xref: /linux-6.15/fs/exec.c (revision 4f3865fb)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/config.h>
26 #include <linux/slab.h>
27 #include <linux/file.h>
28 #include <linux/mman.h>
29 #include <linux/a.out.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/smp_lock.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/highmem.h>
36 #include <linux/spinlock.h>
37 #include <linux/key.h>
38 #include <linux/personality.h>
39 #include <linux/binfmts.h>
40 #include <linux/swap.h>
41 #include <linux/utsname.h>
42 #include <linux/module.h>
43 #include <linux/namei.h>
44 #include <linux/proc_fs.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/rmap.h>
50 #include <linux/acct.h>
51 #include <linux/cn_proc.h>
52 #include <linux/audit.h>
53 
54 #include <asm/uaccess.h>
55 #include <asm/mmu_context.h>
56 
57 #ifdef CONFIG_KMOD
58 #include <linux/kmod.h>
59 #endif
60 
61 int core_uses_pid;
62 char core_pattern[65] = "core";
63 int suid_dumpable = 0;
64 
65 EXPORT_SYMBOL(suid_dumpable);
66 /* The maximal length of core_pattern is also specified in sysctl.c */
67 
68 static struct linux_binfmt *formats;
69 static DEFINE_RWLOCK(binfmt_lock);
70 
71 int register_binfmt(struct linux_binfmt * fmt)
72 {
73 	struct linux_binfmt ** tmp = &formats;
74 
75 	if (!fmt)
76 		return -EINVAL;
77 	if (fmt->next)
78 		return -EBUSY;
79 	write_lock(&binfmt_lock);
80 	while (*tmp) {
81 		if (fmt == *tmp) {
82 			write_unlock(&binfmt_lock);
83 			return -EBUSY;
84 		}
85 		tmp = &(*tmp)->next;
86 	}
87 	fmt->next = formats;
88 	formats = fmt;
89 	write_unlock(&binfmt_lock);
90 	return 0;
91 }
92 
93 EXPORT_SYMBOL(register_binfmt);
94 
95 int unregister_binfmt(struct linux_binfmt * fmt)
96 {
97 	struct linux_binfmt ** tmp = &formats;
98 
99 	write_lock(&binfmt_lock);
100 	while (*tmp) {
101 		if (fmt == *tmp) {
102 			*tmp = fmt->next;
103 			write_unlock(&binfmt_lock);
104 			return 0;
105 		}
106 		tmp = &(*tmp)->next;
107 	}
108 	write_unlock(&binfmt_lock);
109 	return -EINVAL;
110 }
111 
112 EXPORT_SYMBOL(unregister_binfmt);
113 
114 static inline void put_binfmt(struct linux_binfmt * fmt)
115 {
116 	module_put(fmt->module);
117 }
118 
119 /*
120  * Note that a shared library must be both readable and executable due to
121  * security reasons.
122  *
123  * Also note that we take the address to load from from the file itself.
124  */
125 asmlinkage long sys_uselib(const char __user * library)
126 {
127 	struct file * file;
128 	struct nameidata nd;
129 	int error;
130 
131 	error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
132 	if (error)
133 		goto out;
134 
135 	error = -EINVAL;
136 	if (!S_ISREG(nd.dentry->d_inode->i_mode))
137 		goto exit;
138 
139 	error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
140 	if (error)
141 		goto exit;
142 
143 	file = nameidata_to_filp(&nd, O_RDONLY);
144 	error = PTR_ERR(file);
145 	if (IS_ERR(file))
146 		goto out;
147 
148 	error = -ENOEXEC;
149 	if(file->f_op) {
150 		struct linux_binfmt * fmt;
151 
152 		read_lock(&binfmt_lock);
153 		for (fmt = formats ; fmt ; fmt = fmt->next) {
154 			if (!fmt->load_shlib)
155 				continue;
156 			if (!try_module_get(fmt->module))
157 				continue;
158 			read_unlock(&binfmt_lock);
159 			error = fmt->load_shlib(file);
160 			read_lock(&binfmt_lock);
161 			put_binfmt(fmt);
162 			if (error != -ENOEXEC)
163 				break;
164 		}
165 		read_unlock(&binfmt_lock);
166 	}
167 	fput(file);
168 out:
169   	return error;
170 exit:
171 	release_open_intent(&nd);
172 	path_release(&nd);
173 	goto out;
174 }
175 
176 /*
177  * count() counts the number of strings in array ARGV.
178  */
179 static int count(char __user * __user * argv, int max)
180 {
181 	int i = 0;
182 
183 	if (argv != NULL) {
184 		for (;;) {
185 			char __user * p;
186 
187 			if (get_user(p, argv))
188 				return -EFAULT;
189 			if (!p)
190 				break;
191 			argv++;
192 			if(++i > max)
193 				return -E2BIG;
194 			cond_resched();
195 		}
196 	}
197 	return i;
198 }
199 
200 /*
201  * 'copy_strings()' copies argument/environment strings from user
202  * memory to free pages in kernel mem. These are in a format ready
203  * to be put directly into the top of new user memory.
204  */
205 static int copy_strings(int argc, char __user * __user * argv,
206 			struct linux_binprm *bprm)
207 {
208 	struct page *kmapped_page = NULL;
209 	char *kaddr = NULL;
210 	int ret;
211 
212 	while (argc-- > 0) {
213 		char __user *str;
214 		int len;
215 		unsigned long pos;
216 
217 		if (get_user(str, argv+argc) ||
218 				!(len = strnlen_user(str, bprm->p))) {
219 			ret = -EFAULT;
220 			goto out;
221 		}
222 
223 		if (bprm->p < len)  {
224 			ret = -E2BIG;
225 			goto out;
226 		}
227 
228 		bprm->p -= len;
229 		/* XXX: add architecture specific overflow check here. */
230 		pos = bprm->p;
231 
232 		while (len > 0) {
233 			int i, new, err;
234 			int offset, bytes_to_copy;
235 			struct page *page;
236 
237 			offset = pos % PAGE_SIZE;
238 			i = pos/PAGE_SIZE;
239 			page = bprm->page[i];
240 			new = 0;
241 			if (!page) {
242 				page = alloc_page(GFP_HIGHUSER);
243 				bprm->page[i] = page;
244 				if (!page) {
245 					ret = -ENOMEM;
246 					goto out;
247 				}
248 				new = 1;
249 			}
250 
251 			if (page != kmapped_page) {
252 				if (kmapped_page)
253 					kunmap(kmapped_page);
254 				kmapped_page = page;
255 				kaddr = kmap(kmapped_page);
256 			}
257 			if (new && offset)
258 				memset(kaddr, 0, offset);
259 			bytes_to_copy = PAGE_SIZE - offset;
260 			if (bytes_to_copy > len) {
261 				bytes_to_copy = len;
262 				if (new)
263 					memset(kaddr+offset+len, 0,
264 						PAGE_SIZE-offset-len);
265 			}
266 			err = copy_from_user(kaddr+offset, str, bytes_to_copy);
267 			if (err) {
268 				ret = -EFAULT;
269 				goto out;
270 			}
271 
272 			pos += bytes_to_copy;
273 			str += bytes_to_copy;
274 			len -= bytes_to_copy;
275 		}
276 	}
277 	ret = 0;
278 out:
279 	if (kmapped_page)
280 		kunmap(kmapped_page);
281 	return ret;
282 }
283 
284 /*
285  * Like copy_strings, but get argv and its values from kernel memory.
286  */
287 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
288 {
289 	int r;
290 	mm_segment_t oldfs = get_fs();
291 	set_fs(KERNEL_DS);
292 	r = copy_strings(argc, (char __user * __user *)argv, bprm);
293 	set_fs(oldfs);
294 	return r;
295 }
296 
297 EXPORT_SYMBOL(copy_strings_kernel);
298 
299 #ifdef CONFIG_MMU
300 /*
301  * This routine is used to map in a page into an address space: needed by
302  * execve() for the initial stack and environment pages.
303  *
304  * vma->vm_mm->mmap_sem is held for writing.
305  */
306 void install_arg_page(struct vm_area_struct *vma,
307 			struct page *page, unsigned long address)
308 {
309 	struct mm_struct *mm = vma->vm_mm;
310 	pte_t * pte;
311 	spinlock_t *ptl;
312 
313 	if (unlikely(anon_vma_prepare(vma)))
314 		goto out;
315 
316 	flush_dcache_page(page);
317 	pte = get_locked_pte(mm, address, &ptl);
318 	if (!pte)
319 		goto out;
320 	if (!pte_none(*pte)) {
321 		pte_unmap_unlock(pte, ptl);
322 		goto out;
323 	}
324 	inc_mm_counter(mm, anon_rss);
325 	lru_cache_add_active(page);
326 	set_pte_at(mm, address, pte, pte_mkdirty(pte_mkwrite(mk_pte(
327 					page, vma->vm_page_prot))));
328 	page_add_new_anon_rmap(page, vma, address);
329 	pte_unmap_unlock(pte, ptl);
330 
331 	/* no need for flush_tlb */
332 	return;
333 out:
334 	__free_page(page);
335 	force_sig(SIGKILL, current);
336 }
337 
338 #define EXTRA_STACK_VM_PAGES	20	/* random */
339 
340 int setup_arg_pages(struct linux_binprm *bprm,
341 		    unsigned long stack_top,
342 		    int executable_stack)
343 {
344 	unsigned long stack_base;
345 	struct vm_area_struct *mpnt;
346 	struct mm_struct *mm = current->mm;
347 	int i, ret;
348 	long arg_size;
349 
350 #ifdef CONFIG_STACK_GROWSUP
351 	/* Move the argument and environment strings to the bottom of the
352 	 * stack space.
353 	 */
354 	int offset, j;
355 	char *to, *from;
356 
357 	/* Start by shifting all the pages down */
358 	i = 0;
359 	for (j = 0; j < MAX_ARG_PAGES; j++) {
360 		struct page *page = bprm->page[j];
361 		if (!page)
362 			continue;
363 		bprm->page[i++] = page;
364 	}
365 
366 	/* Now move them within their pages */
367 	offset = bprm->p % PAGE_SIZE;
368 	to = kmap(bprm->page[0]);
369 	for (j = 1; j < i; j++) {
370 		memmove(to, to + offset, PAGE_SIZE - offset);
371 		from = kmap(bprm->page[j]);
372 		memcpy(to + PAGE_SIZE - offset, from, offset);
373 		kunmap(bprm->page[j - 1]);
374 		to = from;
375 	}
376 	memmove(to, to + offset, PAGE_SIZE - offset);
377 	kunmap(bprm->page[j - 1]);
378 
379 	/* Limit stack size to 1GB */
380 	stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
381 	if (stack_base > (1 << 30))
382 		stack_base = 1 << 30;
383 	stack_base = PAGE_ALIGN(stack_top - stack_base);
384 
385 	/* Adjust bprm->p to point to the end of the strings. */
386 	bprm->p = stack_base + PAGE_SIZE * i - offset;
387 
388 	mm->arg_start = stack_base;
389 	arg_size = i << PAGE_SHIFT;
390 
391 	/* zero pages that were copied above */
392 	while (i < MAX_ARG_PAGES)
393 		bprm->page[i++] = NULL;
394 #else
395 	stack_base = arch_align_stack(stack_top - MAX_ARG_PAGES*PAGE_SIZE);
396 	stack_base = PAGE_ALIGN(stack_base);
397 	bprm->p += stack_base;
398 	mm->arg_start = bprm->p;
399 	arg_size = stack_top - (PAGE_MASK & (unsigned long) mm->arg_start);
400 #endif
401 
402 	arg_size += EXTRA_STACK_VM_PAGES * PAGE_SIZE;
403 
404 	if (bprm->loader)
405 		bprm->loader += stack_base;
406 	bprm->exec += stack_base;
407 
408 	mpnt = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
409 	if (!mpnt)
410 		return -ENOMEM;
411 
412 	memset(mpnt, 0, sizeof(*mpnt));
413 
414 	down_write(&mm->mmap_sem);
415 	{
416 		mpnt->vm_mm = mm;
417 #ifdef CONFIG_STACK_GROWSUP
418 		mpnt->vm_start = stack_base;
419 		mpnt->vm_end = stack_base + arg_size;
420 #else
421 		mpnt->vm_end = stack_top;
422 		mpnt->vm_start = mpnt->vm_end - arg_size;
423 #endif
424 		/* Adjust stack execute permissions; explicitly enable
425 		 * for EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X
426 		 * and leave alone (arch default) otherwise. */
427 		if (unlikely(executable_stack == EXSTACK_ENABLE_X))
428 			mpnt->vm_flags = VM_STACK_FLAGS |  VM_EXEC;
429 		else if (executable_stack == EXSTACK_DISABLE_X)
430 			mpnt->vm_flags = VM_STACK_FLAGS & ~VM_EXEC;
431 		else
432 			mpnt->vm_flags = VM_STACK_FLAGS;
433 		mpnt->vm_flags |= mm->def_flags;
434 		mpnt->vm_page_prot = protection_map[mpnt->vm_flags & 0x7];
435 		if ((ret = insert_vm_struct(mm, mpnt))) {
436 			up_write(&mm->mmap_sem);
437 			kmem_cache_free(vm_area_cachep, mpnt);
438 			return ret;
439 		}
440 		mm->stack_vm = mm->total_vm = vma_pages(mpnt);
441 	}
442 
443 	for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
444 		struct page *page = bprm->page[i];
445 		if (page) {
446 			bprm->page[i] = NULL;
447 			install_arg_page(mpnt, page, stack_base);
448 		}
449 		stack_base += PAGE_SIZE;
450 	}
451 	up_write(&mm->mmap_sem);
452 
453 	return 0;
454 }
455 
456 EXPORT_SYMBOL(setup_arg_pages);
457 
458 #define free_arg_pages(bprm) do { } while (0)
459 
460 #else
461 
462 static inline void free_arg_pages(struct linux_binprm *bprm)
463 {
464 	int i;
465 
466 	for (i = 0; i < MAX_ARG_PAGES; i++) {
467 		if (bprm->page[i])
468 			__free_page(bprm->page[i]);
469 		bprm->page[i] = NULL;
470 	}
471 }
472 
473 #endif /* CONFIG_MMU */
474 
475 struct file *open_exec(const char *name)
476 {
477 	struct nameidata nd;
478 	int err;
479 	struct file *file;
480 
481 	err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
482 	file = ERR_PTR(err);
483 
484 	if (!err) {
485 		struct inode *inode = nd.dentry->d_inode;
486 		file = ERR_PTR(-EACCES);
487 		if (!(nd.mnt->mnt_flags & MNT_NOEXEC) &&
488 		    S_ISREG(inode->i_mode)) {
489 			int err = vfs_permission(&nd, MAY_EXEC);
490 			if (!err && !(inode->i_mode & 0111))
491 				err = -EACCES;
492 			file = ERR_PTR(err);
493 			if (!err) {
494 				file = nameidata_to_filp(&nd, O_RDONLY);
495 				if (!IS_ERR(file)) {
496 					err = deny_write_access(file);
497 					if (err) {
498 						fput(file);
499 						file = ERR_PTR(err);
500 					}
501 				}
502 out:
503 				return file;
504 			}
505 		}
506 		release_open_intent(&nd);
507 		path_release(&nd);
508 	}
509 	goto out;
510 }
511 
512 EXPORT_SYMBOL(open_exec);
513 
514 int kernel_read(struct file *file, unsigned long offset,
515 	char *addr, unsigned long count)
516 {
517 	mm_segment_t old_fs;
518 	loff_t pos = offset;
519 	int result;
520 
521 	old_fs = get_fs();
522 	set_fs(get_ds());
523 	/* The cast to a user pointer is valid due to the set_fs() */
524 	result = vfs_read(file, (void __user *)addr, count, &pos);
525 	set_fs(old_fs);
526 	return result;
527 }
528 
529 EXPORT_SYMBOL(kernel_read);
530 
531 static int exec_mmap(struct mm_struct *mm)
532 {
533 	struct task_struct *tsk;
534 	struct mm_struct * old_mm, *active_mm;
535 
536 	/* Notify parent that we're no longer interested in the old VM */
537 	tsk = current;
538 	old_mm = current->mm;
539 	mm_release(tsk, old_mm);
540 
541 	if (old_mm) {
542 		/*
543 		 * Make sure that if there is a core dump in progress
544 		 * for the old mm, we get out and die instead of going
545 		 * through with the exec.  We must hold mmap_sem around
546 		 * checking core_waiters and changing tsk->mm.  The
547 		 * core-inducing thread will increment core_waiters for
548 		 * each thread whose ->mm == old_mm.
549 		 */
550 		down_read(&old_mm->mmap_sem);
551 		if (unlikely(old_mm->core_waiters)) {
552 			up_read(&old_mm->mmap_sem);
553 			return -EINTR;
554 		}
555 	}
556 	task_lock(tsk);
557 	active_mm = tsk->active_mm;
558 	tsk->mm = mm;
559 	tsk->active_mm = mm;
560 	activate_mm(active_mm, mm);
561 	task_unlock(tsk);
562 	arch_pick_mmap_layout(mm);
563 	if (old_mm) {
564 		up_read(&old_mm->mmap_sem);
565 		BUG_ON(active_mm != old_mm);
566 		mmput(old_mm);
567 		return 0;
568 	}
569 	mmdrop(active_mm);
570 	return 0;
571 }
572 
573 /*
574  * This function makes sure the current process has its own signal table,
575  * so that flush_signal_handlers can later reset the handlers without
576  * disturbing other processes.  (Other processes might share the signal
577  * table via the CLONE_SIGHAND option to clone().)
578  */
579 static int de_thread(struct task_struct *tsk)
580 {
581 	struct signal_struct *sig = tsk->signal;
582 	struct sighand_struct *newsighand, *oldsighand = tsk->sighand;
583 	spinlock_t *lock = &oldsighand->siglock;
584 	struct task_struct *leader = NULL;
585 	int count;
586 
587 	/*
588 	 * If we don't share sighandlers, then we aren't sharing anything
589 	 * and we can just re-use it all.
590 	 */
591 	if (atomic_read(&oldsighand->count) <= 1) {
592 		BUG_ON(atomic_read(&sig->count) != 1);
593 		exit_itimers(sig);
594 		return 0;
595 	}
596 
597 	newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
598 	if (!newsighand)
599 		return -ENOMEM;
600 
601 	if (thread_group_empty(current))
602 		goto no_thread_group;
603 
604 	/*
605 	 * Kill all other threads in the thread group.
606 	 * We must hold tasklist_lock to call zap_other_threads.
607 	 */
608 	read_lock(&tasklist_lock);
609 	spin_lock_irq(lock);
610 	if (sig->flags & SIGNAL_GROUP_EXIT) {
611 		/*
612 		 * Another group action in progress, just
613 		 * return so that the signal is processed.
614 		 */
615 		spin_unlock_irq(lock);
616 		read_unlock(&tasklist_lock);
617 		kmem_cache_free(sighand_cachep, newsighand);
618 		return -EAGAIN;
619 	}
620 
621 	/*
622 	 * child_reaper ignores SIGKILL, change it now.
623 	 * Reparenting needs write_lock on tasklist_lock,
624 	 * so it is safe to do it under read_lock.
625 	 */
626 	if (unlikely(current->group_leader == child_reaper))
627 		child_reaper = current;
628 
629 	zap_other_threads(current);
630 	read_unlock(&tasklist_lock);
631 
632 	/*
633 	 * Account for the thread group leader hanging around:
634 	 */
635 	count = 1;
636 	if (!thread_group_leader(current)) {
637 		count = 2;
638 		/*
639 		 * The SIGALRM timer survives the exec, but needs to point
640 		 * at us as the new group leader now.  We have a race with
641 		 * a timer firing now getting the old leader, so we need to
642 		 * synchronize with any firing (by calling del_timer_sync)
643 		 * before we can safely let the old group leader die.
644 		 */
645 		sig->tsk = current;
646 		spin_unlock_irq(lock);
647 		if (hrtimer_cancel(&sig->real_timer))
648 			hrtimer_restart(&sig->real_timer);
649 		spin_lock_irq(lock);
650 	}
651 	while (atomic_read(&sig->count) > count) {
652 		sig->group_exit_task = current;
653 		sig->notify_count = count;
654 		__set_current_state(TASK_UNINTERRUPTIBLE);
655 		spin_unlock_irq(lock);
656 		schedule();
657 		spin_lock_irq(lock);
658 	}
659 	sig->group_exit_task = NULL;
660 	sig->notify_count = 0;
661 	spin_unlock_irq(lock);
662 
663 	/*
664 	 * At this point all other threads have exited, all we have to
665 	 * do is to wait for the thread group leader to become inactive,
666 	 * and to assume its PID:
667 	 */
668 	if (!thread_group_leader(current)) {
669 		struct dentry *proc_dentry1, *proc_dentry2;
670 
671 		/*
672 		 * Wait for the thread group leader to be a zombie.
673 		 * It should already be zombie at this point, most
674 		 * of the time.
675 		 */
676 		leader = current->group_leader;
677 		while (leader->exit_state != EXIT_ZOMBIE)
678 			yield();
679 
680 		/*
681 		 * The only record we have of the real-time age of a
682 		 * process, regardless of execs it's done, is start_time.
683 		 * All the past CPU time is accumulated in signal_struct
684 		 * from sister threads now dead.  But in this non-leader
685 		 * exec, nothing survives from the original leader thread,
686 		 * whose birth marks the true age of this process now.
687 		 * When we take on its identity by switching to its PID, we
688 		 * also take its birthdate (always earlier than our own).
689 		 */
690 		current->start_time = leader->start_time;
691 
692 		spin_lock(&leader->proc_lock);
693 		spin_lock(&current->proc_lock);
694 		proc_dentry1 = proc_pid_unhash(current);
695 		proc_dentry2 = proc_pid_unhash(leader);
696 		write_lock_irq(&tasklist_lock);
697 
698 		BUG_ON(leader->tgid != current->tgid);
699 		BUG_ON(current->pid == current->tgid);
700 		/*
701 		 * An exec() starts a new thread group with the
702 		 * TGID of the previous thread group. Rehash the
703 		 * two threads with a switched PID, and release
704 		 * the former thread group leader:
705 		 */
706 
707 		/* Become a process group leader with the old leader's pid.
708 		 * Note: The old leader also uses thispid until release_task
709 		 *       is called.  Odd but simple and correct.
710 		 */
711 		detach_pid(current, PIDTYPE_PID);
712 		current->pid = leader->pid;
713 		attach_pid(current, PIDTYPE_PID,  current->pid);
714 		attach_pid(current, PIDTYPE_PGID, current->signal->pgrp);
715 		attach_pid(current, PIDTYPE_SID,  current->signal->session);
716 		list_add_tail_rcu(&current->tasks, &init_task.tasks);
717 
718 		current->group_leader = current;
719 		leader->group_leader = current;
720 
721 		/* Reduce leader to a thread */
722 		detach_pid(leader, PIDTYPE_PGID);
723 		detach_pid(leader, PIDTYPE_SID);
724 		list_del_init(&leader->tasks);
725 
726 		current->exit_signal = SIGCHLD;
727 
728 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
729 		leader->exit_state = EXIT_DEAD;
730 
731 		write_unlock_irq(&tasklist_lock);
732 		spin_unlock(&leader->proc_lock);
733 		spin_unlock(&current->proc_lock);
734 		proc_pid_flush(proc_dentry1);
735 		proc_pid_flush(proc_dentry2);
736         }
737 
738 	/*
739 	 * There may be one thread left which is just exiting,
740 	 * but it's safe to stop telling the group to kill themselves.
741 	 */
742 	sig->flags = 0;
743 
744 no_thread_group:
745 	exit_itimers(sig);
746 	if (leader)
747 		release_task(leader);
748 
749 	BUG_ON(atomic_read(&sig->count) != 1);
750 
751 	if (atomic_read(&oldsighand->count) == 1) {
752 		/*
753 		 * Now that we nuked the rest of the thread group,
754 		 * it turns out we are not sharing sighand any more either.
755 		 * So we can just keep it.
756 		 */
757 		kmem_cache_free(sighand_cachep, newsighand);
758 	} else {
759 		/*
760 		 * Move our state over to newsighand and switch it in.
761 		 */
762 		atomic_set(&newsighand->count, 1);
763 		memcpy(newsighand->action, oldsighand->action,
764 		       sizeof(newsighand->action));
765 
766 		write_lock_irq(&tasklist_lock);
767 		spin_lock(&oldsighand->siglock);
768 		spin_lock(&newsighand->siglock);
769 
770 		rcu_assign_pointer(current->sighand, newsighand);
771 		recalc_sigpending();
772 
773 		spin_unlock(&newsighand->siglock);
774 		spin_unlock(&oldsighand->siglock);
775 		write_unlock_irq(&tasklist_lock);
776 
777 		if (atomic_dec_and_test(&oldsighand->count))
778 			kmem_cache_free(sighand_cachep, oldsighand);
779 	}
780 
781 	BUG_ON(!thread_group_leader(current));
782 	return 0;
783 }
784 
785 /*
786  * These functions flushes out all traces of the currently running executable
787  * so that a new one can be started
788  */
789 
790 static void flush_old_files(struct files_struct * files)
791 {
792 	long j = -1;
793 	struct fdtable *fdt;
794 
795 	spin_lock(&files->file_lock);
796 	for (;;) {
797 		unsigned long set, i;
798 
799 		j++;
800 		i = j * __NFDBITS;
801 		fdt = files_fdtable(files);
802 		if (i >= fdt->max_fds || i >= fdt->max_fdset)
803 			break;
804 		set = fdt->close_on_exec->fds_bits[j];
805 		if (!set)
806 			continue;
807 		fdt->close_on_exec->fds_bits[j] = 0;
808 		spin_unlock(&files->file_lock);
809 		for ( ; set ; i++,set >>= 1) {
810 			if (set & 1) {
811 				sys_close(i);
812 			}
813 		}
814 		spin_lock(&files->file_lock);
815 
816 	}
817 	spin_unlock(&files->file_lock);
818 }
819 
820 void get_task_comm(char *buf, struct task_struct *tsk)
821 {
822 	/* buf must be at least sizeof(tsk->comm) in size */
823 	task_lock(tsk);
824 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
825 	task_unlock(tsk);
826 }
827 
828 void set_task_comm(struct task_struct *tsk, char *buf)
829 {
830 	task_lock(tsk);
831 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
832 	task_unlock(tsk);
833 }
834 
835 int flush_old_exec(struct linux_binprm * bprm)
836 {
837 	char * name;
838 	int i, ch, retval;
839 	struct files_struct *files;
840 	char tcomm[sizeof(current->comm)];
841 
842 	/*
843 	 * Make sure we have a private signal table and that
844 	 * we are unassociated from the previous thread group.
845 	 */
846 	retval = de_thread(current);
847 	if (retval)
848 		goto out;
849 
850 	/*
851 	 * Make sure we have private file handles. Ask the
852 	 * fork helper to do the work for us and the exit
853 	 * helper to do the cleanup of the old one.
854 	 */
855 	files = current->files;		/* refcounted so safe to hold */
856 	retval = unshare_files();
857 	if (retval)
858 		goto out;
859 	/*
860 	 * Release all of the old mmap stuff
861 	 */
862 	retval = exec_mmap(bprm->mm);
863 	if (retval)
864 		goto mmap_failed;
865 
866 	bprm->mm = NULL;		/* We're using it now */
867 
868 	/* This is the point of no return */
869 	put_files_struct(files);
870 
871 	current->sas_ss_sp = current->sas_ss_size = 0;
872 
873 	if (current->euid == current->uid && current->egid == current->gid)
874 		current->mm->dumpable = 1;
875 	else
876 		current->mm->dumpable = suid_dumpable;
877 
878 	name = bprm->filename;
879 
880 	/* Copies the binary name from after last slash */
881 	for (i=0; (ch = *(name++)) != '\0';) {
882 		if (ch == '/')
883 			i = 0; /* overwrite what we wrote */
884 		else
885 			if (i < (sizeof(tcomm) - 1))
886 				tcomm[i++] = ch;
887 	}
888 	tcomm[i] = '\0';
889 	set_task_comm(current, tcomm);
890 
891 	current->flags &= ~PF_RANDOMIZE;
892 	flush_thread();
893 
894 	/* Set the new mm task size. We have to do that late because it may
895 	 * depend on TIF_32BIT which is only updated in flush_thread() on
896 	 * some architectures like powerpc
897 	 */
898 	current->mm->task_size = TASK_SIZE;
899 
900 	if (bprm->e_uid != current->euid || bprm->e_gid != current->egid ||
901 	    file_permission(bprm->file, MAY_READ) ||
902 	    (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
903 		suid_keys(current);
904 		current->mm->dumpable = suid_dumpable;
905 	}
906 
907 	/* An exec changes our domain. We are no longer part of the thread
908 	   group */
909 
910 	current->self_exec_id++;
911 
912 	flush_signal_handlers(current, 0);
913 	flush_old_files(current->files);
914 
915 	return 0;
916 
917 mmap_failed:
918 	put_files_struct(current->files);
919 	current->files = files;
920 out:
921 	return retval;
922 }
923 
924 EXPORT_SYMBOL(flush_old_exec);
925 
926 /*
927  * Fill the binprm structure from the inode.
928  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
929  */
930 int prepare_binprm(struct linux_binprm *bprm)
931 {
932 	int mode;
933 	struct inode * inode = bprm->file->f_dentry->d_inode;
934 	int retval;
935 
936 	mode = inode->i_mode;
937 	/*
938 	 * Check execute perms again - if the caller has CAP_DAC_OVERRIDE,
939 	 * generic_permission lets a non-executable through
940 	 */
941 	if (!(mode & 0111))	/* with at least _one_ execute bit set */
942 		return -EACCES;
943 	if (bprm->file->f_op == NULL)
944 		return -EACCES;
945 
946 	bprm->e_uid = current->euid;
947 	bprm->e_gid = current->egid;
948 
949 	if(!(bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)) {
950 		/* Set-uid? */
951 		if (mode & S_ISUID) {
952 			current->personality &= ~PER_CLEAR_ON_SETID;
953 			bprm->e_uid = inode->i_uid;
954 		}
955 
956 		/* Set-gid? */
957 		/*
958 		 * If setgid is set but no group execute bit then this
959 		 * is a candidate for mandatory locking, not a setgid
960 		 * executable.
961 		 */
962 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
963 			current->personality &= ~PER_CLEAR_ON_SETID;
964 			bprm->e_gid = inode->i_gid;
965 		}
966 	}
967 
968 	/* fill in binprm security blob */
969 	retval = security_bprm_set(bprm);
970 	if (retval)
971 		return retval;
972 
973 	memset(bprm->buf,0,BINPRM_BUF_SIZE);
974 	return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
975 }
976 
977 EXPORT_SYMBOL(prepare_binprm);
978 
979 static int unsafe_exec(struct task_struct *p)
980 {
981 	int unsafe = 0;
982 	if (p->ptrace & PT_PTRACED) {
983 		if (p->ptrace & PT_PTRACE_CAP)
984 			unsafe |= LSM_UNSAFE_PTRACE_CAP;
985 		else
986 			unsafe |= LSM_UNSAFE_PTRACE;
987 	}
988 	if (atomic_read(&p->fs->count) > 1 ||
989 	    atomic_read(&p->files->count) > 1 ||
990 	    atomic_read(&p->sighand->count) > 1)
991 		unsafe |= LSM_UNSAFE_SHARE;
992 
993 	return unsafe;
994 }
995 
996 void compute_creds(struct linux_binprm *bprm)
997 {
998 	int unsafe;
999 
1000 	if (bprm->e_uid != current->uid)
1001 		suid_keys(current);
1002 	exec_keys(current);
1003 
1004 	task_lock(current);
1005 	unsafe = unsafe_exec(current);
1006 	security_bprm_apply_creds(bprm, unsafe);
1007 	task_unlock(current);
1008 	security_bprm_post_apply_creds(bprm);
1009 }
1010 
1011 EXPORT_SYMBOL(compute_creds);
1012 
1013 void remove_arg_zero(struct linux_binprm *bprm)
1014 {
1015 	if (bprm->argc) {
1016 		unsigned long offset;
1017 		char * kaddr;
1018 		struct page *page;
1019 
1020 		offset = bprm->p % PAGE_SIZE;
1021 		goto inside;
1022 
1023 		while (bprm->p++, *(kaddr+offset++)) {
1024 			if (offset != PAGE_SIZE)
1025 				continue;
1026 			offset = 0;
1027 			kunmap_atomic(kaddr, KM_USER0);
1028 inside:
1029 			page = bprm->page[bprm->p/PAGE_SIZE];
1030 			kaddr = kmap_atomic(page, KM_USER0);
1031 		}
1032 		kunmap_atomic(kaddr, KM_USER0);
1033 		bprm->argc--;
1034 	}
1035 }
1036 
1037 EXPORT_SYMBOL(remove_arg_zero);
1038 
1039 /*
1040  * cycle the list of binary formats handler, until one recognizes the image
1041  */
1042 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1043 {
1044 	int try,retval;
1045 	struct linux_binfmt *fmt;
1046 #ifdef __alpha__
1047 	/* handle /sbin/loader.. */
1048 	{
1049 	    struct exec * eh = (struct exec *) bprm->buf;
1050 
1051 	    if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1052 		(eh->fh.f_flags & 0x3000) == 0x3000)
1053 	    {
1054 		struct file * file;
1055 		unsigned long loader;
1056 
1057 		allow_write_access(bprm->file);
1058 		fput(bprm->file);
1059 		bprm->file = NULL;
1060 
1061 	        loader = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
1062 
1063 		file = open_exec("/sbin/loader");
1064 		retval = PTR_ERR(file);
1065 		if (IS_ERR(file))
1066 			return retval;
1067 
1068 		/* Remember if the application is TASO.  */
1069 		bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1070 
1071 		bprm->file = file;
1072 		bprm->loader = loader;
1073 		retval = prepare_binprm(bprm);
1074 		if (retval<0)
1075 			return retval;
1076 		/* should call search_binary_handler recursively here,
1077 		   but it does not matter */
1078 	    }
1079 	}
1080 #endif
1081 	retval = security_bprm_check(bprm);
1082 	if (retval)
1083 		return retval;
1084 
1085 	/* kernel module loader fixup */
1086 	/* so we don't try to load run modprobe in kernel space. */
1087 	set_fs(USER_DS);
1088 
1089 	retval = audit_bprm(bprm);
1090 	if (retval)
1091 		return retval;
1092 
1093 	retval = -ENOENT;
1094 	for (try=0; try<2; try++) {
1095 		read_lock(&binfmt_lock);
1096 		for (fmt = formats ; fmt ; fmt = fmt->next) {
1097 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1098 			if (!fn)
1099 				continue;
1100 			if (!try_module_get(fmt->module))
1101 				continue;
1102 			read_unlock(&binfmt_lock);
1103 			retval = fn(bprm, regs);
1104 			if (retval >= 0) {
1105 				put_binfmt(fmt);
1106 				allow_write_access(bprm->file);
1107 				if (bprm->file)
1108 					fput(bprm->file);
1109 				bprm->file = NULL;
1110 				current->did_exec = 1;
1111 				proc_exec_connector(current);
1112 				return retval;
1113 			}
1114 			read_lock(&binfmt_lock);
1115 			put_binfmt(fmt);
1116 			if (retval != -ENOEXEC || bprm->mm == NULL)
1117 				break;
1118 			if (!bprm->file) {
1119 				read_unlock(&binfmt_lock);
1120 				return retval;
1121 			}
1122 		}
1123 		read_unlock(&binfmt_lock);
1124 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1125 			break;
1126 #ifdef CONFIG_KMOD
1127 		}else{
1128 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1129 			if (printable(bprm->buf[0]) &&
1130 			    printable(bprm->buf[1]) &&
1131 			    printable(bprm->buf[2]) &&
1132 			    printable(bprm->buf[3]))
1133 				break; /* -ENOEXEC */
1134 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1135 #endif
1136 		}
1137 	}
1138 	return retval;
1139 }
1140 
1141 EXPORT_SYMBOL(search_binary_handler);
1142 
1143 /*
1144  * sys_execve() executes a new program.
1145  */
1146 int do_execve(char * filename,
1147 	char __user *__user *argv,
1148 	char __user *__user *envp,
1149 	struct pt_regs * regs)
1150 {
1151 	struct linux_binprm *bprm;
1152 	struct file *file;
1153 	int retval;
1154 	int i;
1155 
1156 	retval = -ENOMEM;
1157 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1158 	if (!bprm)
1159 		goto out_ret;
1160 
1161 	file = open_exec(filename);
1162 	retval = PTR_ERR(file);
1163 	if (IS_ERR(file))
1164 		goto out_kfree;
1165 
1166 	sched_exec();
1167 
1168 	bprm->p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
1169 
1170 	bprm->file = file;
1171 	bprm->filename = filename;
1172 	bprm->interp = filename;
1173 	bprm->mm = mm_alloc();
1174 	retval = -ENOMEM;
1175 	if (!bprm->mm)
1176 		goto out_file;
1177 
1178 	retval = init_new_context(current, bprm->mm);
1179 	if (retval < 0)
1180 		goto out_mm;
1181 
1182 	bprm->argc = count(argv, bprm->p / sizeof(void *));
1183 	if ((retval = bprm->argc) < 0)
1184 		goto out_mm;
1185 
1186 	bprm->envc = count(envp, bprm->p / sizeof(void *));
1187 	if ((retval = bprm->envc) < 0)
1188 		goto out_mm;
1189 
1190 	retval = security_bprm_alloc(bprm);
1191 	if (retval)
1192 		goto out;
1193 
1194 	retval = prepare_binprm(bprm);
1195 	if (retval < 0)
1196 		goto out;
1197 
1198 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1199 	if (retval < 0)
1200 		goto out;
1201 
1202 	bprm->exec = bprm->p;
1203 	retval = copy_strings(bprm->envc, envp, bprm);
1204 	if (retval < 0)
1205 		goto out;
1206 
1207 	retval = copy_strings(bprm->argc, argv, bprm);
1208 	if (retval < 0)
1209 		goto out;
1210 
1211 	retval = search_binary_handler(bprm,regs);
1212 	if (retval >= 0) {
1213 		free_arg_pages(bprm);
1214 
1215 		/* execve success */
1216 		security_bprm_free(bprm);
1217 		acct_update_integrals(current);
1218 		kfree(bprm);
1219 		return retval;
1220 	}
1221 
1222 out:
1223 	/* Something went wrong, return the inode and free the argument pages*/
1224 	for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
1225 		struct page * page = bprm->page[i];
1226 		if (page)
1227 			__free_page(page);
1228 	}
1229 
1230 	if (bprm->security)
1231 		security_bprm_free(bprm);
1232 
1233 out_mm:
1234 	if (bprm->mm)
1235 		mmdrop(bprm->mm);
1236 
1237 out_file:
1238 	if (bprm->file) {
1239 		allow_write_access(bprm->file);
1240 		fput(bprm->file);
1241 	}
1242 
1243 out_kfree:
1244 	kfree(bprm);
1245 
1246 out_ret:
1247 	return retval;
1248 }
1249 
1250 int set_binfmt(struct linux_binfmt *new)
1251 {
1252 	struct linux_binfmt *old = current->binfmt;
1253 
1254 	if (new) {
1255 		if (!try_module_get(new->module))
1256 			return -1;
1257 	}
1258 	current->binfmt = new;
1259 	if (old)
1260 		module_put(old->module);
1261 	return 0;
1262 }
1263 
1264 EXPORT_SYMBOL(set_binfmt);
1265 
1266 #define CORENAME_MAX_SIZE 64
1267 
1268 /* format_corename will inspect the pattern parameter, and output a
1269  * name into corename, which must have space for at least
1270  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1271  */
1272 static void format_corename(char *corename, const char *pattern, long signr)
1273 {
1274 	const char *pat_ptr = pattern;
1275 	char *out_ptr = corename;
1276 	char *const out_end = corename + CORENAME_MAX_SIZE;
1277 	int rc;
1278 	int pid_in_pattern = 0;
1279 
1280 	/* Repeat as long as we have more pattern to process and more output
1281 	   space */
1282 	while (*pat_ptr) {
1283 		if (*pat_ptr != '%') {
1284 			if (out_ptr == out_end)
1285 				goto out;
1286 			*out_ptr++ = *pat_ptr++;
1287 		} else {
1288 			switch (*++pat_ptr) {
1289 			case 0:
1290 				goto out;
1291 			/* Double percent, output one percent */
1292 			case '%':
1293 				if (out_ptr == out_end)
1294 					goto out;
1295 				*out_ptr++ = '%';
1296 				break;
1297 			/* pid */
1298 			case 'p':
1299 				pid_in_pattern = 1;
1300 				rc = snprintf(out_ptr, out_end - out_ptr,
1301 					      "%d", current->tgid);
1302 				if (rc > out_end - out_ptr)
1303 					goto out;
1304 				out_ptr += rc;
1305 				break;
1306 			/* uid */
1307 			case 'u':
1308 				rc = snprintf(out_ptr, out_end - out_ptr,
1309 					      "%d", current->uid);
1310 				if (rc > out_end - out_ptr)
1311 					goto out;
1312 				out_ptr += rc;
1313 				break;
1314 			/* gid */
1315 			case 'g':
1316 				rc = snprintf(out_ptr, out_end - out_ptr,
1317 					      "%d", current->gid);
1318 				if (rc > out_end - out_ptr)
1319 					goto out;
1320 				out_ptr += rc;
1321 				break;
1322 			/* signal that caused the coredump */
1323 			case 's':
1324 				rc = snprintf(out_ptr, out_end - out_ptr,
1325 					      "%ld", signr);
1326 				if (rc > out_end - out_ptr)
1327 					goto out;
1328 				out_ptr += rc;
1329 				break;
1330 			/* UNIX time of coredump */
1331 			case 't': {
1332 				struct timeval tv;
1333 				do_gettimeofday(&tv);
1334 				rc = snprintf(out_ptr, out_end - out_ptr,
1335 					      "%lu", tv.tv_sec);
1336 				if (rc > out_end - out_ptr)
1337 					goto out;
1338 				out_ptr += rc;
1339 				break;
1340 			}
1341 			/* hostname */
1342 			case 'h':
1343 				down_read(&uts_sem);
1344 				rc = snprintf(out_ptr, out_end - out_ptr,
1345 					      "%s", system_utsname.nodename);
1346 				up_read(&uts_sem);
1347 				if (rc > out_end - out_ptr)
1348 					goto out;
1349 				out_ptr += rc;
1350 				break;
1351 			/* executable */
1352 			case 'e':
1353 				rc = snprintf(out_ptr, out_end - out_ptr,
1354 					      "%s", current->comm);
1355 				if (rc > out_end - out_ptr)
1356 					goto out;
1357 				out_ptr += rc;
1358 				break;
1359 			default:
1360 				break;
1361 			}
1362 			++pat_ptr;
1363 		}
1364 	}
1365 	/* Backward compatibility with core_uses_pid:
1366 	 *
1367 	 * If core_pattern does not include a %p (as is the default)
1368 	 * and core_uses_pid is set, then .%pid will be appended to
1369 	 * the filename */
1370 	if (!pid_in_pattern
1371             && (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)) {
1372 		rc = snprintf(out_ptr, out_end - out_ptr,
1373 			      ".%d", current->tgid);
1374 		if (rc > out_end - out_ptr)
1375 			goto out;
1376 		out_ptr += rc;
1377 	}
1378       out:
1379 	*out_ptr = 0;
1380 }
1381 
1382 static void zap_threads (struct mm_struct *mm)
1383 {
1384 	struct task_struct *g, *p;
1385 	struct task_struct *tsk = current;
1386 	struct completion *vfork_done = tsk->vfork_done;
1387 	int traced = 0;
1388 
1389 	/*
1390 	 * Make sure nobody is waiting for us to release the VM,
1391 	 * otherwise we can deadlock when we wait on each other
1392 	 */
1393 	if (vfork_done) {
1394 		tsk->vfork_done = NULL;
1395 		complete(vfork_done);
1396 	}
1397 
1398 	read_lock(&tasklist_lock);
1399 	do_each_thread(g,p)
1400 		if (mm == p->mm && p != tsk) {
1401 			force_sig_specific(SIGKILL, p);
1402 			mm->core_waiters++;
1403 			if (unlikely(p->ptrace) &&
1404 			    unlikely(p->parent->mm == mm))
1405 				traced = 1;
1406 		}
1407 	while_each_thread(g,p);
1408 
1409 	read_unlock(&tasklist_lock);
1410 
1411 	if (unlikely(traced)) {
1412 		/*
1413 		 * We are zapping a thread and the thread it ptraces.
1414 		 * If the tracee went into a ptrace stop for exit tracing,
1415 		 * we could deadlock since the tracer is waiting for this
1416 		 * coredump to finish.  Detach them so they can both die.
1417 		 */
1418 		write_lock_irq(&tasklist_lock);
1419 		do_each_thread(g,p) {
1420 			if (mm == p->mm && p != tsk &&
1421 			    p->ptrace && p->parent->mm == mm) {
1422 				__ptrace_detach(p, 0);
1423 			}
1424 		} while_each_thread(g,p);
1425 		write_unlock_irq(&tasklist_lock);
1426 	}
1427 }
1428 
1429 static void coredump_wait(struct mm_struct *mm)
1430 {
1431 	DECLARE_COMPLETION(startup_done);
1432 	int core_waiters;
1433 
1434 	mm->core_startup_done = &startup_done;
1435 
1436 	zap_threads(mm);
1437 	core_waiters = mm->core_waiters;
1438 	up_write(&mm->mmap_sem);
1439 
1440 	if (core_waiters)
1441 		wait_for_completion(&startup_done);
1442 	BUG_ON(mm->core_waiters);
1443 }
1444 
1445 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1446 {
1447 	char corename[CORENAME_MAX_SIZE + 1];
1448 	struct mm_struct *mm = current->mm;
1449 	struct linux_binfmt * binfmt;
1450 	struct inode * inode;
1451 	struct file * file;
1452 	int retval = 0;
1453 	int fsuid = current->fsuid;
1454 	int flag = 0;
1455 
1456 	binfmt = current->binfmt;
1457 	if (!binfmt || !binfmt->core_dump)
1458 		goto fail;
1459 	down_write(&mm->mmap_sem);
1460 	if (!mm->dumpable) {
1461 		up_write(&mm->mmap_sem);
1462 		goto fail;
1463 	}
1464 
1465 	/*
1466 	 *	We cannot trust fsuid as being the "true" uid of the
1467 	 *	process nor do we know its entire history. We only know it
1468 	 *	was tainted so we dump it as root in mode 2.
1469 	 */
1470 	if (mm->dumpable == 2) {	/* Setuid core dump mode */
1471 		flag = O_EXCL;		/* Stop rewrite attacks */
1472 		current->fsuid = 0;	/* Dump root private */
1473 	}
1474 	mm->dumpable = 0;
1475 
1476 	retval = -EAGAIN;
1477 	spin_lock_irq(&current->sighand->siglock);
1478 	if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
1479 		current->signal->flags = SIGNAL_GROUP_EXIT;
1480 		current->signal->group_exit_code = exit_code;
1481 		current->signal->group_stop_count = 0;
1482 		retval = 0;
1483 	}
1484 	spin_unlock_irq(&current->sighand->siglock);
1485 	if (retval) {
1486 		up_write(&mm->mmap_sem);
1487 		goto fail;
1488 	}
1489 
1490 	init_completion(&mm->core_done);
1491 	coredump_wait(mm);
1492 
1493 	/*
1494 	 * Clear any false indication of pending signals that might
1495 	 * be seen by the filesystem code called to write the core file.
1496 	 */
1497 	clear_thread_flag(TIF_SIGPENDING);
1498 
1499 	if (current->signal->rlim[RLIMIT_CORE].rlim_cur < binfmt->min_coredump)
1500 		goto fail_unlock;
1501 
1502 	/*
1503 	 * lock_kernel() because format_corename() is controlled by sysctl, which
1504 	 * uses lock_kernel()
1505 	 */
1506  	lock_kernel();
1507 	format_corename(corename, core_pattern, signr);
1508 	unlock_kernel();
1509 	file = filp_open(corename, O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 0600);
1510 	if (IS_ERR(file))
1511 		goto fail_unlock;
1512 	inode = file->f_dentry->d_inode;
1513 	if (inode->i_nlink > 1)
1514 		goto close_fail;	/* multiple links - don't dump */
1515 	if (d_unhashed(file->f_dentry))
1516 		goto close_fail;
1517 
1518 	if (!S_ISREG(inode->i_mode))
1519 		goto close_fail;
1520 	if (!file->f_op)
1521 		goto close_fail;
1522 	if (!file->f_op->write)
1523 		goto close_fail;
1524 	if (do_truncate(file->f_dentry, 0, 0, file) != 0)
1525 		goto close_fail;
1526 
1527 	retval = binfmt->core_dump(signr, regs, file);
1528 
1529 	if (retval)
1530 		current->signal->group_exit_code |= 0x80;
1531 close_fail:
1532 	filp_close(file, NULL);
1533 fail_unlock:
1534 	current->fsuid = fsuid;
1535 	complete_all(&mm->core_done);
1536 fail:
1537 	return retval;
1538 }
1539