xref: /linux-6.15/fs/exec.c (revision 8802f616)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/a.out.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/init.h>
33 #include <linux/pagemap.h>
34 #include <linux/highmem.h>
35 #include <linux/spinlock.h>
36 #include <linux/key.h>
37 #include <linux/personality.h>
38 #include <linux/binfmts.h>
39 #include <linux/swap.h>
40 #include <linux/utsname.h>
41 #include <linux/module.h>
42 #include <linux/namei.h>
43 #include <linux/proc_fs.h>
44 #include <linux/ptrace.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/rmap.h>
49 #include <linux/acct.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 
53 #include <asm/uaccess.h>
54 #include <asm/mmu_context.h>
55 
56 #ifdef CONFIG_KMOD
57 #include <linux/kmod.h>
58 #endif
59 
60 int core_uses_pid;
61 char core_pattern[65] = "core";
62 int suid_dumpable = 0;
63 
64 EXPORT_SYMBOL(suid_dumpable);
65 /* The maximal length of core_pattern is also specified in sysctl.c */
66 
67 static struct linux_binfmt *formats;
68 static DEFINE_RWLOCK(binfmt_lock);
69 
70 int register_binfmt(struct linux_binfmt * fmt)
71 {
72 	struct linux_binfmt ** tmp = &formats;
73 
74 	if (!fmt)
75 		return -EINVAL;
76 	if (fmt->next)
77 		return -EBUSY;
78 	write_lock(&binfmt_lock);
79 	while (*tmp) {
80 		if (fmt == *tmp) {
81 			write_unlock(&binfmt_lock);
82 			return -EBUSY;
83 		}
84 		tmp = &(*tmp)->next;
85 	}
86 	fmt->next = formats;
87 	formats = fmt;
88 	write_unlock(&binfmt_lock);
89 	return 0;
90 }
91 
92 EXPORT_SYMBOL(register_binfmt);
93 
94 int unregister_binfmt(struct linux_binfmt * fmt)
95 {
96 	struct linux_binfmt ** tmp = &formats;
97 
98 	write_lock(&binfmt_lock);
99 	while (*tmp) {
100 		if (fmt == *tmp) {
101 			*tmp = fmt->next;
102 			write_unlock(&binfmt_lock);
103 			return 0;
104 		}
105 		tmp = &(*tmp)->next;
106 	}
107 	write_unlock(&binfmt_lock);
108 	return -EINVAL;
109 }
110 
111 EXPORT_SYMBOL(unregister_binfmt);
112 
113 static inline void put_binfmt(struct linux_binfmt * fmt)
114 {
115 	module_put(fmt->module);
116 }
117 
118 /*
119  * Note that a shared library must be both readable and executable due to
120  * security reasons.
121  *
122  * Also note that we take the address to load from from the file itself.
123  */
124 asmlinkage long sys_uselib(const char __user * library)
125 {
126 	struct file * file;
127 	struct nameidata nd;
128 	int error;
129 
130 	error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
131 	if (error)
132 		goto out;
133 
134 	error = -EINVAL;
135 	if (!S_ISREG(nd.dentry->d_inode->i_mode))
136 		goto exit;
137 
138 	error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
139 	if (error)
140 		goto exit;
141 
142 	file = nameidata_to_filp(&nd, O_RDONLY);
143 	error = PTR_ERR(file);
144 	if (IS_ERR(file))
145 		goto out;
146 
147 	error = -ENOEXEC;
148 	if(file->f_op) {
149 		struct linux_binfmt * fmt;
150 
151 		read_lock(&binfmt_lock);
152 		for (fmt = formats ; fmt ; fmt = fmt->next) {
153 			if (!fmt->load_shlib)
154 				continue;
155 			if (!try_module_get(fmt->module))
156 				continue;
157 			read_unlock(&binfmt_lock);
158 			error = fmt->load_shlib(file);
159 			read_lock(&binfmt_lock);
160 			put_binfmt(fmt);
161 			if (error != -ENOEXEC)
162 				break;
163 		}
164 		read_unlock(&binfmt_lock);
165 	}
166 	fput(file);
167 out:
168   	return error;
169 exit:
170 	release_open_intent(&nd);
171 	path_release(&nd);
172 	goto out;
173 }
174 
175 /*
176  * count() counts the number of strings in array ARGV.
177  */
178 static int count(char __user * __user * argv, int max)
179 {
180 	int i = 0;
181 
182 	if (argv != NULL) {
183 		for (;;) {
184 			char __user * p;
185 
186 			if (get_user(p, argv))
187 				return -EFAULT;
188 			if (!p)
189 				break;
190 			argv++;
191 			if(++i > max)
192 				return -E2BIG;
193 			cond_resched();
194 		}
195 	}
196 	return i;
197 }
198 
199 /*
200  * 'copy_strings()' copies argument/environment strings from user
201  * memory to free pages in kernel mem. These are in a format ready
202  * to be put directly into the top of new user memory.
203  */
204 static int copy_strings(int argc, char __user * __user * argv,
205 			struct linux_binprm *bprm)
206 {
207 	struct page *kmapped_page = NULL;
208 	char *kaddr = NULL;
209 	int ret;
210 
211 	while (argc-- > 0) {
212 		char __user *str;
213 		int len;
214 		unsigned long pos;
215 
216 		if (get_user(str, argv+argc) ||
217 				!(len = strnlen_user(str, bprm->p))) {
218 			ret = -EFAULT;
219 			goto out;
220 		}
221 
222 		if (bprm->p < len)  {
223 			ret = -E2BIG;
224 			goto out;
225 		}
226 
227 		bprm->p -= len;
228 		/* XXX: add architecture specific overflow check here. */
229 		pos = bprm->p;
230 
231 		while (len > 0) {
232 			int i, new, err;
233 			int offset, bytes_to_copy;
234 			struct page *page;
235 
236 			offset = pos % PAGE_SIZE;
237 			i = pos/PAGE_SIZE;
238 			page = bprm->page[i];
239 			new = 0;
240 			if (!page) {
241 				page = alloc_page(GFP_HIGHUSER);
242 				bprm->page[i] = page;
243 				if (!page) {
244 					ret = -ENOMEM;
245 					goto out;
246 				}
247 				new = 1;
248 			}
249 
250 			if (page != kmapped_page) {
251 				if (kmapped_page)
252 					kunmap(kmapped_page);
253 				kmapped_page = page;
254 				kaddr = kmap(kmapped_page);
255 			}
256 			if (new && offset)
257 				memset(kaddr, 0, offset);
258 			bytes_to_copy = PAGE_SIZE - offset;
259 			if (bytes_to_copy > len) {
260 				bytes_to_copy = len;
261 				if (new)
262 					memset(kaddr+offset+len, 0,
263 						PAGE_SIZE-offset-len);
264 			}
265 			err = copy_from_user(kaddr+offset, str, bytes_to_copy);
266 			if (err) {
267 				ret = -EFAULT;
268 				goto out;
269 			}
270 
271 			pos += bytes_to_copy;
272 			str += bytes_to_copy;
273 			len -= bytes_to_copy;
274 		}
275 	}
276 	ret = 0;
277 out:
278 	if (kmapped_page)
279 		kunmap(kmapped_page);
280 	return ret;
281 }
282 
283 /*
284  * Like copy_strings, but get argv and its values from kernel memory.
285  */
286 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
287 {
288 	int r;
289 	mm_segment_t oldfs = get_fs();
290 	set_fs(KERNEL_DS);
291 	r = copy_strings(argc, (char __user * __user *)argv, bprm);
292 	set_fs(oldfs);
293 	return r;
294 }
295 
296 EXPORT_SYMBOL(copy_strings_kernel);
297 
298 #ifdef CONFIG_MMU
299 /*
300  * This routine is used to map in a page into an address space: needed by
301  * execve() for the initial stack and environment pages.
302  *
303  * vma->vm_mm->mmap_sem is held for writing.
304  */
305 void install_arg_page(struct vm_area_struct *vma,
306 			struct page *page, unsigned long address)
307 {
308 	struct mm_struct *mm = vma->vm_mm;
309 	pte_t * pte;
310 	spinlock_t *ptl;
311 
312 	if (unlikely(anon_vma_prepare(vma)))
313 		goto out;
314 
315 	flush_dcache_page(page);
316 	pte = get_locked_pte(mm, address, &ptl);
317 	if (!pte)
318 		goto out;
319 	if (!pte_none(*pte)) {
320 		pte_unmap_unlock(pte, ptl);
321 		goto out;
322 	}
323 	inc_mm_counter(mm, anon_rss);
324 	lru_cache_add_active(page);
325 	set_pte_at(mm, address, pte, pte_mkdirty(pte_mkwrite(mk_pte(
326 					page, vma->vm_page_prot))));
327 	page_add_new_anon_rmap(page, vma, address);
328 	pte_unmap_unlock(pte, ptl);
329 
330 	/* no need for flush_tlb */
331 	return;
332 out:
333 	__free_page(page);
334 	force_sig(SIGKILL, current);
335 }
336 
337 #define EXTRA_STACK_VM_PAGES	20	/* random */
338 
339 int setup_arg_pages(struct linux_binprm *bprm,
340 		    unsigned long stack_top,
341 		    int executable_stack)
342 {
343 	unsigned long stack_base;
344 	struct vm_area_struct *mpnt;
345 	struct mm_struct *mm = current->mm;
346 	int i, ret;
347 	long arg_size;
348 
349 #ifdef CONFIG_STACK_GROWSUP
350 	/* Move the argument and environment strings to the bottom of the
351 	 * stack space.
352 	 */
353 	int offset, j;
354 	char *to, *from;
355 
356 	/* Start by shifting all the pages down */
357 	i = 0;
358 	for (j = 0; j < MAX_ARG_PAGES; j++) {
359 		struct page *page = bprm->page[j];
360 		if (!page)
361 			continue;
362 		bprm->page[i++] = page;
363 	}
364 
365 	/* Now move them within their pages */
366 	offset = bprm->p % PAGE_SIZE;
367 	to = kmap(bprm->page[0]);
368 	for (j = 1; j < i; j++) {
369 		memmove(to, to + offset, PAGE_SIZE - offset);
370 		from = kmap(bprm->page[j]);
371 		memcpy(to + PAGE_SIZE - offset, from, offset);
372 		kunmap(bprm->page[j - 1]);
373 		to = from;
374 	}
375 	memmove(to, to + offset, PAGE_SIZE - offset);
376 	kunmap(bprm->page[j - 1]);
377 
378 	/* Limit stack size to 1GB */
379 	stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
380 	if (stack_base > (1 << 30))
381 		stack_base = 1 << 30;
382 	stack_base = PAGE_ALIGN(stack_top - stack_base);
383 
384 	/* Adjust bprm->p to point to the end of the strings. */
385 	bprm->p = stack_base + PAGE_SIZE * i - offset;
386 
387 	mm->arg_start = stack_base;
388 	arg_size = i << PAGE_SHIFT;
389 
390 	/* zero pages that were copied above */
391 	while (i < MAX_ARG_PAGES)
392 		bprm->page[i++] = NULL;
393 #else
394 	stack_base = arch_align_stack(stack_top - MAX_ARG_PAGES*PAGE_SIZE);
395 	stack_base = PAGE_ALIGN(stack_base);
396 	bprm->p += stack_base;
397 	mm->arg_start = bprm->p;
398 	arg_size = stack_top - (PAGE_MASK & (unsigned long) mm->arg_start);
399 #endif
400 
401 	arg_size += EXTRA_STACK_VM_PAGES * PAGE_SIZE;
402 
403 	if (bprm->loader)
404 		bprm->loader += stack_base;
405 	bprm->exec += stack_base;
406 
407 	mpnt = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
408 	if (!mpnt)
409 		return -ENOMEM;
410 
411 	memset(mpnt, 0, sizeof(*mpnt));
412 
413 	down_write(&mm->mmap_sem);
414 	{
415 		mpnt->vm_mm = mm;
416 #ifdef CONFIG_STACK_GROWSUP
417 		mpnt->vm_start = stack_base;
418 		mpnt->vm_end = stack_base + arg_size;
419 #else
420 		mpnt->vm_end = stack_top;
421 		mpnt->vm_start = mpnt->vm_end - arg_size;
422 #endif
423 		/* Adjust stack execute permissions; explicitly enable
424 		 * for EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X
425 		 * and leave alone (arch default) otherwise. */
426 		if (unlikely(executable_stack == EXSTACK_ENABLE_X))
427 			mpnt->vm_flags = VM_STACK_FLAGS |  VM_EXEC;
428 		else if (executable_stack == EXSTACK_DISABLE_X)
429 			mpnt->vm_flags = VM_STACK_FLAGS & ~VM_EXEC;
430 		else
431 			mpnt->vm_flags = VM_STACK_FLAGS;
432 		mpnt->vm_flags |= mm->def_flags;
433 		mpnt->vm_page_prot = protection_map[mpnt->vm_flags & 0x7];
434 		if ((ret = insert_vm_struct(mm, mpnt))) {
435 			up_write(&mm->mmap_sem);
436 			kmem_cache_free(vm_area_cachep, mpnt);
437 			return ret;
438 		}
439 		mm->stack_vm = mm->total_vm = vma_pages(mpnt);
440 	}
441 
442 	for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
443 		struct page *page = bprm->page[i];
444 		if (page) {
445 			bprm->page[i] = NULL;
446 			install_arg_page(mpnt, page, stack_base);
447 		}
448 		stack_base += PAGE_SIZE;
449 	}
450 	up_write(&mm->mmap_sem);
451 
452 	return 0;
453 }
454 
455 EXPORT_SYMBOL(setup_arg_pages);
456 
457 #define free_arg_pages(bprm) do { } while (0)
458 
459 #else
460 
461 static inline void free_arg_pages(struct linux_binprm *bprm)
462 {
463 	int i;
464 
465 	for (i = 0; i < MAX_ARG_PAGES; i++) {
466 		if (bprm->page[i])
467 			__free_page(bprm->page[i]);
468 		bprm->page[i] = NULL;
469 	}
470 }
471 
472 #endif /* CONFIG_MMU */
473 
474 struct file *open_exec(const char *name)
475 {
476 	struct nameidata nd;
477 	int err;
478 	struct file *file;
479 
480 	err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
481 	file = ERR_PTR(err);
482 
483 	if (!err) {
484 		struct inode *inode = nd.dentry->d_inode;
485 		file = ERR_PTR(-EACCES);
486 		if (!(nd.mnt->mnt_flags & MNT_NOEXEC) &&
487 		    S_ISREG(inode->i_mode)) {
488 			int err = vfs_permission(&nd, MAY_EXEC);
489 			file = ERR_PTR(err);
490 			if (!err) {
491 				file = nameidata_to_filp(&nd, O_RDONLY);
492 				if (!IS_ERR(file)) {
493 					err = deny_write_access(file);
494 					if (err) {
495 						fput(file);
496 						file = ERR_PTR(err);
497 					}
498 				}
499 out:
500 				return file;
501 			}
502 		}
503 		release_open_intent(&nd);
504 		path_release(&nd);
505 	}
506 	goto out;
507 }
508 
509 EXPORT_SYMBOL(open_exec);
510 
511 int kernel_read(struct file *file, unsigned long offset,
512 	char *addr, unsigned long count)
513 {
514 	mm_segment_t old_fs;
515 	loff_t pos = offset;
516 	int result;
517 
518 	old_fs = get_fs();
519 	set_fs(get_ds());
520 	/* The cast to a user pointer is valid due to the set_fs() */
521 	result = vfs_read(file, (void __user *)addr, count, &pos);
522 	set_fs(old_fs);
523 	return result;
524 }
525 
526 EXPORT_SYMBOL(kernel_read);
527 
528 static int exec_mmap(struct mm_struct *mm)
529 {
530 	struct task_struct *tsk;
531 	struct mm_struct * old_mm, *active_mm;
532 
533 	/* Notify parent that we're no longer interested in the old VM */
534 	tsk = current;
535 	old_mm = current->mm;
536 	mm_release(tsk, old_mm);
537 
538 	if (old_mm) {
539 		/*
540 		 * Make sure that if there is a core dump in progress
541 		 * for the old mm, we get out and die instead of going
542 		 * through with the exec.  We must hold mmap_sem around
543 		 * checking core_waiters and changing tsk->mm.  The
544 		 * core-inducing thread will increment core_waiters for
545 		 * each thread whose ->mm == old_mm.
546 		 */
547 		down_read(&old_mm->mmap_sem);
548 		if (unlikely(old_mm->core_waiters)) {
549 			up_read(&old_mm->mmap_sem);
550 			return -EINTR;
551 		}
552 	}
553 	task_lock(tsk);
554 	active_mm = tsk->active_mm;
555 	tsk->mm = mm;
556 	tsk->active_mm = mm;
557 	activate_mm(active_mm, mm);
558 	task_unlock(tsk);
559 	arch_pick_mmap_layout(mm);
560 	if (old_mm) {
561 		up_read(&old_mm->mmap_sem);
562 		BUG_ON(active_mm != old_mm);
563 		mmput(old_mm);
564 		return 0;
565 	}
566 	mmdrop(active_mm);
567 	return 0;
568 }
569 
570 /*
571  * This function makes sure the current process has its own signal table,
572  * so that flush_signal_handlers can later reset the handlers without
573  * disturbing other processes.  (Other processes might share the signal
574  * table via the CLONE_SIGHAND option to clone().)
575  */
576 static int de_thread(struct task_struct *tsk)
577 {
578 	struct signal_struct *sig = tsk->signal;
579 	struct sighand_struct *newsighand, *oldsighand = tsk->sighand;
580 	spinlock_t *lock = &oldsighand->siglock;
581 	struct task_struct *leader = NULL;
582 	int count;
583 
584 	/*
585 	 * If we don't share sighandlers, then we aren't sharing anything
586 	 * and we can just re-use it all.
587 	 */
588 	if (atomic_read(&oldsighand->count) <= 1) {
589 		BUG_ON(atomic_read(&sig->count) != 1);
590 		exit_itimers(sig);
591 		return 0;
592 	}
593 
594 	newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
595 	if (!newsighand)
596 		return -ENOMEM;
597 
598 	if (thread_group_empty(current))
599 		goto no_thread_group;
600 
601 	/*
602 	 * Kill all other threads in the thread group.
603 	 * We must hold tasklist_lock to call zap_other_threads.
604 	 */
605 	read_lock(&tasklist_lock);
606 	spin_lock_irq(lock);
607 	if (sig->flags & SIGNAL_GROUP_EXIT) {
608 		/*
609 		 * Another group action in progress, just
610 		 * return so that the signal is processed.
611 		 */
612 		spin_unlock_irq(lock);
613 		read_unlock(&tasklist_lock);
614 		kmem_cache_free(sighand_cachep, newsighand);
615 		return -EAGAIN;
616 	}
617 
618 	/*
619 	 * child_reaper ignores SIGKILL, change it now.
620 	 * Reparenting needs write_lock on tasklist_lock,
621 	 * so it is safe to do it under read_lock.
622 	 */
623 	if (unlikely(current->group_leader == child_reaper))
624 		child_reaper = current;
625 
626 	zap_other_threads(current);
627 	read_unlock(&tasklist_lock);
628 
629 	/*
630 	 * Account for the thread group leader hanging around:
631 	 */
632 	count = 1;
633 	if (!thread_group_leader(current)) {
634 		count = 2;
635 		/*
636 		 * The SIGALRM timer survives the exec, but needs to point
637 		 * at us as the new group leader now.  We have a race with
638 		 * a timer firing now getting the old leader, so we need to
639 		 * synchronize with any firing (by calling del_timer_sync)
640 		 * before we can safely let the old group leader die.
641 		 */
642 		sig->tsk = current;
643 		spin_unlock_irq(lock);
644 		if (hrtimer_cancel(&sig->real_timer))
645 			hrtimer_restart(&sig->real_timer);
646 		spin_lock_irq(lock);
647 	}
648 	while (atomic_read(&sig->count) > count) {
649 		sig->group_exit_task = current;
650 		sig->notify_count = count;
651 		__set_current_state(TASK_UNINTERRUPTIBLE);
652 		spin_unlock_irq(lock);
653 		schedule();
654 		spin_lock_irq(lock);
655 	}
656 	sig->group_exit_task = NULL;
657 	sig->notify_count = 0;
658 	spin_unlock_irq(lock);
659 
660 	/*
661 	 * At this point all other threads have exited, all we have to
662 	 * do is to wait for the thread group leader to become inactive,
663 	 * and to assume its PID:
664 	 */
665 	if (!thread_group_leader(current)) {
666 		/*
667 		 * Wait for the thread group leader to be a zombie.
668 		 * It should already be zombie at this point, most
669 		 * of the time.
670 		 */
671 		leader = current->group_leader;
672 		while (leader->exit_state != EXIT_ZOMBIE)
673 			yield();
674 
675 		/*
676 		 * The only record we have of the real-time age of a
677 		 * process, regardless of execs it's done, is start_time.
678 		 * All the past CPU time is accumulated in signal_struct
679 		 * from sister threads now dead.  But in this non-leader
680 		 * exec, nothing survives from the original leader thread,
681 		 * whose birth marks the true age of this process now.
682 		 * When we take on its identity by switching to its PID, we
683 		 * also take its birthdate (always earlier than our own).
684 		 */
685 		current->start_time = leader->start_time;
686 
687 		write_lock_irq(&tasklist_lock);
688 
689 		BUG_ON(leader->tgid != current->tgid);
690 		BUG_ON(current->pid == current->tgid);
691 		/*
692 		 * An exec() starts a new thread group with the
693 		 * TGID of the previous thread group. Rehash the
694 		 * two threads with a switched PID, and release
695 		 * the former thread group leader:
696 		 */
697 
698 		/* Become a process group leader with the old leader's pid.
699 		 * Note: The old leader also uses thispid until release_task
700 		 *       is called.  Odd but simple and correct.
701 		 */
702 		detach_pid(current, PIDTYPE_PID);
703 		current->pid = leader->pid;
704 		attach_pid(current, PIDTYPE_PID,  current->pid);
705 		attach_pid(current, PIDTYPE_PGID, current->signal->pgrp);
706 		attach_pid(current, PIDTYPE_SID,  current->signal->session);
707 		list_replace_rcu(&leader->tasks, &current->tasks);
708 
709 		current->group_leader = current;
710 		leader->group_leader = current;
711 
712 		/* Reduce leader to a thread */
713 		detach_pid(leader, PIDTYPE_PGID);
714 		detach_pid(leader, PIDTYPE_SID);
715 
716 		current->exit_signal = SIGCHLD;
717 
718 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
719 		leader->exit_state = EXIT_DEAD;
720 
721 		write_unlock_irq(&tasklist_lock);
722         }
723 
724 	/*
725 	 * There may be one thread left which is just exiting,
726 	 * but it's safe to stop telling the group to kill themselves.
727 	 */
728 	sig->flags = 0;
729 
730 no_thread_group:
731 	exit_itimers(sig);
732 	if (leader)
733 		release_task(leader);
734 
735 	BUG_ON(atomic_read(&sig->count) != 1);
736 
737 	if (atomic_read(&oldsighand->count) == 1) {
738 		/*
739 		 * Now that we nuked the rest of the thread group,
740 		 * it turns out we are not sharing sighand any more either.
741 		 * So we can just keep it.
742 		 */
743 		kmem_cache_free(sighand_cachep, newsighand);
744 	} else {
745 		/*
746 		 * Move our state over to newsighand and switch it in.
747 		 */
748 		atomic_set(&newsighand->count, 1);
749 		memcpy(newsighand->action, oldsighand->action,
750 		       sizeof(newsighand->action));
751 
752 		write_lock_irq(&tasklist_lock);
753 		spin_lock(&oldsighand->siglock);
754 		spin_lock_nested(&newsighand->siglock, SINGLE_DEPTH_NESTING);
755 
756 		rcu_assign_pointer(current->sighand, newsighand);
757 		recalc_sigpending();
758 
759 		spin_unlock(&newsighand->siglock);
760 		spin_unlock(&oldsighand->siglock);
761 		write_unlock_irq(&tasklist_lock);
762 
763 		if (atomic_dec_and_test(&oldsighand->count))
764 			kmem_cache_free(sighand_cachep, oldsighand);
765 	}
766 
767 	BUG_ON(!thread_group_leader(current));
768 	return 0;
769 }
770 
771 /*
772  * These functions flushes out all traces of the currently running executable
773  * so that a new one can be started
774  */
775 
776 static void flush_old_files(struct files_struct * files)
777 {
778 	long j = -1;
779 	struct fdtable *fdt;
780 
781 	spin_lock(&files->file_lock);
782 	for (;;) {
783 		unsigned long set, i;
784 
785 		j++;
786 		i = j * __NFDBITS;
787 		fdt = files_fdtable(files);
788 		if (i >= fdt->max_fds || i >= fdt->max_fdset)
789 			break;
790 		set = fdt->close_on_exec->fds_bits[j];
791 		if (!set)
792 			continue;
793 		fdt->close_on_exec->fds_bits[j] = 0;
794 		spin_unlock(&files->file_lock);
795 		for ( ; set ; i++,set >>= 1) {
796 			if (set & 1) {
797 				sys_close(i);
798 			}
799 		}
800 		spin_lock(&files->file_lock);
801 
802 	}
803 	spin_unlock(&files->file_lock);
804 }
805 
806 void get_task_comm(char *buf, struct task_struct *tsk)
807 {
808 	/* buf must be at least sizeof(tsk->comm) in size */
809 	task_lock(tsk);
810 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
811 	task_unlock(tsk);
812 }
813 
814 void set_task_comm(struct task_struct *tsk, char *buf)
815 {
816 	task_lock(tsk);
817 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
818 	task_unlock(tsk);
819 }
820 
821 int flush_old_exec(struct linux_binprm * bprm)
822 {
823 	char * name;
824 	int i, ch, retval;
825 	struct files_struct *files;
826 	char tcomm[sizeof(current->comm)];
827 
828 	/*
829 	 * Make sure we have a private signal table and that
830 	 * we are unassociated from the previous thread group.
831 	 */
832 	retval = de_thread(current);
833 	if (retval)
834 		goto out;
835 
836 	/*
837 	 * Make sure we have private file handles. Ask the
838 	 * fork helper to do the work for us and the exit
839 	 * helper to do the cleanup of the old one.
840 	 */
841 	files = current->files;		/* refcounted so safe to hold */
842 	retval = unshare_files();
843 	if (retval)
844 		goto out;
845 	/*
846 	 * Release all of the old mmap stuff
847 	 */
848 	retval = exec_mmap(bprm->mm);
849 	if (retval)
850 		goto mmap_failed;
851 
852 	bprm->mm = NULL;		/* We're using it now */
853 
854 	/* This is the point of no return */
855 	put_files_struct(files);
856 
857 	current->sas_ss_sp = current->sas_ss_size = 0;
858 
859 	if (current->euid == current->uid && current->egid == current->gid)
860 		current->mm->dumpable = 1;
861 	else
862 		current->mm->dumpable = suid_dumpable;
863 
864 	name = bprm->filename;
865 
866 	/* Copies the binary name from after last slash */
867 	for (i=0; (ch = *(name++)) != '\0';) {
868 		if (ch == '/')
869 			i = 0; /* overwrite what we wrote */
870 		else
871 			if (i < (sizeof(tcomm) - 1))
872 				tcomm[i++] = ch;
873 	}
874 	tcomm[i] = '\0';
875 	set_task_comm(current, tcomm);
876 
877 	current->flags &= ~PF_RANDOMIZE;
878 	flush_thread();
879 
880 	/* Set the new mm task size. We have to do that late because it may
881 	 * depend on TIF_32BIT which is only updated in flush_thread() on
882 	 * some architectures like powerpc
883 	 */
884 	current->mm->task_size = TASK_SIZE;
885 
886 	if (bprm->e_uid != current->euid || bprm->e_gid != current->egid ||
887 	    file_permission(bprm->file, MAY_READ) ||
888 	    (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
889 		suid_keys(current);
890 		current->mm->dumpable = suid_dumpable;
891 	}
892 
893 	/* An exec changes our domain. We are no longer part of the thread
894 	   group */
895 
896 	current->self_exec_id++;
897 
898 	flush_signal_handlers(current, 0);
899 	flush_old_files(current->files);
900 
901 	return 0;
902 
903 mmap_failed:
904 	put_files_struct(current->files);
905 	current->files = files;
906 out:
907 	return retval;
908 }
909 
910 EXPORT_SYMBOL(flush_old_exec);
911 
912 /*
913  * Fill the binprm structure from the inode.
914  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
915  */
916 int prepare_binprm(struct linux_binprm *bprm)
917 {
918 	int mode;
919 	struct inode * inode = bprm->file->f_dentry->d_inode;
920 	int retval;
921 
922 	mode = inode->i_mode;
923 	if (bprm->file->f_op == NULL)
924 		return -EACCES;
925 
926 	bprm->e_uid = current->euid;
927 	bprm->e_gid = current->egid;
928 
929 	if(!(bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)) {
930 		/* Set-uid? */
931 		if (mode & S_ISUID) {
932 			current->personality &= ~PER_CLEAR_ON_SETID;
933 			bprm->e_uid = inode->i_uid;
934 		}
935 
936 		/* Set-gid? */
937 		/*
938 		 * If setgid is set but no group execute bit then this
939 		 * is a candidate for mandatory locking, not a setgid
940 		 * executable.
941 		 */
942 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
943 			current->personality &= ~PER_CLEAR_ON_SETID;
944 			bprm->e_gid = inode->i_gid;
945 		}
946 	}
947 
948 	/* fill in binprm security blob */
949 	retval = security_bprm_set(bprm);
950 	if (retval)
951 		return retval;
952 
953 	memset(bprm->buf,0,BINPRM_BUF_SIZE);
954 	return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
955 }
956 
957 EXPORT_SYMBOL(prepare_binprm);
958 
959 static int unsafe_exec(struct task_struct *p)
960 {
961 	int unsafe = 0;
962 	if (p->ptrace & PT_PTRACED) {
963 		if (p->ptrace & PT_PTRACE_CAP)
964 			unsafe |= LSM_UNSAFE_PTRACE_CAP;
965 		else
966 			unsafe |= LSM_UNSAFE_PTRACE;
967 	}
968 	if (atomic_read(&p->fs->count) > 1 ||
969 	    atomic_read(&p->files->count) > 1 ||
970 	    atomic_read(&p->sighand->count) > 1)
971 		unsafe |= LSM_UNSAFE_SHARE;
972 
973 	return unsafe;
974 }
975 
976 void compute_creds(struct linux_binprm *bprm)
977 {
978 	int unsafe;
979 
980 	if (bprm->e_uid != current->uid)
981 		suid_keys(current);
982 	exec_keys(current);
983 
984 	task_lock(current);
985 	unsafe = unsafe_exec(current);
986 	security_bprm_apply_creds(bprm, unsafe);
987 	task_unlock(current);
988 	security_bprm_post_apply_creds(bprm);
989 }
990 
991 EXPORT_SYMBOL(compute_creds);
992 
993 void remove_arg_zero(struct linux_binprm *bprm)
994 {
995 	if (bprm->argc) {
996 		unsigned long offset;
997 		char * kaddr;
998 		struct page *page;
999 
1000 		offset = bprm->p % PAGE_SIZE;
1001 		goto inside;
1002 
1003 		while (bprm->p++, *(kaddr+offset++)) {
1004 			if (offset != PAGE_SIZE)
1005 				continue;
1006 			offset = 0;
1007 			kunmap_atomic(kaddr, KM_USER0);
1008 inside:
1009 			page = bprm->page[bprm->p/PAGE_SIZE];
1010 			kaddr = kmap_atomic(page, KM_USER0);
1011 		}
1012 		kunmap_atomic(kaddr, KM_USER0);
1013 		bprm->argc--;
1014 	}
1015 }
1016 
1017 EXPORT_SYMBOL(remove_arg_zero);
1018 
1019 /*
1020  * cycle the list of binary formats handler, until one recognizes the image
1021  */
1022 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1023 {
1024 	int try,retval;
1025 	struct linux_binfmt *fmt;
1026 #ifdef __alpha__
1027 	/* handle /sbin/loader.. */
1028 	{
1029 	    struct exec * eh = (struct exec *) bprm->buf;
1030 
1031 	    if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1032 		(eh->fh.f_flags & 0x3000) == 0x3000)
1033 	    {
1034 		struct file * file;
1035 		unsigned long loader;
1036 
1037 		allow_write_access(bprm->file);
1038 		fput(bprm->file);
1039 		bprm->file = NULL;
1040 
1041 	        loader = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
1042 
1043 		file = open_exec("/sbin/loader");
1044 		retval = PTR_ERR(file);
1045 		if (IS_ERR(file))
1046 			return retval;
1047 
1048 		/* Remember if the application is TASO.  */
1049 		bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1050 
1051 		bprm->file = file;
1052 		bprm->loader = loader;
1053 		retval = prepare_binprm(bprm);
1054 		if (retval<0)
1055 			return retval;
1056 		/* should call search_binary_handler recursively here,
1057 		   but it does not matter */
1058 	    }
1059 	}
1060 #endif
1061 	retval = security_bprm_check(bprm);
1062 	if (retval)
1063 		return retval;
1064 
1065 	/* kernel module loader fixup */
1066 	/* so we don't try to load run modprobe in kernel space. */
1067 	set_fs(USER_DS);
1068 
1069 	retval = audit_bprm(bprm);
1070 	if (retval)
1071 		return retval;
1072 
1073 	retval = -ENOENT;
1074 	for (try=0; try<2; try++) {
1075 		read_lock(&binfmt_lock);
1076 		for (fmt = formats ; fmt ; fmt = fmt->next) {
1077 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1078 			if (!fn)
1079 				continue;
1080 			if (!try_module_get(fmt->module))
1081 				continue;
1082 			read_unlock(&binfmt_lock);
1083 			retval = fn(bprm, regs);
1084 			if (retval >= 0) {
1085 				put_binfmt(fmt);
1086 				allow_write_access(bprm->file);
1087 				if (bprm->file)
1088 					fput(bprm->file);
1089 				bprm->file = NULL;
1090 				current->did_exec = 1;
1091 				proc_exec_connector(current);
1092 				return retval;
1093 			}
1094 			read_lock(&binfmt_lock);
1095 			put_binfmt(fmt);
1096 			if (retval != -ENOEXEC || bprm->mm == NULL)
1097 				break;
1098 			if (!bprm->file) {
1099 				read_unlock(&binfmt_lock);
1100 				return retval;
1101 			}
1102 		}
1103 		read_unlock(&binfmt_lock);
1104 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1105 			break;
1106 #ifdef CONFIG_KMOD
1107 		}else{
1108 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1109 			if (printable(bprm->buf[0]) &&
1110 			    printable(bprm->buf[1]) &&
1111 			    printable(bprm->buf[2]) &&
1112 			    printable(bprm->buf[3]))
1113 				break; /* -ENOEXEC */
1114 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1115 #endif
1116 		}
1117 	}
1118 	return retval;
1119 }
1120 
1121 EXPORT_SYMBOL(search_binary_handler);
1122 
1123 /*
1124  * sys_execve() executes a new program.
1125  */
1126 int do_execve(char * filename,
1127 	char __user *__user *argv,
1128 	char __user *__user *envp,
1129 	struct pt_regs * regs)
1130 {
1131 	struct linux_binprm *bprm;
1132 	struct file *file;
1133 	int retval;
1134 	int i;
1135 
1136 	retval = -ENOMEM;
1137 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1138 	if (!bprm)
1139 		goto out_ret;
1140 
1141 	file = open_exec(filename);
1142 	retval = PTR_ERR(file);
1143 	if (IS_ERR(file))
1144 		goto out_kfree;
1145 
1146 	sched_exec();
1147 
1148 	bprm->p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
1149 
1150 	bprm->file = file;
1151 	bprm->filename = filename;
1152 	bprm->interp = filename;
1153 	bprm->mm = mm_alloc();
1154 	retval = -ENOMEM;
1155 	if (!bprm->mm)
1156 		goto out_file;
1157 
1158 	retval = init_new_context(current, bprm->mm);
1159 	if (retval < 0)
1160 		goto out_mm;
1161 
1162 	bprm->argc = count(argv, bprm->p / sizeof(void *));
1163 	if ((retval = bprm->argc) < 0)
1164 		goto out_mm;
1165 
1166 	bprm->envc = count(envp, bprm->p / sizeof(void *));
1167 	if ((retval = bprm->envc) < 0)
1168 		goto out_mm;
1169 
1170 	retval = security_bprm_alloc(bprm);
1171 	if (retval)
1172 		goto out;
1173 
1174 	retval = prepare_binprm(bprm);
1175 	if (retval < 0)
1176 		goto out;
1177 
1178 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1179 	if (retval < 0)
1180 		goto out;
1181 
1182 	bprm->exec = bprm->p;
1183 	retval = copy_strings(bprm->envc, envp, bprm);
1184 	if (retval < 0)
1185 		goto out;
1186 
1187 	retval = copy_strings(bprm->argc, argv, bprm);
1188 	if (retval < 0)
1189 		goto out;
1190 
1191 	retval = search_binary_handler(bprm,regs);
1192 	if (retval >= 0) {
1193 		free_arg_pages(bprm);
1194 
1195 		/* execve success */
1196 		security_bprm_free(bprm);
1197 		acct_update_integrals(current);
1198 		kfree(bprm);
1199 		return retval;
1200 	}
1201 
1202 out:
1203 	/* Something went wrong, return the inode and free the argument pages*/
1204 	for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
1205 		struct page * page = bprm->page[i];
1206 		if (page)
1207 			__free_page(page);
1208 	}
1209 
1210 	if (bprm->security)
1211 		security_bprm_free(bprm);
1212 
1213 out_mm:
1214 	if (bprm->mm)
1215 		mmdrop(bprm->mm);
1216 
1217 out_file:
1218 	if (bprm->file) {
1219 		allow_write_access(bprm->file);
1220 		fput(bprm->file);
1221 	}
1222 
1223 out_kfree:
1224 	kfree(bprm);
1225 
1226 out_ret:
1227 	return retval;
1228 }
1229 
1230 int set_binfmt(struct linux_binfmt *new)
1231 {
1232 	struct linux_binfmt *old = current->binfmt;
1233 
1234 	if (new) {
1235 		if (!try_module_get(new->module))
1236 			return -1;
1237 	}
1238 	current->binfmt = new;
1239 	if (old)
1240 		module_put(old->module);
1241 	return 0;
1242 }
1243 
1244 EXPORT_SYMBOL(set_binfmt);
1245 
1246 #define CORENAME_MAX_SIZE 64
1247 
1248 /* format_corename will inspect the pattern parameter, and output a
1249  * name into corename, which must have space for at least
1250  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1251  */
1252 static void format_corename(char *corename, const char *pattern, long signr)
1253 {
1254 	const char *pat_ptr = pattern;
1255 	char *out_ptr = corename;
1256 	char *const out_end = corename + CORENAME_MAX_SIZE;
1257 	int rc;
1258 	int pid_in_pattern = 0;
1259 
1260 	/* Repeat as long as we have more pattern to process and more output
1261 	   space */
1262 	while (*pat_ptr) {
1263 		if (*pat_ptr != '%') {
1264 			if (out_ptr == out_end)
1265 				goto out;
1266 			*out_ptr++ = *pat_ptr++;
1267 		} else {
1268 			switch (*++pat_ptr) {
1269 			case 0:
1270 				goto out;
1271 			/* Double percent, output one percent */
1272 			case '%':
1273 				if (out_ptr == out_end)
1274 					goto out;
1275 				*out_ptr++ = '%';
1276 				break;
1277 			/* pid */
1278 			case 'p':
1279 				pid_in_pattern = 1;
1280 				rc = snprintf(out_ptr, out_end - out_ptr,
1281 					      "%d", current->tgid);
1282 				if (rc > out_end - out_ptr)
1283 					goto out;
1284 				out_ptr += rc;
1285 				break;
1286 			/* uid */
1287 			case 'u':
1288 				rc = snprintf(out_ptr, out_end - out_ptr,
1289 					      "%d", current->uid);
1290 				if (rc > out_end - out_ptr)
1291 					goto out;
1292 				out_ptr += rc;
1293 				break;
1294 			/* gid */
1295 			case 'g':
1296 				rc = snprintf(out_ptr, out_end - out_ptr,
1297 					      "%d", current->gid);
1298 				if (rc > out_end - out_ptr)
1299 					goto out;
1300 				out_ptr += rc;
1301 				break;
1302 			/* signal that caused the coredump */
1303 			case 's':
1304 				rc = snprintf(out_ptr, out_end - out_ptr,
1305 					      "%ld", signr);
1306 				if (rc > out_end - out_ptr)
1307 					goto out;
1308 				out_ptr += rc;
1309 				break;
1310 			/* UNIX time of coredump */
1311 			case 't': {
1312 				struct timeval tv;
1313 				do_gettimeofday(&tv);
1314 				rc = snprintf(out_ptr, out_end - out_ptr,
1315 					      "%lu", tv.tv_sec);
1316 				if (rc > out_end - out_ptr)
1317 					goto out;
1318 				out_ptr += rc;
1319 				break;
1320 			}
1321 			/* hostname */
1322 			case 'h':
1323 				down_read(&uts_sem);
1324 				rc = snprintf(out_ptr, out_end - out_ptr,
1325 					      "%s", system_utsname.nodename);
1326 				up_read(&uts_sem);
1327 				if (rc > out_end - out_ptr)
1328 					goto out;
1329 				out_ptr += rc;
1330 				break;
1331 			/* executable */
1332 			case 'e':
1333 				rc = snprintf(out_ptr, out_end - out_ptr,
1334 					      "%s", current->comm);
1335 				if (rc > out_end - out_ptr)
1336 					goto out;
1337 				out_ptr += rc;
1338 				break;
1339 			default:
1340 				break;
1341 			}
1342 			++pat_ptr;
1343 		}
1344 	}
1345 	/* Backward compatibility with core_uses_pid:
1346 	 *
1347 	 * If core_pattern does not include a %p (as is the default)
1348 	 * and core_uses_pid is set, then .%pid will be appended to
1349 	 * the filename */
1350 	if (!pid_in_pattern
1351             && (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)) {
1352 		rc = snprintf(out_ptr, out_end - out_ptr,
1353 			      ".%d", current->tgid);
1354 		if (rc > out_end - out_ptr)
1355 			goto out;
1356 		out_ptr += rc;
1357 	}
1358       out:
1359 	*out_ptr = 0;
1360 }
1361 
1362 static void zap_process(struct task_struct *start)
1363 {
1364 	struct task_struct *t;
1365 
1366 	start->signal->flags = SIGNAL_GROUP_EXIT;
1367 	start->signal->group_stop_count = 0;
1368 
1369 	t = start;
1370 	do {
1371 		if (t != current && t->mm) {
1372 			t->mm->core_waiters++;
1373 			sigaddset(&t->pending.signal, SIGKILL);
1374 			signal_wake_up(t, 1);
1375 		}
1376 	} while ((t = next_thread(t)) != start);
1377 }
1378 
1379 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1380 				int exit_code)
1381 {
1382 	struct task_struct *g, *p;
1383 	unsigned long flags;
1384 	int err = -EAGAIN;
1385 
1386 	spin_lock_irq(&tsk->sighand->siglock);
1387 	if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
1388 		tsk->signal->group_exit_code = exit_code;
1389 		zap_process(tsk);
1390 		err = 0;
1391 	}
1392 	spin_unlock_irq(&tsk->sighand->siglock);
1393 	if (err)
1394 		return err;
1395 
1396 	if (atomic_read(&mm->mm_users) == mm->core_waiters + 1)
1397 		goto done;
1398 
1399 	rcu_read_lock();
1400 	for_each_process(g) {
1401 		if (g == tsk->group_leader)
1402 			continue;
1403 
1404 		p = g;
1405 		do {
1406 			if (p->mm) {
1407 				if (p->mm == mm) {
1408 					/*
1409 					 * p->sighand can't disappear, but
1410 					 * may be changed by de_thread()
1411 					 */
1412 					lock_task_sighand(p, &flags);
1413 					zap_process(p);
1414 					unlock_task_sighand(p, &flags);
1415 				}
1416 				break;
1417 			}
1418 		} while ((p = next_thread(p)) != g);
1419 	}
1420 	rcu_read_unlock();
1421 done:
1422 	return mm->core_waiters;
1423 }
1424 
1425 static int coredump_wait(int exit_code)
1426 {
1427 	struct task_struct *tsk = current;
1428 	struct mm_struct *mm = tsk->mm;
1429 	struct completion startup_done;
1430 	struct completion *vfork_done;
1431 	int core_waiters;
1432 
1433 	init_completion(&mm->core_done);
1434 	init_completion(&startup_done);
1435 	mm->core_startup_done = &startup_done;
1436 
1437 	core_waiters = zap_threads(tsk, mm, exit_code);
1438 	up_write(&mm->mmap_sem);
1439 
1440 	if (unlikely(core_waiters < 0))
1441 		goto fail;
1442 
1443 	/*
1444 	 * Make sure nobody is waiting for us to release the VM,
1445 	 * otherwise we can deadlock when we wait on each other
1446 	 */
1447 	vfork_done = tsk->vfork_done;
1448 	if (vfork_done) {
1449 		tsk->vfork_done = NULL;
1450 		complete(vfork_done);
1451 	}
1452 
1453 	if (core_waiters)
1454 		wait_for_completion(&startup_done);
1455 fail:
1456 	BUG_ON(mm->core_waiters);
1457 	return core_waiters;
1458 }
1459 
1460 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1461 {
1462 	char corename[CORENAME_MAX_SIZE + 1];
1463 	struct mm_struct *mm = current->mm;
1464 	struct linux_binfmt * binfmt;
1465 	struct inode * inode;
1466 	struct file * file;
1467 	int retval = 0;
1468 	int fsuid = current->fsuid;
1469 	int flag = 0;
1470 
1471 	binfmt = current->binfmt;
1472 	if (!binfmt || !binfmt->core_dump)
1473 		goto fail;
1474 	down_write(&mm->mmap_sem);
1475 	if (!mm->dumpable) {
1476 		up_write(&mm->mmap_sem);
1477 		goto fail;
1478 	}
1479 
1480 	/*
1481 	 *	We cannot trust fsuid as being the "true" uid of the
1482 	 *	process nor do we know its entire history. We only know it
1483 	 *	was tainted so we dump it as root in mode 2.
1484 	 */
1485 	if (mm->dumpable == 2) {	/* Setuid core dump mode */
1486 		flag = O_EXCL;		/* Stop rewrite attacks */
1487 		current->fsuid = 0;	/* Dump root private */
1488 	}
1489 	mm->dumpable = 0;
1490 
1491 	retval = coredump_wait(exit_code);
1492 	if (retval < 0)
1493 		goto fail;
1494 
1495 	/*
1496 	 * Clear any false indication of pending signals that might
1497 	 * be seen by the filesystem code called to write the core file.
1498 	 */
1499 	clear_thread_flag(TIF_SIGPENDING);
1500 
1501 	if (current->signal->rlim[RLIMIT_CORE].rlim_cur < binfmt->min_coredump)
1502 		goto fail_unlock;
1503 
1504 	/*
1505 	 * lock_kernel() because format_corename() is controlled by sysctl, which
1506 	 * uses lock_kernel()
1507 	 */
1508  	lock_kernel();
1509 	format_corename(corename, core_pattern, signr);
1510 	unlock_kernel();
1511 	file = filp_open(corename, O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 0600);
1512 	if (IS_ERR(file))
1513 		goto fail_unlock;
1514 	inode = file->f_dentry->d_inode;
1515 	if (inode->i_nlink > 1)
1516 		goto close_fail;	/* multiple links - don't dump */
1517 	if (d_unhashed(file->f_dentry))
1518 		goto close_fail;
1519 
1520 	if (!S_ISREG(inode->i_mode))
1521 		goto close_fail;
1522 	if (!file->f_op)
1523 		goto close_fail;
1524 	if (!file->f_op->write)
1525 		goto close_fail;
1526 	if (do_truncate(file->f_dentry, 0, 0, file) != 0)
1527 		goto close_fail;
1528 
1529 	retval = binfmt->core_dump(signr, regs, file);
1530 
1531 	if (retval)
1532 		current->signal->group_exit_code |= 0x80;
1533 close_fail:
1534 	filp_close(file, NULL);
1535 fail_unlock:
1536 	current->fsuid = fsuid;
1537 	complete_all(&mm->core_done);
1538 fail:
1539 	return retval;
1540 }
1541