xref: /linux-6.15/fs/exec.c (revision 1da177e4)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/config.h>
26 #include <linux/slab.h>
27 #include <linux/file.h>
28 #include <linux/mman.h>
29 #include <linux/a.out.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/smp_lock.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/highmem.h>
36 #include <linux/spinlock.h>
37 #include <linux/key.h>
38 #include <linux/personality.h>
39 #include <linux/binfmts.h>
40 #include <linux/swap.h>
41 #include <linux/utsname.h>
42 #include <linux/module.h>
43 #include <linux/namei.h>
44 #include <linux/proc_fs.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/rmap.h>
50 #include <linux/acct.h>
51 
52 #include <asm/uaccess.h>
53 #include <asm/mmu_context.h>
54 
55 #ifdef CONFIG_KMOD
56 #include <linux/kmod.h>
57 #endif
58 
59 int core_uses_pid;
60 char core_pattern[65] = "core";
61 /* The maximal length of core_pattern is also specified in sysctl.c */
62 
63 static struct linux_binfmt *formats;
64 static DEFINE_RWLOCK(binfmt_lock);
65 
66 int register_binfmt(struct linux_binfmt * fmt)
67 {
68 	struct linux_binfmt ** tmp = &formats;
69 
70 	if (!fmt)
71 		return -EINVAL;
72 	if (fmt->next)
73 		return -EBUSY;
74 	write_lock(&binfmt_lock);
75 	while (*tmp) {
76 		if (fmt == *tmp) {
77 			write_unlock(&binfmt_lock);
78 			return -EBUSY;
79 		}
80 		tmp = &(*tmp)->next;
81 	}
82 	fmt->next = formats;
83 	formats = fmt;
84 	write_unlock(&binfmt_lock);
85 	return 0;
86 }
87 
88 EXPORT_SYMBOL(register_binfmt);
89 
90 int unregister_binfmt(struct linux_binfmt * fmt)
91 {
92 	struct linux_binfmt ** tmp = &formats;
93 
94 	write_lock(&binfmt_lock);
95 	while (*tmp) {
96 		if (fmt == *tmp) {
97 			*tmp = fmt->next;
98 			write_unlock(&binfmt_lock);
99 			return 0;
100 		}
101 		tmp = &(*tmp)->next;
102 	}
103 	write_unlock(&binfmt_lock);
104 	return -EINVAL;
105 }
106 
107 EXPORT_SYMBOL(unregister_binfmt);
108 
109 static inline void put_binfmt(struct linux_binfmt * fmt)
110 {
111 	module_put(fmt->module);
112 }
113 
114 /*
115  * Note that a shared library must be both readable and executable due to
116  * security reasons.
117  *
118  * Also note that we take the address to load from from the file itself.
119  */
120 asmlinkage long sys_uselib(const char __user * library)
121 {
122 	struct file * file;
123 	struct nameidata nd;
124 	int error;
125 
126 	nd.intent.open.flags = FMODE_READ;
127 	error = __user_walk(library, LOOKUP_FOLLOW|LOOKUP_OPEN, &nd);
128 	if (error)
129 		goto out;
130 
131 	error = -EINVAL;
132 	if (!S_ISREG(nd.dentry->d_inode->i_mode))
133 		goto exit;
134 
135 	error = permission(nd.dentry->d_inode, MAY_READ | MAY_EXEC, &nd);
136 	if (error)
137 		goto exit;
138 
139 	file = dentry_open(nd.dentry, nd.mnt, O_RDONLY);
140 	error = PTR_ERR(file);
141 	if (IS_ERR(file))
142 		goto out;
143 
144 	error = -ENOEXEC;
145 	if(file->f_op) {
146 		struct linux_binfmt * fmt;
147 
148 		read_lock(&binfmt_lock);
149 		for (fmt = formats ; fmt ; fmt = fmt->next) {
150 			if (!fmt->load_shlib)
151 				continue;
152 			if (!try_module_get(fmt->module))
153 				continue;
154 			read_unlock(&binfmt_lock);
155 			error = fmt->load_shlib(file);
156 			read_lock(&binfmt_lock);
157 			put_binfmt(fmt);
158 			if (error != -ENOEXEC)
159 				break;
160 		}
161 		read_unlock(&binfmt_lock);
162 	}
163 	fput(file);
164 out:
165   	return error;
166 exit:
167 	path_release(&nd);
168 	goto out;
169 }
170 
171 /*
172  * count() counts the number of strings in array ARGV.
173  */
174 static int count(char __user * __user * argv, int max)
175 {
176 	int i = 0;
177 
178 	if (argv != NULL) {
179 		for (;;) {
180 			char __user * p;
181 
182 			if (get_user(p, argv))
183 				return -EFAULT;
184 			if (!p)
185 				break;
186 			argv++;
187 			if(++i > max)
188 				return -E2BIG;
189 			cond_resched();
190 		}
191 	}
192 	return i;
193 }
194 
195 /*
196  * 'copy_strings()' copies argument/environment strings from user
197  * memory to free pages in kernel mem. These are in a format ready
198  * to be put directly into the top of new user memory.
199  */
200 int copy_strings(int argc,char __user * __user * argv, struct linux_binprm *bprm)
201 {
202 	struct page *kmapped_page = NULL;
203 	char *kaddr = NULL;
204 	int ret;
205 
206 	while (argc-- > 0) {
207 		char __user *str;
208 		int len;
209 		unsigned long pos;
210 
211 		if (get_user(str, argv+argc) ||
212 				!(len = strnlen_user(str, bprm->p))) {
213 			ret = -EFAULT;
214 			goto out;
215 		}
216 
217 		if (bprm->p < len)  {
218 			ret = -E2BIG;
219 			goto out;
220 		}
221 
222 		bprm->p -= len;
223 		/* XXX: add architecture specific overflow check here. */
224 		pos = bprm->p;
225 
226 		while (len > 0) {
227 			int i, new, err;
228 			int offset, bytes_to_copy;
229 			struct page *page;
230 
231 			offset = pos % PAGE_SIZE;
232 			i = pos/PAGE_SIZE;
233 			page = bprm->page[i];
234 			new = 0;
235 			if (!page) {
236 				page = alloc_page(GFP_HIGHUSER);
237 				bprm->page[i] = page;
238 				if (!page) {
239 					ret = -ENOMEM;
240 					goto out;
241 				}
242 				new = 1;
243 			}
244 
245 			if (page != kmapped_page) {
246 				if (kmapped_page)
247 					kunmap(kmapped_page);
248 				kmapped_page = page;
249 				kaddr = kmap(kmapped_page);
250 			}
251 			if (new && offset)
252 				memset(kaddr, 0, offset);
253 			bytes_to_copy = PAGE_SIZE - offset;
254 			if (bytes_to_copy > len) {
255 				bytes_to_copy = len;
256 				if (new)
257 					memset(kaddr+offset+len, 0,
258 						PAGE_SIZE-offset-len);
259 			}
260 			err = copy_from_user(kaddr+offset, str, bytes_to_copy);
261 			if (err) {
262 				ret = -EFAULT;
263 				goto out;
264 			}
265 
266 			pos += bytes_to_copy;
267 			str += bytes_to_copy;
268 			len -= bytes_to_copy;
269 		}
270 	}
271 	ret = 0;
272 out:
273 	if (kmapped_page)
274 		kunmap(kmapped_page);
275 	return ret;
276 }
277 
278 /*
279  * Like copy_strings, but get argv and its values from kernel memory.
280  */
281 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
282 {
283 	int r;
284 	mm_segment_t oldfs = get_fs();
285 	set_fs(KERNEL_DS);
286 	r = copy_strings(argc, (char __user * __user *)argv, bprm);
287 	set_fs(oldfs);
288 	return r;
289 }
290 
291 EXPORT_SYMBOL(copy_strings_kernel);
292 
293 #ifdef CONFIG_MMU
294 /*
295  * This routine is used to map in a page into an address space: needed by
296  * execve() for the initial stack and environment pages.
297  *
298  * vma->vm_mm->mmap_sem is held for writing.
299  */
300 void install_arg_page(struct vm_area_struct *vma,
301 			struct page *page, unsigned long address)
302 {
303 	struct mm_struct *mm = vma->vm_mm;
304 	pgd_t * pgd;
305 	pud_t * pud;
306 	pmd_t * pmd;
307 	pte_t * pte;
308 
309 	if (unlikely(anon_vma_prepare(vma)))
310 		goto out_sig;
311 
312 	flush_dcache_page(page);
313 	pgd = pgd_offset(mm, address);
314 
315 	spin_lock(&mm->page_table_lock);
316 	pud = pud_alloc(mm, pgd, address);
317 	if (!pud)
318 		goto out;
319 	pmd = pmd_alloc(mm, pud, address);
320 	if (!pmd)
321 		goto out;
322 	pte = pte_alloc_map(mm, pmd, address);
323 	if (!pte)
324 		goto out;
325 	if (!pte_none(*pte)) {
326 		pte_unmap(pte);
327 		goto out;
328 	}
329 	inc_mm_counter(mm, rss);
330 	lru_cache_add_active(page);
331 	set_pte_at(mm, address, pte, pte_mkdirty(pte_mkwrite(mk_pte(
332 					page, vma->vm_page_prot))));
333 	page_add_anon_rmap(page, vma, address);
334 	pte_unmap(pte);
335 	spin_unlock(&mm->page_table_lock);
336 
337 	/* no need for flush_tlb */
338 	return;
339 out:
340 	spin_unlock(&mm->page_table_lock);
341 out_sig:
342 	__free_page(page);
343 	force_sig(SIGKILL, current);
344 }
345 
346 #define EXTRA_STACK_VM_PAGES	20	/* random */
347 
348 int setup_arg_pages(struct linux_binprm *bprm,
349 		    unsigned long stack_top,
350 		    int executable_stack)
351 {
352 	unsigned long stack_base;
353 	struct vm_area_struct *mpnt;
354 	struct mm_struct *mm = current->mm;
355 	int i, ret;
356 	long arg_size;
357 
358 #ifdef CONFIG_STACK_GROWSUP
359 	/* Move the argument and environment strings to the bottom of the
360 	 * stack space.
361 	 */
362 	int offset, j;
363 	char *to, *from;
364 
365 	/* Start by shifting all the pages down */
366 	i = 0;
367 	for (j = 0; j < MAX_ARG_PAGES; j++) {
368 		struct page *page = bprm->page[j];
369 		if (!page)
370 			continue;
371 		bprm->page[i++] = page;
372 	}
373 
374 	/* Now move them within their pages */
375 	offset = bprm->p % PAGE_SIZE;
376 	to = kmap(bprm->page[0]);
377 	for (j = 1; j < i; j++) {
378 		memmove(to, to + offset, PAGE_SIZE - offset);
379 		from = kmap(bprm->page[j]);
380 		memcpy(to + PAGE_SIZE - offset, from, offset);
381 		kunmap(bprm->page[j - 1]);
382 		to = from;
383 	}
384 	memmove(to, to + offset, PAGE_SIZE - offset);
385 	kunmap(bprm->page[j - 1]);
386 
387 	/* Limit stack size to 1GB */
388 	stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
389 	if (stack_base > (1 << 30))
390 		stack_base = 1 << 30;
391 	stack_base = PAGE_ALIGN(stack_top - stack_base);
392 
393 	/* Adjust bprm->p to point to the end of the strings. */
394 	bprm->p = stack_base + PAGE_SIZE * i - offset;
395 
396 	mm->arg_start = stack_base;
397 	arg_size = i << PAGE_SHIFT;
398 
399 	/* zero pages that were copied above */
400 	while (i < MAX_ARG_PAGES)
401 		bprm->page[i++] = NULL;
402 #else
403 	stack_base = arch_align_stack(stack_top - MAX_ARG_PAGES*PAGE_SIZE);
404 	stack_base = PAGE_ALIGN(stack_base);
405 	bprm->p += stack_base;
406 	mm->arg_start = bprm->p;
407 	arg_size = stack_top - (PAGE_MASK & (unsigned long) mm->arg_start);
408 #endif
409 
410 	arg_size += EXTRA_STACK_VM_PAGES * PAGE_SIZE;
411 
412 	if (bprm->loader)
413 		bprm->loader += stack_base;
414 	bprm->exec += stack_base;
415 
416 	mpnt = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
417 	if (!mpnt)
418 		return -ENOMEM;
419 
420 	if (security_vm_enough_memory(arg_size >> PAGE_SHIFT)) {
421 		kmem_cache_free(vm_area_cachep, mpnt);
422 		return -ENOMEM;
423 	}
424 
425 	memset(mpnt, 0, sizeof(*mpnt));
426 
427 	down_write(&mm->mmap_sem);
428 	{
429 		mpnt->vm_mm = mm;
430 #ifdef CONFIG_STACK_GROWSUP
431 		mpnt->vm_start = stack_base;
432 		mpnt->vm_end = stack_base + arg_size;
433 #else
434 		mpnt->vm_end = stack_top;
435 		mpnt->vm_start = mpnt->vm_end - arg_size;
436 #endif
437 		/* Adjust stack execute permissions; explicitly enable
438 		 * for EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X
439 		 * and leave alone (arch default) otherwise. */
440 		if (unlikely(executable_stack == EXSTACK_ENABLE_X))
441 			mpnt->vm_flags = VM_STACK_FLAGS |  VM_EXEC;
442 		else if (executable_stack == EXSTACK_DISABLE_X)
443 			mpnt->vm_flags = VM_STACK_FLAGS & ~VM_EXEC;
444 		else
445 			mpnt->vm_flags = VM_STACK_FLAGS;
446 		mpnt->vm_flags |= mm->def_flags;
447 		mpnt->vm_page_prot = protection_map[mpnt->vm_flags & 0x7];
448 		if ((ret = insert_vm_struct(mm, mpnt))) {
449 			up_write(&mm->mmap_sem);
450 			kmem_cache_free(vm_area_cachep, mpnt);
451 			return ret;
452 		}
453 		mm->stack_vm = mm->total_vm = vma_pages(mpnt);
454 	}
455 
456 	for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
457 		struct page *page = bprm->page[i];
458 		if (page) {
459 			bprm->page[i] = NULL;
460 			install_arg_page(mpnt, page, stack_base);
461 		}
462 		stack_base += PAGE_SIZE;
463 	}
464 	up_write(&mm->mmap_sem);
465 
466 	return 0;
467 }
468 
469 EXPORT_SYMBOL(setup_arg_pages);
470 
471 #define free_arg_pages(bprm) do { } while (0)
472 
473 #else
474 
475 static inline void free_arg_pages(struct linux_binprm *bprm)
476 {
477 	int i;
478 
479 	for (i = 0; i < MAX_ARG_PAGES; i++) {
480 		if (bprm->page[i])
481 			__free_page(bprm->page[i]);
482 		bprm->page[i] = NULL;
483 	}
484 }
485 
486 #endif /* CONFIG_MMU */
487 
488 struct file *open_exec(const char *name)
489 {
490 	struct nameidata nd;
491 	int err;
492 	struct file *file;
493 
494 	nd.intent.open.flags = FMODE_READ;
495 	err = path_lookup(name, LOOKUP_FOLLOW|LOOKUP_OPEN, &nd);
496 	file = ERR_PTR(err);
497 
498 	if (!err) {
499 		struct inode *inode = nd.dentry->d_inode;
500 		file = ERR_PTR(-EACCES);
501 		if (!(nd.mnt->mnt_flags & MNT_NOEXEC) &&
502 		    S_ISREG(inode->i_mode)) {
503 			int err = permission(inode, MAY_EXEC, &nd);
504 			if (!err && !(inode->i_mode & 0111))
505 				err = -EACCES;
506 			file = ERR_PTR(err);
507 			if (!err) {
508 				file = dentry_open(nd.dentry, nd.mnt, O_RDONLY);
509 				if (!IS_ERR(file)) {
510 					err = deny_write_access(file);
511 					if (err) {
512 						fput(file);
513 						file = ERR_PTR(err);
514 					}
515 				}
516 out:
517 				return file;
518 			}
519 		}
520 		path_release(&nd);
521 	}
522 	goto out;
523 }
524 
525 EXPORT_SYMBOL(open_exec);
526 
527 int kernel_read(struct file *file, unsigned long offset,
528 	char *addr, unsigned long count)
529 {
530 	mm_segment_t old_fs;
531 	loff_t pos = offset;
532 	int result;
533 
534 	old_fs = get_fs();
535 	set_fs(get_ds());
536 	/* The cast to a user pointer is valid due to the set_fs() */
537 	result = vfs_read(file, (void __user *)addr, count, &pos);
538 	set_fs(old_fs);
539 	return result;
540 }
541 
542 EXPORT_SYMBOL(kernel_read);
543 
544 static int exec_mmap(struct mm_struct *mm)
545 {
546 	struct task_struct *tsk;
547 	struct mm_struct * old_mm, *active_mm;
548 
549 	/* Notify parent that we're no longer interested in the old VM */
550 	tsk = current;
551 	old_mm = current->mm;
552 	mm_release(tsk, old_mm);
553 
554 	if (old_mm) {
555 		/*
556 		 * Make sure that if there is a core dump in progress
557 		 * for the old mm, we get out and die instead of going
558 		 * through with the exec.  We must hold mmap_sem around
559 		 * checking core_waiters and changing tsk->mm.  The
560 		 * core-inducing thread will increment core_waiters for
561 		 * each thread whose ->mm == old_mm.
562 		 */
563 		down_read(&old_mm->mmap_sem);
564 		if (unlikely(old_mm->core_waiters)) {
565 			up_read(&old_mm->mmap_sem);
566 			return -EINTR;
567 		}
568 	}
569 	task_lock(tsk);
570 	active_mm = tsk->active_mm;
571 	tsk->mm = mm;
572 	tsk->active_mm = mm;
573 	activate_mm(active_mm, mm);
574 	task_unlock(tsk);
575 	arch_pick_mmap_layout(mm);
576 	if (old_mm) {
577 		up_read(&old_mm->mmap_sem);
578 		if (active_mm != old_mm) BUG();
579 		mmput(old_mm);
580 		return 0;
581 	}
582 	mmdrop(active_mm);
583 	return 0;
584 }
585 
586 /*
587  * This function makes sure the current process has its own signal table,
588  * so that flush_signal_handlers can later reset the handlers without
589  * disturbing other processes.  (Other processes might share the signal
590  * table via the CLONE_SIGHAND option to clone().)
591  */
592 static inline int de_thread(struct task_struct *tsk)
593 {
594 	struct signal_struct *sig = tsk->signal;
595 	struct sighand_struct *newsighand, *oldsighand = tsk->sighand;
596 	spinlock_t *lock = &oldsighand->siglock;
597 	int count;
598 
599 	/*
600 	 * If we don't share sighandlers, then we aren't sharing anything
601 	 * and we can just re-use it all.
602 	 */
603 	if (atomic_read(&oldsighand->count) <= 1) {
604 		BUG_ON(atomic_read(&sig->count) != 1);
605 		exit_itimers(sig);
606 		return 0;
607 	}
608 
609 	newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
610 	if (!newsighand)
611 		return -ENOMEM;
612 
613 	if (thread_group_empty(current))
614 		goto no_thread_group;
615 
616 	/*
617 	 * Kill all other threads in the thread group.
618 	 * We must hold tasklist_lock to call zap_other_threads.
619 	 */
620 	read_lock(&tasklist_lock);
621 	spin_lock_irq(lock);
622 	if (sig->flags & SIGNAL_GROUP_EXIT) {
623 		/*
624 		 * Another group action in progress, just
625 		 * return so that the signal is processed.
626 		 */
627 		spin_unlock_irq(lock);
628 		read_unlock(&tasklist_lock);
629 		kmem_cache_free(sighand_cachep, newsighand);
630 		return -EAGAIN;
631 	}
632 	zap_other_threads(current);
633 	read_unlock(&tasklist_lock);
634 
635 	/*
636 	 * Account for the thread group leader hanging around:
637 	 */
638 	count = 2;
639 	if (thread_group_leader(current))
640 		count = 1;
641 	while (atomic_read(&sig->count) > count) {
642 		sig->group_exit_task = current;
643 		sig->notify_count = count;
644 		__set_current_state(TASK_UNINTERRUPTIBLE);
645 		spin_unlock_irq(lock);
646 		schedule();
647 		spin_lock_irq(lock);
648 	}
649 	sig->group_exit_task = NULL;
650 	sig->notify_count = 0;
651 	spin_unlock_irq(lock);
652 
653 	/*
654 	 * At this point all other threads have exited, all we have to
655 	 * do is to wait for the thread group leader to become inactive,
656 	 * and to assume its PID:
657 	 */
658 	if (!thread_group_leader(current)) {
659 		struct task_struct *leader = current->group_leader, *parent;
660 		struct dentry *proc_dentry1, *proc_dentry2;
661 		unsigned long exit_state, ptrace;
662 
663 		/*
664 		 * Wait for the thread group leader to be a zombie.
665 		 * It should already be zombie at this point, most
666 		 * of the time.
667 		 */
668 		while (leader->exit_state != EXIT_ZOMBIE)
669 			yield();
670 
671 		spin_lock(&leader->proc_lock);
672 		spin_lock(&current->proc_lock);
673 		proc_dentry1 = proc_pid_unhash(current);
674 		proc_dentry2 = proc_pid_unhash(leader);
675 		write_lock_irq(&tasklist_lock);
676 
677 		if (leader->tgid != current->tgid)
678 			BUG();
679 		if (current->pid == current->tgid)
680 			BUG();
681 		/*
682 		 * An exec() starts a new thread group with the
683 		 * TGID of the previous thread group. Rehash the
684 		 * two threads with a switched PID, and release
685 		 * the former thread group leader:
686 		 */
687 		ptrace = leader->ptrace;
688 		parent = leader->parent;
689 		if (unlikely(ptrace) && unlikely(parent == current)) {
690 			/*
691 			 * Joker was ptracing his own group leader,
692 			 * and now he wants to be his own parent!
693 			 * We can't have that.
694 			 */
695 			ptrace = 0;
696 		}
697 
698 		ptrace_unlink(current);
699 		ptrace_unlink(leader);
700 		remove_parent(current);
701 		remove_parent(leader);
702 
703 		switch_exec_pids(leader, current);
704 
705 		current->parent = current->real_parent = leader->real_parent;
706 		leader->parent = leader->real_parent = child_reaper;
707 		current->group_leader = current;
708 		leader->group_leader = leader;
709 
710 		add_parent(current, current->parent);
711 		add_parent(leader, leader->parent);
712 		if (ptrace) {
713 			current->ptrace = ptrace;
714 			__ptrace_link(current, parent);
715 		}
716 
717 		list_del(&current->tasks);
718 		list_add_tail(&current->tasks, &init_task.tasks);
719 		current->exit_signal = SIGCHLD;
720 		exit_state = leader->exit_state;
721 
722 		write_unlock_irq(&tasklist_lock);
723 		spin_unlock(&leader->proc_lock);
724 		spin_unlock(&current->proc_lock);
725 		proc_pid_flush(proc_dentry1);
726 		proc_pid_flush(proc_dentry2);
727 
728 		if (exit_state != EXIT_ZOMBIE)
729 			BUG();
730 		release_task(leader);
731         }
732 
733 	/*
734 	 * Now there are really no other threads at all,
735 	 * so it's safe to stop telling them to kill themselves.
736 	 */
737 	sig->flags = 0;
738 
739 no_thread_group:
740 	BUG_ON(atomic_read(&sig->count) != 1);
741 	exit_itimers(sig);
742 
743 	if (atomic_read(&oldsighand->count) == 1) {
744 		/*
745 		 * Now that we nuked the rest of the thread group,
746 		 * it turns out we are not sharing sighand any more either.
747 		 * So we can just keep it.
748 		 */
749 		kmem_cache_free(sighand_cachep, newsighand);
750 	} else {
751 		/*
752 		 * Move our state over to newsighand and switch it in.
753 		 */
754 		spin_lock_init(&newsighand->siglock);
755 		atomic_set(&newsighand->count, 1);
756 		memcpy(newsighand->action, oldsighand->action,
757 		       sizeof(newsighand->action));
758 
759 		write_lock_irq(&tasklist_lock);
760 		spin_lock(&oldsighand->siglock);
761 		spin_lock(&newsighand->siglock);
762 
763 		current->sighand = newsighand;
764 		recalc_sigpending();
765 
766 		spin_unlock(&newsighand->siglock);
767 		spin_unlock(&oldsighand->siglock);
768 		write_unlock_irq(&tasklist_lock);
769 
770 		if (atomic_dec_and_test(&oldsighand->count))
771 			kmem_cache_free(sighand_cachep, oldsighand);
772 	}
773 
774 	if (!thread_group_empty(current))
775 		BUG();
776 	if (!thread_group_leader(current))
777 		BUG();
778 	return 0;
779 }
780 
781 /*
782  * These functions flushes out all traces of the currently running executable
783  * so that a new one can be started
784  */
785 
786 static inline void flush_old_files(struct files_struct * files)
787 {
788 	long j = -1;
789 
790 	spin_lock(&files->file_lock);
791 	for (;;) {
792 		unsigned long set, i;
793 
794 		j++;
795 		i = j * __NFDBITS;
796 		if (i >= files->max_fds || i >= files->max_fdset)
797 			break;
798 		set = files->close_on_exec->fds_bits[j];
799 		if (!set)
800 			continue;
801 		files->close_on_exec->fds_bits[j] = 0;
802 		spin_unlock(&files->file_lock);
803 		for ( ; set ; i++,set >>= 1) {
804 			if (set & 1) {
805 				sys_close(i);
806 			}
807 		}
808 		spin_lock(&files->file_lock);
809 
810 	}
811 	spin_unlock(&files->file_lock);
812 }
813 
814 void get_task_comm(char *buf, struct task_struct *tsk)
815 {
816 	/* buf must be at least sizeof(tsk->comm) in size */
817 	task_lock(tsk);
818 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
819 	task_unlock(tsk);
820 }
821 
822 void set_task_comm(struct task_struct *tsk, char *buf)
823 {
824 	task_lock(tsk);
825 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
826 	task_unlock(tsk);
827 }
828 
829 int flush_old_exec(struct linux_binprm * bprm)
830 {
831 	char * name;
832 	int i, ch, retval;
833 	struct files_struct *files;
834 	char tcomm[sizeof(current->comm)];
835 
836 	/*
837 	 * Make sure we have a private signal table and that
838 	 * we are unassociated from the previous thread group.
839 	 */
840 	retval = de_thread(current);
841 	if (retval)
842 		goto out;
843 
844 	/*
845 	 * Make sure we have private file handles. Ask the
846 	 * fork helper to do the work for us and the exit
847 	 * helper to do the cleanup of the old one.
848 	 */
849 	files = current->files;		/* refcounted so safe to hold */
850 	retval = unshare_files();
851 	if (retval)
852 		goto out;
853 	/*
854 	 * Release all of the old mmap stuff
855 	 */
856 	retval = exec_mmap(bprm->mm);
857 	if (retval)
858 		goto mmap_failed;
859 
860 	bprm->mm = NULL;		/* We're using it now */
861 
862 	/* This is the point of no return */
863 	steal_locks(files);
864 	put_files_struct(files);
865 
866 	current->sas_ss_sp = current->sas_ss_size = 0;
867 
868 	if (current->euid == current->uid && current->egid == current->gid)
869 		current->mm->dumpable = 1;
870 	name = bprm->filename;
871 	for (i=0; (ch = *(name++)) != '\0';) {
872 		if (ch == '/')
873 			i = 0;
874 		else
875 			if (i < (sizeof(tcomm) - 1))
876 				tcomm[i++] = ch;
877 	}
878 	tcomm[i] = '\0';
879 	set_task_comm(current, tcomm);
880 
881 	current->flags &= ~PF_RANDOMIZE;
882 	flush_thread();
883 
884 	if (bprm->e_uid != current->euid || bprm->e_gid != current->egid ||
885 	    permission(bprm->file->f_dentry->d_inode,MAY_READ, NULL) ||
886 	    (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
887 		suid_keys(current);
888 		current->mm->dumpable = 0;
889 	}
890 
891 	/* An exec changes our domain. We are no longer part of the thread
892 	   group */
893 
894 	current->self_exec_id++;
895 
896 	flush_signal_handlers(current, 0);
897 	flush_old_files(current->files);
898 
899 	return 0;
900 
901 mmap_failed:
902 	put_files_struct(current->files);
903 	current->files = files;
904 out:
905 	return retval;
906 }
907 
908 EXPORT_SYMBOL(flush_old_exec);
909 
910 /*
911  * Fill the binprm structure from the inode.
912  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
913  */
914 int prepare_binprm(struct linux_binprm *bprm)
915 {
916 	int mode;
917 	struct inode * inode = bprm->file->f_dentry->d_inode;
918 	int retval;
919 
920 	mode = inode->i_mode;
921 	/*
922 	 * Check execute perms again - if the caller has CAP_DAC_OVERRIDE,
923 	 * generic_permission lets a non-executable through
924 	 */
925 	if (!(mode & 0111))	/* with at least _one_ execute bit set */
926 		return -EACCES;
927 	if (bprm->file->f_op == NULL)
928 		return -EACCES;
929 
930 	bprm->e_uid = current->euid;
931 	bprm->e_gid = current->egid;
932 
933 	if(!(bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)) {
934 		/* Set-uid? */
935 		if (mode & S_ISUID) {
936 			current->personality &= ~PER_CLEAR_ON_SETID;
937 			bprm->e_uid = inode->i_uid;
938 		}
939 
940 		/* Set-gid? */
941 		/*
942 		 * If setgid is set but no group execute bit then this
943 		 * is a candidate for mandatory locking, not a setgid
944 		 * executable.
945 		 */
946 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
947 			current->personality &= ~PER_CLEAR_ON_SETID;
948 			bprm->e_gid = inode->i_gid;
949 		}
950 	}
951 
952 	/* fill in binprm security blob */
953 	retval = security_bprm_set(bprm);
954 	if (retval)
955 		return retval;
956 
957 	memset(bprm->buf,0,BINPRM_BUF_SIZE);
958 	return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
959 }
960 
961 EXPORT_SYMBOL(prepare_binprm);
962 
963 static inline int unsafe_exec(struct task_struct *p)
964 {
965 	int unsafe = 0;
966 	if (p->ptrace & PT_PTRACED) {
967 		if (p->ptrace & PT_PTRACE_CAP)
968 			unsafe |= LSM_UNSAFE_PTRACE_CAP;
969 		else
970 			unsafe |= LSM_UNSAFE_PTRACE;
971 	}
972 	if (atomic_read(&p->fs->count) > 1 ||
973 	    atomic_read(&p->files->count) > 1 ||
974 	    atomic_read(&p->sighand->count) > 1)
975 		unsafe |= LSM_UNSAFE_SHARE;
976 
977 	return unsafe;
978 }
979 
980 void compute_creds(struct linux_binprm *bprm)
981 {
982 	int unsafe;
983 
984 	if (bprm->e_uid != current->uid)
985 		suid_keys(current);
986 	exec_keys(current);
987 
988 	task_lock(current);
989 	unsafe = unsafe_exec(current);
990 	security_bprm_apply_creds(bprm, unsafe);
991 	task_unlock(current);
992 	security_bprm_post_apply_creds(bprm);
993 }
994 
995 EXPORT_SYMBOL(compute_creds);
996 
997 void remove_arg_zero(struct linux_binprm *bprm)
998 {
999 	if (bprm->argc) {
1000 		unsigned long offset;
1001 		char * kaddr;
1002 		struct page *page;
1003 
1004 		offset = bprm->p % PAGE_SIZE;
1005 		goto inside;
1006 
1007 		while (bprm->p++, *(kaddr+offset++)) {
1008 			if (offset != PAGE_SIZE)
1009 				continue;
1010 			offset = 0;
1011 			kunmap_atomic(kaddr, KM_USER0);
1012 inside:
1013 			page = bprm->page[bprm->p/PAGE_SIZE];
1014 			kaddr = kmap_atomic(page, KM_USER0);
1015 		}
1016 		kunmap_atomic(kaddr, KM_USER0);
1017 		bprm->argc--;
1018 	}
1019 }
1020 
1021 EXPORT_SYMBOL(remove_arg_zero);
1022 
1023 /*
1024  * cycle the list of binary formats handler, until one recognizes the image
1025  */
1026 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1027 {
1028 	int try,retval;
1029 	struct linux_binfmt *fmt;
1030 #ifdef __alpha__
1031 	/* handle /sbin/loader.. */
1032 	{
1033 	    struct exec * eh = (struct exec *) bprm->buf;
1034 
1035 	    if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1036 		(eh->fh.f_flags & 0x3000) == 0x3000)
1037 	    {
1038 		struct file * file;
1039 		unsigned long loader;
1040 
1041 		allow_write_access(bprm->file);
1042 		fput(bprm->file);
1043 		bprm->file = NULL;
1044 
1045 	        loader = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
1046 
1047 		file = open_exec("/sbin/loader");
1048 		retval = PTR_ERR(file);
1049 		if (IS_ERR(file))
1050 			return retval;
1051 
1052 		/* Remember if the application is TASO.  */
1053 		bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1054 
1055 		bprm->file = file;
1056 		bprm->loader = loader;
1057 		retval = prepare_binprm(bprm);
1058 		if (retval<0)
1059 			return retval;
1060 		/* should call search_binary_handler recursively here,
1061 		   but it does not matter */
1062 	    }
1063 	}
1064 #endif
1065 	retval = security_bprm_check(bprm);
1066 	if (retval)
1067 		return retval;
1068 
1069 	/* kernel module loader fixup */
1070 	/* so we don't try to load run modprobe in kernel space. */
1071 	set_fs(USER_DS);
1072 	retval = -ENOENT;
1073 	for (try=0; try<2; try++) {
1074 		read_lock(&binfmt_lock);
1075 		for (fmt = formats ; fmt ; fmt = fmt->next) {
1076 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1077 			if (!fn)
1078 				continue;
1079 			if (!try_module_get(fmt->module))
1080 				continue;
1081 			read_unlock(&binfmt_lock);
1082 			retval = fn(bprm, regs);
1083 			if (retval >= 0) {
1084 				put_binfmt(fmt);
1085 				allow_write_access(bprm->file);
1086 				if (bprm->file)
1087 					fput(bprm->file);
1088 				bprm->file = NULL;
1089 				current->did_exec = 1;
1090 				return retval;
1091 			}
1092 			read_lock(&binfmt_lock);
1093 			put_binfmt(fmt);
1094 			if (retval != -ENOEXEC || bprm->mm == NULL)
1095 				break;
1096 			if (!bprm->file) {
1097 				read_unlock(&binfmt_lock);
1098 				return retval;
1099 			}
1100 		}
1101 		read_unlock(&binfmt_lock);
1102 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1103 			break;
1104 #ifdef CONFIG_KMOD
1105 		}else{
1106 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1107 			if (printable(bprm->buf[0]) &&
1108 			    printable(bprm->buf[1]) &&
1109 			    printable(bprm->buf[2]) &&
1110 			    printable(bprm->buf[3]))
1111 				break; /* -ENOEXEC */
1112 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1113 #endif
1114 		}
1115 	}
1116 	return retval;
1117 }
1118 
1119 EXPORT_SYMBOL(search_binary_handler);
1120 
1121 /*
1122  * sys_execve() executes a new program.
1123  */
1124 int do_execve(char * filename,
1125 	char __user *__user *argv,
1126 	char __user *__user *envp,
1127 	struct pt_regs * regs)
1128 {
1129 	struct linux_binprm *bprm;
1130 	struct file *file;
1131 	int retval;
1132 	int i;
1133 
1134 	retval = -ENOMEM;
1135 	bprm = kmalloc(sizeof(*bprm), GFP_KERNEL);
1136 	if (!bprm)
1137 		goto out_ret;
1138 	memset(bprm, 0, sizeof(*bprm));
1139 
1140 	file = open_exec(filename);
1141 	retval = PTR_ERR(file);
1142 	if (IS_ERR(file))
1143 		goto out_kfree;
1144 
1145 	sched_exec();
1146 
1147 	bprm->p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
1148 
1149 	bprm->file = file;
1150 	bprm->filename = filename;
1151 	bprm->interp = filename;
1152 	bprm->mm = mm_alloc();
1153 	retval = -ENOMEM;
1154 	if (!bprm->mm)
1155 		goto out_file;
1156 
1157 	retval = init_new_context(current, bprm->mm);
1158 	if (retval < 0)
1159 		goto out_mm;
1160 
1161 	bprm->argc = count(argv, bprm->p / sizeof(void *));
1162 	if ((retval = bprm->argc) < 0)
1163 		goto out_mm;
1164 
1165 	bprm->envc = count(envp, bprm->p / sizeof(void *));
1166 	if ((retval = bprm->envc) < 0)
1167 		goto out_mm;
1168 
1169 	retval = security_bprm_alloc(bprm);
1170 	if (retval)
1171 		goto out;
1172 
1173 	retval = prepare_binprm(bprm);
1174 	if (retval < 0)
1175 		goto out;
1176 
1177 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1178 	if (retval < 0)
1179 		goto out;
1180 
1181 	bprm->exec = bprm->p;
1182 	retval = copy_strings(bprm->envc, envp, bprm);
1183 	if (retval < 0)
1184 		goto out;
1185 
1186 	retval = copy_strings(bprm->argc, argv, bprm);
1187 	if (retval < 0)
1188 		goto out;
1189 
1190 	retval = search_binary_handler(bprm,regs);
1191 	if (retval >= 0) {
1192 		free_arg_pages(bprm);
1193 
1194 		/* execve success */
1195 		security_bprm_free(bprm);
1196 		acct_update_integrals(current);
1197 		update_mem_hiwater(current);
1198 		kfree(bprm);
1199 		return retval;
1200 	}
1201 
1202 out:
1203 	/* Something went wrong, return the inode and free the argument pages*/
1204 	for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
1205 		struct page * page = bprm->page[i];
1206 		if (page)
1207 			__free_page(page);
1208 	}
1209 
1210 	if (bprm->security)
1211 		security_bprm_free(bprm);
1212 
1213 out_mm:
1214 	if (bprm->mm)
1215 		mmdrop(bprm->mm);
1216 
1217 out_file:
1218 	if (bprm->file) {
1219 		allow_write_access(bprm->file);
1220 		fput(bprm->file);
1221 	}
1222 
1223 out_kfree:
1224 	kfree(bprm);
1225 
1226 out_ret:
1227 	return retval;
1228 }
1229 
1230 int set_binfmt(struct linux_binfmt *new)
1231 {
1232 	struct linux_binfmt *old = current->binfmt;
1233 
1234 	if (new) {
1235 		if (!try_module_get(new->module))
1236 			return -1;
1237 	}
1238 	current->binfmt = new;
1239 	if (old)
1240 		module_put(old->module);
1241 	return 0;
1242 }
1243 
1244 EXPORT_SYMBOL(set_binfmt);
1245 
1246 #define CORENAME_MAX_SIZE 64
1247 
1248 /* format_corename will inspect the pattern parameter, and output a
1249  * name into corename, which must have space for at least
1250  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1251  */
1252 static void format_corename(char *corename, const char *pattern, long signr)
1253 {
1254 	const char *pat_ptr = pattern;
1255 	char *out_ptr = corename;
1256 	char *const out_end = corename + CORENAME_MAX_SIZE;
1257 	int rc;
1258 	int pid_in_pattern = 0;
1259 
1260 	/* Repeat as long as we have more pattern to process and more output
1261 	   space */
1262 	while (*pat_ptr) {
1263 		if (*pat_ptr != '%') {
1264 			if (out_ptr == out_end)
1265 				goto out;
1266 			*out_ptr++ = *pat_ptr++;
1267 		} else {
1268 			switch (*++pat_ptr) {
1269 			case 0:
1270 				goto out;
1271 			/* Double percent, output one percent */
1272 			case '%':
1273 				if (out_ptr == out_end)
1274 					goto out;
1275 				*out_ptr++ = '%';
1276 				break;
1277 			/* pid */
1278 			case 'p':
1279 				pid_in_pattern = 1;
1280 				rc = snprintf(out_ptr, out_end - out_ptr,
1281 					      "%d", current->tgid);
1282 				if (rc > out_end - out_ptr)
1283 					goto out;
1284 				out_ptr += rc;
1285 				break;
1286 			/* uid */
1287 			case 'u':
1288 				rc = snprintf(out_ptr, out_end - out_ptr,
1289 					      "%d", current->uid);
1290 				if (rc > out_end - out_ptr)
1291 					goto out;
1292 				out_ptr += rc;
1293 				break;
1294 			/* gid */
1295 			case 'g':
1296 				rc = snprintf(out_ptr, out_end - out_ptr,
1297 					      "%d", current->gid);
1298 				if (rc > out_end - out_ptr)
1299 					goto out;
1300 				out_ptr += rc;
1301 				break;
1302 			/* signal that caused the coredump */
1303 			case 's':
1304 				rc = snprintf(out_ptr, out_end - out_ptr,
1305 					      "%ld", signr);
1306 				if (rc > out_end - out_ptr)
1307 					goto out;
1308 				out_ptr += rc;
1309 				break;
1310 			/* UNIX time of coredump */
1311 			case 't': {
1312 				struct timeval tv;
1313 				do_gettimeofday(&tv);
1314 				rc = snprintf(out_ptr, out_end - out_ptr,
1315 					      "%lu", tv.tv_sec);
1316 				if (rc > out_end - out_ptr)
1317 					goto out;
1318 				out_ptr += rc;
1319 				break;
1320 			}
1321 			/* hostname */
1322 			case 'h':
1323 				down_read(&uts_sem);
1324 				rc = snprintf(out_ptr, out_end - out_ptr,
1325 					      "%s", system_utsname.nodename);
1326 				up_read(&uts_sem);
1327 				if (rc > out_end - out_ptr)
1328 					goto out;
1329 				out_ptr += rc;
1330 				break;
1331 			/* executable */
1332 			case 'e':
1333 				rc = snprintf(out_ptr, out_end - out_ptr,
1334 					      "%s", current->comm);
1335 				if (rc > out_end - out_ptr)
1336 					goto out;
1337 				out_ptr += rc;
1338 				break;
1339 			default:
1340 				break;
1341 			}
1342 			++pat_ptr;
1343 		}
1344 	}
1345 	/* Backward compatibility with core_uses_pid:
1346 	 *
1347 	 * If core_pattern does not include a %p (as is the default)
1348 	 * and core_uses_pid is set, then .%pid will be appended to
1349 	 * the filename */
1350 	if (!pid_in_pattern
1351             && (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)) {
1352 		rc = snprintf(out_ptr, out_end - out_ptr,
1353 			      ".%d", current->tgid);
1354 		if (rc > out_end - out_ptr)
1355 			goto out;
1356 		out_ptr += rc;
1357 	}
1358       out:
1359 	*out_ptr = 0;
1360 }
1361 
1362 static void zap_threads (struct mm_struct *mm)
1363 {
1364 	struct task_struct *g, *p;
1365 	struct task_struct *tsk = current;
1366 	struct completion *vfork_done = tsk->vfork_done;
1367 	int traced = 0;
1368 
1369 	/*
1370 	 * Make sure nobody is waiting for us to release the VM,
1371 	 * otherwise we can deadlock when we wait on each other
1372 	 */
1373 	if (vfork_done) {
1374 		tsk->vfork_done = NULL;
1375 		complete(vfork_done);
1376 	}
1377 
1378 	read_lock(&tasklist_lock);
1379 	do_each_thread(g,p)
1380 		if (mm == p->mm && p != tsk) {
1381 			force_sig_specific(SIGKILL, p);
1382 			mm->core_waiters++;
1383 			if (unlikely(p->ptrace) &&
1384 			    unlikely(p->parent->mm == mm))
1385 				traced = 1;
1386 		}
1387 	while_each_thread(g,p);
1388 
1389 	read_unlock(&tasklist_lock);
1390 
1391 	if (unlikely(traced)) {
1392 		/*
1393 		 * We are zapping a thread and the thread it ptraces.
1394 		 * If the tracee went into a ptrace stop for exit tracing,
1395 		 * we could deadlock since the tracer is waiting for this
1396 		 * coredump to finish.  Detach them so they can both die.
1397 		 */
1398 		write_lock_irq(&tasklist_lock);
1399 		do_each_thread(g,p) {
1400 			if (mm == p->mm && p != tsk &&
1401 			    p->ptrace && p->parent->mm == mm) {
1402 				__ptrace_unlink(p);
1403 			}
1404 		} while_each_thread(g,p);
1405 		write_unlock_irq(&tasklist_lock);
1406 	}
1407 }
1408 
1409 static void coredump_wait(struct mm_struct *mm)
1410 {
1411 	DECLARE_COMPLETION(startup_done);
1412 
1413 	mm->core_waiters++; /* let other threads block */
1414 	mm->core_startup_done = &startup_done;
1415 
1416 	/* give other threads a chance to run: */
1417 	yield();
1418 
1419 	zap_threads(mm);
1420 	if (--mm->core_waiters) {
1421 		up_write(&mm->mmap_sem);
1422 		wait_for_completion(&startup_done);
1423 	} else
1424 		up_write(&mm->mmap_sem);
1425 	BUG_ON(mm->core_waiters);
1426 }
1427 
1428 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1429 {
1430 	char corename[CORENAME_MAX_SIZE + 1];
1431 	struct mm_struct *mm = current->mm;
1432 	struct linux_binfmt * binfmt;
1433 	struct inode * inode;
1434 	struct file * file;
1435 	int retval = 0;
1436 
1437 	binfmt = current->binfmt;
1438 	if (!binfmt || !binfmt->core_dump)
1439 		goto fail;
1440 	down_write(&mm->mmap_sem);
1441 	if (!mm->dumpable) {
1442 		up_write(&mm->mmap_sem);
1443 		goto fail;
1444 	}
1445 	mm->dumpable = 0;
1446 	init_completion(&mm->core_done);
1447 	spin_lock_irq(&current->sighand->siglock);
1448 	current->signal->flags = SIGNAL_GROUP_EXIT;
1449 	current->signal->group_exit_code = exit_code;
1450 	spin_unlock_irq(&current->sighand->siglock);
1451 	coredump_wait(mm);
1452 
1453 	/*
1454 	 * Clear any false indication of pending signals that might
1455 	 * be seen by the filesystem code called to write the core file.
1456 	 */
1457 	current->signal->group_stop_count = 0;
1458 	clear_thread_flag(TIF_SIGPENDING);
1459 
1460 	if (current->signal->rlim[RLIMIT_CORE].rlim_cur < binfmt->min_coredump)
1461 		goto fail_unlock;
1462 
1463 	/*
1464 	 * lock_kernel() because format_corename() is controlled by sysctl, which
1465 	 * uses lock_kernel()
1466 	 */
1467  	lock_kernel();
1468 	format_corename(corename, core_pattern, signr);
1469 	unlock_kernel();
1470 	file = filp_open(corename, O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE, 0600);
1471 	if (IS_ERR(file))
1472 		goto fail_unlock;
1473 	inode = file->f_dentry->d_inode;
1474 	if (inode->i_nlink > 1)
1475 		goto close_fail;	/* multiple links - don't dump */
1476 	if (d_unhashed(file->f_dentry))
1477 		goto close_fail;
1478 
1479 	if (!S_ISREG(inode->i_mode))
1480 		goto close_fail;
1481 	if (!file->f_op)
1482 		goto close_fail;
1483 	if (!file->f_op->write)
1484 		goto close_fail;
1485 	if (do_truncate(file->f_dentry, 0) != 0)
1486 		goto close_fail;
1487 
1488 	retval = binfmt->core_dump(signr, regs, file);
1489 
1490 	if (retval)
1491 		current->signal->group_exit_code |= 0x80;
1492 close_fail:
1493 	filp_close(file, NULL);
1494 fail_unlock:
1495 	complete_all(&mm->core_done);
1496 fail:
1497 	return retval;
1498 }
1499