1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/mman.h> 28 #include <linux/a.out.h> 29 #include <linux/stat.h> 30 #include <linux/fcntl.h> 31 #include <linux/smp_lock.h> 32 #include <linux/init.h> 33 #include <linux/pagemap.h> 34 #include <linux/highmem.h> 35 #include <linux/spinlock.h> 36 #include <linux/key.h> 37 #include <linux/personality.h> 38 #include <linux/binfmts.h> 39 #include <linux/swap.h> 40 #include <linux/utsname.h> 41 #include <linux/module.h> 42 #include <linux/namei.h> 43 #include <linux/proc_fs.h> 44 #include <linux/ptrace.h> 45 #include <linux/mount.h> 46 #include <linux/security.h> 47 #include <linux/syscalls.h> 48 #include <linux/rmap.h> 49 #include <linux/acct.h> 50 #include <linux/cn_proc.h> 51 #include <linux/audit.h> 52 53 #include <asm/uaccess.h> 54 #include <asm/mmu_context.h> 55 56 #ifdef CONFIG_KMOD 57 #include <linux/kmod.h> 58 #endif 59 60 int core_uses_pid; 61 char core_pattern[65] = "core"; 62 int suid_dumpable = 0; 63 64 EXPORT_SYMBOL(suid_dumpable); 65 /* The maximal length of core_pattern is also specified in sysctl.c */ 66 67 static struct linux_binfmt *formats; 68 static DEFINE_RWLOCK(binfmt_lock); 69 70 int register_binfmt(struct linux_binfmt * fmt) 71 { 72 struct linux_binfmt ** tmp = &formats; 73 74 if (!fmt) 75 return -EINVAL; 76 if (fmt->next) 77 return -EBUSY; 78 write_lock(&binfmt_lock); 79 while (*tmp) { 80 if (fmt == *tmp) { 81 write_unlock(&binfmt_lock); 82 return -EBUSY; 83 } 84 tmp = &(*tmp)->next; 85 } 86 fmt->next = formats; 87 formats = fmt; 88 write_unlock(&binfmt_lock); 89 return 0; 90 } 91 92 EXPORT_SYMBOL(register_binfmt); 93 94 int unregister_binfmt(struct linux_binfmt * fmt) 95 { 96 struct linux_binfmt ** tmp = &formats; 97 98 write_lock(&binfmt_lock); 99 while (*tmp) { 100 if (fmt == *tmp) { 101 *tmp = fmt->next; 102 write_unlock(&binfmt_lock); 103 return 0; 104 } 105 tmp = &(*tmp)->next; 106 } 107 write_unlock(&binfmt_lock); 108 return -EINVAL; 109 } 110 111 EXPORT_SYMBOL(unregister_binfmt); 112 113 static inline void put_binfmt(struct linux_binfmt * fmt) 114 { 115 module_put(fmt->module); 116 } 117 118 /* 119 * Note that a shared library must be both readable and executable due to 120 * security reasons. 121 * 122 * Also note that we take the address to load from from the file itself. 123 */ 124 asmlinkage long sys_uselib(const char __user * library) 125 { 126 struct file * file; 127 struct nameidata nd; 128 int error; 129 130 error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC); 131 if (error) 132 goto out; 133 134 error = -EINVAL; 135 if (!S_ISREG(nd.dentry->d_inode->i_mode)) 136 goto exit; 137 138 error = vfs_permission(&nd, MAY_READ | MAY_EXEC); 139 if (error) 140 goto exit; 141 142 file = nameidata_to_filp(&nd, O_RDONLY); 143 error = PTR_ERR(file); 144 if (IS_ERR(file)) 145 goto out; 146 147 error = -ENOEXEC; 148 if(file->f_op) { 149 struct linux_binfmt * fmt; 150 151 read_lock(&binfmt_lock); 152 for (fmt = formats ; fmt ; fmt = fmt->next) { 153 if (!fmt->load_shlib) 154 continue; 155 if (!try_module_get(fmt->module)) 156 continue; 157 read_unlock(&binfmt_lock); 158 error = fmt->load_shlib(file); 159 read_lock(&binfmt_lock); 160 put_binfmt(fmt); 161 if (error != -ENOEXEC) 162 break; 163 } 164 read_unlock(&binfmt_lock); 165 } 166 fput(file); 167 out: 168 return error; 169 exit: 170 release_open_intent(&nd); 171 path_release(&nd); 172 goto out; 173 } 174 175 /* 176 * count() counts the number of strings in array ARGV. 177 */ 178 static int count(char __user * __user * argv, int max) 179 { 180 int i = 0; 181 182 if (argv != NULL) { 183 for (;;) { 184 char __user * p; 185 186 if (get_user(p, argv)) 187 return -EFAULT; 188 if (!p) 189 break; 190 argv++; 191 if(++i > max) 192 return -E2BIG; 193 cond_resched(); 194 } 195 } 196 return i; 197 } 198 199 /* 200 * 'copy_strings()' copies argument/environment strings from user 201 * memory to free pages in kernel mem. These are in a format ready 202 * to be put directly into the top of new user memory. 203 */ 204 static int copy_strings(int argc, char __user * __user * argv, 205 struct linux_binprm *bprm) 206 { 207 struct page *kmapped_page = NULL; 208 char *kaddr = NULL; 209 int ret; 210 211 while (argc-- > 0) { 212 char __user *str; 213 int len; 214 unsigned long pos; 215 216 if (get_user(str, argv+argc) || 217 !(len = strnlen_user(str, bprm->p))) { 218 ret = -EFAULT; 219 goto out; 220 } 221 222 if (bprm->p < len) { 223 ret = -E2BIG; 224 goto out; 225 } 226 227 bprm->p -= len; 228 /* XXX: add architecture specific overflow check here. */ 229 pos = bprm->p; 230 231 while (len > 0) { 232 int i, new, err; 233 int offset, bytes_to_copy; 234 struct page *page; 235 236 offset = pos % PAGE_SIZE; 237 i = pos/PAGE_SIZE; 238 page = bprm->page[i]; 239 new = 0; 240 if (!page) { 241 page = alloc_page(GFP_HIGHUSER); 242 bprm->page[i] = page; 243 if (!page) { 244 ret = -ENOMEM; 245 goto out; 246 } 247 new = 1; 248 } 249 250 if (page != kmapped_page) { 251 if (kmapped_page) 252 kunmap(kmapped_page); 253 kmapped_page = page; 254 kaddr = kmap(kmapped_page); 255 } 256 if (new && offset) 257 memset(kaddr, 0, offset); 258 bytes_to_copy = PAGE_SIZE - offset; 259 if (bytes_to_copy > len) { 260 bytes_to_copy = len; 261 if (new) 262 memset(kaddr+offset+len, 0, 263 PAGE_SIZE-offset-len); 264 } 265 err = copy_from_user(kaddr+offset, str, bytes_to_copy); 266 if (err) { 267 ret = -EFAULT; 268 goto out; 269 } 270 271 pos += bytes_to_copy; 272 str += bytes_to_copy; 273 len -= bytes_to_copy; 274 } 275 } 276 ret = 0; 277 out: 278 if (kmapped_page) 279 kunmap(kmapped_page); 280 return ret; 281 } 282 283 /* 284 * Like copy_strings, but get argv and its values from kernel memory. 285 */ 286 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm) 287 { 288 int r; 289 mm_segment_t oldfs = get_fs(); 290 set_fs(KERNEL_DS); 291 r = copy_strings(argc, (char __user * __user *)argv, bprm); 292 set_fs(oldfs); 293 return r; 294 } 295 296 EXPORT_SYMBOL(copy_strings_kernel); 297 298 #ifdef CONFIG_MMU 299 /* 300 * This routine is used to map in a page into an address space: needed by 301 * execve() for the initial stack and environment pages. 302 * 303 * vma->vm_mm->mmap_sem is held for writing. 304 */ 305 void install_arg_page(struct vm_area_struct *vma, 306 struct page *page, unsigned long address) 307 { 308 struct mm_struct *mm = vma->vm_mm; 309 pte_t * pte; 310 spinlock_t *ptl; 311 312 if (unlikely(anon_vma_prepare(vma))) 313 goto out; 314 315 flush_dcache_page(page); 316 pte = get_locked_pte(mm, address, &ptl); 317 if (!pte) 318 goto out; 319 if (!pte_none(*pte)) { 320 pte_unmap_unlock(pte, ptl); 321 goto out; 322 } 323 inc_mm_counter(mm, anon_rss); 324 lru_cache_add_active(page); 325 set_pte_at(mm, address, pte, pte_mkdirty(pte_mkwrite(mk_pte( 326 page, vma->vm_page_prot)))); 327 page_add_new_anon_rmap(page, vma, address); 328 pte_unmap_unlock(pte, ptl); 329 330 /* no need for flush_tlb */ 331 return; 332 out: 333 __free_page(page); 334 force_sig(SIGKILL, current); 335 } 336 337 #define EXTRA_STACK_VM_PAGES 20 /* random */ 338 339 int setup_arg_pages(struct linux_binprm *bprm, 340 unsigned long stack_top, 341 int executable_stack) 342 { 343 unsigned long stack_base; 344 struct vm_area_struct *mpnt; 345 struct mm_struct *mm = current->mm; 346 int i, ret; 347 long arg_size; 348 349 #ifdef CONFIG_STACK_GROWSUP 350 /* Move the argument and environment strings to the bottom of the 351 * stack space. 352 */ 353 int offset, j; 354 char *to, *from; 355 356 /* Start by shifting all the pages down */ 357 i = 0; 358 for (j = 0; j < MAX_ARG_PAGES; j++) { 359 struct page *page = bprm->page[j]; 360 if (!page) 361 continue; 362 bprm->page[i++] = page; 363 } 364 365 /* Now move them within their pages */ 366 offset = bprm->p % PAGE_SIZE; 367 to = kmap(bprm->page[0]); 368 for (j = 1; j < i; j++) { 369 memmove(to, to + offset, PAGE_SIZE - offset); 370 from = kmap(bprm->page[j]); 371 memcpy(to + PAGE_SIZE - offset, from, offset); 372 kunmap(bprm->page[j - 1]); 373 to = from; 374 } 375 memmove(to, to + offset, PAGE_SIZE - offset); 376 kunmap(bprm->page[j - 1]); 377 378 /* Limit stack size to 1GB */ 379 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max; 380 if (stack_base > (1 << 30)) 381 stack_base = 1 << 30; 382 stack_base = PAGE_ALIGN(stack_top - stack_base); 383 384 /* Adjust bprm->p to point to the end of the strings. */ 385 bprm->p = stack_base + PAGE_SIZE * i - offset; 386 387 mm->arg_start = stack_base; 388 arg_size = i << PAGE_SHIFT; 389 390 /* zero pages that were copied above */ 391 while (i < MAX_ARG_PAGES) 392 bprm->page[i++] = NULL; 393 #else 394 stack_base = arch_align_stack(stack_top - MAX_ARG_PAGES*PAGE_SIZE); 395 stack_base = PAGE_ALIGN(stack_base); 396 bprm->p += stack_base; 397 mm->arg_start = bprm->p; 398 arg_size = stack_top - (PAGE_MASK & (unsigned long) mm->arg_start); 399 #endif 400 401 arg_size += EXTRA_STACK_VM_PAGES * PAGE_SIZE; 402 403 if (bprm->loader) 404 bprm->loader += stack_base; 405 bprm->exec += stack_base; 406 407 mpnt = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); 408 if (!mpnt) 409 return -ENOMEM; 410 411 memset(mpnt, 0, sizeof(*mpnt)); 412 413 down_write(&mm->mmap_sem); 414 { 415 mpnt->vm_mm = mm; 416 #ifdef CONFIG_STACK_GROWSUP 417 mpnt->vm_start = stack_base; 418 mpnt->vm_end = stack_base + arg_size; 419 #else 420 mpnt->vm_end = stack_top; 421 mpnt->vm_start = mpnt->vm_end - arg_size; 422 #endif 423 /* Adjust stack execute permissions; explicitly enable 424 * for EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X 425 * and leave alone (arch default) otherwise. */ 426 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 427 mpnt->vm_flags = VM_STACK_FLAGS | VM_EXEC; 428 else if (executable_stack == EXSTACK_DISABLE_X) 429 mpnt->vm_flags = VM_STACK_FLAGS & ~VM_EXEC; 430 else 431 mpnt->vm_flags = VM_STACK_FLAGS; 432 mpnt->vm_flags |= mm->def_flags; 433 mpnt->vm_page_prot = protection_map[mpnt->vm_flags & 0x7]; 434 if ((ret = insert_vm_struct(mm, mpnt))) { 435 up_write(&mm->mmap_sem); 436 kmem_cache_free(vm_area_cachep, mpnt); 437 return ret; 438 } 439 mm->stack_vm = mm->total_vm = vma_pages(mpnt); 440 } 441 442 for (i = 0 ; i < MAX_ARG_PAGES ; i++) { 443 struct page *page = bprm->page[i]; 444 if (page) { 445 bprm->page[i] = NULL; 446 install_arg_page(mpnt, page, stack_base); 447 } 448 stack_base += PAGE_SIZE; 449 } 450 up_write(&mm->mmap_sem); 451 452 return 0; 453 } 454 455 EXPORT_SYMBOL(setup_arg_pages); 456 457 #define free_arg_pages(bprm) do { } while (0) 458 459 #else 460 461 static inline void free_arg_pages(struct linux_binprm *bprm) 462 { 463 int i; 464 465 for (i = 0; i < MAX_ARG_PAGES; i++) { 466 if (bprm->page[i]) 467 __free_page(bprm->page[i]); 468 bprm->page[i] = NULL; 469 } 470 } 471 472 #endif /* CONFIG_MMU */ 473 474 struct file *open_exec(const char *name) 475 { 476 struct nameidata nd; 477 int err; 478 struct file *file; 479 480 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC); 481 file = ERR_PTR(err); 482 483 if (!err) { 484 struct inode *inode = nd.dentry->d_inode; 485 file = ERR_PTR(-EACCES); 486 if (!(nd.mnt->mnt_flags & MNT_NOEXEC) && 487 S_ISREG(inode->i_mode)) { 488 int err = vfs_permission(&nd, MAY_EXEC); 489 file = ERR_PTR(err); 490 if (!err) { 491 file = nameidata_to_filp(&nd, O_RDONLY); 492 if (!IS_ERR(file)) { 493 err = deny_write_access(file); 494 if (err) { 495 fput(file); 496 file = ERR_PTR(err); 497 } 498 } 499 out: 500 return file; 501 } 502 } 503 release_open_intent(&nd); 504 path_release(&nd); 505 } 506 goto out; 507 } 508 509 EXPORT_SYMBOL(open_exec); 510 511 int kernel_read(struct file *file, unsigned long offset, 512 char *addr, unsigned long count) 513 { 514 mm_segment_t old_fs; 515 loff_t pos = offset; 516 int result; 517 518 old_fs = get_fs(); 519 set_fs(get_ds()); 520 /* The cast to a user pointer is valid due to the set_fs() */ 521 result = vfs_read(file, (void __user *)addr, count, &pos); 522 set_fs(old_fs); 523 return result; 524 } 525 526 EXPORT_SYMBOL(kernel_read); 527 528 static int exec_mmap(struct mm_struct *mm) 529 { 530 struct task_struct *tsk; 531 struct mm_struct * old_mm, *active_mm; 532 533 /* Notify parent that we're no longer interested in the old VM */ 534 tsk = current; 535 old_mm = current->mm; 536 mm_release(tsk, old_mm); 537 538 if (old_mm) { 539 /* 540 * Make sure that if there is a core dump in progress 541 * for the old mm, we get out and die instead of going 542 * through with the exec. We must hold mmap_sem around 543 * checking core_waiters and changing tsk->mm. The 544 * core-inducing thread will increment core_waiters for 545 * each thread whose ->mm == old_mm. 546 */ 547 down_read(&old_mm->mmap_sem); 548 if (unlikely(old_mm->core_waiters)) { 549 up_read(&old_mm->mmap_sem); 550 return -EINTR; 551 } 552 } 553 task_lock(tsk); 554 active_mm = tsk->active_mm; 555 tsk->mm = mm; 556 tsk->active_mm = mm; 557 activate_mm(active_mm, mm); 558 task_unlock(tsk); 559 arch_pick_mmap_layout(mm); 560 if (old_mm) { 561 up_read(&old_mm->mmap_sem); 562 BUG_ON(active_mm != old_mm); 563 mmput(old_mm); 564 return 0; 565 } 566 mmdrop(active_mm); 567 return 0; 568 } 569 570 /* 571 * This function makes sure the current process has its own signal table, 572 * so that flush_signal_handlers can later reset the handlers without 573 * disturbing other processes. (Other processes might share the signal 574 * table via the CLONE_SIGHAND option to clone().) 575 */ 576 static int de_thread(struct task_struct *tsk) 577 { 578 struct signal_struct *sig = tsk->signal; 579 struct sighand_struct *newsighand, *oldsighand = tsk->sighand; 580 spinlock_t *lock = &oldsighand->siglock; 581 struct task_struct *leader = NULL; 582 int count; 583 584 /* 585 * If we don't share sighandlers, then we aren't sharing anything 586 * and we can just re-use it all. 587 */ 588 if (atomic_read(&oldsighand->count) <= 1) { 589 BUG_ON(atomic_read(&sig->count) != 1); 590 exit_itimers(sig); 591 return 0; 592 } 593 594 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 595 if (!newsighand) 596 return -ENOMEM; 597 598 if (thread_group_empty(current)) 599 goto no_thread_group; 600 601 /* 602 * Kill all other threads in the thread group. 603 * We must hold tasklist_lock to call zap_other_threads. 604 */ 605 read_lock(&tasklist_lock); 606 spin_lock_irq(lock); 607 if (sig->flags & SIGNAL_GROUP_EXIT) { 608 /* 609 * Another group action in progress, just 610 * return so that the signal is processed. 611 */ 612 spin_unlock_irq(lock); 613 read_unlock(&tasklist_lock); 614 kmem_cache_free(sighand_cachep, newsighand); 615 return -EAGAIN; 616 } 617 618 /* 619 * child_reaper ignores SIGKILL, change it now. 620 * Reparenting needs write_lock on tasklist_lock, 621 * so it is safe to do it under read_lock. 622 */ 623 if (unlikely(current->group_leader == child_reaper)) 624 child_reaper = current; 625 626 zap_other_threads(current); 627 read_unlock(&tasklist_lock); 628 629 /* 630 * Account for the thread group leader hanging around: 631 */ 632 count = 1; 633 if (!thread_group_leader(current)) { 634 count = 2; 635 /* 636 * The SIGALRM timer survives the exec, but needs to point 637 * at us as the new group leader now. We have a race with 638 * a timer firing now getting the old leader, so we need to 639 * synchronize with any firing (by calling del_timer_sync) 640 * before we can safely let the old group leader die. 641 */ 642 sig->tsk = current; 643 spin_unlock_irq(lock); 644 if (hrtimer_cancel(&sig->real_timer)) 645 hrtimer_restart(&sig->real_timer); 646 spin_lock_irq(lock); 647 } 648 while (atomic_read(&sig->count) > count) { 649 sig->group_exit_task = current; 650 sig->notify_count = count; 651 __set_current_state(TASK_UNINTERRUPTIBLE); 652 spin_unlock_irq(lock); 653 schedule(); 654 spin_lock_irq(lock); 655 } 656 sig->group_exit_task = NULL; 657 sig->notify_count = 0; 658 spin_unlock_irq(lock); 659 660 /* 661 * At this point all other threads have exited, all we have to 662 * do is to wait for the thread group leader to become inactive, 663 * and to assume its PID: 664 */ 665 if (!thread_group_leader(current)) { 666 /* 667 * Wait for the thread group leader to be a zombie. 668 * It should already be zombie at this point, most 669 * of the time. 670 */ 671 leader = current->group_leader; 672 while (leader->exit_state != EXIT_ZOMBIE) 673 yield(); 674 675 /* 676 * The only record we have of the real-time age of a 677 * process, regardless of execs it's done, is start_time. 678 * All the past CPU time is accumulated in signal_struct 679 * from sister threads now dead. But in this non-leader 680 * exec, nothing survives from the original leader thread, 681 * whose birth marks the true age of this process now. 682 * When we take on its identity by switching to its PID, we 683 * also take its birthdate (always earlier than our own). 684 */ 685 current->start_time = leader->start_time; 686 687 write_lock_irq(&tasklist_lock); 688 689 BUG_ON(leader->tgid != current->tgid); 690 BUG_ON(current->pid == current->tgid); 691 /* 692 * An exec() starts a new thread group with the 693 * TGID of the previous thread group. Rehash the 694 * two threads with a switched PID, and release 695 * the former thread group leader: 696 */ 697 698 /* Become a process group leader with the old leader's pid. 699 * Note: The old leader also uses thispid until release_task 700 * is called. Odd but simple and correct. 701 */ 702 detach_pid(current, PIDTYPE_PID); 703 current->pid = leader->pid; 704 attach_pid(current, PIDTYPE_PID, current->pid); 705 attach_pid(current, PIDTYPE_PGID, current->signal->pgrp); 706 attach_pid(current, PIDTYPE_SID, current->signal->session); 707 list_replace_rcu(&leader->tasks, ¤t->tasks); 708 709 current->group_leader = current; 710 leader->group_leader = current; 711 712 /* Reduce leader to a thread */ 713 detach_pid(leader, PIDTYPE_PGID); 714 detach_pid(leader, PIDTYPE_SID); 715 716 current->exit_signal = SIGCHLD; 717 718 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 719 leader->exit_state = EXIT_DEAD; 720 721 write_unlock_irq(&tasklist_lock); 722 } 723 724 /* 725 * There may be one thread left which is just exiting, 726 * but it's safe to stop telling the group to kill themselves. 727 */ 728 sig->flags = 0; 729 730 no_thread_group: 731 exit_itimers(sig); 732 if (leader) 733 release_task(leader); 734 735 BUG_ON(atomic_read(&sig->count) != 1); 736 737 if (atomic_read(&oldsighand->count) == 1) { 738 /* 739 * Now that we nuked the rest of the thread group, 740 * it turns out we are not sharing sighand any more either. 741 * So we can just keep it. 742 */ 743 kmem_cache_free(sighand_cachep, newsighand); 744 } else { 745 /* 746 * Move our state over to newsighand and switch it in. 747 */ 748 atomic_set(&newsighand->count, 1); 749 memcpy(newsighand->action, oldsighand->action, 750 sizeof(newsighand->action)); 751 752 write_lock_irq(&tasklist_lock); 753 spin_lock(&oldsighand->siglock); 754 spin_lock_nested(&newsighand->siglock, SINGLE_DEPTH_NESTING); 755 756 rcu_assign_pointer(current->sighand, newsighand); 757 recalc_sigpending(); 758 759 spin_unlock(&newsighand->siglock); 760 spin_unlock(&oldsighand->siglock); 761 write_unlock_irq(&tasklist_lock); 762 763 if (atomic_dec_and_test(&oldsighand->count)) 764 kmem_cache_free(sighand_cachep, oldsighand); 765 } 766 767 BUG_ON(!thread_group_leader(current)); 768 return 0; 769 } 770 771 /* 772 * These functions flushes out all traces of the currently running executable 773 * so that a new one can be started 774 */ 775 776 static void flush_old_files(struct files_struct * files) 777 { 778 long j = -1; 779 struct fdtable *fdt; 780 781 spin_lock(&files->file_lock); 782 for (;;) { 783 unsigned long set, i; 784 785 j++; 786 i = j * __NFDBITS; 787 fdt = files_fdtable(files); 788 if (i >= fdt->max_fds || i >= fdt->max_fdset) 789 break; 790 set = fdt->close_on_exec->fds_bits[j]; 791 if (!set) 792 continue; 793 fdt->close_on_exec->fds_bits[j] = 0; 794 spin_unlock(&files->file_lock); 795 for ( ; set ; i++,set >>= 1) { 796 if (set & 1) { 797 sys_close(i); 798 } 799 } 800 spin_lock(&files->file_lock); 801 802 } 803 spin_unlock(&files->file_lock); 804 } 805 806 void get_task_comm(char *buf, struct task_struct *tsk) 807 { 808 /* buf must be at least sizeof(tsk->comm) in size */ 809 task_lock(tsk); 810 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 811 task_unlock(tsk); 812 } 813 814 void set_task_comm(struct task_struct *tsk, char *buf) 815 { 816 task_lock(tsk); 817 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 818 task_unlock(tsk); 819 } 820 821 int flush_old_exec(struct linux_binprm * bprm) 822 { 823 char * name; 824 int i, ch, retval; 825 struct files_struct *files; 826 char tcomm[sizeof(current->comm)]; 827 828 /* 829 * Make sure we have a private signal table and that 830 * we are unassociated from the previous thread group. 831 */ 832 retval = de_thread(current); 833 if (retval) 834 goto out; 835 836 /* 837 * Make sure we have private file handles. Ask the 838 * fork helper to do the work for us and the exit 839 * helper to do the cleanup of the old one. 840 */ 841 files = current->files; /* refcounted so safe to hold */ 842 retval = unshare_files(); 843 if (retval) 844 goto out; 845 /* 846 * Release all of the old mmap stuff 847 */ 848 retval = exec_mmap(bprm->mm); 849 if (retval) 850 goto mmap_failed; 851 852 bprm->mm = NULL; /* We're using it now */ 853 854 /* This is the point of no return */ 855 put_files_struct(files); 856 857 current->sas_ss_sp = current->sas_ss_size = 0; 858 859 if (current->euid == current->uid && current->egid == current->gid) 860 current->mm->dumpable = 1; 861 else 862 current->mm->dumpable = suid_dumpable; 863 864 name = bprm->filename; 865 866 /* Copies the binary name from after last slash */ 867 for (i=0; (ch = *(name++)) != '\0';) { 868 if (ch == '/') 869 i = 0; /* overwrite what we wrote */ 870 else 871 if (i < (sizeof(tcomm) - 1)) 872 tcomm[i++] = ch; 873 } 874 tcomm[i] = '\0'; 875 set_task_comm(current, tcomm); 876 877 current->flags &= ~PF_RANDOMIZE; 878 flush_thread(); 879 880 /* Set the new mm task size. We have to do that late because it may 881 * depend on TIF_32BIT which is only updated in flush_thread() on 882 * some architectures like powerpc 883 */ 884 current->mm->task_size = TASK_SIZE; 885 886 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid || 887 file_permission(bprm->file, MAY_READ) || 888 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) { 889 suid_keys(current); 890 current->mm->dumpable = suid_dumpable; 891 } 892 893 /* An exec changes our domain. We are no longer part of the thread 894 group */ 895 896 current->self_exec_id++; 897 898 flush_signal_handlers(current, 0); 899 flush_old_files(current->files); 900 901 return 0; 902 903 mmap_failed: 904 put_files_struct(current->files); 905 current->files = files; 906 out: 907 return retval; 908 } 909 910 EXPORT_SYMBOL(flush_old_exec); 911 912 /* 913 * Fill the binprm structure from the inode. 914 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 915 */ 916 int prepare_binprm(struct linux_binprm *bprm) 917 { 918 int mode; 919 struct inode * inode = bprm->file->f_dentry->d_inode; 920 int retval; 921 922 mode = inode->i_mode; 923 if (bprm->file->f_op == NULL) 924 return -EACCES; 925 926 bprm->e_uid = current->euid; 927 bprm->e_gid = current->egid; 928 929 if(!(bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)) { 930 /* Set-uid? */ 931 if (mode & S_ISUID) { 932 current->personality &= ~PER_CLEAR_ON_SETID; 933 bprm->e_uid = inode->i_uid; 934 } 935 936 /* Set-gid? */ 937 /* 938 * If setgid is set but no group execute bit then this 939 * is a candidate for mandatory locking, not a setgid 940 * executable. 941 */ 942 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 943 current->personality &= ~PER_CLEAR_ON_SETID; 944 bprm->e_gid = inode->i_gid; 945 } 946 } 947 948 /* fill in binprm security blob */ 949 retval = security_bprm_set(bprm); 950 if (retval) 951 return retval; 952 953 memset(bprm->buf,0,BINPRM_BUF_SIZE); 954 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE); 955 } 956 957 EXPORT_SYMBOL(prepare_binprm); 958 959 static int unsafe_exec(struct task_struct *p) 960 { 961 int unsafe = 0; 962 if (p->ptrace & PT_PTRACED) { 963 if (p->ptrace & PT_PTRACE_CAP) 964 unsafe |= LSM_UNSAFE_PTRACE_CAP; 965 else 966 unsafe |= LSM_UNSAFE_PTRACE; 967 } 968 if (atomic_read(&p->fs->count) > 1 || 969 atomic_read(&p->files->count) > 1 || 970 atomic_read(&p->sighand->count) > 1) 971 unsafe |= LSM_UNSAFE_SHARE; 972 973 return unsafe; 974 } 975 976 void compute_creds(struct linux_binprm *bprm) 977 { 978 int unsafe; 979 980 if (bprm->e_uid != current->uid) 981 suid_keys(current); 982 exec_keys(current); 983 984 task_lock(current); 985 unsafe = unsafe_exec(current); 986 security_bprm_apply_creds(bprm, unsafe); 987 task_unlock(current); 988 security_bprm_post_apply_creds(bprm); 989 } 990 991 EXPORT_SYMBOL(compute_creds); 992 993 void remove_arg_zero(struct linux_binprm *bprm) 994 { 995 if (bprm->argc) { 996 unsigned long offset; 997 char * kaddr; 998 struct page *page; 999 1000 offset = bprm->p % PAGE_SIZE; 1001 goto inside; 1002 1003 while (bprm->p++, *(kaddr+offset++)) { 1004 if (offset != PAGE_SIZE) 1005 continue; 1006 offset = 0; 1007 kunmap_atomic(kaddr, KM_USER0); 1008 inside: 1009 page = bprm->page[bprm->p/PAGE_SIZE]; 1010 kaddr = kmap_atomic(page, KM_USER0); 1011 } 1012 kunmap_atomic(kaddr, KM_USER0); 1013 bprm->argc--; 1014 } 1015 } 1016 1017 EXPORT_SYMBOL(remove_arg_zero); 1018 1019 /* 1020 * cycle the list of binary formats handler, until one recognizes the image 1021 */ 1022 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) 1023 { 1024 int try,retval; 1025 struct linux_binfmt *fmt; 1026 #ifdef __alpha__ 1027 /* handle /sbin/loader.. */ 1028 { 1029 struct exec * eh = (struct exec *) bprm->buf; 1030 1031 if (!bprm->loader && eh->fh.f_magic == 0x183 && 1032 (eh->fh.f_flags & 0x3000) == 0x3000) 1033 { 1034 struct file * file; 1035 unsigned long loader; 1036 1037 allow_write_access(bprm->file); 1038 fput(bprm->file); 1039 bprm->file = NULL; 1040 1041 loader = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *); 1042 1043 file = open_exec("/sbin/loader"); 1044 retval = PTR_ERR(file); 1045 if (IS_ERR(file)) 1046 return retval; 1047 1048 /* Remember if the application is TASO. */ 1049 bprm->sh_bang = eh->ah.entry < 0x100000000UL; 1050 1051 bprm->file = file; 1052 bprm->loader = loader; 1053 retval = prepare_binprm(bprm); 1054 if (retval<0) 1055 return retval; 1056 /* should call search_binary_handler recursively here, 1057 but it does not matter */ 1058 } 1059 } 1060 #endif 1061 retval = security_bprm_check(bprm); 1062 if (retval) 1063 return retval; 1064 1065 /* kernel module loader fixup */ 1066 /* so we don't try to load run modprobe in kernel space. */ 1067 set_fs(USER_DS); 1068 1069 retval = audit_bprm(bprm); 1070 if (retval) 1071 return retval; 1072 1073 retval = -ENOENT; 1074 for (try=0; try<2; try++) { 1075 read_lock(&binfmt_lock); 1076 for (fmt = formats ; fmt ; fmt = fmt->next) { 1077 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; 1078 if (!fn) 1079 continue; 1080 if (!try_module_get(fmt->module)) 1081 continue; 1082 read_unlock(&binfmt_lock); 1083 retval = fn(bprm, regs); 1084 if (retval >= 0) { 1085 put_binfmt(fmt); 1086 allow_write_access(bprm->file); 1087 if (bprm->file) 1088 fput(bprm->file); 1089 bprm->file = NULL; 1090 current->did_exec = 1; 1091 proc_exec_connector(current); 1092 return retval; 1093 } 1094 read_lock(&binfmt_lock); 1095 put_binfmt(fmt); 1096 if (retval != -ENOEXEC || bprm->mm == NULL) 1097 break; 1098 if (!bprm->file) { 1099 read_unlock(&binfmt_lock); 1100 return retval; 1101 } 1102 } 1103 read_unlock(&binfmt_lock); 1104 if (retval != -ENOEXEC || bprm->mm == NULL) { 1105 break; 1106 #ifdef CONFIG_KMOD 1107 }else{ 1108 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1109 if (printable(bprm->buf[0]) && 1110 printable(bprm->buf[1]) && 1111 printable(bprm->buf[2]) && 1112 printable(bprm->buf[3])) 1113 break; /* -ENOEXEC */ 1114 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); 1115 #endif 1116 } 1117 } 1118 return retval; 1119 } 1120 1121 EXPORT_SYMBOL(search_binary_handler); 1122 1123 /* 1124 * sys_execve() executes a new program. 1125 */ 1126 int do_execve(char * filename, 1127 char __user *__user *argv, 1128 char __user *__user *envp, 1129 struct pt_regs * regs) 1130 { 1131 struct linux_binprm *bprm; 1132 struct file *file; 1133 int retval; 1134 int i; 1135 1136 retval = -ENOMEM; 1137 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1138 if (!bprm) 1139 goto out_ret; 1140 1141 file = open_exec(filename); 1142 retval = PTR_ERR(file); 1143 if (IS_ERR(file)) 1144 goto out_kfree; 1145 1146 sched_exec(); 1147 1148 bprm->p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *); 1149 1150 bprm->file = file; 1151 bprm->filename = filename; 1152 bprm->interp = filename; 1153 bprm->mm = mm_alloc(); 1154 retval = -ENOMEM; 1155 if (!bprm->mm) 1156 goto out_file; 1157 1158 retval = init_new_context(current, bprm->mm); 1159 if (retval < 0) 1160 goto out_mm; 1161 1162 bprm->argc = count(argv, bprm->p / sizeof(void *)); 1163 if ((retval = bprm->argc) < 0) 1164 goto out_mm; 1165 1166 bprm->envc = count(envp, bprm->p / sizeof(void *)); 1167 if ((retval = bprm->envc) < 0) 1168 goto out_mm; 1169 1170 retval = security_bprm_alloc(bprm); 1171 if (retval) 1172 goto out; 1173 1174 retval = prepare_binprm(bprm); 1175 if (retval < 0) 1176 goto out; 1177 1178 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1179 if (retval < 0) 1180 goto out; 1181 1182 bprm->exec = bprm->p; 1183 retval = copy_strings(bprm->envc, envp, bprm); 1184 if (retval < 0) 1185 goto out; 1186 1187 retval = copy_strings(bprm->argc, argv, bprm); 1188 if (retval < 0) 1189 goto out; 1190 1191 retval = search_binary_handler(bprm,regs); 1192 if (retval >= 0) { 1193 free_arg_pages(bprm); 1194 1195 /* execve success */ 1196 security_bprm_free(bprm); 1197 acct_update_integrals(current); 1198 kfree(bprm); 1199 return retval; 1200 } 1201 1202 out: 1203 /* Something went wrong, return the inode and free the argument pages*/ 1204 for (i = 0 ; i < MAX_ARG_PAGES ; i++) { 1205 struct page * page = bprm->page[i]; 1206 if (page) 1207 __free_page(page); 1208 } 1209 1210 if (bprm->security) 1211 security_bprm_free(bprm); 1212 1213 out_mm: 1214 if (bprm->mm) 1215 mmdrop(bprm->mm); 1216 1217 out_file: 1218 if (bprm->file) { 1219 allow_write_access(bprm->file); 1220 fput(bprm->file); 1221 } 1222 1223 out_kfree: 1224 kfree(bprm); 1225 1226 out_ret: 1227 return retval; 1228 } 1229 1230 int set_binfmt(struct linux_binfmt *new) 1231 { 1232 struct linux_binfmt *old = current->binfmt; 1233 1234 if (new) { 1235 if (!try_module_get(new->module)) 1236 return -1; 1237 } 1238 current->binfmt = new; 1239 if (old) 1240 module_put(old->module); 1241 return 0; 1242 } 1243 1244 EXPORT_SYMBOL(set_binfmt); 1245 1246 #define CORENAME_MAX_SIZE 64 1247 1248 /* format_corename will inspect the pattern parameter, and output a 1249 * name into corename, which must have space for at least 1250 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. 1251 */ 1252 static void format_corename(char *corename, const char *pattern, long signr) 1253 { 1254 const char *pat_ptr = pattern; 1255 char *out_ptr = corename; 1256 char *const out_end = corename + CORENAME_MAX_SIZE; 1257 int rc; 1258 int pid_in_pattern = 0; 1259 1260 /* Repeat as long as we have more pattern to process and more output 1261 space */ 1262 while (*pat_ptr) { 1263 if (*pat_ptr != '%') { 1264 if (out_ptr == out_end) 1265 goto out; 1266 *out_ptr++ = *pat_ptr++; 1267 } else { 1268 switch (*++pat_ptr) { 1269 case 0: 1270 goto out; 1271 /* Double percent, output one percent */ 1272 case '%': 1273 if (out_ptr == out_end) 1274 goto out; 1275 *out_ptr++ = '%'; 1276 break; 1277 /* pid */ 1278 case 'p': 1279 pid_in_pattern = 1; 1280 rc = snprintf(out_ptr, out_end - out_ptr, 1281 "%d", current->tgid); 1282 if (rc > out_end - out_ptr) 1283 goto out; 1284 out_ptr += rc; 1285 break; 1286 /* uid */ 1287 case 'u': 1288 rc = snprintf(out_ptr, out_end - out_ptr, 1289 "%d", current->uid); 1290 if (rc > out_end - out_ptr) 1291 goto out; 1292 out_ptr += rc; 1293 break; 1294 /* gid */ 1295 case 'g': 1296 rc = snprintf(out_ptr, out_end - out_ptr, 1297 "%d", current->gid); 1298 if (rc > out_end - out_ptr) 1299 goto out; 1300 out_ptr += rc; 1301 break; 1302 /* signal that caused the coredump */ 1303 case 's': 1304 rc = snprintf(out_ptr, out_end - out_ptr, 1305 "%ld", signr); 1306 if (rc > out_end - out_ptr) 1307 goto out; 1308 out_ptr += rc; 1309 break; 1310 /* UNIX time of coredump */ 1311 case 't': { 1312 struct timeval tv; 1313 do_gettimeofday(&tv); 1314 rc = snprintf(out_ptr, out_end - out_ptr, 1315 "%lu", tv.tv_sec); 1316 if (rc > out_end - out_ptr) 1317 goto out; 1318 out_ptr += rc; 1319 break; 1320 } 1321 /* hostname */ 1322 case 'h': 1323 down_read(&uts_sem); 1324 rc = snprintf(out_ptr, out_end - out_ptr, 1325 "%s", system_utsname.nodename); 1326 up_read(&uts_sem); 1327 if (rc > out_end - out_ptr) 1328 goto out; 1329 out_ptr += rc; 1330 break; 1331 /* executable */ 1332 case 'e': 1333 rc = snprintf(out_ptr, out_end - out_ptr, 1334 "%s", current->comm); 1335 if (rc > out_end - out_ptr) 1336 goto out; 1337 out_ptr += rc; 1338 break; 1339 default: 1340 break; 1341 } 1342 ++pat_ptr; 1343 } 1344 } 1345 /* Backward compatibility with core_uses_pid: 1346 * 1347 * If core_pattern does not include a %p (as is the default) 1348 * and core_uses_pid is set, then .%pid will be appended to 1349 * the filename */ 1350 if (!pid_in_pattern 1351 && (core_uses_pid || atomic_read(¤t->mm->mm_users) != 1)) { 1352 rc = snprintf(out_ptr, out_end - out_ptr, 1353 ".%d", current->tgid); 1354 if (rc > out_end - out_ptr) 1355 goto out; 1356 out_ptr += rc; 1357 } 1358 out: 1359 *out_ptr = 0; 1360 } 1361 1362 static void zap_process(struct task_struct *start) 1363 { 1364 struct task_struct *t; 1365 1366 start->signal->flags = SIGNAL_GROUP_EXIT; 1367 start->signal->group_stop_count = 0; 1368 1369 t = start; 1370 do { 1371 if (t != current && t->mm) { 1372 t->mm->core_waiters++; 1373 sigaddset(&t->pending.signal, SIGKILL); 1374 signal_wake_up(t, 1); 1375 } 1376 } while ((t = next_thread(t)) != start); 1377 } 1378 1379 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm, 1380 int exit_code) 1381 { 1382 struct task_struct *g, *p; 1383 unsigned long flags; 1384 int err = -EAGAIN; 1385 1386 spin_lock_irq(&tsk->sighand->siglock); 1387 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) { 1388 tsk->signal->group_exit_code = exit_code; 1389 zap_process(tsk); 1390 err = 0; 1391 } 1392 spin_unlock_irq(&tsk->sighand->siglock); 1393 if (err) 1394 return err; 1395 1396 if (atomic_read(&mm->mm_users) == mm->core_waiters + 1) 1397 goto done; 1398 1399 rcu_read_lock(); 1400 for_each_process(g) { 1401 if (g == tsk->group_leader) 1402 continue; 1403 1404 p = g; 1405 do { 1406 if (p->mm) { 1407 if (p->mm == mm) { 1408 /* 1409 * p->sighand can't disappear, but 1410 * may be changed by de_thread() 1411 */ 1412 lock_task_sighand(p, &flags); 1413 zap_process(p); 1414 unlock_task_sighand(p, &flags); 1415 } 1416 break; 1417 } 1418 } while ((p = next_thread(p)) != g); 1419 } 1420 rcu_read_unlock(); 1421 done: 1422 return mm->core_waiters; 1423 } 1424 1425 static int coredump_wait(int exit_code) 1426 { 1427 struct task_struct *tsk = current; 1428 struct mm_struct *mm = tsk->mm; 1429 struct completion startup_done; 1430 struct completion *vfork_done; 1431 int core_waiters; 1432 1433 init_completion(&mm->core_done); 1434 init_completion(&startup_done); 1435 mm->core_startup_done = &startup_done; 1436 1437 core_waiters = zap_threads(tsk, mm, exit_code); 1438 up_write(&mm->mmap_sem); 1439 1440 if (unlikely(core_waiters < 0)) 1441 goto fail; 1442 1443 /* 1444 * Make sure nobody is waiting for us to release the VM, 1445 * otherwise we can deadlock when we wait on each other 1446 */ 1447 vfork_done = tsk->vfork_done; 1448 if (vfork_done) { 1449 tsk->vfork_done = NULL; 1450 complete(vfork_done); 1451 } 1452 1453 if (core_waiters) 1454 wait_for_completion(&startup_done); 1455 fail: 1456 BUG_ON(mm->core_waiters); 1457 return core_waiters; 1458 } 1459 1460 int do_coredump(long signr, int exit_code, struct pt_regs * regs) 1461 { 1462 char corename[CORENAME_MAX_SIZE + 1]; 1463 struct mm_struct *mm = current->mm; 1464 struct linux_binfmt * binfmt; 1465 struct inode * inode; 1466 struct file * file; 1467 int retval = 0; 1468 int fsuid = current->fsuid; 1469 int flag = 0; 1470 1471 binfmt = current->binfmt; 1472 if (!binfmt || !binfmt->core_dump) 1473 goto fail; 1474 down_write(&mm->mmap_sem); 1475 if (!mm->dumpable) { 1476 up_write(&mm->mmap_sem); 1477 goto fail; 1478 } 1479 1480 /* 1481 * We cannot trust fsuid as being the "true" uid of the 1482 * process nor do we know its entire history. We only know it 1483 * was tainted so we dump it as root in mode 2. 1484 */ 1485 if (mm->dumpable == 2) { /* Setuid core dump mode */ 1486 flag = O_EXCL; /* Stop rewrite attacks */ 1487 current->fsuid = 0; /* Dump root private */ 1488 } 1489 mm->dumpable = 0; 1490 1491 retval = coredump_wait(exit_code); 1492 if (retval < 0) 1493 goto fail; 1494 1495 /* 1496 * Clear any false indication of pending signals that might 1497 * be seen by the filesystem code called to write the core file. 1498 */ 1499 clear_thread_flag(TIF_SIGPENDING); 1500 1501 if (current->signal->rlim[RLIMIT_CORE].rlim_cur < binfmt->min_coredump) 1502 goto fail_unlock; 1503 1504 /* 1505 * lock_kernel() because format_corename() is controlled by sysctl, which 1506 * uses lock_kernel() 1507 */ 1508 lock_kernel(); 1509 format_corename(corename, core_pattern, signr); 1510 unlock_kernel(); 1511 file = filp_open(corename, O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 0600); 1512 if (IS_ERR(file)) 1513 goto fail_unlock; 1514 inode = file->f_dentry->d_inode; 1515 if (inode->i_nlink > 1) 1516 goto close_fail; /* multiple links - don't dump */ 1517 if (d_unhashed(file->f_dentry)) 1518 goto close_fail; 1519 1520 if (!S_ISREG(inode->i_mode)) 1521 goto close_fail; 1522 if (!file->f_op) 1523 goto close_fail; 1524 if (!file->f_op->write) 1525 goto close_fail; 1526 if (do_truncate(file->f_dentry, 0, 0, file) != 0) 1527 goto close_fail; 1528 1529 retval = binfmt->core_dump(signr, regs, file); 1530 1531 if (retval) 1532 current->signal->group_exit_code |= 0x80; 1533 close_fail: 1534 filp_close(file, NULL); 1535 fail_unlock: 1536 current->fsuid = fsuid; 1537 complete_all(&mm->core_done); 1538 fail: 1539 return retval; 1540 } 1541