1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/mm.h> 29 #include <linux/stat.h> 30 #include <linux/fcntl.h> 31 #include <linux/swap.h> 32 #include <linux/string.h> 33 #include <linux/init.h> 34 #include <linux/pagemap.h> 35 #include <linux/perf_event.h> 36 #include <linux/highmem.h> 37 #include <linux/spinlock.h> 38 #include <linux/key.h> 39 #include <linux/personality.h> 40 #include <linux/binfmts.h> 41 #include <linux/utsname.h> 42 #include <linux/pid_namespace.h> 43 #include <linux/module.h> 44 #include <linux/namei.h> 45 #include <linux/mount.h> 46 #include <linux/security.h> 47 #include <linux/syscalls.h> 48 #include <linux/tsacct_kern.h> 49 #include <linux/cn_proc.h> 50 #include <linux/audit.h> 51 #include <linux/tracehook.h> 52 #include <linux/kmod.h> 53 #include <linux/fsnotify.h> 54 #include <linux/fs_struct.h> 55 #include <linux/pipe_fs_i.h> 56 #include <linux/oom.h> 57 #include <linux/compat.h> 58 59 #include <asm/uaccess.h> 60 #include <asm/mmu_context.h> 61 #include <asm/tlb.h> 62 #include <asm/exec.h> 63 64 #include <trace/events/task.h> 65 #include "internal.h" 66 67 #include <trace/events/sched.h> 68 69 int suid_dumpable = 0; 70 71 static LIST_HEAD(formats); 72 static DEFINE_RWLOCK(binfmt_lock); 73 74 void __register_binfmt(struct linux_binfmt * fmt, int insert) 75 { 76 BUG_ON(!fmt); 77 write_lock(&binfmt_lock); 78 insert ? list_add(&fmt->lh, &formats) : 79 list_add_tail(&fmt->lh, &formats); 80 write_unlock(&binfmt_lock); 81 } 82 83 EXPORT_SYMBOL(__register_binfmt); 84 85 void unregister_binfmt(struct linux_binfmt * fmt) 86 { 87 write_lock(&binfmt_lock); 88 list_del(&fmt->lh); 89 write_unlock(&binfmt_lock); 90 } 91 92 EXPORT_SYMBOL(unregister_binfmt); 93 94 static inline void put_binfmt(struct linux_binfmt * fmt) 95 { 96 module_put(fmt->module); 97 } 98 99 /* 100 * Note that a shared library must be both readable and executable due to 101 * security reasons. 102 * 103 * Also note that we take the address to load from from the file itself. 104 */ 105 SYSCALL_DEFINE1(uselib, const char __user *, library) 106 { 107 struct file *file; 108 char *tmp = getname(library); 109 int error = PTR_ERR(tmp); 110 static const struct open_flags uselib_flags = { 111 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 112 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN, 113 .intent = LOOKUP_OPEN 114 }; 115 116 if (IS_ERR(tmp)) 117 goto out; 118 119 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW); 120 putname(tmp); 121 error = PTR_ERR(file); 122 if (IS_ERR(file)) 123 goto out; 124 125 error = -EINVAL; 126 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode)) 127 goto exit; 128 129 error = -EACCES; 130 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 131 goto exit; 132 133 fsnotify_open(file); 134 135 error = -ENOEXEC; 136 if(file->f_op) { 137 struct linux_binfmt * fmt; 138 139 read_lock(&binfmt_lock); 140 list_for_each_entry(fmt, &formats, lh) { 141 if (!fmt->load_shlib) 142 continue; 143 if (!try_module_get(fmt->module)) 144 continue; 145 read_unlock(&binfmt_lock); 146 error = fmt->load_shlib(file); 147 read_lock(&binfmt_lock); 148 put_binfmt(fmt); 149 if (error != -ENOEXEC) 150 break; 151 } 152 read_unlock(&binfmt_lock); 153 } 154 exit: 155 fput(file); 156 out: 157 return error; 158 } 159 160 #ifdef CONFIG_MMU 161 /* 162 * The nascent bprm->mm is not visible until exec_mmap() but it can 163 * use a lot of memory, account these pages in current->mm temporary 164 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 165 * change the counter back via acct_arg_size(0). 166 */ 167 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 168 { 169 struct mm_struct *mm = current->mm; 170 long diff = (long)(pages - bprm->vma_pages); 171 172 if (!mm || !diff) 173 return; 174 175 bprm->vma_pages = pages; 176 add_mm_counter(mm, MM_ANONPAGES, diff); 177 } 178 179 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 180 int write) 181 { 182 struct page *page; 183 int ret; 184 185 #ifdef CONFIG_STACK_GROWSUP 186 if (write) { 187 ret = expand_downwards(bprm->vma, pos); 188 if (ret < 0) 189 return NULL; 190 } 191 #endif 192 ret = get_user_pages(current, bprm->mm, pos, 193 1, write, 1, &page, NULL); 194 if (ret <= 0) 195 return NULL; 196 197 if (write) { 198 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 199 struct rlimit *rlim; 200 201 acct_arg_size(bprm, size / PAGE_SIZE); 202 203 /* 204 * We've historically supported up to 32 pages (ARG_MAX) 205 * of argument strings even with small stacks 206 */ 207 if (size <= ARG_MAX) 208 return page; 209 210 /* 211 * Limit to 1/4-th the stack size for the argv+env strings. 212 * This ensures that: 213 * - the remaining binfmt code will not run out of stack space, 214 * - the program will have a reasonable amount of stack left 215 * to work from. 216 */ 217 rlim = current->signal->rlim; 218 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) { 219 put_page(page); 220 return NULL; 221 } 222 } 223 224 return page; 225 } 226 227 static void put_arg_page(struct page *page) 228 { 229 put_page(page); 230 } 231 232 static void free_arg_page(struct linux_binprm *bprm, int i) 233 { 234 } 235 236 static void free_arg_pages(struct linux_binprm *bprm) 237 { 238 } 239 240 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 241 struct page *page) 242 { 243 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 244 } 245 246 static int __bprm_mm_init(struct linux_binprm *bprm) 247 { 248 int err; 249 struct vm_area_struct *vma = NULL; 250 struct mm_struct *mm = bprm->mm; 251 252 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 253 if (!vma) 254 return -ENOMEM; 255 256 down_write(&mm->mmap_sem); 257 vma->vm_mm = mm; 258 259 /* 260 * Place the stack at the largest stack address the architecture 261 * supports. Later, we'll move this to an appropriate place. We don't 262 * use STACK_TOP because that can depend on attributes which aren't 263 * configured yet. 264 */ 265 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 266 vma->vm_end = STACK_TOP_MAX; 267 vma->vm_start = vma->vm_end - PAGE_SIZE; 268 vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 269 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 270 INIT_LIST_HEAD(&vma->anon_vma_chain); 271 272 err = insert_vm_struct(mm, vma); 273 if (err) 274 goto err; 275 276 mm->stack_vm = mm->total_vm = 1; 277 up_write(&mm->mmap_sem); 278 bprm->p = vma->vm_end - sizeof(void *); 279 return 0; 280 err: 281 up_write(&mm->mmap_sem); 282 bprm->vma = NULL; 283 kmem_cache_free(vm_area_cachep, vma); 284 return err; 285 } 286 287 static bool valid_arg_len(struct linux_binprm *bprm, long len) 288 { 289 return len <= MAX_ARG_STRLEN; 290 } 291 292 #else 293 294 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 295 { 296 } 297 298 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 299 int write) 300 { 301 struct page *page; 302 303 page = bprm->page[pos / PAGE_SIZE]; 304 if (!page && write) { 305 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 306 if (!page) 307 return NULL; 308 bprm->page[pos / PAGE_SIZE] = page; 309 } 310 311 return page; 312 } 313 314 static void put_arg_page(struct page *page) 315 { 316 } 317 318 static void free_arg_page(struct linux_binprm *bprm, int i) 319 { 320 if (bprm->page[i]) { 321 __free_page(bprm->page[i]); 322 bprm->page[i] = NULL; 323 } 324 } 325 326 static void free_arg_pages(struct linux_binprm *bprm) 327 { 328 int i; 329 330 for (i = 0; i < MAX_ARG_PAGES; i++) 331 free_arg_page(bprm, i); 332 } 333 334 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 335 struct page *page) 336 { 337 } 338 339 static int __bprm_mm_init(struct linux_binprm *bprm) 340 { 341 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 342 return 0; 343 } 344 345 static bool valid_arg_len(struct linux_binprm *bprm, long len) 346 { 347 return len <= bprm->p; 348 } 349 350 #endif /* CONFIG_MMU */ 351 352 /* 353 * Create a new mm_struct and populate it with a temporary stack 354 * vm_area_struct. We don't have enough context at this point to set the stack 355 * flags, permissions, and offset, so we use temporary values. We'll update 356 * them later in setup_arg_pages(). 357 */ 358 int bprm_mm_init(struct linux_binprm *bprm) 359 { 360 int err; 361 struct mm_struct *mm = NULL; 362 363 bprm->mm = mm = mm_alloc(); 364 err = -ENOMEM; 365 if (!mm) 366 goto err; 367 368 err = init_new_context(current, mm); 369 if (err) 370 goto err; 371 372 err = __bprm_mm_init(bprm); 373 if (err) 374 goto err; 375 376 return 0; 377 378 err: 379 if (mm) { 380 bprm->mm = NULL; 381 mmdrop(mm); 382 } 383 384 return err; 385 } 386 387 struct user_arg_ptr { 388 #ifdef CONFIG_COMPAT 389 bool is_compat; 390 #endif 391 union { 392 const char __user *const __user *native; 393 #ifdef CONFIG_COMPAT 394 compat_uptr_t __user *compat; 395 #endif 396 } ptr; 397 }; 398 399 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 400 { 401 const char __user *native; 402 403 #ifdef CONFIG_COMPAT 404 if (unlikely(argv.is_compat)) { 405 compat_uptr_t compat; 406 407 if (get_user(compat, argv.ptr.compat + nr)) 408 return ERR_PTR(-EFAULT); 409 410 return compat_ptr(compat); 411 } 412 #endif 413 414 if (get_user(native, argv.ptr.native + nr)) 415 return ERR_PTR(-EFAULT); 416 417 return native; 418 } 419 420 /* 421 * count() counts the number of strings in array ARGV. 422 */ 423 static int count(struct user_arg_ptr argv, int max) 424 { 425 int i = 0; 426 427 if (argv.ptr.native != NULL) { 428 for (;;) { 429 const char __user *p = get_user_arg_ptr(argv, i); 430 431 if (!p) 432 break; 433 434 if (IS_ERR(p)) 435 return -EFAULT; 436 437 if (i++ >= max) 438 return -E2BIG; 439 440 if (fatal_signal_pending(current)) 441 return -ERESTARTNOHAND; 442 cond_resched(); 443 } 444 } 445 return i; 446 } 447 448 /* 449 * 'copy_strings()' copies argument/environment strings from the old 450 * processes's memory to the new process's stack. The call to get_user_pages() 451 * ensures the destination page is created and not swapped out. 452 */ 453 static int copy_strings(int argc, struct user_arg_ptr argv, 454 struct linux_binprm *bprm) 455 { 456 struct page *kmapped_page = NULL; 457 char *kaddr = NULL; 458 unsigned long kpos = 0; 459 int ret; 460 461 while (argc-- > 0) { 462 const char __user *str; 463 int len; 464 unsigned long pos; 465 466 ret = -EFAULT; 467 str = get_user_arg_ptr(argv, argc); 468 if (IS_ERR(str)) 469 goto out; 470 471 len = strnlen_user(str, MAX_ARG_STRLEN); 472 if (!len) 473 goto out; 474 475 ret = -E2BIG; 476 if (!valid_arg_len(bprm, len)) 477 goto out; 478 479 /* We're going to work our way backwords. */ 480 pos = bprm->p; 481 str += len; 482 bprm->p -= len; 483 484 while (len > 0) { 485 int offset, bytes_to_copy; 486 487 if (fatal_signal_pending(current)) { 488 ret = -ERESTARTNOHAND; 489 goto out; 490 } 491 cond_resched(); 492 493 offset = pos % PAGE_SIZE; 494 if (offset == 0) 495 offset = PAGE_SIZE; 496 497 bytes_to_copy = offset; 498 if (bytes_to_copy > len) 499 bytes_to_copy = len; 500 501 offset -= bytes_to_copy; 502 pos -= bytes_to_copy; 503 str -= bytes_to_copy; 504 len -= bytes_to_copy; 505 506 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 507 struct page *page; 508 509 page = get_arg_page(bprm, pos, 1); 510 if (!page) { 511 ret = -E2BIG; 512 goto out; 513 } 514 515 if (kmapped_page) { 516 flush_kernel_dcache_page(kmapped_page); 517 kunmap(kmapped_page); 518 put_arg_page(kmapped_page); 519 } 520 kmapped_page = page; 521 kaddr = kmap(kmapped_page); 522 kpos = pos & PAGE_MASK; 523 flush_arg_page(bprm, kpos, kmapped_page); 524 } 525 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 526 ret = -EFAULT; 527 goto out; 528 } 529 } 530 } 531 ret = 0; 532 out: 533 if (kmapped_page) { 534 flush_kernel_dcache_page(kmapped_page); 535 kunmap(kmapped_page); 536 put_arg_page(kmapped_page); 537 } 538 return ret; 539 } 540 541 /* 542 * Like copy_strings, but get argv and its values from kernel memory. 543 */ 544 int copy_strings_kernel(int argc, const char *const *__argv, 545 struct linux_binprm *bprm) 546 { 547 int r; 548 mm_segment_t oldfs = get_fs(); 549 struct user_arg_ptr argv = { 550 .ptr.native = (const char __user *const __user *)__argv, 551 }; 552 553 set_fs(KERNEL_DS); 554 r = copy_strings(argc, argv, bprm); 555 set_fs(oldfs); 556 557 return r; 558 } 559 EXPORT_SYMBOL(copy_strings_kernel); 560 561 #ifdef CONFIG_MMU 562 563 /* 564 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 565 * the binfmt code determines where the new stack should reside, we shift it to 566 * its final location. The process proceeds as follows: 567 * 568 * 1) Use shift to calculate the new vma endpoints. 569 * 2) Extend vma to cover both the old and new ranges. This ensures the 570 * arguments passed to subsequent functions are consistent. 571 * 3) Move vma's page tables to the new range. 572 * 4) Free up any cleared pgd range. 573 * 5) Shrink the vma to cover only the new range. 574 */ 575 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 576 { 577 struct mm_struct *mm = vma->vm_mm; 578 unsigned long old_start = vma->vm_start; 579 unsigned long old_end = vma->vm_end; 580 unsigned long length = old_end - old_start; 581 unsigned long new_start = old_start - shift; 582 unsigned long new_end = old_end - shift; 583 struct mmu_gather tlb; 584 585 BUG_ON(new_start > new_end); 586 587 /* 588 * ensure there are no vmas between where we want to go 589 * and where we are 590 */ 591 if (vma != find_vma(mm, new_start)) 592 return -EFAULT; 593 594 /* 595 * cover the whole range: [new_start, old_end) 596 */ 597 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 598 return -ENOMEM; 599 600 /* 601 * move the page tables downwards, on failure we rely on 602 * process cleanup to remove whatever mess we made. 603 */ 604 if (length != move_page_tables(vma, old_start, 605 vma, new_start, length)) 606 return -ENOMEM; 607 608 lru_add_drain(); 609 tlb_gather_mmu(&tlb, mm, 0); 610 if (new_end > old_start) { 611 /* 612 * when the old and new regions overlap clear from new_end. 613 */ 614 free_pgd_range(&tlb, new_end, old_end, new_end, 615 vma->vm_next ? vma->vm_next->vm_start : 0); 616 } else { 617 /* 618 * otherwise, clean from old_start; this is done to not touch 619 * the address space in [new_end, old_start) some architectures 620 * have constraints on va-space that make this illegal (IA64) - 621 * for the others its just a little faster. 622 */ 623 free_pgd_range(&tlb, old_start, old_end, new_end, 624 vma->vm_next ? vma->vm_next->vm_start : 0); 625 } 626 tlb_finish_mmu(&tlb, new_end, old_end); 627 628 /* 629 * Shrink the vma to just the new range. Always succeeds. 630 */ 631 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 632 633 return 0; 634 } 635 636 /* 637 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 638 * the stack is optionally relocated, and some extra space is added. 639 */ 640 int setup_arg_pages(struct linux_binprm *bprm, 641 unsigned long stack_top, 642 int executable_stack) 643 { 644 unsigned long ret; 645 unsigned long stack_shift; 646 struct mm_struct *mm = current->mm; 647 struct vm_area_struct *vma = bprm->vma; 648 struct vm_area_struct *prev = NULL; 649 unsigned long vm_flags; 650 unsigned long stack_base; 651 unsigned long stack_size; 652 unsigned long stack_expand; 653 unsigned long rlim_stack; 654 655 #ifdef CONFIG_STACK_GROWSUP 656 /* Limit stack size to 1GB */ 657 stack_base = rlimit_max(RLIMIT_STACK); 658 if (stack_base > (1 << 30)) 659 stack_base = 1 << 30; 660 661 /* Make sure we didn't let the argument array grow too large. */ 662 if (vma->vm_end - vma->vm_start > stack_base) 663 return -ENOMEM; 664 665 stack_base = PAGE_ALIGN(stack_top - stack_base); 666 667 stack_shift = vma->vm_start - stack_base; 668 mm->arg_start = bprm->p - stack_shift; 669 bprm->p = vma->vm_end - stack_shift; 670 #else 671 stack_top = arch_align_stack(stack_top); 672 stack_top = PAGE_ALIGN(stack_top); 673 674 if (unlikely(stack_top < mmap_min_addr) || 675 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 676 return -ENOMEM; 677 678 stack_shift = vma->vm_end - stack_top; 679 680 bprm->p -= stack_shift; 681 mm->arg_start = bprm->p; 682 #endif 683 684 if (bprm->loader) 685 bprm->loader -= stack_shift; 686 bprm->exec -= stack_shift; 687 688 down_write(&mm->mmap_sem); 689 vm_flags = VM_STACK_FLAGS; 690 691 /* 692 * Adjust stack execute permissions; explicitly enable for 693 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 694 * (arch default) otherwise. 695 */ 696 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 697 vm_flags |= VM_EXEC; 698 else if (executable_stack == EXSTACK_DISABLE_X) 699 vm_flags &= ~VM_EXEC; 700 vm_flags |= mm->def_flags; 701 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 702 703 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 704 vm_flags); 705 if (ret) 706 goto out_unlock; 707 BUG_ON(prev != vma); 708 709 /* Move stack pages down in memory. */ 710 if (stack_shift) { 711 ret = shift_arg_pages(vma, stack_shift); 712 if (ret) 713 goto out_unlock; 714 } 715 716 /* mprotect_fixup is overkill to remove the temporary stack flags */ 717 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 718 719 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 720 stack_size = vma->vm_end - vma->vm_start; 721 /* 722 * Align this down to a page boundary as expand_stack 723 * will align it up. 724 */ 725 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK; 726 #ifdef CONFIG_STACK_GROWSUP 727 if (stack_size + stack_expand > rlim_stack) 728 stack_base = vma->vm_start + rlim_stack; 729 else 730 stack_base = vma->vm_end + stack_expand; 731 #else 732 if (stack_size + stack_expand > rlim_stack) 733 stack_base = vma->vm_end - rlim_stack; 734 else 735 stack_base = vma->vm_start - stack_expand; 736 #endif 737 current->mm->start_stack = bprm->p; 738 ret = expand_stack(vma, stack_base); 739 if (ret) 740 ret = -EFAULT; 741 742 out_unlock: 743 up_write(&mm->mmap_sem); 744 return ret; 745 } 746 EXPORT_SYMBOL(setup_arg_pages); 747 748 #endif /* CONFIG_MMU */ 749 750 struct file *open_exec(const char *name) 751 { 752 struct file *file; 753 int err; 754 static const struct open_flags open_exec_flags = { 755 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 756 .acc_mode = MAY_EXEC | MAY_OPEN, 757 .intent = LOOKUP_OPEN 758 }; 759 760 file = do_filp_open(AT_FDCWD, name, &open_exec_flags, LOOKUP_FOLLOW); 761 if (IS_ERR(file)) 762 goto out; 763 764 err = -EACCES; 765 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode)) 766 goto exit; 767 768 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 769 goto exit; 770 771 fsnotify_open(file); 772 773 err = deny_write_access(file); 774 if (err) 775 goto exit; 776 777 out: 778 return file; 779 780 exit: 781 fput(file); 782 return ERR_PTR(err); 783 } 784 EXPORT_SYMBOL(open_exec); 785 786 int kernel_read(struct file *file, loff_t offset, 787 char *addr, unsigned long count) 788 { 789 mm_segment_t old_fs; 790 loff_t pos = offset; 791 int result; 792 793 old_fs = get_fs(); 794 set_fs(get_ds()); 795 /* The cast to a user pointer is valid due to the set_fs() */ 796 result = vfs_read(file, (void __user *)addr, count, &pos); 797 set_fs(old_fs); 798 return result; 799 } 800 801 EXPORT_SYMBOL(kernel_read); 802 803 static int exec_mmap(struct mm_struct *mm) 804 { 805 struct task_struct *tsk; 806 struct mm_struct * old_mm, *active_mm; 807 808 /* Notify parent that we're no longer interested in the old VM */ 809 tsk = current; 810 old_mm = current->mm; 811 mm_release(tsk, old_mm); 812 813 if (old_mm) { 814 sync_mm_rss(old_mm); 815 /* 816 * Make sure that if there is a core dump in progress 817 * for the old mm, we get out and die instead of going 818 * through with the exec. We must hold mmap_sem around 819 * checking core_state and changing tsk->mm. 820 */ 821 down_read(&old_mm->mmap_sem); 822 if (unlikely(old_mm->core_state)) { 823 up_read(&old_mm->mmap_sem); 824 return -EINTR; 825 } 826 } 827 task_lock(tsk); 828 active_mm = tsk->active_mm; 829 tsk->mm = mm; 830 tsk->active_mm = mm; 831 activate_mm(active_mm, mm); 832 task_unlock(tsk); 833 arch_pick_mmap_layout(mm); 834 if (old_mm) { 835 up_read(&old_mm->mmap_sem); 836 BUG_ON(active_mm != old_mm); 837 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 838 mm_update_next_owner(old_mm); 839 mmput(old_mm); 840 return 0; 841 } 842 mmdrop(active_mm); 843 return 0; 844 } 845 846 /* 847 * This function makes sure the current process has its own signal table, 848 * so that flush_signal_handlers can later reset the handlers without 849 * disturbing other processes. (Other processes might share the signal 850 * table via the CLONE_SIGHAND option to clone().) 851 */ 852 static int de_thread(struct task_struct *tsk) 853 { 854 struct signal_struct *sig = tsk->signal; 855 struct sighand_struct *oldsighand = tsk->sighand; 856 spinlock_t *lock = &oldsighand->siglock; 857 858 if (thread_group_empty(tsk)) 859 goto no_thread_group; 860 861 /* 862 * Kill all other threads in the thread group. 863 */ 864 spin_lock_irq(lock); 865 if (signal_group_exit(sig)) { 866 /* 867 * Another group action in progress, just 868 * return so that the signal is processed. 869 */ 870 spin_unlock_irq(lock); 871 return -EAGAIN; 872 } 873 874 sig->group_exit_task = tsk; 875 sig->notify_count = zap_other_threads(tsk); 876 if (!thread_group_leader(tsk)) 877 sig->notify_count--; 878 879 while (sig->notify_count) { 880 __set_current_state(TASK_UNINTERRUPTIBLE); 881 spin_unlock_irq(lock); 882 schedule(); 883 spin_lock_irq(lock); 884 } 885 spin_unlock_irq(lock); 886 887 /* 888 * At this point all other threads have exited, all we have to 889 * do is to wait for the thread group leader to become inactive, 890 * and to assume its PID: 891 */ 892 if (!thread_group_leader(tsk)) { 893 struct task_struct *leader = tsk->group_leader; 894 895 sig->notify_count = -1; /* for exit_notify() */ 896 for (;;) { 897 write_lock_irq(&tasklist_lock); 898 if (likely(leader->exit_state)) 899 break; 900 __set_current_state(TASK_UNINTERRUPTIBLE); 901 write_unlock_irq(&tasklist_lock); 902 schedule(); 903 } 904 905 /* 906 * The only record we have of the real-time age of a 907 * process, regardless of execs it's done, is start_time. 908 * All the past CPU time is accumulated in signal_struct 909 * from sister threads now dead. But in this non-leader 910 * exec, nothing survives from the original leader thread, 911 * whose birth marks the true age of this process now. 912 * When we take on its identity by switching to its PID, we 913 * also take its birthdate (always earlier than our own). 914 */ 915 tsk->start_time = leader->start_time; 916 917 BUG_ON(!same_thread_group(leader, tsk)); 918 BUG_ON(has_group_leader_pid(tsk)); 919 /* 920 * An exec() starts a new thread group with the 921 * TGID of the previous thread group. Rehash the 922 * two threads with a switched PID, and release 923 * the former thread group leader: 924 */ 925 926 /* Become a process group leader with the old leader's pid. 927 * The old leader becomes a thread of the this thread group. 928 * Note: The old leader also uses this pid until release_task 929 * is called. Odd but simple and correct. 930 */ 931 detach_pid(tsk, PIDTYPE_PID); 932 tsk->pid = leader->pid; 933 attach_pid(tsk, PIDTYPE_PID, task_pid(leader)); 934 transfer_pid(leader, tsk, PIDTYPE_PGID); 935 transfer_pid(leader, tsk, PIDTYPE_SID); 936 937 list_replace_rcu(&leader->tasks, &tsk->tasks); 938 list_replace_init(&leader->sibling, &tsk->sibling); 939 940 tsk->group_leader = tsk; 941 leader->group_leader = tsk; 942 943 tsk->exit_signal = SIGCHLD; 944 leader->exit_signal = -1; 945 946 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 947 leader->exit_state = EXIT_DEAD; 948 949 /* 950 * We are going to release_task()->ptrace_unlink() silently, 951 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 952 * the tracer wont't block again waiting for this thread. 953 */ 954 if (unlikely(leader->ptrace)) 955 __wake_up_parent(leader, leader->parent); 956 write_unlock_irq(&tasklist_lock); 957 958 release_task(leader); 959 } 960 961 sig->group_exit_task = NULL; 962 sig->notify_count = 0; 963 964 no_thread_group: 965 /* we have changed execution domain */ 966 tsk->exit_signal = SIGCHLD; 967 968 exit_itimers(sig); 969 flush_itimer_signals(); 970 971 if (atomic_read(&oldsighand->count) != 1) { 972 struct sighand_struct *newsighand; 973 /* 974 * This ->sighand is shared with the CLONE_SIGHAND 975 * but not CLONE_THREAD task, switch to the new one. 976 */ 977 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 978 if (!newsighand) 979 return -ENOMEM; 980 981 atomic_set(&newsighand->count, 1); 982 memcpy(newsighand->action, oldsighand->action, 983 sizeof(newsighand->action)); 984 985 write_lock_irq(&tasklist_lock); 986 spin_lock(&oldsighand->siglock); 987 rcu_assign_pointer(tsk->sighand, newsighand); 988 spin_unlock(&oldsighand->siglock); 989 write_unlock_irq(&tasklist_lock); 990 991 __cleanup_sighand(oldsighand); 992 } 993 994 BUG_ON(!thread_group_leader(tsk)); 995 return 0; 996 } 997 998 char *get_task_comm(char *buf, struct task_struct *tsk) 999 { 1000 /* buf must be at least sizeof(tsk->comm) in size */ 1001 task_lock(tsk); 1002 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 1003 task_unlock(tsk); 1004 return buf; 1005 } 1006 EXPORT_SYMBOL_GPL(get_task_comm); 1007 1008 /* 1009 * These functions flushes out all traces of the currently running executable 1010 * so that a new one can be started 1011 */ 1012 1013 void set_task_comm(struct task_struct *tsk, char *buf) 1014 { 1015 task_lock(tsk); 1016 1017 trace_task_rename(tsk, buf); 1018 1019 /* 1020 * Threads may access current->comm without holding 1021 * the task lock, so write the string carefully. 1022 * Readers without a lock may see incomplete new 1023 * names but are safe from non-terminating string reads. 1024 */ 1025 memset(tsk->comm, 0, TASK_COMM_LEN); 1026 wmb(); 1027 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1028 task_unlock(tsk); 1029 perf_event_comm(tsk); 1030 } 1031 1032 static void filename_to_taskname(char *tcomm, const char *fn, unsigned int len) 1033 { 1034 int i, ch; 1035 1036 /* Copies the binary name from after last slash */ 1037 for (i = 0; (ch = *(fn++)) != '\0';) { 1038 if (ch == '/') 1039 i = 0; /* overwrite what we wrote */ 1040 else 1041 if (i < len - 1) 1042 tcomm[i++] = ch; 1043 } 1044 tcomm[i] = '\0'; 1045 } 1046 1047 int flush_old_exec(struct linux_binprm * bprm) 1048 { 1049 int retval; 1050 1051 /* 1052 * Make sure we have a private signal table and that 1053 * we are unassociated from the previous thread group. 1054 */ 1055 retval = de_thread(current); 1056 if (retval) 1057 goto out; 1058 1059 set_mm_exe_file(bprm->mm, bprm->file); 1060 1061 filename_to_taskname(bprm->tcomm, bprm->filename, sizeof(bprm->tcomm)); 1062 /* 1063 * Release all of the old mmap stuff 1064 */ 1065 acct_arg_size(bprm, 0); 1066 retval = exec_mmap(bprm->mm); 1067 if (retval) 1068 goto out; 1069 1070 bprm->mm = NULL; /* We're using it now */ 1071 1072 set_fs(USER_DS); 1073 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD); 1074 flush_thread(); 1075 current->personality &= ~bprm->per_clear; 1076 1077 return 0; 1078 1079 out: 1080 return retval; 1081 } 1082 EXPORT_SYMBOL(flush_old_exec); 1083 1084 void would_dump(struct linux_binprm *bprm, struct file *file) 1085 { 1086 if (inode_permission(file->f_path.dentry->d_inode, MAY_READ) < 0) 1087 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1088 } 1089 EXPORT_SYMBOL(would_dump); 1090 1091 void setup_new_exec(struct linux_binprm * bprm) 1092 { 1093 arch_pick_mmap_layout(current->mm); 1094 1095 /* This is the point of no return */ 1096 current->sas_ss_sp = current->sas_ss_size = 0; 1097 1098 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid())) 1099 set_dumpable(current->mm, 1); 1100 else 1101 set_dumpable(current->mm, suid_dumpable); 1102 1103 set_task_comm(current, bprm->tcomm); 1104 1105 /* Set the new mm task size. We have to do that late because it may 1106 * depend on TIF_32BIT which is only updated in flush_thread() on 1107 * some architectures like powerpc 1108 */ 1109 current->mm->task_size = TASK_SIZE; 1110 1111 /* install the new credentials */ 1112 if (!uid_eq(bprm->cred->uid, current_euid()) || 1113 !gid_eq(bprm->cred->gid, current_egid())) { 1114 current->pdeath_signal = 0; 1115 } else { 1116 would_dump(bprm, bprm->file); 1117 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) 1118 set_dumpable(current->mm, suid_dumpable); 1119 } 1120 1121 /* 1122 * Flush performance counters when crossing a 1123 * security domain: 1124 */ 1125 if (!get_dumpable(current->mm)) 1126 perf_event_exit_task(current); 1127 1128 /* An exec changes our domain. We are no longer part of the thread 1129 group */ 1130 1131 current->self_exec_id++; 1132 1133 flush_signal_handlers(current, 0); 1134 do_close_on_exec(current->files); 1135 } 1136 EXPORT_SYMBOL(setup_new_exec); 1137 1138 /* 1139 * Prepare credentials and lock ->cred_guard_mutex. 1140 * install_exec_creds() commits the new creds and drops the lock. 1141 * Or, if exec fails before, free_bprm() should release ->cred and 1142 * and unlock. 1143 */ 1144 int prepare_bprm_creds(struct linux_binprm *bprm) 1145 { 1146 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1147 return -ERESTARTNOINTR; 1148 1149 bprm->cred = prepare_exec_creds(); 1150 if (likely(bprm->cred)) 1151 return 0; 1152 1153 mutex_unlock(¤t->signal->cred_guard_mutex); 1154 return -ENOMEM; 1155 } 1156 1157 void free_bprm(struct linux_binprm *bprm) 1158 { 1159 free_arg_pages(bprm); 1160 if (bprm->cred) { 1161 mutex_unlock(¤t->signal->cred_guard_mutex); 1162 abort_creds(bprm->cred); 1163 } 1164 kfree(bprm); 1165 } 1166 1167 /* 1168 * install the new credentials for this executable 1169 */ 1170 void install_exec_creds(struct linux_binprm *bprm) 1171 { 1172 security_bprm_committing_creds(bprm); 1173 1174 commit_creds(bprm->cred); 1175 bprm->cred = NULL; 1176 /* 1177 * cred_guard_mutex must be held at least to this point to prevent 1178 * ptrace_attach() from altering our determination of the task's 1179 * credentials; any time after this it may be unlocked. 1180 */ 1181 security_bprm_committed_creds(bprm); 1182 mutex_unlock(¤t->signal->cred_guard_mutex); 1183 } 1184 EXPORT_SYMBOL(install_exec_creds); 1185 1186 /* 1187 * determine how safe it is to execute the proposed program 1188 * - the caller must hold ->cred_guard_mutex to protect against 1189 * PTRACE_ATTACH 1190 */ 1191 static int check_unsafe_exec(struct linux_binprm *bprm) 1192 { 1193 struct task_struct *p = current, *t; 1194 unsigned n_fs; 1195 int res = 0; 1196 1197 if (p->ptrace) { 1198 if (p->ptrace & PT_PTRACE_CAP) 1199 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP; 1200 else 1201 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1202 } 1203 1204 /* 1205 * This isn't strictly necessary, but it makes it harder for LSMs to 1206 * mess up. 1207 */ 1208 if (current->no_new_privs) 1209 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1210 1211 n_fs = 1; 1212 spin_lock(&p->fs->lock); 1213 rcu_read_lock(); 1214 for (t = next_thread(p); t != p; t = next_thread(t)) { 1215 if (t->fs == p->fs) 1216 n_fs++; 1217 } 1218 rcu_read_unlock(); 1219 1220 if (p->fs->users > n_fs) { 1221 bprm->unsafe |= LSM_UNSAFE_SHARE; 1222 } else { 1223 res = -EAGAIN; 1224 if (!p->fs->in_exec) { 1225 p->fs->in_exec = 1; 1226 res = 1; 1227 } 1228 } 1229 spin_unlock(&p->fs->lock); 1230 1231 return res; 1232 } 1233 1234 /* 1235 * Fill the binprm structure from the inode. 1236 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1237 * 1238 * This may be called multiple times for binary chains (scripts for example). 1239 */ 1240 int prepare_binprm(struct linux_binprm *bprm) 1241 { 1242 umode_t mode; 1243 struct inode * inode = bprm->file->f_path.dentry->d_inode; 1244 int retval; 1245 1246 mode = inode->i_mode; 1247 if (bprm->file->f_op == NULL) 1248 return -EACCES; 1249 1250 /* clear any previous set[ug]id data from a previous binary */ 1251 bprm->cred->euid = current_euid(); 1252 bprm->cred->egid = current_egid(); 1253 1254 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) && 1255 !current->no_new_privs) { 1256 /* Set-uid? */ 1257 if (mode & S_ISUID) { 1258 if (!kuid_has_mapping(bprm->cred->user_ns, inode->i_uid)) 1259 return -EPERM; 1260 bprm->per_clear |= PER_CLEAR_ON_SETID; 1261 bprm->cred->euid = inode->i_uid; 1262 1263 } 1264 1265 /* Set-gid? */ 1266 /* 1267 * If setgid is set but no group execute bit then this 1268 * is a candidate for mandatory locking, not a setgid 1269 * executable. 1270 */ 1271 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1272 if (!kgid_has_mapping(bprm->cred->user_ns, inode->i_gid)) 1273 return -EPERM; 1274 bprm->per_clear |= PER_CLEAR_ON_SETID; 1275 bprm->cred->egid = inode->i_gid; 1276 } 1277 } 1278 1279 /* fill in binprm security blob */ 1280 retval = security_bprm_set_creds(bprm); 1281 if (retval) 1282 return retval; 1283 bprm->cred_prepared = 1; 1284 1285 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1286 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE); 1287 } 1288 1289 EXPORT_SYMBOL(prepare_binprm); 1290 1291 /* 1292 * Arguments are '\0' separated strings found at the location bprm->p 1293 * points to; chop off the first by relocating brpm->p to right after 1294 * the first '\0' encountered. 1295 */ 1296 int remove_arg_zero(struct linux_binprm *bprm) 1297 { 1298 int ret = 0; 1299 unsigned long offset; 1300 char *kaddr; 1301 struct page *page; 1302 1303 if (!bprm->argc) 1304 return 0; 1305 1306 do { 1307 offset = bprm->p & ~PAGE_MASK; 1308 page = get_arg_page(bprm, bprm->p, 0); 1309 if (!page) { 1310 ret = -EFAULT; 1311 goto out; 1312 } 1313 kaddr = kmap_atomic(page); 1314 1315 for (; offset < PAGE_SIZE && kaddr[offset]; 1316 offset++, bprm->p++) 1317 ; 1318 1319 kunmap_atomic(kaddr); 1320 put_arg_page(page); 1321 1322 if (offset == PAGE_SIZE) 1323 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); 1324 } while (offset == PAGE_SIZE); 1325 1326 bprm->p++; 1327 bprm->argc--; 1328 ret = 0; 1329 1330 out: 1331 return ret; 1332 } 1333 EXPORT_SYMBOL(remove_arg_zero); 1334 1335 /* 1336 * cycle the list of binary formats handler, until one recognizes the image 1337 */ 1338 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) 1339 { 1340 unsigned int depth = bprm->recursion_depth; 1341 int try,retval; 1342 struct linux_binfmt *fmt; 1343 pid_t old_pid, old_vpid; 1344 1345 retval = security_bprm_check(bprm); 1346 if (retval) 1347 return retval; 1348 1349 retval = audit_bprm(bprm); 1350 if (retval) 1351 return retval; 1352 1353 /* Need to fetch pid before load_binary changes it */ 1354 old_pid = current->pid; 1355 rcu_read_lock(); 1356 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1357 rcu_read_unlock(); 1358 1359 retval = -ENOENT; 1360 for (try=0; try<2; try++) { 1361 read_lock(&binfmt_lock); 1362 list_for_each_entry(fmt, &formats, lh) { 1363 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; 1364 if (!fn) 1365 continue; 1366 if (!try_module_get(fmt->module)) 1367 continue; 1368 read_unlock(&binfmt_lock); 1369 retval = fn(bprm, regs); 1370 /* 1371 * Restore the depth counter to its starting value 1372 * in this call, so we don't have to rely on every 1373 * load_binary function to restore it on return. 1374 */ 1375 bprm->recursion_depth = depth; 1376 if (retval >= 0) { 1377 if (depth == 0) { 1378 trace_sched_process_exec(current, old_pid, bprm); 1379 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1380 } 1381 put_binfmt(fmt); 1382 allow_write_access(bprm->file); 1383 if (bprm->file) 1384 fput(bprm->file); 1385 bprm->file = NULL; 1386 current->did_exec = 1; 1387 proc_exec_connector(current); 1388 return retval; 1389 } 1390 read_lock(&binfmt_lock); 1391 put_binfmt(fmt); 1392 if (retval != -ENOEXEC || bprm->mm == NULL) 1393 break; 1394 if (!bprm->file) { 1395 read_unlock(&binfmt_lock); 1396 return retval; 1397 } 1398 } 1399 read_unlock(&binfmt_lock); 1400 #ifdef CONFIG_MODULES 1401 if (retval != -ENOEXEC || bprm->mm == NULL) { 1402 break; 1403 } else { 1404 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1405 if (printable(bprm->buf[0]) && 1406 printable(bprm->buf[1]) && 1407 printable(bprm->buf[2]) && 1408 printable(bprm->buf[3])) 1409 break; /* -ENOEXEC */ 1410 if (try) 1411 break; /* -ENOEXEC */ 1412 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); 1413 } 1414 #else 1415 break; 1416 #endif 1417 } 1418 return retval; 1419 } 1420 1421 EXPORT_SYMBOL(search_binary_handler); 1422 1423 /* 1424 * sys_execve() executes a new program. 1425 */ 1426 static int do_execve_common(const char *filename, 1427 struct user_arg_ptr argv, 1428 struct user_arg_ptr envp, 1429 struct pt_regs *regs) 1430 { 1431 struct linux_binprm *bprm; 1432 struct file *file; 1433 struct files_struct *displaced; 1434 bool clear_in_exec; 1435 int retval; 1436 const struct cred *cred = current_cred(); 1437 1438 /* 1439 * We move the actual failure in case of RLIMIT_NPROC excess from 1440 * set*uid() to execve() because too many poorly written programs 1441 * don't check setuid() return code. Here we additionally recheck 1442 * whether NPROC limit is still exceeded. 1443 */ 1444 if ((current->flags & PF_NPROC_EXCEEDED) && 1445 atomic_read(&cred->user->processes) > rlimit(RLIMIT_NPROC)) { 1446 retval = -EAGAIN; 1447 goto out_ret; 1448 } 1449 1450 /* We're below the limit (still or again), so we don't want to make 1451 * further execve() calls fail. */ 1452 current->flags &= ~PF_NPROC_EXCEEDED; 1453 1454 retval = unshare_files(&displaced); 1455 if (retval) 1456 goto out_ret; 1457 1458 retval = -ENOMEM; 1459 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1460 if (!bprm) 1461 goto out_files; 1462 1463 retval = prepare_bprm_creds(bprm); 1464 if (retval) 1465 goto out_free; 1466 1467 retval = check_unsafe_exec(bprm); 1468 if (retval < 0) 1469 goto out_free; 1470 clear_in_exec = retval; 1471 current->in_execve = 1; 1472 1473 file = open_exec(filename); 1474 retval = PTR_ERR(file); 1475 if (IS_ERR(file)) 1476 goto out_unmark; 1477 1478 sched_exec(); 1479 1480 bprm->file = file; 1481 bprm->filename = filename; 1482 bprm->interp = filename; 1483 1484 retval = bprm_mm_init(bprm); 1485 if (retval) 1486 goto out_file; 1487 1488 bprm->argc = count(argv, MAX_ARG_STRINGS); 1489 if ((retval = bprm->argc) < 0) 1490 goto out; 1491 1492 bprm->envc = count(envp, MAX_ARG_STRINGS); 1493 if ((retval = bprm->envc) < 0) 1494 goto out; 1495 1496 retval = prepare_binprm(bprm); 1497 if (retval < 0) 1498 goto out; 1499 1500 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1501 if (retval < 0) 1502 goto out; 1503 1504 bprm->exec = bprm->p; 1505 retval = copy_strings(bprm->envc, envp, bprm); 1506 if (retval < 0) 1507 goto out; 1508 1509 retval = copy_strings(bprm->argc, argv, bprm); 1510 if (retval < 0) 1511 goto out; 1512 1513 retval = search_binary_handler(bprm,regs); 1514 if (retval < 0) 1515 goto out; 1516 1517 /* execve succeeded */ 1518 current->fs->in_exec = 0; 1519 current->in_execve = 0; 1520 acct_update_integrals(current); 1521 free_bprm(bprm); 1522 if (displaced) 1523 put_files_struct(displaced); 1524 return retval; 1525 1526 out: 1527 if (bprm->mm) { 1528 acct_arg_size(bprm, 0); 1529 mmput(bprm->mm); 1530 } 1531 1532 out_file: 1533 if (bprm->file) { 1534 allow_write_access(bprm->file); 1535 fput(bprm->file); 1536 } 1537 1538 out_unmark: 1539 if (clear_in_exec) 1540 current->fs->in_exec = 0; 1541 current->in_execve = 0; 1542 1543 out_free: 1544 free_bprm(bprm); 1545 1546 out_files: 1547 if (displaced) 1548 reset_files_struct(displaced); 1549 out_ret: 1550 return retval; 1551 } 1552 1553 int do_execve(const char *filename, 1554 const char __user *const __user *__argv, 1555 const char __user *const __user *__envp, 1556 struct pt_regs *regs) 1557 { 1558 struct user_arg_ptr argv = { .ptr.native = __argv }; 1559 struct user_arg_ptr envp = { .ptr.native = __envp }; 1560 return do_execve_common(filename, argv, envp, regs); 1561 } 1562 1563 #ifdef CONFIG_COMPAT 1564 int compat_do_execve(char *filename, 1565 compat_uptr_t __user *__argv, 1566 compat_uptr_t __user *__envp, 1567 struct pt_regs *regs) 1568 { 1569 struct user_arg_ptr argv = { 1570 .is_compat = true, 1571 .ptr.compat = __argv, 1572 }; 1573 struct user_arg_ptr envp = { 1574 .is_compat = true, 1575 .ptr.compat = __envp, 1576 }; 1577 return do_execve_common(filename, argv, envp, regs); 1578 } 1579 #endif 1580 1581 void set_binfmt(struct linux_binfmt *new) 1582 { 1583 struct mm_struct *mm = current->mm; 1584 1585 if (mm->binfmt) 1586 module_put(mm->binfmt->module); 1587 1588 mm->binfmt = new; 1589 if (new) 1590 __module_get(new->module); 1591 } 1592 1593 EXPORT_SYMBOL(set_binfmt); 1594 1595 /* 1596 * set_dumpable converts traditional three-value dumpable to two flags and 1597 * stores them into mm->flags. It modifies lower two bits of mm->flags, but 1598 * these bits are not changed atomically. So get_dumpable can observe the 1599 * intermediate state. To avoid doing unexpected behavior, get get_dumpable 1600 * return either old dumpable or new one by paying attention to the order of 1601 * modifying the bits. 1602 * 1603 * dumpable | mm->flags (binary) 1604 * old new | initial interim final 1605 * ---------+----------------------- 1606 * 0 1 | 00 01 01 1607 * 0 2 | 00 10(*) 11 1608 * 1 0 | 01 00 00 1609 * 1 2 | 01 11 11 1610 * 2 0 | 11 10(*) 00 1611 * 2 1 | 11 11 01 1612 * 1613 * (*) get_dumpable regards interim value of 10 as 11. 1614 */ 1615 void set_dumpable(struct mm_struct *mm, int value) 1616 { 1617 switch (value) { 1618 case SUID_DUMPABLE_DISABLED: 1619 clear_bit(MMF_DUMPABLE, &mm->flags); 1620 smp_wmb(); 1621 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1622 break; 1623 case SUID_DUMPABLE_ENABLED: 1624 set_bit(MMF_DUMPABLE, &mm->flags); 1625 smp_wmb(); 1626 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1627 break; 1628 case SUID_DUMPABLE_SAFE: 1629 set_bit(MMF_DUMP_SECURELY, &mm->flags); 1630 smp_wmb(); 1631 set_bit(MMF_DUMPABLE, &mm->flags); 1632 break; 1633 } 1634 } 1635 1636 int __get_dumpable(unsigned long mm_flags) 1637 { 1638 int ret; 1639 1640 ret = mm_flags & MMF_DUMPABLE_MASK; 1641 return (ret > SUID_DUMPABLE_ENABLED) ? SUID_DUMPABLE_SAFE : ret; 1642 } 1643 1644 int get_dumpable(struct mm_struct *mm) 1645 { 1646 return __get_dumpable(mm->flags); 1647 } 1648