1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/exec.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * #!-checking implemented by tytso. 10 */ 11 /* 12 * Demand-loading implemented 01.12.91 - no need to read anything but 13 * the header into memory. The inode of the executable is put into 14 * "current->executable", and page faults do the actual loading. Clean. 15 * 16 * Once more I can proudly say that linux stood up to being changed: it 17 * was less than 2 hours work to get demand-loading completely implemented. 18 * 19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 20 * current->executable is only used by the procfs. This allows a dispatch 21 * table to check for several different types of binary formats. We keep 22 * trying until we recognize the file or we run out of supported binary 23 * formats. 24 */ 25 26 #include <linux/kernel_read_file.h> 27 #include <linux/slab.h> 28 #include <linux/file.h> 29 #include <linux/fdtable.h> 30 #include <linux/mm.h> 31 #include <linux/vmacache.h> 32 #include <linux/stat.h> 33 #include <linux/fcntl.h> 34 #include <linux/swap.h> 35 #include <linux/string.h> 36 #include <linux/init.h> 37 #include <linux/sched/mm.h> 38 #include <linux/sched/coredump.h> 39 #include <linux/sched/signal.h> 40 #include <linux/sched/numa_balancing.h> 41 #include <linux/sched/task.h> 42 #include <linux/pagemap.h> 43 #include <linux/perf_event.h> 44 #include <linux/highmem.h> 45 #include <linux/spinlock.h> 46 #include <linux/key.h> 47 #include <linux/personality.h> 48 #include <linux/binfmts.h> 49 #include <linux/utsname.h> 50 #include <linux/pid_namespace.h> 51 #include <linux/module.h> 52 #include <linux/namei.h> 53 #include <linux/mount.h> 54 #include <linux/security.h> 55 #include <linux/syscalls.h> 56 #include <linux/tsacct_kern.h> 57 #include <linux/cn_proc.h> 58 #include <linux/audit.h> 59 #include <linux/tracehook.h> 60 #include <linux/kmod.h> 61 #include <linux/fsnotify.h> 62 #include <linux/fs_struct.h> 63 #include <linux/oom.h> 64 #include <linux/compat.h> 65 #include <linux/vmalloc.h> 66 67 #include <linux/uaccess.h> 68 #include <asm/mmu_context.h> 69 #include <asm/tlb.h> 70 71 #include <trace/events/task.h> 72 #include "internal.h" 73 74 #include <trace/events/sched.h> 75 76 static int bprm_creds_from_file(struct linux_binprm *bprm); 77 78 int suid_dumpable = 0; 79 80 static LIST_HEAD(formats); 81 static DEFINE_RWLOCK(binfmt_lock); 82 83 void __register_binfmt(struct linux_binfmt * fmt, int insert) 84 { 85 BUG_ON(!fmt); 86 if (WARN_ON(!fmt->load_binary)) 87 return; 88 write_lock(&binfmt_lock); 89 insert ? list_add(&fmt->lh, &formats) : 90 list_add_tail(&fmt->lh, &formats); 91 write_unlock(&binfmt_lock); 92 } 93 94 EXPORT_SYMBOL(__register_binfmt); 95 96 void unregister_binfmt(struct linux_binfmt * fmt) 97 { 98 write_lock(&binfmt_lock); 99 list_del(&fmt->lh); 100 write_unlock(&binfmt_lock); 101 } 102 103 EXPORT_SYMBOL(unregister_binfmt); 104 105 static inline void put_binfmt(struct linux_binfmt * fmt) 106 { 107 module_put(fmt->module); 108 } 109 110 bool path_noexec(const struct path *path) 111 { 112 return (path->mnt->mnt_flags & MNT_NOEXEC) || 113 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 114 } 115 116 #ifdef CONFIG_USELIB 117 /* 118 * Note that a shared library must be both readable and executable due to 119 * security reasons. 120 * 121 * Also note that we take the address to load from from the file itself. 122 */ 123 SYSCALL_DEFINE1(uselib, const char __user *, library) 124 { 125 struct linux_binfmt *fmt; 126 struct file *file; 127 struct filename *tmp = getname(library); 128 int error = PTR_ERR(tmp); 129 static const struct open_flags uselib_flags = { 130 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 131 .acc_mode = MAY_READ | MAY_EXEC, 132 .intent = LOOKUP_OPEN, 133 .lookup_flags = LOOKUP_FOLLOW, 134 }; 135 136 if (IS_ERR(tmp)) 137 goto out; 138 139 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 140 putname(tmp); 141 error = PTR_ERR(file); 142 if (IS_ERR(file)) 143 goto out; 144 145 /* 146 * may_open() has already checked for this, so it should be 147 * impossible to trip now. But we need to be extra cautious 148 * and check again at the very end too. 149 */ 150 error = -EACCES; 151 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 152 path_noexec(&file->f_path))) 153 goto exit; 154 155 fsnotify_open(file); 156 157 error = -ENOEXEC; 158 159 read_lock(&binfmt_lock); 160 list_for_each_entry(fmt, &formats, lh) { 161 if (!fmt->load_shlib) 162 continue; 163 if (!try_module_get(fmt->module)) 164 continue; 165 read_unlock(&binfmt_lock); 166 error = fmt->load_shlib(file); 167 read_lock(&binfmt_lock); 168 put_binfmt(fmt); 169 if (error != -ENOEXEC) 170 break; 171 } 172 read_unlock(&binfmt_lock); 173 exit: 174 fput(file); 175 out: 176 return error; 177 } 178 #endif /* #ifdef CONFIG_USELIB */ 179 180 #ifdef CONFIG_MMU 181 /* 182 * The nascent bprm->mm is not visible until exec_mmap() but it can 183 * use a lot of memory, account these pages in current->mm temporary 184 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 185 * change the counter back via acct_arg_size(0). 186 */ 187 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 188 { 189 struct mm_struct *mm = current->mm; 190 long diff = (long)(pages - bprm->vma_pages); 191 192 if (!mm || !diff) 193 return; 194 195 bprm->vma_pages = pages; 196 add_mm_counter(mm, MM_ANONPAGES, diff); 197 } 198 199 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 200 int write) 201 { 202 struct page *page; 203 int ret; 204 unsigned int gup_flags = FOLL_FORCE; 205 206 #ifdef CONFIG_STACK_GROWSUP 207 if (write) { 208 ret = expand_downwards(bprm->vma, pos); 209 if (ret < 0) 210 return NULL; 211 } 212 #endif 213 214 if (write) 215 gup_flags |= FOLL_WRITE; 216 217 /* 218 * We are doing an exec(). 'current' is the process 219 * doing the exec and bprm->mm is the new process's mm. 220 */ 221 ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags, 222 &page, NULL, NULL); 223 if (ret <= 0) 224 return NULL; 225 226 if (write) 227 acct_arg_size(bprm, vma_pages(bprm->vma)); 228 229 return page; 230 } 231 232 static void put_arg_page(struct page *page) 233 { 234 put_page(page); 235 } 236 237 static void free_arg_pages(struct linux_binprm *bprm) 238 { 239 } 240 241 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 242 struct page *page) 243 { 244 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 245 } 246 247 static int __bprm_mm_init(struct linux_binprm *bprm) 248 { 249 int err; 250 struct vm_area_struct *vma = NULL; 251 struct mm_struct *mm = bprm->mm; 252 253 bprm->vma = vma = vm_area_alloc(mm); 254 if (!vma) 255 return -ENOMEM; 256 vma_set_anonymous(vma); 257 258 if (mmap_write_lock_killable(mm)) { 259 err = -EINTR; 260 goto err_free; 261 } 262 263 /* 264 * Place the stack at the largest stack address the architecture 265 * supports. Later, we'll move this to an appropriate place. We don't 266 * use STACK_TOP because that can depend on attributes which aren't 267 * configured yet. 268 */ 269 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 270 vma->vm_end = STACK_TOP_MAX; 271 vma->vm_start = vma->vm_end - PAGE_SIZE; 272 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 273 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 274 275 err = insert_vm_struct(mm, vma); 276 if (err) 277 goto err; 278 279 mm->stack_vm = mm->total_vm = 1; 280 mmap_write_unlock(mm); 281 bprm->p = vma->vm_end - sizeof(void *); 282 return 0; 283 err: 284 mmap_write_unlock(mm); 285 err_free: 286 bprm->vma = NULL; 287 vm_area_free(vma); 288 return err; 289 } 290 291 static bool valid_arg_len(struct linux_binprm *bprm, long len) 292 { 293 return len <= MAX_ARG_STRLEN; 294 } 295 296 #else 297 298 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 299 { 300 } 301 302 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 303 int write) 304 { 305 struct page *page; 306 307 page = bprm->page[pos / PAGE_SIZE]; 308 if (!page && write) { 309 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 310 if (!page) 311 return NULL; 312 bprm->page[pos / PAGE_SIZE] = page; 313 } 314 315 return page; 316 } 317 318 static void put_arg_page(struct page *page) 319 { 320 } 321 322 static void free_arg_page(struct linux_binprm *bprm, int i) 323 { 324 if (bprm->page[i]) { 325 __free_page(bprm->page[i]); 326 bprm->page[i] = NULL; 327 } 328 } 329 330 static void free_arg_pages(struct linux_binprm *bprm) 331 { 332 int i; 333 334 for (i = 0; i < MAX_ARG_PAGES; i++) 335 free_arg_page(bprm, i); 336 } 337 338 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 339 struct page *page) 340 { 341 } 342 343 static int __bprm_mm_init(struct linux_binprm *bprm) 344 { 345 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 346 return 0; 347 } 348 349 static bool valid_arg_len(struct linux_binprm *bprm, long len) 350 { 351 return len <= bprm->p; 352 } 353 354 #endif /* CONFIG_MMU */ 355 356 /* 357 * Create a new mm_struct and populate it with a temporary stack 358 * vm_area_struct. We don't have enough context at this point to set the stack 359 * flags, permissions, and offset, so we use temporary values. We'll update 360 * them later in setup_arg_pages(). 361 */ 362 static int bprm_mm_init(struct linux_binprm *bprm) 363 { 364 int err; 365 struct mm_struct *mm = NULL; 366 367 bprm->mm = mm = mm_alloc(); 368 err = -ENOMEM; 369 if (!mm) 370 goto err; 371 372 /* Save current stack limit for all calculations made during exec. */ 373 task_lock(current->group_leader); 374 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 375 task_unlock(current->group_leader); 376 377 err = __bprm_mm_init(bprm); 378 if (err) 379 goto err; 380 381 return 0; 382 383 err: 384 if (mm) { 385 bprm->mm = NULL; 386 mmdrop(mm); 387 } 388 389 return err; 390 } 391 392 struct user_arg_ptr { 393 #ifdef CONFIG_COMPAT 394 bool is_compat; 395 #endif 396 union { 397 const char __user *const __user *native; 398 #ifdef CONFIG_COMPAT 399 const compat_uptr_t __user *compat; 400 #endif 401 } ptr; 402 }; 403 404 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 405 { 406 const char __user *native; 407 408 #ifdef CONFIG_COMPAT 409 if (unlikely(argv.is_compat)) { 410 compat_uptr_t compat; 411 412 if (get_user(compat, argv.ptr.compat + nr)) 413 return ERR_PTR(-EFAULT); 414 415 return compat_ptr(compat); 416 } 417 #endif 418 419 if (get_user(native, argv.ptr.native + nr)) 420 return ERR_PTR(-EFAULT); 421 422 return native; 423 } 424 425 /* 426 * count() counts the number of strings in array ARGV. 427 */ 428 static int count(struct user_arg_ptr argv, int max) 429 { 430 int i = 0; 431 432 if (argv.ptr.native != NULL) { 433 for (;;) { 434 const char __user *p = get_user_arg_ptr(argv, i); 435 436 if (!p) 437 break; 438 439 if (IS_ERR(p)) 440 return -EFAULT; 441 442 if (i >= max) 443 return -E2BIG; 444 ++i; 445 446 if (fatal_signal_pending(current)) 447 return -ERESTARTNOHAND; 448 cond_resched(); 449 } 450 } 451 return i; 452 } 453 454 static int count_strings_kernel(const char *const *argv) 455 { 456 int i; 457 458 if (!argv) 459 return 0; 460 461 for (i = 0; argv[i]; ++i) { 462 if (i >= MAX_ARG_STRINGS) 463 return -E2BIG; 464 if (fatal_signal_pending(current)) 465 return -ERESTARTNOHAND; 466 cond_resched(); 467 } 468 return i; 469 } 470 471 static int bprm_stack_limits(struct linux_binprm *bprm) 472 { 473 unsigned long limit, ptr_size; 474 475 /* 476 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 477 * (whichever is smaller) for the argv+env strings. 478 * This ensures that: 479 * - the remaining binfmt code will not run out of stack space, 480 * - the program will have a reasonable amount of stack left 481 * to work from. 482 */ 483 limit = _STK_LIM / 4 * 3; 484 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 485 /* 486 * We've historically supported up to 32 pages (ARG_MAX) 487 * of argument strings even with small stacks 488 */ 489 limit = max_t(unsigned long, limit, ARG_MAX); 490 /* 491 * We must account for the size of all the argv and envp pointers to 492 * the argv and envp strings, since they will also take up space in 493 * the stack. They aren't stored until much later when we can't 494 * signal to the parent that the child has run out of stack space. 495 * Instead, calculate it here so it's possible to fail gracefully. 496 */ 497 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *); 498 if (limit <= ptr_size) 499 return -E2BIG; 500 limit -= ptr_size; 501 502 bprm->argmin = bprm->p - limit; 503 return 0; 504 } 505 506 /* 507 * 'copy_strings()' copies argument/environment strings from the old 508 * processes's memory to the new process's stack. The call to get_user_pages() 509 * ensures the destination page is created and not swapped out. 510 */ 511 static int copy_strings(int argc, struct user_arg_ptr argv, 512 struct linux_binprm *bprm) 513 { 514 struct page *kmapped_page = NULL; 515 char *kaddr = NULL; 516 unsigned long kpos = 0; 517 int ret; 518 519 while (argc-- > 0) { 520 const char __user *str; 521 int len; 522 unsigned long pos; 523 524 ret = -EFAULT; 525 str = get_user_arg_ptr(argv, argc); 526 if (IS_ERR(str)) 527 goto out; 528 529 len = strnlen_user(str, MAX_ARG_STRLEN); 530 if (!len) 531 goto out; 532 533 ret = -E2BIG; 534 if (!valid_arg_len(bprm, len)) 535 goto out; 536 537 /* We're going to work our way backwords. */ 538 pos = bprm->p; 539 str += len; 540 bprm->p -= len; 541 #ifdef CONFIG_MMU 542 if (bprm->p < bprm->argmin) 543 goto out; 544 #endif 545 546 while (len > 0) { 547 int offset, bytes_to_copy; 548 549 if (fatal_signal_pending(current)) { 550 ret = -ERESTARTNOHAND; 551 goto out; 552 } 553 cond_resched(); 554 555 offset = pos % PAGE_SIZE; 556 if (offset == 0) 557 offset = PAGE_SIZE; 558 559 bytes_to_copy = offset; 560 if (bytes_to_copy > len) 561 bytes_to_copy = len; 562 563 offset -= bytes_to_copy; 564 pos -= bytes_to_copy; 565 str -= bytes_to_copy; 566 len -= bytes_to_copy; 567 568 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 569 struct page *page; 570 571 page = get_arg_page(bprm, pos, 1); 572 if (!page) { 573 ret = -E2BIG; 574 goto out; 575 } 576 577 if (kmapped_page) { 578 flush_kernel_dcache_page(kmapped_page); 579 kunmap(kmapped_page); 580 put_arg_page(kmapped_page); 581 } 582 kmapped_page = page; 583 kaddr = kmap(kmapped_page); 584 kpos = pos & PAGE_MASK; 585 flush_arg_page(bprm, kpos, kmapped_page); 586 } 587 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 588 ret = -EFAULT; 589 goto out; 590 } 591 } 592 } 593 ret = 0; 594 out: 595 if (kmapped_page) { 596 flush_kernel_dcache_page(kmapped_page); 597 kunmap(kmapped_page); 598 put_arg_page(kmapped_page); 599 } 600 return ret; 601 } 602 603 /* 604 * Copy and argument/environment string from the kernel to the processes stack. 605 */ 606 int copy_string_kernel(const char *arg, struct linux_binprm *bprm) 607 { 608 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */; 609 unsigned long pos = bprm->p; 610 611 if (len == 0) 612 return -EFAULT; 613 if (!valid_arg_len(bprm, len)) 614 return -E2BIG; 615 616 /* We're going to work our way backwards. */ 617 arg += len; 618 bprm->p -= len; 619 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin) 620 return -E2BIG; 621 622 while (len > 0) { 623 unsigned int bytes_to_copy = min_t(unsigned int, len, 624 min_not_zero(offset_in_page(pos), PAGE_SIZE)); 625 struct page *page; 626 char *kaddr; 627 628 pos -= bytes_to_copy; 629 arg -= bytes_to_copy; 630 len -= bytes_to_copy; 631 632 page = get_arg_page(bprm, pos, 1); 633 if (!page) 634 return -E2BIG; 635 kaddr = kmap_atomic(page); 636 flush_arg_page(bprm, pos & PAGE_MASK, page); 637 memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy); 638 flush_kernel_dcache_page(page); 639 kunmap_atomic(kaddr); 640 put_arg_page(page); 641 } 642 643 return 0; 644 } 645 EXPORT_SYMBOL(copy_string_kernel); 646 647 static int copy_strings_kernel(int argc, const char *const *argv, 648 struct linux_binprm *bprm) 649 { 650 while (argc-- > 0) { 651 int ret = copy_string_kernel(argv[argc], bprm); 652 if (ret < 0) 653 return ret; 654 if (fatal_signal_pending(current)) 655 return -ERESTARTNOHAND; 656 cond_resched(); 657 } 658 return 0; 659 } 660 661 #ifdef CONFIG_MMU 662 663 /* 664 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 665 * the binfmt code determines where the new stack should reside, we shift it to 666 * its final location. The process proceeds as follows: 667 * 668 * 1) Use shift to calculate the new vma endpoints. 669 * 2) Extend vma to cover both the old and new ranges. This ensures the 670 * arguments passed to subsequent functions are consistent. 671 * 3) Move vma's page tables to the new range. 672 * 4) Free up any cleared pgd range. 673 * 5) Shrink the vma to cover only the new range. 674 */ 675 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 676 { 677 struct mm_struct *mm = vma->vm_mm; 678 unsigned long old_start = vma->vm_start; 679 unsigned long old_end = vma->vm_end; 680 unsigned long length = old_end - old_start; 681 unsigned long new_start = old_start - shift; 682 unsigned long new_end = old_end - shift; 683 struct mmu_gather tlb; 684 685 BUG_ON(new_start > new_end); 686 687 /* 688 * ensure there are no vmas between where we want to go 689 * and where we are 690 */ 691 if (vma != find_vma(mm, new_start)) 692 return -EFAULT; 693 694 /* 695 * cover the whole range: [new_start, old_end) 696 */ 697 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 698 return -ENOMEM; 699 700 /* 701 * move the page tables downwards, on failure we rely on 702 * process cleanup to remove whatever mess we made. 703 */ 704 if (length != move_page_tables(vma, old_start, 705 vma, new_start, length, false)) 706 return -ENOMEM; 707 708 lru_add_drain(); 709 tlb_gather_mmu(&tlb, mm, old_start, old_end); 710 if (new_end > old_start) { 711 /* 712 * when the old and new regions overlap clear from new_end. 713 */ 714 free_pgd_range(&tlb, new_end, old_end, new_end, 715 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 716 } else { 717 /* 718 * otherwise, clean from old_start; this is done to not touch 719 * the address space in [new_end, old_start) some architectures 720 * have constraints on va-space that make this illegal (IA64) - 721 * for the others its just a little faster. 722 */ 723 free_pgd_range(&tlb, old_start, old_end, new_end, 724 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 725 } 726 tlb_finish_mmu(&tlb, old_start, old_end); 727 728 /* 729 * Shrink the vma to just the new range. Always succeeds. 730 */ 731 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 732 733 return 0; 734 } 735 736 /* 737 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 738 * the stack is optionally relocated, and some extra space is added. 739 */ 740 int setup_arg_pages(struct linux_binprm *bprm, 741 unsigned long stack_top, 742 int executable_stack) 743 { 744 unsigned long ret; 745 unsigned long stack_shift; 746 struct mm_struct *mm = current->mm; 747 struct vm_area_struct *vma = bprm->vma; 748 struct vm_area_struct *prev = NULL; 749 unsigned long vm_flags; 750 unsigned long stack_base; 751 unsigned long stack_size; 752 unsigned long stack_expand; 753 unsigned long rlim_stack; 754 755 #ifdef CONFIG_STACK_GROWSUP 756 /* Limit stack size */ 757 stack_base = bprm->rlim_stack.rlim_max; 758 if (stack_base > STACK_SIZE_MAX) 759 stack_base = STACK_SIZE_MAX; 760 761 /* Add space for stack randomization. */ 762 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 763 764 /* Make sure we didn't let the argument array grow too large. */ 765 if (vma->vm_end - vma->vm_start > stack_base) 766 return -ENOMEM; 767 768 stack_base = PAGE_ALIGN(stack_top - stack_base); 769 770 stack_shift = vma->vm_start - stack_base; 771 mm->arg_start = bprm->p - stack_shift; 772 bprm->p = vma->vm_end - stack_shift; 773 #else 774 stack_top = arch_align_stack(stack_top); 775 stack_top = PAGE_ALIGN(stack_top); 776 777 if (unlikely(stack_top < mmap_min_addr) || 778 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 779 return -ENOMEM; 780 781 stack_shift = vma->vm_end - stack_top; 782 783 bprm->p -= stack_shift; 784 mm->arg_start = bprm->p; 785 #endif 786 787 if (bprm->loader) 788 bprm->loader -= stack_shift; 789 bprm->exec -= stack_shift; 790 791 if (mmap_write_lock_killable(mm)) 792 return -EINTR; 793 794 vm_flags = VM_STACK_FLAGS; 795 796 /* 797 * Adjust stack execute permissions; explicitly enable for 798 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 799 * (arch default) otherwise. 800 */ 801 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 802 vm_flags |= VM_EXEC; 803 else if (executable_stack == EXSTACK_DISABLE_X) 804 vm_flags &= ~VM_EXEC; 805 vm_flags |= mm->def_flags; 806 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 807 808 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 809 vm_flags); 810 if (ret) 811 goto out_unlock; 812 BUG_ON(prev != vma); 813 814 if (unlikely(vm_flags & VM_EXEC)) { 815 pr_warn_once("process '%pD4' started with executable stack\n", 816 bprm->file); 817 } 818 819 /* Move stack pages down in memory. */ 820 if (stack_shift) { 821 ret = shift_arg_pages(vma, stack_shift); 822 if (ret) 823 goto out_unlock; 824 } 825 826 /* mprotect_fixup is overkill to remove the temporary stack flags */ 827 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 828 829 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 830 stack_size = vma->vm_end - vma->vm_start; 831 /* 832 * Align this down to a page boundary as expand_stack 833 * will align it up. 834 */ 835 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 836 #ifdef CONFIG_STACK_GROWSUP 837 if (stack_size + stack_expand > rlim_stack) 838 stack_base = vma->vm_start + rlim_stack; 839 else 840 stack_base = vma->vm_end + stack_expand; 841 #else 842 if (stack_size + stack_expand > rlim_stack) 843 stack_base = vma->vm_end - rlim_stack; 844 else 845 stack_base = vma->vm_start - stack_expand; 846 #endif 847 current->mm->start_stack = bprm->p; 848 ret = expand_stack(vma, stack_base); 849 if (ret) 850 ret = -EFAULT; 851 852 out_unlock: 853 mmap_write_unlock(mm); 854 return ret; 855 } 856 EXPORT_SYMBOL(setup_arg_pages); 857 858 #else 859 860 /* 861 * Transfer the program arguments and environment from the holding pages 862 * onto the stack. The provided stack pointer is adjusted accordingly. 863 */ 864 int transfer_args_to_stack(struct linux_binprm *bprm, 865 unsigned long *sp_location) 866 { 867 unsigned long index, stop, sp; 868 int ret = 0; 869 870 stop = bprm->p >> PAGE_SHIFT; 871 sp = *sp_location; 872 873 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 874 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 875 char *src = kmap(bprm->page[index]) + offset; 876 sp -= PAGE_SIZE - offset; 877 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 878 ret = -EFAULT; 879 kunmap(bprm->page[index]); 880 if (ret) 881 goto out; 882 } 883 884 *sp_location = sp; 885 886 out: 887 return ret; 888 } 889 EXPORT_SYMBOL(transfer_args_to_stack); 890 891 #endif /* CONFIG_MMU */ 892 893 static struct file *do_open_execat(int fd, struct filename *name, int flags) 894 { 895 struct file *file; 896 int err; 897 struct open_flags open_exec_flags = { 898 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 899 .acc_mode = MAY_EXEC, 900 .intent = LOOKUP_OPEN, 901 .lookup_flags = LOOKUP_FOLLOW, 902 }; 903 904 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 905 return ERR_PTR(-EINVAL); 906 if (flags & AT_SYMLINK_NOFOLLOW) 907 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 908 if (flags & AT_EMPTY_PATH) 909 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 910 911 file = do_filp_open(fd, name, &open_exec_flags); 912 if (IS_ERR(file)) 913 goto out; 914 915 /* 916 * may_open() has already checked for this, so it should be 917 * impossible to trip now. But we need to be extra cautious 918 * and check again at the very end too. 919 */ 920 err = -EACCES; 921 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 922 path_noexec(&file->f_path))) 923 goto exit; 924 925 err = deny_write_access(file); 926 if (err) 927 goto exit; 928 929 if (name->name[0] != '\0') 930 fsnotify_open(file); 931 932 out: 933 return file; 934 935 exit: 936 fput(file); 937 return ERR_PTR(err); 938 } 939 940 struct file *open_exec(const char *name) 941 { 942 struct filename *filename = getname_kernel(name); 943 struct file *f = ERR_CAST(filename); 944 945 if (!IS_ERR(filename)) { 946 f = do_open_execat(AT_FDCWD, filename, 0); 947 putname(filename); 948 } 949 return f; 950 } 951 EXPORT_SYMBOL(open_exec); 952 953 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \ 954 defined(CONFIG_BINFMT_ELF_FDPIC) 955 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 956 { 957 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 958 if (res > 0) 959 flush_icache_user_range(addr, addr + len); 960 return res; 961 } 962 EXPORT_SYMBOL(read_code); 963 #endif 964 965 /* 966 * Maps the mm_struct mm into the current task struct. 967 * On success, this function returns with the mutex 968 * exec_update_mutex locked. 969 */ 970 static int exec_mmap(struct mm_struct *mm) 971 { 972 struct task_struct *tsk; 973 struct mm_struct *old_mm, *active_mm; 974 int ret; 975 976 /* Notify parent that we're no longer interested in the old VM */ 977 tsk = current; 978 old_mm = current->mm; 979 exec_mm_release(tsk, old_mm); 980 if (old_mm) 981 sync_mm_rss(old_mm); 982 983 ret = mutex_lock_killable(&tsk->signal->exec_update_mutex); 984 if (ret) 985 return ret; 986 987 if (old_mm) { 988 /* 989 * Make sure that if there is a core dump in progress 990 * for the old mm, we get out and die instead of going 991 * through with the exec. We must hold mmap_lock around 992 * checking core_state and changing tsk->mm. 993 */ 994 mmap_read_lock(old_mm); 995 if (unlikely(old_mm->core_state)) { 996 mmap_read_unlock(old_mm); 997 mutex_unlock(&tsk->signal->exec_update_mutex); 998 return -EINTR; 999 } 1000 } 1001 1002 task_lock(tsk); 1003 active_mm = tsk->active_mm; 1004 membarrier_exec_mmap(mm); 1005 tsk->mm = mm; 1006 tsk->active_mm = mm; 1007 activate_mm(active_mm, mm); 1008 tsk->mm->vmacache_seqnum = 0; 1009 vmacache_flush(tsk); 1010 task_unlock(tsk); 1011 if (old_mm) { 1012 mmap_read_unlock(old_mm); 1013 BUG_ON(active_mm != old_mm); 1014 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1015 mm_update_next_owner(old_mm); 1016 mmput(old_mm); 1017 return 0; 1018 } 1019 mmdrop(active_mm); 1020 return 0; 1021 } 1022 1023 static int de_thread(struct task_struct *tsk) 1024 { 1025 struct signal_struct *sig = tsk->signal; 1026 struct sighand_struct *oldsighand = tsk->sighand; 1027 spinlock_t *lock = &oldsighand->siglock; 1028 1029 if (thread_group_empty(tsk)) 1030 goto no_thread_group; 1031 1032 /* 1033 * Kill all other threads in the thread group. 1034 */ 1035 spin_lock_irq(lock); 1036 if (signal_group_exit(sig)) { 1037 /* 1038 * Another group action in progress, just 1039 * return so that the signal is processed. 1040 */ 1041 spin_unlock_irq(lock); 1042 return -EAGAIN; 1043 } 1044 1045 sig->group_exit_task = tsk; 1046 sig->notify_count = zap_other_threads(tsk); 1047 if (!thread_group_leader(tsk)) 1048 sig->notify_count--; 1049 1050 while (sig->notify_count) { 1051 __set_current_state(TASK_KILLABLE); 1052 spin_unlock_irq(lock); 1053 schedule(); 1054 if (__fatal_signal_pending(tsk)) 1055 goto killed; 1056 spin_lock_irq(lock); 1057 } 1058 spin_unlock_irq(lock); 1059 1060 /* 1061 * At this point all other threads have exited, all we have to 1062 * do is to wait for the thread group leader to become inactive, 1063 * and to assume its PID: 1064 */ 1065 if (!thread_group_leader(tsk)) { 1066 struct task_struct *leader = tsk->group_leader; 1067 1068 for (;;) { 1069 cgroup_threadgroup_change_begin(tsk); 1070 write_lock_irq(&tasklist_lock); 1071 /* 1072 * Do this under tasklist_lock to ensure that 1073 * exit_notify() can't miss ->group_exit_task 1074 */ 1075 sig->notify_count = -1; 1076 if (likely(leader->exit_state)) 1077 break; 1078 __set_current_state(TASK_KILLABLE); 1079 write_unlock_irq(&tasklist_lock); 1080 cgroup_threadgroup_change_end(tsk); 1081 schedule(); 1082 if (__fatal_signal_pending(tsk)) 1083 goto killed; 1084 } 1085 1086 /* 1087 * The only record we have of the real-time age of a 1088 * process, regardless of execs it's done, is start_time. 1089 * All the past CPU time is accumulated in signal_struct 1090 * from sister threads now dead. But in this non-leader 1091 * exec, nothing survives from the original leader thread, 1092 * whose birth marks the true age of this process now. 1093 * When we take on its identity by switching to its PID, we 1094 * also take its birthdate (always earlier than our own). 1095 */ 1096 tsk->start_time = leader->start_time; 1097 tsk->start_boottime = leader->start_boottime; 1098 1099 BUG_ON(!same_thread_group(leader, tsk)); 1100 /* 1101 * An exec() starts a new thread group with the 1102 * TGID of the previous thread group. Rehash the 1103 * two threads with a switched PID, and release 1104 * the former thread group leader: 1105 */ 1106 1107 /* Become a process group leader with the old leader's pid. 1108 * The old leader becomes a thread of the this thread group. 1109 */ 1110 exchange_tids(tsk, leader); 1111 transfer_pid(leader, tsk, PIDTYPE_TGID); 1112 transfer_pid(leader, tsk, PIDTYPE_PGID); 1113 transfer_pid(leader, tsk, PIDTYPE_SID); 1114 1115 list_replace_rcu(&leader->tasks, &tsk->tasks); 1116 list_replace_init(&leader->sibling, &tsk->sibling); 1117 1118 tsk->group_leader = tsk; 1119 leader->group_leader = tsk; 1120 1121 tsk->exit_signal = SIGCHLD; 1122 leader->exit_signal = -1; 1123 1124 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1125 leader->exit_state = EXIT_DEAD; 1126 1127 /* 1128 * We are going to release_task()->ptrace_unlink() silently, 1129 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1130 * the tracer wont't block again waiting for this thread. 1131 */ 1132 if (unlikely(leader->ptrace)) 1133 __wake_up_parent(leader, leader->parent); 1134 write_unlock_irq(&tasklist_lock); 1135 cgroup_threadgroup_change_end(tsk); 1136 1137 release_task(leader); 1138 } 1139 1140 sig->group_exit_task = NULL; 1141 sig->notify_count = 0; 1142 1143 no_thread_group: 1144 /* we have changed execution domain */ 1145 tsk->exit_signal = SIGCHLD; 1146 1147 BUG_ON(!thread_group_leader(tsk)); 1148 return 0; 1149 1150 killed: 1151 /* protects against exit_notify() and __exit_signal() */ 1152 read_lock(&tasklist_lock); 1153 sig->group_exit_task = NULL; 1154 sig->notify_count = 0; 1155 read_unlock(&tasklist_lock); 1156 return -EAGAIN; 1157 } 1158 1159 1160 /* 1161 * This function makes sure the current process has its own signal table, 1162 * so that flush_signal_handlers can later reset the handlers without 1163 * disturbing other processes. (Other processes might share the signal 1164 * table via the CLONE_SIGHAND option to clone().) 1165 */ 1166 static int unshare_sighand(struct task_struct *me) 1167 { 1168 struct sighand_struct *oldsighand = me->sighand; 1169 1170 if (refcount_read(&oldsighand->count) != 1) { 1171 struct sighand_struct *newsighand; 1172 /* 1173 * This ->sighand is shared with the CLONE_SIGHAND 1174 * but not CLONE_THREAD task, switch to the new one. 1175 */ 1176 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1177 if (!newsighand) 1178 return -ENOMEM; 1179 1180 refcount_set(&newsighand->count, 1); 1181 memcpy(newsighand->action, oldsighand->action, 1182 sizeof(newsighand->action)); 1183 1184 write_lock_irq(&tasklist_lock); 1185 spin_lock(&oldsighand->siglock); 1186 rcu_assign_pointer(me->sighand, newsighand); 1187 spin_unlock(&oldsighand->siglock); 1188 write_unlock_irq(&tasklist_lock); 1189 1190 __cleanup_sighand(oldsighand); 1191 } 1192 return 0; 1193 } 1194 1195 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk) 1196 { 1197 task_lock(tsk); 1198 strncpy(buf, tsk->comm, buf_size); 1199 task_unlock(tsk); 1200 return buf; 1201 } 1202 EXPORT_SYMBOL_GPL(__get_task_comm); 1203 1204 /* 1205 * These functions flushes out all traces of the currently running executable 1206 * so that a new one can be started 1207 */ 1208 1209 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1210 { 1211 task_lock(tsk); 1212 trace_task_rename(tsk, buf); 1213 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1214 task_unlock(tsk); 1215 perf_event_comm(tsk, exec); 1216 } 1217 1218 /* 1219 * Calling this is the point of no return. None of the failures will be 1220 * seen by userspace since either the process is already taking a fatal 1221 * signal (via de_thread() or coredump), or will have SEGV raised 1222 * (after exec_mmap()) by search_binary_handler (see below). 1223 */ 1224 int begin_new_exec(struct linux_binprm * bprm) 1225 { 1226 struct task_struct *me = current; 1227 int retval; 1228 1229 /* Once we are committed compute the creds */ 1230 retval = bprm_creds_from_file(bprm); 1231 if (retval) 1232 return retval; 1233 1234 /* 1235 * Ensure all future errors are fatal. 1236 */ 1237 bprm->point_of_no_return = true; 1238 1239 /* 1240 * Make this the only thread in the thread group. 1241 */ 1242 retval = de_thread(me); 1243 if (retval) 1244 goto out; 1245 1246 /* 1247 * Must be called _before_ exec_mmap() as bprm->mm is 1248 * not visibile until then. This also enables the update 1249 * to be lockless. 1250 */ 1251 set_mm_exe_file(bprm->mm, bprm->file); 1252 1253 /* If the binary is not readable then enforce mm->dumpable=0 */ 1254 would_dump(bprm, bprm->file); 1255 if (bprm->have_execfd) 1256 would_dump(bprm, bprm->executable); 1257 1258 /* 1259 * Release all of the old mmap stuff 1260 */ 1261 acct_arg_size(bprm, 0); 1262 retval = exec_mmap(bprm->mm); 1263 if (retval) 1264 goto out; 1265 1266 bprm->mm = NULL; 1267 1268 #ifdef CONFIG_POSIX_TIMERS 1269 exit_itimers(me->signal); 1270 flush_itimer_signals(); 1271 #endif 1272 1273 /* 1274 * Make the signal table private. 1275 */ 1276 retval = unshare_sighand(me); 1277 if (retval) 1278 goto out_unlock; 1279 1280 /* 1281 * Ensure that the uaccess routines can actually operate on userspace 1282 * pointers: 1283 */ 1284 force_uaccess_begin(); 1285 1286 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | 1287 PF_NOFREEZE | PF_NO_SETAFFINITY); 1288 flush_thread(); 1289 me->personality &= ~bprm->per_clear; 1290 1291 /* 1292 * We have to apply CLOEXEC before we change whether the process is 1293 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1294 * trying to access the should-be-closed file descriptors of a process 1295 * undergoing exec(2). 1296 */ 1297 do_close_on_exec(me->files); 1298 1299 if (bprm->secureexec) { 1300 /* Make sure parent cannot signal privileged process. */ 1301 me->pdeath_signal = 0; 1302 1303 /* 1304 * For secureexec, reset the stack limit to sane default to 1305 * avoid bad behavior from the prior rlimits. This has to 1306 * happen before arch_pick_mmap_layout(), which examines 1307 * RLIMIT_STACK, but after the point of no return to avoid 1308 * needing to clean up the change on failure. 1309 */ 1310 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1311 bprm->rlim_stack.rlim_cur = _STK_LIM; 1312 } 1313 1314 me->sas_ss_sp = me->sas_ss_size = 0; 1315 1316 /* 1317 * Figure out dumpability. Note that this checking only of current 1318 * is wrong, but userspace depends on it. This should be testing 1319 * bprm->secureexec instead. 1320 */ 1321 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1322 !(uid_eq(current_euid(), current_uid()) && 1323 gid_eq(current_egid(), current_gid()))) 1324 set_dumpable(current->mm, suid_dumpable); 1325 else 1326 set_dumpable(current->mm, SUID_DUMP_USER); 1327 1328 perf_event_exec(); 1329 __set_task_comm(me, kbasename(bprm->filename), true); 1330 1331 /* An exec changes our domain. We are no longer part of the thread 1332 group */ 1333 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1); 1334 flush_signal_handlers(me, 0); 1335 1336 /* 1337 * install the new credentials for this executable 1338 */ 1339 security_bprm_committing_creds(bprm); 1340 1341 commit_creds(bprm->cred); 1342 bprm->cred = NULL; 1343 1344 /* 1345 * Disable monitoring for regular users 1346 * when executing setuid binaries. Must 1347 * wait until new credentials are committed 1348 * by commit_creds() above 1349 */ 1350 if (get_dumpable(me->mm) != SUID_DUMP_USER) 1351 perf_event_exit_task(me); 1352 /* 1353 * cred_guard_mutex must be held at least to this point to prevent 1354 * ptrace_attach() from altering our determination of the task's 1355 * credentials; any time after this it may be unlocked. 1356 */ 1357 security_bprm_committed_creds(bprm); 1358 1359 /* Pass the opened binary to the interpreter. */ 1360 if (bprm->have_execfd) { 1361 retval = get_unused_fd_flags(0); 1362 if (retval < 0) 1363 goto out_unlock; 1364 fd_install(retval, bprm->executable); 1365 bprm->executable = NULL; 1366 bprm->execfd = retval; 1367 } 1368 return 0; 1369 1370 out_unlock: 1371 mutex_unlock(&me->signal->exec_update_mutex); 1372 out: 1373 return retval; 1374 } 1375 EXPORT_SYMBOL(begin_new_exec); 1376 1377 void would_dump(struct linux_binprm *bprm, struct file *file) 1378 { 1379 struct inode *inode = file_inode(file); 1380 if (inode_permission(inode, MAY_READ) < 0) { 1381 struct user_namespace *old, *user_ns; 1382 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1383 1384 /* Ensure mm->user_ns contains the executable */ 1385 user_ns = old = bprm->mm->user_ns; 1386 while ((user_ns != &init_user_ns) && 1387 !privileged_wrt_inode_uidgid(user_ns, inode)) 1388 user_ns = user_ns->parent; 1389 1390 if (old != user_ns) { 1391 bprm->mm->user_ns = get_user_ns(user_ns); 1392 put_user_ns(old); 1393 } 1394 } 1395 } 1396 EXPORT_SYMBOL(would_dump); 1397 1398 void setup_new_exec(struct linux_binprm * bprm) 1399 { 1400 /* Setup things that can depend upon the personality */ 1401 struct task_struct *me = current; 1402 1403 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack); 1404 1405 arch_setup_new_exec(); 1406 1407 /* Set the new mm task size. We have to do that late because it may 1408 * depend on TIF_32BIT which is only updated in flush_thread() on 1409 * some architectures like powerpc 1410 */ 1411 me->mm->task_size = TASK_SIZE; 1412 mutex_unlock(&me->signal->exec_update_mutex); 1413 mutex_unlock(&me->signal->cred_guard_mutex); 1414 } 1415 EXPORT_SYMBOL(setup_new_exec); 1416 1417 /* Runs immediately before start_thread() takes over. */ 1418 void finalize_exec(struct linux_binprm *bprm) 1419 { 1420 /* Store any stack rlimit changes before starting thread. */ 1421 task_lock(current->group_leader); 1422 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1423 task_unlock(current->group_leader); 1424 } 1425 EXPORT_SYMBOL(finalize_exec); 1426 1427 /* 1428 * Prepare credentials and lock ->cred_guard_mutex. 1429 * setup_new_exec() commits the new creds and drops the lock. 1430 * Or, if exec fails before, free_bprm() should release ->cred and 1431 * and unlock. 1432 */ 1433 static int prepare_bprm_creds(struct linux_binprm *bprm) 1434 { 1435 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1436 return -ERESTARTNOINTR; 1437 1438 bprm->cred = prepare_exec_creds(); 1439 if (likely(bprm->cred)) 1440 return 0; 1441 1442 mutex_unlock(¤t->signal->cred_guard_mutex); 1443 return -ENOMEM; 1444 } 1445 1446 static void free_bprm(struct linux_binprm *bprm) 1447 { 1448 if (bprm->mm) { 1449 acct_arg_size(bprm, 0); 1450 mmput(bprm->mm); 1451 } 1452 free_arg_pages(bprm); 1453 if (bprm->cred) { 1454 mutex_unlock(¤t->signal->cred_guard_mutex); 1455 abort_creds(bprm->cred); 1456 } 1457 if (bprm->file) { 1458 allow_write_access(bprm->file); 1459 fput(bprm->file); 1460 } 1461 if (bprm->executable) 1462 fput(bprm->executable); 1463 /* If a binfmt changed the interp, free it. */ 1464 if (bprm->interp != bprm->filename) 1465 kfree(bprm->interp); 1466 kfree(bprm->fdpath); 1467 kfree(bprm); 1468 } 1469 1470 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename) 1471 { 1472 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1473 int retval = -ENOMEM; 1474 if (!bprm) 1475 goto out; 1476 1477 if (fd == AT_FDCWD || filename->name[0] == '/') { 1478 bprm->filename = filename->name; 1479 } else { 1480 if (filename->name[0] == '\0') 1481 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1482 else 1483 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1484 fd, filename->name); 1485 if (!bprm->fdpath) 1486 goto out_free; 1487 1488 bprm->filename = bprm->fdpath; 1489 } 1490 bprm->interp = bprm->filename; 1491 1492 retval = bprm_mm_init(bprm); 1493 if (retval) 1494 goto out_free; 1495 return bprm; 1496 1497 out_free: 1498 free_bprm(bprm); 1499 out: 1500 return ERR_PTR(retval); 1501 } 1502 1503 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1504 { 1505 /* If a binfmt changed the interp, free it first. */ 1506 if (bprm->interp != bprm->filename) 1507 kfree(bprm->interp); 1508 bprm->interp = kstrdup(interp, GFP_KERNEL); 1509 if (!bprm->interp) 1510 return -ENOMEM; 1511 return 0; 1512 } 1513 EXPORT_SYMBOL(bprm_change_interp); 1514 1515 /* 1516 * determine how safe it is to execute the proposed program 1517 * - the caller must hold ->cred_guard_mutex to protect against 1518 * PTRACE_ATTACH or seccomp thread-sync 1519 */ 1520 static void check_unsafe_exec(struct linux_binprm *bprm) 1521 { 1522 struct task_struct *p = current, *t; 1523 unsigned n_fs; 1524 1525 if (p->ptrace) 1526 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1527 1528 /* 1529 * This isn't strictly necessary, but it makes it harder for LSMs to 1530 * mess up. 1531 */ 1532 if (task_no_new_privs(current)) 1533 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1534 1535 t = p; 1536 n_fs = 1; 1537 spin_lock(&p->fs->lock); 1538 rcu_read_lock(); 1539 while_each_thread(p, t) { 1540 if (t->fs == p->fs) 1541 n_fs++; 1542 } 1543 rcu_read_unlock(); 1544 1545 if (p->fs->users > n_fs) 1546 bprm->unsafe |= LSM_UNSAFE_SHARE; 1547 else 1548 p->fs->in_exec = 1; 1549 spin_unlock(&p->fs->lock); 1550 } 1551 1552 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file) 1553 { 1554 /* Handle suid and sgid on files */ 1555 struct inode *inode; 1556 unsigned int mode; 1557 kuid_t uid; 1558 kgid_t gid; 1559 1560 if (!mnt_may_suid(file->f_path.mnt)) 1561 return; 1562 1563 if (task_no_new_privs(current)) 1564 return; 1565 1566 inode = file->f_path.dentry->d_inode; 1567 mode = READ_ONCE(inode->i_mode); 1568 if (!(mode & (S_ISUID|S_ISGID))) 1569 return; 1570 1571 /* Be careful if suid/sgid is set */ 1572 inode_lock(inode); 1573 1574 /* reload atomically mode/uid/gid now that lock held */ 1575 mode = inode->i_mode; 1576 uid = inode->i_uid; 1577 gid = inode->i_gid; 1578 inode_unlock(inode); 1579 1580 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1581 if (!kuid_has_mapping(bprm->cred->user_ns, uid) || 1582 !kgid_has_mapping(bprm->cred->user_ns, gid)) 1583 return; 1584 1585 if (mode & S_ISUID) { 1586 bprm->per_clear |= PER_CLEAR_ON_SETID; 1587 bprm->cred->euid = uid; 1588 } 1589 1590 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1591 bprm->per_clear |= PER_CLEAR_ON_SETID; 1592 bprm->cred->egid = gid; 1593 } 1594 } 1595 1596 /* 1597 * Compute brpm->cred based upon the final binary. 1598 */ 1599 static int bprm_creds_from_file(struct linux_binprm *bprm) 1600 { 1601 /* Compute creds based on which file? */ 1602 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file; 1603 1604 bprm_fill_uid(bprm, file); 1605 return security_bprm_creds_from_file(bprm, file); 1606 } 1607 1608 /* 1609 * Fill the binprm structure from the inode. 1610 * Read the first BINPRM_BUF_SIZE bytes 1611 * 1612 * This may be called multiple times for binary chains (scripts for example). 1613 */ 1614 static int prepare_binprm(struct linux_binprm *bprm) 1615 { 1616 loff_t pos = 0; 1617 1618 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1619 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1620 } 1621 1622 /* 1623 * Arguments are '\0' separated strings found at the location bprm->p 1624 * points to; chop off the first by relocating brpm->p to right after 1625 * the first '\0' encountered. 1626 */ 1627 int remove_arg_zero(struct linux_binprm *bprm) 1628 { 1629 int ret = 0; 1630 unsigned long offset; 1631 char *kaddr; 1632 struct page *page; 1633 1634 if (!bprm->argc) 1635 return 0; 1636 1637 do { 1638 offset = bprm->p & ~PAGE_MASK; 1639 page = get_arg_page(bprm, bprm->p, 0); 1640 if (!page) { 1641 ret = -EFAULT; 1642 goto out; 1643 } 1644 kaddr = kmap_atomic(page); 1645 1646 for (; offset < PAGE_SIZE && kaddr[offset]; 1647 offset++, bprm->p++) 1648 ; 1649 1650 kunmap_atomic(kaddr); 1651 put_arg_page(page); 1652 } while (offset == PAGE_SIZE); 1653 1654 bprm->p++; 1655 bprm->argc--; 1656 ret = 0; 1657 1658 out: 1659 return ret; 1660 } 1661 EXPORT_SYMBOL(remove_arg_zero); 1662 1663 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1664 /* 1665 * cycle the list of binary formats handler, until one recognizes the image 1666 */ 1667 static int search_binary_handler(struct linux_binprm *bprm) 1668 { 1669 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1670 struct linux_binfmt *fmt; 1671 int retval; 1672 1673 retval = prepare_binprm(bprm); 1674 if (retval < 0) 1675 return retval; 1676 1677 retval = security_bprm_check(bprm); 1678 if (retval) 1679 return retval; 1680 1681 retval = -ENOENT; 1682 retry: 1683 read_lock(&binfmt_lock); 1684 list_for_each_entry(fmt, &formats, lh) { 1685 if (!try_module_get(fmt->module)) 1686 continue; 1687 read_unlock(&binfmt_lock); 1688 1689 retval = fmt->load_binary(bprm); 1690 1691 read_lock(&binfmt_lock); 1692 put_binfmt(fmt); 1693 if (bprm->point_of_no_return || (retval != -ENOEXEC)) { 1694 read_unlock(&binfmt_lock); 1695 return retval; 1696 } 1697 } 1698 read_unlock(&binfmt_lock); 1699 1700 if (need_retry) { 1701 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1702 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1703 return retval; 1704 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1705 return retval; 1706 need_retry = false; 1707 goto retry; 1708 } 1709 1710 return retval; 1711 } 1712 1713 static int exec_binprm(struct linux_binprm *bprm) 1714 { 1715 pid_t old_pid, old_vpid; 1716 int ret, depth; 1717 1718 /* Need to fetch pid before load_binary changes it */ 1719 old_pid = current->pid; 1720 rcu_read_lock(); 1721 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1722 rcu_read_unlock(); 1723 1724 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1725 for (depth = 0;; depth++) { 1726 struct file *exec; 1727 if (depth > 5) 1728 return -ELOOP; 1729 1730 ret = search_binary_handler(bprm); 1731 if (ret < 0) 1732 return ret; 1733 if (!bprm->interpreter) 1734 break; 1735 1736 exec = bprm->file; 1737 bprm->file = bprm->interpreter; 1738 bprm->interpreter = NULL; 1739 1740 allow_write_access(exec); 1741 if (unlikely(bprm->have_execfd)) { 1742 if (bprm->executable) { 1743 fput(exec); 1744 return -ENOEXEC; 1745 } 1746 bprm->executable = exec; 1747 } else 1748 fput(exec); 1749 } 1750 1751 audit_bprm(bprm); 1752 trace_sched_process_exec(current, old_pid, bprm); 1753 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1754 proc_exec_connector(current); 1755 return 0; 1756 } 1757 1758 /* 1759 * sys_execve() executes a new program. 1760 */ 1761 static int bprm_execve(struct linux_binprm *bprm, 1762 int fd, struct filename *filename, int flags) 1763 { 1764 struct file *file; 1765 struct files_struct *displaced; 1766 int retval; 1767 1768 retval = unshare_files(&displaced); 1769 if (retval) 1770 return retval; 1771 1772 retval = prepare_bprm_creds(bprm); 1773 if (retval) 1774 goto out_files; 1775 1776 check_unsafe_exec(bprm); 1777 current->in_execve = 1; 1778 1779 file = do_open_execat(fd, filename, flags); 1780 retval = PTR_ERR(file); 1781 if (IS_ERR(file)) 1782 goto out_unmark; 1783 1784 sched_exec(); 1785 1786 bprm->file = file; 1787 /* 1788 * Record that a name derived from an O_CLOEXEC fd will be 1789 * inaccessible after exec. Relies on having exclusive access to 1790 * current->files (due to unshare_files above). 1791 */ 1792 if (bprm->fdpath && 1793 close_on_exec(fd, rcu_dereference_raw(current->files->fdt))) 1794 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1795 1796 /* Set the unchanging part of bprm->cred */ 1797 retval = security_bprm_creds_for_exec(bprm); 1798 if (retval) 1799 goto out; 1800 1801 retval = exec_binprm(bprm); 1802 if (retval < 0) 1803 goto out; 1804 1805 /* execve succeeded */ 1806 current->fs->in_exec = 0; 1807 current->in_execve = 0; 1808 rseq_execve(current); 1809 acct_update_integrals(current); 1810 task_numa_free(current, false); 1811 if (displaced) 1812 put_files_struct(displaced); 1813 return retval; 1814 1815 out: 1816 /* 1817 * If past the point of no return ensure the the code never 1818 * returns to the userspace process. Use an existing fatal 1819 * signal if present otherwise terminate the process with 1820 * SIGSEGV. 1821 */ 1822 if (bprm->point_of_no_return && !fatal_signal_pending(current)) 1823 force_sigsegv(SIGSEGV); 1824 1825 out_unmark: 1826 current->fs->in_exec = 0; 1827 current->in_execve = 0; 1828 1829 out_files: 1830 if (displaced) 1831 reset_files_struct(displaced); 1832 1833 return retval; 1834 } 1835 1836 static int do_execveat_common(int fd, struct filename *filename, 1837 struct user_arg_ptr argv, 1838 struct user_arg_ptr envp, 1839 int flags) 1840 { 1841 struct linux_binprm *bprm; 1842 int retval; 1843 1844 if (IS_ERR(filename)) 1845 return PTR_ERR(filename); 1846 1847 /* 1848 * We move the actual failure in case of RLIMIT_NPROC excess from 1849 * set*uid() to execve() because too many poorly written programs 1850 * don't check setuid() return code. Here we additionally recheck 1851 * whether NPROC limit is still exceeded. 1852 */ 1853 if ((current->flags & PF_NPROC_EXCEEDED) && 1854 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) { 1855 retval = -EAGAIN; 1856 goto out_ret; 1857 } 1858 1859 /* We're below the limit (still or again), so we don't want to make 1860 * further execve() calls fail. */ 1861 current->flags &= ~PF_NPROC_EXCEEDED; 1862 1863 bprm = alloc_bprm(fd, filename); 1864 if (IS_ERR(bprm)) { 1865 retval = PTR_ERR(bprm); 1866 goto out_ret; 1867 } 1868 1869 retval = count(argv, MAX_ARG_STRINGS); 1870 if (retval < 0) 1871 goto out_free; 1872 bprm->argc = retval; 1873 1874 retval = count(envp, MAX_ARG_STRINGS); 1875 if (retval < 0) 1876 goto out_free; 1877 bprm->envc = retval; 1878 1879 retval = bprm_stack_limits(bprm); 1880 if (retval < 0) 1881 goto out_free; 1882 1883 retval = copy_string_kernel(bprm->filename, bprm); 1884 if (retval < 0) 1885 goto out_free; 1886 bprm->exec = bprm->p; 1887 1888 retval = copy_strings(bprm->envc, envp, bprm); 1889 if (retval < 0) 1890 goto out_free; 1891 1892 retval = copy_strings(bprm->argc, argv, bprm); 1893 if (retval < 0) 1894 goto out_free; 1895 1896 retval = bprm_execve(bprm, fd, filename, flags); 1897 out_free: 1898 free_bprm(bprm); 1899 1900 out_ret: 1901 putname(filename); 1902 return retval; 1903 } 1904 1905 int kernel_execve(const char *kernel_filename, 1906 const char *const *argv, const char *const *envp) 1907 { 1908 struct filename *filename; 1909 struct linux_binprm *bprm; 1910 int fd = AT_FDCWD; 1911 int retval; 1912 1913 filename = getname_kernel(kernel_filename); 1914 if (IS_ERR(filename)) 1915 return PTR_ERR(filename); 1916 1917 bprm = alloc_bprm(fd, filename); 1918 if (IS_ERR(bprm)) { 1919 retval = PTR_ERR(bprm); 1920 goto out_ret; 1921 } 1922 1923 retval = count_strings_kernel(argv); 1924 if (retval < 0) 1925 goto out_free; 1926 bprm->argc = retval; 1927 1928 retval = count_strings_kernel(envp); 1929 if (retval < 0) 1930 goto out_free; 1931 bprm->envc = retval; 1932 1933 retval = bprm_stack_limits(bprm); 1934 if (retval < 0) 1935 goto out_free; 1936 1937 retval = copy_string_kernel(bprm->filename, bprm); 1938 if (retval < 0) 1939 goto out_free; 1940 bprm->exec = bprm->p; 1941 1942 retval = copy_strings_kernel(bprm->envc, envp, bprm); 1943 if (retval < 0) 1944 goto out_free; 1945 1946 retval = copy_strings_kernel(bprm->argc, argv, bprm); 1947 if (retval < 0) 1948 goto out_free; 1949 1950 retval = bprm_execve(bprm, fd, filename, 0); 1951 out_free: 1952 free_bprm(bprm); 1953 out_ret: 1954 putname(filename); 1955 return retval; 1956 } 1957 1958 static int do_execve(struct filename *filename, 1959 const char __user *const __user *__argv, 1960 const char __user *const __user *__envp) 1961 { 1962 struct user_arg_ptr argv = { .ptr.native = __argv }; 1963 struct user_arg_ptr envp = { .ptr.native = __envp }; 1964 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 1965 } 1966 1967 static int do_execveat(int fd, struct filename *filename, 1968 const char __user *const __user *__argv, 1969 const char __user *const __user *__envp, 1970 int flags) 1971 { 1972 struct user_arg_ptr argv = { .ptr.native = __argv }; 1973 struct user_arg_ptr envp = { .ptr.native = __envp }; 1974 1975 return do_execveat_common(fd, filename, argv, envp, flags); 1976 } 1977 1978 #ifdef CONFIG_COMPAT 1979 static int compat_do_execve(struct filename *filename, 1980 const compat_uptr_t __user *__argv, 1981 const compat_uptr_t __user *__envp) 1982 { 1983 struct user_arg_ptr argv = { 1984 .is_compat = true, 1985 .ptr.compat = __argv, 1986 }; 1987 struct user_arg_ptr envp = { 1988 .is_compat = true, 1989 .ptr.compat = __envp, 1990 }; 1991 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 1992 } 1993 1994 static int compat_do_execveat(int fd, struct filename *filename, 1995 const compat_uptr_t __user *__argv, 1996 const compat_uptr_t __user *__envp, 1997 int flags) 1998 { 1999 struct user_arg_ptr argv = { 2000 .is_compat = true, 2001 .ptr.compat = __argv, 2002 }; 2003 struct user_arg_ptr envp = { 2004 .is_compat = true, 2005 .ptr.compat = __envp, 2006 }; 2007 return do_execveat_common(fd, filename, argv, envp, flags); 2008 } 2009 #endif 2010 2011 void set_binfmt(struct linux_binfmt *new) 2012 { 2013 struct mm_struct *mm = current->mm; 2014 2015 if (mm->binfmt) 2016 module_put(mm->binfmt->module); 2017 2018 mm->binfmt = new; 2019 if (new) 2020 __module_get(new->module); 2021 } 2022 EXPORT_SYMBOL(set_binfmt); 2023 2024 /* 2025 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 2026 */ 2027 void set_dumpable(struct mm_struct *mm, int value) 2028 { 2029 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 2030 return; 2031 2032 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value); 2033 } 2034 2035 SYSCALL_DEFINE3(execve, 2036 const char __user *, filename, 2037 const char __user *const __user *, argv, 2038 const char __user *const __user *, envp) 2039 { 2040 return do_execve(getname(filename), argv, envp); 2041 } 2042 2043 SYSCALL_DEFINE5(execveat, 2044 int, fd, const char __user *, filename, 2045 const char __user *const __user *, argv, 2046 const char __user *const __user *, envp, 2047 int, flags) 2048 { 2049 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 2050 2051 return do_execveat(fd, 2052 getname_flags(filename, lookup_flags, NULL), 2053 argv, envp, flags); 2054 } 2055 2056 #ifdef CONFIG_COMPAT 2057 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 2058 const compat_uptr_t __user *, argv, 2059 const compat_uptr_t __user *, envp) 2060 { 2061 return compat_do_execve(getname(filename), argv, envp); 2062 } 2063 2064 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 2065 const char __user *, filename, 2066 const compat_uptr_t __user *, argv, 2067 const compat_uptr_t __user *, envp, 2068 int, flags) 2069 { 2070 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 2071 2072 return compat_do_execveat(fd, 2073 getname_flags(filename, lookup_flags, NULL), 2074 argv, envp, flags); 2075 } 2076 #endif 2077