1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/mman.h> 28 #include <linux/a.out.h> 29 #include <linux/stat.h> 30 #include <linux/fcntl.h> 31 #include <linux/smp_lock.h> 32 #include <linux/init.h> 33 #include <linux/pagemap.h> 34 #include <linux/highmem.h> 35 #include <linux/spinlock.h> 36 #include <linux/key.h> 37 #include <linux/personality.h> 38 #include <linux/binfmts.h> 39 #include <linux/swap.h> 40 #include <linux/utsname.h> 41 #include <linux/pid_namespace.h> 42 #include <linux/module.h> 43 #include <linux/namei.h> 44 #include <linux/proc_fs.h> 45 #include <linux/ptrace.h> 46 #include <linux/mount.h> 47 #include <linux/security.h> 48 #include <linux/syscalls.h> 49 #include <linux/rmap.h> 50 #include <linux/tsacct_kern.h> 51 #include <linux/cn_proc.h> 52 #include <linux/audit.h> 53 54 #include <asm/uaccess.h> 55 #include <asm/mmu_context.h> 56 57 #ifdef CONFIG_KMOD 58 #include <linux/kmod.h> 59 #endif 60 61 int core_uses_pid; 62 char core_pattern[128] = "core"; 63 int suid_dumpable = 0; 64 65 EXPORT_SYMBOL(suid_dumpable); 66 /* The maximal length of core_pattern is also specified in sysctl.c */ 67 68 static struct linux_binfmt *formats; 69 static DEFINE_RWLOCK(binfmt_lock); 70 71 int register_binfmt(struct linux_binfmt * fmt) 72 { 73 struct linux_binfmt ** tmp = &formats; 74 75 if (!fmt) 76 return -EINVAL; 77 if (fmt->next) 78 return -EBUSY; 79 write_lock(&binfmt_lock); 80 while (*tmp) { 81 if (fmt == *tmp) { 82 write_unlock(&binfmt_lock); 83 return -EBUSY; 84 } 85 tmp = &(*tmp)->next; 86 } 87 fmt->next = formats; 88 formats = fmt; 89 write_unlock(&binfmt_lock); 90 return 0; 91 } 92 93 EXPORT_SYMBOL(register_binfmt); 94 95 int unregister_binfmt(struct linux_binfmt * fmt) 96 { 97 struct linux_binfmt ** tmp = &formats; 98 99 write_lock(&binfmt_lock); 100 while (*tmp) { 101 if (fmt == *tmp) { 102 *tmp = fmt->next; 103 fmt->next = NULL; 104 write_unlock(&binfmt_lock); 105 return 0; 106 } 107 tmp = &(*tmp)->next; 108 } 109 write_unlock(&binfmt_lock); 110 return -EINVAL; 111 } 112 113 EXPORT_SYMBOL(unregister_binfmt); 114 115 static inline void put_binfmt(struct linux_binfmt * fmt) 116 { 117 module_put(fmt->module); 118 } 119 120 /* 121 * Note that a shared library must be both readable and executable due to 122 * security reasons. 123 * 124 * Also note that we take the address to load from from the file itself. 125 */ 126 asmlinkage long sys_uselib(const char __user * library) 127 { 128 struct file * file; 129 struct nameidata nd; 130 int error; 131 132 error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC); 133 if (error) 134 goto out; 135 136 error = -EINVAL; 137 if (!S_ISREG(nd.dentry->d_inode->i_mode)) 138 goto exit; 139 140 error = vfs_permission(&nd, MAY_READ | MAY_EXEC); 141 if (error) 142 goto exit; 143 144 file = nameidata_to_filp(&nd, O_RDONLY); 145 error = PTR_ERR(file); 146 if (IS_ERR(file)) 147 goto out; 148 149 error = -ENOEXEC; 150 if(file->f_op) { 151 struct linux_binfmt * fmt; 152 153 read_lock(&binfmt_lock); 154 for (fmt = formats ; fmt ; fmt = fmt->next) { 155 if (!fmt->load_shlib) 156 continue; 157 if (!try_module_get(fmt->module)) 158 continue; 159 read_unlock(&binfmt_lock); 160 error = fmt->load_shlib(file); 161 read_lock(&binfmt_lock); 162 put_binfmt(fmt); 163 if (error != -ENOEXEC) 164 break; 165 } 166 read_unlock(&binfmt_lock); 167 } 168 fput(file); 169 out: 170 return error; 171 exit: 172 release_open_intent(&nd); 173 path_release(&nd); 174 goto out; 175 } 176 177 /* 178 * count() counts the number of strings in array ARGV. 179 */ 180 static int count(char __user * __user * argv, int max) 181 { 182 int i = 0; 183 184 if (argv != NULL) { 185 for (;;) { 186 char __user * p; 187 188 if (get_user(p, argv)) 189 return -EFAULT; 190 if (!p) 191 break; 192 argv++; 193 if(++i > max) 194 return -E2BIG; 195 cond_resched(); 196 } 197 } 198 return i; 199 } 200 201 /* 202 * 'copy_strings()' copies argument/environment strings from user 203 * memory to free pages in kernel mem. These are in a format ready 204 * to be put directly into the top of new user memory. 205 */ 206 static int copy_strings(int argc, char __user * __user * argv, 207 struct linux_binprm *bprm) 208 { 209 struct page *kmapped_page = NULL; 210 char *kaddr = NULL; 211 int ret; 212 213 while (argc-- > 0) { 214 char __user *str; 215 int len; 216 unsigned long pos; 217 218 if (get_user(str, argv+argc) || 219 !(len = strnlen_user(str, bprm->p))) { 220 ret = -EFAULT; 221 goto out; 222 } 223 224 if (bprm->p < len) { 225 ret = -E2BIG; 226 goto out; 227 } 228 229 bprm->p -= len; 230 /* XXX: add architecture specific overflow check here. */ 231 pos = bprm->p; 232 233 while (len > 0) { 234 int i, new, err; 235 int offset, bytes_to_copy; 236 struct page *page; 237 238 offset = pos % PAGE_SIZE; 239 i = pos/PAGE_SIZE; 240 page = bprm->page[i]; 241 new = 0; 242 if (!page) { 243 page = alloc_page(GFP_HIGHUSER); 244 bprm->page[i] = page; 245 if (!page) { 246 ret = -ENOMEM; 247 goto out; 248 } 249 new = 1; 250 } 251 252 if (page != kmapped_page) { 253 if (kmapped_page) 254 kunmap(kmapped_page); 255 kmapped_page = page; 256 kaddr = kmap(kmapped_page); 257 } 258 if (new && offset) 259 memset(kaddr, 0, offset); 260 bytes_to_copy = PAGE_SIZE - offset; 261 if (bytes_to_copy > len) { 262 bytes_to_copy = len; 263 if (new) 264 memset(kaddr+offset+len, 0, 265 PAGE_SIZE-offset-len); 266 } 267 err = copy_from_user(kaddr+offset, str, bytes_to_copy); 268 if (err) { 269 ret = -EFAULT; 270 goto out; 271 } 272 273 pos += bytes_to_copy; 274 str += bytes_to_copy; 275 len -= bytes_to_copy; 276 } 277 } 278 ret = 0; 279 out: 280 if (kmapped_page) 281 kunmap(kmapped_page); 282 return ret; 283 } 284 285 /* 286 * Like copy_strings, but get argv and its values from kernel memory. 287 */ 288 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm) 289 { 290 int r; 291 mm_segment_t oldfs = get_fs(); 292 set_fs(KERNEL_DS); 293 r = copy_strings(argc, (char __user * __user *)argv, bprm); 294 set_fs(oldfs); 295 return r; 296 } 297 298 EXPORT_SYMBOL(copy_strings_kernel); 299 300 #ifdef CONFIG_MMU 301 /* 302 * This routine is used to map in a page into an address space: needed by 303 * execve() for the initial stack and environment pages. 304 * 305 * vma->vm_mm->mmap_sem is held for writing. 306 */ 307 void install_arg_page(struct vm_area_struct *vma, 308 struct page *page, unsigned long address) 309 { 310 struct mm_struct *mm = vma->vm_mm; 311 pte_t * pte; 312 spinlock_t *ptl; 313 314 if (unlikely(anon_vma_prepare(vma))) 315 goto out; 316 317 flush_dcache_page(page); 318 pte = get_locked_pte(mm, address, &ptl); 319 if (!pte) 320 goto out; 321 if (!pte_none(*pte)) { 322 pte_unmap_unlock(pte, ptl); 323 goto out; 324 } 325 inc_mm_counter(mm, anon_rss); 326 lru_cache_add_active(page); 327 set_pte_at(mm, address, pte, pte_mkdirty(pte_mkwrite(mk_pte( 328 page, vma->vm_page_prot)))); 329 page_add_new_anon_rmap(page, vma, address); 330 pte_unmap_unlock(pte, ptl); 331 332 /* no need for flush_tlb */ 333 return; 334 out: 335 __free_page(page); 336 force_sig(SIGKILL, current); 337 } 338 339 #define EXTRA_STACK_VM_PAGES 20 /* random */ 340 341 int setup_arg_pages(struct linux_binprm *bprm, 342 unsigned long stack_top, 343 int executable_stack) 344 { 345 unsigned long stack_base; 346 struct vm_area_struct *mpnt; 347 struct mm_struct *mm = current->mm; 348 int i, ret; 349 long arg_size; 350 351 #ifdef CONFIG_STACK_GROWSUP 352 /* Move the argument and environment strings to the bottom of the 353 * stack space. 354 */ 355 int offset, j; 356 char *to, *from; 357 358 /* Start by shifting all the pages down */ 359 i = 0; 360 for (j = 0; j < MAX_ARG_PAGES; j++) { 361 struct page *page = bprm->page[j]; 362 if (!page) 363 continue; 364 bprm->page[i++] = page; 365 } 366 367 /* Now move them within their pages */ 368 offset = bprm->p % PAGE_SIZE; 369 to = kmap(bprm->page[0]); 370 for (j = 1; j < i; j++) { 371 memmove(to, to + offset, PAGE_SIZE - offset); 372 from = kmap(bprm->page[j]); 373 memcpy(to + PAGE_SIZE - offset, from, offset); 374 kunmap(bprm->page[j - 1]); 375 to = from; 376 } 377 memmove(to, to + offset, PAGE_SIZE - offset); 378 kunmap(bprm->page[j - 1]); 379 380 /* Limit stack size to 1GB */ 381 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max; 382 if (stack_base > (1 << 30)) 383 stack_base = 1 << 30; 384 stack_base = PAGE_ALIGN(stack_top - stack_base); 385 386 /* Adjust bprm->p to point to the end of the strings. */ 387 bprm->p = stack_base + PAGE_SIZE * i - offset; 388 389 mm->arg_start = stack_base; 390 arg_size = i << PAGE_SHIFT; 391 392 /* zero pages that were copied above */ 393 while (i < MAX_ARG_PAGES) 394 bprm->page[i++] = NULL; 395 #else 396 stack_base = arch_align_stack(stack_top - MAX_ARG_PAGES*PAGE_SIZE); 397 stack_base = PAGE_ALIGN(stack_base); 398 bprm->p += stack_base; 399 mm->arg_start = bprm->p; 400 arg_size = stack_top - (PAGE_MASK & (unsigned long) mm->arg_start); 401 #endif 402 403 arg_size += EXTRA_STACK_VM_PAGES * PAGE_SIZE; 404 405 if (bprm->loader) 406 bprm->loader += stack_base; 407 bprm->exec += stack_base; 408 409 mpnt = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 410 if (!mpnt) 411 return -ENOMEM; 412 413 down_write(&mm->mmap_sem); 414 { 415 mpnt->vm_mm = mm; 416 #ifdef CONFIG_STACK_GROWSUP 417 mpnt->vm_start = stack_base; 418 mpnt->vm_end = stack_base + arg_size; 419 #else 420 mpnt->vm_end = stack_top; 421 mpnt->vm_start = mpnt->vm_end - arg_size; 422 #endif 423 /* Adjust stack execute permissions; explicitly enable 424 * for EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X 425 * and leave alone (arch default) otherwise. */ 426 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 427 mpnt->vm_flags = VM_STACK_FLAGS | VM_EXEC; 428 else if (executable_stack == EXSTACK_DISABLE_X) 429 mpnt->vm_flags = VM_STACK_FLAGS & ~VM_EXEC; 430 else 431 mpnt->vm_flags = VM_STACK_FLAGS; 432 mpnt->vm_flags |= mm->def_flags; 433 mpnt->vm_page_prot = protection_map[mpnt->vm_flags & 0x7]; 434 if ((ret = insert_vm_struct(mm, mpnt))) { 435 up_write(&mm->mmap_sem); 436 kmem_cache_free(vm_area_cachep, mpnt); 437 return ret; 438 } 439 mm->stack_vm = mm->total_vm = vma_pages(mpnt); 440 } 441 442 for (i = 0 ; i < MAX_ARG_PAGES ; i++) { 443 struct page *page = bprm->page[i]; 444 if (page) { 445 bprm->page[i] = NULL; 446 install_arg_page(mpnt, page, stack_base); 447 } 448 stack_base += PAGE_SIZE; 449 } 450 up_write(&mm->mmap_sem); 451 452 return 0; 453 } 454 455 EXPORT_SYMBOL(setup_arg_pages); 456 457 #define free_arg_pages(bprm) do { } while (0) 458 459 #else 460 461 static inline void free_arg_pages(struct linux_binprm *bprm) 462 { 463 int i; 464 465 for (i = 0; i < MAX_ARG_PAGES; i++) { 466 if (bprm->page[i]) 467 __free_page(bprm->page[i]); 468 bprm->page[i] = NULL; 469 } 470 } 471 472 #endif /* CONFIG_MMU */ 473 474 struct file *open_exec(const char *name) 475 { 476 struct nameidata nd; 477 int err; 478 struct file *file; 479 480 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC); 481 file = ERR_PTR(err); 482 483 if (!err) { 484 struct inode *inode = nd.dentry->d_inode; 485 file = ERR_PTR(-EACCES); 486 if (!(nd.mnt->mnt_flags & MNT_NOEXEC) && 487 S_ISREG(inode->i_mode)) { 488 int err = vfs_permission(&nd, MAY_EXEC); 489 file = ERR_PTR(err); 490 if (!err) { 491 file = nameidata_to_filp(&nd, O_RDONLY); 492 if (!IS_ERR(file)) { 493 err = deny_write_access(file); 494 if (err) { 495 fput(file); 496 file = ERR_PTR(err); 497 } 498 } 499 out: 500 return file; 501 } 502 } 503 release_open_intent(&nd); 504 path_release(&nd); 505 } 506 goto out; 507 } 508 509 EXPORT_SYMBOL(open_exec); 510 511 int kernel_read(struct file *file, unsigned long offset, 512 char *addr, unsigned long count) 513 { 514 mm_segment_t old_fs; 515 loff_t pos = offset; 516 int result; 517 518 old_fs = get_fs(); 519 set_fs(get_ds()); 520 /* The cast to a user pointer is valid due to the set_fs() */ 521 result = vfs_read(file, (void __user *)addr, count, &pos); 522 set_fs(old_fs); 523 return result; 524 } 525 526 EXPORT_SYMBOL(kernel_read); 527 528 static int exec_mmap(struct mm_struct *mm) 529 { 530 struct task_struct *tsk; 531 struct mm_struct * old_mm, *active_mm; 532 533 /* Notify parent that we're no longer interested in the old VM */ 534 tsk = current; 535 old_mm = current->mm; 536 mm_release(tsk, old_mm); 537 538 if (old_mm) { 539 /* 540 * Make sure that if there is a core dump in progress 541 * for the old mm, we get out and die instead of going 542 * through with the exec. We must hold mmap_sem around 543 * checking core_waiters and changing tsk->mm. The 544 * core-inducing thread will increment core_waiters for 545 * each thread whose ->mm == old_mm. 546 */ 547 down_read(&old_mm->mmap_sem); 548 if (unlikely(old_mm->core_waiters)) { 549 up_read(&old_mm->mmap_sem); 550 return -EINTR; 551 } 552 } 553 task_lock(tsk); 554 active_mm = tsk->active_mm; 555 tsk->mm = mm; 556 tsk->active_mm = mm; 557 activate_mm(active_mm, mm); 558 task_unlock(tsk); 559 arch_pick_mmap_layout(mm); 560 if (old_mm) { 561 up_read(&old_mm->mmap_sem); 562 BUG_ON(active_mm != old_mm); 563 mmput(old_mm); 564 return 0; 565 } 566 mmdrop(active_mm); 567 return 0; 568 } 569 570 /* 571 * This function makes sure the current process has its own signal table, 572 * so that flush_signal_handlers can later reset the handlers without 573 * disturbing other processes. (Other processes might share the signal 574 * table via the CLONE_SIGHAND option to clone().) 575 */ 576 static int de_thread(struct task_struct *tsk) 577 { 578 struct signal_struct *sig = tsk->signal; 579 struct sighand_struct *newsighand, *oldsighand = tsk->sighand; 580 spinlock_t *lock = &oldsighand->siglock; 581 struct task_struct *leader = NULL; 582 int count; 583 584 /* 585 * If we don't share sighandlers, then we aren't sharing anything 586 * and we can just re-use it all. 587 */ 588 if (atomic_read(&oldsighand->count) <= 1) { 589 BUG_ON(atomic_read(&sig->count) != 1); 590 exit_itimers(sig); 591 return 0; 592 } 593 594 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 595 if (!newsighand) 596 return -ENOMEM; 597 598 if (thread_group_empty(tsk)) 599 goto no_thread_group; 600 601 /* 602 * Kill all other threads in the thread group. 603 * We must hold tasklist_lock to call zap_other_threads. 604 */ 605 read_lock(&tasklist_lock); 606 spin_lock_irq(lock); 607 if (sig->flags & SIGNAL_GROUP_EXIT) { 608 /* 609 * Another group action in progress, just 610 * return so that the signal is processed. 611 */ 612 spin_unlock_irq(lock); 613 read_unlock(&tasklist_lock); 614 kmem_cache_free(sighand_cachep, newsighand); 615 return -EAGAIN; 616 } 617 618 /* 619 * child_reaper ignores SIGKILL, change it now. 620 * Reparenting needs write_lock on tasklist_lock, 621 * so it is safe to do it under read_lock. 622 */ 623 if (unlikely(tsk->group_leader == child_reaper(tsk))) 624 tsk->nsproxy->pid_ns->child_reaper = tsk; 625 626 zap_other_threads(tsk); 627 read_unlock(&tasklist_lock); 628 629 /* 630 * Account for the thread group leader hanging around: 631 */ 632 count = 1; 633 if (!thread_group_leader(tsk)) { 634 count = 2; 635 /* 636 * The SIGALRM timer survives the exec, but needs to point 637 * at us as the new group leader now. We have a race with 638 * a timer firing now getting the old leader, so we need to 639 * synchronize with any firing (by calling del_timer_sync) 640 * before we can safely let the old group leader die. 641 */ 642 sig->tsk = tsk; 643 spin_unlock_irq(lock); 644 if (hrtimer_cancel(&sig->real_timer)) 645 hrtimer_restart(&sig->real_timer); 646 spin_lock_irq(lock); 647 } 648 while (atomic_read(&sig->count) > count) { 649 sig->group_exit_task = tsk; 650 sig->notify_count = count; 651 __set_current_state(TASK_UNINTERRUPTIBLE); 652 spin_unlock_irq(lock); 653 schedule(); 654 spin_lock_irq(lock); 655 } 656 sig->group_exit_task = NULL; 657 sig->notify_count = 0; 658 spin_unlock_irq(lock); 659 660 /* 661 * At this point all other threads have exited, all we have to 662 * do is to wait for the thread group leader to become inactive, 663 * and to assume its PID: 664 */ 665 if (!thread_group_leader(tsk)) { 666 /* 667 * Wait for the thread group leader to be a zombie. 668 * It should already be zombie at this point, most 669 * of the time. 670 */ 671 leader = tsk->group_leader; 672 while (leader->exit_state != EXIT_ZOMBIE) 673 yield(); 674 675 /* 676 * The only record we have of the real-time age of a 677 * process, regardless of execs it's done, is start_time. 678 * All the past CPU time is accumulated in signal_struct 679 * from sister threads now dead. But in this non-leader 680 * exec, nothing survives from the original leader thread, 681 * whose birth marks the true age of this process now. 682 * When we take on its identity by switching to its PID, we 683 * also take its birthdate (always earlier than our own). 684 */ 685 tsk->start_time = leader->start_time; 686 687 write_lock_irq(&tasklist_lock); 688 689 BUG_ON(leader->tgid != tsk->tgid); 690 BUG_ON(tsk->pid == tsk->tgid); 691 /* 692 * An exec() starts a new thread group with the 693 * TGID of the previous thread group. Rehash the 694 * two threads with a switched PID, and release 695 * the former thread group leader: 696 */ 697 698 /* Become a process group leader with the old leader's pid. 699 * The old leader becomes a thread of the this thread group. 700 * Note: The old leader also uses this pid until release_task 701 * is called. Odd but simple and correct. 702 */ 703 detach_pid(tsk, PIDTYPE_PID); 704 tsk->pid = leader->pid; 705 attach_pid(tsk, PIDTYPE_PID, tsk->pid); 706 transfer_pid(leader, tsk, PIDTYPE_PGID); 707 transfer_pid(leader, tsk, PIDTYPE_SID); 708 list_replace_rcu(&leader->tasks, &tsk->tasks); 709 710 tsk->group_leader = tsk; 711 leader->group_leader = tsk; 712 713 tsk->exit_signal = SIGCHLD; 714 715 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 716 leader->exit_state = EXIT_DEAD; 717 718 write_unlock_irq(&tasklist_lock); 719 } 720 721 /* 722 * There may be one thread left which is just exiting, 723 * but it's safe to stop telling the group to kill themselves. 724 */ 725 sig->flags = 0; 726 727 no_thread_group: 728 exit_itimers(sig); 729 if (leader) 730 release_task(leader); 731 732 BUG_ON(atomic_read(&sig->count) != 1); 733 734 if (atomic_read(&oldsighand->count) == 1) { 735 /* 736 * Now that we nuked the rest of the thread group, 737 * it turns out we are not sharing sighand any more either. 738 * So we can just keep it. 739 */ 740 kmem_cache_free(sighand_cachep, newsighand); 741 } else { 742 /* 743 * Move our state over to newsighand and switch it in. 744 */ 745 atomic_set(&newsighand->count, 1); 746 memcpy(newsighand->action, oldsighand->action, 747 sizeof(newsighand->action)); 748 749 write_lock_irq(&tasklist_lock); 750 spin_lock(&oldsighand->siglock); 751 spin_lock_nested(&newsighand->siglock, SINGLE_DEPTH_NESTING); 752 753 rcu_assign_pointer(tsk->sighand, newsighand); 754 recalc_sigpending(); 755 756 spin_unlock(&newsighand->siglock); 757 spin_unlock(&oldsighand->siglock); 758 write_unlock_irq(&tasklist_lock); 759 760 if (atomic_dec_and_test(&oldsighand->count)) 761 kmem_cache_free(sighand_cachep, oldsighand); 762 } 763 764 BUG_ON(!thread_group_leader(tsk)); 765 return 0; 766 } 767 768 /* 769 * These functions flushes out all traces of the currently running executable 770 * so that a new one can be started 771 */ 772 773 static void flush_old_files(struct files_struct * files) 774 { 775 long j = -1; 776 struct fdtable *fdt; 777 778 spin_lock(&files->file_lock); 779 for (;;) { 780 unsigned long set, i; 781 782 j++; 783 i = j * __NFDBITS; 784 fdt = files_fdtable(files); 785 if (i >= fdt->max_fds) 786 break; 787 set = fdt->close_on_exec->fds_bits[j]; 788 if (!set) 789 continue; 790 fdt->close_on_exec->fds_bits[j] = 0; 791 spin_unlock(&files->file_lock); 792 for ( ; set ; i++,set >>= 1) { 793 if (set & 1) { 794 sys_close(i); 795 } 796 } 797 spin_lock(&files->file_lock); 798 799 } 800 spin_unlock(&files->file_lock); 801 } 802 803 void get_task_comm(char *buf, struct task_struct *tsk) 804 { 805 /* buf must be at least sizeof(tsk->comm) in size */ 806 task_lock(tsk); 807 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 808 task_unlock(tsk); 809 } 810 811 void set_task_comm(struct task_struct *tsk, char *buf) 812 { 813 task_lock(tsk); 814 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 815 task_unlock(tsk); 816 } 817 818 int flush_old_exec(struct linux_binprm * bprm) 819 { 820 char * name; 821 int i, ch, retval; 822 struct files_struct *files; 823 char tcomm[sizeof(current->comm)]; 824 825 /* 826 * Make sure we have a private signal table and that 827 * we are unassociated from the previous thread group. 828 */ 829 retval = de_thread(current); 830 if (retval) 831 goto out; 832 833 /* 834 * Make sure we have private file handles. Ask the 835 * fork helper to do the work for us and the exit 836 * helper to do the cleanup of the old one. 837 */ 838 files = current->files; /* refcounted so safe to hold */ 839 retval = unshare_files(); 840 if (retval) 841 goto out; 842 /* 843 * Release all of the old mmap stuff 844 */ 845 retval = exec_mmap(bprm->mm); 846 if (retval) 847 goto mmap_failed; 848 849 bprm->mm = NULL; /* We're using it now */ 850 851 /* This is the point of no return */ 852 put_files_struct(files); 853 854 current->sas_ss_sp = current->sas_ss_size = 0; 855 856 if (current->euid == current->uid && current->egid == current->gid) 857 current->mm->dumpable = 1; 858 else 859 current->mm->dumpable = suid_dumpable; 860 861 name = bprm->filename; 862 863 /* Copies the binary name from after last slash */ 864 for (i=0; (ch = *(name++)) != '\0';) { 865 if (ch == '/') 866 i = 0; /* overwrite what we wrote */ 867 else 868 if (i < (sizeof(tcomm) - 1)) 869 tcomm[i++] = ch; 870 } 871 tcomm[i] = '\0'; 872 set_task_comm(current, tcomm); 873 874 current->flags &= ~PF_RANDOMIZE; 875 flush_thread(); 876 877 /* Set the new mm task size. We have to do that late because it may 878 * depend on TIF_32BIT which is only updated in flush_thread() on 879 * some architectures like powerpc 880 */ 881 current->mm->task_size = TASK_SIZE; 882 883 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid || 884 file_permission(bprm->file, MAY_READ) || 885 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) { 886 suid_keys(current); 887 current->mm->dumpable = suid_dumpable; 888 } 889 890 /* An exec changes our domain. We are no longer part of the thread 891 group */ 892 893 current->self_exec_id++; 894 895 flush_signal_handlers(current, 0); 896 flush_old_files(current->files); 897 898 return 0; 899 900 mmap_failed: 901 reset_files_struct(current, files); 902 out: 903 return retval; 904 } 905 906 EXPORT_SYMBOL(flush_old_exec); 907 908 /* 909 * Fill the binprm structure from the inode. 910 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 911 */ 912 int prepare_binprm(struct linux_binprm *bprm) 913 { 914 int mode; 915 struct inode * inode = bprm->file->f_path.dentry->d_inode; 916 int retval; 917 918 mode = inode->i_mode; 919 if (bprm->file->f_op == NULL) 920 return -EACCES; 921 922 bprm->e_uid = current->euid; 923 bprm->e_gid = current->egid; 924 925 if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) { 926 /* Set-uid? */ 927 if (mode & S_ISUID) { 928 current->personality &= ~PER_CLEAR_ON_SETID; 929 bprm->e_uid = inode->i_uid; 930 } 931 932 /* Set-gid? */ 933 /* 934 * If setgid is set but no group execute bit then this 935 * is a candidate for mandatory locking, not a setgid 936 * executable. 937 */ 938 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 939 current->personality &= ~PER_CLEAR_ON_SETID; 940 bprm->e_gid = inode->i_gid; 941 } 942 } 943 944 /* fill in binprm security blob */ 945 retval = security_bprm_set(bprm); 946 if (retval) 947 return retval; 948 949 memset(bprm->buf,0,BINPRM_BUF_SIZE); 950 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE); 951 } 952 953 EXPORT_SYMBOL(prepare_binprm); 954 955 static int unsafe_exec(struct task_struct *p) 956 { 957 int unsafe = 0; 958 if (p->ptrace & PT_PTRACED) { 959 if (p->ptrace & PT_PTRACE_CAP) 960 unsafe |= LSM_UNSAFE_PTRACE_CAP; 961 else 962 unsafe |= LSM_UNSAFE_PTRACE; 963 } 964 if (atomic_read(&p->fs->count) > 1 || 965 atomic_read(&p->files->count) > 1 || 966 atomic_read(&p->sighand->count) > 1) 967 unsafe |= LSM_UNSAFE_SHARE; 968 969 return unsafe; 970 } 971 972 void compute_creds(struct linux_binprm *bprm) 973 { 974 int unsafe; 975 976 if (bprm->e_uid != current->uid) 977 suid_keys(current); 978 exec_keys(current); 979 980 task_lock(current); 981 unsafe = unsafe_exec(current); 982 security_bprm_apply_creds(bprm, unsafe); 983 task_unlock(current); 984 security_bprm_post_apply_creds(bprm); 985 } 986 EXPORT_SYMBOL(compute_creds); 987 988 /* 989 * Arguments are '\0' separated strings found at the location bprm->p 990 * points to; chop off the first by relocating brpm->p to right after 991 * the first '\0' encountered. 992 */ 993 void remove_arg_zero(struct linux_binprm *bprm) 994 { 995 if (bprm->argc) { 996 char ch; 997 998 do { 999 unsigned long offset; 1000 unsigned long index; 1001 char *kaddr; 1002 struct page *page; 1003 1004 offset = bprm->p & ~PAGE_MASK; 1005 index = bprm->p >> PAGE_SHIFT; 1006 1007 page = bprm->page[index]; 1008 kaddr = kmap_atomic(page, KM_USER0); 1009 1010 /* run through page until we reach end or find NUL */ 1011 do { 1012 ch = *(kaddr + offset); 1013 1014 /* discard that character... */ 1015 bprm->p++; 1016 offset++; 1017 } while (offset < PAGE_SIZE && ch != '\0'); 1018 1019 kunmap_atomic(kaddr, KM_USER0); 1020 1021 /* free the old page */ 1022 if (offset == PAGE_SIZE) { 1023 __free_page(page); 1024 bprm->page[index] = NULL; 1025 } 1026 } while (ch != '\0'); 1027 1028 bprm->argc--; 1029 } 1030 } 1031 EXPORT_SYMBOL(remove_arg_zero); 1032 1033 /* 1034 * cycle the list of binary formats handler, until one recognizes the image 1035 */ 1036 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) 1037 { 1038 int try,retval; 1039 struct linux_binfmt *fmt; 1040 #ifdef __alpha__ 1041 /* handle /sbin/loader.. */ 1042 { 1043 struct exec * eh = (struct exec *) bprm->buf; 1044 1045 if (!bprm->loader && eh->fh.f_magic == 0x183 && 1046 (eh->fh.f_flags & 0x3000) == 0x3000) 1047 { 1048 struct file * file; 1049 unsigned long loader; 1050 1051 allow_write_access(bprm->file); 1052 fput(bprm->file); 1053 bprm->file = NULL; 1054 1055 loader = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *); 1056 1057 file = open_exec("/sbin/loader"); 1058 retval = PTR_ERR(file); 1059 if (IS_ERR(file)) 1060 return retval; 1061 1062 /* Remember if the application is TASO. */ 1063 bprm->sh_bang = eh->ah.entry < 0x100000000UL; 1064 1065 bprm->file = file; 1066 bprm->loader = loader; 1067 retval = prepare_binprm(bprm); 1068 if (retval<0) 1069 return retval; 1070 /* should call search_binary_handler recursively here, 1071 but it does not matter */ 1072 } 1073 } 1074 #endif 1075 retval = security_bprm_check(bprm); 1076 if (retval) 1077 return retval; 1078 1079 /* kernel module loader fixup */ 1080 /* so we don't try to load run modprobe in kernel space. */ 1081 set_fs(USER_DS); 1082 1083 retval = audit_bprm(bprm); 1084 if (retval) 1085 return retval; 1086 1087 retval = -ENOENT; 1088 for (try=0; try<2; try++) { 1089 read_lock(&binfmt_lock); 1090 for (fmt = formats ; fmt ; fmt = fmt->next) { 1091 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; 1092 if (!fn) 1093 continue; 1094 if (!try_module_get(fmt->module)) 1095 continue; 1096 read_unlock(&binfmt_lock); 1097 retval = fn(bprm, regs); 1098 if (retval >= 0) { 1099 put_binfmt(fmt); 1100 allow_write_access(bprm->file); 1101 if (bprm->file) 1102 fput(bprm->file); 1103 bprm->file = NULL; 1104 current->did_exec = 1; 1105 proc_exec_connector(current); 1106 return retval; 1107 } 1108 read_lock(&binfmt_lock); 1109 put_binfmt(fmt); 1110 if (retval != -ENOEXEC || bprm->mm == NULL) 1111 break; 1112 if (!bprm->file) { 1113 read_unlock(&binfmt_lock); 1114 return retval; 1115 } 1116 } 1117 read_unlock(&binfmt_lock); 1118 if (retval != -ENOEXEC || bprm->mm == NULL) { 1119 break; 1120 #ifdef CONFIG_KMOD 1121 }else{ 1122 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1123 if (printable(bprm->buf[0]) && 1124 printable(bprm->buf[1]) && 1125 printable(bprm->buf[2]) && 1126 printable(bprm->buf[3])) 1127 break; /* -ENOEXEC */ 1128 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); 1129 #endif 1130 } 1131 } 1132 return retval; 1133 } 1134 1135 EXPORT_SYMBOL(search_binary_handler); 1136 1137 /* 1138 * sys_execve() executes a new program. 1139 */ 1140 int do_execve(char * filename, 1141 char __user *__user *argv, 1142 char __user *__user *envp, 1143 struct pt_regs * regs) 1144 { 1145 struct linux_binprm *bprm; 1146 struct file *file; 1147 int retval; 1148 int i; 1149 1150 retval = -ENOMEM; 1151 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1152 if (!bprm) 1153 goto out_ret; 1154 1155 file = open_exec(filename); 1156 retval = PTR_ERR(file); 1157 if (IS_ERR(file)) 1158 goto out_kfree; 1159 1160 sched_exec(); 1161 1162 bprm->p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *); 1163 1164 bprm->file = file; 1165 bprm->filename = filename; 1166 bprm->interp = filename; 1167 bprm->mm = mm_alloc(); 1168 retval = -ENOMEM; 1169 if (!bprm->mm) 1170 goto out_file; 1171 1172 retval = init_new_context(current, bprm->mm); 1173 if (retval < 0) 1174 goto out_mm; 1175 1176 bprm->argc = count(argv, bprm->p / sizeof(void *)); 1177 if ((retval = bprm->argc) < 0) 1178 goto out_mm; 1179 1180 bprm->envc = count(envp, bprm->p / sizeof(void *)); 1181 if ((retval = bprm->envc) < 0) 1182 goto out_mm; 1183 1184 retval = security_bprm_alloc(bprm); 1185 if (retval) 1186 goto out; 1187 1188 retval = prepare_binprm(bprm); 1189 if (retval < 0) 1190 goto out; 1191 1192 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1193 if (retval < 0) 1194 goto out; 1195 1196 bprm->exec = bprm->p; 1197 retval = copy_strings(bprm->envc, envp, bprm); 1198 if (retval < 0) 1199 goto out; 1200 1201 retval = copy_strings(bprm->argc, argv, bprm); 1202 if (retval < 0) 1203 goto out; 1204 1205 retval = search_binary_handler(bprm,regs); 1206 if (retval >= 0) { 1207 free_arg_pages(bprm); 1208 1209 /* execve success */ 1210 security_bprm_free(bprm); 1211 acct_update_integrals(current); 1212 kfree(bprm); 1213 return retval; 1214 } 1215 1216 out: 1217 /* Something went wrong, return the inode and free the argument pages*/ 1218 for (i = 0 ; i < MAX_ARG_PAGES ; i++) { 1219 struct page * page = bprm->page[i]; 1220 if (page) 1221 __free_page(page); 1222 } 1223 1224 if (bprm->security) 1225 security_bprm_free(bprm); 1226 1227 out_mm: 1228 if (bprm->mm) 1229 mmdrop(bprm->mm); 1230 1231 out_file: 1232 if (bprm->file) { 1233 allow_write_access(bprm->file); 1234 fput(bprm->file); 1235 } 1236 1237 out_kfree: 1238 kfree(bprm); 1239 1240 out_ret: 1241 return retval; 1242 } 1243 1244 int set_binfmt(struct linux_binfmt *new) 1245 { 1246 struct linux_binfmt *old = current->binfmt; 1247 1248 if (new) { 1249 if (!try_module_get(new->module)) 1250 return -1; 1251 } 1252 current->binfmt = new; 1253 if (old) 1254 module_put(old->module); 1255 return 0; 1256 } 1257 1258 EXPORT_SYMBOL(set_binfmt); 1259 1260 #define CORENAME_MAX_SIZE 64 1261 1262 /* format_corename will inspect the pattern parameter, and output a 1263 * name into corename, which must have space for at least 1264 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. 1265 */ 1266 static int format_corename(char *corename, const char *pattern, long signr) 1267 { 1268 const char *pat_ptr = pattern; 1269 char *out_ptr = corename; 1270 char *const out_end = corename + CORENAME_MAX_SIZE; 1271 int rc; 1272 int pid_in_pattern = 0; 1273 int ispipe = 0; 1274 1275 if (*pattern == '|') 1276 ispipe = 1; 1277 1278 /* Repeat as long as we have more pattern to process and more output 1279 space */ 1280 while (*pat_ptr) { 1281 if (*pat_ptr != '%') { 1282 if (out_ptr == out_end) 1283 goto out; 1284 *out_ptr++ = *pat_ptr++; 1285 } else { 1286 switch (*++pat_ptr) { 1287 case 0: 1288 goto out; 1289 /* Double percent, output one percent */ 1290 case '%': 1291 if (out_ptr == out_end) 1292 goto out; 1293 *out_ptr++ = '%'; 1294 break; 1295 /* pid */ 1296 case 'p': 1297 pid_in_pattern = 1; 1298 rc = snprintf(out_ptr, out_end - out_ptr, 1299 "%d", current->tgid); 1300 if (rc > out_end - out_ptr) 1301 goto out; 1302 out_ptr += rc; 1303 break; 1304 /* uid */ 1305 case 'u': 1306 rc = snprintf(out_ptr, out_end - out_ptr, 1307 "%d", current->uid); 1308 if (rc > out_end - out_ptr) 1309 goto out; 1310 out_ptr += rc; 1311 break; 1312 /* gid */ 1313 case 'g': 1314 rc = snprintf(out_ptr, out_end - out_ptr, 1315 "%d", current->gid); 1316 if (rc > out_end - out_ptr) 1317 goto out; 1318 out_ptr += rc; 1319 break; 1320 /* signal that caused the coredump */ 1321 case 's': 1322 rc = snprintf(out_ptr, out_end - out_ptr, 1323 "%ld", signr); 1324 if (rc > out_end - out_ptr) 1325 goto out; 1326 out_ptr += rc; 1327 break; 1328 /* UNIX time of coredump */ 1329 case 't': { 1330 struct timeval tv; 1331 do_gettimeofday(&tv); 1332 rc = snprintf(out_ptr, out_end - out_ptr, 1333 "%lu", tv.tv_sec); 1334 if (rc > out_end - out_ptr) 1335 goto out; 1336 out_ptr += rc; 1337 break; 1338 } 1339 /* hostname */ 1340 case 'h': 1341 down_read(&uts_sem); 1342 rc = snprintf(out_ptr, out_end - out_ptr, 1343 "%s", utsname()->nodename); 1344 up_read(&uts_sem); 1345 if (rc > out_end - out_ptr) 1346 goto out; 1347 out_ptr += rc; 1348 break; 1349 /* executable */ 1350 case 'e': 1351 rc = snprintf(out_ptr, out_end - out_ptr, 1352 "%s", current->comm); 1353 if (rc > out_end - out_ptr) 1354 goto out; 1355 out_ptr += rc; 1356 break; 1357 default: 1358 break; 1359 } 1360 ++pat_ptr; 1361 } 1362 } 1363 /* Backward compatibility with core_uses_pid: 1364 * 1365 * If core_pattern does not include a %p (as is the default) 1366 * and core_uses_pid is set, then .%pid will be appended to 1367 * the filename. Do not do this for piped commands. */ 1368 if (!ispipe && !pid_in_pattern 1369 && (core_uses_pid || atomic_read(¤t->mm->mm_users) != 1)) { 1370 rc = snprintf(out_ptr, out_end - out_ptr, 1371 ".%d", current->tgid); 1372 if (rc > out_end - out_ptr) 1373 goto out; 1374 out_ptr += rc; 1375 } 1376 out: 1377 *out_ptr = 0; 1378 return ispipe; 1379 } 1380 1381 static void zap_process(struct task_struct *start) 1382 { 1383 struct task_struct *t; 1384 1385 start->signal->flags = SIGNAL_GROUP_EXIT; 1386 start->signal->group_stop_count = 0; 1387 1388 t = start; 1389 do { 1390 if (t != current && t->mm) { 1391 t->mm->core_waiters++; 1392 sigaddset(&t->pending.signal, SIGKILL); 1393 signal_wake_up(t, 1); 1394 } 1395 } while ((t = next_thread(t)) != start); 1396 } 1397 1398 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm, 1399 int exit_code) 1400 { 1401 struct task_struct *g, *p; 1402 unsigned long flags; 1403 int err = -EAGAIN; 1404 1405 spin_lock_irq(&tsk->sighand->siglock); 1406 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) { 1407 tsk->signal->group_exit_code = exit_code; 1408 zap_process(tsk); 1409 err = 0; 1410 } 1411 spin_unlock_irq(&tsk->sighand->siglock); 1412 if (err) 1413 return err; 1414 1415 if (atomic_read(&mm->mm_users) == mm->core_waiters + 1) 1416 goto done; 1417 1418 rcu_read_lock(); 1419 for_each_process(g) { 1420 if (g == tsk->group_leader) 1421 continue; 1422 1423 p = g; 1424 do { 1425 if (p->mm) { 1426 if (p->mm == mm) { 1427 /* 1428 * p->sighand can't disappear, but 1429 * may be changed by de_thread() 1430 */ 1431 lock_task_sighand(p, &flags); 1432 zap_process(p); 1433 unlock_task_sighand(p, &flags); 1434 } 1435 break; 1436 } 1437 } while ((p = next_thread(p)) != g); 1438 } 1439 rcu_read_unlock(); 1440 done: 1441 return mm->core_waiters; 1442 } 1443 1444 static int coredump_wait(int exit_code) 1445 { 1446 struct task_struct *tsk = current; 1447 struct mm_struct *mm = tsk->mm; 1448 struct completion startup_done; 1449 struct completion *vfork_done; 1450 int core_waiters; 1451 1452 init_completion(&mm->core_done); 1453 init_completion(&startup_done); 1454 mm->core_startup_done = &startup_done; 1455 1456 core_waiters = zap_threads(tsk, mm, exit_code); 1457 up_write(&mm->mmap_sem); 1458 1459 if (unlikely(core_waiters < 0)) 1460 goto fail; 1461 1462 /* 1463 * Make sure nobody is waiting for us to release the VM, 1464 * otherwise we can deadlock when we wait on each other 1465 */ 1466 vfork_done = tsk->vfork_done; 1467 if (vfork_done) { 1468 tsk->vfork_done = NULL; 1469 complete(vfork_done); 1470 } 1471 1472 if (core_waiters) 1473 wait_for_completion(&startup_done); 1474 fail: 1475 BUG_ON(mm->core_waiters); 1476 return core_waiters; 1477 } 1478 1479 int do_coredump(long signr, int exit_code, struct pt_regs * regs) 1480 { 1481 char corename[CORENAME_MAX_SIZE + 1]; 1482 struct mm_struct *mm = current->mm; 1483 struct linux_binfmt * binfmt; 1484 struct inode * inode; 1485 struct file * file; 1486 int retval = 0; 1487 int fsuid = current->fsuid; 1488 int flag = 0; 1489 int ispipe = 0; 1490 1491 binfmt = current->binfmt; 1492 if (!binfmt || !binfmt->core_dump) 1493 goto fail; 1494 down_write(&mm->mmap_sem); 1495 if (!mm->dumpable) { 1496 up_write(&mm->mmap_sem); 1497 goto fail; 1498 } 1499 1500 /* 1501 * We cannot trust fsuid as being the "true" uid of the 1502 * process nor do we know its entire history. We only know it 1503 * was tainted so we dump it as root in mode 2. 1504 */ 1505 if (mm->dumpable == 2) { /* Setuid core dump mode */ 1506 flag = O_EXCL; /* Stop rewrite attacks */ 1507 current->fsuid = 0; /* Dump root private */ 1508 } 1509 mm->dumpable = 0; 1510 1511 retval = coredump_wait(exit_code); 1512 if (retval < 0) 1513 goto fail; 1514 1515 /* 1516 * Clear any false indication of pending signals that might 1517 * be seen by the filesystem code called to write the core file. 1518 */ 1519 clear_thread_flag(TIF_SIGPENDING); 1520 1521 if (current->signal->rlim[RLIMIT_CORE].rlim_cur < binfmt->min_coredump) 1522 goto fail_unlock; 1523 1524 /* 1525 * lock_kernel() because format_corename() is controlled by sysctl, which 1526 * uses lock_kernel() 1527 */ 1528 lock_kernel(); 1529 ispipe = format_corename(corename, core_pattern, signr); 1530 unlock_kernel(); 1531 if (ispipe) { 1532 /* SIGPIPE can happen, but it's just never processed */ 1533 if(call_usermodehelper_pipe(corename+1, NULL, NULL, &file)) { 1534 printk(KERN_INFO "Core dump to %s pipe failed\n", 1535 corename); 1536 goto fail_unlock; 1537 } 1538 } else 1539 file = filp_open(corename, 1540 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 1541 0600); 1542 if (IS_ERR(file)) 1543 goto fail_unlock; 1544 inode = file->f_path.dentry->d_inode; 1545 if (inode->i_nlink > 1) 1546 goto close_fail; /* multiple links - don't dump */ 1547 if (!ispipe && d_unhashed(file->f_path.dentry)) 1548 goto close_fail; 1549 1550 /* AK: actually i see no reason to not allow this for named pipes etc., 1551 but keep the previous behaviour for now. */ 1552 if (!ispipe && !S_ISREG(inode->i_mode)) 1553 goto close_fail; 1554 if (!file->f_op) 1555 goto close_fail; 1556 if (!file->f_op->write) 1557 goto close_fail; 1558 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0) 1559 goto close_fail; 1560 1561 retval = binfmt->core_dump(signr, regs, file); 1562 1563 if (retval) 1564 current->signal->group_exit_code |= 0x80; 1565 close_fail: 1566 filp_close(file, NULL); 1567 fail_unlock: 1568 current->fsuid = fsuid; 1569 complete_all(&mm->core_done); 1570 fail: 1571 return retval; 1572 } 1573