xref: /linux-6.15/fs/exec.c (revision b89999d0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25 
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/vmacache.h>
32 #include <linux/stat.h>
33 #include <linux/fcntl.h>
34 #include <linux/swap.h>
35 #include <linux/string.h>
36 #include <linux/init.h>
37 #include <linux/sched/mm.h>
38 #include <linux/sched/coredump.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/numa_balancing.h>
41 #include <linux/sched/task.h>
42 #include <linux/pagemap.h>
43 #include <linux/perf_event.h>
44 #include <linux/highmem.h>
45 #include <linux/spinlock.h>
46 #include <linux/key.h>
47 #include <linux/personality.h>
48 #include <linux/binfmts.h>
49 #include <linux/utsname.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/module.h>
52 #include <linux/namei.h>
53 #include <linux/mount.h>
54 #include <linux/security.h>
55 #include <linux/syscalls.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/audit.h>
59 #include <linux/tracehook.h>
60 #include <linux/kmod.h>
61 #include <linux/fsnotify.h>
62 #include <linux/fs_struct.h>
63 #include <linux/oom.h>
64 #include <linux/compat.h>
65 #include <linux/vmalloc.h>
66 
67 #include <linux/uaccess.h>
68 #include <asm/mmu_context.h>
69 #include <asm/tlb.h>
70 
71 #include <trace/events/task.h>
72 #include "internal.h"
73 
74 #include <trace/events/sched.h>
75 
76 static int bprm_creds_from_file(struct linux_binprm *bprm);
77 
78 int suid_dumpable = 0;
79 
80 static LIST_HEAD(formats);
81 static DEFINE_RWLOCK(binfmt_lock);
82 
83 void __register_binfmt(struct linux_binfmt * fmt, int insert)
84 {
85 	BUG_ON(!fmt);
86 	if (WARN_ON(!fmt->load_binary))
87 		return;
88 	write_lock(&binfmt_lock);
89 	insert ? list_add(&fmt->lh, &formats) :
90 		 list_add_tail(&fmt->lh, &formats);
91 	write_unlock(&binfmt_lock);
92 }
93 
94 EXPORT_SYMBOL(__register_binfmt);
95 
96 void unregister_binfmt(struct linux_binfmt * fmt)
97 {
98 	write_lock(&binfmt_lock);
99 	list_del(&fmt->lh);
100 	write_unlock(&binfmt_lock);
101 }
102 
103 EXPORT_SYMBOL(unregister_binfmt);
104 
105 static inline void put_binfmt(struct linux_binfmt * fmt)
106 {
107 	module_put(fmt->module);
108 }
109 
110 bool path_noexec(const struct path *path)
111 {
112 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
113 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
114 }
115 
116 #ifdef CONFIG_USELIB
117 /*
118  * Note that a shared library must be both readable and executable due to
119  * security reasons.
120  *
121  * Also note that we take the address to load from from the file itself.
122  */
123 SYSCALL_DEFINE1(uselib, const char __user *, library)
124 {
125 	struct linux_binfmt *fmt;
126 	struct file *file;
127 	struct filename *tmp = getname(library);
128 	int error = PTR_ERR(tmp);
129 	static const struct open_flags uselib_flags = {
130 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
131 		.acc_mode = MAY_READ | MAY_EXEC,
132 		.intent = LOOKUP_OPEN,
133 		.lookup_flags = LOOKUP_FOLLOW,
134 	};
135 
136 	if (IS_ERR(tmp))
137 		goto out;
138 
139 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
140 	putname(tmp);
141 	error = PTR_ERR(file);
142 	if (IS_ERR(file))
143 		goto out;
144 
145 	/*
146 	 * may_open() has already checked for this, so it should be
147 	 * impossible to trip now. But we need to be extra cautious
148 	 * and check again at the very end too.
149 	 */
150 	error = -EACCES;
151 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
152 			 path_noexec(&file->f_path)))
153 		goto exit;
154 
155 	fsnotify_open(file);
156 
157 	error = -ENOEXEC;
158 
159 	read_lock(&binfmt_lock);
160 	list_for_each_entry(fmt, &formats, lh) {
161 		if (!fmt->load_shlib)
162 			continue;
163 		if (!try_module_get(fmt->module))
164 			continue;
165 		read_unlock(&binfmt_lock);
166 		error = fmt->load_shlib(file);
167 		read_lock(&binfmt_lock);
168 		put_binfmt(fmt);
169 		if (error != -ENOEXEC)
170 			break;
171 	}
172 	read_unlock(&binfmt_lock);
173 exit:
174 	fput(file);
175 out:
176   	return error;
177 }
178 #endif /* #ifdef CONFIG_USELIB */
179 
180 #ifdef CONFIG_MMU
181 /*
182  * The nascent bprm->mm is not visible until exec_mmap() but it can
183  * use a lot of memory, account these pages in current->mm temporary
184  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
185  * change the counter back via acct_arg_size(0).
186  */
187 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
188 {
189 	struct mm_struct *mm = current->mm;
190 	long diff = (long)(pages - bprm->vma_pages);
191 
192 	if (!mm || !diff)
193 		return;
194 
195 	bprm->vma_pages = pages;
196 	add_mm_counter(mm, MM_ANONPAGES, diff);
197 }
198 
199 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
200 		int write)
201 {
202 	struct page *page;
203 	int ret;
204 	unsigned int gup_flags = FOLL_FORCE;
205 
206 #ifdef CONFIG_STACK_GROWSUP
207 	if (write) {
208 		ret = expand_downwards(bprm->vma, pos);
209 		if (ret < 0)
210 			return NULL;
211 	}
212 #endif
213 
214 	if (write)
215 		gup_flags |= FOLL_WRITE;
216 
217 	/*
218 	 * We are doing an exec().  'current' is the process
219 	 * doing the exec and bprm->mm is the new process's mm.
220 	 */
221 	ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
222 			&page, NULL, NULL);
223 	if (ret <= 0)
224 		return NULL;
225 
226 	if (write)
227 		acct_arg_size(bprm, vma_pages(bprm->vma));
228 
229 	return page;
230 }
231 
232 static void put_arg_page(struct page *page)
233 {
234 	put_page(page);
235 }
236 
237 static void free_arg_pages(struct linux_binprm *bprm)
238 {
239 }
240 
241 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
242 		struct page *page)
243 {
244 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
245 }
246 
247 static int __bprm_mm_init(struct linux_binprm *bprm)
248 {
249 	int err;
250 	struct vm_area_struct *vma = NULL;
251 	struct mm_struct *mm = bprm->mm;
252 
253 	bprm->vma = vma = vm_area_alloc(mm);
254 	if (!vma)
255 		return -ENOMEM;
256 	vma_set_anonymous(vma);
257 
258 	if (mmap_write_lock_killable(mm)) {
259 		err = -EINTR;
260 		goto err_free;
261 	}
262 
263 	/*
264 	 * Place the stack at the largest stack address the architecture
265 	 * supports. Later, we'll move this to an appropriate place. We don't
266 	 * use STACK_TOP because that can depend on attributes which aren't
267 	 * configured yet.
268 	 */
269 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
270 	vma->vm_end = STACK_TOP_MAX;
271 	vma->vm_start = vma->vm_end - PAGE_SIZE;
272 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
273 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
274 
275 	err = insert_vm_struct(mm, vma);
276 	if (err)
277 		goto err;
278 
279 	mm->stack_vm = mm->total_vm = 1;
280 	mmap_write_unlock(mm);
281 	bprm->p = vma->vm_end - sizeof(void *);
282 	return 0;
283 err:
284 	mmap_write_unlock(mm);
285 err_free:
286 	bprm->vma = NULL;
287 	vm_area_free(vma);
288 	return err;
289 }
290 
291 static bool valid_arg_len(struct linux_binprm *bprm, long len)
292 {
293 	return len <= MAX_ARG_STRLEN;
294 }
295 
296 #else
297 
298 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
299 {
300 }
301 
302 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
303 		int write)
304 {
305 	struct page *page;
306 
307 	page = bprm->page[pos / PAGE_SIZE];
308 	if (!page && write) {
309 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
310 		if (!page)
311 			return NULL;
312 		bprm->page[pos / PAGE_SIZE] = page;
313 	}
314 
315 	return page;
316 }
317 
318 static void put_arg_page(struct page *page)
319 {
320 }
321 
322 static void free_arg_page(struct linux_binprm *bprm, int i)
323 {
324 	if (bprm->page[i]) {
325 		__free_page(bprm->page[i]);
326 		bprm->page[i] = NULL;
327 	}
328 }
329 
330 static void free_arg_pages(struct linux_binprm *bprm)
331 {
332 	int i;
333 
334 	for (i = 0; i < MAX_ARG_PAGES; i++)
335 		free_arg_page(bprm, i);
336 }
337 
338 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
339 		struct page *page)
340 {
341 }
342 
343 static int __bprm_mm_init(struct linux_binprm *bprm)
344 {
345 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
346 	return 0;
347 }
348 
349 static bool valid_arg_len(struct linux_binprm *bprm, long len)
350 {
351 	return len <= bprm->p;
352 }
353 
354 #endif /* CONFIG_MMU */
355 
356 /*
357  * Create a new mm_struct and populate it with a temporary stack
358  * vm_area_struct.  We don't have enough context at this point to set the stack
359  * flags, permissions, and offset, so we use temporary values.  We'll update
360  * them later in setup_arg_pages().
361  */
362 static int bprm_mm_init(struct linux_binprm *bprm)
363 {
364 	int err;
365 	struct mm_struct *mm = NULL;
366 
367 	bprm->mm = mm = mm_alloc();
368 	err = -ENOMEM;
369 	if (!mm)
370 		goto err;
371 
372 	/* Save current stack limit for all calculations made during exec. */
373 	task_lock(current->group_leader);
374 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
375 	task_unlock(current->group_leader);
376 
377 	err = __bprm_mm_init(bprm);
378 	if (err)
379 		goto err;
380 
381 	return 0;
382 
383 err:
384 	if (mm) {
385 		bprm->mm = NULL;
386 		mmdrop(mm);
387 	}
388 
389 	return err;
390 }
391 
392 struct user_arg_ptr {
393 #ifdef CONFIG_COMPAT
394 	bool is_compat;
395 #endif
396 	union {
397 		const char __user *const __user *native;
398 #ifdef CONFIG_COMPAT
399 		const compat_uptr_t __user *compat;
400 #endif
401 	} ptr;
402 };
403 
404 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
405 {
406 	const char __user *native;
407 
408 #ifdef CONFIG_COMPAT
409 	if (unlikely(argv.is_compat)) {
410 		compat_uptr_t compat;
411 
412 		if (get_user(compat, argv.ptr.compat + nr))
413 			return ERR_PTR(-EFAULT);
414 
415 		return compat_ptr(compat);
416 	}
417 #endif
418 
419 	if (get_user(native, argv.ptr.native + nr))
420 		return ERR_PTR(-EFAULT);
421 
422 	return native;
423 }
424 
425 /*
426  * count() counts the number of strings in array ARGV.
427  */
428 static int count(struct user_arg_ptr argv, int max)
429 {
430 	int i = 0;
431 
432 	if (argv.ptr.native != NULL) {
433 		for (;;) {
434 			const char __user *p = get_user_arg_ptr(argv, i);
435 
436 			if (!p)
437 				break;
438 
439 			if (IS_ERR(p))
440 				return -EFAULT;
441 
442 			if (i >= max)
443 				return -E2BIG;
444 			++i;
445 
446 			if (fatal_signal_pending(current))
447 				return -ERESTARTNOHAND;
448 			cond_resched();
449 		}
450 	}
451 	return i;
452 }
453 
454 static int count_strings_kernel(const char *const *argv)
455 {
456 	int i;
457 
458 	if (!argv)
459 		return 0;
460 
461 	for (i = 0; argv[i]; ++i) {
462 		if (i >= MAX_ARG_STRINGS)
463 			return -E2BIG;
464 		if (fatal_signal_pending(current))
465 			return -ERESTARTNOHAND;
466 		cond_resched();
467 	}
468 	return i;
469 }
470 
471 static int bprm_stack_limits(struct linux_binprm *bprm)
472 {
473 	unsigned long limit, ptr_size;
474 
475 	/*
476 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
477 	 * (whichever is smaller) for the argv+env strings.
478 	 * This ensures that:
479 	 *  - the remaining binfmt code will not run out of stack space,
480 	 *  - the program will have a reasonable amount of stack left
481 	 *    to work from.
482 	 */
483 	limit = _STK_LIM / 4 * 3;
484 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
485 	/*
486 	 * We've historically supported up to 32 pages (ARG_MAX)
487 	 * of argument strings even with small stacks
488 	 */
489 	limit = max_t(unsigned long, limit, ARG_MAX);
490 	/*
491 	 * We must account for the size of all the argv and envp pointers to
492 	 * the argv and envp strings, since they will also take up space in
493 	 * the stack. They aren't stored until much later when we can't
494 	 * signal to the parent that the child has run out of stack space.
495 	 * Instead, calculate it here so it's possible to fail gracefully.
496 	 */
497 	ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
498 	if (limit <= ptr_size)
499 		return -E2BIG;
500 	limit -= ptr_size;
501 
502 	bprm->argmin = bprm->p - limit;
503 	return 0;
504 }
505 
506 /*
507  * 'copy_strings()' copies argument/environment strings from the old
508  * processes's memory to the new process's stack.  The call to get_user_pages()
509  * ensures the destination page is created and not swapped out.
510  */
511 static int copy_strings(int argc, struct user_arg_ptr argv,
512 			struct linux_binprm *bprm)
513 {
514 	struct page *kmapped_page = NULL;
515 	char *kaddr = NULL;
516 	unsigned long kpos = 0;
517 	int ret;
518 
519 	while (argc-- > 0) {
520 		const char __user *str;
521 		int len;
522 		unsigned long pos;
523 
524 		ret = -EFAULT;
525 		str = get_user_arg_ptr(argv, argc);
526 		if (IS_ERR(str))
527 			goto out;
528 
529 		len = strnlen_user(str, MAX_ARG_STRLEN);
530 		if (!len)
531 			goto out;
532 
533 		ret = -E2BIG;
534 		if (!valid_arg_len(bprm, len))
535 			goto out;
536 
537 		/* We're going to work our way backwords. */
538 		pos = bprm->p;
539 		str += len;
540 		bprm->p -= len;
541 #ifdef CONFIG_MMU
542 		if (bprm->p < bprm->argmin)
543 			goto out;
544 #endif
545 
546 		while (len > 0) {
547 			int offset, bytes_to_copy;
548 
549 			if (fatal_signal_pending(current)) {
550 				ret = -ERESTARTNOHAND;
551 				goto out;
552 			}
553 			cond_resched();
554 
555 			offset = pos % PAGE_SIZE;
556 			if (offset == 0)
557 				offset = PAGE_SIZE;
558 
559 			bytes_to_copy = offset;
560 			if (bytes_to_copy > len)
561 				bytes_to_copy = len;
562 
563 			offset -= bytes_to_copy;
564 			pos -= bytes_to_copy;
565 			str -= bytes_to_copy;
566 			len -= bytes_to_copy;
567 
568 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
569 				struct page *page;
570 
571 				page = get_arg_page(bprm, pos, 1);
572 				if (!page) {
573 					ret = -E2BIG;
574 					goto out;
575 				}
576 
577 				if (kmapped_page) {
578 					flush_kernel_dcache_page(kmapped_page);
579 					kunmap(kmapped_page);
580 					put_arg_page(kmapped_page);
581 				}
582 				kmapped_page = page;
583 				kaddr = kmap(kmapped_page);
584 				kpos = pos & PAGE_MASK;
585 				flush_arg_page(bprm, kpos, kmapped_page);
586 			}
587 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
588 				ret = -EFAULT;
589 				goto out;
590 			}
591 		}
592 	}
593 	ret = 0;
594 out:
595 	if (kmapped_page) {
596 		flush_kernel_dcache_page(kmapped_page);
597 		kunmap(kmapped_page);
598 		put_arg_page(kmapped_page);
599 	}
600 	return ret;
601 }
602 
603 /*
604  * Copy and argument/environment string from the kernel to the processes stack.
605  */
606 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
607 {
608 	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
609 	unsigned long pos = bprm->p;
610 
611 	if (len == 0)
612 		return -EFAULT;
613 	if (!valid_arg_len(bprm, len))
614 		return -E2BIG;
615 
616 	/* We're going to work our way backwards. */
617 	arg += len;
618 	bprm->p -= len;
619 	if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
620 		return -E2BIG;
621 
622 	while (len > 0) {
623 		unsigned int bytes_to_copy = min_t(unsigned int, len,
624 				min_not_zero(offset_in_page(pos), PAGE_SIZE));
625 		struct page *page;
626 		char *kaddr;
627 
628 		pos -= bytes_to_copy;
629 		arg -= bytes_to_copy;
630 		len -= bytes_to_copy;
631 
632 		page = get_arg_page(bprm, pos, 1);
633 		if (!page)
634 			return -E2BIG;
635 		kaddr = kmap_atomic(page);
636 		flush_arg_page(bprm, pos & PAGE_MASK, page);
637 		memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy);
638 		flush_kernel_dcache_page(page);
639 		kunmap_atomic(kaddr);
640 		put_arg_page(page);
641 	}
642 
643 	return 0;
644 }
645 EXPORT_SYMBOL(copy_string_kernel);
646 
647 static int copy_strings_kernel(int argc, const char *const *argv,
648 			       struct linux_binprm *bprm)
649 {
650 	while (argc-- > 0) {
651 		int ret = copy_string_kernel(argv[argc], bprm);
652 		if (ret < 0)
653 			return ret;
654 		if (fatal_signal_pending(current))
655 			return -ERESTARTNOHAND;
656 		cond_resched();
657 	}
658 	return 0;
659 }
660 
661 #ifdef CONFIG_MMU
662 
663 /*
664  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
665  * the binfmt code determines where the new stack should reside, we shift it to
666  * its final location.  The process proceeds as follows:
667  *
668  * 1) Use shift to calculate the new vma endpoints.
669  * 2) Extend vma to cover both the old and new ranges.  This ensures the
670  *    arguments passed to subsequent functions are consistent.
671  * 3) Move vma's page tables to the new range.
672  * 4) Free up any cleared pgd range.
673  * 5) Shrink the vma to cover only the new range.
674  */
675 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
676 {
677 	struct mm_struct *mm = vma->vm_mm;
678 	unsigned long old_start = vma->vm_start;
679 	unsigned long old_end = vma->vm_end;
680 	unsigned long length = old_end - old_start;
681 	unsigned long new_start = old_start - shift;
682 	unsigned long new_end = old_end - shift;
683 	struct mmu_gather tlb;
684 
685 	BUG_ON(new_start > new_end);
686 
687 	/*
688 	 * ensure there are no vmas between where we want to go
689 	 * and where we are
690 	 */
691 	if (vma != find_vma(mm, new_start))
692 		return -EFAULT;
693 
694 	/*
695 	 * cover the whole range: [new_start, old_end)
696 	 */
697 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
698 		return -ENOMEM;
699 
700 	/*
701 	 * move the page tables downwards, on failure we rely on
702 	 * process cleanup to remove whatever mess we made.
703 	 */
704 	if (length != move_page_tables(vma, old_start,
705 				       vma, new_start, length, false))
706 		return -ENOMEM;
707 
708 	lru_add_drain();
709 	tlb_gather_mmu(&tlb, mm, old_start, old_end);
710 	if (new_end > old_start) {
711 		/*
712 		 * when the old and new regions overlap clear from new_end.
713 		 */
714 		free_pgd_range(&tlb, new_end, old_end, new_end,
715 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
716 	} else {
717 		/*
718 		 * otherwise, clean from old_start; this is done to not touch
719 		 * the address space in [new_end, old_start) some architectures
720 		 * have constraints on va-space that make this illegal (IA64) -
721 		 * for the others its just a little faster.
722 		 */
723 		free_pgd_range(&tlb, old_start, old_end, new_end,
724 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
725 	}
726 	tlb_finish_mmu(&tlb, old_start, old_end);
727 
728 	/*
729 	 * Shrink the vma to just the new range.  Always succeeds.
730 	 */
731 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
732 
733 	return 0;
734 }
735 
736 /*
737  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
738  * the stack is optionally relocated, and some extra space is added.
739  */
740 int setup_arg_pages(struct linux_binprm *bprm,
741 		    unsigned long stack_top,
742 		    int executable_stack)
743 {
744 	unsigned long ret;
745 	unsigned long stack_shift;
746 	struct mm_struct *mm = current->mm;
747 	struct vm_area_struct *vma = bprm->vma;
748 	struct vm_area_struct *prev = NULL;
749 	unsigned long vm_flags;
750 	unsigned long stack_base;
751 	unsigned long stack_size;
752 	unsigned long stack_expand;
753 	unsigned long rlim_stack;
754 
755 #ifdef CONFIG_STACK_GROWSUP
756 	/* Limit stack size */
757 	stack_base = bprm->rlim_stack.rlim_max;
758 	if (stack_base > STACK_SIZE_MAX)
759 		stack_base = STACK_SIZE_MAX;
760 
761 	/* Add space for stack randomization. */
762 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
763 
764 	/* Make sure we didn't let the argument array grow too large. */
765 	if (vma->vm_end - vma->vm_start > stack_base)
766 		return -ENOMEM;
767 
768 	stack_base = PAGE_ALIGN(stack_top - stack_base);
769 
770 	stack_shift = vma->vm_start - stack_base;
771 	mm->arg_start = bprm->p - stack_shift;
772 	bprm->p = vma->vm_end - stack_shift;
773 #else
774 	stack_top = arch_align_stack(stack_top);
775 	stack_top = PAGE_ALIGN(stack_top);
776 
777 	if (unlikely(stack_top < mmap_min_addr) ||
778 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
779 		return -ENOMEM;
780 
781 	stack_shift = vma->vm_end - stack_top;
782 
783 	bprm->p -= stack_shift;
784 	mm->arg_start = bprm->p;
785 #endif
786 
787 	if (bprm->loader)
788 		bprm->loader -= stack_shift;
789 	bprm->exec -= stack_shift;
790 
791 	if (mmap_write_lock_killable(mm))
792 		return -EINTR;
793 
794 	vm_flags = VM_STACK_FLAGS;
795 
796 	/*
797 	 * Adjust stack execute permissions; explicitly enable for
798 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
799 	 * (arch default) otherwise.
800 	 */
801 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
802 		vm_flags |= VM_EXEC;
803 	else if (executable_stack == EXSTACK_DISABLE_X)
804 		vm_flags &= ~VM_EXEC;
805 	vm_flags |= mm->def_flags;
806 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
807 
808 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
809 			vm_flags);
810 	if (ret)
811 		goto out_unlock;
812 	BUG_ON(prev != vma);
813 
814 	if (unlikely(vm_flags & VM_EXEC)) {
815 		pr_warn_once("process '%pD4' started with executable stack\n",
816 			     bprm->file);
817 	}
818 
819 	/* Move stack pages down in memory. */
820 	if (stack_shift) {
821 		ret = shift_arg_pages(vma, stack_shift);
822 		if (ret)
823 			goto out_unlock;
824 	}
825 
826 	/* mprotect_fixup is overkill to remove the temporary stack flags */
827 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
828 
829 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
830 	stack_size = vma->vm_end - vma->vm_start;
831 	/*
832 	 * Align this down to a page boundary as expand_stack
833 	 * will align it up.
834 	 */
835 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
836 #ifdef CONFIG_STACK_GROWSUP
837 	if (stack_size + stack_expand > rlim_stack)
838 		stack_base = vma->vm_start + rlim_stack;
839 	else
840 		stack_base = vma->vm_end + stack_expand;
841 #else
842 	if (stack_size + stack_expand > rlim_stack)
843 		stack_base = vma->vm_end - rlim_stack;
844 	else
845 		stack_base = vma->vm_start - stack_expand;
846 #endif
847 	current->mm->start_stack = bprm->p;
848 	ret = expand_stack(vma, stack_base);
849 	if (ret)
850 		ret = -EFAULT;
851 
852 out_unlock:
853 	mmap_write_unlock(mm);
854 	return ret;
855 }
856 EXPORT_SYMBOL(setup_arg_pages);
857 
858 #else
859 
860 /*
861  * Transfer the program arguments and environment from the holding pages
862  * onto the stack. The provided stack pointer is adjusted accordingly.
863  */
864 int transfer_args_to_stack(struct linux_binprm *bprm,
865 			   unsigned long *sp_location)
866 {
867 	unsigned long index, stop, sp;
868 	int ret = 0;
869 
870 	stop = bprm->p >> PAGE_SHIFT;
871 	sp = *sp_location;
872 
873 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
874 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
875 		char *src = kmap(bprm->page[index]) + offset;
876 		sp -= PAGE_SIZE - offset;
877 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
878 			ret = -EFAULT;
879 		kunmap(bprm->page[index]);
880 		if (ret)
881 			goto out;
882 	}
883 
884 	*sp_location = sp;
885 
886 out:
887 	return ret;
888 }
889 EXPORT_SYMBOL(transfer_args_to_stack);
890 
891 #endif /* CONFIG_MMU */
892 
893 static struct file *do_open_execat(int fd, struct filename *name, int flags)
894 {
895 	struct file *file;
896 	int err;
897 	struct open_flags open_exec_flags = {
898 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
899 		.acc_mode = MAY_EXEC,
900 		.intent = LOOKUP_OPEN,
901 		.lookup_flags = LOOKUP_FOLLOW,
902 	};
903 
904 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
905 		return ERR_PTR(-EINVAL);
906 	if (flags & AT_SYMLINK_NOFOLLOW)
907 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
908 	if (flags & AT_EMPTY_PATH)
909 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
910 
911 	file = do_filp_open(fd, name, &open_exec_flags);
912 	if (IS_ERR(file))
913 		goto out;
914 
915 	/*
916 	 * may_open() has already checked for this, so it should be
917 	 * impossible to trip now. But we need to be extra cautious
918 	 * and check again at the very end too.
919 	 */
920 	err = -EACCES;
921 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
922 			 path_noexec(&file->f_path)))
923 		goto exit;
924 
925 	err = deny_write_access(file);
926 	if (err)
927 		goto exit;
928 
929 	if (name->name[0] != '\0')
930 		fsnotify_open(file);
931 
932 out:
933 	return file;
934 
935 exit:
936 	fput(file);
937 	return ERR_PTR(err);
938 }
939 
940 struct file *open_exec(const char *name)
941 {
942 	struct filename *filename = getname_kernel(name);
943 	struct file *f = ERR_CAST(filename);
944 
945 	if (!IS_ERR(filename)) {
946 		f = do_open_execat(AT_FDCWD, filename, 0);
947 		putname(filename);
948 	}
949 	return f;
950 }
951 EXPORT_SYMBOL(open_exec);
952 
953 int kernel_read_file(struct file *file, void **buf, loff_t *size,
954 		     loff_t max_size, enum kernel_read_file_id id)
955 {
956 	loff_t i_size, pos;
957 	ssize_t bytes = 0;
958 	void *allocated = NULL;
959 	int ret;
960 
961 	if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
962 		return -EINVAL;
963 
964 	ret = deny_write_access(file);
965 	if (ret)
966 		return ret;
967 
968 	ret = security_kernel_read_file(file, id);
969 	if (ret)
970 		goto out;
971 
972 	i_size = i_size_read(file_inode(file));
973 	if (i_size <= 0) {
974 		ret = -EINVAL;
975 		goto out;
976 	}
977 	if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) {
978 		ret = -EFBIG;
979 		goto out;
980 	}
981 
982 	if (!*buf)
983 		*buf = allocated = vmalloc(i_size);
984 	if (!*buf) {
985 		ret = -ENOMEM;
986 		goto out;
987 	}
988 
989 	pos = 0;
990 	while (pos < i_size) {
991 		bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
992 		if (bytes < 0) {
993 			ret = bytes;
994 			goto out_free;
995 		}
996 
997 		if (bytes == 0)
998 			break;
999 	}
1000 
1001 	if (pos != i_size) {
1002 		ret = -EIO;
1003 		goto out_free;
1004 	}
1005 
1006 	ret = security_kernel_post_read_file(file, *buf, i_size, id);
1007 	if (!ret)
1008 		*size = pos;
1009 
1010 out_free:
1011 	if (ret < 0) {
1012 		if (allocated) {
1013 			vfree(*buf);
1014 			*buf = NULL;
1015 		}
1016 	}
1017 
1018 out:
1019 	allow_write_access(file);
1020 	return ret;
1021 }
1022 EXPORT_SYMBOL_GPL(kernel_read_file);
1023 
1024 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
1025 			       loff_t max_size, enum kernel_read_file_id id)
1026 {
1027 	struct file *file;
1028 	int ret;
1029 
1030 	if (!path || !*path)
1031 		return -EINVAL;
1032 
1033 	file = filp_open(path, O_RDONLY, 0);
1034 	if (IS_ERR(file))
1035 		return PTR_ERR(file);
1036 
1037 	ret = kernel_read_file(file, buf, size, max_size, id);
1038 	fput(file);
1039 	return ret;
1040 }
1041 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
1042 
1043 int kernel_read_file_from_path_initns(const char *path, void **buf,
1044 				      loff_t *size, loff_t max_size,
1045 				      enum kernel_read_file_id id)
1046 {
1047 	struct file *file;
1048 	struct path root;
1049 	int ret;
1050 
1051 	if (!path || !*path)
1052 		return -EINVAL;
1053 
1054 	task_lock(&init_task);
1055 	get_fs_root(init_task.fs, &root);
1056 	task_unlock(&init_task);
1057 
1058 	file = file_open_root(root.dentry, root.mnt, path, O_RDONLY, 0);
1059 	path_put(&root);
1060 	if (IS_ERR(file))
1061 		return PTR_ERR(file);
1062 
1063 	ret = kernel_read_file(file, buf, size, max_size, id);
1064 	fput(file);
1065 	return ret;
1066 }
1067 EXPORT_SYMBOL_GPL(kernel_read_file_from_path_initns);
1068 
1069 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
1070 			     enum kernel_read_file_id id)
1071 {
1072 	struct fd f = fdget(fd);
1073 	int ret = -EBADF;
1074 
1075 	if (!f.file)
1076 		goto out;
1077 
1078 	ret = kernel_read_file(f.file, buf, size, max_size, id);
1079 out:
1080 	fdput(f);
1081 	return ret;
1082 }
1083 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
1084 
1085 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
1086     defined(CONFIG_BINFMT_ELF_FDPIC)
1087 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1088 {
1089 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1090 	if (res > 0)
1091 		flush_icache_user_range(addr, addr + len);
1092 	return res;
1093 }
1094 EXPORT_SYMBOL(read_code);
1095 #endif
1096 
1097 /*
1098  * Maps the mm_struct mm into the current task struct.
1099  * On success, this function returns with the mutex
1100  * exec_update_mutex locked.
1101  */
1102 static int exec_mmap(struct mm_struct *mm)
1103 {
1104 	struct task_struct *tsk;
1105 	struct mm_struct *old_mm, *active_mm;
1106 	int ret;
1107 
1108 	/* Notify parent that we're no longer interested in the old VM */
1109 	tsk = current;
1110 	old_mm = current->mm;
1111 	exec_mm_release(tsk, old_mm);
1112 	if (old_mm)
1113 		sync_mm_rss(old_mm);
1114 
1115 	ret = mutex_lock_killable(&tsk->signal->exec_update_mutex);
1116 	if (ret)
1117 		return ret;
1118 
1119 	if (old_mm) {
1120 		/*
1121 		 * Make sure that if there is a core dump in progress
1122 		 * for the old mm, we get out and die instead of going
1123 		 * through with the exec.  We must hold mmap_lock around
1124 		 * checking core_state and changing tsk->mm.
1125 		 */
1126 		mmap_read_lock(old_mm);
1127 		if (unlikely(old_mm->core_state)) {
1128 			mmap_read_unlock(old_mm);
1129 			mutex_unlock(&tsk->signal->exec_update_mutex);
1130 			return -EINTR;
1131 		}
1132 	}
1133 
1134 	task_lock(tsk);
1135 	active_mm = tsk->active_mm;
1136 	membarrier_exec_mmap(mm);
1137 	tsk->mm = mm;
1138 	tsk->active_mm = mm;
1139 	activate_mm(active_mm, mm);
1140 	tsk->mm->vmacache_seqnum = 0;
1141 	vmacache_flush(tsk);
1142 	task_unlock(tsk);
1143 	if (old_mm) {
1144 		mmap_read_unlock(old_mm);
1145 		BUG_ON(active_mm != old_mm);
1146 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1147 		mm_update_next_owner(old_mm);
1148 		mmput(old_mm);
1149 		return 0;
1150 	}
1151 	mmdrop(active_mm);
1152 	return 0;
1153 }
1154 
1155 static int de_thread(struct task_struct *tsk)
1156 {
1157 	struct signal_struct *sig = tsk->signal;
1158 	struct sighand_struct *oldsighand = tsk->sighand;
1159 	spinlock_t *lock = &oldsighand->siglock;
1160 
1161 	if (thread_group_empty(tsk))
1162 		goto no_thread_group;
1163 
1164 	/*
1165 	 * Kill all other threads in the thread group.
1166 	 */
1167 	spin_lock_irq(lock);
1168 	if (signal_group_exit(sig)) {
1169 		/*
1170 		 * Another group action in progress, just
1171 		 * return so that the signal is processed.
1172 		 */
1173 		spin_unlock_irq(lock);
1174 		return -EAGAIN;
1175 	}
1176 
1177 	sig->group_exit_task = tsk;
1178 	sig->notify_count = zap_other_threads(tsk);
1179 	if (!thread_group_leader(tsk))
1180 		sig->notify_count--;
1181 
1182 	while (sig->notify_count) {
1183 		__set_current_state(TASK_KILLABLE);
1184 		spin_unlock_irq(lock);
1185 		schedule();
1186 		if (__fatal_signal_pending(tsk))
1187 			goto killed;
1188 		spin_lock_irq(lock);
1189 	}
1190 	spin_unlock_irq(lock);
1191 
1192 	/*
1193 	 * At this point all other threads have exited, all we have to
1194 	 * do is to wait for the thread group leader to become inactive,
1195 	 * and to assume its PID:
1196 	 */
1197 	if (!thread_group_leader(tsk)) {
1198 		struct task_struct *leader = tsk->group_leader;
1199 
1200 		for (;;) {
1201 			cgroup_threadgroup_change_begin(tsk);
1202 			write_lock_irq(&tasklist_lock);
1203 			/*
1204 			 * Do this under tasklist_lock to ensure that
1205 			 * exit_notify() can't miss ->group_exit_task
1206 			 */
1207 			sig->notify_count = -1;
1208 			if (likely(leader->exit_state))
1209 				break;
1210 			__set_current_state(TASK_KILLABLE);
1211 			write_unlock_irq(&tasklist_lock);
1212 			cgroup_threadgroup_change_end(tsk);
1213 			schedule();
1214 			if (__fatal_signal_pending(tsk))
1215 				goto killed;
1216 		}
1217 
1218 		/*
1219 		 * The only record we have of the real-time age of a
1220 		 * process, regardless of execs it's done, is start_time.
1221 		 * All the past CPU time is accumulated in signal_struct
1222 		 * from sister threads now dead.  But in this non-leader
1223 		 * exec, nothing survives from the original leader thread,
1224 		 * whose birth marks the true age of this process now.
1225 		 * When we take on its identity by switching to its PID, we
1226 		 * also take its birthdate (always earlier than our own).
1227 		 */
1228 		tsk->start_time = leader->start_time;
1229 		tsk->start_boottime = leader->start_boottime;
1230 
1231 		BUG_ON(!same_thread_group(leader, tsk));
1232 		/*
1233 		 * An exec() starts a new thread group with the
1234 		 * TGID of the previous thread group. Rehash the
1235 		 * two threads with a switched PID, and release
1236 		 * the former thread group leader:
1237 		 */
1238 
1239 		/* Become a process group leader with the old leader's pid.
1240 		 * The old leader becomes a thread of the this thread group.
1241 		 */
1242 		exchange_tids(tsk, leader);
1243 		transfer_pid(leader, tsk, PIDTYPE_TGID);
1244 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1245 		transfer_pid(leader, tsk, PIDTYPE_SID);
1246 
1247 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1248 		list_replace_init(&leader->sibling, &tsk->sibling);
1249 
1250 		tsk->group_leader = tsk;
1251 		leader->group_leader = tsk;
1252 
1253 		tsk->exit_signal = SIGCHLD;
1254 		leader->exit_signal = -1;
1255 
1256 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1257 		leader->exit_state = EXIT_DEAD;
1258 
1259 		/*
1260 		 * We are going to release_task()->ptrace_unlink() silently,
1261 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1262 		 * the tracer wont't block again waiting for this thread.
1263 		 */
1264 		if (unlikely(leader->ptrace))
1265 			__wake_up_parent(leader, leader->parent);
1266 		write_unlock_irq(&tasklist_lock);
1267 		cgroup_threadgroup_change_end(tsk);
1268 
1269 		release_task(leader);
1270 	}
1271 
1272 	sig->group_exit_task = NULL;
1273 	sig->notify_count = 0;
1274 
1275 no_thread_group:
1276 	/* we have changed execution domain */
1277 	tsk->exit_signal = SIGCHLD;
1278 
1279 	BUG_ON(!thread_group_leader(tsk));
1280 	return 0;
1281 
1282 killed:
1283 	/* protects against exit_notify() and __exit_signal() */
1284 	read_lock(&tasklist_lock);
1285 	sig->group_exit_task = NULL;
1286 	sig->notify_count = 0;
1287 	read_unlock(&tasklist_lock);
1288 	return -EAGAIN;
1289 }
1290 
1291 
1292 /*
1293  * This function makes sure the current process has its own signal table,
1294  * so that flush_signal_handlers can later reset the handlers without
1295  * disturbing other processes.  (Other processes might share the signal
1296  * table via the CLONE_SIGHAND option to clone().)
1297  */
1298 static int unshare_sighand(struct task_struct *me)
1299 {
1300 	struct sighand_struct *oldsighand = me->sighand;
1301 
1302 	if (refcount_read(&oldsighand->count) != 1) {
1303 		struct sighand_struct *newsighand;
1304 		/*
1305 		 * This ->sighand is shared with the CLONE_SIGHAND
1306 		 * but not CLONE_THREAD task, switch to the new one.
1307 		 */
1308 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1309 		if (!newsighand)
1310 			return -ENOMEM;
1311 
1312 		refcount_set(&newsighand->count, 1);
1313 		memcpy(newsighand->action, oldsighand->action,
1314 		       sizeof(newsighand->action));
1315 
1316 		write_lock_irq(&tasklist_lock);
1317 		spin_lock(&oldsighand->siglock);
1318 		rcu_assign_pointer(me->sighand, newsighand);
1319 		spin_unlock(&oldsighand->siglock);
1320 		write_unlock_irq(&tasklist_lock);
1321 
1322 		__cleanup_sighand(oldsighand);
1323 	}
1324 	return 0;
1325 }
1326 
1327 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1328 {
1329 	task_lock(tsk);
1330 	strncpy(buf, tsk->comm, buf_size);
1331 	task_unlock(tsk);
1332 	return buf;
1333 }
1334 EXPORT_SYMBOL_GPL(__get_task_comm);
1335 
1336 /*
1337  * These functions flushes out all traces of the currently running executable
1338  * so that a new one can be started
1339  */
1340 
1341 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1342 {
1343 	task_lock(tsk);
1344 	trace_task_rename(tsk, buf);
1345 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1346 	task_unlock(tsk);
1347 	perf_event_comm(tsk, exec);
1348 }
1349 
1350 /*
1351  * Calling this is the point of no return. None of the failures will be
1352  * seen by userspace since either the process is already taking a fatal
1353  * signal (via de_thread() or coredump), or will have SEGV raised
1354  * (after exec_mmap()) by search_binary_handler (see below).
1355  */
1356 int begin_new_exec(struct linux_binprm * bprm)
1357 {
1358 	struct task_struct *me = current;
1359 	int retval;
1360 
1361 	/* Once we are committed compute the creds */
1362 	retval = bprm_creds_from_file(bprm);
1363 	if (retval)
1364 		return retval;
1365 
1366 	/*
1367 	 * Ensure all future errors are fatal.
1368 	 */
1369 	bprm->point_of_no_return = true;
1370 
1371 	/*
1372 	 * Make this the only thread in the thread group.
1373 	 */
1374 	retval = de_thread(me);
1375 	if (retval)
1376 		goto out;
1377 
1378 	/*
1379 	 * Must be called _before_ exec_mmap() as bprm->mm is
1380 	 * not visibile until then. This also enables the update
1381 	 * to be lockless.
1382 	 */
1383 	set_mm_exe_file(bprm->mm, bprm->file);
1384 
1385 	/* If the binary is not readable then enforce mm->dumpable=0 */
1386 	would_dump(bprm, bprm->file);
1387 	if (bprm->have_execfd)
1388 		would_dump(bprm, bprm->executable);
1389 
1390 	/*
1391 	 * Release all of the old mmap stuff
1392 	 */
1393 	acct_arg_size(bprm, 0);
1394 	retval = exec_mmap(bprm->mm);
1395 	if (retval)
1396 		goto out;
1397 
1398 	bprm->mm = NULL;
1399 
1400 #ifdef CONFIG_POSIX_TIMERS
1401 	exit_itimers(me->signal);
1402 	flush_itimer_signals();
1403 #endif
1404 
1405 	/*
1406 	 * Make the signal table private.
1407 	 */
1408 	retval = unshare_sighand(me);
1409 	if (retval)
1410 		goto out_unlock;
1411 
1412 	/*
1413 	 * Ensure that the uaccess routines can actually operate on userspace
1414 	 * pointers:
1415 	 */
1416 	force_uaccess_begin();
1417 
1418 	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1419 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1420 	flush_thread();
1421 	me->personality &= ~bprm->per_clear;
1422 
1423 	/*
1424 	 * We have to apply CLOEXEC before we change whether the process is
1425 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1426 	 * trying to access the should-be-closed file descriptors of a process
1427 	 * undergoing exec(2).
1428 	 */
1429 	do_close_on_exec(me->files);
1430 
1431 	if (bprm->secureexec) {
1432 		/* Make sure parent cannot signal privileged process. */
1433 		me->pdeath_signal = 0;
1434 
1435 		/*
1436 		 * For secureexec, reset the stack limit to sane default to
1437 		 * avoid bad behavior from the prior rlimits. This has to
1438 		 * happen before arch_pick_mmap_layout(), which examines
1439 		 * RLIMIT_STACK, but after the point of no return to avoid
1440 		 * needing to clean up the change on failure.
1441 		 */
1442 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1443 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1444 	}
1445 
1446 	me->sas_ss_sp = me->sas_ss_size = 0;
1447 
1448 	/*
1449 	 * Figure out dumpability. Note that this checking only of current
1450 	 * is wrong, but userspace depends on it. This should be testing
1451 	 * bprm->secureexec instead.
1452 	 */
1453 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1454 	    !(uid_eq(current_euid(), current_uid()) &&
1455 	      gid_eq(current_egid(), current_gid())))
1456 		set_dumpable(current->mm, suid_dumpable);
1457 	else
1458 		set_dumpable(current->mm, SUID_DUMP_USER);
1459 
1460 	perf_event_exec();
1461 	__set_task_comm(me, kbasename(bprm->filename), true);
1462 
1463 	/* An exec changes our domain. We are no longer part of the thread
1464 	   group */
1465 	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1466 	flush_signal_handlers(me, 0);
1467 
1468 	/*
1469 	 * install the new credentials for this executable
1470 	 */
1471 	security_bprm_committing_creds(bprm);
1472 
1473 	commit_creds(bprm->cred);
1474 	bprm->cred = NULL;
1475 
1476 	/*
1477 	 * Disable monitoring for regular users
1478 	 * when executing setuid binaries. Must
1479 	 * wait until new credentials are committed
1480 	 * by commit_creds() above
1481 	 */
1482 	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1483 		perf_event_exit_task(me);
1484 	/*
1485 	 * cred_guard_mutex must be held at least to this point to prevent
1486 	 * ptrace_attach() from altering our determination of the task's
1487 	 * credentials; any time after this it may be unlocked.
1488 	 */
1489 	security_bprm_committed_creds(bprm);
1490 
1491 	/* Pass the opened binary to the interpreter. */
1492 	if (bprm->have_execfd) {
1493 		retval = get_unused_fd_flags(0);
1494 		if (retval < 0)
1495 			goto out_unlock;
1496 		fd_install(retval, bprm->executable);
1497 		bprm->executable = NULL;
1498 		bprm->execfd = retval;
1499 	}
1500 	return 0;
1501 
1502 out_unlock:
1503 	mutex_unlock(&me->signal->exec_update_mutex);
1504 out:
1505 	return retval;
1506 }
1507 EXPORT_SYMBOL(begin_new_exec);
1508 
1509 void would_dump(struct linux_binprm *bprm, struct file *file)
1510 {
1511 	struct inode *inode = file_inode(file);
1512 	if (inode_permission(inode, MAY_READ) < 0) {
1513 		struct user_namespace *old, *user_ns;
1514 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1515 
1516 		/* Ensure mm->user_ns contains the executable */
1517 		user_ns = old = bprm->mm->user_ns;
1518 		while ((user_ns != &init_user_ns) &&
1519 		       !privileged_wrt_inode_uidgid(user_ns, inode))
1520 			user_ns = user_ns->parent;
1521 
1522 		if (old != user_ns) {
1523 			bprm->mm->user_ns = get_user_ns(user_ns);
1524 			put_user_ns(old);
1525 		}
1526 	}
1527 }
1528 EXPORT_SYMBOL(would_dump);
1529 
1530 void setup_new_exec(struct linux_binprm * bprm)
1531 {
1532 	/* Setup things that can depend upon the personality */
1533 	struct task_struct *me = current;
1534 
1535 	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1536 
1537 	arch_setup_new_exec();
1538 
1539 	/* Set the new mm task size. We have to do that late because it may
1540 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1541 	 * some architectures like powerpc
1542 	 */
1543 	me->mm->task_size = TASK_SIZE;
1544 	mutex_unlock(&me->signal->exec_update_mutex);
1545 	mutex_unlock(&me->signal->cred_guard_mutex);
1546 }
1547 EXPORT_SYMBOL(setup_new_exec);
1548 
1549 /* Runs immediately before start_thread() takes over. */
1550 void finalize_exec(struct linux_binprm *bprm)
1551 {
1552 	/* Store any stack rlimit changes before starting thread. */
1553 	task_lock(current->group_leader);
1554 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1555 	task_unlock(current->group_leader);
1556 }
1557 EXPORT_SYMBOL(finalize_exec);
1558 
1559 /*
1560  * Prepare credentials and lock ->cred_guard_mutex.
1561  * setup_new_exec() commits the new creds and drops the lock.
1562  * Or, if exec fails before, free_bprm() should release ->cred and
1563  * and unlock.
1564  */
1565 static int prepare_bprm_creds(struct linux_binprm *bprm)
1566 {
1567 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1568 		return -ERESTARTNOINTR;
1569 
1570 	bprm->cred = prepare_exec_creds();
1571 	if (likely(bprm->cred))
1572 		return 0;
1573 
1574 	mutex_unlock(&current->signal->cred_guard_mutex);
1575 	return -ENOMEM;
1576 }
1577 
1578 static void free_bprm(struct linux_binprm *bprm)
1579 {
1580 	if (bprm->mm) {
1581 		acct_arg_size(bprm, 0);
1582 		mmput(bprm->mm);
1583 	}
1584 	free_arg_pages(bprm);
1585 	if (bprm->cred) {
1586 		mutex_unlock(&current->signal->cred_guard_mutex);
1587 		abort_creds(bprm->cred);
1588 	}
1589 	if (bprm->file) {
1590 		allow_write_access(bprm->file);
1591 		fput(bprm->file);
1592 	}
1593 	if (bprm->executable)
1594 		fput(bprm->executable);
1595 	/* If a binfmt changed the interp, free it. */
1596 	if (bprm->interp != bprm->filename)
1597 		kfree(bprm->interp);
1598 	kfree(bprm->fdpath);
1599 	kfree(bprm);
1600 }
1601 
1602 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1603 {
1604 	struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1605 	int retval = -ENOMEM;
1606 	if (!bprm)
1607 		goto out;
1608 
1609 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1610 		bprm->filename = filename->name;
1611 	} else {
1612 		if (filename->name[0] == '\0')
1613 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1614 		else
1615 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1616 						  fd, filename->name);
1617 		if (!bprm->fdpath)
1618 			goto out_free;
1619 
1620 		bprm->filename = bprm->fdpath;
1621 	}
1622 	bprm->interp = bprm->filename;
1623 
1624 	retval = bprm_mm_init(bprm);
1625 	if (retval)
1626 		goto out_free;
1627 	return bprm;
1628 
1629 out_free:
1630 	free_bprm(bprm);
1631 out:
1632 	return ERR_PTR(retval);
1633 }
1634 
1635 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1636 {
1637 	/* If a binfmt changed the interp, free it first. */
1638 	if (bprm->interp != bprm->filename)
1639 		kfree(bprm->interp);
1640 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1641 	if (!bprm->interp)
1642 		return -ENOMEM;
1643 	return 0;
1644 }
1645 EXPORT_SYMBOL(bprm_change_interp);
1646 
1647 /*
1648  * determine how safe it is to execute the proposed program
1649  * - the caller must hold ->cred_guard_mutex to protect against
1650  *   PTRACE_ATTACH or seccomp thread-sync
1651  */
1652 static void check_unsafe_exec(struct linux_binprm *bprm)
1653 {
1654 	struct task_struct *p = current, *t;
1655 	unsigned n_fs;
1656 
1657 	if (p->ptrace)
1658 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1659 
1660 	/*
1661 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1662 	 * mess up.
1663 	 */
1664 	if (task_no_new_privs(current))
1665 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1666 
1667 	t = p;
1668 	n_fs = 1;
1669 	spin_lock(&p->fs->lock);
1670 	rcu_read_lock();
1671 	while_each_thread(p, t) {
1672 		if (t->fs == p->fs)
1673 			n_fs++;
1674 	}
1675 	rcu_read_unlock();
1676 
1677 	if (p->fs->users > n_fs)
1678 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1679 	else
1680 		p->fs->in_exec = 1;
1681 	spin_unlock(&p->fs->lock);
1682 }
1683 
1684 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1685 {
1686 	/* Handle suid and sgid on files */
1687 	struct inode *inode;
1688 	unsigned int mode;
1689 	kuid_t uid;
1690 	kgid_t gid;
1691 
1692 	if (!mnt_may_suid(file->f_path.mnt))
1693 		return;
1694 
1695 	if (task_no_new_privs(current))
1696 		return;
1697 
1698 	inode = file->f_path.dentry->d_inode;
1699 	mode = READ_ONCE(inode->i_mode);
1700 	if (!(mode & (S_ISUID|S_ISGID)))
1701 		return;
1702 
1703 	/* Be careful if suid/sgid is set */
1704 	inode_lock(inode);
1705 
1706 	/* reload atomically mode/uid/gid now that lock held */
1707 	mode = inode->i_mode;
1708 	uid = inode->i_uid;
1709 	gid = inode->i_gid;
1710 	inode_unlock(inode);
1711 
1712 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1713 	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1714 		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1715 		return;
1716 
1717 	if (mode & S_ISUID) {
1718 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1719 		bprm->cred->euid = uid;
1720 	}
1721 
1722 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1723 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1724 		bprm->cred->egid = gid;
1725 	}
1726 }
1727 
1728 /*
1729  * Compute brpm->cred based upon the final binary.
1730  */
1731 static int bprm_creds_from_file(struct linux_binprm *bprm)
1732 {
1733 	/* Compute creds based on which file? */
1734 	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1735 
1736 	bprm_fill_uid(bprm, file);
1737 	return security_bprm_creds_from_file(bprm, file);
1738 }
1739 
1740 /*
1741  * Fill the binprm structure from the inode.
1742  * Read the first BINPRM_BUF_SIZE bytes
1743  *
1744  * This may be called multiple times for binary chains (scripts for example).
1745  */
1746 static int prepare_binprm(struct linux_binprm *bprm)
1747 {
1748 	loff_t pos = 0;
1749 
1750 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1751 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1752 }
1753 
1754 /*
1755  * Arguments are '\0' separated strings found at the location bprm->p
1756  * points to; chop off the first by relocating brpm->p to right after
1757  * the first '\0' encountered.
1758  */
1759 int remove_arg_zero(struct linux_binprm *bprm)
1760 {
1761 	int ret = 0;
1762 	unsigned long offset;
1763 	char *kaddr;
1764 	struct page *page;
1765 
1766 	if (!bprm->argc)
1767 		return 0;
1768 
1769 	do {
1770 		offset = bprm->p & ~PAGE_MASK;
1771 		page = get_arg_page(bprm, bprm->p, 0);
1772 		if (!page) {
1773 			ret = -EFAULT;
1774 			goto out;
1775 		}
1776 		kaddr = kmap_atomic(page);
1777 
1778 		for (; offset < PAGE_SIZE && kaddr[offset];
1779 				offset++, bprm->p++)
1780 			;
1781 
1782 		kunmap_atomic(kaddr);
1783 		put_arg_page(page);
1784 	} while (offset == PAGE_SIZE);
1785 
1786 	bprm->p++;
1787 	bprm->argc--;
1788 	ret = 0;
1789 
1790 out:
1791 	return ret;
1792 }
1793 EXPORT_SYMBOL(remove_arg_zero);
1794 
1795 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1796 /*
1797  * cycle the list of binary formats handler, until one recognizes the image
1798  */
1799 static int search_binary_handler(struct linux_binprm *bprm)
1800 {
1801 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1802 	struct linux_binfmt *fmt;
1803 	int retval;
1804 
1805 	retval = prepare_binprm(bprm);
1806 	if (retval < 0)
1807 		return retval;
1808 
1809 	retval = security_bprm_check(bprm);
1810 	if (retval)
1811 		return retval;
1812 
1813 	retval = -ENOENT;
1814  retry:
1815 	read_lock(&binfmt_lock);
1816 	list_for_each_entry(fmt, &formats, lh) {
1817 		if (!try_module_get(fmt->module))
1818 			continue;
1819 		read_unlock(&binfmt_lock);
1820 
1821 		retval = fmt->load_binary(bprm);
1822 
1823 		read_lock(&binfmt_lock);
1824 		put_binfmt(fmt);
1825 		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1826 			read_unlock(&binfmt_lock);
1827 			return retval;
1828 		}
1829 	}
1830 	read_unlock(&binfmt_lock);
1831 
1832 	if (need_retry) {
1833 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1834 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1835 			return retval;
1836 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1837 			return retval;
1838 		need_retry = false;
1839 		goto retry;
1840 	}
1841 
1842 	return retval;
1843 }
1844 
1845 static int exec_binprm(struct linux_binprm *bprm)
1846 {
1847 	pid_t old_pid, old_vpid;
1848 	int ret, depth;
1849 
1850 	/* Need to fetch pid before load_binary changes it */
1851 	old_pid = current->pid;
1852 	rcu_read_lock();
1853 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1854 	rcu_read_unlock();
1855 
1856 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1857 	for (depth = 0;; depth++) {
1858 		struct file *exec;
1859 		if (depth > 5)
1860 			return -ELOOP;
1861 
1862 		ret = search_binary_handler(bprm);
1863 		if (ret < 0)
1864 			return ret;
1865 		if (!bprm->interpreter)
1866 			break;
1867 
1868 		exec = bprm->file;
1869 		bprm->file = bprm->interpreter;
1870 		bprm->interpreter = NULL;
1871 
1872 		allow_write_access(exec);
1873 		if (unlikely(bprm->have_execfd)) {
1874 			if (bprm->executable) {
1875 				fput(exec);
1876 				return -ENOEXEC;
1877 			}
1878 			bprm->executable = exec;
1879 		} else
1880 			fput(exec);
1881 	}
1882 
1883 	audit_bprm(bprm);
1884 	trace_sched_process_exec(current, old_pid, bprm);
1885 	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1886 	proc_exec_connector(current);
1887 	return 0;
1888 }
1889 
1890 /*
1891  * sys_execve() executes a new program.
1892  */
1893 static int bprm_execve(struct linux_binprm *bprm,
1894 		       int fd, struct filename *filename, int flags)
1895 {
1896 	struct file *file;
1897 	struct files_struct *displaced;
1898 	int retval;
1899 
1900 	retval = unshare_files(&displaced);
1901 	if (retval)
1902 		return retval;
1903 
1904 	retval = prepare_bprm_creds(bprm);
1905 	if (retval)
1906 		goto out_files;
1907 
1908 	check_unsafe_exec(bprm);
1909 	current->in_execve = 1;
1910 
1911 	file = do_open_execat(fd, filename, flags);
1912 	retval = PTR_ERR(file);
1913 	if (IS_ERR(file))
1914 		goto out_unmark;
1915 
1916 	sched_exec();
1917 
1918 	bprm->file = file;
1919 	/*
1920 	 * Record that a name derived from an O_CLOEXEC fd will be
1921 	 * inaccessible after exec. Relies on having exclusive access to
1922 	 * current->files (due to unshare_files above).
1923 	 */
1924 	if (bprm->fdpath &&
1925 	    close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1926 		bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1927 
1928 	/* Set the unchanging part of bprm->cred */
1929 	retval = security_bprm_creds_for_exec(bprm);
1930 	if (retval)
1931 		goto out;
1932 
1933 	retval = exec_binprm(bprm);
1934 	if (retval < 0)
1935 		goto out;
1936 
1937 	/* execve succeeded */
1938 	current->fs->in_exec = 0;
1939 	current->in_execve = 0;
1940 	rseq_execve(current);
1941 	acct_update_integrals(current);
1942 	task_numa_free(current, false);
1943 	if (displaced)
1944 		put_files_struct(displaced);
1945 	return retval;
1946 
1947 out:
1948 	/*
1949 	 * If past the point of no return ensure the the code never
1950 	 * returns to the userspace process.  Use an existing fatal
1951 	 * signal if present otherwise terminate the process with
1952 	 * SIGSEGV.
1953 	 */
1954 	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1955 		force_sigsegv(SIGSEGV);
1956 
1957 out_unmark:
1958 	current->fs->in_exec = 0;
1959 	current->in_execve = 0;
1960 
1961 out_files:
1962 	if (displaced)
1963 		reset_files_struct(displaced);
1964 
1965 	return retval;
1966 }
1967 
1968 static int do_execveat_common(int fd, struct filename *filename,
1969 			      struct user_arg_ptr argv,
1970 			      struct user_arg_ptr envp,
1971 			      int flags)
1972 {
1973 	struct linux_binprm *bprm;
1974 	int retval;
1975 
1976 	if (IS_ERR(filename))
1977 		return PTR_ERR(filename);
1978 
1979 	/*
1980 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1981 	 * set*uid() to execve() because too many poorly written programs
1982 	 * don't check setuid() return code.  Here we additionally recheck
1983 	 * whether NPROC limit is still exceeded.
1984 	 */
1985 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1986 	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1987 		retval = -EAGAIN;
1988 		goto out_ret;
1989 	}
1990 
1991 	/* We're below the limit (still or again), so we don't want to make
1992 	 * further execve() calls fail. */
1993 	current->flags &= ~PF_NPROC_EXCEEDED;
1994 
1995 	bprm = alloc_bprm(fd, filename);
1996 	if (IS_ERR(bprm)) {
1997 		retval = PTR_ERR(bprm);
1998 		goto out_ret;
1999 	}
2000 
2001 	retval = count(argv, MAX_ARG_STRINGS);
2002 	if (retval < 0)
2003 		goto out_free;
2004 	bprm->argc = retval;
2005 
2006 	retval = count(envp, MAX_ARG_STRINGS);
2007 	if (retval < 0)
2008 		goto out_free;
2009 	bprm->envc = retval;
2010 
2011 	retval = bprm_stack_limits(bprm);
2012 	if (retval < 0)
2013 		goto out_free;
2014 
2015 	retval = copy_string_kernel(bprm->filename, bprm);
2016 	if (retval < 0)
2017 		goto out_free;
2018 	bprm->exec = bprm->p;
2019 
2020 	retval = copy_strings(bprm->envc, envp, bprm);
2021 	if (retval < 0)
2022 		goto out_free;
2023 
2024 	retval = copy_strings(bprm->argc, argv, bprm);
2025 	if (retval < 0)
2026 		goto out_free;
2027 
2028 	retval = bprm_execve(bprm, fd, filename, flags);
2029 out_free:
2030 	free_bprm(bprm);
2031 
2032 out_ret:
2033 	putname(filename);
2034 	return retval;
2035 }
2036 
2037 int kernel_execve(const char *kernel_filename,
2038 		  const char *const *argv, const char *const *envp)
2039 {
2040 	struct filename *filename;
2041 	struct linux_binprm *bprm;
2042 	int fd = AT_FDCWD;
2043 	int retval;
2044 
2045 	filename = getname_kernel(kernel_filename);
2046 	if (IS_ERR(filename))
2047 		return PTR_ERR(filename);
2048 
2049 	bprm = alloc_bprm(fd, filename);
2050 	if (IS_ERR(bprm)) {
2051 		retval = PTR_ERR(bprm);
2052 		goto out_ret;
2053 	}
2054 
2055 	retval = count_strings_kernel(argv);
2056 	if (retval < 0)
2057 		goto out_free;
2058 	bprm->argc = retval;
2059 
2060 	retval = count_strings_kernel(envp);
2061 	if (retval < 0)
2062 		goto out_free;
2063 	bprm->envc = retval;
2064 
2065 	retval = bprm_stack_limits(bprm);
2066 	if (retval < 0)
2067 		goto out_free;
2068 
2069 	retval = copy_string_kernel(bprm->filename, bprm);
2070 	if (retval < 0)
2071 		goto out_free;
2072 	bprm->exec = bprm->p;
2073 
2074 	retval = copy_strings_kernel(bprm->envc, envp, bprm);
2075 	if (retval < 0)
2076 		goto out_free;
2077 
2078 	retval = copy_strings_kernel(bprm->argc, argv, bprm);
2079 	if (retval < 0)
2080 		goto out_free;
2081 
2082 	retval = bprm_execve(bprm, fd, filename, 0);
2083 out_free:
2084 	free_bprm(bprm);
2085 out_ret:
2086 	putname(filename);
2087 	return retval;
2088 }
2089 
2090 static int do_execve(struct filename *filename,
2091 	const char __user *const __user *__argv,
2092 	const char __user *const __user *__envp)
2093 {
2094 	struct user_arg_ptr argv = { .ptr.native = __argv };
2095 	struct user_arg_ptr envp = { .ptr.native = __envp };
2096 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2097 }
2098 
2099 static int do_execveat(int fd, struct filename *filename,
2100 		const char __user *const __user *__argv,
2101 		const char __user *const __user *__envp,
2102 		int flags)
2103 {
2104 	struct user_arg_ptr argv = { .ptr.native = __argv };
2105 	struct user_arg_ptr envp = { .ptr.native = __envp };
2106 
2107 	return do_execveat_common(fd, filename, argv, envp, flags);
2108 }
2109 
2110 #ifdef CONFIG_COMPAT
2111 static int compat_do_execve(struct filename *filename,
2112 	const compat_uptr_t __user *__argv,
2113 	const compat_uptr_t __user *__envp)
2114 {
2115 	struct user_arg_ptr argv = {
2116 		.is_compat = true,
2117 		.ptr.compat = __argv,
2118 	};
2119 	struct user_arg_ptr envp = {
2120 		.is_compat = true,
2121 		.ptr.compat = __envp,
2122 	};
2123 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2124 }
2125 
2126 static int compat_do_execveat(int fd, struct filename *filename,
2127 			      const compat_uptr_t __user *__argv,
2128 			      const compat_uptr_t __user *__envp,
2129 			      int flags)
2130 {
2131 	struct user_arg_ptr argv = {
2132 		.is_compat = true,
2133 		.ptr.compat = __argv,
2134 	};
2135 	struct user_arg_ptr envp = {
2136 		.is_compat = true,
2137 		.ptr.compat = __envp,
2138 	};
2139 	return do_execveat_common(fd, filename, argv, envp, flags);
2140 }
2141 #endif
2142 
2143 void set_binfmt(struct linux_binfmt *new)
2144 {
2145 	struct mm_struct *mm = current->mm;
2146 
2147 	if (mm->binfmt)
2148 		module_put(mm->binfmt->module);
2149 
2150 	mm->binfmt = new;
2151 	if (new)
2152 		__module_get(new->module);
2153 }
2154 EXPORT_SYMBOL(set_binfmt);
2155 
2156 /*
2157  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2158  */
2159 void set_dumpable(struct mm_struct *mm, int value)
2160 {
2161 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2162 		return;
2163 
2164 	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2165 }
2166 
2167 SYSCALL_DEFINE3(execve,
2168 		const char __user *, filename,
2169 		const char __user *const __user *, argv,
2170 		const char __user *const __user *, envp)
2171 {
2172 	return do_execve(getname(filename), argv, envp);
2173 }
2174 
2175 SYSCALL_DEFINE5(execveat,
2176 		int, fd, const char __user *, filename,
2177 		const char __user *const __user *, argv,
2178 		const char __user *const __user *, envp,
2179 		int, flags)
2180 {
2181 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2182 
2183 	return do_execveat(fd,
2184 			   getname_flags(filename, lookup_flags, NULL),
2185 			   argv, envp, flags);
2186 }
2187 
2188 #ifdef CONFIG_COMPAT
2189 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2190 	const compat_uptr_t __user *, argv,
2191 	const compat_uptr_t __user *, envp)
2192 {
2193 	return compat_do_execve(getname(filename), argv, envp);
2194 }
2195 
2196 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2197 		       const char __user *, filename,
2198 		       const compat_uptr_t __user *, argv,
2199 		       const compat_uptr_t __user *, envp,
2200 		       int,  flags)
2201 {
2202 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2203 
2204 	return compat_do_execveat(fd,
2205 				  getname_flags(filename, lookup_flags, NULL),
2206 				  argv, envp, flags);
2207 }
2208 #endif
2209