xref: /linux-6.15/fs/exec.c (revision 2a677896)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/a.out.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/init.h>
33 #include <linux/pagemap.h>
34 #include <linux/highmem.h>
35 #include <linux/spinlock.h>
36 #include <linux/key.h>
37 #include <linux/personality.h>
38 #include <linux/binfmts.h>
39 #include <linux/swap.h>
40 #include <linux/utsname.h>
41 #include <linux/pid_namespace.h>
42 #include <linux/module.h>
43 #include <linux/namei.h>
44 #include <linux/proc_fs.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/rmap.h>
50 #include <linux/tsacct_kern.h>
51 #include <linux/cn_proc.h>
52 #include <linux/audit.h>
53 #include <linux/signalfd.h>
54 
55 #include <asm/uaccess.h>
56 #include <asm/mmu_context.h>
57 #include <asm/tlb.h>
58 
59 #ifdef CONFIG_KMOD
60 #include <linux/kmod.h>
61 #endif
62 
63 int core_uses_pid;
64 char core_pattern[CORENAME_MAX_SIZE] = "core";
65 int suid_dumpable = 0;
66 
67 EXPORT_SYMBOL(suid_dumpable);
68 /* The maximal length of core_pattern is also specified in sysctl.c */
69 
70 static struct linux_binfmt *formats;
71 static DEFINE_RWLOCK(binfmt_lock);
72 
73 int register_binfmt(struct linux_binfmt * fmt)
74 {
75 	struct linux_binfmt ** tmp = &formats;
76 
77 	if (!fmt)
78 		return -EINVAL;
79 	if (fmt->next)
80 		return -EBUSY;
81 	write_lock(&binfmt_lock);
82 	while (*tmp) {
83 		if (fmt == *tmp) {
84 			write_unlock(&binfmt_lock);
85 			return -EBUSY;
86 		}
87 		tmp = &(*tmp)->next;
88 	}
89 	fmt->next = formats;
90 	formats = fmt;
91 	write_unlock(&binfmt_lock);
92 	return 0;
93 }
94 
95 EXPORT_SYMBOL(register_binfmt);
96 
97 int unregister_binfmt(struct linux_binfmt * fmt)
98 {
99 	struct linux_binfmt ** tmp = &formats;
100 
101 	write_lock(&binfmt_lock);
102 	while (*tmp) {
103 		if (fmt == *tmp) {
104 			*tmp = fmt->next;
105 			fmt->next = NULL;
106 			write_unlock(&binfmt_lock);
107 			return 0;
108 		}
109 		tmp = &(*tmp)->next;
110 	}
111 	write_unlock(&binfmt_lock);
112 	return -EINVAL;
113 }
114 
115 EXPORT_SYMBOL(unregister_binfmt);
116 
117 static inline void put_binfmt(struct linux_binfmt * fmt)
118 {
119 	module_put(fmt->module);
120 }
121 
122 /*
123  * Note that a shared library must be both readable and executable due to
124  * security reasons.
125  *
126  * Also note that we take the address to load from from the file itself.
127  */
128 asmlinkage long sys_uselib(const char __user * library)
129 {
130 	struct file * file;
131 	struct nameidata nd;
132 	int error;
133 
134 	error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
135 	if (error)
136 		goto out;
137 
138 	error = -EACCES;
139 	if (nd.mnt->mnt_flags & MNT_NOEXEC)
140 		goto exit;
141 	error = -EINVAL;
142 	if (!S_ISREG(nd.dentry->d_inode->i_mode))
143 		goto exit;
144 
145 	error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
146 	if (error)
147 		goto exit;
148 
149 	file = nameidata_to_filp(&nd, O_RDONLY);
150 	error = PTR_ERR(file);
151 	if (IS_ERR(file))
152 		goto out;
153 
154 	error = -ENOEXEC;
155 	if(file->f_op) {
156 		struct linux_binfmt * fmt;
157 
158 		read_lock(&binfmt_lock);
159 		for (fmt = formats ; fmt ; fmt = fmt->next) {
160 			if (!fmt->load_shlib)
161 				continue;
162 			if (!try_module_get(fmt->module))
163 				continue;
164 			read_unlock(&binfmt_lock);
165 			error = fmt->load_shlib(file);
166 			read_lock(&binfmt_lock);
167 			put_binfmt(fmt);
168 			if (error != -ENOEXEC)
169 				break;
170 		}
171 		read_unlock(&binfmt_lock);
172 	}
173 	fput(file);
174 out:
175   	return error;
176 exit:
177 	release_open_intent(&nd);
178 	path_release(&nd);
179 	goto out;
180 }
181 
182 #ifdef CONFIG_MMU
183 
184 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
185 		int write)
186 {
187 	struct page *page;
188 	int ret;
189 
190 #ifdef CONFIG_STACK_GROWSUP
191 	if (write) {
192 		ret = expand_stack_downwards(bprm->vma, pos);
193 		if (ret < 0)
194 			return NULL;
195 	}
196 #endif
197 	ret = get_user_pages(current, bprm->mm, pos,
198 			1, write, 1, &page, NULL);
199 	if (ret <= 0)
200 		return NULL;
201 
202 	if (write) {
203 		struct rlimit *rlim = current->signal->rlim;
204 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
205 
206 		/*
207 		 * Limit to 1/4-th the stack size for the argv+env strings.
208 		 * This ensures that:
209 		 *  - the remaining binfmt code will not run out of stack space,
210 		 *  - the program will have a reasonable amount of stack left
211 		 *    to work from.
212 		 */
213 		if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
214 			put_page(page);
215 			return NULL;
216 		}
217 	}
218 
219 	return page;
220 }
221 
222 static void put_arg_page(struct page *page)
223 {
224 	put_page(page);
225 }
226 
227 static void free_arg_page(struct linux_binprm *bprm, int i)
228 {
229 }
230 
231 static void free_arg_pages(struct linux_binprm *bprm)
232 {
233 }
234 
235 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
236 		struct page *page)
237 {
238 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
239 }
240 
241 static int __bprm_mm_init(struct linux_binprm *bprm)
242 {
243 	int err = -ENOMEM;
244 	struct vm_area_struct *vma = NULL;
245 	struct mm_struct *mm = bprm->mm;
246 
247 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
248 	if (!vma)
249 		goto err;
250 
251 	down_write(&mm->mmap_sem);
252 	vma->vm_mm = mm;
253 
254 	/*
255 	 * Place the stack at the largest stack address the architecture
256 	 * supports. Later, we'll move this to an appropriate place. We don't
257 	 * use STACK_TOP because that can depend on attributes which aren't
258 	 * configured yet.
259 	 */
260 	vma->vm_end = STACK_TOP_MAX;
261 	vma->vm_start = vma->vm_end - PAGE_SIZE;
262 
263 	vma->vm_flags = VM_STACK_FLAGS;
264 	vma->vm_page_prot = protection_map[vma->vm_flags & 0x7];
265 	err = insert_vm_struct(mm, vma);
266 	if (err) {
267 		up_write(&mm->mmap_sem);
268 		goto err;
269 	}
270 
271 	mm->stack_vm = mm->total_vm = 1;
272 	up_write(&mm->mmap_sem);
273 
274 	bprm->p = vma->vm_end - sizeof(void *);
275 
276 	return 0;
277 
278 err:
279 	if (vma) {
280 		bprm->vma = NULL;
281 		kmem_cache_free(vm_area_cachep, vma);
282 	}
283 
284 	return err;
285 }
286 
287 static bool valid_arg_len(struct linux_binprm *bprm, long len)
288 {
289 	return len <= MAX_ARG_STRLEN;
290 }
291 
292 #else
293 
294 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
295 		int write)
296 {
297 	struct page *page;
298 
299 	page = bprm->page[pos / PAGE_SIZE];
300 	if (!page && write) {
301 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
302 		if (!page)
303 			return NULL;
304 		bprm->page[pos / PAGE_SIZE] = page;
305 	}
306 
307 	return page;
308 }
309 
310 static void put_arg_page(struct page *page)
311 {
312 }
313 
314 static void free_arg_page(struct linux_binprm *bprm, int i)
315 {
316 	if (bprm->page[i]) {
317 		__free_page(bprm->page[i]);
318 		bprm->page[i] = NULL;
319 	}
320 }
321 
322 static void free_arg_pages(struct linux_binprm *bprm)
323 {
324 	int i;
325 
326 	for (i = 0; i < MAX_ARG_PAGES; i++)
327 		free_arg_page(bprm, i);
328 }
329 
330 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
331 		struct page *page)
332 {
333 }
334 
335 static int __bprm_mm_init(struct linux_binprm *bprm)
336 {
337 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
338 	return 0;
339 }
340 
341 static bool valid_arg_len(struct linux_binprm *bprm, long len)
342 {
343 	return len <= bprm->p;
344 }
345 
346 #endif /* CONFIG_MMU */
347 
348 /*
349  * Create a new mm_struct and populate it with a temporary stack
350  * vm_area_struct.  We don't have enough context at this point to set the stack
351  * flags, permissions, and offset, so we use temporary values.  We'll update
352  * them later in setup_arg_pages().
353  */
354 int bprm_mm_init(struct linux_binprm *bprm)
355 {
356 	int err;
357 	struct mm_struct *mm = NULL;
358 
359 	bprm->mm = mm = mm_alloc();
360 	err = -ENOMEM;
361 	if (!mm)
362 		goto err;
363 
364 	err = init_new_context(current, mm);
365 	if (err)
366 		goto err;
367 
368 	err = __bprm_mm_init(bprm);
369 	if (err)
370 		goto err;
371 
372 	return 0;
373 
374 err:
375 	if (mm) {
376 		bprm->mm = NULL;
377 		mmdrop(mm);
378 	}
379 
380 	return err;
381 }
382 
383 /*
384  * count() counts the number of strings in array ARGV.
385  */
386 static int count(char __user * __user * argv, int max)
387 {
388 	int i = 0;
389 
390 	if (argv != NULL) {
391 		for (;;) {
392 			char __user * p;
393 
394 			if (get_user(p, argv))
395 				return -EFAULT;
396 			if (!p)
397 				break;
398 			argv++;
399 			if(++i > max)
400 				return -E2BIG;
401 			cond_resched();
402 		}
403 	}
404 	return i;
405 }
406 
407 /*
408  * 'copy_strings()' copies argument/environment strings from the old
409  * processes's memory to the new process's stack.  The call to get_user_pages()
410  * ensures the destination page is created and not swapped out.
411  */
412 static int copy_strings(int argc, char __user * __user * argv,
413 			struct linux_binprm *bprm)
414 {
415 	struct page *kmapped_page = NULL;
416 	char *kaddr = NULL;
417 	unsigned long kpos = 0;
418 	int ret;
419 
420 	while (argc-- > 0) {
421 		char __user *str;
422 		int len;
423 		unsigned long pos;
424 
425 		if (get_user(str, argv+argc) ||
426 				!(len = strnlen_user(str, MAX_ARG_STRLEN))) {
427 			ret = -EFAULT;
428 			goto out;
429 		}
430 
431 		if (!valid_arg_len(bprm, len)) {
432 			ret = -E2BIG;
433 			goto out;
434 		}
435 
436 		/* We're going to work our way backwords. */
437 		pos = bprm->p;
438 		str += len;
439 		bprm->p -= len;
440 
441 		while (len > 0) {
442 			int offset, bytes_to_copy;
443 
444 			offset = pos % PAGE_SIZE;
445 			if (offset == 0)
446 				offset = PAGE_SIZE;
447 
448 			bytes_to_copy = offset;
449 			if (bytes_to_copy > len)
450 				bytes_to_copy = len;
451 
452 			offset -= bytes_to_copy;
453 			pos -= bytes_to_copy;
454 			str -= bytes_to_copy;
455 			len -= bytes_to_copy;
456 
457 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
458 				struct page *page;
459 
460 				page = get_arg_page(bprm, pos, 1);
461 				if (!page) {
462 					ret = -E2BIG;
463 					goto out;
464 				}
465 
466 				if (kmapped_page) {
467 					flush_kernel_dcache_page(kmapped_page);
468 					kunmap(kmapped_page);
469 					put_arg_page(kmapped_page);
470 				}
471 				kmapped_page = page;
472 				kaddr = kmap(kmapped_page);
473 				kpos = pos & PAGE_MASK;
474 				flush_arg_page(bprm, kpos, kmapped_page);
475 			}
476 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
477 				ret = -EFAULT;
478 				goto out;
479 			}
480 		}
481 	}
482 	ret = 0;
483 out:
484 	if (kmapped_page) {
485 		flush_kernel_dcache_page(kmapped_page);
486 		kunmap(kmapped_page);
487 		put_arg_page(kmapped_page);
488 	}
489 	return ret;
490 }
491 
492 /*
493  * Like copy_strings, but get argv and its values from kernel memory.
494  */
495 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
496 {
497 	int r;
498 	mm_segment_t oldfs = get_fs();
499 	set_fs(KERNEL_DS);
500 	r = copy_strings(argc, (char __user * __user *)argv, bprm);
501 	set_fs(oldfs);
502 	return r;
503 }
504 EXPORT_SYMBOL(copy_strings_kernel);
505 
506 #ifdef CONFIG_MMU
507 
508 /*
509  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
510  * the binfmt code determines where the new stack should reside, we shift it to
511  * its final location.  The process proceeds as follows:
512  *
513  * 1) Use shift to calculate the new vma endpoints.
514  * 2) Extend vma to cover both the old and new ranges.  This ensures the
515  *    arguments passed to subsequent functions are consistent.
516  * 3) Move vma's page tables to the new range.
517  * 4) Free up any cleared pgd range.
518  * 5) Shrink the vma to cover only the new range.
519  */
520 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
521 {
522 	struct mm_struct *mm = vma->vm_mm;
523 	unsigned long old_start = vma->vm_start;
524 	unsigned long old_end = vma->vm_end;
525 	unsigned long length = old_end - old_start;
526 	unsigned long new_start = old_start - shift;
527 	unsigned long new_end = old_end - shift;
528 	struct mmu_gather *tlb;
529 
530 	BUG_ON(new_start > new_end);
531 
532 	/*
533 	 * ensure there are no vmas between where we want to go
534 	 * and where we are
535 	 */
536 	if (vma != find_vma(mm, new_start))
537 		return -EFAULT;
538 
539 	/*
540 	 * cover the whole range: [new_start, old_end)
541 	 */
542 	vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
543 
544 	/*
545 	 * move the page tables downwards, on failure we rely on
546 	 * process cleanup to remove whatever mess we made.
547 	 */
548 	if (length != move_page_tables(vma, old_start,
549 				       vma, new_start, length))
550 		return -ENOMEM;
551 
552 	lru_add_drain();
553 	tlb = tlb_gather_mmu(mm, 0);
554 	if (new_end > old_start) {
555 		/*
556 		 * when the old and new regions overlap clear from new_end.
557 		 */
558 		free_pgd_range(&tlb, new_end, old_end, new_end,
559 			vma->vm_next ? vma->vm_next->vm_start : 0);
560 	} else {
561 		/*
562 		 * otherwise, clean from old_start; this is done to not touch
563 		 * the address space in [new_end, old_start) some architectures
564 		 * have constraints on va-space that make this illegal (IA64) -
565 		 * for the others its just a little faster.
566 		 */
567 		free_pgd_range(&tlb, old_start, old_end, new_end,
568 			vma->vm_next ? vma->vm_next->vm_start : 0);
569 	}
570 	tlb_finish_mmu(tlb, new_end, old_end);
571 
572 	/*
573 	 * shrink the vma to just the new range.
574 	 */
575 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
576 
577 	return 0;
578 }
579 
580 #define EXTRA_STACK_VM_PAGES	20	/* random */
581 
582 /*
583  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
584  * the stack is optionally relocated, and some extra space is added.
585  */
586 int setup_arg_pages(struct linux_binprm *bprm,
587 		    unsigned long stack_top,
588 		    int executable_stack)
589 {
590 	unsigned long ret;
591 	unsigned long stack_shift;
592 	struct mm_struct *mm = current->mm;
593 	struct vm_area_struct *vma = bprm->vma;
594 	struct vm_area_struct *prev = NULL;
595 	unsigned long vm_flags;
596 	unsigned long stack_base;
597 
598 #ifdef CONFIG_STACK_GROWSUP
599 	/* Limit stack size to 1GB */
600 	stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
601 	if (stack_base > (1 << 30))
602 		stack_base = 1 << 30;
603 
604 	/* Make sure we didn't let the argument array grow too large. */
605 	if (vma->vm_end - vma->vm_start > stack_base)
606 		return -ENOMEM;
607 
608 	stack_base = PAGE_ALIGN(stack_top - stack_base);
609 
610 	stack_shift = vma->vm_start - stack_base;
611 	mm->arg_start = bprm->p - stack_shift;
612 	bprm->p = vma->vm_end - stack_shift;
613 #else
614 	stack_top = arch_align_stack(stack_top);
615 	stack_top = PAGE_ALIGN(stack_top);
616 	stack_shift = vma->vm_end - stack_top;
617 
618 	bprm->p -= stack_shift;
619 	mm->arg_start = bprm->p;
620 #endif
621 
622 	if (bprm->loader)
623 		bprm->loader -= stack_shift;
624 	bprm->exec -= stack_shift;
625 
626 	down_write(&mm->mmap_sem);
627 	vm_flags = vma->vm_flags;
628 
629 	/*
630 	 * Adjust stack execute permissions; explicitly enable for
631 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
632 	 * (arch default) otherwise.
633 	 */
634 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
635 		vm_flags |= VM_EXEC;
636 	else if (executable_stack == EXSTACK_DISABLE_X)
637 		vm_flags &= ~VM_EXEC;
638 	vm_flags |= mm->def_flags;
639 
640 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
641 			vm_flags);
642 	if (ret)
643 		goto out_unlock;
644 	BUG_ON(prev != vma);
645 
646 	/* Move stack pages down in memory. */
647 	if (stack_shift) {
648 		ret = shift_arg_pages(vma, stack_shift);
649 		if (ret) {
650 			up_write(&mm->mmap_sem);
651 			return ret;
652 		}
653 	}
654 
655 #ifdef CONFIG_STACK_GROWSUP
656 	stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
657 #else
658 	stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
659 #endif
660 	ret = expand_stack(vma, stack_base);
661 	if (ret)
662 		ret = -EFAULT;
663 
664 out_unlock:
665 	up_write(&mm->mmap_sem);
666 	return 0;
667 }
668 EXPORT_SYMBOL(setup_arg_pages);
669 
670 #endif /* CONFIG_MMU */
671 
672 struct file *open_exec(const char *name)
673 {
674 	struct nameidata nd;
675 	int err;
676 	struct file *file;
677 
678 	err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
679 	file = ERR_PTR(err);
680 
681 	if (!err) {
682 		struct inode *inode = nd.dentry->d_inode;
683 		file = ERR_PTR(-EACCES);
684 		if (!(nd.mnt->mnt_flags & MNT_NOEXEC) &&
685 		    S_ISREG(inode->i_mode)) {
686 			int err = vfs_permission(&nd, MAY_EXEC);
687 			file = ERR_PTR(err);
688 			if (!err) {
689 				file = nameidata_to_filp(&nd, O_RDONLY);
690 				if (!IS_ERR(file)) {
691 					err = deny_write_access(file);
692 					if (err) {
693 						fput(file);
694 						file = ERR_PTR(err);
695 					}
696 				}
697 out:
698 				return file;
699 			}
700 		}
701 		release_open_intent(&nd);
702 		path_release(&nd);
703 	}
704 	goto out;
705 }
706 
707 EXPORT_SYMBOL(open_exec);
708 
709 int kernel_read(struct file *file, unsigned long offset,
710 	char *addr, unsigned long count)
711 {
712 	mm_segment_t old_fs;
713 	loff_t pos = offset;
714 	int result;
715 
716 	old_fs = get_fs();
717 	set_fs(get_ds());
718 	/* The cast to a user pointer is valid due to the set_fs() */
719 	result = vfs_read(file, (void __user *)addr, count, &pos);
720 	set_fs(old_fs);
721 	return result;
722 }
723 
724 EXPORT_SYMBOL(kernel_read);
725 
726 static int exec_mmap(struct mm_struct *mm)
727 {
728 	struct task_struct *tsk;
729 	struct mm_struct * old_mm, *active_mm;
730 
731 	/* Notify parent that we're no longer interested in the old VM */
732 	tsk = current;
733 	old_mm = current->mm;
734 	mm_release(tsk, old_mm);
735 
736 	if (old_mm) {
737 		/*
738 		 * Make sure that if there is a core dump in progress
739 		 * for the old mm, we get out and die instead of going
740 		 * through with the exec.  We must hold mmap_sem around
741 		 * checking core_waiters and changing tsk->mm.  The
742 		 * core-inducing thread will increment core_waiters for
743 		 * each thread whose ->mm == old_mm.
744 		 */
745 		down_read(&old_mm->mmap_sem);
746 		if (unlikely(old_mm->core_waiters)) {
747 			up_read(&old_mm->mmap_sem);
748 			return -EINTR;
749 		}
750 	}
751 	task_lock(tsk);
752 	active_mm = tsk->active_mm;
753 	tsk->mm = mm;
754 	tsk->active_mm = mm;
755 	activate_mm(active_mm, mm);
756 	task_unlock(tsk);
757 	arch_pick_mmap_layout(mm);
758 	if (old_mm) {
759 		up_read(&old_mm->mmap_sem);
760 		BUG_ON(active_mm != old_mm);
761 		mmput(old_mm);
762 		return 0;
763 	}
764 	mmdrop(active_mm);
765 	return 0;
766 }
767 
768 /*
769  * This function makes sure the current process has its own signal table,
770  * so that flush_signal_handlers can later reset the handlers without
771  * disturbing other processes.  (Other processes might share the signal
772  * table via the CLONE_SIGHAND option to clone().)
773  */
774 static int de_thread(struct task_struct *tsk)
775 {
776 	struct signal_struct *sig = tsk->signal;
777 	struct sighand_struct *newsighand, *oldsighand = tsk->sighand;
778 	spinlock_t *lock = &oldsighand->siglock;
779 	struct task_struct *leader = NULL;
780 	int count;
781 
782 	/*
783 	 * Tell all the sighand listeners that this sighand has
784 	 * been detached. The signalfd_detach() function grabs the
785 	 * sighand lock, if signal listeners are present on the sighand.
786 	 */
787 	signalfd_detach(tsk);
788 
789 	/*
790 	 * If we don't share sighandlers, then we aren't sharing anything
791 	 * and we can just re-use it all.
792 	 */
793 	if (atomic_read(&oldsighand->count) <= 1) {
794 		BUG_ON(atomic_read(&sig->count) != 1);
795 		exit_itimers(sig);
796 		return 0;
797 	}
798 
799 	newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
800 	if (!newsighand)
801 		return -ENOMEM;
802 
803 	if (thread_group_empty(tsk))
804 		goto no_thread_group;
805 
806 	/*
807 	 * Kill all other threads in the thread group.
808 	 * We must hold tasklist_lock to call zap_other_threads.
809 	 */
810 	read_lock(&tasklist_lock);
811 	spin_lock_irq(lock);
812 	if (sig->flags & SIGNAL_GROUP_EXIT) {
813 		/*
814 		 * Another group action in progress, just
815 		 * return so that the signal is processed.
816 		 */
817 		spin_unlock_irq(lock);
818 		read_unlock(&tasklist_lock);
819 		kmem_cache_free(sighand_cachep, newsighand);
820 		return -EAGAIN;
821 	}
822 
823 	/*
824 	 * child_reaper ignores SIGKILL, change it now.
825 	 * Reparenting needs write_lock on tasklist_lock,
826 	 * so it is safe to do it under read_lock.
827 	 */
828 	if (unlikely(tsk->group_leader == child_reaper(tsk)))
829 		tsk->nsproxy->pid_ns->child_reaper = tsk;
830 
831 	zap_other_threads(tsk);
832 	read_unlock(&tasklist_lock);
833 
834 	/*
835 	 * Account for the thread group leader hanging around:
836 	 */
837 	count = 1;
838 	if (!thread_group_leader(tsk)) {
839 		count = 2;
840 		/*
841 		 * The SIGALRM timer survives the exec, but needs to point
842 		 * at us as the new group leader now.  We have a race with
843 		 * a timer firing now getting the old leader, so we need to
844 		 * synchronize with any firing (by calling del_timer_sync)
845 		 * before we can safely let the old group leader die.
846 		 */
847 		sig->tsk = tsk;
848 		spin_unlock_irq(lock);
849 		if (hrtimer_cancel(&sig->real_timer))
850 			hrtimer_restart(&sig->real_timer);
851 		spin_lock_irq(lock);
852 	}
853 	while (atomic_read(&sig->count) > count) {
854 		sig->group_exit_task = tsk;
855 		sig->notify_count = count;
856 		__set_current_state(TASK_UNINTERRUPTIBLE);
857 		spin_unlock_irq(lock);
858 		schedule();
859 		spin_lock_irq(lock);
860 	}
861 	sig->group_exit_task = NULL;
862 	sig->notify_count = 0;
863 	spin_unlock_irq(lock);
864 
865 	/*
866 	 * At this point all other threads have exited, all we have to
867 	 * do is to wait for the thread group leader to become inactive,
868 	 * and to assume its PID:
869 	 */
870 	if (!thread_group_leader(tsk)) {
871 		/*
872 		 * Wait for the thread group leader to be a zombie.
873 		 * It should already be zombie at this point, most
874 		 * of the time.
875 		 */
876 		leader = tsk->group_leader;
877 		while (leader->exit_state != EXIT_ZOMBIE)
878 			yield();
879 
880 		/*
881 		 * The only record we have of the real-time age of a
882 		 * process, regardless of execs it's done, is start_time.
883 		 * All the past CPU time is accumulated in signal_struct
884 		 * from sister threads now dead.  But in this non-leader
885 		 * exec, nothing survives from the original leader thread,
886 		 * whose birth marks the true age of this process now.
887 		 * When we take on its identity by switching to its PID, we
888 		 * also take its birthdate (always earlier than our own).
889 		 */
890 		tsk->start_time = leader->start_time;
891 
892 		write_lock_irq(&tasklist_lock);
893 
894 		BUG_ON(leader->tgid != tsk->tgid);
895 		BUG_ON(tsk->pid == tsk->tgid);
896 		/*
897 		 * An exec() starts a new thread group with the
898 		 * TGID of the previous thread group. Rehash the
899 		 * two threads with a switched PID, and release
900 		 * the former thread group leader:
901 		 */
902 
903 		/* Become a process group leader with the old leader's pid.
904 		 * The old leader becomes a thread of the this thread group.
905 		 * Note: The old leader also uses this pid until release_task
906 		 *       is called.  Odd but simple and correct.
907 		 */
908 		detach_pid(tsk, PIDTYPE_PID);
909 		tsk->pid = leader->pid;
910 		attach_pid(tsk, PIDTYPE_PID,  find_pid(tsk->pid));
911 		transfer_pid(leader, tsk, PIDTYPE_PGID);
912 		transfer_pid(leader, tsk, PIDTYPE_SID);
913 		list_replace_rcu(&leader->tasks, &tsk->tasks);
914 
915 		tsk->group_leader = tsk;
916 		leader->group_leader = tsk;
917 
918 		tsk->exit_signal = SIGCHLD;
919 
920 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
921 		leader->exit_state = EXIT_DEAD;
922 
923 		write_unlock_irq(&tasklist_lock);
924         }
925 
926 	/*
927 	 * There may be one thread left which is just exiting,
928 	 * but it's safe to stop telling the group to kill themselves.
929 	 */
930 	sig->flags = 0;
931 
932 no_thread_group:
933 	exit_itimers(sig);
934 	if (leader)
935 		release_task(leader);
936 
937 	BUG_ON(atomic_read(&sig->count) != 1);
938 
939 	if (atomic_read(&oldsighand->count) == 1) {
940 		/*
941 		 * Now that we nuked the rest of the thread group,
942 		 * it turns out we are not sharing sighand any more either.
943 		 * So we can just keep it.
944 		 */
945 		kmem_cache_free(sighand_cachep, newsighand);
946 	} else {
947 		/*
948 		 * Move our state over to newsighand and switch it in.
949 		 */
950 		atomic_set(&newsighand->count, 1);
951 		memcpy(newsighand->action, oldsighand->action,
952 		       sizeof(newsighand->action));
953 
954 		write_lock_irq(&tasklist_lock);
955 		spin_lock(&oldsighand->siglock);
956 		spin_lock_nested(&newsighand->siglock, SINGLE_DEPTH_NESTING);
957 
958 		rcu_assign_pointer(tsk->sighand, newsighand);
959 		recalc_sigpending();
960 
961 		spin_unlock(&newsighand->siglock);
962 		spin_unlock(&oldsighand->siglock);
963 		write_unlock_irq(&tasklist_lock);
964 
965 		__cleanup_sighand(oldsighand);
966 	}
967 
968 	BUG_ON(!thread_group_leader(tsk));
969 	return 0;
970 }
971 
972 /*
973  * These functions flushes out all traces of the currently running executable
974  * so that a new one can be started
975  */
976 
977 static void flush_old_files(struct files_struct * files)
978 {
979 	long j = -1;
980 	struct fdtable *fdt;
981 
982 	spin_lock(&files->file_lock);
983 	for (;;) {
984 		unsigned long set, i;
985 
986 		j++;
987 		i = j * __NFDBITS;
988 		fdt = files_fdtable(files);
989 		if (i >= fdt->max_fds)
990 			break;
991 		set = fdt->close_on_exec->fds_bits[j];
992 		if (!set)
993 			continue;
994 		fdt->close_on_exec->fds_bits[j] = 0;
995 		spin_unlock(&files->file_lock);
996 		for ( ; set ; i++,set >>= 1) {
997 			if (set & 1) {
998 				sys_close(i);
999 			}
1000 		}
1001 		spin_lock(&files->file_lock);
1002 
1003 	}
1004 	spin_unlock(&files->file_lock);
1005 }
1006 
1007 void get_task_comm(char *buf, struct task_struct *tsk)
1008 {
1009 	/* buf must be at least sizeof(tsk->comm) in size */
1010 	task_lock(tsk);
1011 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
1012 	task_unlock(tsk);
1013 }
1014 
1015 void set_task_comm(struct task_struct *tsk, char *buf)
1016 {
1017 	task_lock(tsk);
1018 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1019 	task_unlock(tsk);
1020 }
1021 
1022 int flush_old_exec(struct linux_binprm * bprm)
1023 {
1024 	char * name;
1025 	int i, ch, retval;
1026 	struct files_struct *files;
1027 	char tcomm[sizeof(current->comm)];
1028 
1029 	/*
1030 	 * Make sure we have a private signal table and that
1031 	 * we are unassociated from the previous thread group.
1032 	 */
1033 	retval = de_thread(current);
1034 	if (retval)
1035 		goto out;
1036 
1037 	/*
1038 	 * Make sure we have private file handles. Ask the
1039 	 * fork helper to do the work for us and the exit
1040 	 * helper to do the cleanup of the old one.
1041 	 */
1042 	files = current->files;		/* refcounted so safe to hold */
1043 	retval = unshare_files();
1044 	if (retval)
1045 		goto out;
1046 	/*
1047 	 * Release all of the old mmap stuff
1048 	 */
1049 	retval = exec_mmap(bprm->mm);
1050 	if (retval)
1051 		goto mmap_failed;
1052 
1053 	bprm->mm = NULL;		/* We're using it now */
1054 
1055 	/* This is the point of no return */
1056 	put_files_struct(files);
1057 
1058 	current->sas_ss_sp = current->sas_ss_size = 0;
1059 
1060 	if (current->euid == current->uid && current->egid == current->gid)
1061 		set_dumpable(current->mm, 1);
1062 	else
1063 		set_dumpable(current->mm, suid_dumpable);
1064 
1065 	name = bprm->filename;
1066 
1067 	/* Copies the binary name from after last slash */
1068 	for (i=0; (ch = *(name++)) != '\0';) {
1069 		if (ch == '/')
1070 			i = 0; /* overwrite what we wrote */
1071 		else
1072 			if (i < (sizeof(tcomm) - 1))
1073 				tcomm[i++] = ch;
1074 	}
1075 	tcomm[i] = '\0';
1076 	set_task_comm(current, tcomm);
1077 
1078 	current->flags &= ~PF_RANDOMIZE;
1079 	flush_thread();
1080 
1081 	/* Set the new mm task size. We have to do that late because it may
1082 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1083 	 * some architectures like powerpc
1084 	 */
1085 	current->mm->task_size = TASK_SIZE;
1086 
1087 	if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) {
1088 		suid_keys(current);
1089 		set_dumpable(current->mm, suid_dumpable);
1090 		current->pdeath_signal = 0;
1091 	} else if (file_permission(bprm->file, MAY_READ) ||
1092 			(bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
1093 		suid_keys(current);
1094 		set_dumpable(current->mm, suid_dumpable);
1095 	}
1096 
1097 	/* An exec changes our domain. We are no longer part of the thread
1098 	   group */
1099 
1100 	current->self_exec_id++;
1101 
1102 	flush_signal_handlers(current, 0);
1103 	flush_old_files(current->files);
1104 
1105 	return 0;
1106 
1107 mmap_failed:
1108 	reset_files_struct(current, files);
1109 out:
1110 	return retval;
1111 }
1112 
1113 EXPORT_SYMBOL(flush_old_exec);
1114 
1115 /*
1116  * Fill the binprm structure from the inode.
1117  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1118  */
1119 int prepare_binprm(struct linux_binprm *bprm)
1120 {
1121 	int mode;
1122 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1123 	int retval;
1124 
1125 	mode = inode->i_mode;
1126 	if (bprm->file->f_op == NULL)
1127 		return -EACCES;
1128 
1129 	bprm->e_uid = current->euid;
1130 	bprm->e_gid = current->egid;
1131 
1132 	if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1133 		/* Set-uid? */
1134 		if (mode & S_ISUID) {
1135 			current->personality &= ~PER_CLEAR_ON_SETID;
1136 			bprm->e_uid = inode->i_uid;
1137 		}
1138 
1139 		/* Set-gid? */
1140 		/*
1141 		 * If setgid is set but no group execute bit then this
1142 		 * is a candidate for mandatory locking, not a setgid
1143 		 * executable.
1144 		 */
1145 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1146 			current->personality &= ~PER_CLEAR_ON_SETID;
1147 			bprm->e_gid = inode->i_gid;
1148 		}
1149 	}
1150 
1151 	/* fill in binprm security blob */
1152 	retval = security_bprm_set(bprm);
1153 	if (retval)
1154 		return retval;
1155 
1156 	memset(bprm->buf,0,BINPRM_BUF_SIZE);
1157 	return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
1158 }
1159 
1160 EXPORT_SYMBOL(prepare_binprm);
1161 
1162 static int unsafe_exec(struct task_struct *p)
1163 {
1164 	int unsafe = 0;
1165 	if (p->ptrace & PT_PTRACED) {
1166 		if (p->ptrace & PT_PTRACE_CAP)
1167 			unsafe |= LSM_UNSAFE_PTRACE_CAP;
1168 		else
1169 			unsafe |= LSM_UNSAFE_PTRACE;
1170 	}
1171 	if (atomic_read(&p->fs->count) > 1 ||
1172 	    atomic_read(&p->files->count) > 1 ||
1173 	    atomic_read(&p->sighand->count) > 1)
1174 		unsafe |= LSM_UNSAFE_SHARE;
1175 
1176 	return unsafe;
1177 }
1178 
1179 void compute_creds(struct linux_binprm *bprm)
1180 {
1181 	int unsafe;
1182 
1183 	if (bprm->e_uid != current->uid) {
1184 		suid_keys(current);
1185 		current->pdeath_signal = 0;
1186 	}
1187 	exec_keys(current);
1188 
1189 	task_lock(current);
1190 	unsafe = unsafe_exec(current);
1191 	security_bprm_apply_creds(bprm, unsafe);
1192 	task_unlock(current);
1193 	security_bprm_post_apply_creds(bprm);
1194 }
1195 EXPORT_SYMBOL(compute_creds);
1196 
1197 /*
1198  * Arguments are '\0' separated strings found at the location bprm->p
1199  * points to; chop off the first by relocating brpm->p to right after
1200  * the first '\0' encountered.
1201  */
1202 int remove_arg_zero(struct linux_binprm *bprm)
1203 {
1204 	int ret = 0;
1205 	unsigned long offset;
1206 	char *kaddr;
1207 	struct page *page;
1208 
1209 	if (!bprm->argc)
1210 		return 0;
1211 
1212 	do {
1213 		offset = bprm->p & ~PAGE_MASK;
1214 		page = get_arg_page(bprm, bprm->p, 0);
1215 		if (!page) {
1216 			ret = -EFAULT;
1217 			goto out;
1218 		}
1219 		kaddr = kmap_atomic(page, KM_USER0);
1220 
1221 		for (; offset < PAGE_SIZE && kaddr[offset];
1222 				offset++, bprm->p++)
1223 			;
1224 
1225 		kunmap_atomic(kaddr, KM_USER0);
1226 		put_arg_page(page);
1227 
1228 		if (offset == PAGE_SIZE)
1229 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1230 	} while (offset == PAGE_SIZE);
1231 
1232 	bprm->p++;
1233 	bprm->argc--;
1234 	ret = 0;
1235 
1236 out:
1237 	return ret;
1238 }
1239 EXPORT_SYMBOL(remove_arg_zero);
1240 
1241 /*
1242  * cycle the list of binary formats handler, until one recognizes the image
1243  */
1244 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1245 {
1246 	int try,retval;
1247 	struct linux_binfmt *fmt;
1248 #ifdef __alpha__
1249 	/* handle /sbin/loader.. */
1250 	{
1251 	    struct exec * eh = (struct exec *) bprm->buf;
1252 
1253 	    if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1254 		(eh->fh.f_flags & 0x3000) == 0x3000)
1255 	    {
1256 		struct file * file;
1257 		unsigned long loader;
1258 
1259 		allow_write_access(bprm->file);
1260 		fput(bprm->file);
1261 		bprm->file = NULL;
1262 
1263 		loader = bprm->vma->vm_end - sizeof(void *);
1264 
1265 		file = open_exec("/sbin/loader");
1266 		retval = PTR_ERR(file);
1267 		if (IS_ERR(file))
1268 			return retval;
1269 
1270 		/* Remember if the application is TASO.  */
1271 		bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1272 
1273 		bprm->file = file;
1274 		bprm->loader = loader;
1275 		retval = prepare_binprm(bprm);
1276 		if (retval<0)
1277 			return retval;
1278 		/* should call search_binary_handler recursively here,
1279 		   but it does not matter */
1280 	    }
1281 	}
1282 #endif
1283 	retval = security_bprm_check(bprm);
1284 	if (retval)
1285 		return retval;
1286 
1287 	/* kernel module loader fixup */
1288 	/* so we don't try to load run modprobe in kernel space. */
1289 	set_fs(USER_DS);
1290 
1291 	retval = audit_bprm(bprm);
1292 	if (retval)
1293 		return retval;
1294 
1295 	retval = -ENOENT;
1296 	for (try=0; try<2; try++) {
1297 		read_lock(&binfmt_lock);
1298 		for (fmt = formats ; fmt ; fmt = fmt->next) {
1299 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1300 			if (!fn)
1301 				continue;
1302 			if (!try_module_get(fmt->module))
1303 				continue;
1304 			read_unlock(&binfmt_lock);
1305 			retval = fn(bprm, regs);
1306 			if (retval >= 0) {
1307 				put_binfmt(fmt);
1308 				allow_write_access(bprm->file);
1309 				if (bprm->file)
1310 					fput(bprm->file);
1311 				bprm->file = NULL;
1312 				current->did_exec = 1;
1313 				proc_exec_connector(current);
1314 				return retval;
1315 			}
1316 			read_lock(&binfmt_lock);
1317 			put_binfmt(fmt);
1318 			if (retval != -ENOEXEC || bprm->mm == NULL)
1319 				break;
1320 			if (!bprm->file) {
1321 				read_unlock(&binfmt_lock);
1322 				return retval;
1323 			}
1324 		}
1325 		read_unlock(&binfmt_lock);
1326 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1327 			break;
1328 #ifdef CONFIG_KMOD
1329 		}else{
1330 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1331 			if (printable(bprm->buf[0]) &&
1332 			    printable(bprm->buf[1]) &&
1333 			    printable(bprm->buf[2]) &&
1334 			    printable(bprm->buf[3]))
1335 				break; /* -ENOEXEC */
1336 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1337 #endif
1338 		}
1339 	}
1340 	return retval;
1341 }
1342 
1343 EXPORT_SYMBOL(search_binary_handler);
1344 
1345 /*
1346  * sys_execve() executes a new program.
1347  */
1348 int do_execve(char * filename,
1349 	char __user *__user *argv,
1350 	char __user *__user *envp,
1351 	struct pt_regs * regs)
1352 {
1353 	struct linux_binprm *bprm;
1354 	struct file *file;
1355 	unsigned long env_p;
1356 	int retval;
1357 
1358 	retval = -ENOMEM;
1359 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1360 	if (!bprm)
1361 		goto out_ret;
1362 
1363 	file = open_exec(filename);
1364 	retval = PTR_ERR(file);
1365 	if (IS_ERR(file))
1366 		goto out_kfree;
1367 
1368 	sched_exec();
1369 
1370 	bprm->file = file;
1371 	bprm->filename = filename;
1372 	bprm->interp = filename;
1373 
1374 	retval = bprm_mm_init(bprm);
1375 	if (retval)
1376 		goto out_file;
1377 
1378 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1379 	if ((retval = bprm->argc) < 0)
1380 		goto out_mm;
1381 
1382 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1383 	if ((retval = bprm->envc) < 0)
1384 		goto out_mm;
1385 
1386 	retval = security_bprm_alloc(bprm);
1387 	if (retval)
1388 		goto out;
1389 
1390 	retval = prepare_binprm(bprm);
1391 	if (retval < 0)
1392 		goto out;
1393 
1394 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1395 	if (retval < 0)
1396 		goto out;
1397 
1398 	bprm->exec = bprm->p;
1399 	retval = copy_strings(bprm->envc, envp, bprm);
1400 	if (retval < 0)
1401 		goto out;
1402 
1403 	env_p = bprm->p;
1404 	retval = copy_strings(bprm->argc, argv, bprm);
1405 	if (retval < 0)
1406 		goto out;
1407 	bprm->argv_len = env_p - bprm->p;
1408 
1409 	retval = search_binary_handler(bprm,regs);
1410 	if (retval >= 0) {
1411 		/* execve success */
1412 		free_arg_pages(bprm);
1413 		security_bprm_free(bprm);
1414 		acct_update_integrals(current);
1415 		kfree(bprm);
1416 		return retval;
1417 	}
1418 
1419 out:
1420 	free_arg_pages(bprm);
1421 	if (bprm->security)
1422 		security_bprm_free(bprm);
1423 
1424 out_mm:
1425 	if (bprm->mm)
1426 		mmput (bprm->mm);
1427 
1428 out_file:
1429 	if (bprm->file) {
1430 		allow_write_access(bprm->file);
1431 		fput(bprm->file);
1432 	}
1433 out_kfree:
1434 	kfree(bprm);
1435 
1436 out_ret:
1437 	return retval;
1438 }
1439 
1440 int set_binfmt(struct linux_binfmt *new)
1441 {
1442 	struct linux_binfmt *old = current->binfmt;
1443 
1444 	if (new) {
1445 		if (!try_module_get(new->module))
1446 			return -1;
1447 	}
1448 	current->binfmt = new;
1449 	if (old)
1450 		module_put(old->module);
1451 	return 0;
1452 }
1453 
1454 EXPORT_SYMBOL(set_binfmt);
1455 
1456 /* format_corename will inspect the pattern parameter, and output a
1457  * name into corename, which must have space for at least
1458  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1459  */
1460 static int format_corename(char *corename, const char *pattern, long signr)
1461 {
1462 	const char *pat_ptr = pattern;
1463 	char *out_ptr = corename;
1464 	char *const out_end = corename + CORENAME_MAX_SIZE;
1465 	int rc;
1466 	int pid_in_pattern = 0;
1467 	int ispipe = 0;
1468 
1469 	if (*pattern == '|')
1470 		ispipe = 1;
1471 
1472 	/* Repeat as long as we have more pattern to process and more output
1473 	   space */
1474 	while (*pat_ptr) {
1475 		if (*pat_ptr != '%') {
1476 			if (out_ptr == out_end)
1477 				goto out;
1478 			*out_ptr++ = *pat_ptr++;
1479 		} else {
1480 			switch (*++pat_ptr) {
1481 			case 0:
1482 				goto out;
1483 			/* Double percent, output one percent */
1484 			case '%':
1485 				if (out_ptr == out_end)
1486 					goto out;
1487 				*out_ptr++ = '%';
1488 				break;
1489 			/* pid */
1490 			case 'p':
1491 				pid_in_pattern = 1;
1492 				rc = snprintf(out_ptr, out_end - out_ptr,
1493 					      "%d", current->tgid);
1494 				if (rc > out_end - out_ptr)
1495 					goto out;
1496 				out_ptr += rc;
1497 				break;
1498 			/* uid */
1499 			case 'u':
1500 				rc = snprintf(out_ptr, out_end - out_ptr,
1501 					      "%d", current->uid);
1502 				if (rc > out_end - out_ptr)
1503 					goto out;
1504 				out_ptr += rc;
1505 				break;
1506 			/* gid */
1507 			case 'g':
1508 				rc = snprintf(out_ptr, out_end - out_ptr,
1509 					      "%d", current->gid);
1510 				if (rc > out_end - out_ptr)
1511 					goto out;
1512 				out_ptr += rc;
1513 				break;
1514 			/* signal that caused the coredump */
1515 			case 's':
1516 				rc = snprintf(out_ptr, out_end - out_ptr,
1517 					      "%ld", signr);
1518 				if (rc > out_end - out_ptr)
1519 					goto out;
1520 				out_ptr += rc;
1521 				break;
1522 			/* UNIX time of coredump */
1523 			case 't': {
1524 				struct timeval tv;
1525 				do_gettimeofday(&tv);
1526 				rc = snprintf(out_ptr, out_end - out_ptr,
1527 					      "%lu", tv.tv_sec);
1528 				if (rc > out_end - out_ptr)
1529 					goto out;
1530 				out_ptr += rc;
1531 				break;
1532 			}
1533 			/* hostname */
1534 			case 'h':
1535 				down_read(&uts_sem);
1536 				rc = snprintf(out_ptr, out_end - out_ptr,
1537 					      "%s", utsname()->nodename);
1538 				up_read(&uts_sem);
1539 				if (rc > out_end - out_ptr)
1540 					goto out;
1541 				out_ptr += rc;
1542 				break;
1543 			/* executable */
1544 			case 'e':
1545 				rc = snprintf(out_ptr, out_end - out_ptr,
1546 					      "%s", current->comm);
1547 				if (rc > out_end - out_ptr)
1548 					goto out;
1549 				out_ptr += rc;
1550 				break;
1551 			default:
1552 				break;
1553 			}
1554 			++pat_ptr;
1555 		}
1556 	}
1557 	/* Backward compatibility with core_uses_pid:
1558 	 *
1559 	 * If core_pattern does not include a %p (as is the default)
1560 	 * and core_uses_pid is set, then .%pid will be appended to
1561 	 * the filename. Do not do this for piped commands. */
1562 	if (!ispipe && !pid_in_pattern
1563             && (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)) {
1564 		rc = snprintf(out_ptr, out_end - out_ptr,
1565 			      ".%d", current->tgid);
1566 		if (rc > out_end - out_ptr)
1567 			goto out;
1568 		out_ptr += rc;
1569 	}
1570 out:
1571 	*out_ptr = 0;
1572 	return ispipe;
1573 }
1574 
1575 static void zap_process(struct task_struct *start)
1576 {
1577 	struct task_struct *t;
1578 
1579 	start->signal->flags = SIGNAL_GROUP_EXIT;
1580 	start->signal->group_stop_count = 0;
1581 
1582 	t = start;
1583 	do {
1584 		if (t != current && t->mm) {
1585 			t->mm->core_waiters++;
1586 			sigaddset(&t->pending.signal, SIGKILL);
1587 			signal_wake_up(t, 1);
1588 		}
1589 	} while ((t = next_thread(t)) != start);
1590 }
1591 
1592 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1593 				int exit_code)
1594 {
1595 	struct task_struct *g, *p;
1596 	unsigned long flags;
1597 	int err = -EAGAIN;
1598 
1599 	spin_lock_irq(&tsk->sighand->siglock);
1600 	if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
1601 		tsk->signal->group_exit_code = exit_code;
1602 		zap_process(tsk);
1603 		err = 0;
1604 	}
1605 	spin_unlock_irq(&tsk->sighand->siglock);
1606 	if (err)
1607 		return err;
1608 
1609 	if (atomic_read(&mm->mm_users) == mm->core_waiters + 1)
1610 		goto done;
1611 
1612 	rcu_read_lock();
1613 	for_each_process(g) {
1614 		if (g == tsk->group_leader)
1615 			continue;
1616 
1617 		p = g;
1618 		do {
1619 			if (p->mm) {
1620 				if (p->mm == mm) {
1621 					/*
1622 					 * p->sighand can't disappear, but
1623 					 * may be changed by de_thread()
1624 					 */
1625 					lock_task_sighand(p, &flags);
1626 					zap_process(p);
1627 					unlock_task_sighand(p, &flags);
1628 				}
1629 				break;
1630 			}
1631 		} while ((p = next_thread(p)) != g);
1632 	}
1633 	rcu_read_unlock();
1634 done:
1635 	return mm->core_waiters;
1636 }
1637 
1638 static int coredump_wait(int exit_code)
1639 {
1640 	struct task_struct *tsk = current;
1641 	struct mm_struct *mm = tsk->mm;
1642 	struct completion startup_done;
1643 	struct completion *vfork_done;
1644 	int core_waiters;
1645 
1646 	init_completion(&mm->core_done);
1647 	init_completion(&startup_done);
1648 	mm->core_startup_done = &startup_done;
1649 
1650 	core_waiters = zap_threads(tsk, mm, exit_code);
1651 	up_write(&mm->mmap_sem);
1652 
1653 	if (unlikely(core_waiters < 0))
1654 		goto fail;
1655 
1656 	/*
1657 	 * Make sure nobody is waiting for us to release the VM,
1658 	 * otherwise we can deadlock when we wait on each other
1659 	 */
1660 	vfork_done = tsk->vfork_done;
1661 	if (vfork_done) {
1662 		tsk->vfork_done = NULL;
1663 		complete(vfork_done);
1664 	}
1665 
1666 	if (core_waiters)
1667 		wait_for_completion(&startup_done);
1668 fail:
1669 	BUG_ON(mm->core_waiters);
1670 	return core_waiters;
1671 }
1672 
1673 /*
1674  * set_dumpable converts traditional three-value dumpable to two flags and
1675  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1676  * these bits are not changed atomically.  So get_dumpable can observe the
1677  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1678  * return either old dumpable or new one by paying attention to the order of
1679  * modifying the bits.
1680  *
1681  * dumpable |   mm->flags (binary)
1682  * old  new | initial interim  final
1683  * ---------+-----------------------
1684  *  0    1  |   00      01      01
1685  *  0    2  |   00      10(*)   11
1686  *  1    0  |   01      00      00
1687  *  1    2  |   01      11      11
1688  *  2    0  |   11      10(*)   00
1689  *  2    1  |   11      11      01
1690  *
1691  * (*) get_dumpable regards interim value of 10 as 11.
1692  */
1693 void set_dumpable(struct mm_struct *mm, int value)
1694 {
1695 	switch (value) {
1696 	case 0:
1697 		clear_bit(MMF_DUMPABLE, &mm->flags);
1698 		smp_wmb();
1699 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1700 		break;
1701 	case 1:
1702 		set_bit(MMF_DUMPABLE, &mm->flags);
1703 		smp_wmb();
1704 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1705 		break;
1706 	case 2:
1707 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
1708 		smp_wmb();
1709 		set_bit(MMF_DUMPABLE, &mm->flags);
1710 		break;
1711 	}
1712 }
1713 EXPORT_SYMBOL_GPL(set_dumpable);
1714 
1715 int get_dumpable(struct mm_struct *mm)
1716 {
1717 	int ret;
1718 
1719 	ret = mm->flags & 0x3;
1720 	return (ret >= 2) ? 2 : ret;
1721 }
1722 
1723 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1724 {
1725 	char corename[CORENAME_MAX_SIZE + 1];
1726 	struct mm_struct *mm = current->mm;
1727 	struct linux_binfmt * binfmt;
1728 	struct inode * inode;
1729 	struct file * file;
1730 	int retval = 0;
1731 	int fsuid = current->fsuid;
1732 	int flag = 0;
1733 	int ispipe = 0;
1734 
1735 	audit_core_dumps(signr);
1736 
1737 	binfmt = current->binfmt;
1738 	if (!binfmt || !binfmt->core_dump)
1739 		goto fail;
1740 	down_write(&mm->mmap_sem);
1741 	if (!get_dumpable(mm)) {
1742 		up_write(&mm->mmap_sem);
1743 		goto fail;
1744 	}
1745 
1746 	/*
1747 	 *	We cannot trust fsuid as being the "true" uid of the
1748 	 *	process nor do we know its entire history. We only know it
1749 	 *	was tainted so we dump it as root in mode 2.
1750 	 */
1751 	if (get_dumpable(mm) == 2) {	/* Setuid core dump mode */
1752 		flag = O_EXCL;		/* Stop rewrite attacks */
1753 		current->fsuid = 0;	/* Dump root private */
1754 	}
1755 	set_dumpable(mm, 0);
1756 
1757 	retval = coredump_wait(exit_code);
1758 	if (retval < 0)
1759 		goto fail;
1760 
1761 	/*
1762 	 * Clear any false indication of pending signals that might
1763 	 * be seen by the filesystem code called to write the core file.
1764 	 */
1765 	clear_thread_flag(TIF_SIGPENDING);
1766 
1767 	if (current->signal->rlim[RLIMIT_CORE].rlim_cur < binfmt->min_coredump)
1768 		goto fail_unlock;
1769 
1770 	/*
1771 	 * lock_kernel() because format_corename() is controlled by sysctl, which
1772 	 * uses lock_kernel()
1773 	 */
1774  	lock_kernel();
1775 	ispipe = format_corename(corename, core_pattern, signr);
1776 	unlock_kernel();
1777  	if (ispipe) {
1778 		/* SIGPIPE can happen, but it's just never processed */
1779  		if(call_usermodehelper_pipe(corename+1, NULL, NULL, &file)) {
1780  			printk(KERN_INFO "Core dump to %s pipe failed\n",
1781 			       corename);
1782  			goto fail_unlock;
1783  		}
1784  	} else
1785  		file = filp_open(corename,
1786 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1787 				 0600);
1788 	if (IS_ERR(file))
1789 		goto fail_unlock;
1790 	inode = file->f_path.dentry->d_inode;
1791 	if (inode->i_nlink > 1)
1792 		goto close_fail;	/* multiple links - don't dump */
1793 	if (!ispipe && d_unhashed(file->f_path.dentry))
1794 		goto close_fail;
1795 
1796 	/* AK: actually i see no reason to not allow this for named pipes etc.,
1797 	   but keep the previous behaviour for now. */
1798 	if (!ispipe && !S_ISREG(inode->i_mode))
1799 		goto close_fail;
1800 	if (!file->f_op)
1801 		goto close_fail;
1802 	if (!file->f_op->write)
1803 		goto close_fail;
1804 	if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1805 		goto close_fail;
1806 
1807 	retval = binfmt->core_dump(signr, regs, file);
1808 
1809 	if (retval)
1810 		current->signal->group_exit_code |= 0x80;
1811 close_fail:
1812 	filp_close(file, NULL);
1813 fail_unlock:
1814 	current->fsuid = fsuid;
1815 	complete_all(&mm->core_done);
1816 fail:
1817 	return retval;
1818 }
1819