xref: /linux-6.15/fs/exec.c (revision 54525552)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59 
60 #include <asm/uaccess.h>
61 #include <asm/mmu_context.h>
62 #include <asm/tlb.h>
63 #include "internal.h"
64 
65 int core_uses_pid;
66 char core_pattern[CORENAME_MAX_SIZE] = "core";
67 unsigned int core_pipe_limit;
68 int suid_dumpable = 0;
69 
70 struct core_name {
71 	char *corename;
72 	int used, size;
73 };
74 static atomic_t call_count = ATOMIC_INIT(1);
75 
76 /* The maximal length of core_pattern is also specified in sysctl.c */
77 
78 static LIST_HEAD(formats);
79 static DEFINE_RWLOCK(binfmt_lock);
80 
81 int __register_binfmt(struct linux_binfmt * fmt, int insert)
82 {
83 	if (!fmt)
84 		return -EINVAL;
85 	write_lock(&binfmt_lock);
86 	insert ? list_add(&fmt->lh, &formats) :
87 		 list_add_tail(&fmt->lh, &formats);
88 	write_unlock(&binfmt_lock);
89 	return 0;
90 }
91 
92 EXPORT_SYMBOL(__register_binfmt);
93 
94 void unregister_binfmt(struct linux_binfmt * fmt)
95 {
96 	write_lock(&binfmt_lock);
97 	list_del(&fmt->lh);
98 	write_unlock(&binfmt_lock);
99 }
100 
101 EXPORT_SYMBOL(unregister_binfmt);
102 
103 static inline void put_binfmt(struct linux_binfmt * fmt)
104 {
105 	module_put(fmt->module);
106 }
107 
108 /*
109  * Note that a shared library must be both readable and executable due to
110  * security reasons.
111  *
112  * Also note that we take the address to load from from the file itself.
113  */
114 SYSCALL_DEFINE1(uselib, const char __user *, library)
115 {
116 	struct file *file;
117 	char *tmp = getname(library);
118 	int error = PTR_ERR(tmp);
119 	static const struct open_flags uselib_flags = {
120 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
121 		.acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
122 		.intent = LOOKUP_OPEN
123 	};
124 
125 	if (IS_ERR(tmp))
126 		goto out;
127 
128 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW);
129 	putname(tmp);
130 	error = PTR_ERR(file);
131 	if (IS_ERR(file))
132 		goto out;
133 
134 	error = -EINVAL;
135 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
136 		goto exit;
137 
138 	error = -EACCES;
139 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
140 		goto exit;
141 
142 	fsnotify_open(file);
143 
144 	error = -ENOEXEC;
145 	if(file->f_op) {
146 		struct linux_binfmt * fmt;
147 
148 		read_lock(&binfmt_lock);
149 		list_for_each_entry(fmt, &formats, lh) {
150 			if (!fmt->load_shlib)
151 				continue;
152 			if (!try_module_get(fmt->module))
153 				continue;
154 			read_unlock(&binfmt_lock);
155 			error = fmt->load_shlib(file);
156 			read_lock(&binfmt_lock);
157 			put_binfmt(fmt);
158 			if (error != -ENOEXEC)
159 				break;
160 		}
161 		read_unlock(&binfmt_lock);
162 	}
163 exit:
164 	fput(file);
165 out:
166   	return error;
167 }
168 
169 #ifdef CONFIG_MMU
170 /*
171  * The nascent bprm->mm is not visible until exec_mmap() but it can
172  * use a lot of memory, account these pages in current->mm temporary
173  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
174  * change the counter back via acct_arg_size(0).
175  */
176 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
177 {
178 	struct mm_struct *mm = current->mm;
179 	long diff = (long)(pages - bprm->vma_pages);
180 
181 	if (!mm || !diff)
182 		return;
183 
184 	bprm->vma_pages = pages;
185 
186 #ifdef SPLIT_RSS_COUNTING
187 	add_mm_counter(mm, MM_ANONPAGES, diff);
188 #else
189 	spin_lock(&mm->page_table_lock);
190 	add_mm_counter(mm, MM_ANONPAGES, diff);
191 	spin_unlock(&mm->page_table_lock);
192 #endif
193 }
194 
195 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
196 		int write)
197 {
198 	struct page *page;
199 	int ret;
200 
201 #ifdef CONFIG_STACK_GROWSUP
202 	if (write) {
203 		ret = expand_stack_downwards(bprm->vma, pos);
204 		if (ret < 0)
205 			return NULL;
206 	}
207 #endif
208 	ret = get_user_pages(current, bprm->mm, pos,
209 			1, write, 1, &page, NULL);
210 	if (ret <= 0)
211 		return NULL;
212 
213 	if (write) {
214 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
215 		struct rlimit *rlim;
216 
217 		acct_arg_size(bprm, size / PAGE_SIZE);
218 
219 		/*
220 		 * We've historically supported up to 32 pages (ARG_MAX)
221 		 * of argument strings even with small stacks
222 		 */
223 		if (size <= ARG_MAX)
224 			return page;
225 
226 		/*
227 		 * Limit to 1/4-th the stack size for the argv+env strings.
228 		 * This ensures that:
229 		 *  - the remaining binfmt code will not run out of stack space,
230 		 *  - the program will have a reasonable amount of stack left
231 		 *    to work from.
232 		 */
233 		rlim = current->signal->rlim;
234 		if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
235 			put_page(page);
236 			return NULL;
237 		}
238 	}
239 
240 	return page;
241 }
242 
243 static void put_arg_page(struct page *page)
244 {
245 	put_page(page);
246 }
247 
248 static void free_arg_page(struct linux_binprm *bprm, int i)
249 {
250 }
251 
252 static void free_arg_pages(struct linux_binprm *bprm)
253 {
254 }
255 
256 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
257 		struct page *page)
258 {
259 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
260 }
261 
262 static int __bprm_mm_init(struct linux_binprm *bprm)
263 {
264 	int err;
265 	struct vm_area_struct *vma = NULL;
266 	struct mm_struct *mm = bprm->mm;
267 
268 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
269 	if (!vma)
270 		return -ENOMEM;
271 
272 	down_write(&mm->mmap_sem);
273 	vma->vm_mm = mm;
274 
275 	/*
276 	 * Place the stack at the largest stack address the architecture
277 	 * supports. Later, we'll move this to an appropriate place. We don't
278 	 * use STACK_TOP because that can depend on attributes which aren't
279 	 * configured yet.
280 	 */
281 	BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
282 	vma->vm_end = STACK_TOP_MAX;
283 	vma->vm_start = vma->vm_end - PAGE_SIZE;
284 	vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
285 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
286 	INIT_LIST_HEAD(&vma->anon_vma_chain);
287 
288 	err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
289 	if (err)
290 		goto err;
291 
292 	err = insert_vm_struct(mm, vma);
293 	if (err)
294 		goto err;
295 
296 	mm->stack_vm = mm->total_vm = 1;
297 	up_write(&mm->mmap_sem);
298 	bprm->p = vma->vm_end - sizeof(void *);
299 	return 0;
300 err:
301 	up_write(&mm->mmap_sem);
302 	bprm->vma = NULL;
303 	kmem_cache_free(vm_area_cachep, vma);
304 	return err;
305 }
306 
307 static bool valid_arg_len(struct linux_binprm *bprm, long len)
308 {
309 	return len <= MAX_ARG_STRLEN;
310 }
311 
312 #else
313 
314 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
315 {
316 }
317 
318 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
319 		int write)
320 {
321 	struct page *page;
322 
323 	page = bprm->page[pos / PAGE_SIZE];
324 	if (!page && write) {
325 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
326 		if (!page)
327 			return NULL;
328 		bprm->page[pos / PAGE_SIZE] = page;
329 	}
330 
331 	return page;
332 }
333 
334 static void put_arg_page(struct page *page)
335 {
336 }
337 
338 static void free_arg_page(struct linux_binprm *bprm, int i)
339 {
340 	if (bprm->page[i]) {
341 		__free_page(bprm->page[i]);
342 		bprm->page[i] = NULL;
343 	}
344 }
345 
346 static void free_arg_pages(struct linux_binprm *bprm)
347 {
348 	int i;
349 
350 	for (i = 0; i < MAX_ARG_PAGES; i++)
351 		free_arg_page(bprm, i);
352 }
353 
354 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
355 		struct page *page)
356 {
357 }
358 
359 static int __bprm_mm_init(struct linux_binprm *bprm)
360 {
361 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
362 	return 0;
363 }
364 
365 static bool valid_arg_len(struct linux_binprm *bprm, long len)
366 {
367 	return len <= bprm->p;
368 }
369 
370 #endif /* CONFIG_MMU */
371 
372 /*
373  * Create a new mm_struct and populate it with a temporary stack
374  * vm_area_struct.  We don't have enough context at this point to set the stack
375  * flags, permissions, and offset, so we use temporary values.  We'll update
376  * them later in setup_arg_pages().
377  */
378 int bprm_mm_init(struct linux_binprm *bprm)
379 {
380 	int err;
381 	struct mm_struct *mm = NULL;
382 
383 	bprm->mm = mm = mm_alloc();
384 	err = -ENOMEM;
385 	if (!mm)
386 		goto err;
387 
388 	err = init_new_context(current, mm);
389 	if (err)
390 		goto err;
391 
392 	err = __bprm_mm_init(bprm);
393 	if (err)
394 		goto err;
395 
396 	return 0;
397 
398 err:
399 	if (mm) {
400 		bprm->mm = NULL;
401 		mmdrop(mm);
402 	}
403 
404 	return err;
405 }
406 
407 struct user_arg_ptr {
408 #ifdef CONFIG_COMPAT
409 	bool is_compat;
410 #endif
411 	union {
412 		const char __user *const __user *native;
413 #ifdef CONFIG_COMPAT
414 		compat_uptr_t __user *compat;
415 #endif
416 	} ptr;
417 };
418 
419 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
420 {
421 	const char __user *native;
422 
423 #ifdef CONFIG_COMPAT
424 	if (unlikely(argv.is_compat)) {
425 		compat_uptr_t compat;
426 
427 		if (get_user(compat, argv.ptr.compat + nr))
428 			return ERR_PTR(-EFAULT);
429 
430 		return compat_ptr(compat);
431 	}
432 #endif
433 
434 	if (get_user(native, argv.ptr.native + nr))
435 		return ERR_PTR(-EFAULT);
436 
437 	return native;
438 }
439 
440 /*
441  * count() counts the number of strings in array ARGV.
442  */
443 static int count(struct user_arg_ptr argv, int max)
444 {
445 	int i = 0;
446 
447 	if (argv.ptr.native != NULL) {
448 		for (;;) {
449 			const char __user *p = get_user_arg_ptr(argv, i);
450 
451 			if (!p)
452 				break;
453 
454 			if (IS_ERR(p))
455 				return -EFAULT;
456 
457 			if (i++ >= max)
458 				return -E2BIG;
459 
460 			if (fatal_signal_pending(current))
461 				return -ERESTARTNOHAND;
462 			cond_resched();
463 		}
464 	}
465 	return i;
466 }
467 
468 /*
469  * 'copy_strings()' copies argument/environment strings from the old
470  * processes's memory to the new process's stack.  The call to get_user_pages()
471  * ensures the destination page is created and not swapped out.
472  */
473 static int copy_strings(int argc, struct user_arg_ptr argv,
474 			struct linux_binprm *bprm)
475 {
476 	struct page *kmapped_page = NULL;
477 	char *kaddr = NULL;
478 	unsigned long kpos = 0;
479 	int ret;
480 
481 	while (argc-- > 0) {
482 		const char __user *str;
483 		int len;
484 		unsigned long pos;
485 
486 		ret = -EFAULT;
487 		str = get_user_arg_ptr(argv, argc);
488 		if (IS_ERR(str))
489 			goto out;
490 
491 		len = strnlen_user(str, MAX_ARG_STRLEN);
492 		if (!len)
493 			goto out;
494 
495 		ret = -E2BIG;
496 		if (!valid_arg_len(bprm, len))
497 			goto out;
498 
499 		/* We're going to work our way backwords. */
500 		pos = bprm->p;
501 		str += len;
502 		bprm->p -= len;
503 
504 		while (len > 0) {
505 			int offset, bytes_to_copy;
506 
507 			if (fatal_signal_pending(current)) {
508 				ret = -ERESTARTNOHAND;
509 				goto out;
510 			}
511 			cond_resched();
512 
513 			offset = pos % PAGE_SIZE;
514 			if (offset == 0)
515 				offset = PAGE_SIZE;
516 
517 			bytes_to_copy = offset;
518 			if (bytes_to_copy > len)
519 				bytes_to_copy = len;
520 
521 			offset -= bytes_to_copy;
522 			pos -= bytes_to_copy;
523 			str -= bytes_to_copy;
524 			len -= bytes_to_copy;
525 
526 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
527 				struct page *page;
528 
529 				page = get_arg_page(bprm, pos, 1);
530 				if (!page) {
531 					ret = -E2BIG;
532 					goto out;
533 				}
534 
535 				if (kmapped_page) {
536 					flush_kernel_dcache_page(kmapped_page);
537 					kunmap(kmapped_page);
538 					put_arg_page(kmapped_page);
539 				}
540 				kmapped_page = page;
541 				kaddr = kmap(kmapped_page);
542 				kpos = pos & PAGE_MASK;
543 				flush_arg_page(bprm, kpos, kmapped_page);
544 			}
545 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
546 				ret = -EFAULT;
547 				goto out;
548 			}
549 		}
550 	}
551 	ret = 0;
552 out:
553 	if (kmapped_page) {
554 		flush_kernel_dcache_page(kmapped_page);
555 		kunmap(kmapped_page);
556 		put_arg_page(kmapped_page);
557 	}
558 	return ret;
559 }
560 
561 /*
562  * Like copy_strings, but get argv and its values from kernel memory.
563  */
564 int copy_strings_kernel(int argc, const char *const *__argv,
565 			struct linux_binprm *bprm)
566 {
567 	int r;
568 	mm_segment_t oldfs = get_fs();
569 	struct user_arg_ptr argv = {
570 		.ptr.native = (const char __user *const  __user *)__argv,
571 	};
572 
573 	set_fs(KERNEL_DS);
574 	r = copy_strings(argc, argv, bprm);
575 	set_fs(oldfs);
576 
577 	return r;
578 }
579 EXPORT_SYMBOL(copy_strings_kernel);
580 
581 #ifdef CONFIG_MMU
582 
583 /*
584  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
585  * the binfmt code determines where the new stack should reside, we shift it to
586  * its final location.  The process proceeds as follows:
587  *
588  * 1) Use shift to calculate the new vma endpoints.
589  * 2) Extend vma to cover both the old and new ranges.  This ensures the
590  *    arguments passed to subsequent functions are consistent.
591  * 3) Move vma's page tables to the new range.
592  * 4) Free up any cleared pgd range.
593  * 5) Shrink the vma to cover only the new range.
594  */
595 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
596 {
597 	struct mm_struct *mm = vma->vm_mm;
598 	unsigned long old_start = vma->vm_start;
599 	unsigned long old_end = vma->vm_end;
600 	unsigned long length = old_end - old_start;
601 	unsigned long new_start = old_start - shift;
602 	unsigned long new_end = old_end - shift;
603 	struct mmu_gather *tlb;
604 
605 	BUG_ON(new_start > new_end);
606 
607 	/*
608 	 * ensure there are no vmas between where we want to go
609 	 * and where we are
610 	 */
611 	if (vma != find_vma(mm, new_start))
612 		return -EFAULT;
613 
614 	/*
615 	 * cover the whole range: [new_start, old_end)
616 	 */
617 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
618 		return -ENOMEM;
619 
620 	/*
621 	 * move the page tables downwards, on failure we rely on
622 	 * process cleanup to remove whatever mess we made.
623 	 */
624 	if (length != move_page_tables(vma, old_start,
625 				       vma, new_start, length))
626 		return -ENOMEM;
627 
628 	lru_add_drain();
629 	tlb = tlb_gather_mmu(mm, 0);
630 	if (new_end > old_start) {
631 		/*
632 		 * when the old and new regions overlap clear from new_end.
633 		 */
634 		free_pgd_range(tlb, new_end, old_end, new_end,
635 			vma->vm_next ? vma->vm_next->vm_start : 0);
636 	} else {
637 		/*
638 		 * otherwise, clean from old_start; this is done to not touch
639 		 * the address space in [new_end, old_start) some architectures
640 		 * have constraints on va-space that make this illegal (IA64) -
641 		 * for the others its just a little faster.
642 		 */
643 		free_pgd_range(tlb, old_start, old_end, new_end,
644 			vma->vm_next ? vma->vm_next->vm_start : 0);
645 	}
646 	tlb_finish_mmu(tlb, new_end, old_end);
647 
648 	/*
649 	 * Shrink the vma to just the new range.  Always succeeds.
650 	 */
651 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
652 
653 	return 0;
654 }
655 
656 /*
657  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
658  * the stack is optionally relocated, and some extra space is added.
659  */
660 int setup_arg_pages(struct linux_binprm *bprm,
661 		    unsigned long stack_top,
662 		    int executable_stack)
663 {
664 	unsigned long ret;
665 	unsigned long stack_shift;
666 	struct mm_struct *mm = current->mm;
667 	struct vm_area_struct *vma = bprm->vma;
668 	struct vm_area_struct *prev = NULL;
669 	unsigned long vm_flags;
670 	unsigned long stack_base;
671 	unsigned long stack_size;
672 	unsigned long stack_expand;
673 	unsigned long rlim_stack;
674 
675 #ifdef CONFIG_STACK_GROWSUP
676 	/* Limit stack size to 1GB */
677 	stack_base = rlimit_max(RLIMIT_STACK);
678 	if (stack_base > (1 << 30))
679 		stack_base = 1 << 30;
680 
681 	/* Make sure we didn't let the argument array grow too large. */
682 	if (vma->vm_end - vma->vm_start > stack_base)
683 		return -ENOMEM;
684 
685 	stack_base = PAGE_ALIGN(stack_top - stack_base);
686 
687 	stack_shift = vma->vm_start - stack_base;
688 	mm->arg_start = bprm->p - stack_shift;
689 	bprm->p = vma->vm_end - stack_shift;
690 #else
691 	stack_top = arch_align_stack(stack_top);
692 	stack_top = PAGE_ALIGN(stack_top);
693 
694 	if (unlikely(stack_top < mmap_min_addr) ||
695 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
696 		return -ENOMEM;
697 
698 	stack_shift = vma->vm_end - stack_top;
699 
700 	bprm->p -= stack_shift;
701 	mm->arg_start = bprm->p;
702 #endif
703 
704 	if (bprm->loader)
705 		bprm->loader -= stack_shift;
706 	bprm->exec -= stack_shift;
707 
708 	down_write(&mm->mmap_sem);
709 	vm_flags = VM_STACK_FLAGS;
710 
711 	/*
712 	 * Adjust stack execute permissions; explicitly enable for
713 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
714 	 * (arch default) otherwise.
715 	 */
716 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
717 		vm_flags |= VM_EXEC;
718 	else if (executable_stack == EXSTACK_DISABLE_X)
719 		vm_flags &= ~VM_EXEC;
720 	vm_flags |= mm->def_flags;
721 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
722 
723 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
724 			vm_flags);
725 	if (ret)
726 		goto out_unlock;
727 	BUG_ON(prev != vma);
728 
729 	/* Move stack pages down in memory. */
730 	if (stack_shift) {
731 		ret = shift_arg_pages(vma, stack_shift);
732 		if (ret)
733 			goto out_unlock;
734 	}
735 
736 	/* mprotect_fixup is overkill to remove the temporary stack flags */
737 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
738 
739 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
740 	stack_size = vma->vm_end - vma->vm_start;
741 	/*
742 	 * Align this down to a page boundary as expand_stack
743 	 * will align it up.
744 	 */
745 	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
746 #ifdef CONFIG_STACK_GROWSUP
747 	if (stack_size + stack_expand > rlim_stack)
748 		stack_base = vma->vm_start + rlim_stack;
749 	else
750 		stack_base = vma->vm_end + stack_expand;
751 #else
752 	if (stack_size + stack_expand > rlim_stack)
753 		stack_base = vma->vm_end - rlim_stack;
754 	else
755 		stack_base = vma->vm_start - stack_expand;
756 #endif
757 	current->mm->start_stack = bprm->p;
758 	ret = expand_stack(vma, stack_base);
759 	if (ret)
760 		ret = -EFAULT;
761 
762 out_unlock:
763 	up_write(&mm->mmap_sem);
764 	return ret;
765 }
766 EXPORT_SYMBOL(setup_arg_pages);
767 
768 #endif /* CONFIG_MMU */
769 
770 struct file *open_exec(const char *name)
771 {
772 	struct file *file;
773 	int err;
774 	static const struct open_flags open_exec_flags = {
775 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
776 		.acc_mode = MAY_EXEC | MAY_OPEN,
777 		.intent = LOOKUP_OPEN
778 	};
779 
780 	file = do_filp_open(AT_FDCWD, name, &open_exec_flags, LOOKUP_FOLLOW);
781 	if (IS_ERR(file))
782 		goto out;
783 
784 	err = -EACCES;
785 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
786 		goto exit;
787 
788 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
789 		goto exit;
790 
791 	fsnotify_open(file);
792 
793 	err = deny_write_access(file);
794 	if (err)
795 		goto exit;
796 
797 out:
798 	return file;
799 
800 exit:
801 	fput(file);
802 	return ERR_PTR(err);
803 }
804 EXPORT_SYMBOL(open_exec);
805 
806 int kernel_read(struct file *file, loff_t offset,
807 		char *addr, unsigned long count)
808 {
809 	mm_segment_t old_fs;
810 	loff_t pos = offset;
811 	int result;
812 
813 	old_fs = get_fs();
814 	set_fs(get_ds());
815 	/* The cast to a user pointer is valid due to the set_fs() */
816 	result = vfs_read(file, (void __user *)addr, count, &pos);
817 	set_fs(old_fs);
818 	return result;
819 }
820 
821 EXPORT_SYMBOL(kernel_read);
822 
823 static int exec_mmap(struct mm_struct *mm)
824 {
825 	struct task_struct *tsk;
826 	struct mm_struct * old_mm, *active_mm;
827 
828 	/* Notify parent that we're no longer interested in the old VM */
829 	tsk = current;
830 	old_mm = current->mm;
831 	sync_mm_rss(tsk, old_mm);
832 	mm_release(tsk, old_mm);
833 
834 	if (old_mm) {
835 		/*
836 		 * Make sure that if there is a core dump in progress
837 		 * for the old mm, we get out and die instead of going
838 		 * through with the exec.  We must hold mmap_sem around
839 		 * checking core_state and changing tsk->mm.
840 		 */
841 		down_read(&old_mm->mmap_sem);
842 		if (unlikely(old_mm->core_state)) {
843 			up_read(&old_mm->mmap_sem);
844 			return -EINTR;
845 		}
846 	}
847 	task_lock(tsk);
848 	active_mm = tsk->active_mm;
849 	tsk->mm = mm;
850 	tsk->active_mm = mm;
851 	activate_mm(active_mm, mm);
852 	if (old_mm && tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
853 		atomic_dec(&old_mm->oom_disable_count);
854 		atomic_inc(&tsk->mm->oom_disable_count);
855 	}
856 	task_unlock(tsk);
857 	arch_pick_mmap_layout(mm);
858 	if (old_mm) {
859 		up_read(&old_mm->mmap_sem);
860 		BUG_ON(active_mm != old_mm);
861 		mm_update_next_owner(old_mm);
862 		mmput(old_mm);
863 		return 0;
864 	}
865 	mmdrop(active_mm);
866 	return 0;
867 }
868 
869 /*
870  * This function makes sure the current process has its own signal table,
871  * so that flush_signal_handlers can later reset the handlers without
872  * disturbing other processes.  (Other processes might share the signal
873  * table via the CLONE_SIGHAND option to clone().)
874  */
875 static int de_thread(struct task_struct *tsk)
876 {
877 	struct signal_struct *sig = tsk->signal;
878 	struct sighand_struct *oldsighand = tsk->sighand;
879 	spinlock_t *lock = &oldsighand->siglock;
880 
881 	if (thread_group_empty(tsk))
882 		goto no_thread_group;
883 
884 	/*
885 	 * Kill all other threads in the thread group.
886 	 */
887 	spin_lock_irq(lock);
888 	if (signal_group_exit(sig)) {
889 		/*
890 		 * Another group action in progress, just
891 		 * return so that the signal is processed.
892 		 */
893 		spin_unlock_irq(lock);
894 		return -EAGAIN;
895 	}
896 
897 	sig->group_exit_task = tsk;
898 	sig->notify_count = zap_other_threads(tsk);
899 	if (!thread_group_leader(tsk))
900 		sig->notify_count--;
901 
902 	while (sig->notify_count) {
903 		__set_current_state(TASK_UNINTERRUPTIBLE);
904 		spin_unlock_irq(lock);
905 		schedule();
906 		spin_lock_irq(lock);
907 	}
908 	spin_unlock_irq(lock);
909 
910 	/*
911 	 * At this point all other threads have exited, all we have to
912 	 * do is to wait for the thread group leader to become inactive,
913 	 * and to assume its PID:
914 	 */
915 	if (!thread_group_leader(tsk)) {
916 		struct task_struct *leader = tsk->group_leader;
917 
918 		sig->notify_count = -1;	/* for exit_notify() */
919 		for (;;) {
920 			write_lock_irq(&tasklist_lock);
921 			if (likely(leader->exit_state))
922 				break;
923 			__set_current_state(TASK_UNINTERRUPTIBLE);
924 			write_unlock_irq(&tasklist_lock);
925 			schedule();
926 		}
927 
928 		/*
929 		 * The only record we have of the real-time age of a
930 		 * process, regardless of execs it's done, is start_time.
931 		 * All the past CPU time is accumulated in signal_struct
932 		 * from sister threads now dead.  But in this non-leader
933 		 * exec, nothing survives from the original leader thread,
934 		 * whose birth marks the true age of this process now.
935 		 * When we take on its identity by switching to its PID, we
936 		 * also take its birthdate (always earlier than our own).
937 		 */
938 		tsk->start_time = leader->start_time;
939 
940 		BUG_ON(!same_thread_group(leader, tsk));
941 		BUG_ON(has_group_leader_pid(tsk));
942 		/*
943 		 * An exec() starts a new thread group with the
944 		 * TGID of the previous thread group. Rehash the
945 		 * two threads with a switched PID, and release
946 		 * the former thread group leader:
947 		 */
948 
949 		/* Become a process group leader with the old leader's pid.
950 		 * The old leader becomes a thread of the this thread group.
951 		 * Note: The old leader also uses this pid until release_task
952 		 *       is called.  Odd but simple and correct.
953 		 */
954 		detach_pid(tsk, PIDTYPE_PID);
955 		tsk->pid = leader->pid;
956 		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
957 		transfer_pid(leader, tsk, PIDTYPE_PGID);
958 		transfer_pid(leader, tsk, PIDTYPE_SID);
959 
960 		list_replace_rcu(&leader->tasks, &tsk->tasks);
961 		list_replace_init(&leader->sibling, &tsk->sibling);
962 
963 		tsk->group_leader = tsk;
964 		leader->group_leader = tsk;
965 
966 		tsk->exit_signal = SIGCHLD;
967 
968 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
969 		leader->exit_state = EXIT_DEAD;
970 		write_unlock_irq(&tasklist_lock);
971 
972 		release_task(leader);
973 	}
974 
975 	sig->group_exit_task = NULL;
976 	sig->notify_count = 0;
977 
978 no_thread_group:
979 	if (current->mm)
980 		setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
981 
982 	exit_itimers(sig);
983 	flush_itimer_signals();
984 
985 	if (atomic_read(&oldsighand->count) != 1) {
986 		struct sighand_struct *newsighand;
987 		/*
988 		 * This ->sighand is shared with the CLONE_SIGHAND
989 		 * but not CLONE_THREAD task, switch to the new one.
990 		 */
991 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
992 		if (!newsighand)
993 			return -ENOMEM;
994 
995 		atomic_set(&newsighand->count, 1);
996 		memcpy(newsighand->action, oldsighand->action,
997 		       sizeof(newsighand->action));
998 
999 		write_lock_irq(&tasklist_lock);
1000 		spin_lock(&oldsighand->siglock);
1001 		rcu_assign_pointer(tsk->sighand, newsighand);
1002 		spin_unlock(&oldsighand->siglock);
1003 		write_unlock_irq(&tasklist_lock);
1004 
1005 		__cleanup_sighand(oldsighand);
1006 	}
1007 
1008 	BUG_ON(!thread_group_leader(tsk));
1009 	return 0;
1010 }
1011 
1012 /*
1013  * These functions flushes out all traces of the currently running executable
1014  * so that a new one can be started
1015  */
1016 static void flush_old_files(struct files_struct * files)
1017 {
1018 	long j = -1;
1019 	struct fdtable *fdt;
1020 
1021 	spin_lock(&files->file_lock);
1022 	for (;;) {
1023 		unsigned long set, i;
1024 
1025 		j++;
1026 		i = j * __NFDBITS;
1027 		fdt = files_fdtable(files);
1028 		if (i >= fdt->max_fds)
1029 			break;
1030 		set = fdt->close_on_exec->fds_bits[j];
1031 		if (!set)
1032 			continue;
1033 		fdt->close_on_exec->fds_bits[j] = 0;
1034 		spin_unlock(&files->file_lock);
1035 		for ( ; set ; i++,set >>= 1) {
1036 			if (set & 1) {
1037 				sys_close(i);
1038 			}
1039 		}
1040 		spin_lock(&files->file_lock);
1041 
1042 	}
1043 	spin_unlock(&files->file_lock);
1044 }
1045 
1046 char *get_task_comm(char *buf, struct task_struct *tsk)
1047 {
1048 	/* buf must be at least sizeof(tsk->comm) in size */
1049 	task_lock(tsk);
1050 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
1051 	task_unlock(tsk);
1052 	return buf;
1053 }
1054 EXPORT_SYMBOL_GPL(get_task_comm);
1055 
1056 void set_task_comm(struct task_struct *tsk, char *buf)
1057 {
1058 	task_lock(tsk);
1059 
1060 	/*
1061 	 * Threads may access current->comm without holding
1062 	 * the task lock, so write the string carefully.
1063 	 * Readers without a lock may see incomplete new
1064 	 * names but are safe from non-terminating string reads.
1065 	 */
1066 	memset(tsk->comm, 0, TASK_COMM_LEN);
1067 	wmb();
1068 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1069 	task_unlock(tsk);
1070 	perf_event_comm(tsk);
1071 }
1072 
1073 int flush_old_exec(struct linux_binprm * bprm)
1074 {
1075 	int retval;
1076 
1077 	/*
1078 	 * Make sure we have a private signal table and that
1079 	 * we are unassociated from the previous thread group.
1080 	 */
1081 	retval = de_thread(current);
1082 	if (retval)
1083 		goto out;
1084 
1085 	set_mm_exe_file(bprm->mm, bprm->file);
1086 
1087 	/*
1088 	 * Release all of the old mmap stuff
1089 	 */
1090 	acct_arg_size(bprm, 0);
1091 	retval = exec_mmap(bprm->mm);
1092 	if (retval)
1093 		goto out;
1094 
1095 	bprm->mm = NULL;		/* We're using it now */
1096 
1097 	current->flags &= ~(PF_RANDOMIZE | PF_KTHREAD);
1098 	flush_thread();
1099 	current->personality &= ~bprm->per_clear;
1100 
1101 	return 0;
1102 
1103 out:
1104 	return retval;
1105 }
1106 EXPORT_SYMBOL(flush_old_exec);
1107 
1108 void setup_new_exec(struct linux_binprm * bprm)
1109 {
1110 	int i, ch;
1111 	const char *name;
1112 	char tcomm[sizeof(current->comm)];
1113 
1114 	arch_pick_mmap_layout(current->mm);
1115 
1116 	/* This is the point of no return */
1117 	current->sas_ss_sp = current->sas_ss_size = 0;
1118 
1119 	if (current_euid() == current_uid() && current_egid() == current_gid())
1120 		set_dumpable(current->mm, 1);
1121 	else
1122 		set_dumpable(current->mm, suid_dumpable);
1123 
1124 	name = bprm->filename;
1125 
1126 	/* Copies the binary name from after last slash */
1127 	for (i=0; (ch = *(name++)) != '\0';) {
1128 		if (ch == '/')
1129 			i = 0; /* overwrite what we wrote */
1130 		else
1131 			if (i < (sizeof(tcomm) - 1))
1132 				tcomm[i++] = ch;
1133 	}
1134 	tcomm[i] = '\0';
1135 	set_task_comm(current, tcomm);
1136 
1137 	/* Set the new mm task size. We have to do that late because it may
1138 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1139 	 * some architectures like powerpc
1140 	 */
1141 	current->mm->task_size = TASK_SIZE;
1142 
1143 	/* install the new credentials */
1144 	if (bprm->cred->uid != current_euid() ||
1145 	    bprm->cred->gid != current_egid()) {
1146 		current->pdeath_signal = 0;
1147 	} else if (file_permission(bprm->file, MAY_READ) ||
1148 		   bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1149 		set_dumpable(current->mm, suid_dumpable);
1150 	}
1151 
1152 	/*
1153 	 * Flush performance counters when crossing a
1154 	 * security domain:
1155 	 */
1156 	if (!get_dumpable(current->mm))
1157 		perf_event_exit_task(current);
1158 
1159 	/* An exec changes our domain. We are no longer part of the thread
1160 	   group */
1161 
1162 	current->self_exec_id++;
1163 
1164 	flush_signal_handlers(current, 0);
1165 	flush_old_files(current->files);
1166 }
1167 EXPORT_SYMBOL(setup_new_exec);
1168 
1169 /*
1170  * Prepare credentials and lock ->cred_guard_mutex.
1171  * install_exec_creds() commits the new creds and drops the lock.
1172  * Or, if exec fails before, free_bprm() should release ->cred and
1173  * and unlock.
1174  */
1175 int prepare_bprm_creds(struct linux_binprm *bprm)
1176 {
1177 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1178 		return -ERESTARTNOINTR;
1179 
1180 	bprm->cred = prepare_exec_creds();
1181 	if (likely(bprm->cred))
1182 		return 0;
1183 
1184 	mutex_unlock(&current->signal->cred_guard_mutex);
1185 	return -ENOMEM;
1186 }
1187 
1188 void free_bprm(struct linux_binprm *bprm)
1189 {
1190 	free_arg_pages(bprm);
1191 	if (bprm->cred) {
1192 		mutex_unlock(&current->signal->cred_guard_mutex);
1193 		abort_creds(bprm->cred);
1194 	}
1195 	kfree(bprm);
1196 }
1197 
1198 /*
1199  * install the new credentials for this executable
1200  */
1201 void install_exec_creds(struct linux_binprm *bprm)
1202 {
1203 	security_bprm_committing_creds(bprm);
1204 
1205 	commit_creds(bprm->cred);
1206 	bprm->cred = NULL;
1207 	/*
1208 	 * cred_guard_mutex must be held at least to this point to prevent
1209 	 * ptrace_attach() from altering our determination of the task's
1210 	 * credentials; any time after this it may be unlocked.
1211 	 */
1212 	security_bprm_committed_creds(bprm);
1213 	mutex_unlock(&current->signal->cred_guard_mutex);
1214 }
1215 EXPORT_SYMBOL(install_exec_creds);
1216 
1217 /*
1218  * determine how safe it is to execute the proposed program
1219  * - the caller must hold ->cred_guard_mutex to protect against
1220  *   PTRACE_ATTACH
1221  */
1222 int check_unsafe_exec(struct linux_binprm *bprm)
1223 {
1224 	struct task_struct *p = current, *t;
1225 	unsigned n_fs;
1226 	int res = 0;
1227 
1228 	bprm->unsafe = tracehook_unsafe_exec(p);
1229 
1230 	n_fs = 1;
1231 	spin_lock(&p->fs->lock);
1232 	rcu_read_lock();
1233 	for (t = next_thread(p); t != p; t = next_thread(t)) {
1234 		if (t->fs == p->fs)
1235 			n_fs++;
1236 	}
1237 	rcu_read_unlock();
1238 
1239 	if (p->fs->users > n_fs) {
1240 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1241 	} else {
1242 		res = -EAGAIN;
1243 		if (!p->fs->in_exec) {
1244 			p->fs->in_exec = 1;
1245 			res = 1;
1246 		}
1247 	}
1248 	spin_unlock(&p->fs->lock);
1249 
1250 	return res;
1251 }
1252 
1253 /*
1254  * Fill the binprm structure from the inode.
1255  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1256  *
1257  * This may be called multiple times for binary chains (scripts for example).
1258  */
1259 int prepare_binprm(struct linux_binprm *bprm)
1260 {
1261 	umode_t mode;
1262 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1263 	int retval;
1264 
1265 	mode = inode->i_mode;
1266 	if (bprm->file->f_op == NULL)
1267 		return -EACCES;
1268 
1269 	/* clear any previous set[ug]id data from a previous binary */
1270 	bprm->cred->euid = current_euid();
1271 	bprm->cred->egid = current_egid();
1272 
1273 	if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1274 		/* Set-uid? */
1275 		if (mode & S_ISUID) {
1276 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1277 			bprm->cred->euid = inode->i_uid;
1278 		}
1279 
1280 		/* Set-gid? */
1281 		/*
1282 		 * If setgid is set but no group execute bit then this
1283 		 * is a candidate for mandatory locking, not a setgid
1284 		 * executable.
1285 		 */
1286 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1287 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1288 			bprm->cred->egid = inode->i_gid;
1289 		}
1290 	}
1291 
1292 	/* fill in binprm security blob */
1293 	retval = security_bprm_set_creds(bprm);
1294 	if (retval)
1295 		return retval;
1296 	bprm->cred_prepared = 1;
1297 
1298 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1299 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1300 }
1301 
1302 EXPORT_SYMBOL(prepare_binprm);
1303 
1304 /*
1305  * Arguments are '\0' separated strings found at the location bprm->p
1306  * points to; chop off the first by relocating brpm->p to right after
1307  * the first '\0' encountered.
1308  */
1309 int remove_arg_zero(struct linux_binprm *bprm)
1310 {
1311 	int ret = 0;
1312 	unsigned long offset;
1313 	char *kaddr;
1314 	struct page *page;
1315 
1316 	if (!bprm->argc)
1317 		return 0;
1318 
1319 	do {
1320 		offset = bprm->p & ~PAGE_MASK;
1321 		page = get_arg_page(bprm, bprm->p, 0);
1322 		if (!page) {
1323 			ret = -EFAULT;
1324 			goto out;
1325 		}
1326 		kaddr = kmap_atomic(page, KM_USER0);
1327 
1328 		for (; offset < PAGE_SIZE && kaddr[offset];
1329 				offset++, bprm->p++)
1330 			;
1331 
1332 		kunmap_atomic(kaddr, KM_USER0);
1333 		put_arg_page(page);
1334 
1335 		if (offset == PAGE_SIZE)
1336 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1337 	} while (offset == PAGE_SIZE);
1338 
1339 	bprm->p++;
1340 	bprm->argc--;
1341 	ret = 0;
1342 
1343 out:
1344 	return ret;
1345 }
1346 EXPORT_SYMBOL(remove_arg_zero);
1347 
1348 /*
1349  * cycle the list of binary formats handler, until one recognizes the image
1350  */
1351 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1352 {
1353 	unsigned int depth = bprm->recursion_depth;
1354 	int try,retval;
1355 	struct linux_binfmt *fmt;
1356 
1357 	retval = security_bprm_check(bprm);
1358 	if (retval)
1359 		return retval;
1360 
1361 	/* kernel module loader fixup */
1362 	/* so we don't try to load run modprobe in kernel space. */
1363 	set_fs(USER_DS);
1364 
1365 	retval = audit_bprm(bprm);
1366 	if (retval)
1367 		return retval;
1368 
1369 	retval = -ENOENT;
1370 	for (try=0; try<2; try++) {
1371 		read_lock(&binfmt_lock);
1372 		list_for_each_entry(fmt, &formats, lh) {
1373 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1374 			if (!fn)
1375 				continue;
1376 			if (!try_module_get(fmt->module))
1377 				continue;
1378 			read_unlock(&binfmt_lock);
1379 			retval = fn(bprm, regs);
1380 			/*
1381 			 * Restore the depth counter to its starting value
1382 			 * in this call, so we don't have to rely on every
1383 			 * load_binary function to restore it on return.
1384 			 */
1385 			bprm->recursion_depth = depth;
1386 			if (retval >= 0) {
1387 				if (depth == 0)
1388 					tracehook_report_exec(fmt, bprm, regs);
1389 				put_binfmt(fmt);
1390 				allow_write_access(bprm->file);
1391 				if (bprm->file)
1392 					fput(bprm->file);
1393 				bprm->file = NULL;
1394 				current->did_exec = 1;
1395 				proc_exec_connector(current);
1396 				return retval;
1397 			}
1398 			read_lock(&binfmt_lock);
1399 			put_binfmt(fmt);
1400 			if (retval != -ENOEXEC || bprm->mm == NULL)
1401 				break;
1402 			if (!bprm->file) {
1403 				read_unlock(&binfmt_lock);
1404 				return retval;
1405 			}
1406 		}
1407 		read_unlock(&binfmt_lock);
1408 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1409 			break;
1410 #ifdef CONFIG_MODULES
1411 		} else {
1412 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1413 			if (printable(bprm->buf[0]) &&
1414 			    printable(bprm->buf[1]) &&
1415 			    printable(bprm->buf[2]) &&
1416 			    printable(bprm->buf[3]))
1417 				break; /* -ENOEXEC */
1418 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1419 #endif
1420 		}
1421 	}
1422 	return retval;
1423 }
1424 
1425 EXPORT_SYMBOL(search_binary_handler);
1426 
1427 /*
1428  * sys_execve() executes a new program.
1429  */
1430 static int do_execve_common(const char *filename,
1431 				struct user_arg_ptr argv,
1432 				struct user_arg_ptr envp,
1433 				struct pt_regs *regs)
1434 {
1435 	struct linux_binprm *bprm;
1436 	struct file *file;
1437 	struct files_struct *displaced;
1438 	bool clear_in_exec;
1439 	int retval;
1440 
1441 	retval = unshare_files(&displaced);
1442 	if (retval)
1443 		goto out_ret;
1444 
1445 	retval = -ENOMEM;
1446 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1447 	if (!bprm)
1448 		goto out_files;
1449 
1450 	retval = prepare_bprm_creds(bprm);
1451 	if (retval)
1452 		goto out_free;
1453 
1454 	retval = check_unsafe_exec(bprm);
1455 	if (retval < 0)
1456 		goto out_free;
1457 	clear_in_exec = retval;
1458 	current->in_execve = 1;
1459 
1460 	file = open_exec(filename);
1461 	retval = PTR_ERR(file);
1462 	if (IS_ERR(file))
1463 		goto out_unmark;
1464 
1465 	sched_exec();
1466 
1467 	bprm->file = file;
1468 	bprm->filename = filename;
1469 	bprm->interp = filename;
1470 
1471 	retval = bprm_mm_init(bprm);
1472 	if (retval)
1473 		goto out_file;
1474 
1475 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1476 	if ((retval = bprm->argc) < 0)
1477 		goto out;
1478 
1479 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1480 	if ((retval = bprm->envc) < 0)
1481 		goto out;
1482 
1483 	retval = prepare_binprm(bprm);
1484 	if (retval < 0)
1485 		goto out;
1486 
1487 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1488 	if (retval < 0)
1489 		goto out;
1490 
1491 	bprm->exec = bprm->p;
1492 	retval = copy_strings(bprm->envc, envp, bprm);
1493 	if (retval < 0)
1494 		goto out;
1495 
1496 	retval = copy_strings(bprm->argc, argv, bprm);
1497 	if (retval < 0)
1498 		goto out;
1499 
1500 	retval = search_binary_handler(bprm,regs);
1501 	if (retval < 0)
1502 		goto out;
1503 
1504 	/* execve succeeded */
1505 	current->fs->in_exec = 0;
1506 	current->in_execve = 0;
1507 	acct_update_integrals(current);
1508 	free_bprm(bprm);
1509 	if (displaced)
1510 		put_files_struct(displaced);
1511 	return retval;
1512 
1513 out:
1514 	if (bprm->mm) {
1515 		acct_arg_size(bprm, 0);
1516 		mmput(bprm->mm);
1517 	}
1518 
1519 out_file:
1520 	if (bprm->file) {
1521 		allow_write_access(bprm->file);
1522 		fput(bprm->file);
1523 	}
1524 
1525 out_unmark:
1526 	if (clear_in_exec)
1527 		current->fs->in_exec = 0;
1528 	current->in_execve = 0;
1529 
1530 out_free:
1531 	free_bprm(bprm);
1532 
1533 out_files:
1534 	if (displaced)
1535 		reset_files_struct(displaced);
1536 out_ret:
1537 	return retval;
1538 }
1539 
1540 int do_execve(const char *filename,
1541 	const char __user *const __user *__argv,
1542 	const char __user *const __user *__envp,
1543 	struct pt_regs *regs)
1544 {
1545 	struct user_arg_ptr argv = { .ptr.native = __argv };
1546 	struct user_arg_ptr envp = { .ptr.native = __envp };
1547 	return do_execve_common(filename, argv, envp, regs);
1548 }
1549 
1550 #ifdef CONFIG_COMPAT
1551 int compat_do_execve(char *filename,
1552 	compat_uptr_t __user *__argv,
1553 	compat_uptr_t __user *__envp,
1554 	struct pt_regs *regs)
1555 {
1556 	struct user_arg_ptr argv = {
1557 		.is_compat = true,
1558 		.ptr.compat = __argv,
1559 	};
1560 	struct user_arg_ptr envp = {
1561 		.is_compat = true,
1562 		.ptr.compat = __envp,
1563 	};
1564 	return do_execve_common(filename, argv, envp, regs);
1565 }
1566 #endif
1567 
1568 void set_binfmt(struct linux_binfmt *new)
1569 {
1570 	struct mm_struct *mm = current->mm;
1571 
1572 	if (mm->binfmt)
1573 		module_put(mm->binfmt->module);
1574 
1575 	mm->binfmt = new;
1576 	if (new)
1577 		__module_get(new->module);
1578 }
1579 
1580 EXPORT_SYMBOL(set_binfmt);
1581 
1582 static int expand_corename(struct core_name *cn)
1583 {
1584 	char *old_corename = cn->corename;
1585 
1586 	cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count);
1587 	cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL);
1588 
1589 	if (!cn->corename) {
1590 		kfree(old_corename);
1591 		return -ENOMEM;
1592 	}
1593 
1594 	return 0;
1595 }
1596 
1597 static int cn_printf(struct core_name *cn, const char *fmt, ...)
1598 {
1599 	char *cur;
1600 	int need;
1601 	int ret;
1602 	va_list arg;
1603 
1604 	va_start(arg, fmt);
1605 	need = vsnprintf(NULL, 0, fmt, arg);
1606 	va_end(arg);
1607 
1608 	if (likely(need < cn->size - cn->used - 1))
1609 		goto out_printf;
1610 
1611 	ret = expand_corename(cn);
1612 	if (ret)
1613 		goto expand_fail;
1614 
1615 out_printf:
1616 	cur = cn->corename + cn->used;
1617 	va_start(arg, fmt);
1618 	vsnprintf(cur, need + 1, fmt, arg);
1619 	va_end(arg);
1620 	cn->used += need;
1621 	return 0;
1622 
1623 expand_fail:
1624 	return ret;
1625 }
1626 
1627 /* format_corename will inspect the pattern parameter, and output a
1628  * name into corename, which must have space for at least
1629  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1630  */
1631 static int format_corename(struct core_name *cn, long signr)
1632 {
1633 	const struct cred *cred = current_cred();
1634 	const char *pat_ptr = core_pattern;
1635 	int ispipe = (*pat_ptr == '|');
1636 	int pid_in_pattern = 0;
1637 	int err = 0;
1638 
1639 	cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count);
1640 	cn->corename = kmalloc(cn->size, GFP_KERNEL);
1641 	cn->used = 0;
1642 
1643 	if (!cn->corename)
1644 		return -ENOMEM;
1645 
1646 	/* Repeat as long as we have more pattern to process and more output
1647 	   space */
1648 	while (*pat_ptr) {
1649 		if (*pat_ptr != '%') {
1650 			if (*pat_ptr == 0)
1651 				goto out;
1652 			err = cn_printf(cn, "%c", *pat_ptr++);
1653 		} else {
1654 			switch (*++pat_ptr) {
1655 			/* single % at the end, drop that */
1656 			case 0:
1657 				goto out;
1658 			/* Double percent, output one percent */
1659 			case '%':
1660 				err = cn_printf(cn, "%c", '%');
1661 				break;
1662 			/* pid */
1663 			case 'p':
1664 				pid_in_pattern = 1;
1665 				err = cn_printf(cn, "%d",
1666 					      task_tgid_vnr(current));
1667 				break;
1668 			/* uid */
1669 			case 'u':
1670 				err = cn_printf(cn, "%d", cred->uid);
1671 				break;
1672 			/* gid */
1673 			case 'g':
1674 				err = cn_printf(cn, "%d", cred->gid);
1675 				break;
1676 			/* signal that caused the coredump */
1677 			case 's':
1678 				err = cn_printf(cn, "%ld", signr);
1679 				break;
1680 			/* UNIX time of coredump */
1681 			case 't': {
1682 				struct timeval tv;
1683 				do_gettimeofday(&tv);
1684 				err = cn_printf(cn, "%lu", tv.tv_sec);
1685 				break;
1686 			}
1687 			/* hostname */
1688 			case 'h':
1689 				down_read(&uts_sem);
1690 				err = cn_printf(cn, "%s",
1691 					      utsname()->nodename);
1692 				up_read(&uts_sem);
1693 				break;
1694 			/* executable */
1695 			case 'e':
1696 				err = cn_printf(cn, "%s", current->comm);
1697 				break;
1698 			/* core limit size */
1699 			case 'c':
1700 				err = cn_printf(cn, "%lu",
1701 					      rlimit(RLIMIT_CORE));
1702 				break;
1703 			default:
1704 				break;
1705 			}
1706 			++pat_ptr;
1707 		}
1708 
1709 		if (err)
1710 			return err;
1711 	}
1712 
1713 	/* Backward compatibility with core_uses_pid:
1714 	 *
1715 	 * If core_pattern does not include a %p (as is the default)
1716 	 * and core_uses_pid is set, then .%pid will be appended to
1717 	 * the filename. Do not do this for piped commands. */
1718 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
1719 		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
1720 		if (err)
1721 			return err;
1722 	}
1723 out:
1724 	return ispipe;
1725 }
1726 
1727 static int zap_process(struct task_struct *start, int exit_code)
1728 {
1729 	struct task_struct *t;
1730 	int nr = 0;
1731 
1732 	start->signal->flags = SIGNAL_GROUP_EXIT;
1733 	start->signal->group_exit_code = exit_code;
1734 	start->signal->group_stop_count = 0;
1735 
1736 	t = start;
1737 	do {
1738 		task_clear_group_stop_pending(t);
1739 		if (t != current && t->mm) {
1740 			sigaddset(&t->pending.signal, SIGKILL);
1741 			signal_wake_up(t, 1);
1742 			nr++;
1743 		}
1744 	} while_each_thread(start, t);
1745 
1746 	return nr;
1747 }
1748 
1749 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1750 				struct core_state *core_state, int exit_code)
1751 {
1752 	struct task_struct *g, *p;
1753 	unsigned long flags;
1754 	int nr = -EAGAIN;
1755 
1756 	spin_lock_irq(&tsk->sighand->siglock);
1757 	if (!signal_group_exit(tsk->signal)) {
1758 		mm->core_state = core_state;
1759 		nr = zap_process(tsk, exit_code);
1760 	}
1761 	spin_unlock_irq(&tsk->sighand->siglock);
1762 	if (unlikely(nr < 0))
1763 		return nr;
1764 
1765 	if (atomic_read(&mm->mm_users) == nr + 1)
1766 		goto done;
1767 	/*
1768 	 * We should find and kill all tasks which use this mm, and we should
1769 	 * count them correctly into ->nr_threads. We don't take tasklist
1770 	 * lock, but this is safe wrt:
1771 	 *
1772 	 * fork:
1773 	 *	None of sub-threads can fork after zap_process(leader). All
1774 	 *	processes which were created before this point should be
1775 	 *	visible to zap_threads() because copy_process() adds the new
1776 	 *	process to the tail of init_task.tasks list, and lock/unlock
1777 	 *	of ->siglock provides a memory barrier.
1778 	 *
1779 	 * do_exit:
1780 	 *	The caller holds mm->mmap_sem. This means that the task which
1781 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
1782 	 *	its ->mm.
1783 	 *
1784 	 * de_thread:
1785 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
1786 	 *	we must see either old or new leader, this does not matter.
1787 	 *	However, it can change p->sighand, so lock_task_sighand(p)
1788 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
1789 	 *	it can't fail.
1790 	 *
1791 	 *	Note also that "g" can be the old leader with ->mm == NULL
1792 	 *	and already unhashed and thus removed from ->thread_group.
1793 	 *	This is OK, __unhash_process()->list_del_rcu() does not
1794 	 *	clear the ->next pointer, we will find the new leader via
1795 	 *	next_thread().
1796 	 */
1797 	rcu_read_lock();
1798 	for_each_process(g) {
1799 		if (g == tsk->group_leader)
1800 			continue;
1801 		if (g->flags & PF_KTHREAD)
1802 			continue;
1803 		p = g;
1804 		do {
1805 			if (p->mm) {
1806 				if (unlikely(p->mm == mm)) {
1807 					lock_task_sighand(p, &flags);
1808 					nr += zap_process(p, exit_code);
1809 					unlock_task_sighand(p, &flags);
1810 				}
1811 				break;
1812 			}
1813 		} while_each_thread(g, p);
1814 	}
1815 	rcu_read_unlock();
1816 done:
1817 	atomic_set(&core_state->nr_threads, nr);
1818 	return nr;
1819 }
1820 
1821 static int coredump_wait(int exit_code, struct core_state *core_state)
1822 {
1823 	struct task_struct *tsk = current;
1824 	struct mm_struct *mm = tsk->mm;
1825 	struct completion *vfork_done;
1826 	int core_waiters = -EBUSY;
1827 
1828 	init_completion(&core_state->startup);
1829 	core_state->dumper.task = tsk;
1830 	core_state->dumper.next = NULL;
1831 
1832 	down_write(&mm->mmap_sem);
1833 	if (!mm->core_state)
1834 		core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1835 	up_write(&mm->mmap_sem);
1836 
1837 	if (unlikely(core_waiters < 0))
1838 		goto fail;
1839 
1840 	/*
1841 	 * Make sure nobody is waiting for us to release the VM,
1842 	 * otherwise we can deadlock when we wait on each other
1843 	 */
1844 	vfork_done = tsk->vfork_done;
1845 	if (vfork_done) {
1846 		tsk->vfork_done = NULL;
1847 		complete(vfork_done);
1848 	}
1849 
1850 	if (core_waiters)
1851 		wait_for_completion(&core_state->startup);
1852 fail:
1853 	return core_waiters;
1854 }
1855 
1856 static void coredump_finish(struct mm_struct *mm)
1857 {
1858 	struct core_thread *curr, *next;
1859 	struct task_struct *task;
1860 
1861 	next = mm->core_state->dumper.next;
1862 	while ((curr = next) != NULL) {
1863 		next = curr->next;
1864 		task = curr->task;
1865 		/*
1866 		 * see exit_mm(), curr->task must not see
1867 		 * ->task == NULL before we read ->next.
1868 		 */
1869 		smp_mb();
1870 		curr->task = NULL;
1871 		wake_up_process(task);
1872 	}
1873 
1874 	mm->core_state = NULL;
1875 }
1876 
1877 /*
1878  * set_dumpable converts traditional three-value dumpable to two flags and
1879  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1880  * these bits are not changed atomically.  So get_dumpable can observe the
1881  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1882  * return either old dumpable or new one by paying attention to the order of
1883  * modifying the bits.
1884  *
1885  * dumpable |   mm->flags (binary)
1886  * old  new | initial interim  final
1887  * ---------+-----------------------
1888  *  0    1  |   00      01      01
1889  *  0    2  |   00      10(*)   11
1890  *  1    0  |   01      00      00
1891  *  1    2  |   01      11      11
1892  *  2    0  |   11      10(*)   00
1893  *  2    1  |   11      11      01
1894  *
1895  * (*) get_dumpable regards interim value of 10 as 11.
1896  */
1897 void set_dumpable(struct mm_struct *mm, int value)
1898 {
1899 	switch (value) {
1900 	case 0:
1901 		clear_bit(MMF_DUMPABLE, &mm->flags);
1902 		smp_wmb();
1903 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1904 		break;
1905 	case 1:
1906 		set_bit(MMF_DUMPABLE, &mm->flags);
1907 		smp_wmb();
1908 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1909 		break;
1910 	case 2:
1911 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
1912 		smp_wmb();
1913 		set_bit(MMF_DUMPABLE, &mm->flags);
1914 		break;
1915 	}
1916 }
1917 
1918 static int __get_dumpable(unsigned long mm_flags)
1919 {
1920 	int ret;
1921 
1922 	ret = mm_flags & MMF_DUMPABLE_MASK;
1923 	return (ret >= 2) ? 2 : ret;
1924 }
1925 
1926 int get_dumpable(struct mm_struct *mm)
1927 {
1928 	return __get_dumpable(mm->flags);
1929 }
1930 
1931 static void wait_for_dump_helpers(struct file *file)
1932 {
1933 	struct pipe_inode_info *pipe;
1934 
1935 	pipe = file->f_path.dentry->d_inode->i_pipe;
1936 
1937 	pipe_lock(pipe);
1938 	pipe->readers++;
1939 	pipe->writers--;
1940 
1941 	while ((pipe->readers > 1) && (!signal_pending(current))) {
1942 		wake_up_interruptible_sync(&pipe->wait);
1943 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1944 		pipe_wait(pipe);
1945 	}
1946 
1947 	pipe->readers--;
1948 	pipe->writers++;
1949 	pipe_unlock(pipe);
1950 
1951 }
1952 
1953 
1954 /*
1955  * umh_pipe_setup
1956  * helper function to customize the process used
1957  * to collect the core in userspace.  Specifically
1958  * it sets up a pipe and installs it as fd 0 (stdin)
1959  * for the process.  Returns 0 on success, or
1960  * PTR_ERR on failure.
1961  * Note that it also sets the core limit to 1.  This
1962  * is a special value that we use to trap recursive
1963  * core dumps
1964  */
1965 static int umh_pipe_setup(struct subprocess_info *info)
1966 {
1967 	struct file *rp, *wp;
1968 	struct fdtable *fdt;
1969 	struct coredump_params *cp = (struct coredump_params *)info->data;
1970 	struct files_struct *cf = current->files;
1971 
1972 	wp = create_write_pipe(0);
1973 	if (IS_ERR(wp))
1974 		return PTR_ERR(wp);
1975 
1976 	rp = create_read_pipe(wp, 0);
1977 	if (IS_ERR(rp)) {
1978 		free_write_pipe(wp);
1979 		return PTR_ERR(rp);
1980 	}
1981 
1982 	cp->file = wp;
1983 
1984 	sys_close(0);
1985 	fd_install(0, rp);
1986 	spin_lock(&cf->file_lock);
1987 	fdt = files_fdtable(cf);
1988 	FD_SET(0, fdt->open_fds);
1989 	FD_CLR(0, fdt->close_on_exec);
1990 	spin_unlock(&cf->file_lock);
1991 
1992 	/* and disallow core files too */
1993 	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
1994 
1995 	return 0;
1996 }
1997 
1998 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1999 {
2000 	struct core_state core_state;
2001 	struct core_name cn;
2002 	struct mm_struct *mm = current->mm;
2003 	struct linux_binfmt * binfmt;
2004 	const struct cred *old_cred;
2005 	struct cred *cred;
2006 	int retval = 0;
2007 	int flag = 0;
2008 	int ispipe;
2009 	static atomic_t core_dump_count = ATOMIC_INIT(0);
2010 	struct coredump_params cprm = {
2011 		.signr = signr,
2012 		.regs = regs,
2013 		.limit = rlimit(RLIMIT_CORE),
2014 		/*
2015 		 * We must use the same mm->flags while dumping core to avoid
2016 		 * inconsistency of bit flags, since this flag is not protected
2017 		 * by any locks.
2018 		 */
2019 		.mm_flags = mm->flags,
2020 	};
2021 
2022 	audit_core_dumps(signr);
2023 
2024 	binfmt = mm->binfmt;
2025 	if (!binfmt || !binfmt->core_dump)
2026 		goto fail;
2027 	if (!__get_dumpable(cprm.mm_flags))
2028 		goto fail;
2029 
2030 	cred = prepare_creds();
2031 	if (!cred)
2032 		goto fail;
2033 	/*
2034 	 *	We cannot trust fsuid as being the "true" uid of the
2035 	 *	process nor do we know its entire history. We only know it
2036 	 *	was tainted so we dump it as root in mode 2.
2037 	 */
2038 	if (__get_dumpable(cprm.mm_flags) == 2) {
2039 		/* Setuid core dump mode */
2040 		flag = O_EXCL;		/* Stop rewrite attacks */
2041 		cred->fsuid = 0;	/* Dump root private */
2042 	}
2043 
2044 	retval = coredump_wait(exit_code, &core_state);
2045 	if (retval < 0)
2046 		goto fail_creds;
2047 
2048 	old_cred = override_creds(cred);
2049 
2050 	/*
2051 	 * Clear any false indication of pending signals that might
2052 	 * be seen by the filesystem code called to write the core file.
2053 	 */
2054 	clear_thread_flag(TIF_SIGPENDING);
2055 
2056 	ispipe = format_corename(&cn, signr);
2057 
2058 	if (ispipe == -ENOMEM) {
2059 		printk(KERN_WARNING "format_corename failed\n");
2060 		printk(KERN_WARNING "Aborting core\n");
2061 		goto fail_corename;
2062 	}
2063 
2064  	if (ispipe) {
2065 		int dump_count;
2066 		char **helper_argv;
2067 
2068 		if (cprm.limit == 1) {
2069 			/*
2070 			 * Normally core limits are irrelevant to pipes, since
2071 			 * we're not writing to the file system, but we use
2072 			 * cprm.limit of 1 here as a speacial value. Any
2073 			 * non-1 limit gets set to RLIM_INFINITY below, but
2074 			 * a limit of 0 skips the dump.  This is a consistent
2075 			 * way to catch recursive crashes.  We can still crash
2076 			 * if the core_pattern binary sets RLIM_CORE =  !1
2077 			 * but it runs as root, and can do lots of stupid things
2078 			 * Note that we use task_tgid_vnr here to grab the pid
2079 			 * of the process group leader.  That way we get the
2080 			 * right pid if a thread in a multi-threaded
2081 			 * core_pattern process dies.
2082 			 */
2083 			printk(KERN_WARNING
2084 				"Process %d(%s) has RLIMIT_CORE set to 1\n",
2085 				task_tgid_vnr(current), current->comm);
2086 			printk(KERN_WARNING "Aborting core\n");
2087 			goto fail_unlock;
2088 		}
2089 		cprm.limit = RLIM_INFINITY;
2090 
2091 		dump_count = atomic_inc_return(&core_dump_count);
2092 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
2093 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
2094 			       task_tgid_vnr(current), current->comm);
2095 			printk(KERN_WARNING "Skipping core dump\n");
2096 			goto fail_dropcount;
2097 		}
2098 
2099 		helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL);
2100 		if (!helper_argv) {
2101 			printk(KERN_WARNING "%s failed to allocate memory\n",
2102 			       __func__);
2103 			goto fail_dropcount;
2104 		}
2105 
2106 		retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
2107 					NULL, UMH_WAIT_EXEC, umh_pipe_setup,
2108 					NULL, &cprm);
2109 		argv_free(helper_argv);
2110 		if (retval) {
2111  			printk(KERN_INFO "Core dump to %s pipe failed\n",
2112 			       cn.corename);
2113 			goto close_fail;
2114  		}
2115 	} else {
2116 		struct inode *inode;
2117 
2118 		if (cprm.limit < binfmt->min_coredump)
2119 			goto fail_unlock;
2120 
2121 		cprm.file = filp_open(cn.corename,
2122 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
2123 				 0600);
2124 		if (IS_ERR(cprm.file))
2125 			goto fail_unlock;
2126 
2127 		inode = cprm.file->f_path.dentry->d_inode;
2128 		if (inode->i_nlink > 1)
2129 			goto close_fail;
2130 		if (d_unhashed(cprm.file->f_path.dentry))
2131 			goto close_fail;
2132 		/*
2133 		 * AK: actually i see no reason to not allow this for named
2134 		 * pipes etc, but keep the previous behaviour for now.
2135 		 */
2136 		if (!S_ISREG(inode->i_mode))
2137 			goto close_fail;
2138 		/*
2139 		 * Dont allow local users get cute and trick others to coredump
2140 		 * into their pre-created files.
2141 		 */
2142 		if (inode->i_uid != current_fsuid())
2143 			goto close_fail;
2144 		if (!cprm.file->f_op || !cprm.file->f_op->write)
2145 			goto close_fail;
2146 		if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
2147 			goto close_fail;
2148 	}
2149 
2150 	retval = binfmt->core_dump(&cprm);
2151 	if (retval)
2152 		current->signal->group_exit_code |= 0x80;
2153 
2154 	if (ispipe && core_pipe_limit)
2155 		wait_for_dump_helpers(cprm.file);
2156 close_fail:
2157 	if (cprm.file)
2158 		filp_close(cprm.file, NULL);
2159 fail_dropcount:
2160 	if (ispipe)
2161 		atomic_dec(&core_dump_count);
2162 fail_unlock:
2163 	kfree(cn.corename);
2164 fail_corename:
2165 	coredump_finish(mm);
2166 	revert_creds(old_cred);
2167 fail_creds:
2168 	put_cred(cred);
2169 fail:
2170 	return;
2171 }
2172 
2173 /*
2174  * Core dumping helper functions.  These are the only things you should
2175  * do on a core-file: use only these functions to write out all the
2176  * necessary info.
2177  */
2178 int dump_write(struct file *file, const void *addr, int nr)
2179 {
2180 	return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr;
2181 }
2182 EXPORT_SYMBOL(dump_write);
2183 
2184 int dump_seek(struct file *file, loff_t off)
2185 {
2186 	int ret = 1;
2187 
2188 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
2189 		if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
2190 			return 0;
2191 	} else {
2192 		char *buf = (char *)get_zeroed_page(GFP_KERNEL);
2193 
2194 		if (!buf)
2195 			return 0;
2196 		while (off > 0) {
2197 			unsigned long n = off;
2198 
2199 			if (n > PAGE_SIZE)
2200 				n = PAGE_SIZE;
2201 			if (!dump_write(file, buf, n)) {
2202 				ret = 0;
2203 				break;
2204 			}
2205 			off -= n;
2206 		}
2207 		free_page((unsigned long)buf);
2208 	}
2209 	return ret;
2210 }
2211 EXPORT_SYMBOL(dump_seek);
2212