1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/mm.h> 29 #include <linux/stat.h> 30 #include <linux/fcntl.h> 31 #include <linux/swap.h> 32 #include <linux/string.h> 33 #include <linux/init.h> 34 #include <linux/pagemap.h> 35 #include <linux/perf_event.h> 36 #include <linux/highmem.h> 37 #include <linux/spinlock.h> 38 #include <linux/key.h> 39 #include <linux/personality.h> 40 #include <linux/binfmts.h> 41 #include <linux/utsname.h> 42 #include <linux/pid_namespace.h> 43 #include <linux/module.h> 44 #include <linux/namei.h> 45 #include <linux/proc_fs.h> 46 #include <linux/mount.h> 47 #include <linux/security.h> 48 #include <linux/syscalls.h> 49 #include <linux/tsacct_kern.h> 50 #include <linux/cn_proc.h> 51 #include <linux/audit.h> 52 #include <linux/tracehook.h> 53 #include <linux/kmod.h> 54 #include <linux/fsnotify.h> 55 #include <linux/fs_struct.h> 56 #include <linux/pipe_fs_i.h> 57 #include <linux/oom.h> 58 #include <linux/compat.h> 59 60 #include <asm/uaccess.h> 61 #include <asm/mmu_context.h> 62 #include <asm/tlb.h> 63 #include "internal.h" 64 65 int core_uses_pid; 66 char core_pattern[CORENAME_MAX_SIZE] = "core"; 67 unsigned int core_pipe_limit; 68 int suid_dumpable = 0; 69 70 struct core_name { 71 char *corename; 72 int used, size; 73 }; 74 static atomic_t call_count = ATOMIC_INIT(1); 75 76 /* The maximal length of core_pattern is also specified in sysctl.c */ 77 78 static LIST_HEAD(formats); 79 static DEFINE_RWLOCK(binfmt_lock); 80 81 int __register_binfmt(struct linux_binfmt * fmt, int insert) 82 { 83 if (!fmt) 84 return -EINVAL; 85 write_lock(&binfmt_lock); 86 insert ? list_add(&fmt->lh, &formats) : 87 list_add_tail(&fmt->lh, &formats); 88 write_unlock(&binfmt_lock); 89 return 0; 90 } 91 92 EXPORT_SYMBOL(__register_binfmt); 93 94 void unregister_binfmt(struct linux_binfmt * fmt) 95 { 96 write_lock(&binfmt_lock); 97 list_del(&fmt->lh); 98 write_unlock(&binfmt_lock); 99 } 100 101 EXPORT_SYMBOL(unregister_binfmt); 102 103 static inline void put_binfmt(struct linux_binfmt * fmt) 104 { 105 module_put(fmt->module); 106 } 107 108 /* 109 * Note that a shared library must be both readable and executable due to 110 * security reasons. 111 * 112 * Also note that we take the address to load from from the file itself. 113 */ 114 SYSCALL_DEFINE1(uselib, const char __user *, library) 115 { 116 struct file *file; 117 char *tmp = getname(library); 118 int error = PTR_ERR(tmp); 119 static const struct open_flags uselib_flags = { 120 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 121 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN, 122 .intent = LOOKUP_OPEN 123 }; 124 125 if (IS_ERR(tmp)) 126 goto out; 127 128 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW); 129 putname(tmp); 130 error = PTR_ERR(file); 131 if (IS_ERR(file)) 132 goto out; 133 134 error = -EINVAL; 135 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode)) 136 goto exit; 137 138 error = -EACCES; 139 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 140 goto exit; 141 142 fsnotify_open(file); 143 144 error = -ENOEXEC; 145 if(file->f_op) { 146 struct linux_binfmt * fmt; 147 148 read_lock(&binfmt_lock); 149 list_for_each_entry(fmt, &formats, lh) { 150 if (!fmt->load_shlib) 151 continue; 152 if (!try_module_get(fmt->module)) 153 continue; 154 read_unlock(&binfmt_lock); 155 error = fmt->load_shlib(file); 156 read_lock(&binfmt_lock); 157 put_binfmt(fmt); 158 if (error != -ENOEXEC) 159 break; 160 } 161 read_unlock(&binfmt_lock); 162 } 163 exit: 164 fput(file); 165 out: 166 return error; 167 } 168 169 #ifdef CONFIG_MMU 170 /* 171 * The nascent bprm->mm is not visible until exec_mmap() but it can 172 * use a lot of memory, account these pages in current->mm temporary 173 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 174 * change the counter back via acct_arg_size(0). 175 */ 176 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 177 { 178 struct mm_struct *mm = current->mm; 179 long diff = (long)(pages - bprm->vma_pages); 180 181 if (!mm || !diff) 182 return; 183 184 bprm->vma_pages = pages; 185 186 #ifdef SPLIT_RSS_COUNTING 187 add_mm_counter(mm, MM_ANONPAGES, diff); 188 #else 189 spin_lock(&mm->page_table_lock); 190 add_mm_counter(mm, MM_ANONPAGES, diff); 191 spin_unlock(&mm->page_table_lock); 192 #endif 193 } 194 195 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 196 int write) 197 { 198 struct page *page; 199 int ret; 200 201 #ifdef CONFIG_STACK_GROWSUP 202 if (write) { 203 ret = expand_stack_downwards(bprm->vma, pos); 204 if (ret < 0) 205 return NULL; 206 } 207 #endif 208 ret = get_user_pages(current, bprm->mm, pos, 209 1, write, 1, &page, NULL); 210 if (ret <= 0) 211 return NULL; 212 213 if (write) { 214 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 215 struct rlimit *rlim; 216 217 acct_arg_size(bprm, size / PAGE_SIZE); 218 219 /* 220 * We've historically supported up to 32 pages (ARG_MAX) 221 * of argument strings even with small stacks 222 */ 223 if (size <= ARG_MAX) 224 return page; 225 226 /* 227 * Limit to 1/4-th the stack size for the argv+env strings. 228 * This ensures that: 229 * - the remaining binfmt code will not run out of stack space, 230 * - the program will have a reasonable amount of stack left 231 * to work from. 232 */ 233 rlim = current->signal->rlim; 234 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) { 235 put_page(page); 236 return NULL; 237 } 238 } 239 240 return page; 241 } 242 243 static void put_arg_page(struct page *page) 244 { 245 put_page(page); 246 } 247 248 static void free_arg_page(struct linux_binprm *bprm, int i) 249 { 250 } 251 252 static void free_arg_pages(struct linux_binprm *bprm) 253 { 254 } 255 256 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 257 struct page *page) 258 { 259 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 260 } 261 262 static int __bprm_mm_init(struct linux_binprm *bprm) 263 { 264 int err; 265 struct vm_area_struct *vma = NULL; 266 struct mm_struct *mm = bprm->mm; 267 268 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 269 if (!vma) 270 return -ENOMEM; 271 272 down_write(&mm->mmap_sem); 273 vma->vm_mm = mm; 274 275 /* 276 * Place the stack at the largest stack address the architecture 277 * supports. Later, we'll move this to an appropriate place. We don't 278 * use STACK_TOP because that can depend on attributes which aren't 279 * configured yet. 280 */ 281 BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 282 vma->vm_end = STACK_TOP_MAX; 283 vma->vm_start = vma->vm_end - PAGE_SIZE; 284 vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 285 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 286 INIT_LIST_HEAD(&vma->anon_vma_chain); 287 288 err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1); 289 if (err) 290 goto err; 291 292 err = insert_vm_struct(mm, vma); 293 if (err) 294 goto err; 295 296 mm->stack_vm = mm->total_vm = 1; 297 up_write(&mm->mmap_sem); 298 bprm->p = vma->vm_end - sizeof(void *); 299 return 0; 300 err: 301 up_write(&mm->mmap_sem); 302 bprm->vma = NULL; 303 kmem_cache_free(vm_area_cachep, vma); 304 return err; 305 } 306 307 static bool valid_arg_len(struct linux_binprm *bprm, long len) 308 { 309 return len <= MAX_ARG_STRLEN; 310 } 311 312 #else 313 314 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 315 { 316 } 317 318 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 319 int write) 320 { 321 struct page *page; 322 323 page = bprm->page[pos / PAGE_SIZE]; 324 if (!page && write) { 325 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 326 if (!page) 327 return NULL; 328 bprm->page[pos / PAGE_SIZE] = page; 329 } 330 331 return page; 332 } 333 334 static void put_arg_page(struct page *page) 335 { 336 } 337 338 static void free_arg_page(struct linux_binprm *bprm, int i) 339 { 340 if (bprm->page[i]) { 341 __free_page(bprm->page[i]); 342 bprm->page[i] = NULL; 343 } 344 } 345 346 static void free_arg_pages(struct linux_binprm *bprm) 347 { 348 int i; 349 350 for (i = 0; i < MAX_ARG_PAGES; i++) 351 free_arg_page(bprm, i); 352 } 353 354 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 355 struct page *page) 356 { 357 } 358 359 static int __bprm_mm_init(struct linux_binprm *bprm) 360 { 361 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 362 return 0; 363 } 364 365 static bool valid_arg_len(struct linux_binprm *bprm, long len) 366 { 367 return len <= bprm->p; 368 } 369 370 #endif /* CONFIG_MMU */ 371 372 /* 373 * Create a new mm_struct and populate it with a temporary stack 374 * vm_area_struct. We don't have enough context at this point to set the stack 375 * flags, permissions, and offset, so we use temporary values. We'll update 376 * them later in setup_arg_pages(). 377 */ 378 int bprm_mm_init(struct linux_binprm *bprm) 379 { 380 int err; 381 struct mm_struct *mm = NULL; 382 383 bprm->mm = mm = mm_alloc(); 384 err = -ENOMEM; 385 if (!mm) 386 goto err; 387 388 err = init_new_context(current, mm); 389 if (err) 390 goto err; 391 392 err = __bprm_mm_init(bprm); 393 if (err) 394 goto err; 395 396 return 0; 397 398 err: 399 if (mm) { 400 bprm->mm = NULL; 401 mmdrop(mm); 402 } 403 404 return err; 405 } 406 407 struct user_arg_ptr { 408 #ifdef CONFIG_COMPAT 409 bool is_compat; 410 #endif 411 union { 412 const char __user *const __user *native; 413 #ifdef CONFIG_COMPAT 414 compat_uptr_t __user *compat; 415 #endif 416 } ptr; 417 }; 418 419 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 420 { 421 const char __user *native; 422 423 #ifdef CONFIG_COMPAT 424 if (unlikely(argv.is_compat)) { 425 compat_uptr_t compat; 426 427 if (get_user(compat, argv.ptr.compat + nr)) 428 return ERR_PTR(-EFAULT); 429 430 return compat_ptr(compat); 431 } 432 #endif 433 434 if (get_user(native, argv.ptr.native + nr)) 435 return ERR_PTR(-EFAULT); 436 437 return native; 438 } 439 440 /* 441 * count() counts the number of strings in array ARGV. 442 */ 443 static int count(struct user_arg_ptr argv, int max) 444 { 445 int i = 0; 446 447 if (argv.ptr.native != NULL) { 448 for (;;) { 449 const char __user *p = get_user_arg_ptr(argv, i); 450 451 if (!p) 452 break; 453 454 if (IS_ERR(p)) 455 return -EFAULT; 456 457 if (i++ >= max) 458 return -E2BIG; 459 460 if (fatal_signal_pending(current)) 461 return -ERESTARTNOHAND; 462 cond_resched(); 463 } 464 } 465 return i; 466 } 467 468 /* 469 * 'copy_strings()' copies argument/environment strings from the old 470 * processes's memory to the new process's stack. The call to get_user_pages() 471 * ensures the destination page is created and not swapped out. 472 */ 473 static int copy_strings(int argc, struct user_arg_ptr argv, 474 struct linux_binprm *bprm) 475 { 476 struct page *kmapped_page = NULL; 477 char *kaddr = NULL; 478 unsigned long kpos = 0; 479 int ret; 480 481 while (argc-- > 0) { 482 const char __user *str; 483 int len; 484 unsigned long pos; 485 486 ret = -EFAULT; 487 str = get_user_arg_ptr(argv, argc); 488 if (IS_ERR(str)) 489 goto out; 490 491 len = strnlen_user(str, MAX_ARG_STRLEN); 492 if (!len) 493 goto out; 494 495 ret = -E2BIG; 496 if (!valid_arg_len(bprm, len)) 497 goto out; 498 499 /* We're going to work our way backwords. */ 500 pos = bprm->p; 501 str += len; 502 bprm->p -= len; 503 504 while (len > 0) { 505 int offset, bytes_to_copy; 506 507 if (fatal_signal_pending(current)) { 508 ret = -ERESTARTNOHAND; 509 goto out; 510 } 511 cond_resched(); 512 513 offset = pos % PAGE_SIZE; 514 if (offset == 0) 515 offset = PAGE_SIZE; 516 517 bytes_to_copy = offset; 518 if (bytes_to_copy > len) 519 bytes_to_copy = len; 520 521 offset -= bytes_to_copy; 522 pos -= bytes_to_copy; 523 str -= bytes_to_copy; 524 len -= bytes_to_copy; 525 526 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 527 struct page *page; 528 529 page = get_arg_page(bprm, pos, 1); 530 if (!page) { 531 ret = -E2BIG; 532 goto out; 533 } 534 535 if (kmapped_page) { 536 flush_kernel_dcache_page(kmapped_page); 537 kunmap(kmapped_page); 538 put_arg_page(kmapped_page); 539 } 540 kmapped_page = page; 541 kaddr = kmap(kmapped_page); 542 kpos = pos & PAGE_MASK; 543 flush_arg_page(bprm, kpos, kmapped_page); 544 } 545 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 546 ret = -EFAULT; 547 goto out; 548 } 549 } 550 } 551 ret = 0; 552 out: 553 if (kmapped_page) { 554 flush_kernel_dcache_page(kmapped_page); 555 kunmap(kmapped_page); 556 put_arg_page(kmapped_page); 557 } 558 return ret; 559 } 560 561 /* 562 * Like copy_strings, but get argv and its values from kernel memory. 563 */ 564 int copy_strings_kernel(int argc, const char *const *__argv, 565 struct linux_binprm *bprm) 566 { 567 int r; 568 mm_segment_t oldfs = get_fs(); 569 struct user_arg_ptr argv = { 570 .ptr.native = (const char __user *const __user *)__argv, 571 }; 572 573 set_fs(KERNEL_DS); 574 r = copy_strings(argc, argv, bprm); 575 set_fs(oldfs); 576 577 return r; 578 } 579 EXPORT_SYMBOL(copy_strings_kernel); 580 581 #ifdef CONFIG_MMU 582 583 /* 584 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 585 * the binfmt code determines where the new stack should reside, we shift it to 586 * its final location. The process proceeds as follows: 587 * 588 * 1) Use shift to calculate the new vma endpoints. 589 * 2) Extend vma to cover both the old and new ranges. This ensures the 590 * arguments passed to subsequent functions are consistent. 591 * 3) Move vma's page tables to the new range. 592 * 4) Free up any cleared pgd range. 593 * 5) Shrink the vma to cover only the new range. 594 */ 595 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 596 { 597 struct mm_struct *mm = vma->vm_mm; 598 unsigned long old_start = vma->vm_start; 599 unsigned long old_end = vma->vm_end; 600 unsigned long length = old_end - old_start; 601 unsigned long new_start = old_start - shift; 602 unsigned long new_end = old_end - shift; 603 struct mmu_gather *tlb; 604 605 BUG_ON(new_start > new_end); 606 607 /* 608 * ensure there are no vmas between where we want to go 609 * and where we are 610 */ 611 if (vma != find_vma(mm, new_start)) 612 return -EFAULT; 613 614 /* 615 * cover the whole range: [new_start, old_end) 616 */ 617 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 618 return -ENOMEM; 619 620 /* 621 * move the page tables downwards, on failure we rely on 622 * process cleanup to remove whatever mess we made. 623 */ 624 if (length != move_page_tables(vma, old_start, 625 vma, new_start, length)) 626 return -ENOMEM; 627 628 lru_add_drain(); 629 tlb = tlb_gather_mmu(mm, 0); 630 if (new_end > old_start) { 631 /* 632 * when the old and new regions overlap clear from new_end. 633 */ 634 free_pgd_range(tlb, new_end, old_end, new_end, 635 vma->vm_next ? vma->vm_next->vm_start : 0); 636 } else { 637 /* 638 * otherwise, clean from old_start; this is done to not touch 639 * the address space in [new_end, old_start) some architectures 640 * have constraints on va-space that make this illegal (IA64) - 641 * for the others its just a little faster. 642 */ 643 free_pgd_range(tlb, old_start, old_end, new_end, 644 vma->vm_next ? vma->vm_next->vm_start : 0); 645 } 646 tlb_finish_mmu(tlb, new_end, old_end); 647 648 /* 649 * Shrink the vma to just the new range. Always succeeds. 650 */ 651 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 652 653 return 0; 654 } 655 656 /* 657 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 658 * the stack is optionally relocated, and some extra space is added. 659 */ 660 int setup_arg_pages(struct linux_binprm *bprm, 661 unsigned long stack_top, 662 int executable_stack) 663 { 664 unsigned long ret; 665 unsigned long stack_shift; 666 struct mm_struct *mm = current->mm; 667 struct vm_area_struct *vma = bprm->vma; 668 struct vm_area_struct *prev = NULL; 669 unsigned long vm_flags; 670 unsigned long stack_base; 671 unsigned long stack_size; 672 unsigned long stack_expand; 673 unsigned long rlim_stack; 674 675 #ifdef CONFIG_STACK_GROWSUP 676 /* Limit stack size to 1GB */ 677 stack_base = rlimit_max(RLIMIT_STACK); 678 if (stack_base > (1 << 30)) 679 stack_base = 1 << 30; 680 681 /* Make sure we didn't let the argument array grow too large. */ 682 if (vma->vm_end - vma->vm_start > stack_base) 683 return -ENOMEM; 684 685 stack_base = PAGE_ALIGN(stack_top - stack_base); 686 687 stack_shift = vma->vm_start - stack_base; 688 mm->arg_start = bprm->p - stack_shift; 689 bprm->p = vma->vm_end - stack_shift; 690 #else 691 stack_top = arch_align_stack(stack_top); 692 stack_top = PAGE_ALIGN(stack_top); 693 694 if (unlikely(stack_top < mmap_min_addr) || 695 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 696 return -ENOMEM; 697 698 stack_shift = vma->vm_end - stack_top; 699 700 bprm->p -= stack_shift; 701 mm->arg_start = bprm->p; 702 #endif 703 704 if (bprm->loader) 705 bprm->loader -= stack_shift; 706 bprm->exec -= stack_shift; 707 708 down_write(&mm->mmap_sem); 709 vm_flags = VM_STACK_FLAGS; 710 711 /* 712 * Adjust stack execute permissions; explicitly enable for 713 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 714 * (arch default) otherwise. 715 */ 716 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 717 vm_flags |= VM_EXEC; 718 else if (executable_stack == EXSTACK_DISABLE_X) 719 vm_flags &= ~VM_EXEC; 720 vm_flags |= mm->def_flags; 721 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 722 723 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 724 vm_flags); 725 if (ret) 726 goto out_unlock; 727 BUG_ON(prev != vma); 728 729 /* Move stack pages down in memory. */ 730 if (stack_shift) { 731 ret = shift_arg_pages(vma, stack_shift); 732 if (ret) 733 goto out_unlock; 734 } 735 736 /* mprotect_fixup is overkill to remove the temporary stack flags */ 737 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 738 739 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 740 stack_size = vma->vm_end - vma->vm_start; 741 /* 742 * Align this down to a page boundary as expand_stack 743 * will align it up. 744 */ 745 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK; 746 #ifdef CONFIG_STACK_GROWSUP 747 if (stack_size + stack_expand > rlim_stack) 748 stack_base = vma->vm_start + rlim_stack; 749 else 750 stack_base = vma->vm_end + stack_expand; 751 #else 752 if (stack_size + stack_expand > rlim_stack) 753 stack_base = vma->vm_end - rlim_stack; 754 else 755 stack_base = vma->vm_start - stack_expand; 756 #endif 757 current->mm->start_stack = bprm->p; 758 ret = expand_stack(vma, stack_base); 759 if (ret) 760 ret = -EFAULT; 761 762 out_unlock: 763 up_write(&mm->mmap_sem); 764 return ret; 765 } 766 EXPORT_SYMBOL(setup_arg_pages); 767 768 #endif /* CONFIG_MMU */ 769 770 struct file *open_exec(const char *name) 771 { 772 struct file *file; 773 int err; 774 static const struct open_flags open_exec_flags = { 775 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 776 .acc_mode = MAY_EXEC | MAY_OPEN, 777 .intent = LOOKUP_OPEN 778 }; 779 780 file = do_filp_open(AT_FDCWD, name, &open_exec_flags, LOOKUP_FOLLOW); 781 if (IS_ERR(file)) 782 goto out; 783 784 err = -EACCES; 785 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode)) 786 goto exit; 787 788 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 789 goto exit; 790 791 fsnotify_open(file); 792 793 err = deny_write_access(file); 794 if (err) 795 goto exit; 796 797 out: 798 return file; 799 800 exit: 801 fput(file); 802 return ERR_PTR(err); 803 } 804 EXPORT_SYMBOL(open_exec); 805 806 int kernel_read(struct file *file, loff_t offset, 807 char *addr, unsigned long count) 808 { 809 mm_segment_t old_fs; 810 loff_t pos = offset; 811 int result; 812 813 old_fs = get_fs(); 814 set_fs(get_ds()); 815 /* The cast to a user pointer is valid due to the set_fs() */ 816 result = vfs_read(file, (void __user *)addr, count, &pos); 817 set_fs(old_fs); 818 return result; 819 } 820 821 EXPORT_SYMBOL(kernel_read); 822 823 static int exec_mmap(struct mm_struct *mm) 824 { 825 struct task_struct *tsk; 826 struct mm_struct * old_mm, *active_mm; 827 828 /* Notify parent that we're no longer interested in the old VM */ 829 tsk = current; 830 old_mm = current->mm; 831 sync_mm_rss(tsk, old_mm); 832 mm_release(tsk, old_mm); 833 834 if (old_mm) { 835 /* 836 * Make sure that if there is a core dump in progress 837 * for the old mm, we get out and die instead of going 838 * through with the exec. We must hold mmap_sem around 839 * checking core_state and changing tsk->mm. 840 */ 841 down_read(&old_mm->mmap_sem); 842 if (unlikely(old_mm->core_state)) { 843 up_read(&old_mm->mmap_sem); 844 return -EINTR; 845 } 846 } 847 task_lock(tsk); 848 active_mm = tsk->active_mm; 849 tsk->mm = mm; 850 tsk->active_mm = mm; 851 activate_mm(active_mm, mm); 852 if (old_mm && tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) { 853 atomic_dec(&old_mm->oom_disable_count); 854 atomic_inc(&tsk->mm->oom_disable_count); 855 } 856 task_unlock(tsk); 857 arch_pick_mmap_layout(mm); 858 if (old_mm) { 859 up_read(&old_mm->mmap_sem); 860 BUG_ON(active_mm != old_mm); 861 mm_update_next_owner(old_mm); 862 mmput(old_mm); 863 return 0; 864 } 865 mmdrop(active_mm); 866 return 0; 867 } 868 869 /* 870 * This function makes sure the current process has its own signal table, 871 * so that flush_signal_handlers can later reset the handlers without 872 * disturbing other processes. (Other processes might share the signal 873 * table via the CLONE_SIGHAND option to clone().) 874 */ 875 static int de_thread(struct task_struct *tsk) 876 { 877 struct signal_struct *sig = tsk->signal; 878 struct sighand_struct *oldsighand = tsk->sighand; 879 spinlock_t *lock = &oldsighand->siglock; 880 881 if (thread_group_empty(tsk)) 882 goto no_thread_group; 883 884 /* 885 * Kill all other threads in the thread group. 886 */ 887 spin_lock_irq(lock); 888 if (signal_group_exit(sig)) { 889 /* 890 * Another group action in progress, just 891 * return so that the signal is processed. 892 */ 893 spin_unlock_irq(lock); 894 return -EAGAIN; 895 } 896 897 sig->group_exit_task = tsk; 898 sig->notify_count = zap_other_threads(tsk); 899 if (!thread_group_leader(tsk)) 900 sig->notify_count--; 901 902 while (sig->notify_count) { 903 __set_current_state(TASK_UNINTERRUPTIBLE); 904 spin_unlock_irq(lock); 905 schedule(); 906 spin_lock_irq(lock); 907 } 908 spin_unlock_irq(lock); 909 910 /* 911 * At this point all other threads have exited, all we have to 912 * do is to wait for the thread group leader to become inactive, 913 * and to assume its PID: 914 */ 915 if (!thread_group_leader(tsk)) { 916 struct task_struct *leader = tsk->group_leader; 917 918 sig->notify_count = -1; /* for exit_notify() */ 919 for (;;) { 920 write_lock_irq(&tasklist_lock); 921 if (likely(leader->exit_state)) 922 break; 923 __set_current_state(TASK_UNINTERRUPTIBLE); 924 write_unlock_irq(&tasklist_lock); 925 schedule(); 926 } 927 928 /* 929 * The only record we have of the real-time age of a 930 * process, regardless of execs it's done, is start_time. 931 * All the past CPU time is accumulated in signal_struct 932 * from sister threads now dead. But in this non-leader 933 * exec, nothing survives from the original leader thread, 934 * whose birth marks the true age of this process now. 935 * When we take on its identity by switching to its PID, we 936 * also take its birthdate (always earlier than our own). 937 */ 938 tsk->start_time = leader->start_time; 939 940 BUG_ON(!same_thread_group(leader, tsk)); 941 BUG_ON(has_group_leader_pid(tsk)); 942 /* 943 * An exec() starts a new thread group with the 944 * TGID of the previous thread group. Rehash the 945 * two threads with a switched PID, and release 946 * the former thread group leader: 947 */ 948 949 /* Become a process group leader with the old leader's pid. 950 * The old leader becomes a thread of the this thread group. 951 * Note: The old leader also uses this pid until release_task 952 * is called. Odd but simple and correct. 953 */ 954 detach_pid(tsk, PIDTYPE_PID); 955 tsk->pid = leader->pid; 956 attach_pid(tsk, PIDTYPE_PID, task_pid(leader)); 957 transfer_pid(leader, tsk, PIDTYPE_PGID); 958 transfer_pid(leader, tsk, PIDTYPE_SID); 959 960 list_replace_rcu(&leader->tasks, &tsk->tasks); 961 list_replace_init(&leader->sibling, &tsk->sibling); 962 963 tsk->group_leader = tsk; 964 leader->group_leader = tsk; 965 966 tsk->exit_signal = SIGCHLD; 967 968 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 969 leader->exit_state = EXIT_DEAD; 970 write_unlock_irq(&tasklist_lock); 971 972 release_task(leader); 973 } 974 975 sig->group_exit_task = NULL; 976 sig->notify_count = 0; 977 978 no_thread_group: 979 if (current->mm) 980 setmax_mm_hiwater_rss(&sig->maxrss, current->mm); 981 982 exit_itimers(sig); 983 flush_itimer_signals(); 984 985 if (atomic_read(&oldsighand->count) != 1) { 986 struct sighand_struct *newsighand; 987 /* 988 * This ->sighand is shared with the CLONE_SIGHAND 989 * but not CLONE_THREAD task, switch to the new one. 990 */ 991 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 992 if (!newsighand) 993 return -ENOMEM; 994 995 atomic_set(&newsighand->count, 1); 996 memcpy(newsighand->action, oldsighand->action, 997 sizeof(newsighand->action)); 998 999 write_lock_irq(&tasklist_lock); 1000 spin_lock(&oldsighand->siglock); 1001 rcu_assign_pointer(tsk->sighand, newsighand); 1002 spin_unlock(&oldsighand->siglock); 1003 write_unlock_irq(&tasklist_lock); 1004 1005 __cleanup_sighand(oldsighand); 1006 } 1007 1008 BUG_ON(!thread_group_leader(tsk)); 1009 return 0; 1010 } 1011 1012 /* 1013 * These functions flushes out all traces of the currently running executable 1014 * so that a new one can be started 1015 */ 1016 static void flush_old_files(struct files_struct * files) 1017 { 1018 long j = -1; 1019 struct fdtable *fdt; 1020 1021 spin_lock(&files->file_lock); 1022 for (;;) { 1023 unsigned long set, i; 1024 1025 j++; 1026 i = j * __NFDBITS; 1027 fdt = files_fdtable(files); 1028 if (i >= fdt->max_fds) 1029 break; 1030 set = fdt->close_on_exec->fds_bits[j]; 1031 if (!set) 1032 continue; 1033 fdt->close_on_exec->fds_bits[j] = 0; 1034 spin_unlock(&files->file_lock); 1035 for ( ; set ; i++,set >>= 1) { 1036 if (set & 1) { 1037 sys_close(i); 1038 } 1039 } 1040 spin_lock(&files->file_lock); 1041 1042 } 1043 spin_unlock(&files->file_lock); 1044 } 1045 1046 char *get_task_comm(char *buf, struct task_struct *tsk) 1047 { 1048 /* buf must be at least sizeof(tsk->comm) in size */ 1049 task_lock(tsk); 1050 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 1051 task_unlock(tsk); 1052 return buf; 1053 } 1054 EXPORT_SYMBOL_GPL(get_task_comm); 1055 1056 void set_task_comm(struct task_struct *tsk, char *buf) 1057 { 1058 task_lock(tsk); 1059 1060 /* 1061 * Threads may access current->comm without holding 1062 * the task lock, so write the string carefully. 1063 * Readers without a lock may see incomplete new 1064 * names but are safe from non-terminating string reads. 1065 */ 1066 memset(tsk->comm, 0, TASK_COMM_LEN); 1067 wmb(); 1068 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1069 task_unlock(tsk); 1070 perf_event_comm(tsk); 1071 } 1072 1073 int flush_old_exec(struct linux_binprm * bprm) 1074 { 1075 int retval; 1076 1077 /* 1078 * Make sure we have a private signal table and that 1079 * we are unassociated from the previous thread group. 1080 */ 1081 retval = de_thread(current); 1082 if (retval) 1083 goto out; 1084 1085 set_mm_exe_file(bprm->mm, bprm->file); 1086 1087 /* 1088 * Release all of the old mmap stuff 1089 */ 1090 acct_arg_size(bprm, 0); 1091 retval = exec_mmap(bprm->mm); 1092 if (retval) 1093 goto out; 1094 1095 bprm->mm = NULL; /* We're using it now */ 1096 1097 current->flags &= ~(PF_RANDOMIZE | PF_KTHREAD); 1098 flush_thread(); 1099 current->personality &= ~bprm->per_clear; 1100 1101 return 0; 1102 1103 out: 1104 return retval; 1105 } 1106 EXPORT_SYMBOL(flush_old_exec); 1107 1108 void setup_new_exec(struct linux_binprm * bprm) 1109 { 1110 int i, ch; 1111 const char *name; 1112 char tcomm[sizeof(current->comm)]; 1113 1114 arch_pick_mmap_layout(current->mm); 1115 1116 /* This is the point of no return */ 1117 current->sas_ss_sp = current->sas_ss_size = 0; 1118 1119 if (current_euid() == current_uid() && current_egid() == current_gid()) 1120 set_dumpable(current->mm, 1); 1121 else 1122 set_dumpable(current->mm, suid_dumpable); 1123 1124 name = bprm->filename; 1125 1126 /* Copies the binary name from after last slash */ 1127 for (i=0; (ch = *(name++)) != '\0';) { 1128 if (ch == '/') 1129 i = 0; /* overwrite what we wrote */ 1130 else 1131 if (i < (sizeof(tcomm) - 1)) 1132 tcomm[i++] = ch; 1133 } 1134 tcomm[i] = '\0'; 1135 set_task_comm(current, tcomm); 1136 1137 /* Set the new mm task size. We have to do that late because it may 1138 * depend on TIF_32BIT which is only updated in flush_thread() on 1139 * some architectures like powerpc 1140 */ 1141 current->mm->task_size = TASK_SIZE; 1142 1143 /* install the new credentials */ 1144 if (bprm->cred->uid != current_euid() || 1145 bprm->cred->gid != current_egid()) { 1146 current->pdeath_signal = 0; 1147 } else if (file_permission(bprm->file, MAY_READ) || 1148 bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) { 1149 set_dumpable(current->mm, suid_dumpable); 1150 } 1151 1152 /* 1153 * Flush performance counters when crossing a 1154 * security domain: 1155 */ 1156 if (!get_dumpable(current->mm)) 1157 perf_event_exit_task(current); 1158 1159 /* An exec changes our domain. We are no longer part of the thread 1160 group */ 1161 1162 current->self_exec_id++; 1163 1164 flush_signal_handlers(current, 0); 1165 flush_old_files(current->files); 1166 } 1167 EXPORT_SYMBOL(setup_new_exec); 1168 1169 /* 1170 * Prepare credentials and lock ->cred_guard_mutex. 1171 * install_exec_creds() commits the new creds and drops the lock. 1172 * Or, if exec fails before, free_bprm() should release ->cred and 1173 * and unlock. 1174 */ 1175 int prepare_bprm_creds(struct linux_binprm *bprm) 1176 { 1177 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1178 return -ERESTARTNOINTR; 1179 1180 bprm->cred = prepare_exec_creds(); 1181 if (likely(bprm->cred)) 1182 return 0; 1183 1184 mutex_unlock(¤t->signal->cred_guard_mutex); 1185 return -ENOMEM; 1186 } 1187 1188 void free_bprm(struct linux_binprm *bprm) 1189 { 1190 free_arg_pages(bprm); 1191 if (bprm->cred) { 1192 mutex_unlock(¤t->signal->cred_guard_mutex); 1193 abort_creds(bprm->cred); 1194 } 1195 kfree(bprm); 1196 } 1197 1198 /* 1199 * install the new credentials for this executable 1200 */ 1201 void install_exec_creds(struct linux_binprm *bprm) 1202 { 1203 security_bprm_committing_creds(bprm); 1204 1205 commit_creds(bprm->cred); 1206 bprm->cred = NULL; 1207 /* 1208 * cred_guard_mutex must be held at least to this point to prevent 1209 * ptrace_attach() from altering our determination of the task's 1210 * credentials; any time after this it may be unlocked. 1211 */ 1212 security_bprm_committed_creds(bprm); 1213 mutex_unlock(¤t->signal->cred_guard_mutex); 1214 } 1215 EXPORT_SYMBOL(install_exec_creds); 1216 1217 /* 1218 * determine how safe it is to execute the proposed program 1219 * - the caller must hold ->cred_guard_mutex to protect against 1220 * PTRACE_ATTACH 1221 */ 1222 int check_unsafe_exec(struct linux_binprm *bprm) 1223 { 1224 struct task_struct *p = current, *t; 1225 unsigned n_fs; 1226 int res = 0; 1227 1228 bprm->unsafe = tracehook_unsafe_exec(p); 1229 1230 n_fs = 1; 1231 spin_lock(&p->fs->lock); 1232 rcu_read_lock(); 1233 for (t = next_thread(p); t != p; t = next_thread(t)) { 1234 if (t->fs == p->fs) 1235 n_fs++; 1236 } 1237 rcu_read_unlock(); 1238 1239 if (p->fs->users > n_fs) { 1240 bprm->unsafe |= LSM_UNSAFE_SHARE; 1241 } else { 1242 res = -EAGAIN; 1243 if (!p->fs->in_exec) { 1244 p->fs->in_exec = 1; 1245 res = 1; 1246 } 1247 } 1248 spin_unlock(&p->fs->lock); 1249 1250 return res; 1251 } 1252 1253 /* 1254 * Fill the binprm structure from the inode. 1255 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1256 * 1257 * This may be called multiple times for binary chains (scripts for example). 1258 */ 1259 int prepare_binprm(struct linux_binprm *bprm) 1260 { 1261 umode_t mode; 1262 struct inode * inode = bprm->file->f_path.dentry->d_inode; 1263 int retval; 1264 1265 mode = inode->i_mode; 1266 if (bprm->file->f_op == NULL) 1267 return -EACCES; 1268 1269 /* clear any previous set[ug]id data from a previous binary */ 1270 bprm->cred->euid = current_euid(); 1271 bprm->cred->egid = current_egid(); 1272 1273 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) { 1274 /* Set-uid? */ 1275 if (mode & S_ISUID) { 1276 bprm->per_clear |= PER_CLEAR_ON_SETID; 1277 bprm->cred->euid = inode->i_uid; 1278 } 1279 1280 /* Set-gid? */ 1281 /* 1282 * If setgid is set but no group execute bit then this 1283 * is a candidate for mandatory locking, not a setgid 1284 * executable. 1285 */ 1286 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1287 bprm->per_clear |= PER_CLEAR_ON_SETID; 1288 bprm->cred->egid = inode->i_gid; 1289 } 1290 } 1291 1292 /* fill in binprm security blob */ 1293 retval = security_bprm_set_creds(bprm); 1294 if (retval) 1295 return retval; 1296 bprm->cred_prepared = 1; 1297 1298 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1299 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE); 1300 } 1301 1302 EXPORT_SYMBOL(prepare_binprm); 1303 1304 /* 1305 * Arguments are '\0' separated strings found at the location bprm->p 1306 * points to; chop off the first by relocating brpm->p to right after 1307 * the first '\0' encountered. 1308 */ 1309 int remove_arg_zero(struct linux_binprm *bprm) 1310 { 1311 int ret = 0; 1312 unsigned long offset; 1313 char *kaddr; 1314 struct page *page; 1315 1316 if (!bprm->argc) 1317 return 0; 1318 1319 do { 1320 offset = bprm->p & ~PAGE_MASK; 1321 page = get_arg_page(bprm, bprm->p, 0); 1322 if (!page) { 1323 ret = -EFAULT; 1324 goto out; 1325 } 1326 kaddr = kmap_atomic(page, KM_USER0); 1327 1328 for (; offset < PAGE_SIZE && kaddr[offset]; 1329 offset++, bprm->p++) 1330 ; 1331 1332 kunmap_atomic(kaddr, KM_USER0); 1333 put_arg_page(page); 1334 1335 if (offset == PAGE_SIZE) 1336 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); 1337 } while (offset == PAGE_SIZE); 1338 1339 bprm->p++; 1340 bprm->argc--; 1341 ret = 0; 1342 1343 out: 1344 return ret; 1345 } 1346 EXPORT_SYMBOL(remove_arg_zero); 1347 1348 /* 1349 * cycle the list of binary formats handler, until one recognizes the image 1350 */ 1351 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) 1352 { 1353 unsigned int depth = bprm->recursion_depth; 1354 int try,retval; 1355 struct linux_binfmt *fmt; 1356 1357 retval = security_bprm_check(bprm); 1358 if (retval) 1359 return retval; 1360 1361 /* kernel module loader fixup */ 1362 /* so we don't try to load run modprobe in kernel space. */ 1363 set_fs(USER_DS); 1364 1365 retval = audit_bprm(bprm); 1366 if (retval) 1367 return retval; 1368 1369 retval = -ENOENT; 1370 for (try=0; try<2; try++) { 1371 read_lock(&binfmt_lock); 1372 list_for_each_entry(fmt, &formats, lh) { 1373 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; 1374 if (!fn) 1375 continue; 1376 if (!try_module_get(fmt->module)) 1377 continue; 1378 read_unlock(&binfmt_lock); 1379 retval = fn(bprm, regs); 1380 /* 1381 * Restore the depth counter to its starting value 1382 * in this call, so we don't have to rely on every 1383 * load_binary function to restore it on return. 1384 */ 1385 bprm->recursion_depth = depth; 1386 if (retval >= 0) { 1387 if (depth == 0) 1388 tracehook_report_exec(fmt, bprm, regs); 1389 put_binfmt(fmt); 1390 allow_write_access(bprm->file); 1391 if (bprm->file) 1392 fput(bprm->file); 1393 bprm->file = NULL; 1394 current->did_exec = 1; 1395 proc_exec_connector(current); 1396 return retval; 1397 } 1398 read_lock(&binfmt_lock); 1399 put_binfmt(fmt); 1400 if (retval != -ENOEXEC || bprm->mm == NULL) 1401 break; 1402 if (!bprm->file) { 1403 read_unlock(&binfmt_lock); 1404 return retval; 1405 } 1406 } 1407 read_unlock(&binfmt_lock); 1408 if (retval != -ENOEXEC || bprm->mm == NULL) { 1409 break; 1410 #ifdef CONFIG_MODULES 1411 } else { 1412 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1413 if (printable(bprm->buf[0]) && 1414 printable(bprm->buf[1]) && 1415 printable(bprm->buf[2]) && 1416 printable(bprm->buf[3])) 1417 break; /* -ENOEXEC */ 1418 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); 1419 #endif 1420 } 1421 } 1422 return retval; 1423 } 1424 1425 EXPORT_SYMBOL(search_binary_handler); 1426 1427 /* 1428 * sys_execve() executes a new program. 1429 */ 1430 static int do_execve_common(const char *filename, 1431 struct user_arg_ptr argv, 1432 struct user_arg_ptr envp, 1433 struct pt_regs *regs) 1434 { 1435 struct linux_binprm *bprm; 1436 struct file *file; 1437 struct files_struct *displaced; 1438 bool clear_in_exec; 1439 int retval; 1440 1441 retval = unshare_files(&displaced); 1442 if (retval) 1443 goto out_ret; 1444 1445 retval = -ENOMEM; 1446 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1447 if (!bprm) 1448 goto out_files; 1449 1450 retval = prepare_bprm_creds(bprm); 1451 if (retval) 1452 goto out_free; 1453 1454 retval = check_unsafe_exec(bprm); 1455 if (retval < 0) 1456 goto out_free; 1457 clear_in_exec = retval; 1458 current->in_execve = 1; 1459 1460 file = open_exec(filename); 1461 retval = PTR_ERR(file); 1462 if (IS_ERR(file)) 1463 goto out_unmark; 1464 1465 sched_exec(); 1466 1467 bprm->file = file; 1468 bprm->filename = filename; 1469 bprm->interp = filename; 1470 1471 retval = bprm_mm_init(bprm); 1472 if (retval) 1473 goto out_file; 1474 1475 bprm->argc = count(argv, MAX_ARG_STRINGS); 1476 if ((retval = bprm->argc) < 0) 1477 goto out; 1478 1479 bprm->envc = count(envp, MAX_ARG_STRINGS); 1480 if ((retval = bprm->envc) < 0) 1481 goto out; 1482 1483 retval = prepare_binprm(bprm); 1484 if (retval < 0) 1485 goto out; 1486 1487 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1488 if (retval < 0) 1489 goto out; 1490 1491 bprm->exec = bprm->p; 1492 retval = copy_strings(bprm->envc, envp, bprm); 1493 if (retval < 0) 1494 goto out; 1495 1496 retval = copy_strings(bprm->argc, argv, bprm); 1497 if (retval < 0) 1498 goto out; 1499 1500 retval = search_binary_handler(bprm,regs); 1501 if (retval < 0) 1502 goto out; 1503 1504 /* execve succeeded */ 1505 current->fs->in_exec = 0; 1506 current->in_execve = 0; 1507 acct_update_integrals(current); 1508 free_bprm(bprm); 1509 if (displaced) 1510 put_files_struct(displaced); 1511 return retval; 1512 1513 out: 1514 if (bprm->mm) { 1515 acct_arg_size(bprm, 0); 1516 mmput(bprm->mm); 1517 } 1518 1519 out_file: 1520 if (bprm->file) { 1521 allow_write_access(bprm->file); 1522 fput(bprm->file); 1523 } 1524 1525 out_unmark: 1526 if (clear_in_exec) 1527 current->fs->in_exec = 0; 1528 current->in_execve = 0; 1529 1530 out_free: 1531 free_bprm(bprm); 1532 1533 out_files: 1534 if (displaced) 1535 reset_files_struct(displaced); 1536 out_ret: 1537 return retval; 1538 } 1539 1540 int do_execve(const char *filename, 1541 const char __user *const __user *__argv, 1542 const char __user *const __user *__envp, 1543 struct pt_regs *regs) 1544 { 1545 struct user_arg_ptr argv = { .ptr.native = __argv }; 1546 struct user_arg_ptr envp = { .ptr.native = __envp }; 1547 return do_execve_common(filename, argv, envp, regs); 1548 } 1549 1550 #ifdef CONFIG_COMPAT 1551 int compat_do_execve(char *filename, 1552 compat_uptr_t __user *__argv, 1553 compat_uptr_t __user *__envp, 1554 struct pt_regs *regs) 1555 { 1556 struct user_arg_ptr argv = { 1557 .is_compat = true, 1558 .ptr.compat = __argv, 1559 }; 1560 struct user_arg_ptr envp = { 1561 .is_compat = true, 1562 .ptr.compat = __envp, 1563 }; 1564 return do_execve_common(filename, argv, envp, regs); 1565 } 1566 #endif 1567 1568 void set_binfmt(struct linux_binfmt *new) 1569 { 1570 struct mm_struct *mm = current->mm; 1571 1572 if (mm->binfmt) 1573 module_put(mm->binfmt->module); 1574 1575 mm->binfmt = new; 1576 if (new) 1577 __module_get(new->module); 1578 } 1579 1580 EXPORT_SYMBOL(set_binfmt); 1581 1582 static int expand_corename(struct core_name *cn) 1583 { 1584 char *old_corename = cn->corename; 1585 1586 cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count); 1587 cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL); 1588 1589 if (!cn->corename) { 1590 kfree(old_corename); 1591 return -ENOMEM; 1592 } 1593 1594 return 0; 1595 } 1596 1597 static int cn_printf(struct core_name *cn, const char *fmt, ...) 1598 { 1599 char *cur; 1600 int need; 1601 int ret; 1602 va_list arg; 1603 1604 va_start(arg, fmt); 1605 need = vsnprintf(NULL, 0, fmt, arg); 1606 va_end(arg); 1607 1608 if (likely(need < cn->size - cn->used - 1)) 1609 goto out_printf; 1610 1611 ret = expand_corename(cn); 1612 if (ret) 1613 goto expand_fail; 1614 1615 out_printf: 1616 cur = cn->corename + cn->used; 1617 va_start(arg, fmt); 1618 vsnprintf(cur, need + 1, fmt, arg); 1619 va_end(arg); 1620 cn->used += need; 1621 return 0; 1622 1623 expand_fail: 1624 return ret; 1625 } 1626 1627 /* format_corename will inspect the pattern parameter, and output a 1628 * name into corename, which must have space for at least 1629 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. 1630 */ 1631 static int format_corename(struct core_name *cn, long signr) 1632 { 1633 const struct cred *cred = current_cred(); 1634 const char *pat_ptr = core_pattern; 1635 int ispipe = (*pat_ptr == '|'); 1636 int pid_in_pattern = 0; 1637 int err = 0; 1638 1639 cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count); 1640 cn->corename = kmalloc(cn->size, GFP_KERNEL); 1641 cn->used = 0; 1642 1643 if (!cn->corename) 1644 return -ENOMEM; 1645 1646 /* Repeat as long as we have more pattern to process and more output 1647 space */ 1648 while (*pat_ptr) { 1649 if (*pat_ptr != '%') { 1650 if (*pat_ptr == 0) 1651 goto out; 1652 err = cn_printf(cn, "%c", *pat_ptr++); 1653 } else { 1654 switch (*++pat_ptr) { 1655 /* single % at the end, drop that */ 1656 case 0: 1657 goto out; 1658 /* Double percent, output one percent */ 1659 case '%': 1660 err = cn_printf(cn, "%c", '%'); 1661 break; 1662 /* pid */ 1663 case 'p': 1664 pid_in_pattern = 1; 1665 err = cn_printf(cn, "%d", 1666 task_tgid_vnr(current)); 1667 break; 1668 /* uid */ 1669 case 'u': 1670 err = cn_printf(cn, "%d", cred->uid); 1671 break; 1672 /* gid */ 1673 case 'g': 1674 err = cn_printf(cn, "%d", cred->gid); 1675 break; 1676 /* signal that caused the coredump */ 1677 case 's': 1678 err = cn_printf(cn, "%ld", signr); 1679 break; 1680 /* UNIX time of coredump */ 1681 case 't': { 1682 struct timeval tv; 1683 do_gettimeofday(&tv); 1684 err = cn_printf(cn, "%lu", tv.tv_sec); 1685 break; 1686 } 1687 /* hostname */ 1688 case 'h': 1689 down_read(&uts_sem); 1690 err = cn_printf(cn, "%s", 1691 utsname()->nodename); 1692 up_read(&uts_sem); 1693 break; 1694 /* executable */ 1695 case 'e': 1696 err = cn_printf(cn, "%s", current->comm); 1697 break; 1698 /* core limit size */ 1699 case 'c': 1700 err = cn_printf(cn, "%lu", 1701 rlimit(RLIMIT_CORE)); 1702 break; 1703 default: 1704 break; 1705 } 1706 ++pat_ptr; 1707 } 1708 1709 if (err) 1710 return err; 1711 } 1712 1713 /* Backward compatibility with core_uses_pid: 1714 * 1715 * If core_pattern does not include a %p (as is the default) 1716 * and core_uses_pid is set, then .%pid will be appended to 1717 * the filename. Do not do this for piped commands. */ 1718 if (!ispipe && !pid_in_pattern && core_uses_pid) { 1719 err = cn_printf(cn, ".%d", task_tgid_vnr(current)); 1720 if (err) 1721 return err; 1722 } 1723 out: 1724 return ispipe; 1725 } 1726 1727 static int zap_process(struct task_struct *start, int exit_code) 1728 { 1729 struct task_struct *t; 1730 int nr = 0; 1731 1732 start->signal->flags = SIGNAL_GROUP_EXIT; 1733 start->signal->group_exit_code = exit_code; 1734 start->signal->group_stop_count = 0; 1735 1736 t = start; 1737 do { 1738 task_clear_group_stop_pending(t); 1739 if (t != current && t->mm) { 1740 sigaddset(&t->pending.signal, SIGKILL); 1741 signal_wake_up(t, 1); 1742 nr++; 1743 } 1744 } while_each_thread(start, t); 1745 1746 return nr; 1747 } 1748 1749 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm, 1750 struct core_state *core_state, int exit_code) 1751 { 1752 struct task_struct *g, *p; 1753 unsigned long flags; 1754 int nr = -EAGAIN; 1755 1756 spin_lock_irq(&tsk->sighand->siglock); 1757 if (!signal_group_exit(tsk->signal)) { 1758 mm->core_state = core_state; 1759 nr = zap_process(tsk, exit_code); 1760 } 1761 spin_unlock_irq(&tsk->sighand->siglock); 1762 if (unlikely(nr < 0)) 1763 return nr; 1764 1765 if (atomic_read(&mm->mm_users) == nr + 1) 1766 goto done; 1767 /* 1768 * We should find and kill all tasks which use this mm, and we should 1769 * count them correctly into ->nr_threads. We don't take tasklist 1770 * lock, but this is safe wrt: 1771 * 1772 * fork: 1773 * None of sub-threads can fork after zap_process(leader). All 1774 * processes which were created before this point should be 1775 * visible to zap_threads() because copy_process() adds the new 1776 * process to the tail of init_task.tasks list, and lock/unlock 1777 * of ->siglock provides a memory barrier. 1778 * 1779 * do_exit: 1780 * The caller holds mm->mmap_sem. This means that the task which 1781 * uses this mm can't pass exit_mm(), so it can't exit or clear 1782 * its ->mm. 1783 * 1784 * de_thread: 1785 * It does list_replace_rcu(&leader->tasks, ¤t->tasks), 1786 * we must see either old or new leader, this does not matter. 1787 * However, it can change p->sighand, so lock_task_sighand(p) 1788 * must be used. Since p->mm != NULL and we hold ->mmap_sem 1789 * it can't fail. 1790 * 1791 * Note also that "g" can be the old leader with ->mm == NULL 1792 * and already unhashed and thus removed from ->thread_group. 1793 * This is OK, __unhash_process()->list_del_rcu() does not 1794 * clear the ->next pointer, we will find the new leader via 1795 * next_thread(). 1796 */ 1797 rcu_read_lock(); 1798 for_each_process(g) { 1799 if (g == tsk->group_leader) 1800 continue; 1801 if (g->flags & PF_KTHREAD) 1802 continue; 1803 p = g; 1804 do { 1805 if (p->mm) { 1806 if (unlikely(p->mm == mm)) { 1807 lock_task_sighand(p, &flags); 1808 nr += zap_process(p, exit_code); 1809 unlock_task_sighand(p, &flags); 1810 } 1811 break; 1812 } 1813 } while_each_thread(g, p); 1814 } 1815 rcu_read_unlock(); 1816 done: 1817 atomic_set(&core_state->nr_threads, nr); 1818 return nr; 1819 } 1820 1821 static int coredump_wait(int exit_code, struct core_state *core_state) 1822 { 1823 struct task_struct *tsk = current; 1824 struct mm_struct *mm = tsk->mm; 1825 struct completion *vfork_done; 1826 int core_waiters = -EBUSY; 1827 1828 init_completion(&core_state->startup); 1829 core_state->dumper.task = tsk; 1830 core_state->dumper.next = NULL; 1831 1832 down_write(&mm->mmap_sem); 1833 if (!mm->core_state) 1834 core_waiters = zap_threads(tsk, mm, core_state, exit_code); 1835 up_write(&mm->mmap_sem); 1836 1837 if (unlikely(core_waiters < 0)) 1838 goto fail; 1839 1840 /* 1841 * Make sure nobody is waiting for us to release the VM, 1842 * otherwise we can deadlock when we wait on each other 1843 */ 1844 vfork_done = tsk->vfork_done; 1845 if (vfork_done) { 1846 tsk->vfork_done = NULL; 1847 complete(vfork_done); 1848 } 1849 1850 if (core_waiters) 1851 wait_for_completion(&core_state->startup); 1852 fail: 1853 return core_waiters; 1854 } 1855 1856 static void coredump_finish(struct mm_struct *mm) 1857 { 1858 struct core_thread *curr, *next; 1859 struct task_struct *task; 1860 1861 next = mm->core_state->dumper.next; 1862 while ((curr = next) != NULL) { 1863 next = curr->next; 1864 task = curr->task; 1865 /* 1866 * see exit_mm(), curr->task must not see 1867 * ->task == NULL before we read ->next. 1868 */ 1869 smp_mb(); 1870 curr->task = NULL; 1871 wake_up_process(task); 1872 } 1873 1874 mm->core_state = NULL; 1875 } 1876 1877 /* 1878 * set_dumpable converts traditional three-value dumpable to two flags and 1879 * stores them into mm->flags. It modifies lower two bits of mm->flags, but 1880 * these bits are not changed atomically. So get_dumpable can observe the 1881 * intermediate state. To avoid doing unexpected behavior, get get_dumpable 1882 * return either old dumpable or new one by paying attention to the order of 1883 * modifying the bits. 1884 * 1885 * dumpable | mm->flags (binary) 1886 * old new | initial interim final 1887 * ---------+----------------------- 1888 * 0 1 | 00 01 01 1889 * 0 2 | 00 10(*) 11 1890 * 1 0 | 01 00 00 1891 * 1 2 | 01 11 11 1892 * 2 0 | 11 10(*) 00 1893 * 2 1 | 11 11 01 1894 * 1895 * (*) get_dumpable regards interim value of 10 as 11. 1896 */ 1897 void set_dumpable(struct mm_struct *mm, int value) 1898 { 1899 switch (value) { 1900 case 0: 1901 clear_bit(MMF_DUMPABLE, &mm->flags); 1902 smp_wmb(); 1903 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1904 break; 1905 case 1: 1906 set_bit(MMF_DUMPABLE, &mm->flags); 1907 smp_wmb(); 1908 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1909 break; 1910 case 2: 1911 set_bit(MMF_DUMP_SECURELY, &mm->flags); 1912 smp_wmb(); 1913 set_bit(MMF_DUMPABLE, &mm->flags); 1914 break; 1915 } 1916 } 1917 1918 static int __get_dumpable(unsigned long mm_flags) 1919 { 1920 int ret; 1921 1922 ret = mm_flags & MMF_DUMPABLE_MASK; 1923 return (ret >= 2) ? 2 : ret; 1924 } 1925 1926 int get_dumpable(struct mm_struct *mm) 1927 { 1928 return __get_dumpable(mm->flags); 1929 } 1930 1931 static void wait_for_dump_helpers(struct file *file) 1932 { 1933 struct pipe_inode_info *pipe; 1934 1935 pipe = file->f_path.dentry->d_inode->i_pipe; 1936 1937 pipe_lock(pipe); 1938 pipe->readers++; 1939 pipe->writers--; 1940 1941 while ((pipe->readers > 1) && (!signal_pending(current))) { 1942 wake_up_interruptible_sync(&pipe->wait); 1943 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 1944 pipe_wait(pipe); 1945 } 1946 1947 pipe->readers--; 1948 pipe->writers++; 1949 pipe_unlock(pipe); 1950 1951 } 1952 1953 1954 /* 1955 * umh_pipe_setup 1956 * helper function to customize the process used 1957 * to collect the core in userspace. Specifically 1958 * it sets up a pipe and installs it as fd 0 (stdin) 1959 * for the process. Returns 0 on success, or 1960 * PTR_ERR on failure. 1961 * Note that it also sets the core limit to 1. This 1962 * is a special value that we use to trap recursive 1963 * core dumps 1964 */ 1965 static int umh_pipe_setup(struct subprocess_info *info) 1966 { 1967 struct file *rp, *wp; 1968 struct fdtable *fdt; 1969 struct coredump_params *cp = (struct coredump_params *)info->data; 1970 struct files_struct *cf = current->files; 1971 1972 wp = create_write_pipe(0); 1973 if (IS_ERR(wp)) 1974 return PTR_ERR(wp); 1975 1976 rp = create_read_pipe(wp, 0); 1977 if (IS_ERR(rp)) { 1978 free_write_pipe(wp); 1979 return PTR_ERR(rp); 1980 } 1981 1982 cp->file = wp; 1983 1984 sys_close(0); 1985 fd_install(0, rp); 1986 spin_lock(&cf->file_lock); 1987 fdt = files_fdtable(cf); 1988 FD_SET(0, fdt->open_fds); 1989 FD_CLR(0, fdt->close_on_exec); 1990 spin_unlock(&cf->file_lock); 1991 1992 /* and disallow core files too */ 1993 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1}; 1994 1995 return 0; 1996 } 1997 1998 void do_coredump(long signr, int exit_code, struct pt_regs *regs) 1999 { 2000 struct core_state core_state; 2001 struct core_name cn; 2002 struct mm_struct *mm = current->mm; 2003 struct linux_binfmt * binfmt; 2004 const struct cred *old_cred; 2005 struct cred *cred; 2006 int retval = 0; 2007 int flag = 0; 2008 int ispipe; 2009 static atomic_t core_dump_count = ATOMIC_INIT(0); 2010 struct coredump_params cprm = { 2011 .signr = signr, 2012 .regs = regs, 2013 .limit = rlimit(RLIMIT_CORE), 2014 /* 2015 * We must use the same mm->flags while dumping core to avoid 2016 * inconsistency of bit flags, since this flag is not protected 2017 * by any locks. 2018 */ 2019 .mm_flags = mm->flags, 2020 }; 2021 2022 audit_core_dumps(signr); 2023 2024 binfmt = mm->binfmt; 2025 if (!binfmt || !binfmt->core_dump) 2026 goto fail; 2027 if (!__get_dumpable(cprm.mm_flags)) 2028 goto fail; 2029 2030 cred = prepare_creds(); 2031 if (!cred) 2032 goto fail; 2033 /* 2034 * We cannot trust fsuid as being the "true" uid of the 2035 * process nor do we know its entire history. We only know it 2036 * was tainted so we dump it as root in mode 2. 2037 */ 2038 if (__get_dumpable(cprm.mm_flags) == 2) { 2039 /* Setuid core dump mode */ 2040 flag = O_EXCL; /* Stop rewrite attacks */ 2041 cred->fsuid = 0; /* Dump root private */ 2042 } 2043 2044 retval = coredump_wait(exit_code, &core_state); 2045 if (retval < 0) 2046 goto fail_creds; 2047 2048 old_cred = override_creds(cred); 2049 2050 /* 2051 * Clear any false indication of pending signals that might 2052 * be seen by the filesystem code called to write the core file. 2053 */ 2054 clear_thread_flag(TIF_SIGPENDING); 2055 2056 ispipe = format_corename(&cn, signr); 2057 2058 if (ispipe == -ENOMEM) { 2059 printk(KERN_WARNING "format_corename failed\n"); 2060 printk(KERN_WARNING "Aborting core\n"); 2061 goto fail_corename; 2062 } 2063 2064 if (ispipe) { 2065 int dump_count; 2066 char **helper_argv; 2067 2068 if (cprm.limit == 1) { 2069 /* 2070 * Normally core limits are irrelevant to pipes, since 2071 * we're not writing to the file system, but we use 2072 * cprm.limit of 1 here as a speacial value. Any 2073 * non-1 limit gets set to RLIM_INFINITY below, but 2074 * a limit of 0 skips the dump. This is a consistent 2075 * way to catch recursive crashes. We can still crash 2076 * if the core_pattern binary sets RLIM_CORE = !1 2077 * but it runs as root, and can do lots of stupid things 2078 * Note that we use task_tgid_vnr here to grab the pid 2079 * of the process group leader. That way we get the 2080 * right pid if a thread in a multi-threaded 2081 * core_pattern process dies. 2082 */ 2083 printk(KERN_WARNING 2084 "Process %d(%s) has RLIMIT_CORE set to 1\n", 2085 task_tgid_vnr(current), current->comm); 2086 printk(KERN_WARNING "Aborting core\n"); 2087 goto fail_unlock; 2088 } 2089 cprm.limit = RLIM_INFINITY; 2090 2091 dump_count = atomic_inc_return(&core_dump_count); 2092 if (core_pipe_limit && (core_pipe_limit < dump_count)) { 2093 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n", 2094 task_tgid_vnr(current), current->comm); 2095 printk(KERN_WARNING "Skipping core dump\n"); 2096 goto fail_dropcount; 2097 } 2098 2099 helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL); 2100 if (!helper_argv) { 2101 printk(KERN_WARNING "%s failed to allocate memory\n", 2102 __func__); 2103 goto fail_dropcount; 2104 } 2105 2106 retval = call_usermodehelper_fns(helper_argv[0], helper_argv, 2107 NULL, UMH_WAIT_EXEC, umh_pipe_setup, 2108 NULL, &cprm); 2109 argv_free(helper_argv); 2110 if (retval) { 2111 printk(KERN_INFO "Core dump to %s pipe failed\n", 2112 cn.corename); 2113 goto close_fail; 2114 } 2115 } else { 2116 struct inode *inode; 2117 2118 if (cprm.limit < binfmt->min_coredump) 2119 goto fail_unlock; 2120 2121 cprm.file = filp_open(cn.corename, 2122 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 2123 0600); 2124 if (IS_ERR(cprm.file)) 2125 goto fail_unlock; 2126 2127 inode = cprm.file->f_path.dentry->d_inode; 2128 if (inode->i_nlink > 1) 2129 goto close_fail; 2130 if (d_unhashed(cprm.file->f_path.dentry)) 2131 goto close_fail; 2132 /* 2133 * AK: actually i see no reason to not allow this for named 2134 * pipes etc, but keep the previous behaviour for now. 2135 */ 2136 if (!S_ISREG(inode->i_mode)) 2137 goto close_fail; 2138 /* 2139 * Dont allow local users get cute and trick others to coredump 2140 * into their pre-created files. 2141 */ 2142 if (inode->i_uid != current_fsuid()) 2143 goto close_fail; 2144 if (!cprm.file->f_op || !cprm.file->f_op->write) 2145 goto close_fail; 2146 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file)) 2147 goto close_fail; 2148 } 2149 2150 retval = binfmt->core_dump(&cprm); 2151 if (retval) 2152 current->signal->group_exit_code |= 0x80; 2153 2154 if (ispipe && core_pipe_limit) 2155 wait_for_dump_helpers(cprm.file); 2156 close_fail: 2157 if (cprm.file) 2158 filp_close(cprm.file, NULL); 2159 fail_dropcount: 2160 if (ispipe) 2161 atomic_dec(&core_dump_count); 2162 fail_unlock: 2163 kfree(cn.corename); 2164 fail_corename: 2165 coredump_finish(mm); 2166 revert_creds(old_cred); 2167 fail_creds: 2168 put_cred(cred); 2169 fail: 2170 return; 2171 } 2172 2173 /* 2174 * Core dumping helper functions. These are the only things you should 2175 * do on a core-file: use only these functions to write out all the 2176 * necessary info. 2177 */ 2178 int dump_write(struct file *file, const void *addr, int nr) 2179 { 2180 return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr; 2181 } 2182 EXPORT_SYMBOL(dump_write); 2183 2184 int dump_seek(struct file *file, loff_t off) 2185 { 2186 int ret = 1; 2187 2188 if (file->f_op->llseek && file->f_op->llseek != no_llseek) { 2189 if (file->f_op->llseek(file, off, SEEK_CUR) < 0) 2190 return 0; 2191 } else { 2192 char *buf = (char *)get_zeroed_page(GFP_KERNEL); 2193 2194 if (!buf) 2195 return 0; 2196 while (off > 0) { 2197 unsigned long n = off; 2198 2199 if (n > PAGE_SIZE) 2200 n = PAGE_SIZE; 2201 if (!dump_write(file, buf, n)) { 2202 ret = 0; 2203 break; 2204 } 2205 off -= n; 2206 } 2207 free_page((unsigned long)buf); 2208 } 2209 return ret; 2210 } 2211 EXPORT_SYMBOL(dump_seek); 2212