW,
901 	};
902 
903 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
904 		return ERR_PTR(-EINVAL);
905 	if (flags & AT_SYMLINK_NOFOLLOW)
906 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
907 	if (flags & AT_EMPTY_PATH)
908 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
909 
910 	file = do_filp_open(fd, name, &open_exec_flags);
911 	if (IS_ERR(file))
912 		goto out;
913 
914 	/*
915 	 * may_open() has already checked for this, so it should be
916 	 * impossible to trip now. But we need to be extra cautious
917 	 * and check again at the very end too.
918 	 */
919 	err = -EACCES;
920 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
921 			 path_noexec(&file->f_path)))
922 		goto exit;
923 
924 	err = deny_write_access(file);
925 	if (err)
926 		goto exit;
927 
928 	if (name->name[0] != '\0')
929 		fsnotify_open(file);
930 
931 out:
932 	return file;
933 
934 exit:
935 	fput(file);
936 	return ERR_PTR(err);
937 }
938 
939 struct file *open_exec(const char *name)
940 {
941 	struct filename *filename = getname_kernel(name);
942 	struct file *f = ERR_CAST(filename);
943 
944 	if (!IS_ERR(filename)) {
945 		f = do_open_execat(AT_FDCWD, filename, 0);
946 		putname(filename);
947 	}
948 	return f;
949 }
950 EXPORT_SYMBOL(open_exec);
951 
952 int kernel_read_file(struct file *file, void **buf, loff_t *size,
953 		     loff_t max_size, enum kernel_read_file_id id)
954 {
955 	loff_t i_size, pos;
956 	ssize_t bytes = 0;
957 	int ret;
958 
959 	if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
960 		return -EINVAL;
961 
962 	ret = deny_write_access(file);
963 	if (ret)
964 		return ret;
965 
966 	ret = security_kernel_read_file(file, id);
967 	if (ret)
968 		goto out;
969 
970 	i_size = i_size_read(file_inode(file));
971 	if (i_size <= 0) {
972 		ret = -EINVAL;
973 		goto out;
974 	}
975 	if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) {
976 		ret = -EFBIG;
977 		goto out;
978 	}
979 
980 	if (id != READING_FIRMWARE_PREALLOC_BUFFER)
981 		*buf = vmalloc(i_size);
982 	if (!*buf) {
983 		ret = -ENOMEM;
984 		goto out;
985 	}
986 
987 	pos = 0;
988 	while (pos < i_size) {
989 		bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
990 		if (bytes < 0) {
991 			ret = bytes;
992 			goto out_free;
993 		}
994 
995 		if (bytes == 0)
996 			break;
997 	}
998 
999 	if (pos != i_size) {
1000 		ret = -EIO;
1001 		goto out_free;
1002 	}
1003 
1004 	ret = security_kernel_post_read_file(file, *buf, i_size, id);
1005 	if (!ret)
1006 		*size = pos;
1007 
1008 out_free:
1009 	if (ret < 0) {
1010 		if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
1011 			vfree(*buf);
1012 			*buf = NULL;
1013 		}
1014 	}
1015 
1016 out:
1017 	allow_write_access(file);
1018 	return ret;
1019 }
1020 EXPORT_SYMBOL_GPL(kernel_read_file);
1021 
1022 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
1023 			       loff_t max_size, enum kernel_read_file_id id)
1024 {
1025 	struct file *file;
1026 	int ret;
1027 
1028 	if (!path || !*path)
1029 		return -EINVAL;
1030 
1031 	file = filp_open(path, O_RDONLY, 0);
1032 	if (IS_ERR(file))
1033 		return PTR_ERR(file);
1034 
1035 	ret = kernel_read_file(file, buf, size, max_size, id);
1036 	fput(file);
1037 	return ret;
1038 }
1039 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
1040 
1041 int kernel_read_file_from_path_initns(const char *path, void **buf,
1042 				      loff_t *size, loff_t max_size,
1043 				      enum kernel_read_file_id id)
1044 {
1045 	struct file *file;
1046 	struct path root;
1047 	int ret;
1048 
1049 	if (!path || !*path)
1050 		return -EINVAL;
1051 
1052 	task_lock(&init_task);
1053 	get_fs_root(init_task.fs, &root);
1054 	task_unlock(&init_task);
1055 
1056 	file = file_open_root(root.dentry, root.mnt, path, O_RDONLY, 0);
1057 	path_put(&root);
1058 	if (IS_ERR(file))
1059 		return PTR_ERR(file);
1060 
1061 	ret = kernel_read_file(file, buf, size, max_size, id);
1062 	fput(file);
1063 	return ret;
1064 }
1065 EXPORT_SYMBOL_GPL(kernel_read_file_from_path_initns);
1066 
1067 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
1068 			     enum kernel_read_file_id id)
1069 {
1070 	struct fd f = fdget(fd);
1071 	int ret = -EBADF;
1072 
1073 	if (!f.file)
1074 		goto out;
1075 
1076 	ret = kernel_read_file(f.file, buf, size, max_size, id);
1077 out:
1078 	fdput(f);
1079 	return ret;
1080 }
1081 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
1082 
1083 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
1084     defined(CONFIG_BINFMT_ELF_FDPIC)
1085 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1086 {
1087 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1088 	if (res > 0)
1089 		flush_icache_user_range(addr, addr + len);
1090 	return res;
1091 }
1092 EXPORT_SYMBOL(read_code);
1093 #endif
1094 
1095 /*
1096  * Maps the mm_struct mm into the current task struct.
1097  * On success, this function returns with the mutex
1098  * exec_update_mutex locked.
1099  */
1100 static int exec_mmap(struct mm_struct *mm)
1101 {
1102 	struct task_struct *tsk;
1103 	struct mm_struct *old_mm, *active_mm;
1104 	int ret;
1105 
1106 	/* Notify parent that we're no longer interested in the old VM */
1107 	tsk = current;
1108 	old_mm = current->mm;
1109 	exec_mm_release(tsk, old_mm);
1110 	if (old_mm)
1111 		sync_mm_rss(old_mm);
1112 
1113 	ret = mutex_lock_killable(&tsk->signal->exec_update_mutex);
1114 	if (ret)
1115 		return ret;
1116 
1117 	if (old_mm) {
1118 		/*
1119 		 * Make sure that if there is a core dump in progress
1120 		 * for the old mm, we get out and die instead of going
1121 		 * through with the exec.  We must hold mmap_lock around
1122 		 * checking core_state and changing tsk->mm.
1123 		 */
1124 		mmap_read_lock(old_mm);
1125 		if (unlikely(old_mm->core_state)) {
1126 			mmap_read_unlock(old_mm);
1127 			mutex_unlock(&tsk->signal->exec_update_mutex);
1128 			return -EINTR;
1129 		}
1130 	}
1131 
1132 	task_lock(tsk);
1133 	membarrier_exec_mmap(mm);
1134 
1135 	local_irq_disable();
1136 	active_mm = tsk->active_mm;
1137 	tsk->active_mm = mm;
1138 	tsk->mm = mm;
1139 	/*
1140 	 * This prevents preemption while active_mm is being loaded and
1141 	 * it and mm are being updated, which could cause problems for
1142 	 * lazy tlb mm refcounting when these are updated by context
1143 	 * switches. Not all architectures can handle irqs off over
1144 	 * activate_mm yet.
1145 	 */
1146 	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1147 		local_irq_enable();
1148 	activate_mm(active_mm, mm);
1149 	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1150 		local_irq_enable();
1151 	tsk->mm->vmacache_seqnum = 0;
1152 	vmacache_flush(tsk);
1153 	task_unlock(tsk);
1154 	if (old_mm) {
1155 		mmap_read_unlock(old_mm);
1156 		BUG_ON(active_mm != old_mm);
1157 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1158 		mm_update_next_owner(old_mm);
1159 		mmput(old_mm);
1160 		return 0;
1161 	}
1162 	mmdrop(active_mm);
1163 	return 0;
1164 }
1165 
1166 static int de_thread(struct task_struct *tsk)
1167 {
1168 	struct signal_struct *sig = tsk->signal;
1169 	struct sighand_struct *oldsighand = tsk->sighand;
1170 	spinlock_t *lock = &oldsighand->siglock;
1171 
1172 	if (thread_group_empty(tsk))
1173 		goto no_thread_group;
1174 
1175 	/*
1176 	 * Kill all other threads in the thread group.
1177 	 */
1178 	spin_lock_irq(lock);
1179 	if (signal_group_exit(sig)) {
1180 		/*
1181 		 * Another group action in progress, just
1182 		 * return so that the signal is processed.
1183 		 */
1184 		spin_unlock_irq(lock);
1185 		return -EAGAIN;
1186 	}
1187 
1188 	sig->group_exit_task = tsk;
1189 	sig->notify_count = zap_other_threads(tsk);
1190 	if (!thread_group_leader(tsk))
1191 		sig->notify_count--;
1192 
1193 	while (sig->notify_count) {
1194 		__set_current_state(TASK_KILLABLE);
1195 		spin_unlock_irq(lock);
1196 		schedule();
1197 		if (__fatal_signal_pending(tsk))
1198 			goto killed;
1199 		spin_lock_irq(lock);
1200 	}
1201 	spin_unlock_irq(lock);
1202 
1203 	/*
1204 	 * At this point all other threads have exited, all we have to
1205 	 * do is to wait for the thread group leader to become inactive,
1206 	 * and to assume its PID:
1207 	 */
1208 	if (!thread_group_leader(tsk)) {
1209 		struct task_struct *leader = tsk->group_leader;
1210 
1211 		for (;;) {
1212 			cgroup_threadgroup_change_begin(tsk);
1213 			write_lock_irq(&tasklist_lock);
1214 			/*
1215 			 * Do this under tasklist_lock to ensure that
1216 			 * exit_notify() can't miss ->group_exit_task
1217 			 */
1218 			sig->notify_count = -1;
1219 			if (likely(leader->exit_state))
1220 				break;
1221 			__set_current_state(TASK_KILLABLE);
1222 			write_unlock_irq(&tasklist_lock);
1223 			cgroup_threadgroup_change_end(tsk);
1224 			schedule();
1225 			if (__fatal_signal_pending(tsk))
1226 				goto killed;
1227 		}
1228 
1229 		/*
1230 		 * The only record we have of the real-time age of a
1231 		 * process, regardless of execs it's done, is start_time.
1232 		 * All the past CPU time is accumulated in signal_struct
1233 		 * from sister threads now dead.  But in this non-leader
1234 		 * exec, nothing survives from the original leader thread,
1235 		 * whose birth marks the true age of this process now.
1236 		 * When we take on its identity by switching to its PID, we
1237 		 * also take its birthdate (always earlier than our own).
1238 		 */
1239 		tsk->start_time = leader->start_time;
1240 		tsk->start_boottime = leader->start_boottime;
1241 
1242 		BUG_ON(!same_thread_group(leader, tsk));
1243 		/*
1244 		 * An exec() starts a new thread group with the
1245 		 * TGID of the previous thread group. Rehash the
1246 		 * two threads with a switched PID, and release
1247 		 * the former thread group leader:
1248 		 */
1249 
1250 		/* Become a process group leader with the old leader's pid.
1251 		 * The old leader becomes a thread of the this thread group.
1252 		 */
1253 		exchange_tids(tsk, leader);
1254 		transfer_pid(leader, tsk, PIDTYPE_TGID);
1255 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1256 		transfer_pid(leader, tsk, PIDTYPE_SID);
1257 
1258 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1259 		list_replace_init(&leader->sibling, &tsk->sibling);
1260 
1261 		tsk->group_leader = tsk;
1262 		leader->group_leader = tsk;
1263 
1264 		tsk->exit_signal = SIGCHLD;
1265 		leader->exit_signal = -1;
1266 
1267 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1268 		leader->exit_state = EXIT_DEAD;
1269 
1270 		/*
1271 		 * We are going to release_task()->ptrace_unlink() silently,
1272 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1273 		 * the tracer wont't block again waiting for this thread.
1274 		 */
1275 		if (unlikely(leader->ptrace))
1276 			__wake_up_parent(leader, leader->parent);
1277 		write_unlock_irq(&tasklist_lock);
1278 		cgroup_threadgroup_change_end(tsk);
1279 
1280 		release_task(leader);
1281 	}
1282 
1283 	sig->group_exit_task = NULL;
1284 	sig->notify_count = 0;
1285 
1286 no_thread_group:
1287 	/* we have changed execution domain */
1288 	tsk->exit_signal = SIGCHLD;
1289 
1290 	BUG_ON(!thread_group_leader(tsk));
1291 	return 0;
1292 
1293 killed:
1294 	/* protects against exit_notify() and __exit_signal() */
1295 	read_lock(&tasklist_lock);
1296 	sig->group_exit_task = NULL;
1297 	sig->notify_count = 0;
1298 	read_unlock(&tasklist_lock);
1299 	return -EAGAIN;
1300 }
1301 
1302 
1303 /*
1304  * This function makes sure the current process has its own signal table,
1305  * so that flush_signal_handlers can later reset the handlers without
1306  * disturbing other processes.  (Other processes might share the signal
1307  * table via the CLONE_SIGHAND option to clone().)
1308  */
1309 static int unshare_sighand(struct task_struct *me)
1310 {
1311 	struct sighand_struct *oldsighand = me->sighand;
1312 
1313 	if (refcount_read(&oldsighand->count) != 1) {
1314 		struct sighand_struct *newsighand;
1315 		/*
1316 		 * This ->sighand is shared with the CLONE_SIGHAND
1317 		 * but not CLONE_THREAD task, switch to the new one.
1318 		 */
1319 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1320 		if (!newsighand)
1321 			return -ENOMEM;
1322 
1323 		refcount_set(&newsighand->count, 1);
1324 		memcpy(newsighand->action, oldsighand->action,
1325 		       sizeof(newsighand->action));
1326 
1327 		write_lock_irq(&tasklist_lock);
1328 		spin_lock(&oldsighand->siglock);
1329 		rcu_assign_pointer(me->sighand, newsighand);
1330 		spin_unlock(&oldsighand->siglock);
1331 		write_unlock_irq(&tasklist_lock);
1332 
1333 		__cleanup_sighand(oldsighand);
1334 	}
1335 	return 0;
1336 }
1337 
1338 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1339 {
1340 	task_lock(tsk);
1341 	strncpy(buf, tsk->comm, buf_size);
1342 	task_unlock(tsk);
1343 	return buf;
1344 }
1345 EXPORT_SYMBOL_GPL(__get_task_comm);
1346 
1347 /*
1348  * These functions flushes out all traces of the currently running executable
1349  * so that a new one can be started
1350  */
1351 
1352 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1353 {
1354 	task_lock(tsk);
1355 	trace_task_rename(tsk, buf);
1356 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1357 	task_unlock(tsk);
1358 	perf_event_comm(tsk, exec);
1359 }
1360 
1361 /*
1362  * Calling this is the point of no return. None of the failures will be
1363  * seen by userspace since either the process is already taking a fatal
1364  * signal (via de_thread() or coredump), or will have SEGV raised
1365  * (after exec_mmap()) by search_binary_handler (see below).
1366  */
1367 int begin_new_exec(struct linux_binprm * bprm)
1368 {
1369 	struct task_struct *me = current;
1370 	int retval;
1371 
1372 	/* Once we are committed compute the creds */
1373 	retval = bprm_creds_from_file(bprm);
1374 	if (retval)
1375 		return retval;
1376 
1377 	/*
1378 	 * Ensure all future errors are fatal.
1379 	 */
1380 	bprm->point_of_no_return = true;
1381 
1382 	/*
1383 	 * Make this the only thread in the thread group.
1384 	 */
1385 	retval = de_thread(me);
1386 	if (retval)
1387 		goto out;
1388 
1389 	/*
1390 	 * Must be called _before_ exec_mmap() as bprm->mm is
1391 	 * not visibile until then. This also enables the update
1392 	 * to be lockless.
1393 	 */
1394 	set_mm_exe_file(bprm->mm, bprm->file);
1395 
1396 	/* If the binary is not readable then enforce mm->dumpable=0 */
1397 	would_dump(bprm, bprm->file);
1398 	if (bprm->have_execfd)
1399 		would_dump(bprm, bprm->executable);
1400 
1401 	/*
1402 	 * Release all of the old mmap stuff
1403 	 */
1404 	acct_arg_size(bprm, 0);
1405 	retval = exec_mmap(bprm->mm);
1406 	if (retval)
1407 		goto out;
1408 
1409 	bprm->mm = NULL;
1410 
1411 #ifdef CONFIG_POSIX_TIMERS
1412 	exit_itimers(me->signal);
1413 	flush_itimer_signals();
1414 #endif
1415 
1416 	/*
1417 	 * Make the signal table private.
1418 	 */
1419 	retval = unshare_sighand(me);
1420 	if (retval)
1421 		goto out_unlock;
1422 
1423 	/*
1424 	 * Ensure that the uaccess routines can actually operate on userspace
1425 	 * pointers:
1426 	 */
1427 	force_uaccess_begin();
1428 
1429 	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1430 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1431 	flush_thread();
1432 	me->personality &= ~bprm->per_clear;
1433 
1434 	/*
1435 	 * We have to apply CLOEXEC before we change whether the process is
1436 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1437 	 * trying to access the should-be-closed file descriptors of a process
1438 	 * undergoing exec(2).
1439 	 */
1440 	do_close_on_exec(me->files);
1441 
1442 	if (bprm->secureexec) {
1443 		/* Make sure parent cannot signal privileged process. */
1444 		me->pdeath_signal = 0;
1445 
1446 		/*
1447 		 * For secureexec, reset the stack limit to sane default to
1448 		 * avoid bad behavior from the prior rlimits. This has to
1449 		 * happen before arch_pick_mmap_layout(), which examines
1450 		 * RLIMIT_STACK, but after the point of no return to avoid
1451 		 * needing to clean up the change on failure.
1452 		 */
1453 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1454 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1455 	}
1456 
1457 	me->sas_ss_sp = me->sas_ss_size = 0;
1458 
1459 	/*
1460 	 * Figure out dumpability. Note that this checking only of current
1461 	 * is wrong, but userspace depends on it. This should be testing
1462 	 * bprm->secureexec instead.
1463 	 */
1464 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1465 	    !(uid_eq(current_euid(), current_uid()) &&
1466 	      gid_eq(current_egid(), current_gid())))
1467 		set_dumpable(current->mm, suid_dumpable);
1468 	else
1469 		set_dumpable(current->mm, SUID_DUMP_USER);
1470 
1471 	perf_event_exec();
1472 	__set_task_comm(me, kbasename(bprm->filename), true);
1473 
1474 	/* An exec changes our domain. We are no longer part of the thread
1475 	   group */
1476 	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1477 	flush_signal_handlers(me, 0);
1478 
1479 	/*
1480 	 * install the new credentials for this executable
1481 	 */
1482 	security_bprm_committing_creds(bprm);
1483 
1484 	commit_creds(bprm->cred);
1485 	bprm->cred = NULL;
1486 
1487 	/*
1488 	 * Disable monitoring for regular users
1489 	 * when executing setuid binaries. Must
1490 	 * wait until new credentials are committed
1491 	 * by commit_creds() above
1492 	 */
1493 	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1494 		perf_event_exit_task(me);
1495 	/*
1496 	 * cred_guard_mutex must be held at least to this point to prevent
1497 	 * ptrace_attach() from altering our determination of the task's
1498 	 * credentials; any time after this it may be unlocked.
1499 	 */
1500 	security_bprm_committed_creds(bprm);
1501 
1502 	/* Pass the opened binary to the interpreter. */
1503 	if (bprm->have_execfd) {
1504 		retval = get_unused_fd_flags(0);
1505 		if (retval < 0)
1506 			goto out_unlock;
1507 		fd_install(retval, bprm->executable);
1508 		bprm->executable = NULL;
1509 		bprm->execfd = retval;
1510 	}
1511 	return 0;
1512 
1513 out_unlock:
1514 	mutex_unlock(&me->signal->exec_update_mutex);
1515 out:
1516 	return retval;
1517 }
1518 EXPORT_SYMBOL(begin_new_exec);
1519 
1520 void would_dump(struct linux_binprm *bprm, struct file *file)
1521 {
1522 	struct inode *inode = file_inode(file);
1523 	if (inode_permission(inode, MAY_READ) < 0) {
1524 		struct user_namespace *old, *user_ns;
1525 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1526 
1527 		/* Ensure mm->user_ns contains the executable */
1528 		user_ns = old = bprm->mm->user_ns;
1529 		while ((user_ns != &init_user_ns) &&
1530 		       !privileged_wrt_inode_uidgid(user_ns, inode))
1531 			user_ns = user_ns->parent;
1532 
1533 		if (old != user_ns) {
1534 			bprm->mm->user_ns = get_user_ns(user_ns);
1535 			put_user_ns(old);
1536 		}
1537 	}
1538 }
1539 EXPORT_SYMBOL(would_dump);
1540 
1541 void setup_new_exec(struct linux_binprm * bprm)
1542 {
1543 	/* Setup things that can depend upon the personality */
1544 	struct task_struct *me = current;
1545 
1546 	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1547 
1548 	arch_setup_new_exec();
1549 
1550 	/* Set the new mm task size. We have to do that late because it may
1551 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1552 	 * some architectures like powerpc
1553 	 */
1554 	me->mm->task_size = TASK_SIZE;
1555 	mutex_unlock(&me->signal->exec_update_mutex);
1556 	mutex_unlock(&me->signal->cred_guard_mutex);
1557 }
1558 EXPORT_SYMBOL(setup_new_exec);
1559 
1560 /* Runs immediately before start_thread() takes over. */
1561 void finalize_exec(struct linux_binprm *bprm)
1562 {
1563 	/* Store any stack rlimit changes before starting thread. */
1564 	task_lock(current->group_leader);
1565 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1566 	task_unlock(current->group_leader);
1567 }
1568 EXPORT_SYMBOL(finalize_exec);
1569 
1570 /*
1571  * Prepare credentials and lock ->cred_guard_mutex.
1572  * setup_new_exec() commits the new creds and drops the lock.
1573  * Or, if exec fails before, free_bprm() should release ->cred and
1574  * and unlock.
1575  */
1576 static int prepare_bprm_creds(struct linux_binprm *bprm)
1577 {
1578 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1579 		return -ERESTARTNOINTR;
1580 
1581 	bprm->cred = prepare_exec_creds();
1582 	if (likely(bprm->cred))
1583 		return 0;
1584 
1585 	mutex_unlock(&current->signal->cred_guard_mutex);
1586 	return -ENOMEM;
1587 }
1588 
1589 static void free_bprm(struct linux_binprm *bprm)
1590 {
1591 	if (bprm->mm) {
1592 		acct_arg_size(bprm, 0);
1593 		mmput(bprm->mm);
1594 	}
1595 	free_arg_pages(bprm);
1596 	if (bprm->cred) {
1597 		mutex_unlock(&current->signal->cred_guard_mutex);
1598 		abort_creds(bprm->cred);
1599 	}
1600 	if (bprm->file) {
1601 		allow_write_access(bprm->file);
1602 		fput(bprm->file);
1603 	}
1604 	if (bprm->executable)
1605 		fput(bprm->executable);
1606 	/* If a binfmt changed the interp, free it. */
1607 	if (bprm->interp != bprm->filename)
1608 		kfree(bprm->interp);
1609 	kfree(bprm->fdpath);
1610 	kfree(bprm);
1611 }
1612 
1613 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1614 {
1615 	struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1616 	int retval = -ENOMEM;
1617 	if (!bprm)
1618 		goto out;
1619 
1620 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1621 		bprm->filename = filename->name;
1622 	} else {
1623 		if (filename->name[0] == '\0')
1624 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1625 		else
1626 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1627 						  fd, filename->name);
1628 		if (!bprm->fdpath)
1629 			goto out_free;
1630 
1631 		bprm->filename = bprm->fdpath;
1632 	}
1633 	bprm->interp = bprm->filename;
1634 
1635 	retval = bprm_mm_init(bprm);
1636 	if (retval)
1637 		goto out_free;
1638 	return bprm;
1639 
1640 out_free:
1641 	free_bprm(bprm);
1642 out:
1643 	return ERR_PTR(retval);
1644 }
1645 
1646 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1647 {
1648 	/* If a binfmt changed the interp, free it first. */
1649 	if (bprm->interp != bprm->filename)
1650 		kfree(bprm->interp);
1651 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1652 	if (!bprm->interp)
1653 		return -ENOMEM;
1654 	return 0;
1655 }
1656 EXPORT_SYMBOL(bprm_change_interp);
1657 
1658 /*
1659  * determine how safe it is to execute the proposed program
1660  * - the caller must hold ->cred_guard_mutex to protect against
1661  *   PTRACE_ATTACH or seccomp thread-sync
1662  */
1663 static void check_unsafe_exec(struct linux_binprm *bprm)
1664 {
1665 	struct task_struct *p = current, *t;
1666 	unsigned n_fs;
1667 
1668 	if (p->ptrace)
1669 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1670 
1671 	/*
1672 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1673 	 * mess up.
1674 	 */
1675 	if (task_no_new_privs(current))
1676 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1677 
1678 	t = p;
1679 	n_fs = 1;
1680 	spin_lock(&p->fs->lock);
1681 	rcu_read_lock();
1682 	while_each_thread(p, t) {
1683 		if (t->fs == p->fs)
1684 			n_fs++;
1685 	}
1686 	rcu_read_unlock();
1687 
1688 	if (p->fs->users > n_fs)
1689 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1690 	else
1691 		p->fs->in_exec = 1;
1692 	spin_unlock(&p->fs->lock);
1693 }
1694 
1695 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1696 {
1697 	/* Handle suid and sgid on files */
1698 	struct inode *inode;
1699 	unsigned int mode;
1700 	kuid_t uid;
1701 	kgid_t gid;
1702 
1703 	if (!mnt_may_suid(file->f_path.mnt))
1704 		return;
1705 
1706 	if (task_no_new_privs(current))
1707 		return;
1708 
1709 	inode = file->f_path.dentry->d_inode;
1710 	mode = READ_ONCE(inode->i_mode);
1711 	if (!(mode & (S_ISUID|S_ISGID)))
1712 		return;
1713 
1714 	/* Be careful if suid/sgid is set */
1715 	inode_lock(inode);
1716 
1717 	/* reload atomically mode/uid/gid now that lock held */
1718 	mode = inode->i_mode;
1719 	uid = inode->i_uid;
1720 	gid = inode->i_gid;
1721 	inode_unlock(inode);
1722 
1723 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1724 	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1725 		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1726 		return;
1727 
1728 	if (mode & S_ISUID) {
1729 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1730 		bprm->cred->euid = uid;
1731 	}
1732 
1733 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1734 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1735 		bprm->cred->egid = gid;
1736 	}
1737 }
1738 
1739 /*
1740  * Compute brpm->cred based upon the final binary.
1741  */
1742 static int bprm_creds_from_file(struct linux_binprm *bprm)
1743 {
1744 	/* Compute creds based on which file? */
1745 	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1746 
1747 	bprm_fill_uid(bprm, file);
1748 	return security_bprm_creds_from_file(bprm, file);
1749 }
1750 
1751 /*
1752  * Fill the binprm structure from the inode.
1753  * Read the first BINPRM_BUF_SIZE bytes
1754  *
1755  * This may be called multiple times for binary chains (scripts for example).
1756  */
1757 static int prepare_binprm(struct linux_binprm *bprm)
1758 {
1759 	loff_t pos = 0;
1760 
1761 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1762 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1763 }
1764 
1765 /*
1766  * Arguments are '\0' separated strings found at the location bprm->p
1767  * points to; chop off the first by relocating brpm->p to right after
1768  * the first '\0' encountered.
1769  */
1770 int remove_arg_zero(struct linux_binprm *bprm)
1771 {
1772 	int ret = 0;
1773 	unsigned long offset;
1774 	char *kaddr;
1775 	struct page *page;
1776 
1777 	if (!bprm->argc)
1778 		return 0;
1779 
1780 	do {
1781 		offset = bprm->p & ~PAGE_MASK;
1782 		page = get_arg_page(bprm, bprm->p, 0);
1783 		if (!page) {
1784 			ret = -EFAULT;
1785 			goto out;
1786 		}
1787 		kaddr = kmap_atomic(page);
1788 
1789 		for (; offset < PAGE_SIZE && kaddr[offset];
1790 				offset++, bprm->p++)
1791 			;
1792 
1793 		kunmap_atomic(kaddr);
1794 		put_arg_page(page);
1795 	} while (offset == PAGE_SIZE);
1796 
1797 	bprm->p++;
1798 	bprm->argc--;
1799 	ret = 0;
1800 
1801 out:
1802 	return ret;
1803 }
1804 EXPORT_SYMBOL(remove_arg_zero);
1805 
1806 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1807 /*
1808  * cycle the list of binary formats handler, until one recognizes the image
1809  */
1810 static int search_binary_handler(struct linux_binprm *bprm)
1811 {
1812 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1813 	struct linux_binfmt *fmt;
1814 	int retval;
1815 
1816 	retval = prepare_binprm(bprm);
1817 	if (retval < 0)
1818 		return retval;
1819 
1820 	retval = security_bprm_check(bprm);
1821 	if (retval)
1822 		return retval;
1823 
1824 	retval = -ENOENT;
1825  retry:
1826 	read_lock(&binfmt_lock);
1827 	list_for_each_entry(fmt, &formats, lh) {
1828 		if (!try_module_get(fmt->module))
1829 			continue;
1830 		read_unlock(&binfmt_lock);
1831 
1832 		retval = fmt->load_binary(bprm);
1833 
1834 		read_lock(&binfmt_lock);
1835 		put_binfmt(fmt);
1836 		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1837 			read_unlock(&binfmt_lock);
1838 			return retval;
1839 		}
1840 	}
1841 	read_unlock(&binfmt_lock);
1842 
1843 	if (need_retry) {
1844 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1845 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1846 			return retval;
1847 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1848 			return retval;
1849 		need_retry = false;
1850 		goto retry;
1851 	}
1852 
1853 	return retval;
1854 }
1855 
1856 static int exec_binprm(struct linux_binprm *bprm)
1857 {
1858 	pid_t old_pid, old_vpid;
1859 	int ret, depth;
1860 
1861 	/* Need to fetch pid before load_binary changes it */
1862 	old_pid = current->pid;
1863 	rcu_read_lock();
1864 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1865 	rcu_read_unlock();
1866 
1867 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1868 	for (depth = 0;; depth++) {
1869 		struct file *exec;
1870 		if (depth > 5)
1871 			return -ELOOP;
1872 
1873 		ret = search_binary_handler(bprm);
1874 		if (ret < 0)
1875 			return ret;
1876 		if (!bprm->interpreter)
1877 			break;
1878 
1879 		exec = bprm->file;
1880 		bprm->file = bprm->interpreter;
1881 		bprm->interpreter = NULL;
1882 
1883 		allow_write_access(exec);
1884 		if (unlikely(bprm->have_execfd)) {
1885 			if (bprm->executable) {
1886 				fput(exec);
1887 				return -ENOEXEC;
1888 			}
1889 			bprm->executable = exec;
1890 		} else
1891 			fput(exec);
1892 	}
1893 
1894 	audit_bprm(bprm);
1895 	trace_sched_process_exec(current, old_pid, bprm);
1896 	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1897 	proc_exec_connector(current);
1898 	return 0;
1899 }
1900 
1901 /*
1902  * sys_execve() executes a new program.
1903  */
1904 static int bprm_execve(struct linux_binprm *bprm,
1905 		       int fd, struct filename *filename, int flags)
1906 {
1907 	struct file *file;
1908 	struct files_struct *displaced;
1909 	int retval;
1910 
1911 	retval = unshare_files(&displaced);
1912 	if (retval)
1913 		return retval;
1914 
1915 	retval = prepare_bprm_creds(bprm);
1916 	if (retval)
1917 		goto out_files;
1918 
1919 	check_unsafe_exec(bprm);
1920 	current->in_execve = 1;
1921 
1922 	file = do_open_execat(fd, filename, flags);
1923 	retval = PTR_ERR(file);
1924 	if (IS_ERR(file))
1925 		goto out_unmark;
1926 
1927 	sched_exec();
1928 
1929 	bprm->file = file;
1930 	/*
1931 	 * Record that a name derived from an O_CLOEXEC fd will be
1932 	 * inaccessible after exec. Relies on having exclusive access to
1933 	 * current->files (due to unshare_files above).
1934 	 */
1935 	if (bprm->fdpath &&
1936 	    close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1937 		bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1938 
1939 	/* Set the unchanging part of bprm->cred */
1940 	retval = security_bprm_creds_for_exec(bprm);
1941 	if (retval)
1942 		goto out;
1943 
1944 	retval = exec_binprm(bprm);
1945 	if (retval < 0)
1946 		goto out;
1947 
1948 	/* execve succeeded */
1949 	current->fs->in_exec = 0;
1950 	current->in_execve = 0;
1951 	rseq_execve(current);
1952 	acct_update_integrals(current);
1953 	task_numa_free(current, false);
1954 	if (displaced)
1955 		put_files_struct(displaced);
1956 	return retval;
1957 
1958 out:
1959 	/*
1960 	 * If past the point of no return ensure the the code never
1961 	 * returns to the userspace process.  Use an existing fatal
1962 	 * signal if present otherwise terminate the process with
1963 	 * SIGSEGV.
1964 	 */
1965 	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1966 		force_sigsegv(SIGSEGV);
1967 
1968 out_unmark:
1969 	current->fs->in_exec = 0;
1970 	current->in_execve = 0;
1971 
1972 out_files:
1973 	if (displaced)
1974 		reset_files_struct(displaced);
1975 
1976 	return retval;
1977 }
1978 
1979 static int do_execveat_common(int fd, struct filename *filename,
1980 			      struct user_arg_ptr argv,
1981 			      struct user_arg_ptr envp,
1982 			      int flags)
1983 {
1984 	struct linux_binprm *bprm;
1985 	int retval;
1986 
1987 	if (IS_ERR(filename))
1988 		return PTR_ERR(filename);
1989 
1990 	/*
1991 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1992 	 * set*uid() to execve() because too many poorly written programs
1993 	 * don't check setuid() return code.  Here we additionally recheck
1994 	 * whether NPROC limit is still exceeded.
1995 	 */
1996 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1997 	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1998 		retval = -EAGAIN;
1999 		goto out_ret;
2000 	}
2001 
2002 	/* We're below the limit (still or again), so we don't want to make
2003 	 * further execve() calls fail. */
2004 	current->flags &= ~PF_NPROC_EXCEEDED;
2005 
2006 	bprm = alloc_bprm(fd, filename);
2007 	if (IS_ERR(bprm)) {
2008 		retval = PTR_ERR(bprm);
2009 		goto out_ret;
2010 	}
2011 
2012 	retval = count(argv, MAX_ARG_STRINGS);
2013 	if (retval < 0)
2014 		goto out_free;
2015 	bprm->argc = retval;
2016 
2017 	retval = count(envp, MAX_ARG_STRINGS);
2018 	if (retval < 0)
2019 		goto out_free;
2020 	bprm->envc = retval;
2021 
2022 	retval = bprm_stack_limits(bprm);
2023 	if (retval < 0)
2024 		goto out_free;
2025 
2026 	retval = copy_string_kernel(bprm->filename, bprm);
2027 	if (retval < 0)
2028 		goto out_free;
2029 	bprm->exec = bprm->p;
2030 
2031 	retval = copy_strings(bprm->envc, envp, bprm);
2032 	if (retval < 0)
2033 		goto out_free;
2034 
2035 	retval = copy_strings(bprm->argc, argv, bprm);
2036 	if (retval < 0)
2037 		goto out_free;
2038 
2039 	retval = bprm_execve(bprm, fd, filename, flags);
2040 out_free:
2041 	free_bprm(bprm);
2042 
2043 out_ret:
2044 	putname(filename);
2045 	return retval;
2046 }
2047 
2048 int kernel_execve(const char *kernel_filename,
2049 		  const char *const *argv, const char *const *envp)
2050 {
2051 	struct filename *filename;
2052 	struct linux_binprm *bprm;
2053 	int fd = AT_FDCWD;
2054 	int retval;
2055 
2056 	filename = getname_kernel(kernel_filename);
2057 	if (IS_ERR(filename))
2058 		return PTR_ERR(filename);
2059 
2060 	bprm = alloc_bprm(fd, filename);
2061 	if (IS_ERR(bprm)) {
2062 		retval = PTR_ERR(bprm);
2063 		goto out_ret;
2064 	}
2065 
2066 	retval = count_strings_kernel(argv);
2067 	if (retval < 0)
2068 		goto out_free;
2069 	bprm->argc = retval;
2070 
2071 	retval = count_strings_kernel(envp);
2072 	if (retval < 0)
2073 		goto out_free;
2074 	bprm->envc = retval;
2075 
2076 	retval = bprm_stack_limits(bprm);
2077 	if (retval < 0)
2078 		goto out_free;
2079 
2080 	retval = copy_string_kernel(bprm->filename, bprm);
2081 	if (retval < 0)
2082 		goto out_free;
2083 	bprm->exec = bprm->p;
2084 
2085 	retval = copy_strings_kernel(bprm->envc, envp, bprm);
2086 	if (retval < 0)
2087 		goto out_free;
2088 
2089 	retval = copy_strings_kernel(bprm->argc, argv, bprm);
2090 	if (retval < 0)
2091 		goto out_free;
2092 
2093 	retval = bprm_execve(bprm, fd, filename, 0);
2094 out_free:
2095 	free_bprm(bprm);
2096 out_ret:
2097 	putname(filename);
2098 	return retval;
2099 }
2100 
2101 static int do_execve(struct filename *filename,
2102 	const char __user *const __user *__argv,
2103 	const char __user *const __user *__envp)
2104 {
2105 	struct user_arg_ptr argv = { .ptr.native = __argv };
2106 	struct user_arg_ptr envp = { .ptr.native = __envp };
2107 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2108 }
2109 
2110 static int do_execveat(int fd, struct filename *filename,
2111 		const char __user *const __user *__argv,
2112 		const char __user *const __user *__envp,
2113 		int flags)
2114 {
2115 	struct user_arg_ptr argv = { .ptr.native = __argv };
2116 	struct user_arg_ptr envp = { .ptr.native = __envp };
2117 
2118 	return do_execveat_common(fd, filename, argv, envp, flags);
2119 }
2120 
2121 #ifdef CONFIG_COMPAT
2122 static int compat_do_execve(struct filename *filename,
2123 	const compat_uptr_t __user *__argv,
2124 	const compat_uptr_t __user *__envp)
2125 {
2126 	struct user_arg_ptr argv = {
2127 		.is_compat = true,
2128 		.ptr.compat = __argv,
2129 	};
2130 	struct user_arg_ptr envp = {
2131 		.is_compat = true,
2132 		.ptr.compat = __envp,
2133 	};
2134 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2135 }
2136 
2137 static int compat_do_execveat(int fd, struct filename *filename,
2138 			      const compat_uptr_t __user *__argv,
2139 			      const compat_uptr_t __user *__envp,
2140 			      int flags)
2141 {
2142 	struct user_arg_ptr argv = {
2143 		.is_compat = true,
2144 		.ptr.compat = __argv,
2145 	};
2146 	struct user_arg_ptr envp = {
2147 		.is_compat = true,
2148 		.ptr.compat = __envp,
2149 	};
2150 	return do_execveat_common(fd, filename, argv, envp, flags);
2151 }
2152 #endif
2153 
2154 void set_binfmt(struct linux_binfmt *new)
2155 {
2156 	struct mm_struct *mm = current->mm;
2157 
2158 	if (mm->binfmt)
2159 		module_put(mm->binfmt->module);
2160 
2161 	mm->binfmt = new;
2162 	if (new)
2163 		__module_get(new->module);
2164 }
2165 EXPORT_SYMBOL(set_binfmt);
2166 
2167 /*
2168  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2169  */
2170 void set_dumpable(struct mm_struct *mm, int value)
2171 {
2172 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2173 		return;
2174 
2175 	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2176 }
2177 
2178 SYSCALL_DEFINE3(execve,
2179 		const char __user *, filename,
2180 		const char __user *const __user *, argv,
2181 		const char __user *const __user *, envp)
2182 {
2183 	return do_execve(getname(filename), argv, envp);
2184 }
2185 
2186 SYSCALL_DEFINE5(execveat,
2187 		int, fd, const char __user *, filename,
2188 		const char __user *const __user *, argv,
2189 		const char __user *const __user *, envp,
2190 		int, flags)
2191 {
2192 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2193 
2194 	return do_execveat(fd,
2195 			   getname_flags(filename, lookup_flags, NULL),
2196 			   argv, envp, flags);
2197 }
2198 
2199 #ifdef CONFIG_COMPAT
2200 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2201 	const compat_uptr_t __user *, argv,
2202 	const compat_uptr_t __user *, envp)
2203 {
2204 	return compat_do_execve(getname(filename), argv, envp);
2205 }
2206 
2207 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2208 		       const char __user *, filename,
2209 		       const compat_uptr_t __user *, argv,
2210 		       const compat_uptr_t __user *, envp,
2211 		       int,  flags)
2212 {
2213 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2214 
2215 	return compat_do_execveat(fd,
2216 				  getname_flags(filename, lookup_flags, NULL),
2217 				  argv, envp, flags);
2218 }
2219 #endif
2220