1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/exec.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * #!-checking implemented by tytso. 10 */ 11 /* 12 * Demand-loading implemented 01.12.91 - no need to read anything but 13 * the header into memory. The inode of the executable is put into 14 * "current->executable", and page faults do the actual loading. Clean. 15 * 16 * Once more I can proudly say that linux stood up to being changed: it 17 * was less than 2 hours work to get demand-loading completely implemented. 18 * 19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 20 * current->executable is only used by the procfs. This allows a dispatch 21 * table to check for several different types of binary formats. We keep 22 * trying until we recognize the file or we run out of supported binary 23 * formats. 24 */ 25 26 #include <linux/kernel_read_file.h> 27 #include <linux/slab.h> 28 #include <linux/file.h> 29 #include <linux/fdtable.h> 30 #include <linux/mm.h> 31 #include <linux/vmacache.h> 32 #include <linux/stat.h> 33 #include <linux/fcntl.h> 34 #include <linux/swap.h> 35 #include <linux/string.h> 36 #include <linux/init.h> 37 #include <linux/sched/mm.h> 38 #include <linux/sched/coredump.h> 39 #include <linux/sched/signal.h> 40 #include <linux/sched/numa_balancing.h> 41 #include <linux/sched/task.h> 42 #include <linux/pagemap.h> 43 #include <linux/perf_event.h> 44 #include <linux/highmem.h> 45 #include <linux/spinlock.h> 46 #include <linux/key.h> 47 #include <linux/personality.h> 48 #include <linux/binfmts.h> 49 #include <linux/utsname.h> 50 #include <linux/pid_namespace.h> 51 #include <linux/module.h> 52 #include <linux/namei.h> 53 #include <linux/mount.h> 54 #include <linux/security.h> 55 #include <linux/syscalls.h> 56 #include <linux/tsacct_kern.h> 57 #include <linux/cn_proc.h> 58 #include <linux/audit.h> 59 #include <linux/kmod.h> 60 #include <linux/fsnotify.h> 61 #include <linux/fs_struct.h> 62 #include <linux/oom.h> 63 #include <linux/compat.h> 64 #include <linux/vmalloc.h> 65 #include <linux/io_uring.h> 66 #include <linux/syscall_user_dispatch.h> 67 #include <linux/coredump.h> 68 #include <linux/time_namespace.h> 69 70 #include <linux/uaccess.h> 71 #include <asm/mmu_context.h> 72 #include <asm/tlb.h> 73 74 #include <trace/events/task.h> 75 #include "internal.h" 76 77 #include <trace/events/sched.h> 78 79 static int bprm_creds_from_file(struct linux_binprm *bprm); 80 81 int suid_dumpable = 0; 82 83 static LIST_HEAD(formats); 84 static DEFINE_RWLOCK(binfmt_lock); 85 86 void __register_binfmt(struct linux_binfmt * fmt, int insert) 87 { 88 write_lock(&binfmt_lock); 89 insert ? list_add(&fmt->lh, &formats) : 90 list_add_tail(&fmt->lh, &formats); 91 write_unlock(&binfmt_lock); 92 } 93 94 EXPORT_SYMBOL(__register_binfmt); 95 96 void unregister_binfmt(struct linux_binfmt * fmt) 97 { 98 write_lock(&binfmt_lock); 99 list_del(&fmt->lh); 100 write_unlock(&binfmt_lock); 101 } 102 103 EXPORT_SYMBOL(unregister_binfmt); 104 105 static inline void put_binfmt(struct linux_binfmt * fmt) 106 { 107 module_put(fmt->module); 108 } 109 110 bool path_noexec(const struct path *path) 111 { 112 return (path->mnt->mnt_flags & MNT_NOEXEC) || 113 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 114 } 115 116 #ifdef CONFIG_USELIB 117 /* 118 * Note that a shared library must be both readable and executable due to 119 * security reasons. 120 * 121 * Also note that we take the address to load from the file itself. 122 */ 123 SYSCALL_DEFINE1(uselib, const char __user *, library) 124 { 125 struct linux_binfmt *fmt; 126 struct file *file; 127 struct filename *tmp = getname(library); 128 int error = PTR_ERR(tmp); 129 static const struct open_flags uselib_flags = { 130 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 131 .acc_mode = MAY_READ | MAY_EXEC, 132 .intent = LOOKUP_OPEN, 133 .lookup_flags = LOOKUP_FOLLOW, 134 }; 135 136 if (IS_ERR(tmp)) 137 goto out; 138 139 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 140 putname(tmp); 141 error = PTR_ERR(file); 142 if (IS_ERR(file)) 143 goto out; 144 145 /* 146 * may_open() has already checked for this, so it should be 147 * impossible to trip now. But we need to be extra cautious 148 * and check again at the very end too. 149 */ 150 error = -EACCES; 151 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 152 path_noexec(&file->f_path))) 153 goto exit; 154 155 fsnotify_open(file); 156 157 error = -ENOEXEC; 158 159 read_lock(&binfmt_lock); 160 list_for_each_entry(fmt, &formats, lh) { 161 if (!fmt->load_shlib) 162 continue; 163 if (!try_module_get(fmt->module)) 164 continue; 165 read_unlock(&binfmt_lock); 166 error = fmt->load_shlib(file); 167 read_lock(&binfmt_lock); 168 put_binfmt(fmt); 169 if (error != -ENOEXEC) 170 break; 171 } 172 read_unlock(&binfmt_lock); 173 exit: 174 fput(file); 175 out: 176 return error; 177 } 178 #endif /* #ifdef CONFIG_USELIB */ 179 180 #ifdef CONFIG_MMU 181 /* 182 * The nascent bprm->mm is not visible until exec_mmap() but it can 183 * use a lot of memory, account these pages in current->mm temporary 184 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 185 * change the counter back via acct_arg_size(0). 186 */ 187 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 188 { 189 struct mm_struct *mm = current->mm; 190 long diff = (long)(pages - bprm->vma_pages); 191 192 if (!mm || !diff) 193 return; 194 195 bprm->vma_pages = pages; 196 add_mm_counter(mm, MM_ANONPAGES, diff); 197 } 198 199 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 200 int write) 201 { 202 struct page *page; 203 int ret; 204 unsigned int gup_flags = FOLL_FORCE; 205 206 #ifdef CONFIG_STACK_GROWSUP 207 if (write) { 208 ret = expand_downwards(bprm->vma, pos); 209 if (ret < 0) 210 return NULL; 211 } 212 #endif 213 214 if (write) 215 gup_flags |= FOLL_WRITE; 216 217 /* 218 * We are doing an exec(). 'current' is the process 219 * doing the exec and bprm->mm is the new process's mm. 220 */ 221 mmap_read_lock(bprm->mm); 222 ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags, 223 &page, NULL, NULL); 224 mmap_read_unlock(bprm->mm); 225 if (ret <= 0) 226 return NULL; 227 228 if (write) 229 acct_arg_size(bprm, vma_pages(bprm->vma)); 230 231 return page; 232 } 233 234 static void put_arg_page(struct page *page) 235 { 236 put_page(page); 237 } 238 239 static void free_arg_pages(struct linux_binprm *bprm) 240 { 241 } 242 243 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 244 struct page *page) 245 { 246 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 247 } 248 249 static int __bprm_mm_init(struct linux_binprm *bprm) 250 { 251 int err; 252 struct vm_area_struct *vma = NULL; 253 struct mm_struct *mm = bprm->mm; 254 255 bprm->vma = vma = vm_area_alloc(mm); 256 if (!vma) 257 return -ENOMEM; 258 vma_set_anonymous(vma); 259 260 if (mmap_write_lock_killable(mm)) { 261 err = -EINTR; 262 goto err_free; 263 } 264 265 /* 266 * Place the stack at the largest stack address the architecture 267 * supports. Later, we'll move this to an appropriate place. We don't 268 * use STACK_TOP because that can depend on attributes which aren't 269 * configured yet. 270 */ 271 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 272 vma->vm_end = STACK_TOP_MAX; 273 vma->vm_start = vma->vm_end - PAGE_SIZE; 274 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 275 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 276 277 err = insert_vm_struct(mm, vma); 278 if (err) 279 goto err; 280 281 mm->stack_vm = mm->total_vm = 1; 282 mmap_write_unlock(mm); 283 bprm->p = vma->vm_end - sizeof(void *); 284 return 0; 285 err: 286 mmap_write_unlock(mm); 287 err_free: 288 bprm->vma = NULL; 289 vm_area_free(vma); 290 return err; 291 } 292 293 static bool valid_arg_len(struct linux_binprm *bprm, long len) 294 { 295 return len <= MAX_ARG_STRLEN; 296 } 297 298 #else 299 300 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 301 { 302 } 303 304 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 305 int write) 306 { 307 struct page *page; 308 309 page = bprm->page[pos / PAGE_SIZE]; 310 if (!page && write) { 311 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 312 if (!page) 313 return NULL; 314 bprm->page[pos / PAGE_SIZE] = page; 315 } 316 317 return page; 318 } 319 320 static void put_arg_page(struct page *page) 321 { 322 } 323 324 static void free_arg_page(struct linux_binprm *bprm, int i) 325 { 326 if (bprm->page[i]) { 327 __free_page(bprm->page[i]); 328 bprm->page[i] = NULL; 329 } 330 } 331 332 static void free_arg_pages(struct linux_binprm *bprm) 333 { 334 int i; 335 336 for (i = 0; i < MAX_ARG_PAGES; i++) 337 free_arg_page(bprm, i); 338 } 339 340 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 341 struct page *page) 342 { 343 } 344 345 static int __bprm_mm_init(struct linux_binprm *bprm) 346 { 347 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 348 return 0; 349 } 350 351 static bool valid_arg_len(struct linux_binprm *bprm, long len) 352 { 353 return len <= bprm->p; 354 } 355 356 #endif /* CONFIG_MMU */ 357 358 /* 359 * Create a new mm_struct and populate it with a temporary stack 360 * vm_area_struct. We don't have enough context at this point to set the stack 361 * flags, permissions, and offset, so we use temporary values. We'll update 362 * them later in setup_arg_pages(). 363 */ 364 static int bprm_mm_init(struct linux_binprm *bprm) 365 { 366 int err; 367 struct mm_struct *mm = NULL; 368 369 bprm->mm = mm = mm_alloc(); 370 err = -ENOMEM; 371 if (!mm) 372 goto err; 373 374 /* Save current stack limit for all calculations made during exec. */ 375 task_lock(current->group_leader); 376 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 377 task_unlock(current->group_leader); 378 379 err = __bprm_mm_init(bprm); 380 if (err) 381 goto err; 382 383 return 0; 384 385 err: 386 if (mm) { 387 bprm->mm = NULL; 388 mmdrop(mm); 389 } 390 391 return err; 392 } 393 394 struct user_arg_ptr { 395 #ifdef CONFIG_COMPAT 396 bool is_compat; 397 #endif 398 union { 399 const char __user *const __user *native; 400 #ifdef CONFIG_COMPAT 401 const compat_uptr_t __user *compat; 402 #endif 403 } ptr; 404 }; 405 406 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 407 { 408 const char __user *native; 409 410 #ifdef CONFIG_COMPAT 411 if (unlikely(argv.is_compat)) { 412 compat_uptr_t compat; 413 414 if (get_user(compat, argv.ptr.compat + nr)) 415 return ERR_PTR(-EFAULT); 416 417 return compat_ptr(compat); 418 } 419 #endif 420 421 if (get_user(native, argv.ptr.native + nr)) 422 return ERR_PTR(-EFAULT); 423 424 return native; 425 } 426 427 /* 428 * count() counts the number of strings in array ARGV. 429 */ 430 static int count(struct user_arg_ptr argv, int max) 431 { 432 int i = 0; 433 434 if (argv.ptr.native != NULL) { 435 for (;;) { 436 const char __user *p = get_user_arg_ptr(argv, i); 437 438 if (!p) 439 break; 440 441 if (IS_ERR(p)) 442 return -EFAULT; 443 444 if (i >= max) 445 return -E2BIG; 446 ++i; 447 448 if (fatal_signal_pending(current)) 449 return -ERESTARTNOHAND; 450 cond_resched(); 451 } 452 } 453 return i; 454 } 455 456 static int count_strings_kernel(const char *const *argv) 457 { 458 int i; 459 460 if (!argv) 461 return 0; 462 463 for (i = 0; argv[i]; ++i) { 464 if (i >= MAX_ARG_STRINGS) 465 return -E2BIG; 466 if (fatal_signal_pending(current)) 467 return -ERESTARTNOHAND; 468 cond_resched(); 469 } 470 return i; 471 } 472 473 static int bprm_stack_limits(struct linux_binprm *bprm) 474 { 475 unsigned long limit, ptr_size; 476 477 /* 478 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 479 * (whichever is smaller) for the argv+env strings. 480 * This ensures that: 481 * - the remaining binfmt code will not run out of stack space, 482 * - the program will have a reasonable amount of stack left 483 * to work from. 484 */ 485 limit = _STK_LIM / 4 * 3; 486 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 487 /* 488 * We've historically supported up to 32 pages (ARG_MAX) 489 * of argument strings even with small stacks 490 */ 491 limit = max_t(unsigned long, limit, ARG_MAX); 492 /* 493 * We must account for the size of all the argv and envp pointers to 494 * the argv and envp strings, since they will also take up space in 495 * the stack. They aren't stored until much later when we can't 496 * signal to the parent that the child has run out of stack space. 497 * Instead, calculate it here so it's possible to fail gracefully. 498 * 499 * In the case of argc = 0, make sure there is space for adding a 500 * empty string (which will bump argc to 1), to ensure confused 501 * userspace programs don't start processing from argv[1], thinking 502 * argc can never be 0, to keep them from walking envp by accident. 503 * See do_execveat_common(). 504 */ 505 ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *); 506 if (limit <= ptr_size) 507 return -E2BIG; 508 limit -= ptr_size; 509 510 bprm->argmin = bprm->p - limit; 511 return 0; 512 } 513 514 /* 515 * 'copy_strings()' copies argument/environment strings from the old 516 * processes's memory to the new process's stack. The call to get_user_pages() 517 * ensures the destination page is created and not swapped out. 518 */ 519 static int copy_strings(int argc, struct user_arg_ptr argv, 520 struct linux_binprm *bprm) 521 { 522 struct page *kmapped_page = NULL; 523 char *kaddr = NULL; 524 unsigned long kpos = 0; 525 int ret; 526 527 while (argc-- > 0) { 528 const char __user *str; 529 int len; 530 unsigned long pos; 531 532 ret = -EFAULT; 533 str = get_user_arg_ptr(argv, argc); 534 if (IS_ERR(str)) 535 goto out; 536 537 len = strnlen_user(str, MAX_ARG_STRLEN); 538 if (!len) 539 goto out; 540 541 ret = -E2BIG; 542 if (!valid_arg_len(bprm, len)) 543 goto out; 544 545 /* We're going to work our way backwards. */ 546 pos = bprm->p; 547 str += len; 548 bprm->p -= len; 549 #ifdef CONFIG_MMU 550 if (bprm->p < bprm->argmin) 551 goto out; 552 #endif 553 554 while (len > 0) { 555 int offset, bytes_to_copy; 556 557 if (fatal_signal_pending(current)) { 558 ret = -ERESTARTNOHAND; 559 goto out; 560 } 561 cond_resched(); 562 563 offset = pos % PAGE_SIZE; 564 if (offset == 0) 565 offset = PAGE_SIZE; 566 567 bytes_to_copy = offset; 568 if (bytes_to_copy > len) 569 bytes_to_copy = len; 570 571 offset -= bytes_to_copy; 572 pos -= bytes_to_copy; 573 str -= bytes_to_copy; 574 len -= bytes_to_copy; 575 576 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 577 struct page *page; 578 579 page = get_arg_page(bprm, pos, 1); 580 if (!page) { 581 ret = -E2BIG; 582 goto out; 583 } 584 585 if (kmapped_page) { 586 flush_dcache_page(kmapped_page); 587 kunmap(kmapped_page); 588 put_arg_page(kmapped_page); 589 } 590 kmapped_page = page; 591 kaddr = kmap(kmapped_page); 592 kpos = pos & PAGE_MASK; 593 flush_arg_page(bprm, kpos, kmapped_page); 594 } 595 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 596 ret = -EFAULT; 597 goto out; 598 } 599 } 600 } 601 ret = 0; 602 out: 603 if (kmapped_page) { 604 flush_dcache_page(kmapped_page); 605 kunmap(kmapped_page); 606 put_arg_page(kmapped_page); 607 } 608 return ret; 609 } 610 611 /* 612 * Copy and argument/environment string from the kernel to the processes stack. 613 */ 614 int copy_string_kernel(const char *arg, struct linux_binprm *bprm) 615 { 616 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */; 617 unsigned long pos = bprm->p; 618 619 if (len == 0) 620 return -EFAULT; 621 if (!valid_arg_len(bprm, len)) 622 return -E2BIG; 623 624 /* We're going to work our way backwards. */ 625 arg += len; 626 bprm->p -= len; 627 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin) 628 return -E2BIG; 629 630 while (len > 0) { 631 unsigned int bytes_to_copy = min_t(unsigned int, len, 632 min_not_zero(offset_in_page(pos), PAGE_SIZE)); 633 struct page *page; 634 char *kaddr; 635 636 pos -= bytes_to_copy; 637 arg -= bytes_to_copy; 638 len -= bytes_to_copy; 639 640 page = get_arg_page(bprm, pos, 1); 641 if (!page) 642 return -E2BIG; 643 kaddr = kmap_atomic(page); 644 flush_arg_page(bprm, pos & PAGE_MASK, page); 645 memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy); 646 flush_dcache_page(page); 647 kunmap_atomic(kaddr); 648 put_arg_page(page); 649 } 650 651 return 0; 652 } 653 EXPORT_SYMBOL(copy_string_kernel); 654 655 static int copy_strings_kernel(int argc, const char *const *argv, 656 struct linux_binprm *bprm) 657 { 658 while (argc-- > 0) { 659 int ret = copy_string_kernel(argv[argc], bprm); 660 if (ret < 0) 661 return ret; 662 if (fatal_signal_pending(current)) 663 return -ERESTARTNOHAND; 664 cond_resched(); 665 } 666 return 0; 667 } 668 669 #ifdef CONFIG_MMU 670 671 /* 672 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 673 * the binfmt code determines where the new stack should reside, we shift it to 674 * its final location. The process proceeds as follows: 675 * 676 * 1) Use shift to calculate the new vma endpoints. 677 * 2) Extend vma to cover both the old and new ranges. This ensures the 678 * arguments passed to subsequent functions are consistent. 679 * 3) Move vma's page tables to the new range. 680 * 4) Free up any cleared pgd range. 681 * 5) Shrink the vma to cover only the new range. 682 */ 683 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 684 { 685 struct mm_struct *mm = vma->vm_mm; 686 unsigned long old_start = vma->vm_start; 687 unsigned long old_end = vma->vm_end; 688 unsigned long length = old_end - old_start; 689 unsigned long new_start = old_start - shift; 690 unsigned long new_end = old_end - shift; 691 struct mmu_gather tlb; 692 693 BUG_ON(new_start > new_end); 694 695 /* 696 * ensure there are no vmas between where we want to go 697 * and where we are 698 */ 699 if (vma != find_vma(mm, new_start)) 700 return -EFAULT; 701 702 /* 703 * cover the whole range: [new_start, old_end) 704 */ 705 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 706 return -ENOMEM; 707 708 /* 709 * move the page tables downwards, on failure we rely on 710 * process cleanup to remove whatever mess we made. 711 */ 712 if (length != move_page_tables(vma, old_start, 713 vma, new_start, length, false)) 714 return -ENOMEM; 715 716 lru_add_drain(); 717 tlb_gather_mmu(&tlb, mm); 718 if (new_end > old_start) { 719 /* 720 * when the old and new regions overlap clear from new_end. 721 */ 722 free_pgd_range(&tlb, new_end, old_end, new_end, 723 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 724 } else { 725 /* 726 * otherwise, clean from old_start; this is done to not touch 727 * the address space in [new_end, old_start) some architectures 728 * have constraints on va-space that make this illegal (IA64) - 729 * for the others its just a little faster. 730 */ 731 free_pgd_range(&tlb, old_start, old_end, new_end, 732 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 733 } 734 tlb_finish_mmu(&tlb); 735 736 /* 737 * Shrink the vma to just the new range. Always succeeds. 738 */ 739 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 740 741 return 0; 742 } 743 744 /* 745 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 746 * the stack is optionally relocated, and some extra space is added. 747 */ 748 int setup_arg_pages(struct linux_binprm *bprm, 749 unsigned long stack_top, 750 int executable_stack) 751 { 752 unsigned long ret; 753 unsigned long stack_shift; 754 struct mm_struct *mm = current->mm; 755 struct vm_area_struct *vma = bprm->vma; 756 struct vm_area_struct *prev = NULL; 757 unsigned long vm_flags; 758 unsigned long stack_base; 759 unsigned long stack_size; 760 unsigned long stack_expand; 761 unsigned long rlim_stack; 762 struct mmu_gather tlb; 763 764 #ifdef CONFIG_STACK_GROWSUP 765 /* Limit stack size */ 766 stack_base = bprm->rlim_stack.rlim_max; 767 768 stack_base = calc_max_stack_size(stack_base); 769 770 /* Add space for stack randomization. */ 771 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 772 773 /* Make sure we didn't let the argument array grow too large. */ 774 if (vma->vm_end - vma->vm_start > stack_base) 775 return -ENOMEM; 776 777 stack_base = PAGE_ALIGN(stack_top - stack_base); 778 779 stack_shift = vma->vm_start - stack_base; 780 mm->arg_start = bprm->p - stack_shift; 781 bprm->p = vma->vm_end - stack_shift; 782 #else 783 stack_top = arch_align_stack(stack_top); 784 stack_top = PAGE_ALIGN(stack_top); 785 786 if (unlikely(stack_top < mmap_min_addr) || 787 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 788 return -ENOMEM; 789 790 stack_shift = vma->vm_end - stack_top; 791 792 bprm->p -= stack_shift; 793 mm->arg_start = bprm->p; 794 #endif 795 796 if (bprm->loader) 797 bprm->loader -= stack_shift; 798 bprm->exec -= stack_shift; 799 800 if (mmap_write_lock_killable(mm)) 801 return -EINTR; 802 803 vm_flags = VM_STACK_FLAGS; 804 805 /* 806 * Adjust stack execute permissions; explicitly enable for 807 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 808 * (arch default) otherwise. 809 */ 810 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 811 vm_flags |= VM_EXEC; 812 else if (executable_stack == EXSTACK_DISABLE_X) 813 vm_flags &= ~VM_EXEC; 814 vm_flags |= mm->def_flags; 815 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 816 817 tlb_gather_mmu(&tlb, mm); 818 ret = mprotect_fixup(&tlb, vma, &prev, vma->vm_start, vma->vm_end, 819 vm_flags); 820 tlb_finish_mmu(&tlb); 821 822 if (ret) 823 goto out_unlock; 824 BUG_ON(prev != vma); 825 826 if (unlikely(vm_flags & VM_EXEC)) { 827 pr_warn_once("process '%pD4' started with executable stack\n", 828 bprm->file); 829 } 830 831 /* Move stack pages down in memory. */ 832 if (stack_shift) { 833 ret = shift_arg_pages(vma, stack_shift); 834 if (ret) 835 goto out_unlock; 836 } 837 838 /* mprotect_fixup is overkill to remove the temporary stack flags */ 839 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 840 841 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 842 stack_size = vma->vm_end - vma->vm_start; 843 /* 844 * Align this down to a page boundary as expand_stack 845 * will align it up. 846 */ 847 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 848 #ifdef CONFIG_STACK_GROWSUP 849 if (stack_size + stack_expand > rlim_stack) 850 stack_base = vma->vm_start + rlim_stack; 851 else 852 stack_base = vma->vm_end + stack_expand; 853 #else 854 if (stack_size + stack_expand > rlim_stack) 855 stack_base = vma->vm_end - rlim_stack; 856 else 857 stack_base = vma->vm_start - stack_expand; 858 #endif 859 current->mm->start_stack = bprm->p; 860 ret = expand_stack(vma, stack_base); 861 if (ret) 862 ret = -EFAULT; 863 864 out_unlock: 865 mmap_write_unlock(mm); 866 return ret; 867 } 868 EXPORT_SYMBOL(setup_arg_pages); 869 870 #else 871 872 /* 873 * Transfer the program arguments and environment from the holding pages 874 * onto the stack. The provided stack pointer is adjusted accordingly. 875 */ 876 int transfer_args_to_stack(struct linux_binprm *bprm, 877 unsigned long *sp_location) 878 { 879 unsigned long index, stop, sp; 880 int ret = 0; 881 882 stop = bprm->p >> PAGE_SHIFT; 883 sp = *sp_location; 884 885 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 886 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 887 char *src = kmap(bprm->page[index]) + offset; 888 sp -= PAGE_SIZE - offset; 889 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 890 ret = -EFAULT; 891 kunmap(bprm->page[index]); 892 if (ret) 893 goto out; 894 } 895 896 *sp_location = sp; 897 898 out: 899 return ret; 900 } 901 EXPORT_SYMBOL(transfer_args_to_stack); 902 903 #endif /* CONFIG_MMU */ 904 905 static struct file *do_open_execat(int fd, struct filename *name, int flags) 906 { 907 struct file *file; 908 int err; 909 struct open_flags open_exec_flags = { 910 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 911 .acc_mode = MAY_EXEC, 912 .intent = LOOKUP_OPEN, 913 .lookup_flags = LOOKUP_FOLLOW, 914 }; 915 916 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 917 return ERR_PTR(-EINVAL); 918 if (flags & AT_SYMLINK_NOFOLLOW) 919 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 920 if (flags & AT_EMPTY_PATH) 921 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 922 923 file = do_filp_open(fd, name, &open_exec_flags); 924 if (IS_ERR(file)) 925 goto out; 926 927 /* 928 * may_open() has already checked for this, so it should be 929 * impossible to trip now. But we need to be extra cautious 930 * and check again at the very end too. 931 */ 932 err = -EACCES; 933 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 934 path_noexec(&file->f_path))) 935 goto exit; 936 937 err = deny_write_access(file); 938 if (err) 939 goto exit; 940 941 if (name->name[0] != '\0') 942 fsnotify_open(file); 943 944 out: 945 return file; 946 947 exit: 948 fput(file); 949 return ERR_PTR(err); 950 } 951 952 struct file *open_exec(const char *name) 953 { 954 struct filename *filename = getname_kernel(name); 955 struct file *f = ERR_CAST(filename); 956 957 if (!IS_ERR(filename)) { 958 f = do_open_execat(AT_FDCWD, filename, 0); 959 putname(filename); 960 } 961 return f; 962 } 963 EXPORT_SYMBOL(open_exec); 964 965 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \ 966 defined(CONFIG_BINFMT_ELF_FDPIC) 967 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 968 { 969 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 970 if (res > 0) 971 flush_icache_user_range(addr, addr + len); 972 return res; 973 } 974 EXPORT_SYMBOL(read_code); 975 #endif 976 977 /* 978 * Maps the mm_struct mm into the current task struct. 979 * On success, this function returns with exec_update_lock 980 * held for writing. 981 */ 982 static int exec_mmap(struct mm_struct *mm) 983 { 984 struct task_struct *tsk; 985 struct mm_struct *old_mm, *active_mm; 986 bool vfork; 987 int ret; 988 989 /* Notify parent that we're no longer interested in the old VM */ 990 tsk = current; 991 vfork = !!tsk->vfork_done; 992 old_mm = current->mm; 993 exec_mm_release(tsk, old_mm); 994 if (old_mm) 995 sync_mm_rss(old_mm); 996 997 ret = down_write_killable(&tsk->signal->exec_update_lock); 998 if (ret) 999 return ret; 1000 1001 if (old_mm) { 1002 /* 1003 * If there is a pending fatal signal perhaps a signal 1004 * whose default action is to create a coredump get 1005 * out and die instead of going through with the exec. 1006 */ 1007 ret = mmap_read_lock_killable(old_mm); 1008 if (ret) { 1009 up_write(&tsk->signal->exec_update_lock); 1010 return ret; 1011 } 1012 } 1013 1014 task_lock(tsk); 1015 membarrier_exec_mmap(mm); 1016 1017 local_irq_disable(); 1018 active_mm = tsk->active_mm; 1019 tsk->active_mm = mm; 1020 tsk->mm = mm; 1021 /* 1022 * This prevents preemption while active_mm is being loaded and 1023 * it and mm are being updated, which could cause problems for 1024 * lazy tlb mm refcounting when these are updated by context 1025 * switches. Not all architectures can handle irqs off over 1026 * activate_mm yet. 1027 */ 1028 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1029 local_irq_enable(); 1030 activate_mm(active_mm, mm); 1031 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1032 local_irq_enable(); 1033 tsk->mm->vmacache_seqnum = 0; 1034 vmacache_flush(tsk); 1035 task_unlock(tsk); 1036 1037 if (vfork) 1038 timens_on_fork(tsk->nsproxy, tsk); 1039 1040 if (old_mm) { 1041 mmap_read_unlock(old_mm); 1042 BUG_ON(active_mm != old_mm); 1043 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1044 mm_update_next_owner(old_mm); 1045 mmput(old_mm); 1046 return 0; 1047 } 1048 mmdrop(active_mm); 1049 return 0; 1050 } 1051 1052 static int de_thread(struct task_struct *tsk) 1053 { 1054 struct signal_struct *sig = tsk->signal; 1055 struct sighand_struct *oldsighand = tsk->sighand; 1056 spinlock_t *lock = &oldsighand->siglock; 1057 1058 if (thread_group_empty(tsk)) 1059 goto no_thread_group; 1060 1061 /* 1062 * Kill all other threads in the thread group. 1063 */ 1064 spin_lock_irq(lock); 1065 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) { 1066 /* 1067 * Another group action in progress, just 1068 * return so that the signal is processed. 1069 */ 1070 spin_unlock_irq(lock); 1071 return -EAGAIN; 1072 } 1073 1074 sig->group_exec_task = tsk; 1075 sig->notify_count = zap_other_threads(tsk); 1076 if (!thread_group_leader(tsk)) 1077 sig->notify_count--; 1078 1079 while (sig->notify_count) { 1080 __set_current_state(TASK_KILLABLE); 1081 spin_unlock_irq(lock); 1082 schedule(); 1083 if (__fatal_signal_pending(tsk)) 1084 goto killed; 1085 spin_lock_irq(lock); 1086 } 1087 spin_unlock_irq(lock); 1088 1089 /* 1090 * At this point all other threads have exited, all we have to 1091 * do is to wait for the thread group leader to become inactive, 1092 * and to assume its PID: 1093 */ 1094 if (!thread_group_leader(tsk)) { 1095 struct task_struct *leader = tsk->group_leader; 1096 1097 for (;;) { 1098 cgroup_threadgroup_change_begin(tsk); 1099 write_lock_irq(&tasklist_lock); 1100 /* 1101 * Do this under tasklist_lock to ensure that 1102 * exit_notify() can't miss ->group_exec_task 1103 */ 1104 sig->notify_count = -1; 1105 if (likely(leader->exit_state)) 1106 break; 1107 __set_current_state(TASK_KILLABLE); 1108 write_unlock_irq(&tasklist_lock); 1109 cgroup_threadgroup_change_end(tsk); 1110 schedule(); 1111 if (__fatal_signal_pending(tsk)) 1112 goto killed; 1113 } 1114 1115 /* 1116 * The only record we have of the real-time age of a 1117 * process, regardless of execs it's done, is start_time. 1118 * All the past CPU time is accumulated in signal_struct 1119 * from sister threads now dead. But in this non-leader 1120 * exec, nothing survives from the original leader thread, 1121 * whose birth marks the true age of this process now. 1122 * When we take on its identity by switching to its PID, we 1123 * also take its birthdate (always earlier than our own). 1124 */ 1125 tsk->start_time = leader->start_time; 1126 tsk->start_boottime = leader->start_boottime; 1127 1128 BUG_ON(!same_thread_group(leader, tsk)); 1129 /* 1130 * An exec() starts a new thread group with the 1131 * TGID of the previous thread group. Rehash the 1132 * two threads with a switched PID, and release 1133 * the former thread group leader: 1134 */ 1135 1136 /* Become a process group leader with the old leader's pid. 1137 * The old leader becomes a thread of the this thread group. 1138 */ 1139 exchange_tids(tsk, leader); 1140 transfer_pid(leader, tsk, PIDTYPE_TGID); 1141 transfer_pid(leader, tsk, PIDTYPE_PGID); 1142 transfer_pid(leader, tsk, PIDTYPE_SID); 1143 1144 list_replace_rcu(&leader->tasks, &tsk->tasks); 1145 list_replace_init(&leader->sibling, &tsk->sibling); 1146 1147 tsk->group_leader = tsk; 1148 leader->group_leader = tsk; 1149 1150 tsk->exit_signal = SIGCHLD; 1151 leader->exit_signal = -1; 1152 1153 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1154 leader->exit_state = EXIT_DEAD; 1155 1156 /* 1157 * We are going to release_task()->ptrace_unlink() silently, 1158 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1159 * the tracer wont't block again waiting for this thread. 1160 */ 1161 if (unlikely(leader->ptrace)) 1162 __wake_up_parent(leader, leader->parent); 1163 write_unlock_irq(&tasklist_lock); 1164 cgroup_threadgroup_change_end(tsk); 1165 1166 release_task(leader); 1167 } 1168 1169 sig->group_exec_task = NULL; 1170 sig->notify_count = 0; 1171 1172 no_thread_group: 1173 /* we have changed execution domain */ 1174 tsk->exit_signal = SIGCHLD; 1175 1176 BUG_ON(!thread_group_leader(tsk)); 1177 return 0; 1178 1179 killed: 1180 /* protects against exit_notify() and __exit_signal() */ 1181 read_lock(&tasklist_lock); 1182 sig->group_exec_task = NULL; 1183 sig->notify_count = 0; 1184 read_unlock(&tasklist_lock); 1185 return -EAGAIN; 1186 } 1187 1188 1189 /* 1190 * This function makes sure the current process has its own signal table, 1191 * so that flush_signal_handlers can later reset the handlers without 1192 * disturbing other processes. (Other processes might share the signal 1193 * table via the CLONE_SIGHAND option to clone().) 1194 */ 1195 static int unshare_sighand(struct task_struct *me) 1196 { 1197 struct sighand_struct *oldsighand = me->sighand; 1198 1199 if (refcount_read(&oldsighand->count) != 1) { 1200 struct sighand_struct *newsighand; 1201 /* 1202 * This ->sighand is shared with the CLONE_SIGHAND 1203 * but not CLONE_THREAD task, switch to the new one. 1204 */ 1205 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1206 if (!newsighand) 1207 return -ENOMEM; 1208 1209 refcount_set(&newsighand->count, 1); 1210 memcpy(newsighand->action, oldsighand->action, 1211 sizeof(newsighand->action)); 1212 1213 write_lock_irq(&tasklist_lock); 1214 spin_lock(&oldsighand->siglock); 1215 rcu_assign_pointer(me->sighand, newsighand); 1216 spin_unlock(&oldsighand->siglock); 1217 write_unlock_irq(&tasklist_lock); 1218 1219 __cleanup_sighand(oldsighand); 1220 } 1221 return 0; 1222 } 1223 1224 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk) 1225 { 1226 task_lock(tsk); 1227 /* Always NUL terminated and zero-padded */ 1228 strscpy_pad(buf, tsk->comm, buf_size); 1229 task_unlock(tsk); 1230 return buf; 1231 } 1232 EXPORT_SYMBOL_GPL(__get_task_comm); 1233 1234 /* 1235 * These functions flushes out all traces of the currently running executable 1236 * so that a new one can be started 1237 */ 1238 1239 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1240 { 1241 task_lock(tsk); 1242 trace_task_rename(tsk, buf); 1243 strscpy_pad(tsk->comm, buf, sizeof(tsk->comm)); 1244 task_unlock(tsk); 1245 perf_event_comm(tsk, exec); 1246 } 1247 1248 /* 1249 * Calling this is the point of no return. None of the failures will be 1250 * seen by userspace since either the process is already taking a fatal 1251 * signal (via de_thread() or coredump), or will have SEGV raised 1252 * (after exec_mmap()) by search_binary_handler (see below). 1253 */ 1254 int begin_new_exec(struct linux_binprm * bprm) 1255 { 1256 struct task_struct *me = current; 1257 int retval; 1258 1259 /* Once we are committed compute the creds */ 1260 retval = bprm_creds_from_file(bprm); 1261 if (retval) 1262 return retval; 1263 1264 /* 1265 * Ensure all future errors are fatal. 1266 */ 1267 bprm->point_of_no_return = true; 1268 1269 /* 1270 * Make this the only thread in the thread group. 1271 */ 1272 retval = de_thread(me); 1273 if (retval) 1274 goto out; 1275 1276 /* 1277 * Cancel any io_uring activity across execve 1278 */ 1279 io_uring_task_cancel(); 1280 1281 /* Ensure the files table is not shared. */ 1282 retval = unshare_files(); 1283 if (retval) 1284 goto out; 1285 1286 /* 1287 * Must be called _before_ exec_mmap() as bprm->mm is 1288 * not visible until then. This also enables the update 1289 * to be lockless. 1290 */ 1291 retval = set_mm_exe_file(bprm->mm, bprm->file); 1292 if (retval) 1293 goto out; 1294 1295 /* If the binary is not readable then enforce mm->dumpable=0 */ 1296 would_dump(bprm, bprm->file); 1297 if (bprm->have_execfd) 1298 would_dump(bprm, bprm->executable); 1299 1300 /* 1301 * Release all of the old mmap stuff 1302 */ 1303 acct_arg_size(bprm, 0); 1304 retval = exec_mmap(bprm->mm); 1305 if (retval) 1306 goto out; 1307 1308 bprm->mm = NULL; 1309 1310 #ifdef CONFIG_POSIX_TIMERS 1311 exit_itimers(me->signal); 1312 flush_itimer_signals(); 1313 #endif 1314 1315 /* 1316 * Make the signal table private. 1317 */ 1318 retval = unshare_sighand(me); 1319 if (retval) 1320 goto out_unlock; 1321 1322 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | 1323 PF_NOFREEZE | PF_NO_SETAFFINITY); 1324 flush_thread(); 1325 me->personality &= ~bprm->per_clear; 1326 1327 clear_syscall_work_syscall_user_dispatch(me); 1328 1329 /* 1330 * We have to apply CLOEXEC before we change whether the process is 1331 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1332 * trying to access the should-be-closed file descriptors of a process 1333 * undergoing exec(2). 1334 */ 1335 do_close_on_exec(me->files); 1336 1337 if (bprm->secureexec) { 1338 /* Make sure parent cannot signal privileged process. */ 1339 me->pdeath_signal = 0; 1340 1341 /* 1342 * For secureexec, reset the stack limit to sane default to 1343 * avoid bad behavior from the prior rlimits. This has to 1344 * happen before arch_pick_mmap_layout(), which examines 1345 * RLIMIT_STACK, but after the point of no return to avoid 1346 * needing to clean up the change on failure. 1347 */ 1348 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1349 bprm->rlim_stack.rlim_cur = _STK_LIM; 1350 } 1351 1352 me->sas_ss_sp = me->sas_ss_size = 0; 1353 1354 /* 1355 * Figure out dumpability. Note that this checking only of current 1356 * is wrong, but userspace depends on it. This should be testing 1357 * bprm->secureexec instead. 1358 */ 1359 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1360 !(uid_eq(current_euid(), current_uid()) && 1361 gid_eq(current_egid(), current_gid()))) 1362 set_dumpable(current->mm, suid_dumpable); 1363 else 1364 set_dumpable(current->mm, SUID_DUMP_USER); 1365 1366 perf_event_exec(); 1367 __set_task_comm(me, kbasename(bprm->filename), true); 1368 1369 /* An exec changes our domain. We are no longer part of the thread 1370 group */ 1371 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1); 1372 flush_signal_handlers(me, 0); 1373 1374 retval = set_cred_ucounts(bprm->cred); 1375 if (retval < 0) 1376 goto out_unlock; 1377 1378 /* 1379 * install the new credentials for this executable 1380 */ 1381 security_bprm_committing_creds(bprm); 1382 1383 commit_creds(bprm->cred); 1384 bprm->cred = NULL; 1385 1386 /* 1387 * Disable monitoring for regular users 1388 * when executing setuid binaries. Must 1389 * wait until new credentials are committed 1390 * by commit_creds() above 1391 */ 1392 if (get_dumpable(me->mm) != SUID_DUMP_USER) 1393 perf_event_exit_task(me); 1394 /* 1395 * cred_guard_mutex must be held at least to this point to prevent 1396 * ptrace_attach() from altering our determination of the task's 1397 * credentials; any time after this it may be unlocked. 1398 */ 1399 security_bprm_committed_creds(bprm); 1400 1401 /* Pass the opened binary to the interpreter. */ 1402 if (bprm->have_execfd) { 1403 retval = get_unused_fd_flags(0); 1404 if (retval < 0) 1405 goto out_unlock; 1406 fd_install(retval, bprm->executable); 1407 bprm->executable = NULL; 1408 bprm->execfd = retval; 1409 } 1410 return 0; 1411 1412 out_unlock: 1413 up_write(&me->signal->exec_update_lock); 1414 out: 1415 return retval; 1416 } 1417 EXPORT_SYMBOL(begin_new_exec); 1418 1419 void would_dump(struct linux_binprm *bprm, struct file *file) 1420 { 1421 struct inode *inode = file_inode(file); 1422 struct user_namespace *mnt_userns = file_mnt_user_ns(file); 1423 if (inode_permission(mnt_userns, inode, MAY_READ) < 0) { 1424 struct user_namespace *old, *user_ns; 1425 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1426 1427 /* Ensure mm->user_ns contains the executable */ 1428 user_ns = old = bprm->mm->user_ns; 1429 while ((user_ns != &init_user_ns) && 1430 !privileged_wrt_inode_uidgid(user_ns, mnt_userns, inode)) 1431 user_ns = user_ns->parent; 1432 1433 if (old != user_ns) { 1434 bprm->mm->user_ns = get_user_ns(user_ns); 1435 put_user_ns(old); 1436 } 1437 } 1438 } 1439 EXPORT_SYMBOL(would_dump); 1440 1441 void setup_new_exec(struct linux_binprm * bprm) 1442 { 1443 /* Setup things that can depend upon the personality */ 1444 struct task_struct *me = current; 1445 1446 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack); 1447 1448 arch_setup_new_exec(); 1449 1450 /* Set the new mm task size. We have to do that late because it may 1451 * depend on TIF_32BIT which is only updated in flush_thread() on 1452 * some architectures like powerpc 1453 */ 1454 me->mm->task_size = TASK_SIZE; 1455 up_write(&me->signal->exec_update_lock); 1456 mutex_unlock(&me->signal->cred_guard_mutex); 1457 } 1458 EXPORT_SYMBOL(setup_new_exec); 1459 1460 /* Runs immediately before start_thread() takes over. */ 1461 void finalize_exec(struct linux_binprm *bprm) 1462 { 1463 /* Store any stack rlimit changes before starting thread. */ 1464 task_lock(current->group_leader); 1465 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1466 task_unlock(current->group_leader); 1467 } 1468 EXPORT_SYMBOL(finalize_exec); 1469 1470 /* 1471 * Prepare credentials and lock ->cred_guard_mutex. 1472 * setup_new_exec() commits the new creds and drops the lock. 1473 * Or, if exec fails before, free_bprm() should release ->cred 1474 * and unlock. 1475 */ 1476 static int prepare_bprm_creds(struct linux_binprm *bprm) 1477 { 1478 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1479 return -ERESTARTNOINTR; 1480 1481 bprm->cred = prepare_exec_creds(); 1482 if (likely(bprm->cred)) 1483 return 0; 1484 1485 mutex_unlock(¤t->signal->cred_guard_mutex); 1486 return -ENOMEM; 1487 } 1488 1489 static void free_bprm(struct linux_binprm *bprm) 1490 { 1491 if (bprm->mm) { 1492 acct_arg_size(bprm, 0); 1493 mmput(bprm->mm); 1494 } 1495 free_arg_pages(bprm); 1496 if (bprm->cred) { 1497 mutex_unlock(¤t->signal->cred_guard_mutex); 1498 abort_creds(bprm->cred); 1499 } 1500 if (bprm->file) { 1501 allow_write_access(bprm->file); 1502 fput(bprm->file); 1503 } 1504 if (bprm->executable) 1505 fput(bprm->executable); 1506 /* If a binfmt changed the interp, free it. */ 1507 if (bprm->interp != bprm->filename) 1508 kfree(bprm->interp); 1509 kfree(bprm->fdpath); 1510 kfree(bprm); 1511 } 1512 1513 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename) 1514 { 1515 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1516 int retval = -ENOMEM; 1517 if (!bprm) 1518 goto out; 1519 1520 if (fd == AT_FDCWD || filename->name[0] == '/') { 1521 bprm->filename = filename->name; 1522 } else { 1523 if (filename->name[0] == '\0') 1524 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1525 else 1526 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1527 fd, filename->name); 1528 if (!bprm->fdpath) 1529 goto out_free; 1530 1531 bprm->filename = bprm->fdpath; 1532 } 1533 bprm->interp = bprm->filename; 1534 1535 retval = bprm_mm_init(bprm); 1536 if (retval) 1537 goto out_free; 1538 return bprm; 1539 1540 out_free: 1541 free_bprm(bprm); 1542 out: 1543 return ERR_PTR(retval); 1544 } 1545 1546 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1547 { 1548 /* If a binfmt changed the interp, free it first. */ 1549 if (bprm->interp != bprm->filename) 1550 kfree(bprm->interp); 1551 bprm->interp = kstrdup(interp, GFP_KERNEL); 1552 if (!bprm->interp) 1553 return -ENOMEM; 1554 return 0; 1555 } 1556 EXPORT_SYMBOL(bprm_change_interp); 1557 1558 /* 1559 * determine how safe it is to execute the proposed program 1560 * - the caller must hold ->cred_guard_mutex to protect against 1561 * PTRACE_ATTACH or seccomp thread-sync 1562 */ 1563 static void check_unsafe_exec(struct linux_binprm *bprm) 1564 { 1565 struct task_struct *p = current, *t; 1566 unsigned n_fs; 1567 1568 if (p->ptrace) 1569 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1570 1571 /* 1572 * This isn't strictly necessary, but it makes it harder for LSMs to 1573 * mess up. 1574 */ 1575 if (task_no_new_privs(current)) 1576 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1577 1578 t = p; 1579 n_fs = 1; 1580 spin_lock(&p->fs->lock); 1581 rcu_read_lock(); 1582 while_each_thread(p, t) { 1583 if (t->fs == p->fs) 1584 n_fs++; 1585 } 1586 rcu_read_unlock(); 1587 1588 if (p->fs->users > n_fs) 1589 bprm->unsafe |= LSM_UNSAFE_SHARE; 1590 else 1591 p->fs->in_exec = 1; 1592 spin_unlock(&p->fs->lock); 1593 } 1594 1595 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file) 1596 { 1597 /* Handle suid and sgid on files */ 1598 struct user_namespace *mnt_userns; 1599 struct inode *inode; 1600 unsigned int mode; 1601 kuid_t uid; 1602 kgid_t gid; 1603 1604 if (!mnt_may_suid(file->f_path.mnt)) 1605 return; 1606 1607 if (task_no_new_privs(current)) 1608 return; 1609 1610 inode = file->f_path.dentry->d_inode; 1611 mode = READ_ONCE(inode->i_mode); 1612 if (!(mode & (S_ISUID|S_ISGID))) 1613 return; 1614 1615 mnt_userns = file_mnt_user_ns(file); 1616 1617 /* Be careful if suid/sgid is set */ 1618 inode_lock(inode); 1619 1620 /* reload atomically mode/uid/gid now that lock held */ 1621 mode = inode->i_mode; 1622 uid = i_uid_into_mnt(mnt_userns, inode); 1623 gid = i_gid_into_mnt(mnt_userns, inode); 1624 inode_unlock(inode); 1625 1626 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1627 if (!kuid_has_mapping(bprm->cred->user_ns, uid) || 1628 !kgid_has_mapping(bprm->cred->user_ns, gid)) 1629 return; 1630 1631 if (mode & S_ISUID) { 1632 bprm->per_clear |= PER_CLEAR_ON_SETID; 1633 bprm->cred->euid = uid; 1634 } 1635 1636 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1637 bprm->per_clear |= PER_CLEAR_ON_SETID; 1638 bprm->cred->egid = gid; 1639 } 1640 } 1641 1642 /* 1643 * Compute brpm->cred based upon the final binary. 1644 */ 1645 static int bprm_creds_from_file(struct linux_binprm *bprm) 1646 { 1647 /* Compute creds based on which file? */ 1648 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file; 1649 1650 bprm_fill_uid(bprm, file); 1651 return security_bprm_creds_from_file(bprm, file); 1652 } 1653 1654 /* 1655 * Fill the binprm structure from the inode. 1656 * Read the first BINPRM_BUF_SIZE bytes 1657 * 1658 * This may be called multiple times for binary chains (scripts for example). 1659 */ 1660 static int prepare_binprm(struct linux_binprm *bprm) 1661 { 1662 loff_t pos = 0; 1663 1664 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1665 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1666 } 1667 1668 /* 1669 * Arguments are '\0' separated strings found at the location bprm->p 1670 * points to; chop off the first by relocating brpm->p to right after 1671 * the first '\0' encountered. 1672 */ 1673 int remove_arg_zero(struct linux_binprm *bprm) 1674 { 1675 int ret = 0; 1676 unsigned long offset; 1677 char *kaddr; 1678 struct page *page; 1679 1680 if (!bprm->argc) 1681 return 0; 1682 1683 do { 1684 offset = bprm->p & ~PAGE_MASK; 1685 page = get_arg_page(bprm, bprm->p, 0); 1686 if (!page) { 1687 ret = -EFAULT; 1688 goto out; 1689 } 1690 kaddr = kmap_atomic(page); 1691 1692 for (; offset < PAGE_SIZE && kaddr[offset]; 1693 offset++, bprm->p++) 1694 ; 1695 1696 kunmap_atomic(kaddr); 1697 put_arg_page(page); 1698 } while (offset == PAGE_SIZE); 1699 1700 bprm->p++; 1701 bprm->argc--; 1702 ret = 0; 1703 1704 out: 1705 return ret; 1706 } 1707 EXPORT_SYMBOL(remove_arg_zero); 1708 1709 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1710 /* 1711 * cycle the list of binary formats handler, until one recognizes the image 1712 */ 1713 static int search_binary_handler(struct linux_binprm *bprm) 1714 { 1715 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1716 struct linux_binfmt *fmt; 1717 int retval; 1718 1719 retval = prepare_binprm(bprm); 1720 if (retval < 0) 1721 return retval; 1722 1723 retval = security_bprm_check(bprm); 1724 if (retval) 1725 return retval; 1726 1727 retval = -ENOENT; 1728 retry: 1729 read_lock(&binfmt_lock); 1730 list_for_each_entry(fmt, &formats, lh) { 1731 if (!try_module_get(fmt->module)) 1732 continue; 1733 read_unlock(&binfmt_lock); 1734 1735 retval = fmt->load_binary(bprm); 1736 1737 read_lock(&binfmt_lock); 1738 put_binfmt(fmt); 1739 if (bprm->point_of_no_return || (retval != -ENOEXEC)) { 1740 read_unlock(&binfmt_lock); 1741 return retval; 1742 } 1743 } 1744 read_unlock(&binfmt_lock); 1745 1746 if (need_retry) { 1747 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1748 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1749 return retval; 1750 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1751 return retval; 1752 need_retry = false; 1753 goto retry; 1754 } 1755 1756 return retval; 1757 } 1758 1759 static int exec_binprm(struct linux_binprm *bprm) 1760 { 1761 pid_t old_pid, old_vpid; 1762 int ret, depth; 1763 1764 /* Need to fetch pid before load_binary changes it */ 1765 old_pid = current->pid; 1766 rcu_read_lock(); 1767 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1768 rcu_read_unlock(); 1769 1770 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1771 for (depth = 0;; depth++) { 1772 struct file *exec; 1773 if (depth > 5) 1774 return -ELOOP; 1775 1776 ret = search_binary_handler(bprm); 1777 if (ret < 0) 1778 return ret; 1779 if (!bprm->interpreter) 1780 break; 1781 1782 exec = bprm->file; 1783 bprm->file = bprm->interpreter; 1784 bprm->interpreter = NULL; 1785 1786 allow_write_access(exec); 1787 if (unlikely(bprm->have_execfd)) { 1788 if (bprm->executable) { 1789 fput(exec); 1790 return -ENOEXEC; 1791 } 1792 bprm->executable = exec; 1793 } else 1794 fput(exec); 1795 } 1796 1797 audit_bprm(bprm); 1798 trace_sched_process_exec(current, old_pid, bprm); 1799 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1800 proc_exec_connector(current); 1801 return 0; 1802 } 1803 1804 /* 1805 * sys_execve() executes a new program. 1806 */ 1807 static int bprm_execve(struct linux_binprm *bprm, 1808 int fd, struct filename *filename, int flags) 1809 { 1810 struct file *file; 1811 int retval; 1812 1813 retval = prepare_bprm_creds(bprm); 1814 if (retval) 1815 return retval; 1816 1817 check_unsafe_exec(bprm); 1818 current->in_execve = 1; 1819 1820 file = do_open_execat(fd, filename, flags); 1821 retval = PTR_ERR(file); 1822 if (IS_ERR(file)) 1823 goto out_unmark; 1824 1825 sched_exec(); 1826 1827 bprm->file = file; 1828 /* 1829 * Record that a name derived from an O_CLOEXEC fd will be 1830 * inaccessible after exec. This allows the code in exec to 1831 * choose to fail when the executable is not mmaped into the 1832 * interpreter and an open file descriptor is not passed to 1833 * the interpreter. This makes for a better user experience 1834 * than having the interpreter start and then immediately fail 1835 * when it finds the executable is inaccessible. 1836 */ 1837 if (bprm->fdpath && get_close_on_exec(fd)) 1838 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1839 1840 /* Set the unchanging part of bprm->cred */ 1841 retval = security_bprm_creds_for_exec(bprm); 1842 if (retval) 1843 goto out; 1844 1845 retval = exec_binprm(bprm); 1846 if (retval < 0) 1847 goto out; 1848 1849 /* execve succeeded */ 1850 current->fs->in_exec = 0; 1851 current->in_execve = 0; 1852 rseq_execve(current); 1853 acct_update_integrals(current); 1854 task_numa_free(current, false); 1855 return retval; 1856 1857 out: 1858 /* 1859 * If past the point of no return ensure the code never 1860 * returns to the userspace process. Use an existing fatal 1861 * signal if present otherwise terminate the process with 1862 * SIGSEGV. 1863 */ 1864 if (bprm->point_of_no_return && !fatal_signal_pending(current)) 1865 force_fatal_sig(SIGSEGV); 1866 1867 out_unmark: 1868 current->fs->in_exec = 0; 1869 current->in_execve = 0; 1870 1871 return retval; 1872 } 1873 1874 static int do_execveat_common(int fd, struct filename *filename, 1875 struct user_arg_ptr argv, 1876 struct user_arg_ptr envp, 1877 int flags) 1878 { 1879 struct linux_binprm *bprm; 1880 int retval; 1881 1882 if (IS_ERR(filename)) 1883 return PTR_ERR(filename); 1884 1885 /* 1886 * We move the actual failure in case of RLIMIT_NPROC excess from 1887 * set*uid() to execve() because too many poorly written programs 1888 * don't check setuid() return code. Here we additionally recheck 1889 * whether NPROC limit is still exceeded. 1890 */ 1891 if ((current->flags & PF_NPROC_EXCEEDED) && 1892 is_ucounts_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 1893 retval = -EAGAIN; 1894 goto out_ret; 1895 } 1896 1897 /* We're below the limit (still or again), so we don't want to make 1898 * further execve() calls fail. */ 1899 current->flags &= ~PF_NPROC_EXCEEDED; 1900 1901 bprm = alloc_bprm(fd, filename); 1902 if (IS_ERR(bprm)) { 1903 retval = PTR_ERR(bprm); 1904 goto out_ret; 1905 } 1906 1907 retval = count(argv, MAX_ARG_STRINGS); 1908 if (retval == 0) 1909 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n", 1910 current->comm, bprm->filename); 1911 if (retval < 0) 1912 goto out_free; 1913 bprm->argc = retval; 1914 1915 retval = count(envp, MAX_ARG_STRINGS); 1916 if (retval < 0) 1917 goto out_free; 1918 bprm->envc = retval; 1919 1920 retval = bprm_stack_limits(bprm); 1921 if (retval < 0) 1922 goto out_free; 1923 1924 retval = copy_string_kernel(bprm->filename, bprm); 1925 if (retval < 0) 1926 goto out_free; 1927 bprm->exec = bprm->p; 1928 1929 retval = copy_strings(bprm->envc, envp, bprm); 1930 if (retval < 0) 1931 goto out_free; 1932 1933 retval = copy_strings(bprm->argc, argv, bprm); 1934 if (retval < 0) 1935 goto out_free; 1936 1937 /* 1938 * When argv is empty, add an empty string ("") as argv[0] to 1939 * ensure confused userspace programs that start processing 1940 * from argv[1] won't end up walking envp. See also 1941 * bprm_stack_limits(). 1942 */ 1943 if (bprm->argc == 0) { 1944 retval = copy_string_kernel("", bprm); 1945 if (retval < 0) 1946 goto out_free; 1947 bprm->argc = 1; 1948 } 1949 1950 retval = bprm_execve(bprm, fd, filename, flags); 1951 out_free: 1952 free_bprm(bprm); 1953 1954 out_ret: 1955 putname(filename); 1956 return retval; 1957 } 1958 1959 int kernel_execve(const char *kernel_filename, 1960 const char *const *argv, const char *const *envp) 1961 { 1962 struct filename *filename; 1963 struct linux_binprm *bprm; 1964 int fd = AT_FDCWD; 1965 int retval; 1966 1967 /* It is non-sense for kernel threads to call execve */ 1968 if (WARN_ON_ONCE(current->flags & PF_KTHREAD)) 1969 return -EINVAL; 1970 1971 filename = getname_kernel(kernel_filename); 1972 if (IS_ERR(filename)) 1973 return PTR_ERR(filename); 1974 1975 bprm = alloc_bprm(fd, filename); 1976 if (IS_ERR(bprm)) { 1977 retval = PTR_ERR(bprm); 1978 goto out_ret; 1979 } 1980 1981 retval = count_strings_kernel(argv); 1982 if (WARN_ON_ONCE(retval == 0)) 1983 retval = -EINVAL; 1984 if (retval < 0) 1985 goto out_free; 1986 bprm->argc = retval; 1987 1988 retval = count_strings_kernel(envp); 1989 if (retval < 0) 1990 goto out_free; 1991 bprm->envc = retval; 1992 1993 retval = bprm_stack_limits(bprm); 1994 if (retval < 0) 1995 goto out_free; 1996 1997 retval = copy_string_kernel(bprm->filename, bprm); 1998 if (retval < 0) 1999 goto out_free; 2000 bprm->exec = bprm->p; 2001 2002 retval = copy_strings_kernel(bprm->envc, envp, bprm); 2003 if (retval < 0) 2004 goto out_free; 2005 2006 retval = copy_strings_kernel(bprm->argc, argv, bprm); 2007 if (retval < 0) 2008 goto out_free; 2009 2010 retval = bprm_execve(bprm, fd, filename, 0); 2011 out_free: 2012 free_bprm(bprm); 2013 out_ret: 2014 putname(filename); 2015 return retval; 2016 } 2017 2018 static int do_execve(struct filename *filename, 2019 const char __user *const __user *__argv, 2020 const char __user *const __user *__envp) 2021 { 2022 struct user_arg_ptr argv = { .ptr.native = __argv }; 2023 struct user_arg_ptr envp = { .ptr.native = __envp }; 2024 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2025 } 2026 2027 static int do_execveat(int fd, struct filename *filename, 2028 const char __user *const __user *__argv, 2029 const char __user *const __user *__envp, 2030 int flags) 2031 { 2032 struct user_arg_ptr argv = { .ptr.native = __argv }; 2033 struct user_arg_ptr envp = { .ptr.native = __envp }; 2034 2035 return do_execveat_common(fd, filename, argv, envp, flags); 2036 } 2037 2038 #ifdef CONFIG_COMPAT 2039 static int compat_do_execve(struct filename *filename, 2040 const compat_uptr_t __user *__argv, 2041 const compat_uptr_t __user *__envp) 2042 { 2043 struct user_arg_ptr argv = { 2044 .is_compat = true, 2045 .ptr.compat = __argv, 2046 }; 2047 struct user_arg_ptr envp = { 2048 .is_compat = true, 2049 .ptr.compat = __envp, 2050 }; 2051 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2052 } 2053 2054 static int compat_do_execveat(int fd, struct filename *filename, 2055 const compat_uptr_t __user *__argv, 2056 const compat_uptr_t __user *__envp, 2057 int flags) 2058 { 2059 struct user_arg_ptr argv = { 2060 .is_compat = true, 2061 .ptr.compat = __argv, 2062 }; 2063 struct user_arg_ptr envp = { 2064 .is_compat = true, 2065 .ptr.compat = __envp, 2066 }; 2067 return do_execveat_common(fd, filename, argv, envp, flags); 2068 } 2069 #endif 2070 2071 void set_binfmt(struct linux_binfmt *new) 2072 { 2073 struct mm_struct *mm = current->mm; 2074 2075 if (mm->binfmt) 2076 module_put(mm->binfmt->module); 2077 2078 mm->binfmt = new; 2079 if (new) 2080 __module_get(new->module); 2081 } 2082 EXPORT_SYMBOL(set_binfmt); 2083 2084 /* 2085 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 2086 */ 2087 void set_dumpable(struct mm_struct *mm, int value) 2088 { 2089 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 2090 return; 2091 2092 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value); 2093 } 2094 2095 SYSCALL_DEFINE3(execve, 2096 const char __user *, filename, 2097 const char __user *const __user *, argv, 2098 const char __user *const __user *, envp) 2099 { 2100 return do_execve(getname(filename), argv, envp); 2101 } 2102 2103 SYSCALL_DEFINE5(execveat, 2104 int, fd, const char __user *, filename, 2105 const char __user *const __user *, argv, 2106 const char __user *const __user *, envp, 2107 int, flags) 2108 { 2109 return do_execveat(fd, 2110 getname_uflags(filename, flags), 2111 argv, envp, flags); 2112 } 2113 2114 #ifdef CONFIG_COMPAT 2115 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 2116 const compat_uptr_t __user *, argv, 2117 const compat_uptr_t __user *, envp) 2118 { 2119 return compat_do_execve(getname(filename), argv, envp); 2120 } 2121 2122 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 2123 const char __user *, filename, 2124 const compat_uptr_t __user *, argv, 2125 const compat_uptr_t __user *, envp, 2126 int, flags) 2127 { 2128 return compat_do_execveat(fd, 2129 getname_uflags(filename, flags), 2130 argv, envp, flags); 2131 } 2132 #endif 2133 2134 #ifdef CONFIG_SYSCTL 2135 2136 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write, 2137 void *buffer, size_t *lenp, loff_t *ppos) 2138 { 2139 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2140 2141 if (!error) 2142 validate_coredump_safety(); 2143 return error; 2144 } 2145 2146 static struct ctl_table fs_exec_sysctls[] = { 2147 { 2148 .procname = "suid_dumpable", 2149 .data = &suid_dumpable, 2150 .maxlen = sizeof(int), 2151 .mode = 0644, 2152 .proc_handler = proc_dointvec_minmax_coredump, 2153 .extra1 = SYSCTL_ZERO, 2154 .extra2 = SYSCTL_TWO, 2155 }, 2156 { } 2157 }; 2158 2159 static int __init init_fs_exec_sysctls(void) 2160 { 2161 register_sysctl_init("fs", fs_exec_sysctls); 2162 return 0; 2163 } 2164 2165 fs_initcall(init_fs_exec_sysctls); 2166 #endif /* CONFIG_SYSCTL */ 2167