1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/exec.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * #!-checking implemented by tytso. 10 */ 11 /* 12 * Demand-loading implemented 01.12.91 - no need to read anything but 13 * the header into memory. The inode of the executable is put into 14 * "current->executable", and page faults do the actual loading. Clean. 15 * 16 * Once more I can proudly say that linux stood up to being changed: it 17 * was less than 2 hours work to get demand-loading completely implemented. 18 * 19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 20 * current->executable is only used by the procfs. This allows a dispatch 21 * table to check for several different types of binary formats. We keep 22 * trying until we recognize the file or we run out of supported binary 23 * formats. 24 */ 25 26 #include <linux/kernel_read_file.h> 27 #include <linux/slab.h> 28 #include <linux/file.h> 29 #include <linux/fdtable.h> 30 #include <linux/mm.h> 31 #include <linux/stat.h> 32 #include <linux/fcntl.h> 33 #include <linux/swap.h> 34 #include <linux/string.h> 35 #include <linux/init.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/coredump.h> 38 #include <linux/sched/signal.h> 39 #include <linux/sched/numa_balancing.h> 40 #include <linux/sched/task.h> 41 #include <linux/pagemap.h> 42 #include <linux/perf_event.h> 43 #include <linux/highmem.h> 44 #include <linux/spinlock.h> 45 #include <linux/key.h> 46 #include <linux/personality.h> 47 #include <linux/binfmts.h> 48 #include <linux/utsname.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/module.h> 51 #include <linux/namei.h> 52 #include <linux/mount.h> 53 #include <linux/security.h> 54 #include <linux/syscalls.h> 55 #include <linux/tsacct_kern.h> 56 #include <linux/cn_proc.h> 57 #include <linux/audit.h> 58 #include <linux/kmod.h> 59 #include <linux/fsnotify.h> 60 #include <linux/fs_struct.h> 61 #include <linux/oom.h> 62 #include <linux/compat.h> 63 #include <linux/vmalloc.h> 64 #include <linux/io_uring.h> 65 #include <linux/syscall_user_dispatch.h> 66 #include <linux/coredump.h> 67 #include <linux/time_namespace.h> 68 69 #include <linux/uaccess.h> 70 #include <asm/mmu_context.h> 71 #include <asm/tlb.h> 72 73 #include <trace/events/task.h> 74 #include "internal.h" 75 76 #include <trace/events/sched.h> 77 78 static int bprm_creds_from_file(struct linux_binprm *bprm); 79 80 int suid_dumpable = 0; 81 82 static LIST_HEAD(formats); 83 static DEFINE_RWLOCK(binfmt_lock); 84 85 void __register_binfmt(struct linux_binfmt * fmt, int insert) 86 { 87 write_lock(&binfmt_lock); 88 insert ? list_add(&fmt->lh, &formats) : 89 list_add_tail(&fmt->lh, &formats); 90 write_unlock(&binfmt_lock); 91 } 92 93 EXPORT_SYMBOL(__register_binfmt); 94 95 void unregister_binfmt(struct linux_binfmt * fmt) 96 { 97 write_lock(&binfmt_lock); 98 list_del(&fmt->lh); 99 write_unlock(&binfmt_lock); 100 } 101 102 EXPORT_SYMBOL(unregister_binfmt); 103 104 static inline void put_binfmt(struct linux_binfmt * fmt) 105 { 106 module_put(fmt->module); 107 } 108 109 bool path_noexec(const struct path *path) 110 { 111 return (path->mnt->mnt_flags & MNT_NOEXEC) || 112 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 113 } 114 115 #ifdef CONFIG_USELIB 116 /* 117 * Note that a shared library must be both readable and executable due to 118 * security reasons. 119 * 120 * Also note that we take the address to load from the file itself. 121 */ 122 SYSCALL_DEFINE1(uselib, const char __user *, library) 123 { 124 struct linux_binfmt *fmt; 125 struct file *file; 126 struct filename *tmp = getname(library); 127 int error = PTR_ERR(tmp); 128 static const struct open_flags uselib_flags = { 129 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 130 .acc_mode = MAY_READ | MAY_EXEC, 131 .intent = LOOKUP_OPEN, 132 .lookup_flags = LOOKUP_FOLLOW, 133 }; 134 135 if (IS_ERR(tmp)) 136 goto out; 137 138 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 139 putname(tmp); 140 error = PTR_ERR(file); 141 if (IS_ERR(file)) 142 goto out; 143 144 /* 145 * may_open() has already checked for this, so it should be 146 * impossible to trip now. But we need to be extra cautious 147 * and check again at the very end too. 148 */ 149 error = -EACCES; 150 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 151 path_noexec(&file->f_path))) 152 goto exit; 153 154 fsnotify_open(file); 155 156 error = -ENOEXEC; 157 158 read_lock(&binfmt_lock); 159 list_for_each_entry(fmt, &formats, lh) { 160 if (!fmt->load_shlib) 161 continue; 162 if (!try_module_get(fmt->module)) 163 continue; 164 read_unlock(&binfmt_lock); 165 error = fmt->load_shlib(file); 166 read_lock(&binfmt_lock); 167 put_binfmt(fmt); 168 if (error != -ENOEXEC) 169 break; 170 } 171 read_unlock(&binfmt_lock); 172 exit: 173 fput(file); 174 out: 175 return error; 176 } 177 #endif /* #ifdef CONFIG_USELIB */ 178 179 #ifdef CONFIG_MMU 180 /* 181 * The nascent bprm->mm is not visible until exec_mmap() but it can 182 * use a lot of memory, account these pages in current->mm temporary 183 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 184 * change the counter back via acct_arg_size(0). 185 */ 186 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 187 { 188 struct mm_struct *mm = current->mm; 189 long diff = (long)(pages - bprm->vma_pages); 190 191 if (!mm || !diff) 192 return; 193 194 bprm->vma_pages = pages; 195 add_mm_counter(mm, MM_ANONPAGES, diff); 196 } 197 198 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 199 int write) 200 { 201 struct page *page; 202 int ret; 203 unsigned int gup_flags = FOLL_FORCE; 204 205 #ifdef CONFIG_STACK_GROWSUP 206 if (write) { 207 ret = expand_downwards(bprm->vma, pos); 208 if (ret < 0) 209 return NULL; 210 } 211 #endif 212 213 if (write) 214 gup_flags |= FOLL_WRITE; 215 216 /* 217 * We are doing an exec(). 'current' is the process 218 * doing the exec and bprm->mm is the new process's mm. 219 */ 220 mmap_read_lock(bprm->mm); 221 ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags, 222 &page, NULL, NULL); 223 mmap_read_unlock(bprm->mm); 224 if (ret <= 0) 225 return NULL; 226 227 if (write) 228 acct_arg_size(bprm, vma_pages(bprm->vma)); 229 230 return page; 231 } 232 233 static void put_arg_page(struct page *page) 234 { 235 put_page(page); 236 } 237 238 static void free_arg_pages(struct linux_binprm *bprm) 239 { 240 } 241 242 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 243 struct page *page) 244 { 245 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 246 } 247 248 static int __bprm_mm_init(struct linux_binprm *bprm) 249 { 250 int err; 251 struct vm_area_struct *vma = NULL; 252 struct mm_struct *mm = bprm->mm; 253 254 bprm->vma = vma = vm_area_alloc(mm); 255 if (!vma) 256 return -ENOMEM; 257 vma_set_anonymous(vma); 258 259 if (mmap_write_lock_killable(mm)) { 260 err = -EINTR; 261 goto err_free; 262 } 263 264 /* 265 * Place the stack at the largest stack address the architecture 266 * supports. Later, we'll move this to an appropriate place. We don't 267 * use STACK_TOP because that can depend on attributes which aren't 268 * configured yet. 269 */ 270 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 271 vma->vm_end = STACK_TOP_MAX; 272 vma->vm_start = vma->vm_end - PAGE_SIZE; 273 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 274 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 275 276 err = insert_vm_struct(mm, vma); 277 if (err) 278 goto err; 279 280 mm->stack_vm = mm->total_vm = 1; 281 mmap_write_unlock(mm); 282 bprm->p = vma->vm_end - sizeof(void *); 283 return 0; 284 err: 285 mmap_write_unlock(mm); 286 err_free: 287 bprm->vma = NULL; 288 vm_area_free(vma); 289 return err; 290 } 291 292 static bool valid_arg_len(struct linux_binprm *bprm, long len) 293 { 294 return len <= MAX_ARG_STRLEN; 295 } 296 297 #else 298 299 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 300 { 301 } 302 303 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 304 int write) 305 { 306 struct page *page; 307 308 page = bprm->page[pos / PAGE_SIZE]; 309 if (!page && write) { 310 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 311 if (!page) 312 return NULL; 313 bprm->page[pos / PAGE_SIZE] = page; 314 } 315 316 return page; 317 } 318 319 static void put_arg_page(struct page *page) 320 { 321 } 322 323 static void free_arg_page(struct linux_binprm *bprm, int i) 324 { 325 if (bprm->page[i]) { 326 __free_page(bprm->page[i]); 327 bprm->page[i] = NULL; 328 } 329 } 330 331 static void free_arg_pages(struct linux_binprm *bprm) 332 { 333 int i; 334 335 for (i = 0; i < MAX_ARG_PAGES; i++) 336 free_arg_page(bprm, i); 337 } 338 339 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 340 struct page *page) 341 { 342 } 343 344 static int __bprm_mm_init(struct linux_binprm *bprm) 345 { 346 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 347 return 0; 348 } 349 350 static bool valid_arg_len(struct linux_binprm *bprm, long len) 351 { 352 return len <= bprm->p; 353 } 354 355 #endif /* CONFIG_MMU */ 356 357 /* 358 * Create a new mm_struct and populate it with a temporary stack 359 * vm_area_struct. We don't have enough context at this point to set the stack 360 * flags, permissions, and offset, so we use temporary values. We'll update 361 * them later in setup_arg_pages(). 362 */ 363 static int bprm_mm_init(struct linux_binprm *bprm) 364 { 365 int err; 366 struct mm_struct *mm = NULL; 367 368 bprm->mm = mm = mm_alloc(); 369 err = -ENOMEM; 370 if (!mm) 371 goto err; 372 373 /* Save current stack limit for all calculations made during exec. */ 374 task_lock(current->group_leader); 375 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 376 task_unlock(current->group_leader); 377 378 err = __bprm_mm_init(bprm); 379 if (err) 380 goto err; 381 382 return 0; 383 384 err: 385 if (mm) { 386 bprm->mm = NULL; 387 mmdrop(mm); 388 } 389 390 return err; 391 } 392 393 struct user_arg_ptr { 394 #ifdef CONFIG_COMPAT 395 bool is_compat; 396 #endif 397 union { 398 const char __user *const __user *native; 399 #ifdef CONFIG_COMPAT 400 const compat_uptr_t __user *compat; 401 #endif 402 } ptr; 403 }; 404 405 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 406 { 407 const char __user *native; 408 409 #ifdef CONFIG_COMPAT 410 if (unlikely(argv.is_compat)) { 411 compat_uptr_t compat; 412 413 if (get_user(compat, argv.ptr.compat + nr)) 414 return ERR_PTR(-EFAULT); 415 416 return compat_ptr(compat); 417 } 418 #endif 419 420 if (get_user(native, argv.ptr.native + nr)) 421 return ERR_PTR(-EFAULT); 422 423 return native; 424 } 425 426 /* 427 * count() counts the number of strings in array ARGV. 428 */ 429 static int count(struct user_arg_ptr argv, int max) 430 { 431 int i = 0; 432 433 if (argv.ptr.native != NULL) { 434 for (;;) { 435 const char __user *p = get_user_arg_ptr(argv, i); 436 437 if (!p) 438 break; 439 440 if (IS_ERR(p)) 441 return -EFAULT; 442 443 if (i >= max) 444 return -E2BIG; 445 ++i; 446 447 if (fatal_signal_pending(current)) 448 return -ERESTARTNOHAND; 449 cond_resched(); 450 } 451 } 452 return i; 453 } 454 455 static int count_strings_kernel(const char *const *argv) 456 { 457 int i; 458 459 if (!argv) 460 return 0; 461 462 for (i = 0; argv[i]; ++i) { 463 if (i >= MAX_ARG_STRINGS) 464 return -E2BIG; 465 if (fatal_signal_pending(current)) 466 return -ERESTARTNOHAND; 467 cond_resched(); 468 } 469 return i; 470 } 471 472 static int bprm_stack_limits(struct linux_binprm *bprm) 473 { 474 unsigned long limit, ptr_size; 475 476 /* 477 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 478 * (whichever is smaller) for the argv+env strings. 479 * This ensures that: 480 * - the remaining binfmt code will not run out of stack space, 481 * - the program will have a reasonable amount of stack left 482 * to work from. 483 */ 484 limit = _STK_LIM / 4 * 3; 485 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 486 /* 487 * We've historically supported up to 32 pages (ARG_MAX) 488 * of argument strings even with small stacks 489 */ 490 limit = max_t(unsigned long, limit, ARG_MAX); 491 /* 492 * We must account for the size of all the argv and envp pointers to 493 * the argv and envp strings, since they will also take up space in 494 * the stack. They aren't stored until much later when we can't 495 * signal to the parent that the child has run out of stack space. 496 * Instead, calculate it here so it's possible to fail gracefully. 497 * 498 * In the case of argc = 0, make sure there is space for adding a 499 * empty string (which will bump argc to 1), to ensure confused 500 * userspace programs don't start processing from argv[1], thinking 501 * argc can never be 0, to keep them from walking envp by accident. 502 * See do_execveat_common(). 503 */ 504 ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *); 505 if (limit <= ptr_size) 506 return -E2BIG; 507 limit -= ptr_size; 508 509 bprm->argmin = bprm->p - limit; 510 return 0; 511 } 512 513 /* 514 * 'copy_strings()' copies argument/environment strings from the old 515 * processes's memory to the new process's stack. The call to get_user_pages() 516 * ensures the destination page is created and not swapped out. 517 */ 518 static int copy_strings(int argc, struct user_arg_ptr argv, 519 struct linux_binprm *bprm) 520 { 521 struct page *kmapped_page = NULL; 522 char *kaddr = NULL; 523 unsigned long kpos = 0; 524 int ret; 525 526 while (argc-- > 0) { 527 const char __user *str; 528 int len; 529 unsigned long pos; 530 531 ret = -EFAULT; 532 str = get_user_arg_ptr(argv, argc); 533 if (IS_ERR(str)) 534 goto out; 535 536 len = strnlen_user(str, MAX_ARG_STRLEN); 537 if (!len) 538 goto out; 539 540 ret = -E2BIG; 541 if (!valid_arg_len(bprm, len)) 542 goto out; 543 544 /* We're going to work our way backwards. */ 545 pos = bprm->p; 546 str += len; 547 bprm->p -= len; 548 #ifdef CONFIG_MMU 549 if (bprm->p < bprm->argmin) 550 goto out; 551 #endif 552 553 while (len > 0) { 554 int offset, bytes_to_copy; 555 556 if (fatal_signal_pending(current)) { 557 ret = -ERESTARTNOHAND; 558 goto out; 559 } 560 cond_resched(); 561 562 offset = pos % PAGE_SIZE; 563 if (offset == 0) 564 offset = PAGE_SIZE; 565 566 bytes_to_copy = offset; 567 if (bytes_to_copy > len) 568 bytes_to_copy = len; 569 570 offset -= bytes_to_copy; 571 pos -= bytes_to_copy; 572 str -= bytes_to_copy; 573 len -= bytes_to_copy; 574 575 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 576 struct page *page; 577 578 page = get_arg_page(bprm, pos, 1); 579 if (!page) { 580 ret = -E2BIG; 581 goto out; 582 } 583 584 if (kmapped_page) { 585 flush_dcache_page(kmapped_page); 586 kunmap_local(kaddr); 587 put_arg_page(kmapped_page); 588 } 589 kmapped_page = page; 590 kaddr = kmap_local_page(kmapped_page); 591 kpos = pos & PAGE_MASK; 592 flush_arg_page(bprm, kpos, kmapped_page); 593 } 594 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 595 ret = -EFAULT; 596 goto out; 597 } 598 } 599 } 600 ret = 0; 601 out: 602 if (kmapped_page) { 603 flush_dcache_page(kmapped_page); 604 kunmap_local(kaddr); 605 put_arg_page(kmapped_page); 606 } 607 return ret; 608 } 609 610 /* 611 * Copy and argument/environment string from the kernel to the processes stack. 612 */ 613 int copy_string_kernel(const char *arg, struct linux_binprm *bprm) 614 { 615 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */; 616 unsigned long pos = bprm->p; 617 618 if (len == 0) 619 return -EFAULT; 620 if (!valid_arg_len(bprm, len)) 621 return -E2BIG; 622 623 /* We're going to work our way backwards. */ 624 arg += len; 625 bprm->p -= len; 626 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin) 627 return -E2BIG; 628 629 while (len > 0) { 630 unsigned int bytes_to_copy = min_t(unsigned int, len, 631 min_not_zero(offset_in_page(pos), PAGE_SIZE)); 632 struct page *page; 633 634 pos -= bytes_to_copy; 635 arg -= bytes_to_copy; 636 len -= bytes_to_copy; 637 638 page = get_arg_page(bprm, pos, 1); 639 if (!page) 640 return -E2BIG; 641 flush_arg_page(bprm, pos & PAGE_MASK, page); 642 memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy); 643 put_arg_page(page); 644 } 645 646 return 0; 647 } 648 EXPORT_SYMBOL(copy_string_kernel); 649 650 static int copy_strings_kernel(int argc, const char *const *argv, 651 struct linux_binprm *bprm) 652 { 653 while (argc-- > 0) { 654 int ret = copy_string_kernel(argv[argc], bprm); 655 if (ret < 0) 656 return ret; 657 if (fatal_signal_pending(current)) 658 return -ERESTARTNOHAND; 659 cond_resched(); 660 } 661 return 0; 662 } 663 664 #ifdef CONFIG_MMU 665 666 /* 667 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 668 * the binfmt code determines where the new stack should reside, we shift it to 669 * its final location. The process proceeds as follows: 670 * 671 * 1) Use shift to calculate the new vma endpoints. 672 * 2) Extend vma to cover both the old and new ranges. This ensures the 673 * arguments passed to subsequent functions are consistent. 674 * 3) Move vma's page tables to the new range. 675 * 4) Free up any cleared pgd range. 676 * 5) Shrink the vma to cover only the new range. 677 */ 678 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 679 { 680 struct mm_struct *mm = vma->vm_mm; 681 unsigned long old_start = vma->vm_start; 682 unsigned long old_end = vma->vm_end; 683 unsigned long length = old_end - old_start; 684 unsigned long new_start = old_start - shift; 685 unsigned long new_end = old_end - shift; 686 VMA_ITERATOR(vmi, mm, new_start); 687 struct vm_area_struct *next; 688 struct mmu_gather tlb; 689 690 BUG_ON(new_start > new_end); 691 692 /* 693 * ensure there are no vmas between where we want to go 694 * and where we are 695 */ 696 if (vma != vma_next(&vmi)) 697 return -EFAULT; 698 699 /* 700 * cover the whole range: [new_start, old_end) 701 */ 702 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 703 return -ENOMEM; 704 705 /* 706 * move the page tables downwards, on failure we rely on 707 * process cleanup to remove whatever mess we made. 708 */ 709 if (length != move_page_tables(vma, old_start, 710 vma, new_start, length, false)) 711 return -ENOMEM; 712 713 lru_add_drain(); 714 tlb_gather_mmu(&tlb, mm); 715 next = vma_next(&vmi); 716 if (new_end > old_start) { 717 /* 718 * when the old and new regions overlap clear from new_end. 719 */ 720 free_pgd_range(&tlb, new_end, old_end, new_end, 721 next ? next->vm_start : USER_PGTABLES_CEILING); 722 } else { 723 /* 724 * otherwise, clean from old_start; this is done to not touch 725 * the address space in [new_end, old_start) some architectures 726 * have constraints on va-space that make this illegal (IA64) - 727 * for the others its just a little faster. 728 */ 729 free_pgd_range(&tlb, old_start, old_end, new_end, 730 next ? next->vm_start : USER_PGTABLES_CEILING); 731 } 732 tlb_finish_mmu(&tlb); 733 734 /* 735 * Shrink the vma to just the new range. Always succeeds. 736 */ 737 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 738 739 return 0; 740 } 741 742 /* 743 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 744 * the stack is optionally relocated, and some extra space is added. 745 */ 746 int setup_arg_pages(struct linux_binprm *bprm, 747 unsigned long stack_top, 748 int executable_stack) 749 { 750 unsigned long ret; 751 unsigned long stack_shift; 752 struct mm_struct *mm = current->mm; 753 struct vm_area_struct *vma = bprm->vma; 754 struct vm_area_struct *prev = NULL; 755 unsigned long vm_flags; 756 unsigned long stack_base; 757 unsigned long stack_size; 758 unsigned long stack_expand; 759 unsigned long rlim_stack; 760 struct mmu_gather tlb; 761 762 #ifdef CONFIG_STACK_GROWSUP 763 /* Limit stack size */ 764 stack_base = bprm->rlim_stack.rlim_max; 765 766 stack_base = calc_max_stack_size(stack_base); 767 768 /* Add space for stack randomization. */ 769 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 770 771 /* Make sure we didn't let the argument array grow too large. */ 772 if (vma->vm_end - vma->vm_start > stack_base) 773 return -ENOMEM; 774 775 stack_base = PAGE_ALIGN(stack_top - stack_base); 776 777 stack_shift = vma->vm_start - stack_base; 778 mm->arg_start = bprm->p - stack_shift; 779 bprm->p = vma->vm_end - stack_shift; 780 #else 781 stack_top = arch_align_stack(stack_top); 782 stack_top = PAGE_ALIGN(stack_top); 783 784 if (unlikely(stack_top < mmap_min_addr) || 785 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 786 return -ENOMEM; 787 788 stack_shift = vma->vm_end - stack_top; 789 790 bprm->p -= stack_shift; 791 mm->arg_start = bprm->p; 792 #endif 793 794 if (bprm->loader) 795 bprm->loader -= stack_shift; 796 bprm->exec -= stack_shift; 797 798 if (mmap_write_lock_killable(mm)) 799 return -EINTR; 800 801 vm_flags = VM_STACK_FLAGS; 802 803 /* 804 * Adjust stack execute permissions; explicitly enable for 805 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 806 * (arch default) otherwise. 807 */ 808 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 809 vm_flags |= VM_EXEC; 810 else if (executable_stack == EXSTACK_DISABLE_X) 811 vm_flags &= ~VM_EXEC; 812 vm_flags |= mm->def_flags; 813 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 814 815 tlb_gather_mmu(&tlb, mm); 816 ret = mprotect_fixup(&tlb, vma, &prev, vma->vm_start, vma->vm_end, 817 vm_flags); 818 tlb_finish_mmu(&tlb); 819 820 if (ret) 821 goto out_unlock; 822 BUG_ON(prev != vma); 823 824 if (unlikely(vm_flags & VM_EXEC)) { 825 pr_warn_once("process '%pD4' started with executable stack\n", 826 bprm->file); 827 } 828 829 /* Move stack pages down in memory. */ 830 if (stack_shift) { 831 ret = shift_arg_pages(vma, stack_shift); 832 if (ret) 833 goto out_unlock; 834 } 835 836 /* mprotect_fixup is overkill to remove the temporary stack flags */ 837 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 838 839 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 840 stack_size = vma->vm_end - vma->vm_start; 841 /* 842 * Align this down to a page boundary as expand_stack 843 * will align it up. 844 */ 845 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 846 #ifdef CONFIG_STACK_GROWSUP 847 if (stack_size + stack_expand > rlim_stack) 848 stack_base = vma->vm_start + rlim_stack; 849 else 850 stack_base = vma->vm_end + stack_expand; 851 #else 852 if (stack_size + stack_expand > rlim_stack) 853 stack_base = vma->vm_end - rlim_stack; 854 else 855 stack_base = vma->vm_start - stack_expand; 856 #endif 857 current->mm->start_stack = bprm->p; 858 ret = expand_stack(vma, stack_base); 859 if (ret) 860 ret = -EFAULT; 861 862 out_unlock: 863 mmap_write_unlock(mm); 864 return ret; 865 } 866 EXPORT_SYMBOL(setup_arg_pages); 867 868 #else 869 870 /* 871 * Transfer the program arguments and environment from the holding pages 872 * onto the stack. The provided stack pointer is adjusted accordingly. 873 */ 874 int transfer_args_to_stack(struct linux_binprm *bprm, 875 unsigned long *sp_location) 876 { 877 unsigned long index, stop, sp; 878 int ret = 0; 879 880 stop = bprm->p >> PAGE_SHIFT; 881 sp = *sp_location; 882 883 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 884 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 885 char *src = kmap_local_page(bprm->page[index]) + offset; 886 sp -= PAGE_SIZE - offset; 887 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 888 ret = -EFAULT; 889 kunmap_local(src); 890 if (ret) 891 goto out; 892 } 893 894 *sp_location = sp; 895 896 out: 897 return ret; 898 } 899 EXPORT_SYMBOL(transfer_args_to_stack); 900 901 #endif /* CONFIG_MMU */ 902 903 static struct file *do_open_execat(int fd, struct filename *name, int flags) 904 { 905 struct file *file; 906 int err; 907 struct open_flags open_exec_flags = { 908 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 909 .acc_mode = MAY_EXEC, 910 .intent = LOOKUP_OPEN, 911 .lookup_flags = LOOKUP_FOLLOW, 912 }; 913 914 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 915 return ERR_PTR(-EINVAL); 916 if (flags & AT_SYMLINK_NOFOLLOW) 917 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 918 if (flags & AT_EMPTY_PATH) 919 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 920 921 file = do_filp_open(fd, name, &open_exec_flags); 922 if (IS_ERR(file)) 923 goto out; 924 925 /* 926 * may_open() has already checked for this, so it should be 927 * impossible to trip now. But we need to be extra cautious 928 * and check again at the very end too. 929 */ 930 err = -EACCES; 931 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 932 path_noexec(&file->f_path))) 933 goto exit; 934 935 err = deny_write_access(file); 936 if (err) 937 goto exit; 938 939 if (name->name[0] != '\0') 940 fsnotify_open(file); 941 942 out: 943 return file; 944 945 exit: 946 fput(file); 947 return ERR_PTR(err); 948 } 949 950 struct file *open_exec(const char *name) 951 { 952 struct filename *filename = getname_kernel(name); 953 struct file *f = ERR_CAST(filename); 954 955 if (!IS_ERR(filename)) { 956 f = do_open_execat(AT_FDCWD, filename, 0); 957 putname(filename); 958 } 959 return f; 960 } 961 EXPORT_SYMBOL(open_exec); 962 963 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC) 964 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 965 { 966 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 967 if (res > 0) 968 flush_icache_user_range(addr, addr + len); 969 return res; 970 } 971 EXPORT_SYMBOL(read_code); 972 #endif 973 974 /* 975 * Maps the mm_struct mm into the current task struct. 976 * On success, this function returns with exec_update_lock 977 * held for writing. 978 */ 979 static int exec_mmap(struct mm_struct *mm) 980 { 981 struct task_struct *tsk; 982 struct mm_struct *old_mm, *active_mm; 983 int ret; 984 985 /* Notify parent that we're no longer interested in the old VM */ 986 tsk = current; 987 old_mm = current->mm; 988 exec_mm_release(tsk, old_mm); 989 if (old_mm) 990 sync_mm_rss(old_mm); 991 992 ret = down_write_killable(&tsk->signal->exec_update_lock); 993 if (ret) 994 return ret; 995 996 if (old_mm) { 997 /* 998 * If there is a pending fatal signal perhaps a signal 999 * whose default action is to create a coredump get 1000 * out and die instead of going through with the exec. 1001 */ 1002 ret = mmap_read_lock_killable(old_mm); 1003 if (ret) { 1004 up_write(&tsk->signal->exec_update_lock); 1005 return ret; 1006 } 1007 } 1008 1009 task_lock(tsk); 1010 membarrier_exec_mmap(mm); 1011 1012 local_irq_disable(); 1013 active_mm = tsk->active_mm; 1014 tsk->active_mm = mm; 1015 tsk->mm = mm; 1016 lru_gen_add_mm(mm); 1017 /* 1018 * This prevents preemption while active_mm is being loaded and 1019 * it and mm are being updated, which could cause problems for 1020 * lazy tlb mm refcounting when these are updated by context 1021 * switches. Not all architectures can handle irqs off over 1022 * activate_mm yet. 1023 */ 1024 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1025 local_irq_enable(); 1026 activate_mm(active_mm, mm); 1027 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1028 local_irq_enable(); 1029 task_unlock(tsk); 1030 lru_gen_use_mm(mm); 1031 if (old_mm) { 1032 mmap_read_unlock(old_mm); 1033 BUG_ON(active_mm != old_mm); 1034 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1035 mm_update_next_owner(old_mm); 1036 mmput(old_mm); 1037 return 0; 1038 } 1039 mmdrop(active_mm); 1040 return 0; 1041 } 1042 1043 static int de_thread(struct task_struct *tsk) 1044 { 1045 struct signal_struct *sig = tsk->signal; 1046 struct sighand_struct *oldsighand = tsk->sighand; 1047 spinlock_t *lock = &oldsighand->siglock; 1048 1049 if (thread_group_empty(tsk)) 1050 goto no_thread_group; 1051 1052 /* 1053 * Kill all other threads in the thread group. 1054 */ 1055 spin_lock_irq(lock); 1056 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) { 1057 /* 1058 * Another group action in progress, just 1059 * return so that the signal is processed. 1060 */ 1061 spin_unlock_irq(lock); 1062 return -EAGAIN; 1063 } 1064 1065 sig->group_exec_task = tsk; 1066 sig->notify_count = zap_other_threads(tsk); 1067 if (!thread_group_leader(tsk)) 1068 sig->notify_count--; 1069 1070 while (sig->notify_count) { 1071 __set_current_state(TASK_KILLABLE); 1072 spin_unlock_irq(lock); 1073 schedule(); 1074 if (__fatal_signal_pending(tsk)) 1075 goto killed; 1076 spin_lock_irq(lock); 1077 } 1078 spin_unlock_irq(lock); 1079 1080 /* 1081 * At this point all other threads have exited, all we have to 1082 * do is to wait for the thread group leader to become inactive, 1083 * and to assume its PID: 1084 */ 1085 if (!thread_group_leader(tsk)) { 1086 struct task_struct *leader = tsk->group_leader; 1087 1088 for (;;) { 1089 cgroup_threadgroup_change_begin(tsk); 1090 write_lock_irq(&tasklist_lock); 1091 /* 1092 * Do this under tasklist_lock to ensure that 1093 * exit_notify() can't miss ->group_exec_task 1094 */ 1095 sig->notify_count = -1; 1096 if (likely(leader->exit_state)) 1097 break; 1098 __set_current_state(TASK_KILLABLE); 1099 write_unlock_irq(&tasklist_lock); 1100 cgroup_threadgroup_change_end(tsk); 1101 schedule(); 1102 if (__fatal_signal_pending(tsk)) 1103 goto killed; 1104 } 1105 1106 /* 1107 * The only record we have of the real-time age of a 1108 * process, regardless of execs it's done, is start_time. 1109 * All the past CPU time is accumulated in signal_struct 1110 * from sister threads now dead. But in this non-leader 1111 * exec, nothing survives from the original leader thread, 1112 * whose birth marks the true age of this process now. 1113 * When we take on its identity by switching to its PID, we 1114 * also take its birthdate (always earlier than our own). 1115 */ 1116 tsk->start_time = leader->start_time; 1117 tsk->start_boottime = leader->start_boottime; 1118 1119 BUG_ON(!same_thread_group(leader, tsk)); 1120 /* 1121 * An exec() starts a new thread group with the 1122 * TGID of the previous thread group. Rehash the 1123 * two threads with a switched PID, and release 1124 * the former thread group leader: 1125 */ 1126 1127 /* Become a process group leader with the old leader's pid. 1128 * The old leader becomes a thread of the this thread group. 1129 */ 1130 exchange_tids(tsk, leader); 1131 transfer_pid(leader, tsk, PIDTYPE_TGID); 1132 transfer_pid(leader, tsk, PIDTYPE_PGID); 1133 transfer_pid(leader, tsk, PIDTYPE_SID); 1134 1135 list_replace_rcu(&leader->tasks, &tsk->tasks); 1136 list_replace_init(&leader->sibling, &tsk->sibling); 1137 1138 tsk->group_leader = tsk; 1139 leader->group_leader = tsk; 1140 1141 tsk->exit_signal = SIGCHLD; 1142 leader->exit_signal = -1; 1143 1144 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1145 leader->exit_state = EXIT_DEAD; 1146 1147 /* 1148 * We are going to release_task()->ptrace_unlink() silently, 1149 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1150 * the tracer won't block again waiting for this thread. 1151 */ 1152 if (unlikely(leader->ptrace)) 1153 __wake_up_parent(leader, leader->parent); 1154 write_unlock_irq(&tasklist_lock); 1155 cgroup_threadgroup_change_end(tsk); 1156 1157 release_task(leader); 1158 } 1159 1160 sig->group_exec_task = NULL; 1161 sig->notify_count = 0; 1162 1163 no_thread_group: 1164 /* we have changed execution domain */ 1165 tsk->exit_signal = SIGCHLD; 1166 1167 BUG_ON(!thread_group_leader(tsk)); 1168 return 0; 1169 1170 killed: 1171 /* protects against exit_notify() and __exit_signal() */ 1172 read_lock(&tasklist_lock); 1173 sig->group_exec_task = NULL; 1174 sig->notify_count = 0; 1175 read_unlock(&tasklist_lock); 1176 return -EAGAIN; 1177 } 1178 1179 1180 /* 1181 * This function makes sure the current process has its own signal table, 1182 * so that flush_signal_handlers can later reset the handlers without 1183 * disturbing other processes. (Other processes might share the signal 1184 * table via the CLONE_SIGHAND option to clone().) 1185 */ 1186 static int unshare_sighand(struct task_struct *me) 1187 { 1188 struct sighand_struct *oldsighand = me->sighand; 1189 1190 if (refcount_read(&oldsighand->count) != 1) { 1191 struct sighand_struct *newsighand; 1192 /* 1193 * This ->sighand is shared with the CLONE_SIGHAND 1194 * but not CLONE_THREAD task, switch to the new one. 1195 */ 1196 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1197 if (!newsighand) 1198 return -ENOMEM; 1199 1200 refcount_set(&newsighand->count, 1); 1201 1202 write_lock_irq(&tasklist_lock); 1203 spin_lock(&oldsighand->siglock); 1204 memcpy(newsighand->action, oldsighand->action, 1205 sizeof(newsighand->action)); 1206 rcu_assign_pointer(me->sighand, newsighand); 1207 spin_unlock(&oldsighand->siglock); 1208 write_unlock_irq(&tasklist_lock); 1209 1210 __cleanup_sighand(oldsighand); 1211 } 1212 return 0; 1213 } 1214 1215 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk) 1216 { 1217 task_lock(tsk); 1218 /* Always NUL terminated and zero-padded */ 1219 strscpy_pad(buf, tsk->comm, buf_size); 1220 task_unlock(tsk); 1221 return buf; 1222 } 1223 EXPORT_SYMBOL_GPL(__get_task_comm); 1224 1225 /* 1226 * These functions flushes out all traces of the currently running executable 1227 * so that a new one can be started 1228 */ 1229 1230 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1231 { 1232 task_lock(tsk); 1233 trace_task_rename(tsk, buf); 1234 strscpy_pad(tsk->comm, buf, sizeof(tsk->comm)); 1235 task_unlock(tsk); 1236 perf_event_comm(tsk, exec); 1237 } 1238 1239 /* 1240 * Calling this is the point of no return. None of the failures will be 1241 * seen by userspace since either the process is already taking a fatal 1242 * signal (via de_thread() or coredump), or will have SEGV raised 1243 * (after exec_mmap()) by search_binary_handler (see below). 1244 */ 1245 int begin_new_exec(struct linux_binprm * bprm) 1246 { 1247 struct task_struct *me = current; 1248 int retval; 1249 1250 /* Once we are committed compute the creds */ 1251 retval = bprm_creds_from_file(bprm); 1252 if (retval) 1253 return retval; 1254 1255 /* 1256 * Ensure all future errors are fatal. 1257 */ 1258 bprm->point_of_no_return = true; 1259 1260 /* 1261 * Make this the only thread in the thread group. 1262 */ 1263 retval = de_thread(me); 1264 if (retval) 1265 goto out; 1266 1267 /* 1268 * Cancel any io_uring activity across execve 1269 */ 1270 io_uring_task_cancel(); 1271 1272 /* Ensure the files table is not shared. */ 1273 retval = unshare_files(); 1274 if (retval) 1275 goto out; 1276 1277 /* 1278 * Must be called _before_ exec_mmap() as bprm->mm is 1279 * not visible until then. This also enables the update 1280 * to be lockless. 1281 */ 1282 retval = set_mm_exe_file(bprm->mm, bprm->file); 1283 if (retval) 1284 goto out; 1285 1286 /* If the binary is not readable then enforce mm->dumpable=0 */ 1287 would_dump(bprm, bprm->file); 1288 if (bprm->have_execfd) 1289 would_dump(bprm, bprm->executable); 1290 1291 /* 1292 * Release all of the old mmap stuff 1293 */ 1294 acct_arg_size(bprm, 0); 1295 retval = exec_mmap(bprm->mm); 1296 if (retval) 1297 goto out; 1298 1299 bprm->mm = NULL; 1300 1301 retval = exec_task_namespaces(); 1302 if (retval) 1303 goto out_unlock; 1304 1305 #ifdef CONFIG_POSIX_TIMERS 1306 spin_lock_irq(&me->sighand->siglock); 1307 posix_cpu_timers_exit(me); 1308 spin_unlock_irq(&me->sighand->siglock); 1309 exit_itimers(me); 1310 flush_itimer_signals(); 1311 #endif 1312 1313 /* 1314 * Make the signal table private. 1315 */ 1316 retval = unshare_sighand(me); 1317 if (retval) 1318 goto out_unlock; 1319 1320 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | 1321 PF_NOFREEZE | PF_NO_SETAFFINITY); 1322 flush_thread(); 1323 me->personality &= ~bprm->per_clear; 1324 1325 clear_syscall_work_syscall_user_dispatch(me); 1326 1327 /* 1328 * We have to apply CLOEXEC before we change whether the process is 1329 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1330 * trying to access the should-be-closed file descriptors of a process 1331 * undergoing exec(2). 1332 */ 1333 do_close_on_exec(me->files); 1334 1335 if (bprm->secureexec) { 1336 /* Make sure parent cannot signal privileged process. */ 1337 me->pdeath_signal = 0; 1338 1339 /* 1340 * For secureexec, reset the stack limit to sane default to 1341 * avoid bad behavior from the prior rlimits. This has to 1342 * happen before arch_pick_mmap_layout(), which examines 1343 * RLIMIT_STACK, but after the point of no return to avoid 1344 * needing to clean up the change on failure. 1345 */ 1346 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1347 bprm->rlim_stack.rlim_cur = _STK_LIM; 1348 } 1349 1350 me->sas_ss_sp = me->sas_ss_size = 0; 1351 1352 /* 1353 * Figure out dumpability. Note that this checking only of current 1354 * is wrong, but userspace depends on it. This should be testing 1355 * bprm->secureexec instead. 1356 */ 1357 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1358 !(uid_eq(current_euid(), current_uid()) && 1359 gid_eq(current_egid(), current_gid()))) 1360 set_dumpable(current->mm, suid_dumpable); 1361 else 1362 set_dumpable(current->mm, SUID_DUMP_USER); 1363 1364 perf_event_exec(); 1365 __set_task_comm(me, kbasename(bprm->filename), true); 1366 1367 /* An exec changes our domain. We are no longer part of the thread 1368 group */ 1369 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1); 1370 flush_signal_handlers(me, 0); 1371 1372 retval = set_cred_ucounts(bprm->cred); 1373 if (retval < 0) 1374 goto out_unlock; 1375 1376 /* 1377 * install the new credentials for this executable 1378 */ 1379 security_bprm_committing_creds(bprm); 1380 1381 commit_creds(bprm->cred); 1382 bprm->cred = NULL; 1383 1384 /* 1385 * Disable monitoring for regular users 1386 * when executing setuid binaries. Must 1387 * wait until new credentials are committed 1388 * by commit_creds() above 1389 */ 1390 if (get_dumpable(me->mm) != SUID_DUMP_USER) 1391 perf_event_exit_task(me); 1392 /* 1393 * cred_guard_mutex must be held at least to this point to prevent 1394 * ptrace_attach() from altering our determination of the task's 1395 * credentials; any time after this it may be unlocked. 1396 */ 1397 security_bprm_committed_creds(bprm); 1398 1399 /* Pass the opened binary to the interpreter. */ 1400 if (bprm->have_execfd) { 1401 retval = get_unused_fd_flags(0); 1402 if (retval < 0) 1403 goto out_unlock; 1404 fd_install(retval, bprm->executable); 1405 bprm->executable = NULL; 1406 bprm->execfd = retval; 1407 } 1408 return 0; 1409 1410 out_unlock: 1411 up_write(&me->signal->exec_update_lock); 1412 out: 1413 return retval; 1414 } 1415 EXPORT_SYMBOL(begin_new_exec); 1416 1417 void would_dump(struct linux_binprm *bprm, struct file *file) 1418 { 1419 struct inode *inode = file_inode(file); 1420 struct user_namespace *mnt_userns = file_mnt_user_ns(file); 1421 if (inode_permission(mnt_userns, inode, MAY_READ) < 0) { 1422 struct user_namespace *old, *user_ns; 1423 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1424 1425 /* Ensure mm->user_ns contains the executable */ 1426 user_ns = old = bprm->mm->user_ns; 1427 while ((user_ns != &init_user_ns) && 1428 !privileged_wrt_inode_uidgid(user_ns, mnt_userns, inode)) 1429 user_ns = user_ns->parent; 1430 1431 if (old != user_ns) { 1432 bprm->mm->user_ns = get_user_ns(user_ns); 1433 put_user_ns(old); 1434 } 1435 } 1436 } 1437 EXPORT_SYMBOL(would_dump); 1438 1439 void setup_new_exec(struct linux_binprm * bprm) 1440 { 1441 /* Setup things that can depend upon the personality */ 1442 struct task_struct *me = current; 1443 1444 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack); 1445 1446 arch_setup_new_exec(); 1447 1448 /* Set the new mm task size. We have to do that late because it may 1449 * depend on TIF_32BIT which is only updated in flush_thread() on 1450 * some architectures like powerpc 1451 */ 1452 me->mm->task_size = TASK_SIZE; 1453 up_write(&me->signal->exec_update_lock); 1454 mutex_unlock(&me->signal->cred_guard_mutex); 1455 } 1456 EXPORT_SYMBOL(setup_new_exec); 1457 1458 /* Runs immediately before start_thread() takes over. */ 1459 void finalize_exec(struct linux_binprm *bprm) 1460 { 1461 /* Store any stack rlimit changes before starting thread. */ 1462 task_lock(current->group_leader); 1463 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1464 task_unlock(current->group_leader); 1465 } 1466 EXPORT_SYMBOL(finalize_exec); 1467 1468 /* 1469 * Prepare credentials and lock ->cred_guard_mutex. 1470 * setup_new_exec() commits the new creds and drops the lock. 1471 * Or, if exec fails before, free_bprm() should release ->cred 1472 * and unlock. 1473 */ 1474 static int prepare_bprm_creds(struct linux_binprm *bprm) 1475 { 1476 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1477 return -ERESTARTNOINTR; 1478 1479 bprm->cred = prepare_exec_creds(); 1480 if (likely(bprm->cred)) 1481 return 0; 1482 1483 mutex_unlock(¤t->signal->cred_guard_mutex); 1484 return -ENOMEM; 1485 } 1486 1487 static void free_bprm(struct linux_binprm *bprm) 1488 { 1489 if (bprm->mm) { 1490 acct_arg_size(bprm, 0); 1491 mmput(bprm->mm); 1492 } 1493 free_arg_pages(bprm); 1494 if (bprm->cred) { 1495 mutex_unlock(¤t->signal->cred_guard_mutex); 1496 abort_creds(bprm->cred); 1497 } 1498 if (bprm->file) { 1499 allow_write_access(bprm->file); 1500 fput(bprm->file); 1501 } 1502 if (bprm->executable) 1503 fput(bprm->executable); 1504 /* If a binfmt changed the interp, free it. */ 1505 if (bprm->interp != bprm->filename) 1506 kfree(bprm->interp); 1507 kfree(bprm->fdpath); 1508 kfree(bprm); 1509 } 1510 1511 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename) 1512 { 1513 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1514 int retval = -ENOMEM; 1515 if (!bprm) 1516 goto out; 1517 1518 if (fd == AT_FDCWD || filename->name[0] == '/') { 1519 bprm->filename = filename->name; 1520 } else { 1521 if (filename->name[0] == '\0') 1522 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1523 else 1524 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1525 fd, filename->name); 1526 if (!bprm->fdpath) 1527 goto out_free; 1528 1529 bprm->filename = bprm->fdpath; 1530 } 1531 bprm->interp = bprm->filename; 1532 1533 retval = bprm_mm_init(bprm); 1534 if (retval) 1535 goto out_free; 1536 return bprm; 1537 1538 out_free: 1539 free_bprm(bprm); 1540 out: 1541 return ERR_PTR(retval); 1542 } 1543 1544 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1545 { 1546 /* If a binfmt changed the interp, free it first. */ 1547 if (bprm->interp != bprm->filename) 1548 kfree(bprm->interp); 1549 bprm->interp = kstrdup(interp, GFP_KERNEL); 1550 if (!bprm->interp) 1551 return -ENOMEM; 1552 return 0; 1553 } 1554 EXPORT_SYMBOL(bprm_change_interp); 1555 1556 /* 1557 * determine how safe it is to execute the proposed program 1558 * - the caller must hold ->cred_guard_mutex to protect against 1559 * PTRACE_ATTACH or seccomp thread-sync 1560 */ 1561 static void check_unsafe_exec(struct linux_binprm *bprm) 1562 { 1563 struct task_struct *p = current, *t; 1564 unsigned n_fs; 1565 1566 if (p->ptrace) 1567 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1568 1569 /* 1570 * This isn't strictly necessary, but it makes it harder for LSMs to 1571 * mess up. 1572 */ 1573 if (task_no_new_privs(current)) 1574 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1575 1576 t = p; 1577 n_fs = 1; 1578 spin_lock(&p->fs->lock); 1579 rcu_read_lock(); 1580 while_each_thread(p, t) { 1581 if (t->fs == p->fs) 1582 n_fs++; 1583 } 1584 rcu_read_unlock(); 1585 1586 if (p->fs->users > n_fs) 1587 bprm->unsafe |= LSM_UNSAFE_SHARE; 1588 else 1589 p->fs->in_exec = 1; 1590 spin_unlock(&p->fs->lock); 1591 } 1592 1593 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file) 1594 { 1595 /* Handle suid and sgid on files */ 1596 struct user_namespace *mnt_userns; 1597 struct inode *inode = file_inode(file); 1598 unsigned int mode; 1599 kuid_t uid; 1600 kgid_t gid; 1601 1602 if (!mnt_may_suid(file->f_path.mnt)) 1603 return; 1604 1605 if (task_no_new_privs(current)) 1606 return; 1607 1608 mode = READ_ONCE(inode->i_mode); 1609 if (!(mode & (S_ISUID|S_ISGID))) 1610 return; 1611 1612 mnt_userns = file_mnt_user_ns(file); 1613 1614 /* Be careful if suid/sgid is set */ 1615 inode_lock(inode); 1616 1617 /* reload atomically mode/uid/gid now that lock held */ 1618 mode = inode->i_mode; 1619 uid = i_uid_into_mnt(mnt_userns, inode); 1620 gid = i_gid_into_mnt(mnt_userns, inode); 1621 inode_unlock(inode); 1622 1623 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1624 if (!kuid_has_mapping(bprm->cred->user_ns, uid) || 1625 !kgid_has_mapping(bprm->cred->user_ns, gid)) 1626 return; 1627 1628 if (mode & S_ISUID) { 1629 bprm->per_clear |= PER_CLEAR_ON_SETID; 1630 bprm->cred->euid = uid; 1631 } 1632 1633 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1634 bprm->per_clear |= PER_CLEAR_ON_SETID; 1635 bprm->cred->egid = gid; 1636 } 1637 } 1638 1639 /* 1640 * Compute brpm->cred based upon the final binary. 1641 */ 1642 static int bprm_creds_from_file(struct linux_binprm *bprm) 1643 { 1644 /* Compute creds based on which file? */ 1645 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file; 1646 1647 bprm_fill_uid(bprm, file); 1648 return security_bprm_creds_from_file(bprm, file); 1649 } 1650 1651 /* 1652 * Fill the binprm structure from the inode. 1653 * Read the first BINPRM_BUF_SIZE bytes 1654 * 1655 * This may be called multiple times for binary chains (scripts for example). 1656 */ 1657 static int prepare_binprm(struct linux_binprm *bprm) 1658 { 1659 loff_t pos = 0; 1660 1661 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1662 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1663 } 1664 1665 /* 1666 * Arguments are '\0' separated strings found at the location bprm->p 1667 * points to; chop off the first by relocating brpm->p to right after 1668 * the first '\0' encountered. 1669 */ 1670 int remove_arg_zero(struct linux_binprm *bprm) 1671 { 1672 int ret = 0; 1673 unsigned long offset; 1674 char *kaddr; 1675 struct page *page; 1676 1677 if (!bprm->argc) 1678 return 0; 1679 1680 do { 1681 offset = bprm->p & ~PAGE_MASK; 1682 page = get_arg_page(bprm, bprm->p, 0); 1683 if (!page) { 1684 ret = -EFAULT; 1685 goto out; 1686 } 1687 kaddr = kmap_local_page(page); 1688 1689 for (; offset < PAGE_SIZE && kaddr[offset]; 1690 offset++, bprm->p++) 1691 ; 1692 1693 kunmap_local(kaddr); 1694 put_arg_page(page); 1695 } while (offset == PAGE_SIZE); 1696 1697 bprm->p++; 1698 bprm->argc--; 1699 ret = 0; 1700 1701 out: 1702 return ret; 1703 } 1704 EXPORT_SYMBOL(remove_arg_zero); 1705 1706 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1707 /* 1708 * cycle the list of binary formats handler, until one recognizes the image 1709 */ 1710 static int search_binary_handler(struct linux_binprm *bprm) 1711 { 1712 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1713 struct linux_binfmt *fmt; 1714 int retval; 1715 1716 retval = prepare_binprm(bprm); 1717 if (retval < 0) 1718 return retval; 1719 1720 retval = security_bprm_check(bprm); 1721 if (retval) 1722 return retval; 1723 1724 retval = -ENOENT; 1725 retry: 1726 read_lock(&binfmt_lock); 1727 list_for_each_entry(fmt, &formats, lh) { 1728 if (!try_module_get(fmt->module)) 1729 continue; 1730 read_unlock(&binfmt_lock); 1731 1732 retval = fmt->load_binary(bprm); 1733 1734 read_lock(&binfmt_lock); 1735 put_binfmt(fmt); 1736 if (bprm->point_of_no_return || (retval != -ENOEXEC)) { 1737 read_unlock(&binfmt_lock); 1738 return retval; 1739 } 1740 } 1741 read_unlock(&binfmt_lock); 1742 1743 if (need_retry) { 1744 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1745 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1746 return retval; 1747 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1748 return retval; 1749 need_retry = false; 1750 goto retry; 1751 } 1752 1753 return retval; 1754 } 1755 1756 static int exec_binprm(struct linux_binprm *bprm) 1757 { 1758 pid_t old_pid, old_vpid; 1759 int ret, depth; 1760 1761 /* Need to fetch pid before load_binary changes it */ 1762 old_pid = current->pid; 1763 rcu_read_lock(); 1764 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1765 rcu_read_unlock(); 1766 1767 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1768 for (depth = 0;; depth++) { 1769 struct file *exec; 1770 if (depth > 5) 1771 return -ELOOP; 1772 1773 ret = search_binary_handler(bprm); 1774 if (ret < 0) 1775 return ret; 1776 if (!bprm->interpreter) 1777 break; 1778 1779 exec = bprm->file; 1780 bprm->file = bprm->interpreter; 1781 bprm->interpreter = NULL; 1782 1783 allow_write_access(exec); 1784 if (unlikely(bprm->have_execfd)) { 1785 if (bprm->executable) { 1786 fput(exec); 1787 return -ENOEXEC; 1788 } 1789 bprm->executable = exec; 1790 } else 1791 fput(exec); 1792 } 1793 1794 audit_bprm(bprm); 1795 trace_sched_process_exec(current, old_pid, bprm); 1796 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1797 proc_exec_connector(current); 1798 return 0; 1799 } 1800 1801 /* 1802 * sys_execve() executes a new program. 1803 */ 1804 static int bprm_execve(struct linux_binprm *bprm, 1805 int fd, struct filename *filename, int flags) 1806 { 1807 struct file *file; 1808 int retval; 1809 1810 retval = prepare_bprm_creds(bprm); 1811 if (retval) 1812 return retval; 1813 1814 check_unsafe_exec(bprm); 1815 current->in_execve = 1; 1816 1817 file = do_open_execat(fd, filename, flags); 1818 retval = PTR_ERR(file); 1819 if (IS_ERR(file)) 1820 goto out_unmark; 1821 1822 sched_exec(); 1823 1824 bprm->file = file; 1825 /* 1826 * Record that a name derived from an O_CLOEXEC fd will be 1827 * inaccessible after exec. This allows the code in exec to 1828 * choose to fail when the executable is not mmaped into the 1829 * interpreter and an open file descriptor is not passed to 1830 * the interpreter. This makes for a better user experience 1831 * than having the interpreter start and then immediately fail 1832 * when it finds the executable is inaccessible. 1833 */ 1834 if (bprm->fdpath && get_close_on_exec(fd)) 1835 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1836 1837 /* Set the unchanging part of bprm->cred */ 1838 retval = security_bprm_creds_for_exec(bprm); 1839 if (retval) 1840 goto out; 1841 1842 retval = exec_binprm(bprm); 1843 if (retval < 0) 1844 goto out; 1845 1846 /* execve succeeded */ 1847 current->fs->in_exec = 0; 1848 current->in_execve = 0; 1849 rseq_execve(current); 1850 acct_update_integrals(current); 1851 task_numa_free(current, false); 1852 return retval; 1853 1854 out: 1855 /* 1856 * If past the point of no return ensure the code never 1857 * returns to the userspace process. Use an existing fatal 1858 * signal if present otherwise terminate the process with 1859 * SIGSEGV. 1860 */ 1861 if (bprm->point_of_no_return && !fatal_signal_pending(current)) 1862 force_fatal_sig(SIGSEGV); 1863 1864 out_unmark: 1865 current->fs->in_exec = 0; 1866 current->in_execve = 0; 1867 1868 return retval; 1869 } 1870 1871 static int do_execveat_common(int fd, struct filename *filename, 1872 struct user_arg_ptr argv, 1873 struct user_arg_ptr envp, 1874 int flags) 1875 { 1876 struct linux_binprm *bprm; 1877 int retval; 1878 1879 if (IS_ERR(filename)) 1880 return PTR_ERR(filename); 1881 1882 /* 1883 * We move the actual failure in case of RLIMIT_NPROC excess from 1884 * set*uid() to execve() because too many poorly written programs 1885 * don't check setuid() return code. Here we additionally recheck 1886 * whether NPROC limit is still exceeded. 1887 */ 1888 if ((current->flags & PF_NPROC_EXCEEDED) && 1889 is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 1890 retval = -EAGAIN; 1891 goto out_ret; 1892 } 1893 1894 /* We're below the limit (still or again), so we don't want to make 1895 * further execve() calls fail. */ 1896 current->flags &= ~PF_NPROC_EXCEEDED; 1897 1898 bprm = alloc_bprm(fd, filename); 1899 if (IS_ERR(bprm)) { 1900 retval = PTR_ERR(bprm); 1901 goto out_ret; 1902 } 1903 1904 retval = count(argv, MAX_ARG_STRINGS); 1905 if (retval == 0) 1906 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n", 1907 current->comm, bprm->filename); 1908 if (retval < 0) 1909 goto out_free; 1910 bprm->argc = retval; 1911 1912 retval = count(envp, MAX_ARG_STRINGS); 1913 if (retval < 0) 1914 goto out_free; 1915 bprm->envc = retval; 1916 1917 retval = bprm_stack_limits(bprm); 1918 if (retval < 0) 1919 goto out_free; 1920 1921 retval = copy_string_kernel(bprm->filename, bprm); 1922 if (retval < 0) 1923 goto out_free; 1924 bprm->exec = bprm->p; 1925 1926 retval = copy_strings(bprm->envc, envp, bprm); 1927 if (retval < 0) 1928 goto out_free; 1929 1930 retval = copy_strings(bprm->argc, argv, bprm); 1931 if (retval < 0) 1932 goto out_free; 1933 1934 /* 1935 * When argv is empty, add an empty string ("") as argv[0] to 1936 * ensure confused userspace programs that start processing 1937 * from argv[1] won't end up walking envp. See also 1938 * bprm_stack_limits(). 1939 */ 1940 if (bprm->argc == 0) { 1941 retval = copy_string_kernel("", bprm); 1942 if (retval < 0) 1943 goto out_free; 1944 bprm->argc = 1; 1945 } 1946 1947 retval = bprm_execve(bprm, fd, filename, flags); 1948 out_free: 1949 free_bprm(bprm); 1950 1951 out_ret: 1952 putname(filename); 1953 return retval; 1954 } 1955 1956 int kernel_execve(const char *kernel_filename, 1957 const char *const *argv, const char *const *envp) 1958 { 1959 struct filename *filename; 1960 struct linux_binprm *bprm; 1961 int fd = AT_FDCWD; 1962 int retval; 1963 1964 /* It is non-sense for kernel threads to call execve */ 1965 if (WARN_ON_ONCE(current->flags & PF_KTHREAD)) 1966 return -EINVAL; 1967 1968 filename = getname_kernel(kernel_filename); 1969 if (IS_ERR(filename)) 1970 return PTR_ERR(filename); 1971 1972 bprm = alloc_bprm(fd, filename); 1973 if (IS_ERR(bprm)) { 1974 retval = PTR_ERR(bprm); 1975 goto out_ret; 1976 } 1977 1978 retval = count_strings_kernel(argv); 1979 if (WARN_ON_ONCE(retval == 0)) 1980 retval = -EINVAL; 1981 if (retval < 0) 1982 goto out_free; 1983 bprm->argc = retval; 1984 1985 retval = count_strings_kernel(envp); 1986 if (retval < 0) 1987 goto out_free; 1988 bprm->envc = retval; 1989 1990 retval = bprm_stack_limits(bprm); 1991 if (retval < 0) 1992 goto out_free; 1993 1994 retval = copy_string_kernel(bprm->filename, bprm); 1995 if (retval < 0) 1996 goto out_free; 1997 bprm->exec = bprm->p; 1998 1999 retval = copy_strings_kernel(bprm->envc, envp, bprm); 2000 if (retval < 0) 2001 goto out_free; 2002 2003 retval = copy_strings_kernel(bprm->argc, argv, bprm); 2004 if (retval < 0) 2005 goto out_free; 2006 2007 retval = bprm_execve(bprm, fd, filename, 0); 2008 out_free: 2009 free_bprm(bprm); 2010 out_ret: 2011 putname(filename); 2012 return retval; 2013 } 2014 2015 static int do_execve(struct filename *filename, 2016 const char __user *const __user *__argv, 2017 const char __user *const __user *__envp) 2018 { 2019 struct user_arg_ptr argv = { .ptr.native = __argv }; 2020 struct user_arg_ptr envp = { .ptr.native = __envp }; 2021 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2022 } 2023 2024 static int do_execveat(int fd, struct filename *filename, 2025 const char __user *const __user *__argv, 2026 const char __user *const __user *__envp, 2027 int flags) 2028 { 2029 struct user_arg_ptr argv = { .ptr.native = __argv }; 2030 struct user_arg_ptr envp = { .ptr.native = __envp }; 2031 2032 return do_execveat_common(fd, filename, argv, envp, flags); 2033 } 2034 2035 #ifdef CONFIG_COMPAT 2036 static int compat_do_execve(struct filename *filename, 2037 const compat_uptr_t __user *__argv, 2038 const compat_uptr_t __user *__envp) 2039 { 2040 struct user_arg_ptr argv = { 2041 .is_compat = true, 2042 .ptr.compat = __argv, 2043 }; 2044 struct user_arg_ptr envp = { 2045 .is_compat = true, 2046 .ptr.compat = __envp, 2047 }; 2048 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2049 } 2050 2051 static int compat_do_execveat(int fd, struct filename *filename, 2052 const compat_uptr_t __user *__argv, 2053 const compat_uptr_t __user *__envp, 2054 int flags) 2055 { 2056 struct user_arg_ptr argv = { 2057 .is_compat = true, 2058 .ptr.compat = __argv, 2059 }; 2060 struct user_arg_ptr envp = { 2061 .is_compat = true, 2062 .ptr.compat = __envp, 2063 }; 2064 return do_execveat_common(fd, filename, argv, envp, flags); 2065 } 2066 #endif 2067 2068 void set_binfmt(struct linux_binfmt *new) 2069 { 2070 struct mm_struct *mm = current->mm; 2071 2072 if (mm->binfmt) 2073 module_put(mm->binfmt->module); 2074 2075 mm->binfmt = new; 2076 if (new) 2077 __module_get(new->module); 2078 } 2079 EXPORT_SYMBOL(set_binfmt); 2080 2081 /* 2082 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 2083 */ 2084 void set_dumpable(struct mm_struct *mm, int value) 2085 { 2086 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 2087 return; 2088 2089 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value); 2090 } 2091 2092 SYSCALL_DEFINE3(execve, 2093 const char __user *, filename, 2094 const char __user *const __user *, argv, 2095 const char __user *const __user *, envp) 2096 { 2097 return do_execve(getname(filename), argv, envp); 2098 } 2099 2100 SYSCALL_DEFINE5(execveat, 2101 int, fd, const char __user *, filename, 2102 const char __user *const __user *, argv, 2103 const char __user *const __user *, envp, 2104 int, flags) 2105 { 2106 return do_execveat(fd, 2107 getname_uflags(filename, flags), 2108 argv, envp, flags); 2109 } 2110 2111 #ifdef CONFIG_COMPAT 2112 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 2113 const compat_uptr_t __user *, argv, 2114 const compat_uptr_t __user *, envp) 2115 { 2116 return compat_do_execve(getname(filename), argv, envp); 2117 } 2118 2119 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 2120 const char __user *, filename, 2121 const compat_uptr_t __user *, argv, 2122 const compat_uptr_t __user *, envp, 2123 int, flags) 2124 { 2125 return compat_do_execveat(fd, 2126 getname_uflags(filename, flags), 2127 argv, envp, flags); 2128 } 2129 #endif 2130 2131 #ifdef CONFIG_SYSCTL 2132 2133 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write, 2134 void *buffer, size_t *lenp, loff_t *ppos) 2135 { 2136 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2137 2138 if (!error) 2139 validate_coredump_safety(); 2140 return error; 2141 } 2142 2143 static struct ctl_table fs_exec_sysctls[] = { 2144 { 2145 .procname = "suid_dumpable", 2146 .data = &suid_dumpable, 2147 .maxlen = sizeof(int), 2148 .mode = 0644, 2149 .proc_handler = proc_dointvec_minmax_coredump, 2150 .extra1 = SYSCTL_ZERO, 2151 .extra2 = SYSCTL_TWO, 2152 }, 2153 { } 2154 }; 2155 2156 static int __init init_fs_exec_sysctls(void) 2157 { 2158 register_sysctl_init("fs", fs_exec_sysctls); 2159 return 0; 2160 } 2161 2162 fs_initcall(init_fs_exec_sysctls); 2163 #endif /* CONFIG_SYSCTL */ 2164