xref: /linux-6.15/fs/exec.c (revision 3b64b188)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52 #include <linux/kmod.h>
53 #include <linux/fsnotify.h>
54 #include <linux/fs_struct.h>
55 #include <linux/pipe_fs_i.h>
56 #include <linux/oom.h>
57 #include <linux/compat.h>
58 
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62 #include <asm/exec.h>
63 
64 #include <trace/events/task.h>
65 #include "internal.h"
66 
67 #include <trace/events/sched.h>
68 
69 int suid_dumpable = 0;
70 
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
73 
74 void __register_binfmt(struct linux_binfmt * fmt, int insert)
75 {
76 	BUG_ON(!fmt);
77 	write_lock(&binfmt_lock);
78 	insert ? list_add(&fmt->lh, &formats) :
79 		 list_add_tail(&fmt->lh, &formats);
80 	write_unlock(&binfmt_lock);
81 }
82 
83 EXPORT_SYMBOL(__register_binfmt);
84 
85 void unregister_binfmt(struct linux_binfmt * fmt)
86 {
87 	write_lock(&binfmt_lock);
88 	list_del(&fmt->lh);
89 	write_unlock(&binfmt_lock);
90 }
91 
92 EXPORT_SYMBOL(unregister_binfmt);
93 
94 static inline void put_binfmt(struct linux_binfmt * fmt)
95 {
96 	module_put(fmt->module);
97 }
98 
99 /*
100  * Note that a shared library must be both readable and executable due to
101  * security reasons.
102  *
103  * Also note that we take the address to load from from the file itself.
104  */
105 SYSCALL_DEFINE1(uselib, const char __user *, library)
106 {
107 	struct file *file;
108 	char *tmp = getname(library);
109 	int error = PTR_ERR(tmp);
110 	static const struct open_flags uselib_flags = {
111 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
112 		.acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
113 		.intent = LOOKUP_OPEN
114 	};
115 
116 	if (IS_ERR(tmp))
117 		goto out;
118 
119 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW);
120 	putname(tmp);
121 	error = PTR_ERR(file);
122 	if (IS_ERR(file))
123 		goto out;
124 
125 	error = -EINVAL;
126 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
127 		goto exit;
128 
129 	error = -EACCES;
130 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
131 		goto exit;
132 
133 	fsnotify_open(file);
134 
135 	error = -ENOEXEC;
136 	if(file->f_op) {
137 		struct linux_binfmt * fmt;
138 
139 		read_lock(&binfmt_lock);
140 		list_for_each_entry(fmt, &formats, lh) {
141 			if (!fmt->load_shlib)
142 				continue;
143 			if (!try_module_get(fmt->module))
144 				continue;
145 			read_unlock(&binfmt_lock);
146 			error = fmt->load_shlib(file);
147 			read_lock(&binfmt_lock);
148 			put_binfmt(fmt);
149 			if (error != -ENOEXEC)
150 				break;
151 		}
152 		read_unlock(&binfmt_lock);
153 	}
154 exit:
155 	fput(file);
156 out:
157   	return error;
158 }
159 
160 #ifdef CONFIG_MMU
161 /*
162  * The nascent bprm->mm is not visible until exec_mmap() but it can
163  * use a lot of memory, account these pages in current->mm temporary
164  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
165  * change the counter back via acct_arg_size(0).
166  */
167 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
168 {
169 	struct mm_struct *mm = current->mm;
170 	long diff = (long)(pages - bprm->vma_pages);
171 
172 	if (!mm || !diff)
173 		return;
174 
175 	bprm->vma_pages = pages;
176 	add_mm_counter(mm, MM_ANONPAGES, diff);
177 }
178 
179 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
180 		int write)
181 {
182 	struct page *page;
183 	int ret;
184 
185 #ifdef CONFIG_STACK_GROWSUP
186 	if (write) {
187 		ret = expand_downwards(bprm->vma, pos);
188 		if (ret < 0)
189 			return NULL;
190 	}
191 #endif
192 	ret = get_user_pages(current, bprm->mm, pos,
193 			1, write, 1, &page, NULL);
194 	if (ret <= 0)
195 		return NULL;
196 
197 	if (write) {
198 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
199 		struct rlimit *rlim;
200 
201 		acct_arg_size(bprm, size / PAGE_SIZE);
202 
203 		/*
204 		 * We've historically supported up to 32 pages (ARG_MAX)
205 		 * of argument strings even with small stacks
206 		 */
207 		if (size <= ARG_MAX)
208 			return page;
209 
210 		/*
211 		 * Limit to 1/4-th the stack size for the argv+env strings.
212 		 * This ensures that:
213 		 *  - the remaining binfmt code will not run out of stack space,
214 		 *  - the program will have a reasonable amount of stack left
215 		 *    to work from.
216 		 */
217 		rlim = current->signal->rlim;
218 		if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
219 			put_page(page);
220 			return NULL;
221 		}
222 	}
223 
224 	return page;
225 }
226 
227 static void put_arg_page(struct page *page)
228 {
229 	put_page(page);
230 }
231 
232 static void free_arg_page(struct linux_binprm *bprm, int i)
233 {
234 }
235 
236 static void free_arg_pages(struct linux_binprm *bprm)
237 {
238 }
239 
240 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
241 		struct page *page)
242 {
243 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
244 }
245 
246 static int __bprm_mm_init(struct linux_binprm *bprm)
247 {
248 	int err;
249 	struct vm_area_struct *vma = NULL;
250 	struct mm_struct *mm = bprm->mm;
251 
252 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
253 	if (!vma)
254 		return -ENOMEM;
255 
256 	down_write(&mm->mmap_sem);
257 	vma->vm_mm = mm;
258 
259 	/*
260 	 * Place the stack at the largest stack address the architecture
261 	 * supports. Later, we'll move this to an appropriate place. We don't
262 	 * use STACK_TOP because that can depend on attributes which aren't
263 	 * configured yet.
264 	 */
265 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
266 	vma->vm_end = STACK_TOP_MAX;
267 	vma->vm_start = vma->vm_end - PAGE_SIZE;
268 	vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
269 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
270 	INIT_LIST_HEAD(&vma->anon_vma_chain);
271 
272 	err = insert_vm_struct(mm, vma);
273 	if (err)
274 		goto err;
275 
276 	mm->stack_vm = mm->total_vm = 1;
277 	up_write(&mm->mmap_sem);
278 	bprm->p = vma->vm_end - sizeof(void *);
279 	return 0;
280 err:
281 	up_write(&mm->mmap_sem);
282 	bprm->vma = NULL;
283 	kmem_cache_free(vm_area_cachep, vma);
284 	return err;
285 }
286 
287 static bool valid_arg_len(struct linux_binprm *bprm, long len)
288 {
289 	return len <= MAX_ARG_STRLEN;
290 }
291 
292 #else
293 
294 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
295 {
296 }
297 
298 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
299 		int write)
300 {
301 	struct page *page;
302 
303 	page = bprm->page[pos / PAGE_SIZE];
304 	if (!page && write) {
305 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
306 		if (!page)
307 			return NULL;
308 		bprm->page[pos / PAGE_SIZE] = page;
309 	}
310 
311 	return page;
312 }
313 
314 static void put_arg_page(struct page *page)
315 {
316 }
317 
318 static void free_arg_page(struct linux_binprm *bprm, int i)
319 {
320 	if (bprm->page[i]) {
321 		__free_page(bprm->page[i]);
322 		bprm->page[i] = NULL;
323 	}
324 }
325 
326 static void free_arg_pages(struct linux_binprm *bprm)
327 {
328 	int i;
329 
330 	for (i = 0; i < MAX_ARG_PAGES; i++)
331 		free_arg_page(bprm, i);
332 }
333 
334 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
335 		struct page *page)
336 {
337 }
338 
339 static int __bprm_mm_init(struct linux_binprm *bprm)
340 {
341 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
342 	return 0;
343 }
344 
345 static bool valid_arg_len(struct linux_binprm *bprm, long len)
346 {
347 	return len <= bprm->p;
348 }
349 
350 #endif /* CONFIG_MMU */
351 
352 /*
353  * Create a new mm_struct and populate it with a temporary stack
354  * vm_area_struct.  We don't have enough context at this point to set the stack
355  * flags, permissions, and offset, so we use temporary values.  We'll update
356  * them later in setup_arg_pages().
357  */
358 int bprm_mm_init(struct linux_binprm *bprm)
359 {
360 	int err;
361 	struct mm_struct *mm = NULL;
362 
363 	bprm->mm = mm = mm_alloc();
364 	err = -ENOMEM;
365 	if (!mm)
366 		goto err;
367 
368 	err = init_new_context(current, mm);
369 	if (err)
370 		goto err;
371 
372 	err = __bprm_mm_init(bprm);
373 	if (err)
374 		goto err;
375 
376 	return 0;
377 
378 err:
379 	if (mm) {
380 		bprm->mm = NULL;
381 		mmdrop(mm);
382 	}
383 
384 	return err;
385 }
386 
387 struct user_arg_ptr {
388 #ifdef CONFIG_COMPAT
389 	bool is_compat;
390 #endif
391 	union {
392 		const char __user *const __user *native;
393 #ifdef CONFIG_COMPAT
394 		compat_uptr_t __user *compat;
395 #endif
396 	} ptr;
397 };
398 
399 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
400 {
401 	const char __user *native;
402 
403 #ifdef CONFIG_COMPAT
404 	if (unlikely(argv.is_compat)) {
405 		compat_uptr_t compat;
406 
407 		if (get_user(compat, argv.ptr.compat + nr))
408 			return ERR_PTR(-EFAULT);
409 
410 		return compat_ptr(compat);
411 	}
412 #endif
413 
414 	if (get_user(native, argv.ptr.native + nr))
415 		return ERR_PTR(-EFAULT);
416 
417 	return native;
418 }
419 
420 /*
421  * count() counts the number of strings in array ARGV.
422  */
423 static int count(struct user_arg_ptr argv, int max)
424 {
425 	int i = 0;
426 
427 	if (argv.ptr.native != NULL) {
428 		for (;;) {
429 			const char __user *p = get_user_arg_ptr(argv, i);
430 
431 			if (!p)
432 				break;
433 
434 			if (IS_ERR(p))
435 				return -EFAULT;
436 
437 			if (i++ >= max)
438 				return -E2BIG;
439 
440 			if (fatal_signal_pending(current))
441 				return -ERESTARTNOHAND;
442 			cond_resched();
443 		}
444 	}
445 	return i;
446 }
447 
448 /*
449  * 'copy_strings()' copies argument/environment strings from the old
450  * processes's memory to the new process's stack.  The call to get_user_pages()
451  * ensures the destination page is created and not swapped out.
452  */
453 static int copy_strings(int argc, struct user_arg_ptr argv,
454 			struct linux_binprm *bprm)
455 {
456 	struct page *kmapped_page = NULL;
457 	char *kaddr = NULL;
458 	unsigned long kpos = 0;
459 	int ret;
460 
461 	while (argc-- > 0) {
462 		const char __user *str;
463 		int len;
464 		unsigned long pos;
465 
466 		ret = -EFAULT;
467 		str = get_user_arg_ptr(argv, argc);
468 		if (IS_ERR(str))
469 			goto out;
470 
471 		len = strnlen_user(str, MAX_ARG_STRLEN);
472 		if (!len)
473 			goto out;
474 
475 		ret = -E2BIG;
476 		if (!valid_arg_len(bprm, len))
477 			goto out;
478 
479 		/* We're going to work our way backwords. */
480 		pos = bprm->p;
481 		str += len;
482 		bprm->p -= len;
483 
484 		while (len > 0) {
485 			int offset, bytes_to_copy;
486 
487 			if (fatal_signal_pending(current)) {
488 				ret = -ERESTARTNOHAND;
489 				goto out;
490 			}
491 			cond_resched();
492 
493 			offset = pos % PAGE_SIZE;
494 			if (offset == 0)
495 				offset = PAGE_SIZE;
496 
497 			bytes_to_copy = offset;
498 			if (bytes_to_copy > len)
499 				bytes_to_copy = len;
500 
501 			offset -= bytes_to_copy;
502 			pos -= bytes_to_copy;
503 			str -= bytes_to_copy;
504 			len -= bytes_to_copy;
505 
506 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
507 				struct page *page;
508 
509 				page = get_arg_page(bprm, pos, 1);
510 				if (!page) {
511 					ret = -E2BIG;
512 					goto out;
513 				}
514 
515 				if (kmapped_page) {
516 					flush_kernel_dcache_page(kmapped_page);
517 					kunmap(kmapped_page);
518 					put_arg_page(kmapped_page);
519 				}
520 				kmapped_page = page;
521 				kaddr = kmap(kmapped_page);
522 				kpos = pos & PAGE_MASK;
523 				flush_arg_page(bprm, kpos, kmapped_page);
524 			}
525 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
526 				ret = -EFAULT;
527 				goto out;
528 			}
529 		}
530 	}
531 	ret = 0;
532 out:
533 	if (kmapped_page) {
534 		flush_kernel_dcache_page(kmapped_page);
535 		kunmap(kmapped_page);
536 		put_arg_page(kmapped_page);
537 	}
538 	return ret;
539 }
540 
541 /*
542  * Like copy_strings, but get argv and its values from kernel memory.
543  */
544 int copy_strings_kernel(int argc, const char *const *__argv,
545 			struct linux_binprm *bprm)
546 {
547 	int r;
548 	mm_segment_t oldfs = get_fs();
549 	struct user_arg_ptr argv = {
550 		.ptr.native = (const char __user *const  __user *)__argv,
551 	};
552 
553 	set_fs(KERNEL_DS);
554 	r = copy_strings(argc, argv, bprm);
555 	set_fs(oldfs);
556 
557 	return r;
558 }
559 EXPORT_SYMBOL(copy_strings_kernel);
560 
561 #ifdef CONFIG_MMU
562 
563 /*
564  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
565  * the binfmt code determines where the new stack should reside, we shift it to
566  * its final location.  The process proceeds as follows:
567  *
568  * 1) Use shift to calculate the new vma endpoints.
569  * 2) Extend vma to cover both the old and new ranges.  This ensures the
570  *    arguments passed to subsequent functions are consistent.
571  * 3) Move vma's page tables to the new range.
572  * 4) Free up any cleared pgd range.
573  * 5) Shrink the vma to cover only the new range.
574  */
575 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
576 {
577 	struct mm_struct *mm = vma->vm_mm;
578 	unsigned long old_start = vma->vm_start;
579 	unsigned long old_end = vma->vm_end;
580 	unsigned long length = old_end - old_start;
581 	unsigned long new_start = old_start - shift;
582 	unsigned long new_end = old_end - shift;
583 	struct mmu_gather tlb;
584 
585 	BUG_ON(new_start > new_end);
586 
587 	/*
588 	 * ensure there are no vmas between where we want to go
589 	 * and where we are
590 	 */
591 	if (vma != find_vma(mm, new_start))
592 		return -EFAULT;
593 
594 	/*
595 	 * cover the whole range: [new_start, old_end)
596 	 */
597 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
598 		return -ENOMEM;
599 
600 	/*
601 	 * move the page tables downwards, on failure we rely on
602 	 * process cleanup to remove whatever mess we made.
603 	 */
604 	if (length != move_page_tables(vma, old_start,
605 				       vma, new_start, length))
606 		return -ENOMEM;
607 
608 	lru_add_drain();
609 	tlb_gather_mmu(&tlb, mm, 0);
610 	if (new_end > old_start) {
611 		/*
612 		 * when the old and new regions overlap clear from new_end.
613 		 */
614 		free_pgd_range(&tlb, new_end, old_end, new_end,
615 			vma->vm_next ? vma->vm_next->vm_start : 0);
616 	} else {
617 		/*
618 		 * otherwise, clean from old_start; this is done to not touch
619 		 * the address space in [new_end, old_start) some architectures
620 		 * have constraints on va-space that make this illegal (IA64) -
621 		 * for the others its just a little faster.
622 		 */
623 		free_pgd_range(&tlb, old_start, old_end, new_end,
624 			vma->vm_next ? vma->vm_next->vm_start : 0);
625 	}
626 	tlb_finish_mmu(&tlb, new_end, old_end);
627 
628 	/*
629 	 * Shrink the vma to just the new range.  Always succeeds.
630 	 */
631 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
632 
633 	return 0;
634 }
635 
636 /*
637  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
638  * the stack is optionally relocated, and some extra space is added.
639  */
640 int setup_arg_pages(struct linux_binprm *bprm,
641 		    unsigned long stack_top,
642 		    int executable_stack)
643 {
644 	unsigned long ret;
645 	unsigned long stack_shift;
646 	struct mm_struct *mm = current->mm;
647 	struct vm_area_struct *vma = bprm->vma;
648 	struct vm_area_struct *prev = NULL;
649 	unsigned long vm_flags;
650 	unsigned long stack_base;
651 	unsigned long stack_size;
652 	unsigned long stack_expand;
653 	unsigned long rlim_stack;
654 
655 #ifdef CONFIG_STACK_GROWSUP
656 	/* Limit stack size to 1GB */
657 	stack_base = rlimit_max(RLIMIT_STACK);
658 	if (stack_base > (1 << 30))
659 		stack_base = 1 << 30;
660 
661 	/* Make sure we didn't let the argument array grow too large. */
662 	if (vma->vm_end - vma->vm_start > stack_base)
663 		return -ENOMEM;
664 
665 	stack_base = PAGE_ALIGN(stack_top - stack_base);
666 
667 	stack_shift = vma->vm_start - stack_base;
668 	mm->arg_start = bprm->p - stack_shift;
669 	bprm->p = vma->vm_end - stack_shift;
670 #else
671 	stack_top = arch_align_stack(stack_top);
672 	stack_top = PAGE_ALIGN(stack_top);
673 
674 	if (unlikely(stack_top < mmap_min_addr) ||
675 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
676 		return -ENOMEM;
677 
678 	stack_shift = vma->vm_end - stack_top;
679 
680 	bprm->p -= stack_shift;
681 	mm->arg_start = bprm->p;
682 #endif
683 
684 	if (bprm->loader)
685 		bprm->loader -= stack_shift;
686 	bprm->exec -= stack_shift;
687 
688 	down_write(&mm->mmap_sem);
689 	vm_flags = VM_STACK_FLAGS;
690 
691 	/*
692 	 * Adjust stack execute permissions; explicitly enable for
693 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
694 	 * (arch default) otherwise.
695 	 */
696 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
697 		vm_flags |= VM_EXEC;
698 	else if (executable_stack == EXSTACK_DISABLE_X)
699 		vm_flags &= ~VM_EXEC;
700 	vm_flags |= mm->def_flags;
701 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
702 
703 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
704 			vm_flags);
705 	if (ret)
706 		goto out_unlock;
707 	BUG_ON(prev != vma);
708 
709 	/* Move stack pages down in memory. */
710 	if (stack_shift) {
711 		ret = shift_arg_pages(vma, stack_shift);
712 		if (ret)
713 			goto out_unlock;
714 	}
715 
716 	/* mprotect_fixup is overkill to remove the temporary stack flags */
717 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
718 
719 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
720 	stack_size = vma->vm_end - vma->vm_start;
721 	/*
722 	 * Align this down to a page boundary as expand_stack
723 	 * will align it up.
724 	 */
725 	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
726 #ifdef CONFIG_STACK_GROWSUP
727 	if (stack_size + stack_expand > rlim_stack)
728 		stack_base = vma->vm_start + rlim_stack;
729 	else
730 		stack_base = vma->vm_end + stack_expand;
731 #else
732 	if (stack_size + stack_expand > rlim_stack)
733 		stack_base = vma->vm_end - rlim_stack;
734 	else
735 		stack_base = vma->vm_start - stack_expand;
736 #endif
737 	current->mm->start_stack = bprm->p;
738 	ret = expand_stack(vma, stack_base);
739 	if (ret)
740 		ret = -EFAULT;
741 
742 out_unlock:
743 	up_write(&mm->mmap_sem);
744 	return ret;
745 }
746 EXPORT_SYMBOL(setup_arg_pages);
747 
748 #endif /* CONFIG_MMU */
749 
750 struct file *open_exec(const char *name)
751 {
752 	struct file *file;
753 	int err;
754 	static const struct open_flags open_exec_flags = {
755 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
756 		.acc_mode = MAY_EXEC | MAY_OPEN,
757 		.intent = LOOKUP_OPEN
758 	};
759 
760 	file = do_filp_open(AT_FDCWD, name, &open_exec_flags, LOOKUP_FOLLOW);
761 	if (IS_ERR(file))
762 		goto out;
763 
764 	err = -EACCES;
765 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
766 		goto exit;
767 
768 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
769 		goto exit;
770 
771 	fsnotify_open(file);
772 
773 	err = deny_write_access(file);
774 	if (err)
775 		goto exit;
776 
777 out:
778 	return file;
779 
780 exit:
781 	fput(file);
782 	return ERR_PTR(err);
783 }
784 EXPORT_SYMBOL(open_exec);
785 
786 int kernel_read(struct file *file, loff_t offset,
787 		char *addr, unsigned long count)
788 {
789 	mm_segment_t old_fs;
790 	loff_t pos = offset;
791 	int result;
792 
793 	old_fs = get_fs();
794 	set_fs(get_ds());
795 	/* The cast to a user pointer is valid due to the set_fs() */
796 	result = vfs_read(file, (void __user *)addr, count, &pos);
797 	set_fs(old_fs);
798 	return result;
799 }
800 
801 EXPORT_SYMBOL(kernel_read);
802 
803 static int exec_mmap(struct mm_struct *mm)
804 {
805 	struct task_struct *tsk;
806 	struct mm_struct * old_mm, *active_mm;
807 
808 	/* Notify parent that we're no longer interested in the old VM */
809 	tsk = current;
810 	old_mm = current->mm;
811 	mm_release(tsk, old_mm);
812 
813 	if (old_mm) {
814 		sync_mm_rss(old_mm);
815 		/*
816 		 * Make sure that if there is a core dump in progress
817 		 * for the old mm, we get out and die instead of going
818 		 * through with the exec.  We must hold mmap_sem around
819 		 * checking core_state and changing tsk->mm.
820 		 */
821 		down_read(&old_mm->mmap_sem);
822 		if (unlikely(old_mm->core_state)) {
823 			up_read(&old_mm->mmap_sem);
824 			return -EINTR;
825 		}
826 	}
827 	task_lock(tsk);
828 	active_mm = tsk->active_mm;
829 	tsk->mm = mm;
830 	tsk->active_mm = mm;
831 	activate_mm(active_mm, mm);
832 	task_unlock(tsk);
833 	arch_pick_mmap_layout(mm);
834 	if (old_mm) {
835 		up_read(&old_mm->mmap_sem);
836 		BUG_ON(active_mm != old_mm);
837 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
838 		mm_update_next_owner(old_mm);
839 		mmput(old_mm);
840 		return 0;
841 	}
842 	mmdrop(active_mm);
843 	return 0;
844 }
845 
846 /*
847  * This function makes sure the current process has its own signal table,
848  * so that flush_signal_handlers can later reset the handlers without
849  * disturbing other processes.  (Other processes might share the signal
850  * table via the CLONE_SIGHAND option to clone().)
851  */
852 static int de_thread(struct task_struct *tsk)
853 {
854 	struct signal_struct *sig = tsk->signal;
855 	struct sighand_struct *oldsighand = tsk->sighand;
856 	spinlock_t *lock = &oldsighand->siglock;
857 
858 	if (thread_group_empty(tsk))
859 		goto no_thread_group;
860 
861 	/*
862 	 * Kill all other threads in the thread group.
863 	 */
864 	spin_lock_irq(lock);
865 	if (signal_group_exit(sig)) {
866 		/*
867 		 * Another group action in progress, just
868 		 * return so that the signal is processed.
869 		 */
870 		spin_unlock_irq(lock);
871 		return -EAGAIN;
872 	}
873 
874 	sig->group_exit_task = tsk;
875 	sig->notify_count = zap_other_threads(tsk);
876 	if (!thread_group_leader(tsk))
877 		sig->notify_count--;
878 
879 	while (sig->notify_count) {
880 		__set_current_state(TASK_UNINTERRUPTIBLE);
881 		spin_unlock_irq(lock);
882 		schedule();
883 		spin_lock_irq(lock);
884 	}
885 	spin_unlock_irq(lock);
886 
887 	/*
888 	 * At this point all other threads have exited, all we have to
889 	 * do is to wait for the thread group leader to become inactive,
890 	 * and to assume its PID:
891 	 */
892 	if (!thread_group_leader(tsk)) {
893 		struct task_struct *leader = tsk->group_leader;
894 
895 		sig->notify_count = -1;	/* for exit_notify() */
896 		for (;;) {
897 			write_lock_irq(&tasklist_lock);
898 			if (likely(leader->exit_state))
899 				break;
900 			__set_current_state(TASK_UNINTERRUPTIBLE);
901 			write_unlock_irq(&tasklist_lock);
902 			schedule();
903 		}
904 
905 		/*
906 		 * The only record we have of the real-time age of a
907 		 * process, regardless of execs it's done, is start_time.
908 		 * All the past CPU time is accumulated in signal_struct
909 		 * from sister threads now dead.  But in this non-leader
910 		 * exec, nothing survives from the original leader thread,
911 		 * whose birth marks the true age of this process now.
912 		 * When we take on its identity by switching to its PID, we
913 		 * also take its birthdate (always earlier than our own).
914 		 */
915 		tsk->start_time = leader->start_time;
916 
917 		BUG_ON(!same_thread_group(leader, tsk));
918 		BUG_ON(has_group_leader_pid(tsk));
919 		/*
920 		 * An exec() starts a new thread group with the
921 		 * TGID of the previous thread group. Rehash the
922 		 * two threads with a switched PID, and release
923 		 * the former thread group leader:
924 		 */
925 
926 		/* Become a process group leader with the old leader's pid.
927 		 * The old leader becomes a thread of the this thread group.
928 		 * Note: The old leader also uses this pid until release_task
929 		 *       is called.  Odd but simple and correct.
930 		 */
931 		detach_pid(tsk, PIDTYPE_PID);
932 		tsk->pid = leader->pid;
933 		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
934 		transfer_pid(leader, tsk, PIDTYPE_PGID);
935 		transfer_pid(leader, tsk, PIDTYPE_SID);
936 
937 		list_replace_rcu(&leader->tasks, &tsk->tasks);
938 		list_replace_init(&leader->sibling, &tsk->sibling);
939 
940 		tsk->group_leader = tsk;
941 		leader->group_leader = tsk;
942 
943 		tsk->exit_signal = SIGCHLD;
944 		leader->exit_signal = -1;
945 
946 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
947 		leader->exit_state = EXIT_DEAD;
948 
949 		/*
950 		 * We are going to release_task()->ptrace_unlink() silently,
951 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
952 		 * the tracer wont't block again waiting for this thread.
953 		 */
954 		if (unlikely(leader->ptrace))
955 			__wake_up_parent(leader, leader->parent);
956 		write_unlock_irq(&tasklist_lock);
957 
958 		release_task(leader);
959 	}
960 
961 	sig->group_exit_task = NULL;
962 	sig->notify_count = 0;
963 
964 no_thread_group:
965 	/* we have changed execution domain */
966 	tsk->exit_signal = SIGCHLD;
967 
968 	exit_itimers(sig);
969 	flush_itimer_signals();
970 
971 	if (atomic_read(&oldsighand->count) != 1) {
972 		struct sighand_struct *newsighand;
973 		/*
974 		 * This ->sighand is shared with the CLONE_SIGHAND
975 		 * but not CLONE_THREAD task, switch to the new one.
976 		 */
977 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
978 		if (!newsighand)
979 			return -ENOMEM;
980 
981 		atomic_set(&newsighand->count, 1);
982 		memcpy(newsighand->action, oldsighand->action,
983 		       sizeof(newsighand->action));
984 
985 		write_lock_irq(&tasklist_lock);
986 		spin_lock(&oldsighand->siglock);
987 		rcu_assign_pointer(tsk->sighand, newsighand);
988 		spin_unlock(&oldsighand->siglock);
989 		write_unlock_irq(&tasklist_lock);
990 
991 		__cleanup_sighand(oldsighand);
992 	}
993 
994 	BUG_ON(!thread_group_leader(tsk));
995 	return 0;
996 }
997 
998 char *get_task_comm(char *buf, struct task_struct *tsk)
999 {
1000 	/* buf must be at least sizeof(tsk->comm) in size */
1001 	task_lock(tsk);
1002 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
1003 	task_unlock(tsk);
1004 	return buf;
1005 }
1006 EXPORT_SYMBOL_GPL(get_task_comm);
1007 
1008 /*
1009  * These functions flushes out all traces of the currently running executable
1010  * so that a new one can be started
1011  */
1012 
1013 void set_task_comm(struct task_struct *tsk, char *buf)
1014 {
1015 	task_lock(tsk);
1016 
1017 	trace_task_rename(tsk, buf);
1018 
1019 	/*
1020 	 * Threads may access current->comm without holding
1021 	 * the task lock, so write the string carefully.
1022 	 * Readers without a lock may see incomplete new
1023 	 * names but are safe from non-terminating string reads.
1024 	 */
1025 	memset(tsk->comm, 0, TASK_COMM_LEN);
1026 	wmb();
1027 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1028 	task_unlock(tsk);
1029 	perf_event_comm(tsk);
1030 }
1031 
1032 static void filename_to_taskname(char *tcomm, const char *fn, unsigned int len)
1033 {
1034 	int i, ch;
1035 
1036 	/* Copies the binary name from after last slash */
1037 	for (i = 0; (ch = *(fn++)) != '\0';) {
1038 		if (ch == '/')
1039 			i = 0; /* overwrite what we wrote */
1040 		else
1041 			if (i < len - 1)
1042 				tcomm[i++] = ch;
1043 	}
1044 	tcomm[i] = '\0';
1045 }
1046 
1047 int flush_old_exec(struct linux_binprm * bprm)
1048 {
1049 	int retval;
1050 
1051 	/*
1052 	 * Make sure we have a private signal table and that
1053 	 * we are unassociated from the previous thread group.
1054 	 */
1055 	retval = de_thread(current);
1056 	if (retval)
1057 		goto out;
1058 
1059 	set_mm_exe_file(bprm->mm, bprm->file);
1060 
1061 	filename_to_taskname(bprm->tcomm, bprm->filename, sizeof(bprm->tcomm));
1062 	/*
1063 	 * Release all of the old mmap stuff
1064 	 */
1065 	acct_arg_size(bprm, 0);
1066 	retval = exec_mmap(bprm->mm);
1067 	if (retval)
1068 		goto out;
1069 
1070 	bprm->mm = NULL;		/* We're using it now */
1071 
1072 	set_fs(USER_DS);
1073 	current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD);
1074 	flush_thread();
1075 	current->personality &= ~bprm->per_clear;
1076 
1077 	return 0;
1078 
1079 out:
1080 	return retval;
1081 }
1082 EXPORT_SYMBOL(flush_old_exec);
1083 
1084 void would_dump(struct linux_binprm *bprm, struct file *file)
1085 {
1086 	if (inode_permission(file->f_path.dentry->d_inode, MAY_READ) < 0)
1087 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1088 }
1089 EXPORT_SYMBOL(would_dump);
1090 
1091 void setup_new_exec(struct linux_binprm * bprm)
1092 {
1093 	arch_pick_mmap_layout(current->mm);
1094 
1095 	/* This is the point of no return */
1096 	current->sas_ss_sp = current->sas_ss_size = 0;
1097 
1098 	if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1099 		set_dumpable(current->mm, 1);
1100 	else
1101 		set_dumpable(current->mm, suid_dumpable);
1102 
1103 	set_task_comm(current, bprm->tcomm);
1104 
1105 	/* Set the new mm task size. We have to do that late because it may
1106 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1107 	 * some architectures like powerpc
1108 	 */
1109 	current->mm->task_size = TASK_SIZE;
1110 
1111 	/* install the new credentials */
1112 	if (!uid_eq(bprm->cred->uid, current_euid()) ||
1113 	    !gid_eq(bprm->cred->gid, current_egid())) {
1114 		current->pdeath_signal = 0;
1115 	} else {
1116 		would_dump(bprm, bprm->file);
1117 		if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1118 			set_dumpable(current->mm, suid_dumpable);
1119 	}
1120 
1121 	/*
1122 	 * Flush performance counters when crossing a
1123 	 * security domain:
1124 	 */
1125 	if (!get_dumpable(current->mm))
1126 		perf_event_exit_task(current);
1127 
1128 	/* An exec changes our domain. We are no longer part of the thread
1129 	   group */
1130 
1131 	current->self_exec_id++;
1132 
1133 	flush_signal_handlers(current, 0);
1134 	do_close_on_exec(current->files);
1135 }
1136 EXPORT_SYMBOL(setup_new_exec);
1137 
1138 /*
1139  * Prepare credentials and lock ->cred_guard_mutex.
1140  * install_exec_creds() commits the new creds and drops the lock.
1141  * Or, if exec fails before, free_bprm() should release ->cred and
1142  * and unlock.
1143  */
1144 int prepare_bprm_creds(struct linux_binprm *bprm)
1145 {
1146 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1147 		return -ERESTARTNOINTR;
1148 
1149 	bprm->cred = prepare_exec_creds();
1150 	if (likely(bprm->cred))
1151 		return 0;
1152 
1153 	mutex_unlock(&current->signal->cred_guard_mutex);
1154 	return -ENOMEM;
1155 }
1156 
1157 void free_bprm(struct linux_binprm *bprm)
1158 {
1159 	free_arg_pages(bprm);
1160 	if (bprm->cred) {
1161 		mutex_unlock(&current->signal->cred_guard_mutex);
1162 		abort_creds(bprm->cred);
1163 	}
1164 	kfree(bprm);
1165 }
1166 
1167 /*
1168  * install the new credentials for this executable
1169  */
1170 void install_exec_creds(struct linux_binprm *bprm)
1171 {
1172 	security_bprm_committing_creds(bprm);
1173 
1174 	commit_creds(bprm->cred);
1175 	bprm->cred = NULL;
1176 	/*
1177 	 * cred_guard_mutex must be held at least to this point to prevent
1178 	 * ptrace_attach() from altering our determination of the task's
1179 	 * credentials; any time after this it may be unlocked.
1180 	 */
1181 	security_bprm_committed_creds(bprm);
1182 	mutex_unlock(&current->signal->cred_guard_mutex);
1183 }
1184 EXPORT_SYMBOL(install_exec_creds);
1185 
1186 /*
1187  * determine how safe it is to execute the proposed program
1188  * - the caller must hold ->cred_guard_mutex to protect against
1189  *   PTRACE_ATTACH
1190  */
1191 static int check_unsafe_exec(struct linux_binprm *bprm)
1192 {
1193 	struct task_struct *p = current, *t;
1194 	unsigned n_fs;
1195 	int res = 0;
1196 
1197 	if (p->ptrace) {
1198 		if (p->ptrace & PT_PTRACE_CAP)
1199 			bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1200 		else
1201 			bprm->unsafe |= LSM_UNSAFE_PTRACE;
1202 	}
1203 
1204 	/*
1205 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1206 	 * mess up.
1207 	 */
1208 	if (current->no_new_privs)
1209 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1210 
1211 	n_fs = 1;
1212 	spin_lock(&p->fs->lock);
1213 	rcu_read_lock();
1214 	for (t = next_thread(p); t != p; t = next_thread(t)) {
1215 		if (t->fs == p->fs)
1216 			n_fs++;
1217 	}
1218 	rcu_read_unlock();
1219 
1220 	if (p->fs->users > n_fs) {
1221 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1222 	} else {
1223 		res = -EAGAIN;
1224 		if (!p->fs->in_exec) {
1225 			p->fs->in_exec = 1;
1226 			res = 1;
1227 		}
1228 	}
1229 	spin_unlock(&p->fs->lock);
1230 
1231 	return res;
1232 }
1233 
1234 /*
1235  * Fill the binprm structure from the inode.
1236  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1237  *
1238  * This may be called multiple times for binary chains (scripts for example).
1239  */
1240 int prepare_binprm(struct linux_binprm *bprm)
1241 {
1242 	umode_t mode;
1243 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1244 	int retval;
1245 
1246 	mode = inode->i_mode;
1247 	if (bprm->file->f_op == NULL)
1248 		return -EACCES;
1249 
1250 	/* clear any previous set[ug]id data from a previous binary */
1251 	bprm->cred->euid = current_euid();
1252 	bprm->cred->egid = current_egid();
1253 
1254 	if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) &&
1255 	    !current->no_new_privs) {
1256 		/* Set-uid? */
1257 		if (mode & S_ISUID) {
1258 			if (!kuid_has_mapping(bprm->cred->user_ns, inode->i_uid))
1259 				return -EPERM;
1260 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1261 			bprm->cred->euid = inode->i_uid;
1262 
1263 		}
1264 
1265 		/* Set-gid? */
1266 		/*
1267 		 * If setgid is set but no group execute bit then this
1268 		 * is a candidate for mandatory locking, not a setgid
1269 		 * executable.
1270 		 */
1271 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1272 			if (!kgid_has_mapping(bprm->cred->user_ns, inode->i_gid))
1273 				return -EPERM;
1274 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1275 			bprm->cred->egid = inode->i_gid;
1276 		}
1277 	}
1278 
1279 	/* fill in binprm security blob */
1280 	retval = security_bprm_set_creds(bprm);
1281 	if (retval)
1282 		return retval;
1283 	bprm->cred_prepared = 1;
1284 
1285 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1286 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1287 }
1288 
1289 EXPORT_SYMBOL(prepare_binprm);
1290 
1291 /*
1292  * Arguments are '\0' separated strings found at the location bprm->p
1293  * points to; chop off the first by relocating brpm->p to right after
1294  * the first '\0' encountered.
1295  */
1296 int remove_arg_zero(struct linux_binprm *bprm)
1297 {
1298 	int ret = 0;
1299 	unsigned long offset;
1300 	char *kaddr;
1301 	struct page *page;
1302 
1303 	if (!bprm->argc)
1304 		return 0;
1305 
1306 	do {
1307 		offset = bprm->p & ~PAGE_MASK;
1308 		page = get_arg_page(bprm, bprm->p, 0);
1309 		if (!page) {
1310 			ret = -EFAULT;
1311 			goto out;
1312 		}
1313 		kaddr = kmap_atomic(page);
1314 
1315 		for (; offset < PAGE_SIZE && kaddr[offset];
1316 				offset++, bprm->p++)
1317 			;
1318 
1319 		kunmap_atomic(kaddr);
1320 		put_arg_page(page);
1321 
1322 		if (offset == PAGE_SIZE)
1323 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1324 	} while (offset == PAGE_SIZE);
1325 
1326 	bprm->p++;
1327 	bprm->argc--;
1328 	ret = 0;
1329 
1330 out:
1331 	return ret;
1332 }
1333 EXPORT_SYMBOL(remove_arg_zero);
1334 
1335 /*
1336  * cycle the list of binary formats handler, until one recognizes the image
1337  */
1338 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1339 {
1340 	unsigned int depth = bprm->recursion_depth;
1341 	int try,retval;
1342 	struct linux_binfmt *fmt;
1343 	pid_t old_pid, old_vpid;
1344 
1345 	retval = security_bprm_check(bprm);
1346 	if (retval)
1347 		return retval;
1348 
1349 	retval = audit_bprm(bprm);
1350 	if (retval)
1351 		return retval;
1352 
1353 	/* Need to fetch pid before load_binary changes it */
1354 	old_pid = current->pid;
1355 	rcu_read_lock();
1356 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1357 	rcu_read_unlock();
1358 
1359 	retval = -ENOENT;
1360 	for (try=0; try<2; try++) {
1361 		read_lock(&binfmt_lock);
1362 		list_for_each_entry(fmt, &formats, lh) {
1363 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1364 			if (!fn)
1365 				continue;
1366 			if (!try_module_get(fmt->module))
1367 				continue;
1368 			read_unlock(&binfmt_lock);
1369 			retval = fn(bprm, regs);
1370 			/*
1371 			 * Restore the depth counter to its starting value
1372 			 * in this call, so we don't have to rely on every
1373 			 * load_binary function to restore it on return.
1374 			 */
1375 			bprm->recursion_depth = depth;
1376 			if (retval >= 0) {
1377 				if (depth == 0) {
1378 					trace_sched_process_exec(current, old_pid, bprm);
1379 					ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1380 				}
1381 				put_binfmt(fmt);
1382 				allow_write_access(bprm->file);
1383 				if (bprm->file)
1384 					fput(bprm->file);
1385 				bprm->file = NULL;
1386 				current->did_exec = 1;
1387 				proc_exec_connector(current);
1388 				return retval;
1389 			}
1390 			read_lock(&binfmt_lock);
1391 			put_binfmt(fmt);
1392 			if (retval != -ENOEXEC || bprm->mm == NULL)
1393 				break;
1394 			if (!bprm->file) {
1395 				read_unlock(&binfmt_lock);
1396 				return retval;
1397 			}
1398 		}
1399 		read_unlock(&binfmt_lock);
1400 #ifdef CONFIG_MODULES
1401 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1402 			break;
1403 		} else {
1404 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1405 			if (printable(bprm->buf[0]) &&
1406 			    printable(bprm->buf[1]) &&
1407 			    printable(bprm->buf[2]) &&
1408 			    printable(bprm->buf[3]))
1409 				break; /* -ENOEXEC */
1410 			if (try)
1411 				break; /* -ENOEXEC */
1412 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1413 		}
1414 #else
1415 		break;
1416 #endif
1417 	}
1418 	return retval;
1419 }
1420 
1421 EXPORT_SYMBOL(search_binary_handler);
1422 
1423 /*
1424  * sys_execve() executes a new program.
1425  */
1426 static int do_execve_common(const char *filename,
1427 				struct user_arg_ptr argv,
1428 				struct user_arg_ptr envp,
1429 				struct pt_regs *regs)
1430 {
1431 	struct linux_binprm *bprm;
1432 	struct file *file;
1433 	struct files_struct *displaced;
1434 	bool clear_in_exec;
1435 	int retval;
1436 	const struct cred *cred = current_cred();
1437 
1438 	/*
1439 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1440 	 * set*uid() to execve() because too many poorly written programs
1441 	 * don't check setuid() return code.  Here we additionally recheck
1442 	 * whether NPROC limit is still exceeded.
1443 	 */
1444 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1445 	    atomic_read(&cred->user->processes) > rlimit(RLIMIT_NPROC)) {
1446 		retval = -EAGAIN;
1447 		goto out_ret;
1448 	}
1449 
1450 	/* We're below the limit (still or again), so we don't want to make
1451 	 * further execve() calls fail. */
1452 	current->flags &= ~PF_NPROC_EXCEEDED;
1453 
1454 	retval = unshare_files(&displaced);
1455 	if (retval)
1456 		goto out_ret;
1457 
1458 	retval = -ENOMEM;
1459 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1460 	if (!bprm)
1461 		goto out_files;
1462 
1463 	retval = prepare_bprm_creds(bprm);
1464 	if (retval)
1465 		goto out_free;
1466 
1467 	retval = check_unsafe_exec(bprm);
1468 	if (retval < 0)
1469 		goto out_free;
1470 	clear_in_exec = retval;
1471 	current->in_execve = 1;
1472 
1473 	file = open_exec(filename);
1474 	retval = PTR_ERR(file);
1475 	if (IS_ERR(file))
1476 		goto out_unmark;
1477 
1478 	sched_exec();
1479 
1480 	bprm->file = file;
1481 	bprm->filename = filename;
1482 	bprm->interp = filename;
1483 
1484 	retval = bprm_mm_init(bprm);
1485 	if (retval)
1486 		goto out_file;
1487 
1488 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1489 	if ((retval = bprm->argc) < 0)
1490 		goto out;
1491 
1492 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1493 	if ((retval = bprm->envc) < 0)
1494 		goto out;
1495 
1496 	retval = prepare_binprm(bprm);
1497 	if (retval < 0)
1498 		goto out;
1499 
1500 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1501 	if (retval < 0)
1502 		goto out;
1503 
1504 	bprm->exec = bprm->p;
1505 	retval = copy_strings(bprm->envc, envp, bprm);
1506 	if (retval < 0)
1507 		goto out;
1508 
1509 	retval = copy_strings(bprm->argc, argv, bprm);
1510 	if (retval < 0)
1511 		goto out;
1512 
1513 	retval = search_binary_handler(bprm,regs);
1514 	if (retval < 0)
1515 		goto out;
1516 
1517 	/* execve succeeded */
1518 	current->fs->in_exec = 0;
1519 	current->in_execve = 0;
1520 	acct_update_integrals(current);
1521 	free_bprm(bprm);
1522 	if (displaced)
1523 		put_files_struct(displaced);
1524 	return retval;
1525 
1526 out:
1527 	if (bprm->mm) {
1528 		acct_arg_size(bprm, 0);
1529 		mmput(bprm->mm);
1530 	}
1531 
1532 out_file:
1533 	if (bprm->file) {
1534 		allow_write_access(bprm->file);
1535 		fput(bprm->file);
1536 	}
1537 
1538 out_unmark:
1539 	if (clear_in_exec)
1540 		current->fs->in_exec = 0;
1541 	current->in_execve = 0;
1542 
1543 out_free:
1544 	free_bprm(bprm);
1545 
1546 out_files:
1547 	if (displaced)
1548 		reset_files_struct(displaced);
1549 out_ret:
1550 	return retval;
1551 }
1552 
1553 int do_execve(const char *filename,
1554 	const char __user *const __user *__argv,
1555 	const char __user *const __user *__envp,
1556 	struct pt_regs *regs)
1557 {
1558 	struct user_arg_ptr argv = { .ptr.native = __argv };
1559 	struct user_arg_ptr envp = { .ptr.native = __envp };
1560 	return do_execve_common(filename, argv, envp, regs);
1561 }
1562 
1563 #ifdef CONFIG_COMPAT
1564 int compat_do_execve(char *filename,
1565 	compat_uptr_t __user *__argv,
1566 	compat_uptr_t __user *__envp,
1567 	struct pt_regs *regs)
1568 {
1569 	struct user_arg_ptr argv = {
1570 		.is_compat = true,
1571 		.ptr.compat = __argv,
1572 	};
1573 	struct user_arg_ptr envp = {
1574 		.is_compat = true,
1575 		.ptr.compat = __envp,
1576 	};
1577 	return do_execve_common(filename, argv, envp, regs);
1578 }
1579 #endif
1580 
1581 void set_binfmt(struct linux_binfmt *new)
1582 {
1583 	struct mm_struct *mm = current->mm;
1584 
1585 	if (mm->binfmt)
1586 		module_put(mm->binfmt->module);
1587 
1588 	mm->binfmt = new;
1589 	if (new)
1590 		__module_get(new->module);
1591 }
1592 
1593 EXPORT_SYMBOL(set_binfmt);
1594 
1595 /*
1596  * set_dumpable converts traditional three-value dumpable to two flags and
1597  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1598  * these bits are not changed atomically.  So get_dumpable can observe the
1599  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1600  * return either old dumpable or new one by paying attention to the order of
1601  * modifying the bits.
1602  *
1603  * dumpable |   mm->flags (binary)
1604  * old  new | initial interim  final
1605  * ---------+-----------------------
1606  *  0    1  |   00      01      01
1607  *  0    2  |   00      10(*)   11
1608  *  1    0  |   01      00      00
1609  *  1    2  |   01      11      11
1610  *  2    0  |   11      10(*)   00
1611  *  2    1  |   11      11      01
1612  *
1613  * (*) get_dumpable regards interim value of 10 as 11.
1614  */
1615 void set_dumpable(struct mm_struct *mm, int value)
1616 {
1617 	switch (value) {
1618 	case SUID_DUMPABLE_DISABLED:
1619 		clear_bit(MMF_DUMPABLE, &mm->flags);
1620 		smp_wmb();
1621 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1622 		break;
1623 	case SUID_DUMPABLE_ENABLED:
1624 		set_bit(MMF_DUMPABLE, &mm->flags);
1625 		smp_wmb();
1626 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1627 		break;
1628 	case SUID_DUMPABLE_SAFE:
1629 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
1630 		smp_wmb();
1631 		set_bit(MMF_DUMPABLE, &mm->flags);
1632 		break;
1633 	}
1634 }
1635 
1636 int __get_dumpable(unsigned long mm_flags)
1637 {
1638 	int ret;
1639 
1640 	ret = mm_flags & MMF_DUMPABLE_MASK;
1641 	return (ret > SUID_DUMPABLE_ENABLED) ? SUID_DUMPABLE_SAFE : ret;
1642 }
1643 
1644 int get_dumpable(struct mm_struct *mm)
1645 {
1646 	return __get_dumpable(mm->flags);
1647 }
1648