1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/mman.h> 28 #include <linux/a.out.h> 29 #include <linux/stat.h> 30 #include <linux/fcntl.h> 31 #include <linux/smp_lock.h> 32 #include <linux/string.h> 33 #include <linux/init.h> 34 #include <linux/pagemap.h> 35 #include <linux/highmem.h> 36 #include <linux/spinlock.h> 37 #include <linux/key.h> 38 #include <linux/personality.h> 39 #include <linux/binfmts.h> 40 #include <linux/swap.h> 41 #include <linux/utsname.h> 42 #include <linux/pid_namespace.h> 43 #include <linux/module.h> 44 #include <linux/namei.h> 45 #include <linux/proc_fs.h> 46 #include <linux/ptrace.h> 47 #include <linux/mount.h> 48 #include <linux/security.h> 49 #include <linux/syscalls.h> 50 #include <linux/rmap.h> 51 #include <linux/tsacct_kern.h> 52 #include <linux/cn_proc.h> 53 #include <linux/audit.h> 54 55 #include <asm/uaccess.h> 56 #include <asm/mmu_context.h> 57 #include <asm/tlb.h> 58 59 #ifdef CONFIG_KMOD 60 #include <linux/kmod.h> 61 #endif 62 63 int core_uses_pid; 64 char core_pattern[CORENAME_MAX_SIZE] = "core"; 65 int suid_dumpable = 0; 66 67 /* The maximal length of core_pattern is also specified in sysctl.c */ 68 69 static LIST_HEAD(formats); 70 static DEFINE_RWLOCK(binfmt_lock); 71 72 int register_binfmt(struct linux_binfmt * fmt) 73 { 74 if (!fmt) 75 return -EINVAL; 76 write_lock(&binfmt_lock); 77 list_add(&fmt->lh, &formats); 78 write_unlock(&binfmt_lock); 79 return 0; 80 } 81 82 EXPORT_SYMBOL(register_binfmt); 83 84 void unregister_binfmt(struct linux_binfmt * fmt) 85 { 86 write_lock(&binfmt_lock); 87 list_del(&fmt->lh); 88 write_unlock(&binfmt_lock); 89 } 90 91 EXPORT_SYMBOL(unregister_binfmt); 92 93 static inline void put_binfmt(struct linux_binfmt * fmt) 94 { 95 module_put(fmt->module); 96 } 97 98 /* 99 * Note that a shared library must be both readable and executable due to 100 * security reasons. 101 * 102 * Also note that we take the address to load from from the file itself. 103 */ 104 asmlinkage long sys_uselib(const char __user * library) 105 { 106 struct file * file; 107 struct nameidata nd; 108 int error; 109 110 error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC); 111 if (error) 112 goto out; 113 114 error = -EINVAL; 115 if (!S_ISREG(nd.dentry->d_inode->i_mode)) 116 goto exit; 117 118 error = vfs_permission(&nd, MAY_READ | MAY_EXEC); 119 if (error) 120 goto exit; 121 122 file = nameidata_to_filp(&nd, O_RDONLY); 123 error = PTR_ERR(file); 124 if (IS_ERR(file)) 125 goto out; 126 127 error = -ENOEXEC; 128 if(file->f_op) { 129 struct linux_binfmt * fmt; 130 131 read_lock(&binfmt_lock); 132 list_for_each_entry(fmt, &formats, lh) { 133 if (!fmt->load_shlib) 134 continue; 135 if (!try_module_get(fmt->module)) 136 continue; 137 read_unlock(&binfmt_lock); 138 error = fmt->load_shlib(file); 139 read_lock(&binfmt_lock); 140 put_binfmt(fmt); 141 if (error != -ENOEXEC) 142 break; 143 } 144 read_unlock(&binfmt_lock); 145 } 146 fput(file); 147 out: 148 return error; 149 exit: 150 release_open_intent(&nd); 151 path_release(&nd); 152 goto out; 153 } 154 155 #ifdef CONFIG_MMU 156 157 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 158 int write) 159 { 160 struct page *page; 161 int ret; 162 163 #ifdef CONFIG_STACK_GROWSUP 164 if (write) { 165 ret = expand_stack_downwards(bprm->vma, pos); 166 if (ret < 0) 167 return NULL; 168 } 169 #endif 170 ret = get_user_pages(current, bprm->mm, pos, 171 1, write, 1, &page, NULL); 172 if (ret <= 0) 173 return NULL; 174 175 if (write) { 176 struct rlimit *rlim = current->signal->rlim; 177 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 178 179 /* 180 * Limit to 1/4-th the stack size for the argv+env strings. 181 * This ensures that: 182 * - the remaining binfmt code will not run out of stack space, 183 * - the program will have a reasonable amount of stack left 184 * to work from. 185 */ 186 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) { 187 put_page(page); 188 return NULL; 189 } 190 } 191 192 return page; 193 } 194 195 static void put_arg_page(struct page *page) 196 { 197 put_page(page); 198 } 199 200 static void free_arg_page(struct linux_binprm *bprm, int i) 201 { 202 } 203 204 static void free_arg_pages(struct linux_binprm *bprm) 205 { 206 } 207 208 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 209 struct page *page) 210 { 211 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 212 } 213 214 static int __bprm_mm_init(struct linux_binprm *bprm) 215 { 216 int err = -ENOMEM; 217 struct vm_area_struct *vma = NULL; 218 struct mm_struct *mm = bprm->mm; 219 220 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 221 if (!vma) 222 goto err; 223 224 down_write(&mm->mmap_sem); 225 vma->vm_mm = mm; 226 227 /* 228 * Place the stack at the largest stack address the architecture 229 * supports. Later, we'll move this to an appropriate place. We don't 230 * use STACK_TOP because that can depend on attributes which aren't 231 * configured yet. 232 */ 233 vma->vm_end = STACK_TOP_MAX; 234 vma->vm_start = vma->vm_end - PAGE_SIZE; 235 236 vma->vm_flags = VM_STACK_FLAGS; 237 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 238 err = insert_vm_struct(mm, vma); 239 if (err) { 240 up_write(&mm->mmap_sem); 241 goto err; 242 } 243 244 mm->stack_vm = mm->total_vm = 1; 245 up_write(&mm->mmap_sem); 246 247 bprm->p = vma->vm_end - sizeof(void *); 248 249 return 0; 250 251 err: 252 if (vma) { 253 bprm->vma = NULL; 254 kmem_cache_free(vm_area_cachep, vma); 255 } 256 257 return err; 258 } 259 260 static bool valid_arg_len(struct linux_binprm *bprm, long len) 261 { 262 return len <= MAX_ARG_STRLEN; 263 } 264 265 #else 266 267 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 268 int write) 269 { 270 struct page *page; 271 272 page = bprm->page[pos / PAGE_SIZE]; 273 if (!page && write) { 274 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 275 if (!page) 276 return NULL; 277 bprm->page[pos / PAGE_SIZE] = page; 278 } 279 280 return page; 281 } 282 283 static void put_arg_page(struct page *page) 284 { 285 } 286 287 static void free_arg_page(struct linux_binprm *bprm, int i) 288 { 289 if (bprm->page[i]) { 290 __free_page(bprm->page[i]); 291 bprm->page[i] = NULL; 292 } 293 } 294 295 static void free_arg_pages(struct linux_binprm *bprm) 296 { 297 int i; 298 299 for (i = 0; i < MAX_ARG_PAGES; i++) 300 free_arg_page(bprm, i); 301 } 302 303 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 304 struct page *page) 305 { 306 } 307 308 static int __bprm_mm_init(struct linux_binprm *bprm) 309 { 310 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 311 return 0; 312 } 313 314 static bool valid_arg_len(struct linux_binprm *bprm, long len) 315 { 316 return len <= bprm->p; 317 } 318 319 #endif /* CONFIG_MMU */ 320 321 /* 322 * Create a new mm_struct and populate it with a temporary stack 323 * vm_area_struct. We don't have enough context at this point to set the stack 324 * flags, permissions, and offset, so we use temporary values. We'll update 325 * them later in setup_arg_pages(). 326 */ 327 int bprm_mm_init(struct linux_binprm *bprm) 328 { 329 int err; 330 struct mm_struct *mm = NULL; 331 332 bprm->mm = mm = mm_alloc(); 333 err = -ENOMEM; 334 if (!mm) 335 goto err; 336 337 err = init_new_context(current, mm); 338 if (err) 339 goto err; 340 341 err = __bprm_mm_init(bprm); 342 if (err) 343 goto err; 344 345 return 0; 346 347 err: 348 if (mm) { 349 bprm->mm = NULL; 350 mmdrop(mm); 351 } 352 353 return err; 354 } 355 356 /* 357 * count() counts the number of strings in array ARGV. 358 */ 359 static int count(char __user * __user * argv, int max) 360 { 361 int i = 0; 362 363 if (argv != NULL) { 364 for (;;) { 365 char __user * p; 366 367 if (get_user(p, argv)) 368 return -EFAULT; 369 if (!p) 370 break; 371 argv++; 372 if(++i > max) 373 return -E2BIG; 374 cond_resched(); 375 } 376 } 377 return i; 378 } 379 380 /* 381 * 'copy_strings()' copies argument/environment strings from the old 382 * processes's memory to the new process's stack. The call to get_user_pages() 383 * ensures the destination page is created and not swapped out. 384 */ 385 static int copy_strings(int argc, char __user * __user * argv, 386 struct linux_binprm *bprm) 387 { 388 struct page *kmapped_page = NULL; 389 char *kaddr = NULL; 390 unsigned long kpos = 0; 391 int ret; 392 393 while (argc-- > 0) { 394 char __user *str; 395 int len; 396 unsigned long pos; 397 398 if (get_user(str, argv+argc) || 399 !(len = strnlen_user(str, MAX_ARG_STRLEN))) { 400 ret = -EFAULT; 401 goto out; 402 } 403 404 if (!valid_arg_len(bprm, len)) { 405 ret = -E2BIG; 406 goto out; 407 } 408 409 /* We're going to work our way backwords. */ 410 pos = bprm->p; 411 str += len; 412 bprm->p -= len; 413 414 while (len > 0) { 415 int offset, bytes_to_copy; 416 417 offset = pos % PAGE_SIZE; 418 if (offset == 0) 419 offset = PAGE_SIZE; 420 421 bytes_to_copy = offset; 422 if (bytes_to_copy > len) 423 bytes_to_copy = len; 424 425 offset -= bytes_to_copy; 426 pos -= bytes_to_copy; 427 str -= bytes_to_copy; 428 len -= bytes_to_copy; 429 430 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 431 struct page *page; 432 433 page = get_arg_page(bprm, pos, 1); 434 if (!page) { 435 ret = -E2BIG; 436 goto out; 437 } 438 439 if (kmapped_page) { 440 flush_kernel_dcache_page(kmapped_page); 441 kunmap(kmapped_page); 442 put_arg_page(kmapped_page); 443 } 444 kmapped_page = page; 445 kaddr = kmap(kmapped_page); 446 kpos = pos & PAGE_MASK; 447 flush_arg_page(bprm, kpos, kmapped_page); 448 } 449 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 450 ret = -EFAULT; 451 goto out; 452 } 453 } 454 } 455 ret = 0; 456 out: 457 if (kmapped_page) { 458 flush_kernel_dcache_page(kmapped_page); 459 kunmap(kmapped_page); 460 put_arg_page(kmapped_page); 461 } 462 return ret; 463 } 464 465 /* 466 * Like copy_strings, but get argv and its values from kernel memory. 467 */ 468 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm) 469 { 470 int r; 471 mm_segment_t oldfs = get_fs(); 472 set_fs(KERNEL_DS); 473 r = copy_strings(argc, (char __user * __user *)argv, bprm); 474 set_fs(oldfs); 475 return r; 476 } 477 EXPORT_SYMBOL(copy_strings_kernel); 478 479 #ifdef CONFIG_MMU 480 481 /* 482 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 483 * the binfmt code determines where the new stack should reside, we shift it to 484 * its final location. The process proceeds as follows: 485 * 486 * 1) Use shift to calculate the new vma endpoints. 487 * 2) Extend vma to cover both the old and new ranges. This ensures the 488 * arguments passed to subsequent functions are consistent. 489 * 3) Move vma's page tables to the new range. 490 * 4) Free up any cleared pgd range. 491 * 5) Shrink the vma to cover only the new range. 492 */ 493 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 494 { 495 struct mm_struct *mm = vma->vm_mm; 496 unsigned long old_start = vma->vm_start; 497 unsigned long old_end = vma->vm_end; 498 unsigned long length = old_end - old_start; 499 unsigned long new_start = old_start - shift; 500 unsigned long new_end = old_end - shift; 501 struct mmu_gather *tlb; 502 503 BUG_ON(new_start > new_end); 504 505 /* 506 * ensure there are no vmas between where we want to go 507 * and where we are 508 */ 509 if (vma != find_vma(mm, new_start)) 510 return -EFAULT; 511 512 /* 513 * cover the whole range: [new_start, old_end) 514 */ 515 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL); 516 517 /* 518 * move the page tables downwards, on failure we rely on 519 * process cleanup to remove whatever mess we made. 520 */ 521 if (length != move_page_tables(vma, old_start, 522 vma, new_start, length)) 523 return -ENOMEM; 524 525 lru_add_drain(); 526 tlb = tlb_gather_mmu(mm, 0); 527 if (new_end > old_start) { 528 /* 529 * when the old and new regions overlap clear from new_end. 530 */ 531 free_pgd_range(&tlb, new_end, old_end, new_end, 532 vma->vm_next ? vma->vm_next->vm_start : 0); 533 } else { 534 /* 535 * otherwise, clean from old_start; this is done to not touch 536 * the address space in [new_end, old_start) some architectures 537 * have constraints on va-space that make this illegal (IA64) - 538 * for the others its just a little faster. 539 */ 540 free_pgd_range(&tlb, old_start, old_end, new_end, 541 vma->vm_next ? vma->vm_next->vm_start : 0); 542 } 543 tlb_finish_mmu(tlb, new_end, old_end); 544 545 /* 546 * shrink the vma to just the new range. 547 */ 548 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 549 550 return 0; 551 } 552 553 #define EXTRA_STACK_VM_PAGES 20 /* random */ 554 555 /* 556 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 557 * the stack is optionally relocated, and some extra space is added. 558 */ 559 int setup_arg_pages(struct linux_binprm *bprm, 560 unsigned long stack_top, 561 int executable_stack) 562 { 563 unsigned long ret; 564 unsigned long stack_shift; 565 struct mm_struct *mm = current->mm; 566 struct vm_area_struct *vma = bprm->vma; 567 struct vm_area_struct *prev = NULL; 568 unsigned long vm_flags; 569 unsigned long stack_base; 570 571 #ifdef CONFIG_STACK_GROWSUP 572 /* Limit stack size to 1GB */ 573 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max; 574 if (stack_base > (1 << 30)) 575 stack_base = 1 << 30; 576 577 /* Make sure we didn't let the argument array grow too large. */ 578 if (vma->vm_end - vma->vm_start > stack_base) 579 return -ENOMEM; 580 581 stack_base = PAGE_ALIGN(stack_top - stack_base); 582 583 stack_shift = vma->vm_start - stack_base; 584 mm->arg_start = bprm->p - stack_shift; 585 bprm->p = vma->vm_end - stack_shift; 586 #else 587 stack_top = arch_align_stack(stack_top); 588 stack_top = PAGE_ALIGN(stack_top); 589 stack_shift = vma->vm_end - stack_top; 590 591 bprm->p -= stack_shift; 592 mm->arg_start = bprm->p; 593 #endif 594 595 if (bprm->loader) 596 bprm->loader -= stack_shift; 597 bprm->exec -= stack_shift; 598 599 down_write(&mm->mmap_sem); 600 vm_flags = vma->vm_flags; 601 602 /* 603 * Adjust stack execute permissions; explicitly enable for 604 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 605 * (arch default) otherwise. 606 */ 607 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 608 vm_flags |= VM_EXEC; 609 else if (executable_stack == EXSTACK_DISABLE_X) 610 vm_flags &= ~VM_EXEC; 611 vm_flags |= mm->def_flags; 612 613 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 614 vm_flags); 615 if (ret) 616 goto out_unlock; 617 BUG_ON(prev != vma); 618 619 /* Move stack pages down in memory. */ 620 if (stack_shift) { 621 ret = shift_arg_pages(vma, stack_shift); 622 if (ret) { 623 up_write(&mm->mmap_sem); 624 return ret; 625 } 626 } 627 628 #ifdef CONFIG_STACK_GROWSUP 629 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE; 630 #else 631 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE; 632 #endif 633 ret = expand_stack(vma, stack_base); 634 if (ret) 635 ret = -EFAULT; 636 637 out_unlock: 638 up_write(&mm->mmap_sem); 639 return 0; 640 } 641 EXPORT_SYMBOL(setup_arg_pages); 642 643 #endif /* CONFIG_MMU */ 644 645 struct file *open_exec(const char *name) 646 { 647 struct nameidata nd; 648 int err; 649 struct file *file; 650 651 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC); 652 file = ERR_PTR(err); 653 654 if (!err) { 655 struct inode *inode = nd.dentry->d_inode; 656 file = ERR_PTR(-EACCES); 657 if (S_ISREG(inode->i_mode)) { 658 int err = vfs_permission(&nd, MAY_EXEC); 659 file = ERR_PTR(err); 660 if (!err) { 661 file = nameidata_to_filp(&nd, O_RDONLY); 662 if (!IS_ERR(file)) { 663 err = deny_write_access(file); 664 if (err) { 665 fput(file); 666 file = ERR_PTR(err); 667 } 668 } 669 out: 670 return file; 671 } 672 } 673 release_open_intent(&nd); 674 path_release(&nd); 675 } 676 goto out; 677 } 678 679 EXPORT_SYMBOL(open_exec); 680 681 int kernel_read(struct file *file, unsigned long offset, 682 char *addr, unsigned long count) 683 { 684 mm_segment_t old_fs; 685 loff_t pos = offset; 686 int result; 687 688 old_fs = get_fs(); 689 set_fs(get_ds()); 690 /* The cast to a user pointer is valid due to the set_fs() */ 691 result = vfs_read(file, (void __user *)addr, count, &pos); 692 set_fs(old_fs); 693 return result; 694 } 695 696 EXPORT_SYMBOL(kernel_read); 697 698 static int exec_mmap(struct mm_struct *mm) 699 { 700 struct task_struct *tsk; 701 struct mm_struct * old_mm, *active_mm; 702 703 /* Notify parent that we're no longer interested in the old VM */ 704 tsk = current; 705 old_mm = current->mm; 706 mm_release(tsk, old_mm); 707 708 if (old_mm) { 709 /* 710 * Make sure that if there is a core dump in progress 711 * for the old mm, we get out and die instead of going 712 * through with the exec. We must hold mmap_sem around 713 * checking core_waiters and changing tsk->mm. The 714 * core-inducing thread will increment core_waiters for 715 * each thread whose ->mm == old_mm. 716 */ 717 down_read(&old_mm->mmap_sem); 718 if (unlikely(old_mm->core_waiters)) { 719 up_read(&old_mm->mmap_sem); 720 return -EINTR; 721 } 722 } 723 task_lock(tsk); 724 active_mm = tsk->active_mm; 725 tsk->mm = mm; 726 tsk->active_mm = mm; 727 activate_mm(active_mm, mm); 728 task_unlock(tsk); 729 arch_pick_mmap_layout(mm); 730 if (old_mm) { 731 up_read(&old_mm->mmap_sem); 732 BUG_ON(active_mm != old_mm); 733 mmput(old_mm); 734 return 0; 735 } 736 mmdrop(active_mm); 737 return 0; 738 } 739 740 /* 741 * This function makes sure the current process has its own signal table, 742 * so that flush_signal_handlers can later reset the handlers without 743 * disturbing other processes. (Other processes might share the signal 744 * table via the CLONE_SIGHAND option to clone().) 745 */ 746 static int de_thread(struct task_struct *tsk) 747 { 748 struct signal_struct *sig = tsk->signal; 749 struct sighand_struct *oldsighand = tsk->sighand; 750 spinlock_t *lock = &oldsighand->siglock; 751 struct task_struct *leader = NULL; 752 int count; 753 754 if (thread_group_empty(tsk)) 755 goto no_thread_group; 756 757 /* 758 * Kill all other threads in the thread group. 759 * We must hold tasklist_lock to call zap_other_threads. 760 */ 761 read_lock(&tasklist_lock); 762 spin_lock_irq(lock); 763 if (signal_group_exit(sig)) { 764 /* 765 * Another group action in progress, just 766 * return so that the signal is processed. 767 */ 768 spin_unlock_irq(lock); 769 read_unlock(&tasklist_lock); 770 return -EAGAIN; 771 } 772 773 /* 774 * child_reaper ignores SIGKILL, change it now. 775 * Reparenting needs write_lock on tasklist_lock, 776 * so it is safe to do it under read_lock. 777 */ 778 if (unlikely(tsk->group_leader == task_child_reaper(tsk))) 779 task_active_pid_ns(tsk)->child_reaper = tsk; 780 781 sig->group_exit_task = tsk; 782 zap_other_threads(tsk); 783 read_unlock(&tasklist_lock); 784 785 /* 786 * Account for the thread group leader hanging around: 787 */ 788 count = 1; 789 if (!thread_group_leader(tsk)) { 790 count = 2; 791 /* 792 * The SIGALRM timer survives the exec, but needs to point 793 * at us as the new group leader now. We have a race with 794 * a timer firing now getting the old leader, so we need to 795 * synchronize with any firing (by calling del_timer_sync) 796 * before we can safely let the old group leader die. 797 */ 798 sig->tsk = tsk; 799 spin_unlock_irq(lock); 800 if (hrtimer_cancel(&sig->real_timer)) 801 hrtimer_restart(&sig->real_timer); 802 spin_lock_irq(lock); 803 } 804 805 sig->notify_count = count; 806 while (atomic_read(&sig->count) > count) { 807 __set_current_state(TASK_UNINTERRUPTIBLE); 808 spin_unlock_irq(lock); 809 schedule(); 810 spin_lock_irq(lock); 811 } 812 spin_unlock_irq(lock); 813 814 /* 815 * At this point all other threads have exited, all we have to 816 * do is to wait for the thread group leader to become inactive, 817 * and to assume its PID: 818 */ 819 if (!thread_group_leader(tsk)) { 820 leader = tsk->group_leader; 821 822 sig->notify_count = -1; 823 for (;;) { 824 write_lock_irq(&tasklist_lock); 825 if (likely(leader->exit_state)) 826 break; 827 __set_current_state(TASK_UNINTERRUPTIBLE); 828 write_unlock_irq(&tasklist_lock); 829 schedule(); 830 } 831 832 /* 833 * The only record we have of the real-time age of a 834 * process, regardless of execs it's done, is start_time. 835 * All the past CPU time is accumulated in signal_struct 836 * from sister threads now dead. But in this non-leader 837 * exec, nothing survives from the original leader thread, 838 * whose birth marks the true age of this process now. 839 * When we take on its identity by switching to its PID, we 840 * also take its birthdate (always earlier than our own). 841 */ 842 tsk->start_time = leader->start_time; 843 844 BUG_ON(!same_thread_group(leader, tsk)); 845 BUG_ON(has_group_leader_pid(tsk)); 846 /* 847 * An exec() starts a new thread group with the 848 * TGID of the previous thread group. Rehash the 849 * two threads with a switched PID, and release 850 * the former thread group leader: 851 */ 852 853 /* Become a process group leader with the old leader's pid. 854 * The old leader becomes a thread of the this thread group. 855 * Note: The old leader also uses this pid until release_task 856 * is called. Odd but simple and correct. 857 */ 858 detach_pid(tsk, PIDTYPE_PID); 859 tsk->pid = leader->pid; 860 attach_pid(tsk, PIDTYPE_PID, task_pid(leader)); 861 transfer_pid(leader, tsk, PIDTYPE_PGID); 862 transfer_pid(leader, tsk, PIDTYPE_SID); 863 list_replace_rcu(&leader->tasks, &tsk->tasks); 864 865 tsk->group_leader = tsk; 866 leader->group_leader = tsk; 867 868 tsk->exit_signal = SIGCHLD; 869 870 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 871 leader->exit_state = EXIT_DEAD; 872 873 write_unlock_irq(&tasklist_lock); 874 } 875 876 sig->group_exit_task = NULL; 877 sig->notify_count = 0; 878 879 no_thread_group: 880 exit_itimers(sig); 881 if (leader) 882 release_task(leader); 883 884 if (atomic_read(&oldsighand->count) != 1) { 885 struct sighand_struct *newsighand; 886 /* 887 * This ->sighand is shared with the CLONE_SIGHAND 888 * but not CLONE_THREAD task, switch to the new one. 889 */ 890 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 891 if (!newsighand) 892 return -ENOMEM; 893 894 atomic_set(&newsighand->count, 1); 895 memcpy(newsighand->action, oldsighand->action, 896 sizeof(newsighand->action)); 897 898 write_lock_irq(&tasklist_lock); 899 spin_lock(&oldsighand->siglock); 900 rcu_assign_pointer(tsk->sighand, newsighand); 901 spin_unlock(&oldsighand->siglock); 902 write_unlock_irq(&tasklist_lock); 903 904 __cleanup_sighand(oldsighand); 905 } 906 907 BUG_ON(!thread_group_leader(tsk)); 908 return 0; 909 } 910 911 /* 912 * These functions flushes out all traces of the currently running executable 913 * so that a new one can be started 914 */ 915 static void flush_old_files(struct files_struct * files) 916 { 917 long j = -1; 918 struct fdtable *fdt; 919 920 spin_lock(&files->file_lock); 921 for (;;) { 922 unsigned long set, i; 923 924 j++; 925 i = j * __NFDBITS; 926 fdt = files_fdtable(files); 927 if (i >= fdt->max_fds) 928 break; 929 set = fdt->close_on_exec->fds_bits[j]; 930 if (!set) 931 continue; 932 fdt->close_on_exec->fds_bits[j] = 0; 933 spin_unlock(&files->file_lock); 934 for ( ; set ; i++,set >>= 1) { 935 if (set & 1) { 936 sys_close(i); 937 } 938 } 939 spin_lock(&files->file_lock); 940 941 } 942 spin_unlock(&files->file_lock); 943 } 944 945 char *get_task_comm(char *buf, struct task_struct *tsk) 946 { 947 /* buf must be at least sizeof(tsk->comm) in size */ 948 task_lock(tsk); 949 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 950 task_unlock(tsk); 951 return buf; 952 } 953 954 void set_task_comm(struct task_struct *tsk, char *buf) 955 { 956 task_lock(tsk); 957 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 958 task_unlock(tsk); 959 } 960 961 int flush_old_exec(struct linux_binprm * bprm) 962 { 963 char * name; 964 int i, ch, retval; 965 struct files_struct *files; 966 char tcomm[sizeof(current->comm)]; 967 968 /* 969 * Make sure we have a private signal table and that 970 * we are unassociated from the previous thread group. 971 */ 972 retval = de_thread(current); 973 if (retval) 974 goto out; 975 976 /* 977 * Make sure we have private file handles. Ask the 978 * fork helper to do the work for us and the exit 979 * helper to do the cleanup of the old one. 980 */ 981 files = current->files; /* refcounted so safe to hold */ 982 retval = unshare_files(); 983 if (retval) 984 goto out; 985 /* 986 * Release all of the old mmap stuff 987 */ 988 retval = exec_mmap(bprm->mm); 989 if (retval) 990 goto mmap_failed; 991 992 bprm->mm = NULL; /* We're using it now */ 993 994 /* This is the point of no return */ 995 put_files_struct(files); 996 997 current->sas_ss_sp = current->sas_ss_size = 0; 998 999 if (current->euid == current->uid && current->egid == current->gid) 1000 set_dumpable(current->mm, 1); 1001 else 1002 set_dumpable(current->mm, suid_dumpable); 1003 1004 name = bprm->filename; 1005 1006 /* Copies the binary name from after last slash */ 1007 for (i=0; (ch = *(name++)) != '\0';) { 1008 if (ch == '/') 1009 i = 0; /* overwrite what we wrote */ 1010 else 1011 if (i < (sizeof(tcomm) - 1)) 1012 tcomm[i++] = ch; 1013 } 1014 tcomm[i] = '\0'; 1015 set_task_comm(current, tcomm); 1016 1017 current->flags &= ~PF_RANDOMIZE; 1018 flush_thread(); 1019 1020 /* Set the new mm task size. We have to do that late because it may 1021 * depend on TIF_32BIT which is only updated in flush_thread() on 1022 * some architectures like powerpc 1023 */ 1024 current->mm->task_size = TASK_SIZE; 1025 1026 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) { 1027 suid_keys(current); 1028 set_dumpable(current->mm, suid_dumpable); 1029 current->pdeath_signal = 0; 1030 } else if (file_permission(bprm->file, MAY_READ) || 1031 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) { 1032 suid_keys(current); 1033 set_dumpable(current->mm, suid_dumpable); 1034 } 1035 1036 /* An exec changes our domain. We are no longer part of the thread 1037 group */ 1038 1039 current->self_exec_id++; 1040 1041 flush_signal_handlers(current, 0); 1042 flush_old_files(current->files); 1043 1044 return 0; 1045 1046 mmap_failed: 1047 reset_files_struct(current, files); 1048 out: 1049 return retval; 1050 } 1051 1052 EXPORT_SYMBOL(flush_old_exec); 1053 1054 /* 1055 * Fill the binprm structure from the inode. 1056 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1057 */ 1058 int prepare_binprm(struct linux_binprm *bprm) 1059 { 1060 int mode; 1061 struct inode * inode = bprm->file->f_path.dentry->d_inode; 1062 int retval; 1063 1064 mode = inode->i_mode; 1065 if (bprm->file->f_op == NULL) 1066 return -EACCES; 1067 1068 bprm->e_uid = current->euid; 1069 bprm->e_gid = current->egid; 1070 1071 if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) { 1072 /* Set-uid? */ 1073 if (mode & S_ISUID) { 1074 current->personality &= ~PER_CLEAR_ON_SETID; 1075 bprm->e_uid = inode->i_uid; 1076 } 1077 1078 /* Set-gid? */ 1079 /* 1080 * If setgid is set but no group execute bit then this 1081 * is a candidate for mandatory locking, not a setgid 1082 * executable. 1083 */ 1084 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1085 current->personality &= ~PER_CLEAR_ON_SETID; 1086 bprm->e_gid = inode->i_gid; 1087 } 1088 } 1089 1090 /* fill in binprm security blob */ 1091 retval = security_bprm_set(bprm); 1092 if (retval) 1093 return retval; 1094 1095 memset(bprm->buf,0,BINPRM_BUF_SIZE); 1096 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE); 1097 } 1098 1099 EXPORT_SYMBOL(prepare_binprm); 1100 1101 static int unsafe_exec(struct task_struct *p) 1102 { 1103 int unsafe = 0; 1104 if (p->ptrace & PT_PTRACED) { 1105 if (p->ptrace & PT_PTRACE_CAP) 1106 unsafe |= LSM_UNSAFE_PTRACE_CAP; 1107 else 1108 unsafe |= LSM_UNSAFE_PTRACE; 1109 } 1110 if (atomic_read(&p->fs->count) > 1 || 1111 atomic_read(&p->files->count) > 1 || 1112 atomic_read(&p->sighand->count) > 1) 1113 unsafe |= LSM_UNSAFE_SHARE; 1114 1115 return unsafe; 1116 } 1117 1118 void compute_creds(struct linux_binprm *bprm) 1119 { 1120 int unsafe; 1121 1122 if (bprm->e_uid != current->uid) { 1123 suid_keys(current); 1124 current->pdeath_signal = 0; 1125 } 1126 exec_keys(current); 1127 1128 task_lock(current); 1129 unsafe = unsafe_exec(current); 1130 security_bprm_apply_creds(bprm, unsafe); 1131 task_unlock(current); 1132 security_bprm_post_apply_creds(bprm); 1133 } 1134 EXPORT_SYMBOL(compute_creds); 1135 1136 /* 1137 * Arguments are '\0' separated strings found at the location bprm->p 1138 * points to; chop off the first by relocating brpm->p to right after 1139 * the first '\0' encountered. 1140 */ 1141 int remove_arg_zero(struct linux_binprm *bprm) 1142 { 1143 int ret = 0; 1144 unsigned long offset; 1145 char *kaddr; 1146 struct page *page; 1147 1148 if (!bprm->argc) 1149 return 0; 1150 1151 do { 1152 offset = bprm->p & ~PAGE_MASK; 1153 page = get_arg_page(bprm, bprm->p, 0); 1154 if (!page) { 1155 ret = -EFAULT; 1156 goto out; 1157 } 1158 kaddr = kmap_atomic(page, KM_USER0); 1159 1160 for (; offset < PAGE_SIZE && kaddr[offset]; 1161 offset++, bprm->p++) 1162 ; 1163 1164 kunmap_atomic(kaddr, KM_USER0); 1165 put_arg_page(page); 1166 1167 if (offset == PAGE_SIZE) 1168 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); 1169 } while (offset == PAGE_SIZE); 1170 1171 bprm->p++; 1172 bprm->argc--; 1173 ret = 0; 1174 1175 out: 1176 return ret; 1177 } 1178 EXPORT_SYMBOL(remove_arg_zero); 1179 1180 /* 1181 * cycle the list of binary formats handler, until one recognizes the image 1182 */ 1183 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) 1184 { 1185 int try,retval; 1186 struct linux_binfmt *fmt; 1187 #ifdef __alpha__ 1188 /* handle /sbin/loader.. */ 1189 { 1190 struct exec * eh = (struct exec *) bprm->buf; 1191 1192 if (!bprm->loader && eh->fh.f_magic == 0x183 && 1193 (eh->fh.f_flags & 0x3000) == 0x3000) 1194 { 1195 struct file * file; 1196 unsigned long loader; 1197 1198 allow_write_access(bprm->file); 1199 fput(bprm->file); 1200 bprm->file = NULL; 1201 1202 loader = bprm->vma->vm_end - sizeof(void *); 1203 1204 file = open_exec("/sbin/loader"); 1205 retval = PTR_ERR(file); 1206 if (IS_ERR(file)) 1207 return retval; 1208 1209 /* Remember if the application is TASO. */ 1210 bprm->sh_bang = eh->ah.entry < 0x100000000UL; 1211 1212 bprm->file = file; 1213 bprm->loader = loader; 1214 retval = prepare_binprm(bprm); 1215 if (retval<0) 1216 return retval; 1217 /* should call search_binary_handler recursively here, 1218 but it does not matter */ 1219 } 1220 } 1221 #endif 1222 retval = security_bprm_check(bprm); 1223 if (retval) 1224 return retval; 1225 1226 /* kernel module loader fixup */ 1227 /* so we don't try to load run modprobe in kernel space. */ 1228 set_fs(USER_DS); 1229 1230 retval = audit_bprm(bprm); 1231 if (retval) 1232 return retval; 1233 1234 retval = -ENOENT; 1235 for (try=0; try<2; try++) { 1236 read_lock(&binfmt_lock); 1237 list_for_each_entry(fmt, &formats, lh) { 1238 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; 1239 if (!fn) 1240 continue; 1241 if (!try_module_get(fmt->module)) 1242 continue; 1243 read_unlock(&binfmt_lock); 1244 retval = fn(bprm, regs); 1245 if (retval >= 0) { 1246 put_binfmt(fmt); 1247 allow_write_access(bprm->file); 1248 if (bprm->file) 1249 fput(bprm->file); 1250 bprm->file = NULL; 1251 current->did_exec = 1; 1252 proc_exec_connector(current); 1253 return retval; 1254 } 1255 read_lock(&binfmt_lock); 1256 put_binfmt(fmt); 1257 if (retval != -ENOEXEC || bprm->mm == NULL) 1258 break; 1259 if (!bprm->file) { 1260 read_unlock(&binfmt_lock); 1261 return retval; 1262 } 1263 } 1264 read_unlock(&binfmt_lock); 1265 if (retval != -ENOEXEC || bprm->mm == NULL) { 1266 break; 1267 #ifdef CONFIG_KMOD 1268 }else{ 1269 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1270 if (printable(bprm->buf[0]) && 1271 printable(bprm->buf[1]) && 1272 printable(bprm->buf[2]) && 1273 printable(bprm->buf[3])) 1274 break; /* -ENOEXEC */ 1275 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); 1276 #endif 1277 } 1278 } 1279 return retval; 1280 } 1281 1282 EXPORT_SYMBOL(search_binary_handler); 1283 1284 /* 1285 * sys_execve() executes a new program. 1286 */ 1287 int do_execve(char * filename, 1288 char __user *__user *argv, 1289 char __user *__user *envp, 1290 struct pt_regs * regs) 1291 { 1292 struct linux_binprm *bprm; 1293 struct file *file; 1294 unsigned long env_p; 1295 int retval; 1296 1297 retval = -ENOMEM; 1298 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1299 if (!bprm) 1300 goto out_ret; 1301 1302 file = open_exec(filename); 1303 retval = PTR_ERR(file); 1304 if (IS_ERR(file)) 1305 goto out_kfree; 1306 1307 sched_exec(); 1308 1309 bprm->file = file; 1310 bprm->filename = filename; 1311 bprm->interp = filename; 1312 1313 retval = bprm_mm_init(bprm); 1314 if (retval) 1315 goto out_file; 1316 1317 bprm->argc = count(argv, MAX_ARG_STRINGS); 1318 if ((retval = bprm->argc) < 0) 1319 goto out_mm; 1320 1321 bprm->envc = count(envp, MAX_ARG_STRINGS); 1322 if ((retval = bprm->envc) < 0) 1323 goto out_mm; 1324 1325 retval = security_bprm_alloc(bprm); 1326 if (retval) 1327 goto out; 1328 1329 retval = prepare_binprm(bprm); 1330 if (retval < 0) 1331 goto out; 1332 1333 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1334 if (retval < 0) 1335 goto out; 1336 1337 bprm->exec = bprm->p; 1338 retval = copy_strings(bprm->envc, envp, bprm); 1339 if (retval < 0) 1340 goto out; 1341 1342 env_p = bprm->p; 1343 retval = copy_strings(bprm->argc, argv, bprm); 1344 if (retval < 0) 1345 goto out; 1346 bprm->argv_len = env_p - bprm->p; 1347 1348 retval = search_binary_handler(bprm,regs); 1349 if (retval >= 0) { 1350 /* execve success */ 1351 free_arg_pages(bprm); 1352 security_bprm_free(bprm); 1353 acct_update_integrals(current); 1354 kfree(bprm); 1355 return retval; 1356 } 1357 1358 out: 1359 free_arg_pages(bprm); 1360 if (bprm->security) 1361 security_bprm_free(bprm); 1362 1363 out_mm: 1364 if (bprm->mm) 1365 mmput (bprm->mm); 1366 1367 out_file: 1368 if (bprm->file) { 1369 allow_write_access(bprm->file); 1370 fput(bprm->file); 1371 } 1372 out_kfree: 1373 kfree(bprm); 1374 1375 out_ret: 1376 return retval; 1377 } 1378 1379 int set_binfmt(struct linux_binfmt *new) 1380 { 1381 struct linux_binfmt *old = current->binfmt; 1382 1383 if (new) { 1384 if (!try_module_get(new->module)) 1385 return -1; 1386 } 1387 current->binfmt = new; 1388 if (old) 1389 module_put(old->module); 1390 return 0; 1391 } 1392 1393 EXPORT_SYMBOL(set_binfmt); 1394 1395 /* format_corename will inspect the pattern parameter, and output a 1396 * name into corename, which must have space for at least 1397 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. 1398 */ 1399 static int format_corename(char *corename, const char *pattern, long signr) 1400 { 1401 const char *pat_ptr = pattern; 1402 char *out_ptr = corename; 1403 char *const out_end = corename + CORENAME_MAX_SIZE; 1404 int rc; 1405 int pid_in_pattern = 0; 1406 int ispipe = 0; 1407 1408 if (*pattern == '|') 1409 ispipe = 1; 1410 1411 /* Repeat as long as we have more pattern to process and more output 1412 space */ 1413 while (*pat_ptr) { 1414 if (*pat_ptr != '%') { 1415 if (out_ptr == out_end) 1416 goto out; 1417 *out_ptr++ = *pat_ptr++; 1418 } else { 1419 switch (*++pat_ptr) { 1420 case 0: 1421 goto out; 1422 /* Double percent, output one percent */ 1423 case '%': 1424 if (out_ptr == out_end) 1425 goto out; 1426 *out_ptr++ = '%'; 1427 break; 1428 /* pid */ 1429 case 'p': 1430 pid_in_pattern = 1; 1431 rc = snprintf(out_ptr, out_end - out_ptr, 1432 "%d", task_tgid_vnr(current)); 1433 if (rc > out_end - out_ptr) 1434 goto out; 1435 out_ptr += rc; 1436 break; 1437 /* uid */ 1438 case 'u': 1439 rc = snprintf(out_ptr, out_end - out_ptr, 1440 "%d", current->uid); 1441 if (rc > out_end - out_ptr) 1442 goto out; 1443 out_ptr += rc; 1444 break; 1445 /* gid */ 1446 case 'g': 1447 rc = snprintf(out_ptr, out_end - out_ptr, 1448 "%d", current->gid); 1449 if (rc > out_end - out_ptr) 1450 goto out; 1451 out_ptr += rc; 1452 break; 1453 /* signal that caused the coredump */ 1454 case 's': 1455 rc = snprintf(out_ptr, out_end - out_ptr, 1456 "%ld", signr); 1457 if (rc > out_end - out_ptr) 1458 goto out; 1459 out_ptr += rc; 1460 break; 1461 /* UNIX time of coredump */ 1462 case 't': { 1463 struct timeval tv; 1464 do_gettimeofday(&tv); 1465 rc = snprintf(out_ptr, out_end - out_ptr, 1466 "%lu", tv.tv_sec); 1467 if (rc > out_end - out_ptr) 1468 goto out; 1469 out_ptr += rc; 1470 break; 1471 } 1472 /* hostname */ 1473 case 'h': 1474 down_read(&uts_sem); 1475 rc = snprintf(out_ptr, out_end - out_ptr, 1476 "%s", utsname()->nodename); 1477 up_read(&uts_sem); 1478 if (rc > out_end - out_ptr) 1479 goto out; 1480 out_ptr += rc; 1481 break; 1482 /* executable */ 1483 case 'e': 1484 rc = snprintf(out_ptr, out_end - out_ptr, 1485 "%s", current->comm); 1486 if (rc > out_end - out_ptr) 1487 goto out; 1488 out_ptr += rc; 1489 break; 1490 /* core limit size */ 1491 case 'c': 1492 rc = snprintf(out_ptr, out_end - out_ptr, 1493 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur); 1494 if (rc > out_end - out_ptr) 1495 goto out; 1496 out_ptr += rc; 1497 break; 1498 default: 1499 break; 1500 } 1501 ++pat_ptr; 1502 } 1503 } 1504 /* Backward compatibility with core_uses_pid: 1505 * 1506 * If core_pattern does not include a %p (as is the default) 1507 * and core_uses_pid is set, then .%pid will be appended to 1508 * the filename. Do not do this for piped commands. */ 1509 if (!ispipe && !pid_in_pattern 1510 && (core_uses_pid || atomic_read(¤t->mm->mm_users) != 1)) { 1511 rc = snprintf(out_ptr, out_end - out_ptr, 1512 ".%d", task_tgid_vnr(current)); 1513 if (rc > out_end - out_ptr) 1514 goto out; 1515 out_ptr += rc; 1516 } 1517 out: 1518 *out_ptr = 0; 1519 return ispipe; 1520 } 1521 1522 static void zap_process(struct task_struct *start) 1523 { 1524 struct task_struct *t; 1525 1526 start->signal->flags = SIGNAL_GROUP_EXIT; 1527 start->signal->group_stop_count = 0; 1528 1529 t = start; 1530 do { 1531 if (t != current && t->mm) { 1532 t->mm->core_waiters++; 1533 sigaddset(&t->pending.signal, SIGKILL); 1534 signal_wake_up(t, 1); 1535 } 1536 } while ((t = next_thread(t)) != start); 1537 } 1538 1539 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm, 1540 int exit_code) 1541 { 1542 struct task_struct *g, *p; 1543 unsigned long flags; 1544 int err = -EAGAIN; 1545 1546 spin_lock_irq(&tsk->sighand->siglock); 1547 if (!signal_group_exit(tsk->signal)) { 1548 tsk->signal->group_exit_code = exit_code; 1549 zap_process(tsk); 1550 err = 0; 1551 } 1552 spin_unlock_irq(&tsk->sighand->siglock); 1553 if (err) 1554 return err; 1555 1556 if (atomic_read(&mm->mm_users) == mm->core_waiters + 1) 1557 goto done; 1558 1559 rcu_read_lock(); 1560 for_each_process(g) { 1561 if (g == tsk->group_leader) 1562 continue; 1563 1564 p = g; 1565 do { 1566 if (p->mm) { 1567 if (p->mm == mm) { 1568 /* 1569 * p->sighand can't disappear, but 1570 * may be changed by de_thread() 1571 */ 1572 lock_task_sighand(p, &flags); 1573 zap_process(p); 1574 unlock_task_sighand(p, &flags); 1575 } 1576 break; 1577 } 1578 } while ((p = next_thread(p)) != g); 1579 } 1580 rcu_read_unlock(); 1581 done: 1582 return mm->core_waiters; 1583 } 1584 1585 static int coredump_wait(int exit_code) 1586 { 1587 struct task_struct *tsk = current; 1588 struct mm_struct *mm = tsk->mm; 1589 struct completion startup_done; 1590 struct completion *vfork_done; 1591 int core_waiters; 1592 1593 init_completion(&mm->core_done); 1594 init_completion(&startup_done); 1595 mm->core_startup_done = &startup_done; 1596 1597 core_waiters = zap_threads(tsk, mm, exit_code); 1598 up_write(&mm->mmap_sem); 1599 1600 if (unlikely(core_waiters < 0)) 1601 goto fail; 1602 1603 /* 1604 * Make sure nobody is waiting for us to release the VM, 1605 * otherwise we can deadlock when we wait on each other 1606 */ 1607 vfork_done = tsk->vfork_done; 1608 if (vfork_done) { 1609 tsk->vfork_done = NULL; 1610 complete(vfork_done); 1611 } 1612 1613 if (core_waiters) 1614 wait_for_completion(&startup_done); 1615 fail: 1616 BUG_ON(mm->core_waiters); 1617 return core_waiters; 1618 } 1619 1620 /* 1621 * set_dumpable converts traditional three-value dumpable to two flags and 1622 * stores them into mm->flags. It modifies lower two bits of mm->flags, but 1623 * these bits are not changed atomically. So get_dumpable can observe the 1624 * intermediate state. To avoid doing unexpected behavior, get get_dumpable 1625 * return either old dumpable or new one by paying attention to the order of 1626 * modifying the bits. 1627 * 1628 * dumpable | mm->flags (binary) 1629 * old new | initial interim final 1630 * ---------+----------------------- 1631 * 0 1 | 00 01 01 1632 * 0 2 | 00 10(*) 11 1633 * 1 0 | 01 00 00 1634 * 1 2 | 01 11 11 1635 * 2 0 | 11 10(*) 00 1636 * 2 1 | 11 11 01 1637 * 1638 * (*) get_dumpable regards interim value of 10 as 11. 1639 */ 1640 void set_dumpable(struct mm_struct *mm, int value) 1641 { 1642 switch (value) { 1643 case 0: 1644 clear_bit(MMF_DUMPABLE, &mm->flags); 1645 smp_wmb(); 1646 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1647 break; 1648 case 1: 1649 set_bit(MMF_DUMPABLE, &mm->flags); 1650 smp_wmb(); 1651 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1652 break; 1653 case 2: 1654 set_bit(MMF_DUMP_SECURELY, &mm->flags); 1655 smp_wmb(); 1656 set_bit(MMF_DUMPABLE, &mm->flags); 1657 break; 1658 } 1659 } 1660 1661 int get_dumpable(struct mm_struct *mm) 1662 { 1663 int ret; 1664 1665 ret = mm->flags & 0x3; 1666 return (ret >= 2) ? 2 : ret; 1667 } 1668 1669 int do_coredump(long signr, int exit_code, struct pt_regs * regs) 1670 { 1671 char corename[CORENAME_MAX_SIZE + 1]; 1672 struct mm_struct *mm = current->mm; 1673 struct linux_binfmt * binfmt; 1674 struct inode * inode; 1675 struct file * file; 1676 int retval = 0; 1677 int fsuid = current->fsuid; 1678 int flag = 0; 1679 int ispipe = 0; 1680 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur; 1681 char **helper_argv = NULL; 1682 int helper_argc = 0; 1683 char *delimit; 1684 1685 audit_core_dumps(signr); 1686 1687 binfmt = current->binfmt; 1688 if (!binfmt || !binfmt->core_dump) 1689 goto fail; 1690 down_write(&mm->mmap_sem); 1691 /* 1692 * If another thread got here first, or we are not dumpable, bail out. 1693 */ 1694 if (mm->core_waiters || !get_dumpable(mm)) { 1695 up_write(&mm->mmap_sem); 1696 goto fail; 1697 } 1698 1699 /* 1700 * We cannot trust fsuid as being the "true" uid of the 1701 * process nor do we know its entire history. We only know it 1702 * was tainted so we dump it as root in mode 2. 1703 */ 1704 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */ 1705 flag = O_EXCL; /* Stop rewrite attacks */ 1706 current->fsuid = 0; /* Dump root private */ 1707 } 1708 1709 retval = coredump_wait(exit_code); 1710 if (retval < 0) 1711 goto fail; 1712 1713 /* 1714 * Clear any false indication of pending signals that might 1715 * be seen by the filesystem code called to write the core file. 1716 */ 1717 clear_thread_flag(TIF_SIGPENDING); 1718 1719 /* 1720 * lock_kernel() because format_corename() is controlled by sysctl, which 1721 * uses lock_kernel() 1722 */ 1723 lock_kernel(); 1724 ispipe = format_corename(corename, core_pattern, signr); 1725 unlock_kernel(); 1726 /* 1727 * Don't bother to check the RLIMIT_CORE value if core_pattern points 1728 * to a pipe. Since we're not writing directly to the filesystem 1729 * RLIMIT_CORE doesn't really apply, as no actual core file will be 1730 * created unless the pipe reader choses to write out the core file 1731 * at which point file size limits and permissions will be imposed 1732 * as it does with any other process 1733 */ 1734 if ((!ispipe) && (core_limit < binfmt->min_coredump)) 1735 goto fail_unlock; 1736 1737 if (ispipe) { 1738 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc); 1739 /* Terminate the string before the first option */ 1740 delimit = strchr(corename, ' '); 1741 if (delimit) 1742 *delimit = '\0'; 1743 delimit = strrchr(helper_argv[0], '/'); 1744 if (delimit) 1745 delimit++; 1746 else 1747 delimit = helper_argv[0]; 1748 if (!strcmp(delimit, current->comm)) { 1749 printk(KERN_NOTICE "Recursive core dump detected, " 1750 "aborting\n"); 1751 goto fail_unlock; 1752 } 1753 1754 core_limit = RLIM_INFINITY; 1755 1756 /* SIGPIPE can happen, but it's just never processed */ 1757 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL, 1758 &file)) { 1759 printk(KERN_INFO "Core dump to %s pipe failed\n", 1760 corename); 1761 goto fail_unlock; 1762 } 1763 } else 1764 file = filp_open(corename, 1765 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 1766 0600); 1767 if (IS_ERR(file)) 1768 goto fail_unlock; 1769 inode = file->f_path.dentry->d_inode; 1770 if (inode->i_nlink > 1) 1771 goto close_fail; /* multiple links - don't dump */ 1772 if (!ispipe && d_unhashed(file->f_path.dentry)) 1773 goto close_fail; 1774 1775 /* AK: actually i see no reason to not allow this for named pipes etc., 1776 but keep the previous behaviour for now. */ 1777 if (!ispipe && !S_ISREG(inode->i_mode)) 1778 goto close_fail; 1779 /* 1780 * Dont allow local users get cute and trick others to coredump 1781 * into their pre-created files: 1782 */ 1783 if (inode->i_uid != current->fsuid) 1784 goto close_fail; 1785 if (!file->f_op) 1786 goto close_fail; 1787 if (!file->f_op->write) 1788 goto close_fail; 1789 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0) 1790 goto close_fail; 1791 1792 retval = binfmt->core_dump(signr, regs, file, core_limit); 1793 1794 if (retval) 1795 current->signal->group_exit_code |= 0x80; 1796 close_fail: 1797 filp_close(file, NULL); 1798 fail_unlock: 1799 if (helper_argv) 1800 argv_free(helper_argv); 1801 1802 current->fsuid = fsuid; 1803 complete_all(&mm->core_done); 1804 fail: 1805 return retval; 1806 } 1807