1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/exec.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * #!-checking implemented by tytso. 10 */ 11 /* 12 * Demand-loading implemented 01.12.91 - no need to read anything but 13 * the header into memory. The inode of the executable is put into 14 * "current->executable", and page faults do the actual loading. Clean. 15 * 16 * Once more I can proudly say that linux stood up to being changed: it 17 * was less than 2 hours work to get demand-loading completely implemented. 18 * 19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 20 * current->executable is only used by the procfs. This allows a dispatch 21 * table to check for several different types of binary formats. We keep 22 * trying until we recognize the file or we run out of supported binary 23 * formats. 24 */ 25 26 #include <linux/slab.h> 27 #include <linux/file.h> 28 #include <linux/fdtable.h> 29 #include <linux/mm.h> 30 #include <linux/vmacache.h> 31 #include <linux/stat.h> 32 #include <linux/fcntl.h> 33 #include <linux/swap.h> 34 #include <linux/string.h> 35 #include <linux/init.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/coredump.h> 38 #include <linux/sched/signal.h> 39 #include <linux/sched/numa_balancing.h> 40 #include <linux/sched/task.h> 41 #include <linux/pagemap.h> 42 #include <linux/perf_event.h> 43 #include <linux/highmem.h> 44 #include <linux/spinlock.h> 45 #include <linux/key.h> 46 #include <linux/personality.h> 47 #include <linux/binfmts.h> 48 #include <linux/utsname.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/module.h> 51 #include <linux/namei.h> 52 #include <linux/mount.h> 53 #include <linux/security.h> 54 #include <linux/syscalls.h> 55 #include <linux/tsacct_kern.h> 56 #include <linux/cn_proc.h> 57 #include <linux/audit.h> 58 #include <linux/tracehook.h> 59 #include <linux/kmod.h> 60 #include <linux/fsnotify.h> 61 #include <linux/fs_struct.h> 62 #include <linux/oom.h> 63 #include <linux/compat.h> 64 #include <linux/vmalloc.h> 65 66 #include <linux/uaccess.h> 67 #include <asm/mmu_context.h> 68 #include <asm/tlb.h> 69 70 #include <trace/events/task.h> 71 #include "internal.h" 72 73 #include <trace/events/sched.h> 74 75 static int bprm_creds_from_file(struct linux_binprm *bprm); 76 77 int suid_dumpable = 0; 78 79 static LIST_HEAD(formats); 80 static DEFINE_RWLOCK(binfmt_lock); 81 82 void __register_binfmt(struct linux_binfmt * fmt, int insert) 83 { 84 BUG_ON(!fmt); 85 if (WARN_ON(!fmt->load_binary)) 86 return; 87 write_lock(&binfmt_lock); 88 insert ? list_add(&fmt->lh, &formats) : 89 list_add_tail(&fmt->lh, &formats); 90 write_unlock(&binfmt_lock); 91 } 92 93 EXPORT_SYMBOL(__register_binfmt); 94 95 void unregister_binfmt(struct linux_binfmt * fmt) 96 { 97 write_lock(&binfmt_lock); 98 list_del(&fmt->lh); 99 write_unlock(&binfmt_lock); 100 } 101 102 EXPORT_SYMBOL(unregister_binfmt); 103 104 static inline void put_binfmt(struct linux_binfmt * fmt) 105 { 106 module_put(fmt->module); 107 } 108 109 bool path_noexec(const struct path *path) 110 { 111 return (path->mnt->mnt_flags & MNT_NOEXEC) || 112 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 113 } 114 115 #ifdef CONFIG_USELIB 116 /* 117 * Note that a shared library must be both readable and executable due to 118 * security reasons. 119 * 120 * Also note that we take the address to load from from the file itself. 121 */ 122 SYSCALL_DEFINE1(uselib, const char __user *, library) 123 { 124 struct linux_binfmt *fmt; 125 struct file *file; 126 struct filename *tmp = getname(library); 127 int error = PTR_ERR(tmp); 128 static const struct open_flags uselib_flags = { 129 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 130 .acc_mode = MAY_READ | MAY_EXEC, 131 .intent = LOOKUP_OPEN, 132 .lookup_flags = LOOKUP_FOLLOW, 133 }; 134 135 if (IS_ERR(tmp)) 136 goto out; 137 138 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 139 putname(tmp); 140 error = PTR_ERR(file); 141 if (IS_ERR(file)) 142 goto out; 143 144 /* 145 * may_open() has already checked for this, so it should be 146 * impossible to trip now. But we need to be extra cautious 147 * and check again at the very end too. 148 */ 149 error = -EACCES; 150 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 151 path_noexec(&file->f_path))) 152 goto exit; 153 154 fsnotify_open(file); 155 156 error = -ENOEXEC; 157 158 read_lock(&binfmt_lock); 159 list_for_each_entry(fmt, &formats, lh) { 160 if (!fmt->load_shlib) 161 continue; 162 if (!try_module_get(fmt->module)) 163 continue; 164 read_unlock(&binfmt_lock); 165 error = fmt->load_shlib(file); 166 read_lock(&binfmt_lock); 167 put_binfmt(fmt); 168 if (error != -ENOEXEC) 169 break; 170 } 171 read_unlock(&binfmt_lock); 172 exit: 173 fput(file); 174 out: 175 return error; 176 } 177 #endif /* #ifdef CONFIG_USELIB */ 178 179 #ifdef CONFIG_MMU 180 /* 181 * The nascent bprm->mm is not visible until exec_mmap() but it can 182 * use a lot of memory, account these pages in current->mm temporary 183 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 184 * change the counter back via acct_arg_size(0). 185 */ 186 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 187 { 188 struct mm_struct *mm = current->mm; 189 long diff = (long)(pages - bprm->vma_pages); 190 191 if (!mm || !diff) 192 return; 193 194 bprm->vma_pages = pages; 195 add_mm_counter(mm, MM_ANONPAGES, diff); 196 } 197 198 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 199 int write) 200 { 201 struct page *page; 202 int ret; 203 unsigned int gup_flags = FOLL_FORCE; 204 205 #ifdef CONFIG_STACK_GROWSUP 206 if (write) { 207 ret = expand_downwards(bprm->vma, pos); 208 if (ret < 0) 209 return NULL; 210 } 211 #endif 212 213 if (write) 214 gup_flags |= FOLL_WRITE; 215 216 /* 217 * We are doing an exec(). 'current' is the process 218 * doing the exec and bprm->mm is the new process's mm. 219 */ 220 ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags, 221 &page, NULL, NULL); 222 if (ret <= 0) 223 return NULL; 224 225 if (write) 226 acct_arg_size(bprm, vma_pages(bprm->vma)); 227 228 return page; 229 } 230 231 static void put_arg_page(struct page *page) 232 { 233 put_page(page); 234 } 235 236 static void free_arg_pages(struct linux_binprm *bprm) 237 { 238 } 239 240 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 241 struct page *page) 242 { 243 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 244 } 245 246 static int __bprm_mm_init(struct linux_binprm *bprm) 247 { 248 int err; 249 struct vm_area_struct *vma = NULL; 250 struct mm_struct *mm = bprm->mm; 251 252 bprm->vma = vma = vm_area_alloc(mm); 253 if (!vma) 254 return -ENOMEM; 255 vma_set_anonymous(vma); 256 257 if (mmap_write_lock_killable(mm)) { 258 err = -EINTR; 259 goto err_free; 260 } 261 262 /* 263 * Place the stack at the largest stack address the architecture 264 * supports. Later, we'll move this to an appropriate place. We don't 265 * use STACK_TOP because that can depend on attributes which aren't 266 * configured yet. 267 */ 268 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 269 vma->vm_end = STACK_TOP_MAX; 270 vma->vm_start = vma->vm_end - PAGE_SIZE; 271 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 272 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 273 274 err = insert_vm_struct(mm, vma); 275 if (err) 276 goto err; 277 278 mm->stack_vm = mm->total_vm = 1; 279 mmap_write_unlock(mm); 280 bprm->p = vma->vm_end - sizeof(void *); 281 return 0; 282 err: 283 mmap_write_unlock(mm); 284 err_free: 285 bprm->vma = NULL; 286 vm_area_free(vma); 287 return err; 288 } 289 290 static bool valid_arg_len(struct linux_binprm *bprm, long len) 291 { 292 return len <= MAX_ARG_STRLEN; 293 } 294 295 #else 296 297 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 298 { 299 } 300 301 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 302 int write) 303 { 304 struct page *page; 305 306 page = bprm->page[pos / PAGE_SIZE]; 307 if (!page && write) { 308 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 309 if (!page) 310 return NULL; 311 bprm->page[pos / PAGE_SIZE] = page; 312 } 313 314 return page; 315 } 316 317 static void put_arg_page(struct page *page) 318 { 319 } 320 321 static void free_arg_page(struct linux_binprm *bprm, int i) 322 { 323 if (bprm->page[i]) { 324 __free_page(bprm->page[i]); 325 bprm->page[i] = NULL; 326 } 327 } 328 329 static void free_arg_pages(struct linux_binprm *bprm) 330 { 331 int i; 332 333 for (i = 0; i < MAX_ARG_PAGES; i++) 334 free_arg_page(bprm, i); 335 } 336 337 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 338 struct page *page) 339 { 340 } 341 342 static int __bprm_mm_init(struct linux_binprm *bprm) 343 { 344 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 345 return 0; 346 } 347 348 static bool valid_arg_len(struct linux_binprm *bprm, long len) 349 { 350 return len <= bprm->p; 351 } 352 353 #endif /* CONFIG_MMU */ 354 355 /* 356 * Create a new mm_struct and populate it with a temporary stack 357 * vm_area_struct. We don't have enough context at this point to set the stack 358 * flags, permissions, and offset, so we use temporary values. We'll update 359 * them later in setup_arg_pages(). 360 */ 361 static int bprm_mm_init(struct linux_binprm *bprm) 362 { 363 int err; 364 struct mm_struct *mm = NULL; 365 366 bprm->mm = mm = mm_alloc(); 367 err = -ENOMEM; 368 if (!mm) 369 goto err; 370 371 /* Save current stack limit for all calculations made during exec. */ 372 task_lock(current->group_leader); 373 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 374 task_unlock(current->group_leader); 375 376 err = __bprm_mm_init(bprm); 377 if (err) 378 goto err; 379 380 return 0; 381 382 err: 383 if (mm) { 384 bprm->mm = NULL; 385 mmdrop(mm); 386 } 387 388 return err; 389 } 390 391 struct user_arg_ptr { 392 #ifdef CONFIG_COMPAT 393 bool is_compat; 394 #endif 395 union { 396 const char __user *const __user *native; 397 #ifdef CONFIG_COMPAT 398 const compat_uptr_t __user *compat; 399 #endif 400 } ptr; 401 }; 402 403 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 404 { 405 const char __user *native; 406 407 #ifdef CONFIG_COMPAT 408 if (unlikely(argv.is_compat)) { 409 compat_uptr_t compat; 410 411 if (get_user(compat, argv.ptr.compat + nr)) 412 return ERR_PTR(-EFAULT); 413 414 return compat_ptr(compat); 415 } 416 #endif 417 418 if (get_user(native, argv.ptr.native + nr)) 419 return ERR_PTR(-EFAULT); 420 421 return native; 422 } 423 424 /* 425 * count() counts the number of strings in array ARGV. 426 */ 427 static int count(struct user_arg_ptr argv, int max) 428 { 429 int i = 0; 430 431 if (argv.ptr.native != NULL) { 432 for (;;) { 433 const char __user *p = get_user_arg_ptr(argv, i); 434 435 if (!p) 436 break; 437 438 if (IS_ERR(p)) 439 return -EFAULT; 440 441 if (i >= max) 442 return -E2BIG; 443 ++i; 444 445 if (fatal_signal_pending(current)) 446 return -ERESTARTNOHAND; 447 cond_resched(); 448 } 449 } 450 return i; 451 } 452 453 static int count_strings_kernel(const char *const *argv) 454 { 455 int i; 456 457 if (!argv) 458 return 0; 459 460 for (i = 0; argv[i]; ++i) { 461 if (i >= MAX_ARG_STRINGS) 462 return -E2BIG; 463 if (fatal_signal_pending(current)) 464 return -ERESTARTNOHAND; 465 cond_resched(); 466 } 467 return i; 468 } 469 470 static int bprm_stack_limits(struct linux_binprm *bprm) 471 { 472 unsigned long limit, ptr_size; 473 474 /* 475 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 476 * (whichever is smaller) for the argv+env strings. 477 * This ensures that: 478 * - the remaining binfmt code will not run out of stack space, 479 * - the program will have a reasonable amount of stack left 480 * to work from. 481 */ 482 limit = _STK_LIM / 4 * 3; 483 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 484 /* 485 * We've historically supported up to 32 pages (ARG_MAX) 486 * of argument strings even with small stacks 487 */ 488 limit = max_t(unsigned long, limit, ARG_MAX); 489 /* 490 * We must account for the size of all the argv and envp pointers to 491 * the argv and envp strings, since they will also take up space in 492 * the stack. They aren't stored until much later when we can't 493 * signal to the parent that the child has run out of stack space. 494 * Instead, calculate it here so it's possible to fail gracefully. 495 */ 496 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *); 497 if (limit <= ptr_size) 498 return -E2BIG; 499 limit -= ptr_size; 500 501 bprm->argmin = bprm->p - limit; 502 return 0; 503 } 504 505 /* 506 * 'copy_strings()' copies argument/environment strings from the old 507 * processes's memory to the new process's stack. The call to get_user_pages() 508 * ensures the destination page is created and not swapped out. 509 */ 510 static int copy_strings(int argc, struct user_arg_ptr argv, 511 struct linux_binprm *bprm) 512 { 513 struct page *kmapped_page = NULL; 514 char *kaddr = NULL; 515 unsigned long kpos = 0; 516 int ret; 517 518 while (argc-- > 0) { 519 const char __user *str; 520 int len; 521 unsigned long pos; 522 523 ret = -EFAULT; 524 str = get_user_arg_ptr(argv, argc); 525 if (IS_ERR(str)) 526 goto out; 527 528 len = strnlen_user(str, MAX_ARG_STRLEN); 529 if (!len) 530 goto out; 531 532 ret = -E2BIG; 533 if (!valid_arg_len(bprm, len)) 534 goto out; 535 536 /* We're going to work our way backwords. */ 537 pos = bprm->p; 538 str += len; 539 bprm->p -= len; 540 #ifdef CONFIG_MMU 541 if (bprm->p < bprm->argmin) 542 goto out; 543 #endif 544 545 while (len > 0) { 546 int offset, bytes_to_copy; 547 548 if (fatal_signal_pending(current)) { 549 ret = -ERESTARTNOHAND; 550 goto out; 551 } 552 cond_resched(); 553 554 offset = pos % PAGE_SIZE; 555 if (offset == 0) 556 offset = PAGE_SIZE; 557 558 bytes_to_copy = offset; 559 if (bytes_to_copy > len) 560 bytes_to_copy = len; 561 562 offset -= bytes_to_copy; 563 pos -= bytes_to_copy; 564 str -= bytes_to_copy; 565 len -= bytes_to_copy; 566 567 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 568 struct page *page; 569 570 page = get_arg_page(bprm, pos, 1); 571 if (!page) { 572 ret = -E2BIG; 573 goto out; 574 } 575 576 if (kmapped_page) { 577 flush_kernel_dcache_page(kmapped_page); 578 kunmap(kmapped_page); 579 put_arg_page(kmapped_page); 580 } 581 kmapped_page = page; 582 kaddr = kmap(kmapped_page); 583 kpos = pos & PAGE_MASK; 584 flush_arg_page(bprm, kpos, kmapped_page); 585 } 586 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 587 ret = -EFAULT; 588 goto out; 589 } 590 } 591 } 592 ret = 0; 593 out: 594 if (kmapped_page) { 595 flush_kernel_dcache_page(kmapped_page); 596 kunmap(kmapped_page); 597 put_arg_page(kmapped_page); 598 } 599 return ret; 600 } 601 602 /* 603 * Copy and argument/environment string from the kernel to the processes stack. 604 */ 605 int copy_string_kernel(const char *arg, struct linux_binprm *bprm) 606 { 607 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */; 608 unsigned long pos = bprm->p; 609 610 if (len == 0) 611 return -EFAULT; 612 if (!valid_arg_len(bprm, len)) 613 return -E2BIG; 614 615 /* We're going to work our way backwards. */ 616 arg += len; 617 bprm->p -= len; 618 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin) 619 return -E2BIG; 620 621 while (len > 0) { 622 unsigned int bytes_to_copy = min_t(unsigned int, len, 623 min_not_zero(offset_in_page(pos), PAGE_SIZE)); 624 struct page *page; 625 char *kaddr; 626 627 pos -= bytes_to_copy; 628 arg -= bytes_to_copy; 629 len -= bytes_to_copy; 630 631 page = get_arg_page(bprm, pos, 1); 632 if (!page) 633 return -E2BIG; 634 kaddr = kmap_atomic(page); 635 flush_arg_page(bprm, pos & PAGE_MASK, page); 636 memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy); 637 flush_kernel_dcache_page(page); 638 kunmap_atomic(kaddr); 639 put_arg_page(page); 640 } 641 642 return 0; 643 } 644 EXPORT_SYMBOL(copy_string_kernel); 645 646 static int copy_strings_kernel(int argc, const char *const *argv, 647 struct linux_binprm *bprm) 648 { 649 while (argc-- > 0) { 650 int ret = copy_string_kernel(argv[argc], bprm); 651 if (ret < 0) 652 return ret; 653 if (fatal_signal_pending(current)) 654 return -ERESTARTNOHAND; 655 cond_resched(); 656 } 657 return 0; 658 } 659 660 #ifdef CONFIG_MMU 661 662 /* 663 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 664 * the binfmt code determines where the new stack should reside, we shift it to 665 * its final location. The process proceeds as follows: 666 * 667 * 1) Use shift to calculate the new vma endpoints. 668 * 2) Extend vma to cover both the old and new ranges. This ensures the 669 * arguments passed to subsequent functions are consistent. 670 * 3) Move vma's page tables to the new range. 671 * 4) Free up any cleared pgd range. 672 * 5) Shrink the vma to cover only the new range. 673 */ 674 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 675 { 676 struct mm_struct *mm = vma->vm_mm; 677 unsigned long old_start = vma->vm_start; 678 unsigned long old_end = vma->vm_end; 679 unsigned long length = old_end - old_start; 680 unsigned long new_start = old_start - shift; 681 unsigned long new_end = old_end - shift; 682 struct mmu_gather tlb; 683 684 BUG_ON(new_start > new_end); 685 686 /* 687 * ensure there are no vmas between where we want to go 688 * and where we are 689 */ 690 if (vma != find_vma(mm, new_start)) 691 return -EFAULT; 692 693 /* 694 * cover the whole range: [new_start, old_end) 695 */ 696 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 697 return -ENOMEM; 698 699 /* 700 * move the page tables downwards, on failure we rely on 701 * process cleanup to remove whatever mess we made. 702 */ 703 if (length != move_page_tables(vma, old_start, 704 vma, new_start, length, false)) 705 return -ENOMEM; 706 707 lru_add_drain(); 708 tlb_gather_mmu(&tlb, mm, old_start, old_end); 709 if (new_end > old_start) { 710 /* 711 * when the old and new regions overlap clear from new_end. 712 */ 713 free_pgd_range(&tlb, new_end, old_end, new_end, 714 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 715 } else { 716 /* 717 * otherwise, clean from old_start; this is done to not touch 718 * the address space in [new_end, old_start) some architectures 719 * have constraints on va-space that make this illegal (IA64) - 720 * for the others its just a little faster. 721 */ 722 free_pgd_range(&tlb, old_start, old_end, new_end, 723 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 724 } 725 tlb_finish_mmu(&tlb, old_start, old_end); 726 727 /* 728 * Shrink the vma to just the new range. Always succeeds. 729 */ 730 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 731 732 return 0; 733 } 734 735 /* 736 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 737 * the stack is optionally relocated, and some extra space is added. 738 */ 739 int setup_arg_pages(struct linux_binprm *bprm, 740 unsigned long stack_top, 741 int executable_stack) 742 { 743 unsigned long ret; 744 unsigned long stack_shift; 745 struct mm_struct *mm = current->mm; 746 struct vm_area_struct *vma = bprm->vma; 747 struct vm_area_struct *prev = NULL; 748 unsigned long vm_flags; 749 unsigned long stack_base; 750 unsigned long stack_size; 751 unsigned long stack_expand; 752 unsigned long rlim_stack; 753 754 #ifdef CONFIG_STACK_GROWSUP 755 /* Limit stack size */ 756 stack_base = bprm->rlim_stack.rlim_max; 757 if (stack_base > STACK_SIZE_MAX) 758 stack_base = STACK_SIZE_MAX; 759 760 /* Add space for stack randomization. */ 761 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 762 763 /* Make sure we didn't let the argument array grow too large. */ 764 if (vma->vm_end - vma->vm_start > stack_base) 765 return -ENOMEM; 766 767 stack_base = PAGE_ALIGN(stack_top - stack_base); 768 769 stack_shift = vma->vm_start - stack_base; 770 mm->arg_start = bprm->p - stack_shift; 771 bprm->p = vma->vm_end - stack_shift; 772 #else 773 stack_top = arch_align_stack(stack_top); 774 stack_top = PAGE_ALIGN(stack_top); 775 776 if (unlikely(stack_top < mmap_min_addr) || 777 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 778 return -ENOMEM; 779 780 stack_shift = vma->vm_end - stack_top; 781 782 bprm->p -= stack_shift; 783 mm->arg_start = bprm->p; 784 #endif 785 786 if (bprm->loader) 787 bprm->loader -= stack_shift; 788 bprm->exec -= stack_shift; 789 790 if (mmap_write_lock_killable(mm)) 791 return -EINTR; 792 793 vm_flags = VM_STACK_FLAGS; 794 795 /* 796 * Adjust stack execute permissions; explicitly enable for 797 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 798 * (arch default) otherwise. 799 */ 800 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 801 vm_flags |= VM_EXEC; 802 else if (executable_stack == EXSTACK_DISABLE_X) 803 vm_flags &= ~VM_EXEC; 804 vm_flags |= mm->def_flags; 805 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 806 807 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 808 vm_flags); 809 if (ret) 810 goto out_unlock; 811 BUG_ON(prev != vma); 812 813 if (unlikely(vm_flags & VM_EXEC)) { 814 pr_warn_once("process '%pD4' started with executable stack\n", 815 bprm->file); 816 } 817 818 /* Move stack pages down in memory. */ 819 if (stack_shift) { 820 ret = shift_arg_pages(vma, stack_shift); 821 if (ret) 822 goto out_unlock; 823 } 824 825 /* mprotect_fixup is overkill to remove the temporary stack flags */ 826 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 827 828 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 829 stack_size = vma->vm_end - vma->vm_start; 830 /* 831 * Align this down to a page boundary as expand_stack 832 * will align it up. 833 */ 834 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 835 #ifdef CONFIG_STACK_GROWSUP 836 if (stack_size + stack_expand > rlim_stack) 837 stack_base = vma->vm_start + rlim_stack; 838 else 839 stack_base = vma->vm_end + stack_expand; 840 #else 841 if (stack_size + stack_expand > rlim_stack) 842 stack_base = vma->vm_end - rlim_stack; 843 else 844 stack_base = vma->vm_start - stack_expand; 845 #endif 846 current->mm->start_stack = bprm->p; 847 ret = expand_stack(vma, stack_base); 848 if (ret) 849 ret = -EFAULT; 850 851 out_unlock: 852 mmap_write_unlock(mm); 853 return ret; 854 } 855 EXPORT_SYMBOL(setup_arg_pages); 856 857 #else 858 859 /* 860 * Transfer the program arguments and environment from the holding pages 861 * onto the stack. The provided stack pointer is adjusted accordingly. 862 */ 863 int transfer_args_to_stack(struct linux_binprm *bprm, 864 unsigned long *sp_location) 865 { 866 unsigned long index, stop, sp; 867 int ret = 0; 868 869 stop = bprm->p >> PAGE_SHIFT; 870 sp = *sp_location; 871 872 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 873 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 874 char *src = kmap(bprm->page[index]) + offset; 875 sp -= PAGE_SIZE - offset; 876 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 877 ret = -EFAULT; 878 kunmap(bprm->page[index]); 879 if (ret) 880 goto out; 881 } 882 883 *sp_location = sp; 884 885 out: 886 return ret; 887 } 888 EXPORT_SYMBOL(transfer_args_to_stack); 889 890 #endif /* CONFIG_MMU */ 891 892 static struct file *do_open_execat(int fd, struct filename *name, int flags) 893 { 894 struct file *file; 895 int err; 896 struct open_flags open_exec_flags = { 897 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 898 .acc_mode = MAY_EXEC, 899 .intent = LOOKUP_OPEN, 900 .lookup_flags = LOOKUP_FOLLOW, 901 }; 902 903 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 904 return ERR_PTR(-EINVAL); 905 if (flags & AT_SYMLINK_NOFOLLOW) 906 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 907 if (flags & AT_EMPTY_PATH) 908 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 909 910 file = do_filp_open(fd, name, &open_exec_flags); 911 if (IS_ERR(file)) 912 goto out; 913 914 /* 915 * may_open() has already checked for this, so it should be 916 * impossible to trip now. But we need to be extra cautious 917 * and check again at the very end too. 918 */ 919 err = -EACCES; 920 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 921 path_noexec(&file->f_path))) 922 goto exit; 923 924 err = deny_write_access(file); 925 if (err) 926 goto exit; 927 928 if (name->name[0] != '\0') 929 fsnotify_open(file); 930 931 out: 932 return file; 933 934 exit: 935 fput(file); 936 return ERR_PTR(err); 937 } 938 939 struct file *open_exec(const char *name) 940 { 941 struct filename *filename = getname_kernel(name); 942 struct file *f = ERR_CAST(filename); 943 944 if (!IS_ERR(filename)) { 945 f = do_open_execat(AT_FDCWD, filename, 0); 946 putname(filename); 947 } 948 return f; 949 } 950 EXPORT_SYMBOL(open_exec); 951 952 int kernel_read_file(struct file *file, void **buf, loff_t *size, 953 loff_t max_size, enum kernel_read_file_id id) 954 { 955 loff_t i_size, pos; 956 ssize_t bytes = 0; 957 int ret; 958 959 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0) 960 return -EINVAL; 961 962 ret = deny_write_access(file); 963 if (ret) 964 return ret; 965 966 ret = security_kernel_read_file(file, id); 967 if (ret) 968 goto out; 969 970 i_size = i_size_read(file_inode(file)); 971 if (i_size <= 0) { 972 ret = -EINVAL; 973 goto out; 974 } 975 if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) { 976 ret = -EFBIG; 977 goto out; 978 } 979 980 if (id != READING_FIRMWARE_PREALLOC_BUFFER) 981 *buf = vmalloc(i_size); 982 if (!*buf) { 983 ret = -ENOMEM; 984 goto out; 985 } 986 987 pos = 0; 988 while (pos < i_size) { 989 bytes = kernel_read(file, *buf + pos, i_size - pos, &pos); 990 if (bytes < 0) { 991 ret = bytes; 992 goto out_free; 993 } 994 995 if (bytes == 0) 996 break; 997 } 998 999 if (pos != i_size) { 1000 ret = -EIO; 1001 goto out_free; 1002 } 1003 1004 ret = security_kernel_post_read_file(file, *buf, i_size, id); 1005 if (!ret) 1006 *size = pos; 1007 1008 out_free: 1009 if (ret < 0) { 1010 if (id != READING_FIRMWARE_PREALLOC_BUFFER) { 1011 vfree(*buf); 1012 *buf = NULL; 1013 } 1014 } 1015 1016 out: 1017 allow_write_access(file); 1018 return ret; 1019 } 1020 EXPORT_SYMBOL_GPL(kernel_read_file); 1021 1022 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size, 1023 loff_t max_size, enum kernel_read_file_id id) 1024 { 1025 struct file *file; 1026 int ret; 1027 1028 if (!path || !*path) 1029 return -EINVAL; 1030 1031 file = filp_open(path, O_RDONLY, 0); 1032 if (IS_ERR(file)) 1033 return PTR_ERR(file); 1034 1035 ret = kernel_read_file(file, buf, size, max_size, id); 1036 fput(file); 1037 return ret; 1038 } 1039 EXPORT_SYMBOL_GPL(kernel_read_file_from_path); 1040 1041 int kernel_read_file_from_path_initns(const char *path, void **buf, 1042 loff_t *size, loff_t max_size, 1043 enum kernel_read_file_id id) 1044 { 1045 struct file *file; 1046 struct path root; 1047 int ret; 1048 1049 if (!path || !*path) 1050 return -EINVAL; 1051 1052 task_lock(&init_task); 1053 get_fs_root(init_task.fs, &root); 1054 task_unlock(&init_task); 1055 1056 file = file_open_root(root.dentry, root.mnt, path, O_RDONLY, 0); 1057 path_put(&root); 1058 if (IS_ERR(file)) 1059 return PTR_ERR(file); 1060 1061 ret = kernel_read_file(file, buf, size, max_size, id); 1062 fput(file); 1063 return ret; 1064 } 1065 EXPORT_SYMBOL_GPL(kernel_read_file_from_path_initns); 1066 1067 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size, 1068 enum kernel_read_file_id id) 1069 { 1070 struct fd f = fdget(fd); 1071 int ret = -EBADF; 1072 1073 if (!f.file) 1074 goto out; 1075 1076 ret = kernel_read_file(f.file, buf, size, max_size, id); 1077 out: 1078 fdput(f); 1079 return ret; 1080 } 1081 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd); 1082 1083 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \ 1084 defined(CONFIG_BINFMT_ELF_FDPIC) 1085 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 1086 { 1087 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 1088 if (res > 0) 1089 flush_icache_user_range(addr, addr + len); 1090 return res; 1091 } 1092 EXPORT_SYMBOL(read_code); 1093 #endif 1094 1095 /* 1096 * Maps the mm_struct mm into the current task struct. 1097 * On success, this function returns with the mutex 1098 * exec_update_mutex locked. 1099 */ 1100 static int exec_mmap(struct mm_struct *mm) 1101 { 1102 struct task_struct *tsk; 1103 struct mm_struct *old_mm, *active_mm; 1104 int ret; 1105 1106 /* Notify parent that we're no longer interested in the old VM */ 1107 tsk = current; 1108 old_mm = current->mm; 1109 exec_mm_release(tsk, old_mm); 1110 if (old_mm) 1111 sync_mm_rss(old_mm); 1112 1113 ret = mutex_lock_killable(&tsk->signal->exec_update_mutex); 1114 if (ret) 1115 return ret; 1116 1117 if (old_mm) { 1118 /* 1119 * Make sure that if there is a core dump in progress 1120 * for the old mm, we get out and die instead of going 1121 * through with the exec. We must hold mmap_lock around 1122 * checking core_state and changing tsk->mm. 1123 */ 1124 mmap_read_lock(old_mm); 1125 if (unlikely(old_mm->core_state)) { 1126 mmap_read_unlock(old_mm); 1127 mutex_unlock(&tsk->signal->exec_update_mutex); 1128 return -EINTR; 1129 } 1130 } 1131 1132 task_lock(tsk); 1133 membarrier_exec_mmap(mm); 1134 1135 local_irq_disable(); 1136 active_mm = tsk->active_mm; 1137 tsk->active_mm = mm; 1138 tsk->mm = mm; 1139 /* 1140 * This prevents preemption while active_mm is being loaded and 1141 * it and mm are being updated, which could cause problems for 1142 * lazy tlb mm refcounting when these are updated by context 1143 * switches. Not all architectures can handle irqs off over 1144 * activate_mm yet. 1145 */ 1146 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1147 local_irq_enable(); 1148 activate_mm(active_mm, mm); 1149 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1150 local_irq_enable(); 1151 tsk->mm->vmacache_seqnum = 0; 1152 vmacache_flush(tsk); 1153 task_unlock(tsk); 1154 if (old_mm) { 1155 mmap_read_unlock(old_mm); 1156 BUG_ON(active_mm != old_mm); 1157 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1158 mm_update_next_owner(old_mm); 1159 mmput(old_mm); 1160 return 0; 1161 } 1162 mmdrop(active_mm); 1163 return 0; 1164 } 1165 1166 static int de_thread(struct task_struct *tsk) 1167 { 1168 struct signal_struct *sig = tsk->signal; 1169 struct sighand_struct *oldsighand = tsk->sighand; 1170 spinlock_t *lock = &oldsighand->siglock; 1171 1172 if (thread_group_empty(tsk)) 1173 goto no_thread_group; 1174 1175 /* 1176 * Kill all other threads in the thread group. 1177 */ 1178 spin_lock_irq(lock); 1179 if (signal_group_exit(sig)) { 1180 /* 1181 * Another group action in progress, just 1182 * return so that the signal is processed. 1183 */ 1184 spin_unlock_irq(lock); 1185 return -EAGAIN; 1186 } 1187 1188 sig->group_exit_task = tsk; 1189 sig->notify_count = zap_other_threads(tsk); 1190 if (!thread_group_leader(tsk)) 1191 sig->notify_count--; 1192 1193 while (sig->notify_count) { 1194 __set_current_state(TASK_KILLABLE); 1195 spin_unlock_irq(lock); 1196 schedule(); 1197 if (__fatal_signal_pending(tsk)) 1198 goto killed; 1199 spin_lock_irq(lock); 1200 } 1201 spin_unlock_irq(lock); 1202 1203 /* 1204 * At this point all other threads have exited, all we have to 1205 * do is to wait for the thread group leader to become inactive, 1206 * and to assume its PID: 1207 */ 1208 if (!thread_group_leader(tsk)) { 1209 struct task_struct *leader = tsk->group_leader; 1210 1211 for (;;) { 1212 cgroup_threadgroup_change_begin(tsk); 1213 write_lock_irq(&tasklist_lock); 1214 /* 1215 * Do this under tasklist_lock to ensure that 1216 * exit_notify() can't miss ->group_exit_task 1217 */ 1218 sig->notify_count = -1; 1219 if (likely(leader->exit_state)) 1220 break; 1221 __set_current_state(TASK_KILLABLE); 1222 write_unlock_irq(&tasklist_lock); 1223 cgroup_threadgroup_change_end(tsk); 1224 schedule(); 1225 if (__fatal_signal_pending(tsk)) 1226 goto killed; 1227 } 1228 1229 /* 1230 * The only record we have of the real-time age of a 1231 * process, regardless of execs it's done, is start_time. 1232 * All the past CPU time is accumulated in signal_struct 1233 * from sister threads now dead. But in this non-leader 1234 * exec, nothing survives from the original leader thread, 1235 * whose birth marks the true age of this process now. 1236 * When we take on its identity by switching to its PID, we 1237 * also take its birthdate (always earlier than our own). 1238 */ 1239 tsk->start_time = leader->start_time; 1240 tsk->start_boottime = leader->start_boottime; 1241 1242 BUG_ON(!same_thread_group(leader, tsk)); 1243 /* 1244 * An exec() starts a new thread group with the 1245 * TGID of the previous thread group. Rehash the 1246 * two threads with a switched PID, and release 1247 * the former thread group leader: 1248 */ 1249 1250 /* Become a process group leader with the old leader's pid. 1251 * The old leader becomes a thread of the this thread group. 1252 */ 1253 exchange_tids(tsk, leader); 1254 transfer_pid(leader, tsk, PIDTYPE_TGID); 1255 transfer_pid(leader, tsk, PIDTYPE_PGID); 1256 transfer_pid(leader, tsk, PIDTYPE_SID); 1257 1258 list_replace_rcu(&leader->tasks, &tsk->tasks); 1259 list_replace_init(&leader->sibling, &tsk->sibling); 1260 1261 tsk->group_leader = tsk; 1262 leader->group_leader = tsk; 1263 1264 tsk->exit_signal = SIGCHLD; 1265 leader->exit_signal = -1; 1266 1267 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1268 leader->exit_state = EXIT_DEAD; 1269 1270 /* 1271 * We are going to release_task()->ptrace_unlink() silently, 1272 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1273 * the tracer wont't block again waiting for this thread. 1274 */ 1275 if (unlikely(leader->ptrace)) 1276 __wake_up_parent(leader, leader->parent); 1277 write_unlock_irq(&tasklist_lock); 1278 cgroup_threadgroup_change_end(tsk); 1279 1280 release_task(leader); 1281 } 1282 1283 sig->group_exit_task = NULL; 1284 sig->notify_count = 0; 1285 1286 no_thread_group: 1287 /* we have changed execution domain */ 1288 tsk->exit_signal = SIGCHLD; 1289 1290 BUG_ON(!thread_group_leader(tsk)); 1291 return 0; 1292 1293 killed: 1294 /* protects against exit_notify() and __exit_signal() */ 1295 read_lock(&tasklist_lock); 1296 sig->group_exit_task = NULL; 1297 sig->notify_count = 0; 1298 read_unlock(&tasklist_lock); 1299 return -EAGAIN; 1300 } 1301 1302 1303 /* 1304 * This function makes sure the current process has its own signal table, 1305 * so that flush_signal_handlers can later reset the handlers without 1306 * disturbing other processes. (Other processes might share the signal 1307 * table via the CLONE_SIGHAND option to clone().) 1308 */ 1309 static int unshare_sighand(struct task_struct *me) 1310 { 1311 struct sighand_struct *oldsighand = me->sighand; 1312 1313 if (refcount_read(&oldsighand->count) != 1) { 1314 struct sighand_struct *newsighand; 1315 /* 1316 * This ->sighand is shared with the CLONE_SIGHAND 1317 * but not CLONE_THREAD task, switch to the new one. 1318 */ 1319 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1320 if (!newsighand) 1321 return -ENOMEM; 1322 1323 refcount_set(&newsighand->count, 1); 1324 memcpy(newsighand->action, oldsighand->action, 1325 sizeof(newsighand->action)); 1326 1327 write_lock_irq(&tasklist_lock); 1328 spin_lock(&oldsighand->siglock); 1329 rcu_assign_pointer(me->sighand, newsighand); 1330 spin_unlock(&oldsighand->siglock); 1331 write_unlock_irq(&tasklist_lock); 1332 1333 __cleanup_sighand(oldsighand); 1334 } 1335 return 0; 1336 } 1337 1338 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk) 1339 { 1340 task_lock(tsk); 1341 strncpy(buf, tsk->comm, buf_size); 1342 task_unlock(tsk); 1343 return buf; 1344 } 1345 EXPORT_SYMBOL_GPL(__get_task_comm); 1346 1347 /* 1348 * These functions flushes out all traces of the currently running executable 1349 * so that a new one can be started 1350 */ 1351 1352 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1353 { 1354 task_lock(tsk); 1355 trace_task_rename(tsk, buf); 1356 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1357 task_unlock(tsk); 1358 perf_event_comm(tsk, exec); 1359 } 1360 1361 /* 1362 * Calling this is the point of no return. None of the failures will be 1363 * seen by userspace since either the process is already taking a fatal 1364 * signal (via de_thread() or coredump), or will have SEGV raised 1365 * (after exec_mmap()) by search_binary_handler (see below). 1366 */ 1367 int begin_new_exec(struct linux_binprm * bprm) 1368 { 1369 struct task_struct *me = current; 1370 int retval; 1371 1372 /* Once we are committed compute the creds */ 1373 retval = bprm_creds_from_file(bprm); 1374 if (retval) 1375 return retval; 1376 1377 /* 1378 * Ensure all future errors are fatal. 1379 */ 1380 bprm->point_of_no_return = true; 1381 1382 /* 1383 * Make this the only thread in the thread group. 1384 */ 1385 retval = de_thread(me); 1386 if (retval) 1387 goto out; 1388 1389 /* 1390 * Must be called _before_ exec_mmap() as bprm->mm is 1391 * not visibile until then. This also enables the update 1392 * to be lockless. 1393 */ 1394 set_mm_exe_file(bprm->mm, bprm->file); 1395 1396 /* If the binary is not readable then enforce mm->dumpable=0 */ 1397 would_dump(bprm, bprm->file); 1398 if (bprm->have_execfd) 1399 would_dump(bprm, bprm->executable); 1400 1401 /* 1402 * Release all of the old mmap stuff 1403 */ 1404 acct_arg_size(bprm, 0); 1405 retval = exec_mmap(bprm->mm); 1406 if (retval) 1407 goto out; 1408 1409 bprm->mm = NULL; 1410 1411 #ifdef CONFIG_POSIX_TIMERS 1412 exit_itimers(me->signal); 1413 flush_itimer_signals(); 1414 #endif 1415 1416 /* 1417 * Make the signal table private. 1418 */ 1419 retval = unshare_sighand(me); 1420 if (retval) 1421 goto out_unlock; 1422 1423 /* 1424 * Ensure that the uaccess routines can actually operate on userspace 1425 * pointers: 1426 */ 1427 force_uaccess_begin(); 1428 1429 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | 1430 PF_NOFREEZE | PF_NO_SETAFFINITY); 1431 flush_thread(); 1432 me->personality &= ~bprm->per_clear; 1433 1434 /* 1435 * We have to apply CLOEXEC before we change whether the process is 1436 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1437 * trying to access the should-be-closed file descriptors of a process 1438 * undergoing exec(2). 1439 */ 1440 do_close_on_exec(me->files); 1441 1442 if (bprm->secureexec) { 1443 /* Make sure parent cannot signal privileged process. */ 1444 me->pdeath_signal = 0; 1445 1446 /* 1447 * For secureexec, reset the stack limit to sane default to 1448 * avoid bad behavior from the prior rlimits. This has to 1449 * happen before arch_pick_mmap_layout(), which examines 1450 * RLIMIT_STACK, but after the point of no return to avoid 1451 * needing to clean up the change on failure. 1452 */ 1453 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1454 bprm->rlim_stack.rlim_cur = _STK_LIM; 1455 } 1456 1457 me->sas_ss_sp = me->sas_ss_size = 0; 1458 1459 /* 1460 * Figure out dumpability. Note that this checking only of current 1461 * is wrong, but userspace depends on it. This should be testing 1462 * bprm->secureexec instead. 1463 */ 1464 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1465 !(uid_eq(current_euid(), current_uid()) && 1466 gid_eq(current_egid(), current_gid()))) 1467 set_dumpable(current->mm, suid_dumpable); 1468 else 1469 set_dumpable(current->mm, SUID_DUMP_USER); 1470 1471 perf_event_exec(); 1472 __set_task_comm(me, kbasename(bprm->filename), true); 1473 1474 /* An exec changes our domain. We are no longer part of the thread 1475 group */ 1476 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1); 1477 flush_signal_handlers(me, 0); 1478 1479 /* 1480 * install the new credentials for this executable 1481 */ 1482 security_bprm_committing_creds(bprm); 1483 1484 commit_creds(bprm->cred); 1485 bprm->cred = NULL; 1486 1487 /* 1488 * Disable monitoring for regular users 1489 * when executing setuid binaries. Must 1490 * wait until new credentials are committed 1491 * by commit_creds() above 1492 */ 1493 if (get_dumpable(me->mm) != SUID_DUMP_USER) 1494 perf_event_exit_task(me); 1495 /* 1496 * cred_guard_mutex must be held at least to this point to prevent 1497 * ptrace_attach() from altering our determination of the task's 1498 * credentials; any time after this it may be unlocked. 1499 */ 1500 security_bprm_committed_creds(bprm); 1501 1502 /* Pass the opened binary to the interpreter. */ 1503 if (bprm->have_execfd) { 1504 retval = get_unused_fd_flags(0); 1505 if (retval < 0) 1506 goto out_unlock; 1507 fd_install(retval, bprm->executable); 1508 bprm->executable = NULL; 1509 bprm->execfd = retval; 1510 } 1511 return 0; 1512 1513 out_unlock: 1514 mutex_unlock(&me->signal->exec_update_mutex); 1515 out: 1516 return retval; 1517 } 1518 EXPORT_SYMBOL(begin_new_exec); 1519 1520 void would_dump(struct linux_binprm *bprm, struct file *file) 1521 { 1522 struct inode *inode = file_inode(file); 1523 if (inode_permission(inode, MAY_READ) < 0) { 1524 struct user_namespace *old, *user_ns; 1525 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1526 1527 /* Ensure mm->user_ns contains the executable */ 1528 user_ns = old = bprm->mm->user_ns; 1529 while ((user_ns != &init_user_ns) && 1530 !privileged_wrt_inode_uidgid(user_ns, inode)) 1531 user_ns = user_ns->parent; 1532 1533 if (old != user_ns) { 1534 bprm->mm->user_ns = get_user_ns(user_ns); 1535 put_user_ns(old); 1536 } 1537 } 1538 } 1539 EXPORT_SYMBOL(would_dump); 1540 1541 void setup_new_exec(struct linux_binprm * bprm) 1542 { 1543 /* Setup things that can depend upon the personality */ 1544 struct task_struct *me = current; 1545 1546 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack); 1547 1548 arch_setup_new_exec(); 1549 1550 /* Set the new mm task size. We have to do that late because it may 1551 * depend on TIF_32BIT which is only updated in flush_thread() on 1552 * some architectures like powerpc 1553 */ 1554 me->mm->task_size = TASK_SIZE; 1555 mutex_unlock(&me->signal->exec_update_mutex); 1556 mutex_unlock(&me->signal->cred_guard_mutex); 1557 } 1558 EXPORT_SYMBOL(setup_new_exec); 1559 1560 /* Runs immediately before start_thread() takes over. */ 1561 void finalize_exec(struct linux_binprm *bprm) 1562 { 1563 /* Store any stack rlimit changes before starting thread. */ 1564 task_lock(current->group_leader); 1565 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1566 task_unlock(current->group_leader); 1567 } 1568 EXPORT_SYMBOL(finalize_exec); 1569 1570 /* 1571 * Prepare credentials and lock ->cred_guard_mutex. 1572 * setup_new_exec() commits the new creds and drops the lock. 1573 * Or, if exec fails before, free_bprm() should release ->cred and 1574 * and unlock. 1575 */ 1576 static int prepare_bprm_creds(struct linux_binprm *bprm) 1577 { 1578 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1579 return -ERESTARTNOINTR; 1580 1581 bprm->cred = prepare_exec_creds(); 1582 if (likely(bprm->cred)) 1583 return 0; 1584 1585 mutex_unlock(¤t->signal->cred_guard_mutex); 1586 return -ENOMEM; 1587 } 1588 1589 static void free_bprm(struct linux_binprm *bprm) 1590 { 1591 if (bprm->mm) { 1592 acct_arg_size(bprm, 0); 1593 mmput(bprm->mm); 1594 } 1595 free_arg_pages(bprm); 1596 if (bprm->cred) { 1597 mutex_unlock(¤t->signal->cred_guard_mutex); 1598 abort_creds(bprm->cred); 1599 } 1600 if (bprm->file) { 1601 allow_write_access(bprm->file); 1602 fput(bprm->file); 1603 } 1604 if (bprm->executable) 1605 fput(bprm->executable); 1606 /* If a binfmt changed the interp, free it. */ 1607 if (bprm->interp != bprm->filename) 1608 kfree(bprm->interp); 1609 kfree(bprm->fdpath); 1610 kfree(bprm); 1611 } 1612 1613 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename) 1614 { 1615 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1616 int retval = -ENOMEM; 1617 if (!bprm) 1618 goto out; 1619 1620 if (fd == AT_FDCWD || filename->name[0] == '/') { 1621 bprm->filename = filename->name; 1622 } else { 1623 if (filename->name[0] == '\0') 1624 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1625 else 1626 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1627 fd, filename->name); 1628 if (!bprm->fdpath) 1629 goto out_free; 1630 1631 bprm->filename = bprm->fdpath; 1632 } 1633 bprm->interp = bprm->filename; 1634 1635 retval = bprm_mm_init(bprm); 1636 if (retval) 1637 goto out_free; 1638 return bprm; 1639 1640 out_free: 1641 free_bprm(bprm); 1642 out: 1643 return ERR_PTR(retval); 1644 } 1645 1646 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1647 { 1648 /* If a binfmt changed the interp, free it first. */ 1649 if (bprm->interp != bprm->filename) 1650 kfree(bprm->interp); 1651 bprm->interp = kstrdup(interp, GFP_KERNEL); 1652 if (!bprm->interp) 1653 return -ENOMEM; 1654 return 0; 1655 } 1656 EXPORT_SYMBOL(bprm_change_interp); 1657 1658 /* 1659 * determine how safe it is to execute the proposed program 1660 * - the caller must hold ->cred_guard_mutex to protect against 1661 * PTRACE_ATTACH or seccomp thread-sync 1662 */ 1663 static void check_unsafe_exec(struct linux_binprm *bprm) 1664 { 1665 struct task_struct *p = current, *t; 1666 unsigned n_fs; 1667 1668 if (p->ptrace) 1669 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1670 1671 /* 1672 * This isn't strictly necessary, but it makes it harder for LSMs to 1673 * mess up. 1674 */ 1675 if (task_no_new_privs(current)) 1676 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1677 1678 t = p; 1679 n_fs = 1; 1680 spin_lock(&p->fs->lock); 1681 rcu_read_lock(); 1682 while_each_thread(p, t) { 1683 if (t->fs == p->fs) 1684 n_fs++; 1685 } 1686 rcu_read_unlock(); 1687 1688 if (p->fs->users > n_fs) 1689 bprm->unsafe |= LSM_UNSAFE_SHARE; 1690 else 1691 p->fs->in_exec = 1; 1692 spin_unlock(&p->fs->lock); 1693 } 1694 1695 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file) 1696 { 1697 /* Handle suid and sgid on files */ 1698 struct inode *inode; 1699 unsigned int mode; 1700 kuid_t uid; 1701 kgid_t gid; 1702 1703 if (!mnt_may_suid(file->f_path.mnt)) 1704 return; 1705 1706 if (task_no_new_privs(current)) 1707 return; 1708 1709 inode = file->f_path.dentry->d_inode; 1710 mode = READ_ONCE(inode->i_mode); 1711 if (!(mode & (S_ISUID|S_ISGID))) 1712 return; 1713 1714 /* Be careful if suid/sgid is set */ 1715 inode_lock(inode); 1716 1717 /* reload atomically mode/uid/gid now that lock held */ 1718 mode = inode->i_mode; 1719 uid = inode->i_uid; 1720 gid = inode->i_gid; 1721 inode_unlock(inode); 1722 1723 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1724 if (!kuid_has_mapping(bprm->cred->user_ns, uid) || 1725 !kgid_has_mapping(bprm->cred->user_ns, gid)) 1726 return; 1727 1728 if (mode & S_ISUID) { 1729 bprm->per_clear |= PER_CLEAR_ON_SETID; 1730 bprm->cred->euid = uid; 1731 } 1732 1733 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1734 bprm->per_clear |= PER_CLEAR_ON_SETID; 1735 bprm->cred->egid = gid; 1736 } 1737 } 1738 1739 /* 1740 * Compute brpm->cred based upon the final binary. 1741 */ 1742 static int bprm_creds_from_file(struct linux_binprm *bprm) 1743 { 1744 /* Compute creds based on which file? */ 1745 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file; 1746 1747 bprm_fill_uid(bprm, file); 1748 return security_bprm_creds_from_file(bprm, file); 1749 } 1750 1751 /* 1752 * Fill the binprm structure from the inode. 1753 * Read the first BINPRM_BUF_SIZE bytes 1754 * 1755 * This may be called multiple times for binary chains (scripts for example). 1756 */ 1757 static int prepare_binprm(struct linux_binprm *bprm) 1758 { 1759 loff_t pos = 0; 1760 1761 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1762 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1763 } 1764 1765 /* 1766 * Arguments are '\0' separated strings found at the location bprm->p 1767 * points to; chop off the first by relocating brpm->p to right after 1768 * the first '\0' encountered. 1769 */ 1770 int remove_arg_zero(struct linux_binprm *bprm) 1771 { 1772 int ret = 0; 1773 unsigned long offset; 1774 char *kaddr; 1775 struct page *page; 1776 1777 if (!bprm->argc) 1778 return 0; 1779 1780 do { 1781 offset = bprm->p & ~PAGE_MASK; 1782 page = get_arg_page(bprm, bprm->p, 0); 1783 if (!page) { 1784 ret = -EFAULT; 1785 goto out; 1786 } 1787 kaddr = kmap_atomic(page); 1788 1789 for (; offset < PAGE_SIZE && kaddr[offset]; 1790 offset++, bprm->p++) 1791 ; 1792 1793 kunmap_atomic(kaddr); 1794 put_arg_page(page); 1795 } while (offset == PAGE_SIZE); 1796 1797 bprm->p++; 1798 bprm->argc--; 1799 ret = 0; 1800 1801 out: 1802 return ret; 1803 } 1804 EXPORT_SYMBOL(remove_arg_zero); 1805 1806 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1807 /* 1808 * cycle the list of binary formats handler, until one recognizes the image 1809 */ 1810 static int search_binary_handler(struct linux_binprm *bprm) 1811 { 1812 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1813 struct linux_binfmt *fmt; 1814 int retval; 1815 1816 retval = prepare_binprm(bprm); 1817 if (retval < 0) 1818 return retval; 1819 1820 retval = security_bprm_check(bprm); 1821 if (retval) 1822 return retval; 1823 1824 retval = -ENOENT; 1825 retry: 1826 read_lock(&binfmt_lock); 1827 list_for_each_entry(fmt, &formats, lh) { 1828 if (!try_module_get(fmt->module)) 1829 continue; 1830 read_unlock(&binfmt_lock); 1831 1832 retval = fmt->load_binary(bprm); 1833 1834 read_lock(&binfmt_lock); 1835 put_binfmt(fmt); 1836 if (bprm->point_of_no_return || (retval != -ENOEXEC)) { 1837 read_unlock(&binfmt_lock); 1838 return retval; 1839 } 1840 } 1841 read_unlock(&binfmt_lock); 1842 1843 if (need_retry) { 1844 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1845 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1846 return retval; 1847 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1848 return retval; 1849 need_retry = false; 1850 goto retry; 1851 } 1852 1853 return retval; 1854 } 1855 1856 static int exec_binprm(struct linux_binprm *bprm) 1857 { 1858 pid_t old_pid, old_vpid; 1859 int ret, depth; 1860 1861 /* Need to fetch pid before load_binary changes it */ 1862 old_pid = current->pid; 1863 rcu_read_lock(); 1864 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1865 rcu_read_unlock(); 1866 1867 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1868 for (depth = 0;; depth++) { 1869 struct file *exec; 1870 if (depth > 5) 1871 return -ELOOP; 1872 1873 ret = search_binary_handler(bprm); 1874 if (ret < 0) 1875 return ret; 1876 if (!bprm->interpreter) 1877 break; 1878 1879 exec = bprm->file; 1880 bprm->file = bprm->interpreter; 1881 bprm->interpreter = NULL; 1882 1883 allow_write_access(exec); 1884 if (unlikely(bprm->have_execfd)) { 1885 if (bprm->executable) { 1886 fput(exec); 1887 return -ENOEXEC; 1888 } 1889 bprm->executable = exec; 1890 } else 1891 fput(exec); 1892 } 1893 1894 audit_bprm(bprm); 1895 trace_sched_process_exec(current, old_pid, bprm); 1896 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1897 proc_exec_connector(current); 1898 return 0; 1899 } 1900 1901 /* 1902 * sys_execve() executes a new program. 1903 */ 1904 static int bprm_execve(struct linux_binprm *bprm, 1905 int fd, struct filename *filename, int flags) 1906 { 1907 struct file *file; 1908 struct files_struct *displaced; 1909 int retval; 1910 1911 retval = unshare_files(&displaced); 1912 if (retval) 1913 return retval; 1914 1915 retval = prepare_bprm_creds(bprm); 1916 if (retval) 1917 goto out_files; 1918 1919 check_unsafe_exec(bprm); 1920 current->in_execve = 1; 1921 1922 file = do_open_execat(fd, filename, flags); 1923 retval = PTR_ERR(file); 1924 if (IS_ERR(file)) 1925 goto out_unmark; 1926 1927 sched_exec(); 1928 1929 bprm->file = file; 1930 /* 1931 * Record that a name derived from an O_CLOEXEC fd will be 1932 * inaccessible after exec. Relies on having exclusive access to 1933 * current->files (due to unshare_files above). 1934 */ 1935 if (bprm->fdpath && 1936 close_on_exec(fd, rcu_dereference_raw(current->files->fdt))) 1937 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1938 1939 /* Set the unchanging part of bprm->cred */ 1940 retval = security_bprm_creds_for_exec(bprm); 1941 if (retval) 1942 goto out; 1943 1944 retval = exec_binprm(bprm); 1945 if (retval < 0) 1946 goto out; 1947 1948 /* execve succeeded */ 1949 current->fs->in_exec = 0; 1950 current->in_execve = 0; 1951 rseq_execve(current); 1952 acct_update_integrals(current); 1953 task_numa_free(current, false); 1954 if (displaced) 1955 put_files_struct(displaced); 1956 return retval; 1957 1958 out: 1959 /* 1960 * If past the point of no return ensure the the code never 1961 * returns to the userspace process. Use an existing fatal 1962 * signal if present otherwise terminate the process with 1963 * SIGSEGV. 1964 */ 1965 if (bprm->point_of_no_return && !fatal_signal_pending(current)) 1966 force_sigsegv(SIGSEGV); 1967 1968 out_unmark: 1969 current->fs->in_exec = 0; 1970 current->in_execve = 0; 1971 1972 out_files: 1973 if (displaced) 1974 reset_files_struct(displaced); 1975 1976 return retval; 1977 } 1978 1979 static int do_execveat_common(int fd, struct filename *filename, 1980 struct user_arg_ptr argv, 1981 struct user_arg_ptr envp, 1982 int flags) 1983 { 1984 struct linux_binprm *bprm; 1985 int retval; 1986 1987 if (IS_ERR(filename)) 1988 return PTR_ERR(filename); 1989 1990 /* 1991 * We move the actual failure in case of RLIMIT_NPROC excess from 1992 * set*uid() to execve() because too many poorly written programs 1993 * don't check setuid() return code. Here we additionally recheck 1994 * whether NPROC limit is still exceeded. 1995 */ 1996 if ((current->flags & PF_NPROC_EXCEEDED) && 1997 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) { 1998 retval = -EAGAIN; 1999 goto out_ret; 2000 } 2001 2002 /* We're below the limit (still or again), so we don't want to make 2003 * further execve() calls fail. */ 2004 current->flags &= ~PF_NPROC_EXCEEDED; 2005 2006 bprm = alloc_bprm(fd, filename); 2007 if (IS_ERR(bprm)) { 2008 retval = PTR_ERR(bprm); 2009 goto out_ret; 2010 } 2011 2012 retval = count(argv, MAX_ARG_STRINGS); 2013 if (retval < 0) 2014 goto out_free; 2015 bprm->argc = retval; 2016 2017 retval = count(envp, MAX_ARG_STRINGS); 2018 if (retval < 0) 2019 goto out_free; 2020 bprm->envc = retval; 2021 2022 retval = bprm_stack_limits(bprm); 2023 if (retval < 0) 2024 goto out_free; 2025 2026 retval = copy_string_kernel(bprm->filename, bprm); 2027 if (retval < 0) 2028 goto out_free; 2029 bprm->exec = bprm->p; 2030 2031 retval = copy_strings(bprm->envc, envp, bprm); 2032 if (retval < 0) 2033 goto out_free; 2034 2035 retval = copy_strings(bprm->argc, argv, bprm); 2036 if (retval < 0) 2037 goto out_free; 2038 2039 retval = bprm_execve(bprm, fd, filename, flags); 2040 out_free: 2041 free_bprm(bprm); 2042 2043 out_ret: 2044 putname(filename); 2045 return retval; 2046 } 2047 2048 int kernel_execve(const char *kernel_filename, 2049 const char *const *argv, const char *const *envp) 2050 { 2051 struct filename *filename; 2052 struct linux_binprm *bprm; 2053 int fd = AT_FDCWD; 2054 int retval; 2055 2056 filename = getname_kernel(kernel_filename); 2057 if (IS_ERR(filename)) 2058 return PTR_ERR(filename); 2059 2060 bprm = alloc_bprm(fd, filename); 2061 if (IS_ERR(bprm)) { 2062 retval = PTR_ERR(bprm); 2063 goto out_ret; 2064 } 2065 2066 retval = count_strings_kernel(argv); 2067 if (retval < 0) 2068 goto out_free; 2069 bprm->argc = retval; 2070 2071 retval = count_strings_kernel(envp); 2072 if (retval < 0) 2073 goto out_free; 2074 bprm->envc = retval; 2075 2076 retval = bprm_stack_limits(bprm); 2077 if (retval < 0) 2078 goto out_free; 2079 2080 retval = copy_string_kernel(bprm->filename, bprm); 2081 if (retval < 0) 2082 goto out_free; 2083 bprm->exec = bprm->p; 2084 2085 retval = copy_strings_kernel(bprm->envc, envp, bprm); 2086 if (retval < 0) 2087 goto out_free; 2088 2089 retval = copy_strings_kernel(bprm->argc, argv, bprm); 2090 if (retval < 0) 2091 goto out_free; 2092 2093 retval = bprm_execve(bprm, fd, filename, 0); 2094 out_free: 2095 free_bprm(bprm); 2096 out_ret: 2097 putname(filename); 2098 return retval; 2099 } 2100 2101 static int do_execve(struct filename *filename, 2102 const char __user *const __user *__argv, 2103 const char __user *const __user *__envp) 2104 { 2105 struct user_arg_ptr argv = { .ptr.native = __argv }; 2106 struct user_arg_ptr envp = { .ptr.native = __envp }; 2107 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2108 } 2109 2110 static int do_execveat(int fd, struct filename *filename, 2111 const char __user *const __user *__argv, 2112 const char __user *const __user *__envp, 2113 int flags) 2114 { 2115 struct user_arg_ptr argv = { .ptr.native = __argv }; 2116 struct user_arg_ptr envp = { .ptr.native = __envp }; 2117 2118 return do_execveat_common(fd, filename, argv, envp, flags); 2119 } 2120 2121 #ifdef CONFIG_COMPAT 2122 static int compat_do_execve(struct filename *filename, 2123 const compat_uptr_t __user *__argv, 2124 const compat_uptr_t __user *__envp) 2125 { 2126 struct user_arg_ptr argv = { 2127 .is_compat = true, 2128 .ptr.compat = __argv, 2129 }; 2130 struct user_arg_ptr envp = { 2131 .is_compat = true, 2132 .ptr.compat = __envp, 2133 }; 2134 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2135 } 2136 2137 static int compat_do_execveat(int fd, struct filename *filename, 2138 const compat_uptr_t __user *__argv, 2139 const compat_uptr_t __user *__envp, 2140 int flags) 2141 { 2142 struct user_arg_ptr argv = { 2143 .is_compat = true, 2144 .ptr.compat = __argv, 2145 }; 2146 struct user_arg_ptr envp = { 2147 .is_compat = true, 2148 .ptr.compat = __envp, 2149 }; 2150 return do_execveat_common(fd, filename, argv, envp, flags); 2151 } 2152 #endif 2153 2154 void set_binfmt(struct linux_binfmt *new) 2155 { 2156 struct mm_struct *mm = current->mm; 2157 2158 if (mm->binfmt) 2159 module_put(mm->binfmt->module); 2160 2161 mm->binfmt = new; 2162 if (new) 2163 __module_get(new->module); 2164 } 2165 EXPORT_SYMBOL(set_binfmt); 2166 2167 /* 2168 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 2169 */ 2170 void set_dumpable(struct mm_struct *mm, int value) 2171 { 2172 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 2173 return; 2174 2175 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value); 2176 } 2177 2178 SYSCALL_DEFINE3(execve, 2179 const char __user *, filename, 2180 const char __user *const __user *, argv, 2181 const char __user *const __user *, envp) 2182 { 2183 return do_execve(getname(filename), argv, envp); 2184 } 2185 2186 SYSCALL_DEFINE5(execveat, 2187 int, fd, const char __user *, filename, 2188 const char __user *const __user *, argv, 2189 const char __user *const __user *, envp, 2190 int, flags) 2191 { 2192 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 2193 2194 return do_execveat(fd, 2195 getname_flags(filename, lookup_flags, NULL), 2196 argv, envp, flags); 2197 } 2198 2199 #ifdef CONFIG_COMPAT 2200 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 2201 const compat_uptr_t __user *, argv, 2202 const compat_uptr_t __user *, envp) 2203 { 2204 return compat_do_execve(getname(filename), argv, envp); 2205 } 2206 2207 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 2208 const char __user *, filename, 2209 const compat_uptr_t __user *, argv, 2210 const compat_uptr_t __user *, envp, 2211 int, flags) 2212 { 2213 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 2214 2215 return compat_do_execveat(fd, 2216 getname_flags(filename, lookup_flags, NULL), 2217 argv, envp, flags); 2218 } 2219 #endif 2220