1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/mman.h> 28 #include <linux/a.out.h> 29 #include <linux/stat.h> 30 #include <linux/fcntl.h> 31 #include <linux/smp_lock.h> 32 #include <linux/init.h> 33 #include <linux/pagemap.h> 34 #include <linux/highmem.h> 35 #include <linux/spinlock.h> 36 #include <linux/key.h> 37 #include <linux/personality.h> 38 #include <linux/binfmts.h> 39 #include <linux/swap.h> 40 #include <linux/utsname.h> 41 #include <linux/pid_namespace.h> 42 #include <linux/module.h> 43 #include <linux/namei.h> 44 #include <linux/proc_fs.h> 45 #include <linux/ptrace.h> 46 #include <linux/mount.h> 47 #include <linux/security.h> 48 #include <linux/syscalls.h> 49 #include <linux/rmap.h> 50 #include <linux/tsacct_kern.h> 51 #include <linux/cn_proc.h> 52 #include <linux/audit.h> 53 #include <linux/signalfd.h> 54 55 #include <asm/uaccess.h> 56 #include <asm/mmu_context.h> 57 #include <asm/tlb.h> 58 59 #ifdef CONFIG_KMOD 60 #include <linux/kmod.h> 61 #endif 62 63 int core_uses_pid; 64 char core_pattern[CORENAME_MAX_SIZE] = "core"; 65 int suid_dumpable = 0; 66 67 EXPORT_SYMBOL(suid_dumpable); 68 /* The maximal length of core_pattern is also specified in sysctl.c */ 69 70 static struct linux_binfmt *formats; 71 static DEFINE_RWLOCK(binfmt_lock); 72 73 int register_binfmt(struct linux_binfmt * fmt) 74 { 75 struct linux_binfmt ** tmp = &formats; 76 77 if (!fmt) 78 return -EINVAL; 79 if (fmt->next) 80 return -EBUSY; 81 write_lock(&binfmt_lock); 82 while (*tmp) { 83 if (fmt == *tmp) { 84 write_unlock(&binfmt_lock); 85 return -EBUSY; 86 } 87 tmp = &(*tmp)->next; 88 } 89 fmt->next = formats; 90 formats = fmt; 91 write_unlock(&binfmt_lock); 92 return 0; 93 } 94 95 EXPORT_SYMBOL(register_binfmt); 96 97 int unregister_binfmt(struct linux_binfmt * fmt) 98 { 99 struct linux_binfmt ** tmp = &formats; 100 101 write_lock(&binfmt_lock); 102 while (*tmp) { 103 if (fmt == *tmp) { 104 *tmp = fmt->next; 105 fmt->next = NULL; 106 write_unlock(&binfmt_lock); 107 return 0; 108 } 109 tmp = &(*tmp)->next; 110 } 111 write_unlock(&binfmt_lock); 112 return -EINVAL; 113 } 114 115 EXPORT_SYMBOL(unregister_binfmt); 116 117 static inline void put_binfmt(struct linux_binfmt * fmt) 118 { 119 module_put(fmt->module); 120 } 121 122 /* 123 * Note that a shared library must be both readable and executable due to 124 * security reasons. 125 * 126 * Also note that we take the address to load from from the file itself. 127 */ 128 asmlinkage long sys_uselib(const char __user * library) 129 { 130 struct file * file; 131 struct nameidata nd; 132 int error; 133 134 error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC); 135 if (error) 136 goto out; 137 138 error = -EACCES; 139 if (nd.mnt->mnt_flags & MNT_NOEXEC) 140 goto exit; 141 error = -EINVAL; 142 if (!S_ISREG(nd.dentry->d_inode->i_mode)) 143 goto exit; 144 145 error = vfs_permission(&nd, MAY_READ | MAY_EXEC); 146 if (error) 147 goto exit; 148 149 file = nameidata_to_filp(&nd, O_RDONLY); 150 error = PTR_ERR(file); 151 if (IS_ERR(file)) 152 goto out; 153 154 error = -ENOEXEC; 155 if(file->f_op) { 156 struct linux_binfmt * fmt; 157 158 read_lock(&binfmt_lock); 159 for (fmt = formats ; fmt ; fmt = fmt->next) { 160 if (!fmt->load_shlib) 161 continue; 162 if (!try_module_get(fmt->module)) 163 continue; 164 read_unlock(&binfmt_lock); 165 error = fmt->load_shlib(file); 166 read_lock(&binfmt_lock); 167 put_binfmt(fmt); 168 if (error != -ENOEXEC) 169 break; 170 } 171 read_unlock(&binfmt_lock); 172 } 173 fput(file); 174 out: 175 return error; 176 exit: 177 release_open_intent(&nd); 178 path_release(&nd); 179 goto out; 180 } 181 182 #ifdef CONFIG_MMU 183 184 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 185 int write) 186 { 187 struct page *page; 188 int ret; 189 190 #ifdef CONFIG_STACK_GROWSUP 191 if (write) { 192 ret = expand_stack_downwards(bprm->vma, pos); 193 if (ret < 0) 194 return NULL; 195 } 196 #endif 197 ret = get_user_pages(current, bprm->mm, pos, 198 1, write, 1, &page, NULL); 199 if (ret <= 0) 200 return NULL; 201 202 if (write) { 203 struct rlimit *rlim = current->signal->rlim; 204 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 205 206 /* 207 * Limit to 1/4-th the stack size for the argv+env strings. 208 * This ensures that: 209 * - the remaining binfmt code will not run out of stack space, 210 * - the program will have a reasonable amount of stack left 211 * to work from. 212 */ 213 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) { 214 put_page(page); 215 return NULL; 216 } 217 } 218 219 return page; 220 } 221 222 static void put_arg_page(struct page *page) 223 { 224 put_page(page); 225 } 226 227 static void free_arg_page(struct linux_binprm *bprm, int i) 228 { 229 } 230 231 static void free_arg_pages(struct linux_binprm *bprm) 232 { 233 } 234 235 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 236 struct page *page) 237 { 238 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 239 } 240 241 static int __bprm_mm_init(struct linux_binprm *bprm) 242 { 243 int err = -ENOMEM; 244 struct vm_area_struct *vma = NULL; 245 struct mm_struct *mm = bprm->mm; 246 247 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 248 if (!vma) 249 goto err; 250 251 down_write(&mm->mmap_sem); 252 vma->vm_mm = mm; 253 254 /* 255 * Place the stack at the largest stack address the architecture 256 * supports. Later, we'll move this to an appropriate place. We don't 257 * use STACK_TOP because that can depend on attributes which aren't 258 * configured yet. 259 */ 260 vma->vm_end = STACK_TOP_MAX; 261 vma->vm_start = vma->vm_end - PAGE_SIZE; 262 263 vma->vm_flags = VM_STACK_FLAGS; 264 vma->vm_page_prot = protection_map[vma->vm_flags & 0x7]; 265 err = insert_vm_struct(mm, vma); 266 if (err) { 267 up_write(&mm->mmap_sem); 268 goto err; 269 } 270 271 mm->stack_vm = mm->total_vm = 1; 272 up_write(&mm->mmap_sem); 273 274 bprm->p = vma->vm_end - sizeof(void *); 275 276 return 0; 277 278 err: 279 if (vma) { 280 bprm->vma = NULL; 281 kmem_cache_free(vm_area_cachep, vma); 282 } 283 284 return err; 285 } 286 287 static bool valid_arg_len(struct linux_binprm *bprm, long len) 288 { 289 return len <= MAX_ARG_STRLEN; 290 } 291 292 #else 293 294 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 295 int write) 296 { 297 struct page *page; 298 299 page = bprm->page[pos / PAGE_SIZE]; 300 if (!page && write) { 301 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 302 if (!page) 303 return NULL; 304 bprm->page[pos / PAGE_SIZE] = page; 305 } 306 307 return page; 308 } 309 310 static void put_arg_page(struct page *page) 311 { 312 } 313 314 static void free_arg_page(struct linux_binprm *bprm, int i) 315 { 316 if (bprm->page[i]) { 317 __free_page(bprm->page[i]); 318 bprm->page[i] = NULL; 319 } 320 } 321 322 static void free_arg_pages(struct linux_binprm *bprm) 323 { 324 int i; 325 326 for (i = 0; i < MAX_ARG_PAGES; i++) 327 free_arg_page(bprm, i); 328 } 329 330 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 331 struct page *page) 332 { 333 } 334 335 static int __bprm_mm_init(struct linux_binprm *bprm) 336 { 337 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 338 return 0; 339 } 340 341 static bool valid_arg_len(struct linux_binprm *bprm, long len) 342 { 343 return len <= bprm->p; 344 } 345 346 #endif /* CONFIG_MMU */ 347 348 /* 349 * Create a new mm_struct and populate it with a temporary stack 350 * vm_area_struct. We don't have enough context at this point to set the stack 351 * flags, permissions, and offset, so we use temporary values. We'll update 352 * them later in setup_arg_pages(). 353 */ 354 int bprm_mm_init(struct linux_binprm *bprm) 355 { 356 int err; 357 struct mm_struct *mm = NULL; 358 359 bprm->mm = mm = mm_alloc(); 360 err = -ENOMEM; 361 if (!mm) 362 goto err; 363 364 err = init_new_context(current, mm); 365 if (err) 366 goto err; 367 368 err = __bprm_mm_init(bprm); 369 if (err) 370 goto err; 371 372 return 0; 373 374 err: 375 if (mm) { 376 bprm->mm = NULL; 377 mmdrop(mm); 378 } 379 380 return err; 381 } 382 383 /* 384 * count() counts the number of strings in array ARGV. 385 */ 386 static int count(char __user * __user * argv, int max) 387 { 388 int i = 0; 389 390 if (argv != NULL) { 391 for (;;) { 392 char __user * p; 393 394 if (get_user(p, argv)) 395 return -EFAULT; 396 if (!p) 397 break; 398 argv++; 399 if(++i > max) 400 return -E2BIG; 401 cond_resched(); 402 } 403 } 404 return i; 405 } 406 407 /* 408 * 'copy_strings()' copies argument/environment strings from the old 409 * processes's memory to the new process's stack. The call to get_user_pages() 410 * ensures the destination page is created and not swapped out. 411 */ 412 static int copy_strings(int argc, char __user * __user * argv, 413 struct linux_binprm *bprm) 414 { 415 struct page *kmapped_page = NULL; 416 char *kaddr = NULL; 417 unsigned long kpos = 0; 418 int ret; 419 420 while (argc-- > 0) { 421 char __user *str; 422 int len; 423 unsigned long pos; 424 425 if (get_user(str, argv+argc) || 426 !(len = strnlen_user(str, MAX_ARG_STRLEN))) { 427 ret = -EFAULT; 428 goto out; 429 } 430 431 if (!valid_arg_len(bprm, len)) { 432 ret = -E2BIG; 433 goto out; 434 } 435 436 /* We're going to work our way backwords. */ 437 pos = bprm->p; 438 str += len; 439 bprm->p -= len; 440 441 while (len > 0) { 442 int offset, bytes_to_copy; 443 444 offset = pos % PAGE_SIZE; 445 if (offset == 0) 446 offset = PAGE_SIZE; 447 448 bytes_to_copy = offset; 449 if (bytes_to_copy > len) 450 bytes_to_copy = len; 451 452 offset -= bytes_to_copy; 453 pos -= bytes_to_copy; 454 str -= bytes_to_copy; 455 len -= bytes_to_copy; 456 457 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 458 struct page *page; 459 460 page = get_arg_page(bprm, pos, 1); 461 if (!page) { 462 ret = -E2BIG; 463 goto out; 464 } 465 466 if (kmapped_page) { 467 flush_kernel_dcache_page(kmapped_page); 468 kunmap(kmapped_page); 469 put_arg_page(kmapped_page); 470 } 471 kmapped_page = page; 472 kaddr = kmap(kmapped_page); 473 kpos = pos & PAGE_MASK; 474 flush_arg_page(bprm, kpos, kmapped_page); 475 } 476 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 477 ret = -EFAULT; 478 goto out; 479 } 480 } 481 } 482 ret = 0; 483 out: 484 if (kmapped_page) { 485 flush_kernel_dcache_page(kmapped_page); 486 kunmap(kmapped_page); 487 put_arg_page(kmapped_page); 488 } 489 return ret; 490 } 491 492 /* 493 * Like copy_strings, but get argv and its values from kernel memory. 494 */ 495 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm) 496 { 497 int r; 498 mm_segment_t oldfs = get_fs(); 499 set_fs(KERNEL_DS); 500 r = copy_strings(argc, (char __user * __user *)argv, bprm); 501 set_fs(oldfs); 502 return r; 503 } 504 EXPORT_SYMBOL(copy_strings_kernel); 505 506 #ifdef CONFIG_MMU 507 508 /* 509 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 510 * the binfmt code determines where the new stack should reside, we shift it to 511 * its final location. The process proceeds as follows: 512 * 513 * 1) Use shift to calculate the new vma endpoints. 514 * 2) Extend vma to cover both the old and new ranges. This ensures the 515 * arguments passed to subsequent functions are consistent. 516 * 3) Move vma's page tables to the new range. 517 * 4) Free up any cleared pgd range. 518 * 5) Shrink the vma to cover only the new range. 519 */ 520 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 521 { 522 struct mm_struct *mm = vma->vm_mm; 523 unsigned long old_start = vma->vm_start; 524 unsigned long old_end = vma->vm_end; 525 unsigned long length = old_end - old_start; 526 unsigned long new_start = old_start - shift; 527 unsigned long new_end = old_end - shift; 528 struct mmu_gather *tlb; 529 530 BUG_ON(new_start > new_end); 531 532 /* 533 * ensure there are no vmas between where we want to go 534 * and where we are 535 */ 536 if (vma != find_vma(mm, new_start)) 537 return -EFAULT; 538 539 /* 540 * cover the whole range: [new_start, old_end) 541 */ 542 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL); 543 544 /* 545 * move the page tables downwards, on failure we rely on 546 * process cleanup to remove whatever mess we made. 547 */ 548 if (length != move_page_tables(vma, old_start, 549 vma, new_start, length)) 550 return -ENOMEM; 551 552 lru_add_drain(); 553 tlb = tlb_gather_mmu(mm, 0); 554 if (new_end > old_start) { 555 /* 556 * when the old and new regions overlap clear from new_end. 557 */ 558 free_pgd_range(&tlb, new_end, old_end, new_end, 559 vma->vm_next ? vma->vm_next->vm_start : 0); 560 } else { 561 /* 562 * otherwise, clean from old_start; this is done to not touch 563 * the address space in [new_end, old_start) some architectures 564 * have constraints on va-space that make this illegal (IA64) - 565 * for the others its just a little faster. 566 */ 567 free_pgd_range(&tlb, old_start, old_end, new_end, 568 vma->vm_next ? vma->vm_next->vm_start : 0); 569 } 570 tlb_finish_mmu(tlb, new_end, old_end); 571 572 /* 573 * shrink the vma to just the new range. 574 */ 575 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 576 577 return 0; 578 } 579 580 #define EXTRA_STACK_VM_PAGES 20 /* random */ 581 582 /* 583 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 584 * the stack is optionally relocated, and some extra space is added. 585 */ 586 int setup_arg_pages(struct linux_binprm *bprm, 587 unsigned long stack_top, 588 int executable_stack) 589 { 590 unsigned long ret; 591 unsigned long stack_shift; 592 struct mm_struct *mm = current->mm; 593 struct vm_area_struct *vma = bprm->vma; 594 struct vm_area_struct *prev = NULL; 595 unsigned long vm_flags; 596 unsigned long stack_base; 597 598 #ifdef CONFIG_STACK_GROWSUP 599 /* Limit stack size to 1GB */ 600 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max; 601 if (stack_base > (1 << 30)) 602 stack_base = 1 << 30; 603 604 /* Make sure we didn't let the argument array grow too large. */ 605 if (vma->vm_end - vma->vm_start > stack_base) 606 return -ENOMEM; 607 608 stack_base = PAGE_ALIGN(stack_top - stack_base); 609 610 stack_shift = vma->vm_start - stack_base; 611 mm->arg_start = bprm->p - stack_shift; 612 bprm->p = vma->vm_end - stack_shift; 613 #else 614 stack_top = arch_align_stack(stack_top); 615 stack_top = PAGE_ALIGN(stack_top); 616 stack_shift = vma->vm_end - stack_top; 617 618 bprm->p -= stack_shift; 619 mm->arg_start = bprm->p; 620 #endif 621 622 if (bprm->loader) 623 bprm->loader -= stack_shift; 624 bprm->exec -= stack_shift; 625 626 down_write(&mm->mmap_sem); 627 vm_flags = vma->vm_flags; 628 629 /* 630 * Adjust stack execute permissions; explicitly enable for 631 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 632 * (arch default) otherwise. 633 */ 634 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 635 vm_flags |= VM_EXEC; 636 else if (executable_stack == EXSTACK_DISABLE_X) 637 vm_flags &= ~VM_EXEC; 638 vm_flags |= mm->def_flags; 639 640 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 641 vm_flags); 642 if (ret) 643 goto out_unlock; 644 BUG_ON(prev != vma); 645 646 /* Move stack pages down in memory. */ 647 if (stack_shift) { 648 ret = shift_arg_pages(vma, stack_shift); 649 if (ret) { 650 up_write(&mm->mmap_sem); 651 return ret; 652 } 653 } 654 655 #ifdef CONFIG_STACK_GROWSUP 656 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE; 657 #else 658 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE; 659 #endif 660 ret = expand_stack(vma, stack_base); 661 if (ret) 662 ret = -EFAULT; 663 664 out_unlock: 665 up_write(&mm->mmap_sem); 666 return 0; 667 } 668 EXPORT_SYMBOL(setup_arg_pages); 669 670 #endif /* CONFIG_MMU */ 671 672 struct file *open_exec(const char *name) 673 { 674 struct nameidata nd; 675 int err; 676 struct file *file; 677 678 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC); 679 file = ERR_PTR(err); 680 681 if (!err) { 682 struct inode *inode = nd.dentry->d_inode; 683 file = ERR_PTR(-EACCES); 684 if (!(nd.mnt->mnt_flags & MNT_NOEXEC) && 685 S_ISREG(inode->i_mode)) { 686 int err = vfs_permission(&nd, MAY_EXEC); 687 file = ERR_PTR(err); 688 if (!err) { 689 file = nameidata_to_filp(&nd, O_RDONLY); 690 if (!IS_ERR(file)) { 691 err = deny_write_access(file); 692 if (err) { 693 fput(file); 694 file = ERR_PTR(err); 695 } 696 } 697 out: 698 return file; 699 } 700 } 701 release_open_intent(&nd); 702 path_release(&nd); 703 } 704 goto out; 705 } 706 707 EXPORT_SYMBOL(open_exec); 708 709 int kernel_read(struct file *file, unsigned long offset, 710 char *addr, unsigned long count) 711 { 712 mm_segment_t old_fs; 713 loff_t pos = offset; 714 int result; 715 716 old_fs = get_fs(); 717 set_fs(get_ds()); 718 /* The cast to a user pointer is valid due to the set_fs() */ 719 result = vfs_read(file, (void __user *)addr, count, &pos); 720 set_fs(old_fs); 721 return result; 722 } 723 724 EXPORT_SYMBOL(kernel_read); 725 726 static int exec_mmap(struct mm_struct *mm) 727 { 728 struct task_struct *tsk; 729 struct mm_struct * old_mm, *active_mm; 730 731 /* Notify parent that we're no longer interested in the old VM */ 732 tsk = current; 733 old_mm = current->mm; 734 mm_release(tsk, old_mm); 735 736 if (old_mm) { 737 /* 738 * Make sure that if there is a core dump in progress 739 * for the old mm, we get out and die instead of going 740 * through with the exec. We must hold mmap_sem around 741 * checking core_waiters and changing tsk->mm. The 742 * core-inducing thread will increment core_waiters for 743 * each thread whose ->mm == old_mm. 744 */ 745 down_read(&old_mm->mmap_sem); 746 if (unlikely(old_mm->core_waiters)) { 747 up_read(&old_mm->mmap_sem); 748 return -EINTR; 749 } 750 } 751 task_lock(tsk); 752 active_mm = tsk->active_mm; 753 tsk->mm = mm; 754 tsk->active_mm = mm; 755 activate_mm(active_mm, mm); 756 task_unlock(tsk); 757 arch_pick_mmap_layout(mm); 758 if (old_mm) { 759 up_read(&old_mm->mmap_sem); 760 BUG_ON(active_mm != old_mm); 761 mmput(old_mm); 762 return 0; 763 } 764 mmdrop(active_mm); 765 return 0; 766 } 767 768 /* 769 * This function makes sure the current process has its own signal table, 770 * so that flush_signal_handlers can later reset the handlers without 771 * disturbing other processes. (Other processes might share the signal 772 * table via the CLONE_SIGHAND option to clone().) 773 */ 774 static int de_thread(struct task_struct *tsk) 775 { 776 struct signal_struct *sig = tsk->signal; 777 struct sighand_struct *newsighand, *oldsighand = tsk->sighand; 778 spinlock_t *lock = &oldsighand->siglock; 779 struct task_struct *leader = NULL; 780 int count; 781 782 /* 783 * Tell all the sighand listeners that this sighand has 784 * been detached. The signalfd_detach() function grabs the 785 * sighand lock, if signal listeners are present on the sighand. 786 */ 787 signalfd_detach(tsk); 788 789 /* 790 * If we don't share sighandlers, then we aren't sharing anything 791 * and we can just re-use it all. 792 */ 793 if (atomic_read(&oldsighand->count) <= 1) { 794 BUG_ON(atomic_read(&sig->count) != 1); 795 exit_itimers(sig); 796 return 0; 797 } 798 799 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 800 if (!newsighand) 801 return -ENOMEM; 802 803 if (thread_group_empty(tsk)) 804 goto no_thread_group; 805 806 /* 807 * Kill all other threads in the thread group. 808 * We must hold tasklist_lock to call zap_other_threads. 809 */ 810 read_lock(&tasklist_lock); 811 spin_lock_irq(lock); 812 if (sig->flags & SIGNAL_GROUP_EXIT) { 813 /* 814 * Another group action in progress, just 815 * return so that the signal is processed. 816 */ 817 spin_unlock_irq(lock); 818 read_unlock(&tasklist_lock); 819 kmem_cache_free(sighand_cachep, newsighand); 820 return -EAGAIN; 821 } 822 823 /* 824 * child_reaper ignores SIGKILL, change it now. 825 * Reparenting needs write_lock on tasklist_lock, 826 * so it is safe to do it under read_lock. 827 */ 828 if (unlikely(tsk->group_leader == child_reaper(tsk))) 829 tsk->nsproxy->pid_ns->child_reaper = tsk; 830 831 zap_other_threads(tsk); 832 read_unlock(&tasklist_lock); 833 834 /* 835 * Account for the thread group leader hanging around: 836 */ 837 count = 1; 838 if (!thread_group_leader(tsk)) { 839 count = 2; 840 /* 841 * The SIGALRM timer survives the exec, but needs to point 842 * at us as the new group leader now. We have a race with 843 * a timer firing now getting the old leader, so we need to 844 * synchronize with any firing (by calling del_timer_sync) 845 * before we can safely let the old group leader die. 846 */ 847 sig->tsk = tsk; 848 spin_unlock_irq(lock); 849 if (hrtimer_cancel(&sig->real_timer)) 850 hrtimer_restart(&sig->real_timer); 851 spin_lock_irq(lock); 852 } 853 while (atomic_read(&sig->count) > count) { 854 sig->group_exit_task = tsk; 855 sig->notify_count = count; 856 __set_current_state(TASK_UNINTERRUPTIBLE); 857 spin_unlock_irq(lock); 858 schedule(); 859 spin_lock_irq(lock); 860 } 861 sig->group_exit_task = NULL; 862 sig->notify_count = 0; 863 spin_unlock_irq(lock); 864 865 /* 866 * At this point all other threads have exited, all we have to 867 * do is to wait for the thread group leader to become inactive, 868 * and to assume its PID: 869 */ 870 if (!thread_group_leader(tsk)) { 871 /* 872 * Wait for the thread group leader to be a zombie. 873 * It should already be zombie at this point, most 874 * of the time. 875 */ 876 leader = tsk->group_leader; 877 while (leader->exit_state != EXIT_ZOMBIE) 878 yield(); 879 880 /* 881 * The only record we have of the real-time age of a 882 * process, regardless of execs it's done, is start_time. 883 * All the past CPU time is accumulated in signal_struct 884 * from sister threads now dead. But in this non-leader 885 * exec, nothing survives from the original leader thread, 886 * whose birth marks the true age of this process now. 887 * When we take on its identity by switching to its PID, we 888 * also take its birthdate (always earlier than our own). 889 */ 890 tsk->start_time = leader->start_time; 891 892 write_lock_irq(&tasklist_lock); 893 894 BUG_ON(leader->tgid != tsk->tgid); 895 BUG_ON(tsk->pid == tsk->tgid); 896 /* 897 * An exec() starts a new thread group with the 898 * TGID of the previous thread group. Rehash the 899 * two threads with a switched PID, and release 900 * the former thread group leader: 901 */ 902 903 /* Become a process group leader with the old leader's pid. 904 * The old leader becomes a thread of the this thread group. 905 * Note: The old leader also uses this pid until release_task 906 * is called. Odd but simple and correct. 907 */ 908 detach_pid(tsk, PIDTYPE_PID); 909 tsk->pid = leader->pid; 910 attach_pid(tsk, PIDTYPE_PID, find_pid(tsk->pid)); 911 transfer_pid(leader, tsk, PIDTYPE_PGID); 912 transfer_pid(leader, tsk, PIDTYPE_SID); 913 list_replace_rcu(&leader->tasks, &tsk->tasks); 914 915 tsk->group_leader = tsk; 916 leader->group_leader = tsk; 917 918 tsk->exit_signal = SIGCHLD; 919 920 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 921 leader->exit_state = EXIT_DEAD; 922 923 write_unlock_irq(&tasklist_lock); 924 } 925 926 /* 927 * There may be one thread left which is just exiting, 928 * but it's safe to stop telling the group to kill themselves. 929 */ 930 sig->flags = 0; 931 932 no_thread_group: 933 exit_itimers(sig); 934 if (leader) 935 release_task(leader); 936 937 BUG_ON(atomic_read(&sig->count) != 1); 938 939 if (atomic_read(&oldsighand->count) == 1) { 940 /* 941 * Now that we nuked the rest of the thread group, 942 * it turns out we are not sharing sighand any more either. 943 * So we can just keep it. 944 */ 945 kmem_cache_free(sighand_cachep, newsighand); 946 } else { 947 /* 948 * Move our state over to newsighand and switch it in. 949 */ 950 atomic_set(&newsighand->count, 1); 951 memcpy(newsighand->action, oldsighand->action, 952 sizeof(newsighand->action)); 953 954 write_lock_irq(&tasklist_lock); 955 spin_lock(&oldsighand->siglock); 956 spin_lock_nested(&newsighand->siglock, SINGLE_DEPTH_NESTING); 957 958 rcu_assign_pointer(tsk->sighand, newsighand); 959 recalc_sigpending(); 960 961 spin_unlock(&newsighand->siglock); 962 spin_unlock(&oldsighand->siglock); 963 write_unlock_irq(&tasklist_lock); 964 965 __cleanup_sighand(oldsighand); 966 } 967 968 BUG_ON(!thread_group_leader(tsk)); 969 return 0; 970 } 971 972 /* 973 * These functions flushes out all traces of the currently running executable 974 * so that a new one can be started 975 */ 976 977 static void flush_old_files(struct files_struct * files) 978 { 979 long j = -1; 980 struct fdtable *fdt; 981 982 spin_lock(&files->file_lock); 983 for (;;) { 984 unsigned long set, i; 985 986 j++; 987 i = j * __NFDBITS; 988 fdt = files_fdtable(files); 989 if (i >= fdt->max_fds) 990 break; 991 set = fdt->close_on_exec->fds_bits[j]; 992 if (!set) 993 continue; 994 fdt->close_on_exec->fds_bits[j] = 0; 995 spin_unlock(&files->file_lock); 996 for ( ; set ; i++,set >>= 1) { 997 if (set & 1) { 998 sys_close(i); 999 } 1000 } 1001 spin_lock(&files->file_lock); 1002 1003 } 1004 spin_unlock(&files->file_lock); 1005 } 1006 1007 void get_task_comm(char *buf, struct task_struct *tsk) 1008 { 1009 /* buf must be at least sizeof(tsk->comm) in size */ 1010 task_lock(tsk); 1011 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 1012 task_unlock(tsk); 1013 } 1014 1015 void set_task_comm(struct task_struct *tsk, char *buf) 1016 { 1017 task_lock(tsk); 1018 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1019 task_unlock(tsk); 1020 } 1021 1022 int flush_old_exec(struct linux_binprm * bprm) 1023 { 1024 char * name; 1025 int i, ch, retval; 1026 struct files_struct *files; 1027 char tcomm[sizeof(current->comm)]; 1028 1029 /* 1030 * Make sure we have a private signal table and that 1031 * we are unassociated from the previous thread group. 1032 */ 1033 retval = de_thread(current); 1034 if (retval) 1035 goto out; 1036 1037 /* 1038 * Make sure we have private file handles. Ask the 1039 * fork helper to do the work for us and the exit 1040 * helper to do the cleanup of the old one. 1041 */ 1042 files = current->files; /* refcounted so safe to hold */ 1043 retval = unshare_files(); 1044 if (retval) 1045 goto out; 1046 /* 1047 * Release all of the old mmap stuff 1048 */ 1049 retval = exec_mmap(bprm->mm); 1050 if (retval) 1051 goto mmap_failed; 1052 1053 bprm->mm = NULL; /* We're using it now */ 1054 1055 /* This is the point of no return */ 1056 put_files_struct(files); 1057 1058 current->sas_ss_sp = current->sas_ss_size = 0; 1059 1060 if (current->euid == current->uid && current->egid == current->gid) 1061 set_dumpable(current->mm, 1); 1062 else 1063 set_dumpable(current->mm, suid_dumpable); 1064 1065 name = bprm->filename; 1066 1067 /* Copies the binary name from after last slash */ 1068 for (i=0; (ch = *(name++)) != '\0';) { 1069 if (ch == '/') 1070 i = 0; /* overwrite what we wrote */ 1071 else 1072 if (i < (sizeof(tcomm) - 1)) 1073 tcomm[i++] = ch; 1074 } 1075 tcomm[i] = '\0'; 1076 set_task_comm(current, tcomm); 1077 1078 current->flags &= ~PF_RANDOMIZE; 1079 flush_thread(); 1080 1081 /* Set the new mm task size. We have to do that late because it may 1082 * depend on TIF_32BIT which is only updated in flush_thread() on 1083 * some architectures like powerpc 1084 */ 1085 current->mm->task_size = TASK_SIZE; 1086 1087 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) { 1088 suid_keys(current); 1089 set_dumpable(current->mm, suid_dumpable); 1090 current->pdeath_signal = 0; 1091 } else if (file_permission(bprm->file, MAY_READ) || 1092 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) { 1093 suid_keys(current); 1094 set_dumpable(current->mm, suid_dumpable); 1095 } 1096 1097 /* An exec changes our domain. We are no longer part of the thread 1098 group */ 1099 1100 current->self_exec_id++; 1101 1102 flush_signal_handlers(current, 0); 1103 flush_old_files(current->files); 1104 1105 return 0; 1106 1107 mmap_failed: 1108 reset_files_struct(current, files); 1109 out: 1110 return retval; 1111 } 1112 1113 EXPORT_SYMBOL(flush_old_exec); 1114 1115 /* 1116 * Fill the binprm structure from the inode. 1117 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1118 */ 1119 int prepare_binprm(struct linux_binprm *bprm) 1120 { 1121 int mode; 1122 struct inode * inode = bprm->file->f_path.dentry->d_inode; 1123 int retval; 1124 1125 mode = inode->i_mode; 1126 if (bprm->file->f_op == NULL) 1127 return -EACCES; 1128 1129 bprm->e_uid = current->euid; 1130 bprm->e_gid = current->egid; 1131 1132 if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) { 1133 /* Set-uid? */ 1134 if (mode & S_ISUID) { 1135 current->personality &= ~PER_CLEAR_ON_SETID; 1136 bprm->e_uid = inode->i_uid; 1137 } 1138 1139 /* Set-gid? */ 1140 /* 1141 * If setgid is set but no group execute bit then this 1142 * is a candidate for mandatory locking, not a setgid 1143 * executable. 1144 */ 1145 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1146 current->personality &= ~PER_CLEAR_ON_SETID; 1147 bprm->e_gid = inode->i_gid; 1148 } 1149 } 1150 1151 /* fill in binprm security blob */ 1152 retval = security_bprm_set(bprm); 1153 if (retval) 1154 return retval; 1155 1156 memset(bprm->buf,0,BINPRM_BUF_SIZE); 1157 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE); 1158 } 1159 1160 EXPORT_SYMBOL(prepare_binprm); 1161 1162 static int unsafe_exec(struct task_struct *p) 1163 { 1164 int unsafe = 0; 1165 if (p->ptrace & PT_PTRACED) { 1166 if (p->ptrace & PT_PTRACE_CAP) 1167 unsafe |= LSM_UNSAFE_PTRACE_CAP; 1168 else 1169 unsafe |= LSM_UNSAFE_PTRACE; 1170 } 1171 if (atomic_read(&p->fs->count) > 1 || 1172 atomic_read(&p->files->count) > 1 || 1173 atomic_read(&p->sighand->count) > 1) 1174 unsafe |= LSM_UNSAFE_SHARE; 1175 1176 return unsafe; 1177 } 1178 1179 void compute_creds(struct linux_binprm *bprm) 1180 { 1181 int unsafe; 1182 1183 if (bprm->e_uid != current->uid) { 1184 suid_keys(current); 1185 current->pdeath_signal = 0; 1186 } 1187 exec_keys(current); 1188 1189 task_lock(current); 1190 unsafe = unsafe_exec(current); 1191 security_bprm_apply_creds(bprm, unsafe); 1192 task_unlock(current); 1193 security_bprm_post_apply_creds(bprm); 1194 } 1195 EXPORT_SYMBOL(compute_creds); 1196 1197 /* 1198 * Arguments are '\0' separated strings found at the location bprm->p 1199 * points to; chop off the first by relocating brpm->p to right after 1200 * the first '\0' encountered. 1201 */ 1202 int remove_arg_zero(struct linux_binprm *bprm) 1203 { 1204 int ret = 0; 1205 unsigned long offset; 1206 char *kaddr; 1207 struct page *page; 1208 1209 if (!bprm->argc) 1210 return 0; 1211 1212 do { 1213 offset = bprm->p & ~PAGE_MASK; 1214 page = get_arg_page(bprm, bprm->p, 0); 1215 if (!page) { 1216 ret = -EFAULT; 1217 goto out; 1218 } 1219 kaddr = kmap_atomic(page, KM_USER0); 1220 1221 for (; offset < PAGE_SIZE && kaddr[offset]; 1222 offset++, bprm->p++) 1223 ; 1224 1225 kunmap_atomic(kaddr, KM_USER0); 1226 put_arg_page(page); 1227 1228 if (offset == PAGE_SIZE) 1229 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); 1230 } while (offset == PAGE_SIZE); 1231 1232 bprm->p++; 1233 bprm->argc--; 1234 ret = 0; 1235 1236 out: 1237 return ret; 1238 } 1239 EXPORT_SYMBOL(remove_arg_zero); 1240 1241 /* 1242 * cycle the list of binary formats handler, until one recognizes the image 1243 */ 1244 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) 1245 { 1246 int try,retval; 1247 struct linux_binfmt *fmt; 1248 #ifdef __alpha__ 1249 /* handle /sbin/loader.. */ 1250 { 1251 struct exec * eh = (struct exec *) bprm->buf; 1252 1253 if (!bprm->loader && eh->fh.f_magic == 0x183 && 1254 (eh->fh.f_flags & 0x3000) == 0x3000) 1255 { 1256 struct file * file; 1257 unsigned long loader; 1258 1259 allow_write_access(bprm->file); 1260 fput(bprm->file); 1261 bprm->file = NULL; 1262 1263 loader = bprm->vma->vm_end - sizeof(void *); 1264 1265 file = open_exec("/sbin/loader"); 1266 retval = PTR_ERR(file); 1267 if (IS_ERR(file)) 1268 return retval; 1269 1270 /* Remember if the application is TASO. */ 1271 bprm->sh_bang = eh->ah.entry < 0x100000000UL; 1272 1273 bprm->file = file; 1274 bprm->loader = loader; 1275 retval = prepare_binprm(bprm); 1276 if (retval<0) 1277 return retval; 1278 /* should call search_binary_handler recursively here, 1279 but it does not matter */ 1280 } 1281 } 1282 #endif 1283 retval = security_bprm_check(bprm); 1284 if (retval) 1285 return retval; 1286 1287 /* kernel module loader fixup */ 1288 /* so we don't try to load run modprobe in kernel space. */ 1289 set_fs(USER_DS); 1290 1291 retval = audit_bprm(bprm); 1292 if (retval) 1293 return retval; 1294 1295 retval = -ENOENT; 1296 for (try=0; try<2; try++) { 1297 read_lock(&binfmt_lock); 1298 for (fmt = formats ; fmt ; fmt = fmt->next) { 1299 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; 1300 if (!fn) 1301 continue; 1302 if (!try_module_get(fmt->module)) 1303 continue; 1304 read_unlock(&binfmt_lock); 1305 retval = fn(bprm, regs); 1306 if (retval >= 0) { 1307 put_binfmt(fmt); 1308 allow_write_access(bprm->file); 1309 if (bprm->file) 1310 fput(bprm->file); 1311 bprm->file = NULL; 1312 current->did_exec = 1; 1313 proc_exec_connector(current); 1314 return retval; 1315 } 1316 read_lock(&binfmt_lock); 1317 put_binfmt(fmt); 1318 if (retval != -ENOEXEC || bprm->mm == NULL) 1319 break; 1320 if (!bprm->file) { 1321 read_unlock(&binfmt_lock); 1322 return retval; 1323 } 1324 } 1325 read_unlock(&binfmt_lock); 1326 if (retval != -ENOEXEC || bprm->mm == NULL) { 1327 break; 1328 #ifdef CONFIG_KMOD 1329 }else{ 1330 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1331 if (printable(bprm->buf[0]) && 1332 printable(bprm->buf[1]) && 1333 printable(bprm->buf[2]) && 1334 printable(bprm->buf[3])) 1335 break; /* -ENOEXEC */ 1336 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); 1337 #endif 1338 } 1339 } 1340 return retval; 1341 } 1342 1343 EXPORT_SYMBOL(search_binary_handler); 1344 1345 /* 1346 * sys_execve() executes a new program. 1347 */ 1348 int do_execve(char * filename, 1349 char __user *__user *argv, 1350 char __user *__user *envp, 1351 struct pt_regs * regs) 1352 { 1353 struct linux_binprm *bprm; 1354 struct file *file; 1355 unsigned long env_p; 1356 int retval; 1357 1358 retval = -ENOMEM; 1359 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1360 if (!bprm) 1361 goto out_ret; 1362 1363 file = open_exec(filename); 1364 retval = PTR_ERR(file); 1365 if (IS_ERR(file)) 1366 goto out_kfree; 1367 1368 sched_exec(); 1369 1370 bprm->file = file; 1371 bprm->filename = filename; 1372 bprm->interp = filename; 1373 1374 retval = bprm_mm_init(bprm); 1375 if (retval) 1376 goto out_file; 1377 1378 bprm->argc = count(argv, MAX_ARG_STRINGS); 1379 if ((retval = bprm->argc) < 0) 1380 goto out_mm; 1381 1382 bprm->envc = count(envp, MAX_ARG_STRINGS); 1383 if ((retval = bprm->envc) < 0) 1384 goto out_mm; 1385 1386 retval = security_bprm_alloc(bprm); 1387 if (retval) 1388 goto out; 1389 1390 retval = prepare_binprm(bprm); 1391 if (retval < 0) 1392 goto out; 1393 1394 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1395 if (retval < 0) 1396 goto out; 1397 1398 bprm->exec = bprm->p; 1399 retval = copy_strings(bprm->envc, envp, bprm); 1400 if (retval < 0) 1401 goto out; 1402 1403 env_p = bprm->p; 1404 retval = copy_strings(bprm->argc, argv, bprm); 1405 if (retval < 0) 1406 goto out; 1407 bprm->argv_len = env_p - bprm->p; 1408 1409 retval = search_binary_handler(bprm,regs); 1410 if (retval >= 0) { 1411 /* execve success */ 1412 free_arg_pages(bprm); 1413 security_bprm_free(bprm); 1414 acct_update_integrals(current); 1415 kfree(bprm); 1416 return retval; 1417 } 1418 1419 out: 1420 free_arg_pages(bprm); 1421 if (bprm->security) 1422 security_bprm_free(bprm); 1423 1424 out_mm: 1425 if (bprm->mm) 1426 mmput (bprm->mm); 1427 1428 out_file: 1429 if (bprm->file) { 1430 allow_write_access(bprm->file); 1431 fput(bprm->file); 1432 } 1433 out_kfree: 1434 kfree(bprm); 1435 1436 out_ret: 1437 return retval; 1438 } 1439 1440 int set_binfmt(struct linux_binfmt *new) 1441 { 1442 struct linux_binfmt *old = current->binfmt; 1443 1444 if (new) { 1445 if (!try_module_get(new->module)) 1446 return -1; 1447 } 1448 current->binfmt = new; 1449 if (old) 1450 module_put(old->module); 1451 return 0; 1452 } 1453 1454 EXPORT_SYMBOL(set_binfmt); 1455 1456 /* format_corename will inspect the pattern parameter, and output a 1457 * name into corename, which must have space for at least 1458 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. 1459 */ 1460 static int format_corename(char *corename, const char *pattern, long signr) 1461 { 1462 const char *pat_ptr = pattern; 1463 char *out_ptr = corename; 1464 char *const out_end = corename + CORENAME_MAX_SIZE; 1465 int rc; 1466 int pid_in_pattern = 0; 1467 int ispipe = 0; 1468 1469 if (*pattern == '|') 1470 ispipe = 1; 1471 1472 /* Repeat as long as we have more pattern to process and more output 1473 space */ 1474 while (*pat_ptr) { 1475 if (*pat_ptr != '%') { 1476 if (out_ptr == out_end) 1477 goto out; 1478 *out_ptr++ = *pat_ptr++; 1479 } else { 1480 switch (*++pat_ptr) { 1481 case 0: 1482 goto out; 1483 /* Double percent, output one percent */ 1484 case '%': 1485 if (out_ptr == out_end) 1486 goto out; 1487 *out_ptr++ = '%'; 1488 break; 1489 /* pid */ 1490 case 'p': 1491 pid_in_pattern = 1; 1492 rc = snprintf(out_ptr, out_end - out_ptr, 1493 "%d", current->tgid); 1494 if (rc > out_end - out_ptr) 1495 goto out; 1496 out_ptr += rc; 1497 break; 1498 /* uid */ 1499 case 'u': 1500 rc = snprintf(out_ptr, out_end - out_ptr, 1501 "%d", current->uid); 1502 if (rc > out_end - out_ptr) 1503 goto out; 1504 out_ptr += rc; 1505 break; 1506 /* gid */ 1507 case 'g': 1508 rc = snprintf(out_ptr, out_end - out_ptr, 1509 "%d", current->gid); 1510 if (rc > out_end - out_ptr) 1511 goto out; 1512 out_ptr += rc; 1513 break; 1514 /* signal that caused the coredump */ 1515 case 's': 1516 rc = snprintf(out_ptr, out_end - out_ptr, 1517 "%ld", signr); 1518 if (rc > out_end - out_ptr) 1519 goto out; 1520 out_ptr += rc; 1521 break; 1522 /* UNIX time of coredump */ 1523 case 't': { 1524 struct timeval tv; 1525 do_gettimeofday(&tv); 1526 rc = snprintf(out_ptr, out_end - out_ptr, 1527 "%lu", tv.tv_sec); 1528 if (rc > out_end - out_ptr) 1529 goto out; 1530 out_ptr += rc; 1531 break; 1532 } 1533 /* hostname */ 1534 case 'h': 1535 down_read(&uts_sem); 1536 rc = snprintf(out_ptr, out_end - out_ptr, 1537 "%s", utsname()->nodename); 1538 up_read(&uts_sem); 1539 if (rc > out_end - out_ptr) 1540 goto out; 1541 out_ptr += rc; 1542 break; 1543 /* executable */ 1544 case 'e': 1545 rc = snprintf(out_ptr, out_end - out_ptr, 1546 "%s", current->comm); 1547 if (rc > out_end - out_ptr) 1548 goto out; 1549 out_ptr += rc; 1550 break; 1551 default: 1552 break; 1553 } 1554 ++pat_ptr; 1555 } 1556 } 1557 /* Backward compatibility with core_uses_pid: 1558 * 1559 * If core_pattern does not include a %p (as is the default) 1560 * and core_uses_pid is set, then .%pid will be appended to 1561 * the filename. Do not do this for piped commands. */ 1562 if (!ispipe && !pid_in_pattern 1563 && (core_uses_pid || atomic_read(¤t->mm->mm_users) != 1)) { 1564 rc = snprintf(out_ptr, out_end - out_ptr, 1565 ".%d", current->tgid); 1566 if (rc > out_end - out_ptr) 1567 goto out; 1568 out_ptr += rc; 1569 } 1570 out: 1571 *out_ptr = 0; 1572 return ispipe; 1573 } 1574 1575 static void zap_process(struct task_struct *start) 1576 { 1577 struct task_struct *t; 1578 1579 start->signal->flags = SIGNAL_GROUP_EXIT; 1580 start->signal->group_stop_count = 0; 1581 1582 t = start; 1583 do { 1584 if (t != current && t->mm) { 1585 t->mm->core_waiters++; 1586 sigaddset(&t->pending.signal, SIGKILL); 1587 signal_wake_up(t, 1); 1588 } 1589 } while ((t = next_thread(t)) != start); 1590 } 1591 1592 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm, 1593 int exit_code) 1594 { 1595 struct task_struct *g, *p; 1596 unsigned long flags; 1597 int err = -EAGAIN; 1598 1599 spin_lock_irq(&tsk->sighand->siglock); 1600 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) { 1601 tsk->signal->group_exit_code = exit_code; 1602 zap_process(tsk); 1603 err = 0; 1604 } 1605 spin_unlock_irq(&tsk->sighand->siglock); 1606 if (err) 1607 return err; 1608 1609 if (atomic_read(&mm->mm_users) == mm->core_waiters + 1) 1610 goto done; 1611 1612 rcu_read_lock(); 1613 for_each_process(g) { 1614 if (g == tsk->group_leader) 1615 continue; 1616 1617 p = g; 1618 do { 1619 if (p->mm) { 1620 if (p->mm == mm) { 1621 /* 1622 * p->sighand can't disappear, but 1623 * may be changed by de_thread() 1624 */ 1625 lock_task_sighand(p, &flags); 1626 zap_process(p); 1627 unlock_task_sighand(p, &flags); 1628 } 1629 break; 1630 } 1631 } while ((p = next_thread(p)) != g); 1632 } 1633 rcu_read_unlock(); 1634 done: 1635 return mm->core_waiters; 1636 } 1637 1638 static int coredump_wait(int exit_code) 1639 { 1640 struct task_struct *tsk = current; 1641 struct mm_struct *mm = tsk->mm; 1642 struct completion startup_done; 1643 struct completion *vfork_done; 1644 int core_waiters; 1645 1646 init_completion(&mm->core_done); 1647 init_completion(&startup_done); 1648 mm->core_startup_done = &startup_done; 1649 1650 core_waiters = zap_threads(tsk, mm, exit_code); 1651 up_write(&mm->mmap_sem); 1652 1653 if (unlikely(core_waiters < 0)) 1654 goto fail; 1655 1656 /* 1657 * Make sure nobody is waiting for us to release the VM, 1658 * otherwise we can deadlock when we wait on each other 1659 */ 1660 vfork_done = tsk->vfork_done; 1661 if (vfork_done) { 1662 tsk->vfork_done = NULL; 1663 complete(vfork_done); 1664 } 1665 1666 if (core_waiters) 1667 wait_for_completion(&startup_done); 1668 fail: 1669 BUG_ON(mm->core_waiters); 1670 return core_waiters; 1671 } 1672 1673 /* 1674 * set_dumpable converts traditional three-value dumpable to two flags and 1675 * stores them into mm->flags. It modifies lower two bits of mm->flags, but 1676 * these bits are not changed atomically. So get_dumpable can observe the 1677 * intermediate state. To avoid doing unexpected behavior, get get_dumpable 1678 * return either old dumpable or new one by paying attention to the order of 1679 * modifying the bits. 1680 * 1681 * dumpable | mm->flags (binary) 1682 * old new | initial interim final 1683 * ---------+----------------------- 1684 * 0 1 | 00 01 01 1685 * 0 2 | 00 10(*) 11 1686 * 1 0 | 01 00 00 1687 * 1 2 | 01 11 11 1688 * 2 0 | 11 10(*) 00 1689 * 2 1 | 11 11 01 1690 * 1691 * (*) get_dumpable regards interim value of 10 as 11. 1692 */ 1693 void set_dumpable(struct mm_struct *mm, int value) 1694 { 1695 switch (value) { 1696 case 0: 1697 clear_bit(MMF_DUMPABLE, &mm->flags); 1698 smp_wmb(); 1699 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1700 break; 1701 case 1: 1702 set_bit(MMF_DUMPABLE, &mm->flags); 1703 smp_wmb(); 1704 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1705 break; 1706 case 2: 1707 set_bit(MMF_DUMP_SECURELY, &mm->flags); 1708 smp_wmb(); 1709 set_bit(MMF_DUMPABLE, &mm->flags); 1710 break; 1711 } 1712 } 1713 EXPORT_SYMBOL_GPL(set_dumpable); 1714 1715 int get_dumpable(struct mm_struct *mm) 1716 { 1717 int ret; 1718 1719 ret = mm->flags & 0x3; 1720 return (ret >= 2) ? 2 : ret; 1721 } 1722 1723 int do_coredump(long signr, int exit_code, struct pt_regs * regs) 1724 { 1725 char corename[CORENAME_MAX_SIZE + 1]; 1726 struct mm_struct *mm = current->mm; 1727 struct linux_binfmt * binfmt; 1728 struct inode * inode; 1729 struct file * file; 1730 int retval = 0; 1731 int fsuid = current->fsuid; 1732 int flag = 0; 1733 int ispipe = 0; 1734 1735 audit_core_dumps(signr); 1736 1737 binfmt = current->binfmt; 1738 if (!binfmt || !binfmt->core_dump) 1739 goto fail; 1740 down_write(&mm->mmap_sem); 1741 if (!get_dumpable(mm)) { 1742 up_write(&mm->mmap_sem); 1743 goto fail; 1744 } 1745 1746 /* 1747 * We cannot trust fsuid as being the "true" uid of the 1748 * process nor do we know its entire history. We only know it 1749 * was tainted so we dump it as root in mode 2. 1750 */ 1751 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */ 1752 flag = O_EXCL; /* Stop rewrite attacks */ 1753 current->fsuid = 0; /* Dump root private */ 1754 } 1755 set_dumpable(mm, 0); 1756 1757 retval = coredump_wait(exit_code); 1758 if (retval < 0) 1759 goto fail; 1760 1761 /* 1762 * Clear any false indication of pending signals that might 1763 * be seen by the filesystem code called to write the core file. 1764 */ 1765 clear_thread_flag(TIF_SIGPENDING); 1766 1767 if (current->signal->rlim[RLIMIT_CORE].rlim_cur < binfmt->min_coredump) 1768 goto fail_unlock; 1769 1770 /* 1771 * lock_kernel() because format_corename() is controlled by sysctl, which 1772 * uses lock_kernel() 1773 */ 1774 lock_kernel(); 1775 ispipe = format_corename(corename, core_pattern, signr); 1776 unlock_kernel(); 1777 if (ispipe) { 1778 /* SIGPIPE can happen, but it's just never processed */ 1779 if(call_usermodehelper_pipe(corename+1, NULL, NULL, &file)) { 1780 printk(KERN_INFO "Core dump to %s pipe failed\n", 1781 corename); 1782 goto fail_unlock; 1783 } 1784 } else 1785 file = filp_open(corename, 1786 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 1787 0600); 1788 if (IS_ERR(file)) 1789 goto fail_unlock; 1790 inode = file->f_path.dentry->d_inode; 1791 if (inode->i_nlink > 1) 1792 goto close_fail; /* multiple links - don't dump */ 1793 if (!ispipe && d_unhashed(file->f_path.dentry)) 1794 goto close_fail; 1795 1796 /* AK: actually i see no reason to not allow this for named pipes etc., 1797 but keep the previous behaviour for now. */ 1798 if (!ispipe && !S_ISREG(inode->i_mode)) 1799 goto close_fail; 1800 if (!file->f_op) 1801 goto close_fail; 1802 if (!file->f_op->write) 1803 goto close_fail; 1804 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0) 1805 goto close_fail; 1806 1807 retval = binfmt->core_dump(signr, regs, file); 1808 1809 if (retval) 1810 current->signal->group_exit_code |= 0x80; 1811 close_fail: 1812 filp_close(file, NULL); 1813 fail_unlock: 1814 current->fsuid = fsuid; 1815 complete_all(&mm->core_done); 1816 fail: 1817 return retval; 1818 } 1819