xref: /linux-6.15/fs/exec.c (revision 084ebf7c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25 
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/oom.h>
62 #include <linux/compat.h>
63 #include <linux/vmalloc.h>
64 #include <linux/io_uring.h>
65 #include <linux/syscall_user_dispatch.h>
66 #include <linux/coredump.h>
67 #include <linux/time_namespace.h>
68 #include <linux/user_events.h>
69 #include <linux/rseq.h>
70 #include <linux/ksm.h>
71 
72 #include <linux/uaccess.h>
73 #include <asm/mmu_context.h>
74 #include <asm/tlb.h>
75 
76 #include <trace/events/task.h>
77 #include "internal.h"
78 
79 #include <trace/events/sched.h>
80 
81 static int bprm_creds_from_file(struct linux_binprm *bprm);
82 
83 int suid_dumpable = 0;
84 
85 static LIST_HEAD(formats);
86 static DEFINE_RWLOCK(binfmt_lock);
87 
88 void __register_binfmt(struct linux_binfmt * fmt, int insert)
89 {
90 	write_lock(&binfmt_lock);
91 	insert ? list_add(&fmt->lh, &formats) :
92 		 list_add_tail(&fmt->lh, &formats);
93 	write_unlock(&binfmt_lock);
94 }
95 
96 EXPORT_SYMBOL(__register_binfmt);
97 
98 void unregister_binfmt(struct linux_binfmt * fmt)
99 {
100 	write_lock(&binfmt_lock);
101 	list_del(&fmt->lh);
102 	write_unlock(&binfmt_lock);
103 }
104 
105 EXPORT_SYMBOL(unregister_binfmt);
106 
107 static inline void put_binfmt(struct linux_binfmt * fmt)
108 {
109 	module_put(fmt->module);
110 }
111 
112 bool path_noexec(const struct path *path)
113 {
114 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
115 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
116 }
117 
118 #ifdef CONFIG_USELIB
119 /*
120  * Note that a shared library must be both readable and executable due to
121  * security reasons.
122  *
123  * Also note that we take the address to load from the file itself.
124  */
125 SYSCALL_DEFINE1(uselib, const char __user *, library)
126 {
127 	struct linux_binfmt *fmt;
128 	struct file *file;
129 	struct filename *tmp = getname(library);
130 	int error = PTR_ERR(tmp);
131 	static const struct open_flags uselib_flags = {
132 		.open_flag = O_LARGEFILE | O_RDONLY,
133 		.acc_mode = MAY_READ | MAY_EXEC,
134 		.intent = LOOKUP_OPEN,
135 		.lookup_flags = LOOKUP_FOLLOW,
136 	};
137 
138 	if (IS_ERR(tmp))
139 		goto out;
140 
141 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
142 	putname(tmp);
143 	error = PTR_ERR(file);
144 	if (IS_ERR(file))
145 		goto out;
146 
147 	/*
148 	 * may_open() has already checked for this, so it should be
149 	 * impossible to trip now. But we need to be extra cautious
150 	 * and check again at the very end too.
151 	 */
152 	error = -EACCES;
153 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
154 			 path_noexec(&file->f_path)))
155 		goto exit;
156 
157 	error = -ENOEXEC;
158 
159 	read_lock(&binfmt_lock);
160 	list_for_each_entry(fmt, &formats, lh) {
161 		if (!fmt->load_shlib)
162 			continue;
163 		if (!try_module_get(fmt->module))
164 			continue;
165 		read_unlock(&binfmt_lock);
166 		error = fmt->load_shlib(file);
167 		read_lock(&binfmt_lock);
168 		put_binfmt(fmt);
169 		if (error != -ENOEXEC)
170 			break;
171 	}
172 	read_unlock(&binfmt_lock);
173 exit:
174 	fput(file);
175 out:
176 	return error;
177 }
178 #endif /* #ifdef CONFIG_USELIB */
179 
180 #ifdef CONFIG_MMU
181 /*
182  * The nascent bprm->mm is not visible until exec_mmap() but it can
183  * use a lot of memory, account these pages in current->mm temporary
184  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
185  * change the counter back via acct_arg_size(0).
186  */
187 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
188 {
189 	struct mm_struct *mm = current->mm;
190 	long diff = (long)(pages - bprm->vma_pages);
191 
192 	if (!mm || !diff)
193 		return;
194 
195 	bprm->vma_pages = pages;
196 	add_mm_counter(mm, MM_ANONPAGES, diff);
197 }
198 
199 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
200 		int write)
201 {
202 	struct page *page;
203 	struct vm_area_struct *vma = bprm->vma;
204 	struct mm_struct *mm = bprm->mm;
205 	int ret;
206 
207 	/*
208 	 * Avoid relying on expanding the stack down in GUP (which
209 	 * does not work for STACK_GROWSUP anyway), and just do it
210 	 * by hand ahead of time.
211 	 */
212 	if (write && pos < vma->vm_start) {
213 		mmap_write_lock(mm);
214 		ret = expand_downwards(vma, pos);
215 		if (unlikely(ret < 0)) {
216 			mmap_write_unlock(mm);
217 			return NULL;
218 		}
219 		mmap_write_downgrade(mm);
220 	} else
221 		mmap_read_lock(mm);
222 
223 	/*
224 	 * We are doing an exec().  'current' is the process
225 	 * doing the exec and 'mm' is the new process's mm.
226 	 */
227 	ret = get_user_pages_remote(mm, pos, 1,
228 			write ? FOLL_WRITE : 0,
229 			&page, NULL);
230 	mmap_read_unlock(mm);
231 	if (ret <= 0)
232 		return NULL;
233 
234 	if (write)
235 		acct_arg_size(bprm, vma_pages(vma));
236 
237 	return page;
238 }
239 
240 static void put_arg_page(struct page *page)
241 {
242 	put_page(page);
243 }
244 
245 static void free_arg_pages(struct linux_binprm *bprm)
246 {
247 }
248 
249 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
250 		struct page *page)
251 {
252 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
253 }
254 
255 static int __bprm_mm_init(struct linux_binprm *bprm)
256 {
257 	int err;
258 	struct vm_area_struct *vma = NULL;
259 	struct mm_struct *mm = bprm->mm;
260 
261 	bprm->vma = vma = vm_area_alloc(mm);
262 	if (!vma)
263 		return -ENOMEM;
264 	vma_set_anonymous(vma);
265 
266 	if (mmap_write_lock_killable(mm)) {
267 		err = -EINTR;
268 		goto err_free;
269 	}
270 
271 	/*
272 	 * Need to be called with mmap write lock
273 	 * held, to avoid race with ksmd.
274 	 */
275 	err = ksm_execve(mm);
276 	if (err)
277 		goto err_ksm;
278 
279 	/*
280 	 * Place the stack at the largest stack address the architecture
281 	 * supports. Later, we'll move this to an appropriate place. We don't
282 	 * use STACK_TOP because that can depend on attributes which aren't
283 	 * configured yet.
284 	 */
285 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
286 	vma->vm_end = STACK_TOP_MAX;
287 	vma->vm_start = vma->vm_end - PAGE_SIZE;
288 	vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
289 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
290 
291 	err = insert_vm_struct(mm, vma);
292 	if (err)
293 		goto err;
294 
295 	mm->stack_vm = mm->total_vm = 1;
296 	mmap_write_unlock(mm);
297 	bprm->p = vma->vm_end - sizeof(void *);
298 	return 0;
299 err:
300 	ksm_exit(mm);
301 err_ksm:
302 	mmap_write_unlock(mm);
303 err_free:
304 	bprm->vma = NULL;
305 	vm_area_free(vma);
306 	return err;
307 }
308 
309 static bool valid_arg_len(struct linux_binprm *bprm, long len)
310 {
311 	return len <= MAX_ARG_STRLEN;
312 }
313 
314 #else
315 
316 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
317 {
318 }
319 
320 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
321 		int write)
322 {
323 	struct page *page;
324 
325 	page = bprm->page[pos / PAGE_SIZE];
326 	if (!page && write) {
327 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
328 		if (!page)
329 			return NULL;
330 		bprm->page[pos / PAGE_SIZE] = page;
331 	}
332 
333 	return page;
334 }
335 
336 static void put_arg_page(struct page *page)
337 {
338 }
339 
340 static void free_arg_page(struct linux_binprm *bprm, int i)
341 {
342 	if (bprm->page[i]) {
343 		__free_page(bprm->page[i]);
344 		bprm->page[i] = NULL;
345 	}
346 }
347 
348 static void free_arg_pages(struct linux_binprm *bprm)
349 {
350 	int i;
351 
352 	for (i = 0; i < MAX_ARG_PAGES; i++)
353 		free_arg_page(bprm, i);
354 }
355 
356 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
357 		struct page *page)
358 {
359 }
360 
361 static int __bprm_mm_init(struct linux_binprm *bprm)
362 {
363 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
364 	return 0;
365 }
366 
367 static bool valid_arg_len(struct linux_binprm *bprm, long len)
368 {
369 	return len <= bprm->p;
370 }
371 
372 #endif /* CONFIG_MMU */
373 
374 /*
375  * Create a new mm_struct and populate it with a temporary stack
376  * vm_area_struct.  We don't have enough context at this point to set the stack
377  * flags, permissions, and offset, so we use temporary values.  We'll update
378  * them later in setup_arg_pages().
379  */
380 static int bprm_mm_init(struct linux_binprm *bprm)
381 {
382 	int err;
383 	struct mm_struct *mm = NULL;
384 
385 	bprm->mm = mm = mm_alloc();
386 	err = -ENOMEM;
387 	if (!mm)
388 		goto err;
389 
390 	/* Save current stack limit for all calculations made during exec. */
391 	task_lock(current->group_leader);
392 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
393 	task_unlock(current->group_leader);
394 
395 	err = __bprm_mm_init(bprm);
396 	if (err)
397 		goto err;
398 
399 	return 0;
400 
401 err:
402 	if (mm) {
403 		bprm->mm = NULL;
404 		mmdrop(mm);
405 	}
406 
407 	return err;
408 }
409 
410 struct user_arg_ptr {
411 #ifdef CONFIG_COMPAT
412 	bool is_compat;
413 #endif
414 	union {
415 		const char __user *const __user *native;
416 #ifdef CONFIG_COMPAT
417 		const compat_uptr_t __user *compat;
418 #endif
419 	} ptr;
420 };
421 
422 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
423 {
424 	const char __user *native;
425 
426 #ifdef CONFIG_COMPAT
427 	if (unlikely(argv.is_compat)) {
428 		compat_uptr_t compat;
429 
430 		if (get_user(compat, argv.ptr.compat + nr))
431 			return ERR_PTR(-EFAULT);
432 
433 		return compat_ptr(compat);
434 	}
435 #endif
436 
437 	if (get_user(native, argv.ptr.native + nr))
438 		return ERR_PTR(-EFAULT);
439 
440 	return native;
441 }
442 
443 /*
444  * count() counts the number of strings in array ARGV.
445  */
446 static int count(struct user_arg_ptr argv, int max)
447 {
448 	int i = 0;
449 
450 	if (argv.ptr.native != NULL) {
451 		for (;;) {
452 			const char __user *p = get_user_arg_ptr(argv, i);
453 
454 			if (!p)
455 				break;
456 
457 			if (IS_ERR(p))
458 				return -EFAULT;
459 
460 			if (i >= max)
461 				return -E2BIG;
462 			++i;
463 
464 			if (fatal_signal_pending(current))
465 				return -ERESTARTNOHAND;
466 			cond_resched();
467 		}
468 	}
469 	return i;
470 }
471 
472 static int count_strings_kernel(const char *const *argv)
473 {
474 	int i;
475 
476 	if (!argv)
477 		return 0;
478 
479 	for (i = 0; argv[i]; ++i) {
480 		if (i >= MAX_ARG_STRINGS)
481 			return -E2BIG;
482 		if (fatal_signal_pending(current))
483 			return -ERESTARTNOHAND;
484 		cond_resched();
485 	}
486 	return i;
487 }
488 
489 static inline int bprm_set_stack_limit(struct linux_binprm *bprm,
490 				       unsigned long limit)
491 {
492 #ifdef CONFIG_MMU
493 	bprm->argmin = bprm->p - limit;
494 #endif
495 	return 0;
496 }
497 static inline bool bprm_hit_stack_limit(struct linux_binprm *bprm)
498 {
499 #ifdef CONFIG_MMU
500 	return bprm->p < bprm->argmin;
501 #else
502 	return false;
503 #endif
504 }
505 
506 /*
507  * Calculate bprm->argmin from:
508  * - _STK_LIM
509  * - ARG_MAX
510  * - bprm->rlim_stack.rlim_cur
511  * - bprm->argc
512  * - bprm->envc
513  * - bprm->p
514  */
515 static int bprm_stack_limits(struct linux_binprm *bprm)
516 {
517 	unsigned long limit, ptr_size;
518 
519 	/*
520 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
521 	 * (whichever is smaller) for the argv+env strings.
522 	 * This ensures that:
523 	 *  - the remaining binfmt code will not run out of stack space,
524 	 *  - the program will have a reasonable amount of stack left
525 	 *    to work from.
526 	 */
527 	limit = _STK_LIM / 4 * 3;
528 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
529 	/*
530 	 * We've historically supported up to 32 pages (ARG_MAX)
531 	 * of argument strings even with small stacks
532 	 */
533 	limit = max_t(unsigned long, limit, ARG_MAX);
534 	/*
535 	 * We must account for the size of all the argv and envp pointers to
536 	 * the argv and envp strings, since they will also take up space in
537 	 * the stack. They aren't stored until much later when we can't
538 	 * signal to the parent that the child has run out of stack space.
539 	 * Instead, calculate it here so it's possible to fail gracefully.
540 	 *
541 	 * In the case of argc = 0, make sure there is space for adding a
542 	 * empty string (which will bump argc to 1), to ensure confused
543 	 * userspace programs don't start processing from argv[1], thinking
544 	 * argc can never be 0, to keep them from walking envp by accident.
545 	 * See do_execveat_common().
546 	 */
547 	ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
548 	if (limit <= ptr_size)
549 		return -E2BIG;
550 	limit -= ptr_size;
551 
552 	return bprm_set_stack_limit(bprm, limit);
553 }
554 
555 /*
556  * 'copy_strings()' copies argument/environment strings from the old
557  * processes's memory to the new process's stack.  The call to get_user_pages()
558  * ensures the destination page is created and not swapped out.
559  */
560 static int copy_strings(int argc, struct user_arg_ptr argv,
561 			struct linux_binprm *bprm)
562 {
563 	struct page *kmapped_page = NULL;
564 	char *kaddr = NULL;
565 	unsigned long kpos = 0;
566 	int ret;
567 
568 	while (argc-- > 0) {
569 		const char __user *str;
570 		int len;
571 		unsigned long pos;
572 
573 		ret = -EFAULT;
574 		str = get_user_arg_ptr(argv, argc);
575 		if (IS_ERR(str))
576 			goto out;
577 
578 		len = strnlen_user(str, MAX_ARG_STRLEN);
579 		if (!len)
580 			goto out;
581 
582 		ret = -E2BIG;
583 		if (!valid_arg_len(bprm, len))
584 			goto out;
585 
586 		/* We're going to work our way backwards. */
587 		pos = bprm->p;
588 		str += len;
589 		bprm->p -= len;
590 		if (bprm_hit_stack_limit(bprm))
591 			goto out;
592 
593 		while (len > 0) {
594 			int offset, bytes_to_copy;
595 
596 			if (fatal_signal_pending(current)) {
597 				ret = -ERESTARTNOHAND;
598 				goto out;
599 			}
600 			cond_resched();
601 
602 			offset = pos % PAGE_SIZE;
603 			if (offset == 0)
604 				offset = PAGE_SIZE;
605 
606 			bytes_to_copy = offset;
607 			if (bytes_to_copy > len)
608 				bytes_to_copy = len;
609 
610 			offset -= bytes_to_copy;
611 			pos -= bytes_to_copy;
612 			str -= bytes_to_copy;
613 			len -= bytes_to_copy;
614 
615 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
616 				struct page *page;
617 
618 				page = get_arg_page(bprm, pos, 1);
619 				if (!page) {
620 					ret = -E2BIG;
621 					goto out;
622 				}
623 
624 				if (kmapped_page) {
625 					flush_dcache_page(kmapped_page);
626 					kunmap_local(kaddr);
627 					put_arg_page(kmapped_page);
628 				}
629 				kmapped_page = page;
630 				kaddr = kmap_local_page(kmapped_page);
631 				kpos = pos & PAGE_MASK;
632 				flush_arg_page(bprm, kpos, kmapped_page);
633 			}
634 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
635 				ret = -EFAULT;
636 				goto out;
637 			}
638 		}
639 	}
640 	ret = 0;
641 out:
642 	if (kmapped_page) {
643 		flush_dcache_page(kmapped_page);
644 		kunmap_local(kaddr);
645 		put_arg_page(kmapped_page);
646 	}
647 	return ret;
648 }
649 
650 /*
651  * Copy and argument/environment string from the kernel to the processes stack.
652  */
653 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
654 {
655 	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
656 	unsigned long pos = bprm->p;
657 
658 	if (len == 0)
659 		return -EFAULT;
660 	if (!valid_arg_len(bprm, len))
661 		return -E2BIG;
662 
663 	/* We're going to work our way backwards. */
664 	arg += len;
665 	bprm->p -= len;
666 	if (bprm_hit_stack_limit(bprm))
667 		return -E2BIG;
668 
669 	while (len > 0) {
670 		unsigned int bytes_to_copy = min_t(unsigned int, len,
671 				min_not_zero(offset_in_page(pos), PAGE_SIZE));
672 		struct page *page;
673 
674 		pos -= bytes_to_copy;
675 		arg -= bytes_to_copy;
676 		len -= bytes_to_copy;
677 
678 		page = get_arg_page(bprm, pos, 1);
679 		if (!page)
680 			return -E2BIG;
681 		flush_arg_page(bprm, pos & PAGE_MASK, page);
682 		memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
683 		put_arg_page(page);
684 	}
685 
686 	return 0;
687 }
688 EXPORT_SYMBOL(copy_string_kernel);
689 
690 static int copy_strings_kernel(int argc, const char *const *argv,
691 			       struct linux_binprm *bprm)
692 {
693 	while (argc-- > 0) {
694 		int ret = copy_string_kernel(argv[argc], bprm);
695 		if (ret < 0)
696 			return ret;
697 		if (fatal_signal_pending(current))
698 			return -ERESTARTNOHAND;
699 		cond_resched();
700 	}
701 	return 0;
702 }
703 
704 #ifdef CONFIG_MMU
705 
706 /*
707  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
708  * the binfmt code determines where the new stack should reside, we shift it to
709  * its final location.  The process proceeds as follows:
710  *
711  * 1) Use shift to calculate the new vma endpoints.
712  * 2) Extend vma to cover both the old and new ranges.  This ensures the
713  *    arguments passed to subsequent functions are consistent.
714  * 3) Move vma's page tables to the new range.
715  * 4) Free up any cleared pgd range.
716  * 5) Shrink the vma to cover only the new range.
717  */
718 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
719 {
720 	struct mm_struct *mm = vma->vm_mm;
721 	unsigned long old_start = vma->vm_start;
722 	unsigned long old_end = vma->vm_end;
723 	unsigned long length = old_end - old_start;
724 	unsigned long new_start = old_start - shift;
725 	unsigned long new_end = old_end - shift;
726 	VMA_ITERATOR(vmi, mm, new_start);
727 	struct vm_area_struct *next;
728 	struct mmu_gather tlb;
729 
730 	BUG_ON(new_start > new_end);
731 
732 	/*
733 	 * ensure there are no vmas between where we want to go
734 	 * and where we are
735 	 */
736 	if (vma != vma_next(&vmi))
737 		return -EFAULT;
738 
739 	vma_iter_prev_range(&vmi);
740 	/*
741 	 * cover the whole range: [new_start, old_end)
742 	 */
743 	if (vma_expand(&vmi, vma, new_start, old_end, vma->vm_pgoff, NULL))
744 		return -ENOMEM;
745 
746 	/*
747 	 * move the page tables downwards, on failure we rely on
748 	 * process cleanup to remove whatever mess we made.
749 	 */
750 	if (length != move_page_tables(vma, old_start,
751 				       vma, new_start, length, false, true))
752 		return -ENOMEM;
753 
754 	lru_add_drain();
755 	tlb_gather_mmu(&tlb, mm);
756 	next = vma_next(&vmi);
757 	if (new_end > old_start) {
758 		/*
759 		 * when the old and new regions overlap clear from new_end.
760 		 */
761 		free_pgd_range(&tlb, new_end, old_end, new_end,
762 			next ? next->vm_start : USER_PGTABLES_CEILING);
763 	} else {
764 		/*
765 		 * otherwise, clean from old_start; this is done to not touch
766 		 * the address space in [new_end, old_start) some architectures
767 		 * have constraints on va-space that make this illegal (IA64) -
768 		 * for the others its just a little faster.
769 		 */
770 		free_pgd_range(&tlb, old_start, old_end, new_end,
771 			next ? next->vm_start : USER_PGTABLES_CEILING);
772 	}
773 	tlb_finish_mmu(&tlb);
774 
775 	vma_prev(&vmi);
776 	/* Shrink the vma to just the new range */
777 	return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);
778 }
779 
780 /*
781  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
782  * the stack is optionally relocated, and some extra space is added.
783  */
784 int setup_arg_pages(struct linux_binprm *bprm,
785 		    unsigned long stack_top,
786 		    int executable_stack)
787 {
788 	unsigned long ret;
789 	unsigned long stack_shift;
790 	struct mm_struct *mm = current->mm;
791 	struct vm_area_struct *vma = bprm->vma;
792 	struct vm_area_struct *prev = NULL;
793 	unsigned long vm_flags;
794 	unsigned long stack_base;
795 	unsigned long stack_size;
796 	unsigned long stack_expand;
797 	unsigned long rlim_stack;
798 	struct mmu_gather tlb;
799 	struct vma_iterator vmi;
800 
801 #ifdef CONFIG_STACK_GROWSUP
802 	/* Limit stack size */
803 	stack_base = bprm->rlim_stack.rlim_max;
804 
805 	stack_base = calc_max_stack_size(stack_base);
806 
807 	/* Add space for stack randomization. */
808 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
809 
810 	/* Make sure we didn't let the argument array grow too large. */
811 	if (vma->vm_end - vma->vm_start > stack_base)
812 		return -ENOMEM;
813 
814 	stack_base = PAGE_ALIGN(stack_top - stack_base);
815 
816 	stack_shift = vma->vm_start - stack_base;
817 	mm->arg_start = bprm->p - stack_shift;
818 	bprm->p = vma->vm_end - stack_shift;
819 #else
820 	stack_top = arch_align_stack(stack_top);
821 	stack_top = PAGE_ALIGN(stack_top);
822 
823 	if (unlikely(stack_top < mmap_min_addr) ||
824 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
825 		return -ENOMEM;
826 
827 	stack_shift = vma->vm_end - stack_top;
828 
829 	bprm->p -= stack_shift;
830 	mm->arg_start = bprm->p;
831 #endif
832 
833 	if (bprm->loader)
834 		bprm->loader -= stack_shift;
835 	bprm->exec -= stack_shift;
836 
837 	if (mmap_write_lock_killable(mm))
838 		return -EINTR;
839 
840 	vm_flags = VM_STACK_FLAGS;
841 
842 	/*
843 	 * Adjust stack execute permissions; explicitly enable for
844 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
845 	 * (arch default) otherwise.
846 	 */
847 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
848 		vm_flags |= VM_EXEC;
849 	else if (executable_stack == EXSTACK_DISABLE_X)
850 		vm_flags &= ~VM_EXEC;
851 	vm_flags |= mm->def_flags;
852 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
853 
854 	vma_iter_init(&vmi, mm, vma->vm_start);
855 
856 	tlb_gather_mmu(&tlb, mm);
857 	ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
858 			vm_flags);
859 	tlb_finish_mmu(&tlb);
860 
861 	if (ret)
862 		goto out_unlock;
863 	BUG_ON(prev != vma);
864 
865 	if (unlikely(vm_flags & VM_EXEC)) {
866 		pr_warn_once("process '%pD4' started with executable stack\n",
867 			     bprm->file);
868 	}
869 
870 	/* Move stack pages down in memory. */
871 	if (stack_shift) {
872 		ret = shift_arg_pages(vma, stack_shift);
873 		if (ret)
874 			goto out_unlock;
875 	}
876 
877 	/* mprotect_fixup is overkill to remove the temporary stack flags */
878 	vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
879 
880 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
881 	stack_size = vma->vm_end - vma->vm_start;
882 	/*
883 	 * Align this down to a page boundary as expand_stack
884 	 * will align it up.
885 	 */
886 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
887 
888 	stack_expand = min(rlim_stack, stack_size + stack_expand);
889 
890 #ifdef CONFIG_STACK_GROWSUP
891 	stack_base = vma->vm_start + stack_expand;
892 #else
893 	stack_base = vma->vm_end - stack_expand;
894 #endif
895 	current->mm->start_stack = bprm->p;
896 	ret = expand_stack_locked(vma, stack_base);
897 	if (ret)
898 		ret = -EFAULT;
899 
900 out_unlock:
901 	mmap_write_unlock(mm);
902 	return ret;
903 }
904 EXPORT_SYMBOL(setup_arg_pages);
905 
906 #else
907 
908 /*
909  * Transfer the program arguments and environment from the holding pages
910  * onto the stack. The provided stack pointer is adjusted accordingly.
911  */
912 int transfer_args_to_stack(struct linux_binprm *bprm,
913 			   unsigned long *sp_location)
914 {
915 	unsigned long index, stop, sp;
916 	int ret = 0;
917 
918 	stop = bprm->p >> PAGE_SHIFT;
919 	sp = *sp_location;
920 
921 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
922 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
923 		char *src = kmap_local_page(bprm->page[index]) + offset;
924 		sp -= PAGE_SIZE - offset;
925 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
926 			ret = -EFAULT;
927 		kunmap_local(src);
928 		if (ret)
929 			goto out;
930 	}
931 
932 	bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE;
933 	*sp_location = sp;
934 
935 out:
936 	return ret;
937 }
938 EXPORT_SYMBOL(transfer_args_to_stack);
939 
940 #endif /* CONFIG_MMU */
941 
942 /*
943  * On success, caller must call do_close_execat() on the returned
944  * struct file to close it.
945  */
946 static struct file *do_open_execat(int fd, struct filename *name, int flags)
947 {
948 	struct file *file;
949 	int err;
950 	struct open_flags open_exec_flags = {
951 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
952 		.acc_mode = MAY_EXEC,
953 		.intent = LOOKUP_OPEN,
954 		.lookup_flags = LOOKUP_FOLLOW,
955 	};
956 
957 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
958 		return ERR_PTR(-EINVAL);
959 	if (flags & AT_SYMLINK_NOFOLLOW)
960 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
961 	if (flags & AT_EMPTY_PATH)
962 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
963 
964 	file = do_filp_open(fd, name, &open_exec_flags);
965 	if (IS_ERR(file))
966 		goto out;
967 
968 	/*
969 	 * may_open() has already checked for this, so it should be
970 	 * impossible to trip now. But we need to be extra cautious
971 	 * and check again at the very end too.
972 	 */
973 	err = -EACCES;
974 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
975 			 path_noexec(&file->f_path)))
976 		goto exit;
977 
978 	err = deny_write_access(file);
979 	if (err)
980 		goto exit;
981 
982 out:
983 	return file;
984 
985 exit:
986 	fput(file);
987 	return ERR_PTR(err);
988 }
989 
990 /**
991  * open_exec - Open a path name for execution
992  *
993  * @name: path name to open with the intent of executing it.
994  *
995  * Returns ERR_PTR on failure or allocated struct file on success.
996  *
997  * As this is a wrapper for the internal do_open_execat(), callers
998  * must call allow_write_access() before fput() on release. Also see
999  * do_close_execat().
1000  */
1001 struct file *open_exec(const char *name)
1002 {
1003 	struct filename *filename = getname_kernel(name);
1004 	struct file *f = ERR_CAST(filename);
1005 
1006 	if (!IS_ERR(filename)) {
1007 		f = do_open_execat(AT_FDCWD, filename, 0);
1008 		putname(filename);
1009 	}
1010 	return f;
1011 }
1012 EXPORT_SYMBOL(open_exec);
1013 
1014 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
1015 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1016 {
1017 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1018 	if (res > 0)
1019 		flush_icache_user_range(addr, addr + len);
1020 	return res;
1021 }
1022 EXPORT_SYMBOL(read_code);
1023 #endif
1024 
1025 /*
1026  * Maps the mm_struct mm into the current task struct.
1027  * On success, this function returns with exec_update_lock
1028  * held for writing.
1029  */
1030 static int exec_mmap(struct mm_struct *mm)
1031 {
1032 	struct task_struct *tsk;
1033 	struct mm_struct *old_mm, *active_mm;
1034 	int ret;
1035 
1036 	/* Notify parent that we're no longer interested in the old VM */
1037 	tsk = current;
1038 	old_mm = current->mm;
1039 	exec_mm_release(tsk, old_mm);
1040 
1041 	ret = down_write_killable(&tsk->signal->exec_update_lock);
1042 	if (ret)
1043 		return ret;
1044 
1045 	if (old_mm) {
1046 		/*
1047 		 * If there is a pending fatal signal perhaps a signal
1048 		 * whose default action is to create a coredump get
1049 		 * out and die instead of going through with the exec.
1050 		 */
1051 		ret = mmap_read_lock_killable(old_mm);
1052 		if (ret) {
1053 			up_write(&tsk->signal->exec_update_lock);
1054 			return ret;
1055 		}
1056 	}
1057 
1058 	task_lock(tsk);
1059 	membarrier_exec_mmap(mm);
1060 
1061 	local_irq_disable();
1062 	active_mm = tsk->active_mm;
1063 	tsk->active_mm = mm;
1064 	tsk->mm = mm;
1065 	mm_init_cid(mm);
1066 	/*
1067 	 * This prevents preemption while active_mm is being loaded and
1068 	 * it and mm are being updated, which could cause problems for
1069 	 * lazy tlb mm refcounting when these are updated by context
1070 	 * switches. Not all architectures can handle irqs off over
1071 	 * activate_mm yet.
1072 	 */
1073 	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1074 		local_irq_enable();
1075 	activate_mm(active_mm, mm);
1076 	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1077 		local_irq_enable();
1078 	lru_gen_add_mm(mm);
1079 	task_unlock(tsk);
1080 	lru_gen_use_mm(mm);
1081 	if (old_mm) {
1082 		mmap_read_unlock(old_mm);
1083 		BUG_ON(active_mm != old_mm);
1084 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1085 		mm_update_next_owner(old_mm);
1086 		mmput(old_mm);
1087 		return 0;
1088 	}
1089 	mmdrop_lazy_tlb(active_mm);
1090 	return 0;
1091 }
1092 
1093 static int de_thread(struct task_struct *tsk)
1094 {
1095 	struct signal_struct *sig = tsk->signal;
1096 	struct sighand_struct *oldsighand = tsk->sighand;
1097 	spinlock_t *lock = &oldsighand->siglock;
1098 
1099 	if (thread_group_empty(tsk))
1100 		goto no_thread_group;
1101 
1102 	/*
1103 	 * Kill all other threads in the thread group.
1104 	 */
1105 	spin_lock_irq(lock);
1106 	if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1107 		/*
1108 		 * Another group action in progress, just
1109 		 * return so that the signal is processed.
1110 		 */
1111 		spin_unlock_irq(lock);
1112 		return -EAGAIN;
1113 	}
1114 
1115 	sig->group_exec_task = tsk;
1116 	sig->notify_count = zap_other_threads(tsk);
1117 	if (!thread_group_leader(tsk))
1118 		sig->notify_count--;
1119 
1120 	while (sig->notify_count) {
1121 		__set_current_state(TASK_KILLABLE);
1122 		spin_unlock_irq(lock);
1123 		schedule();
1124 		if (__fatal_signal_pending(tsk))
1125 			goto killed;
1126 		spin_lock_irq(lock);
1127 	}
1128 	spin_unlock_irq(lock);
1129 
1130 	/*
1131 	 * At this point all other threads have exited, all we have to
1132 	 * do is to wait for the thread group leader to become inactive,
1133 	 * and to assume its PID:
1134 	 */
1135 	if (!thread_group_leader(tsk)) {
1136 		struct task_struct *leader = tsk->group_leader;
1137 
1138 		for (;;) {
1139 			cgroup_threadgroup_change_begin(tsk);
1140 			write_lock_irq(&tasklist_lock);
1141 			/*
1142 			 * Do this under tasklist_lock to ensure that
1143 			 * exit_notify() can't miss ->group_exec_task
1144 			 */
1145 			sig->notify_count = -1;
1146 			if (likely(leader->exit_state))
1147 				break;
1148 			__set_current_state(TASK_KILLABLE);
1149 			write_unlock_irq(&tasklist_lock);
1150 			cgroup_threadgroup_change_end(tsk);
1151 			schedule();
1152 			if (__fatal_signal_pending(tsk))
1153 				goto killed;
1154 		}
1155 
1156 		/*
1157 		 * The only record we have of the real-time age of a
1158 		 * process, regardless of execs it's done, is start_time.
1159 		 * All the past CPU time is accumulated in signal_struct
1160 		 * from sister threads now dead.  But in this non-leader
1161 		 * exec, nothing survives from the original leader thread,
1162 		 * whose birth marks the true age of this process now.
1163 		 * When we take on its identity by switching to its PID, we
1164 		 * also take its birthdate (always earlier than our own).
1165 		 */
1166 		tsk->start_time = leader->start_time;
1167 		tsk->start_boottime = leader->start_boottime;
1168 
1169 		BUG_ON(!same_thread_group(leader, tsk));
1170 		/*
1171 		 * An exec() starts a new thread group with the
1172 		 * TGID of the previous thread group. Rehash the
1173 		 * two threads with a switched PID, and release
1174 		 * the former thread group leader:
1175 		 */
1176 
1177 		/* Become a process group leader with the old leader's pid.
1178 		 * The old leader becomes a thread of the this thread group.
1179 		 */
1180 		exchange_tids(tsk, leader);
1181 		transfer_pid(leader, tsk, PIDTYPE_TGID);
1182 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1183 		transfer_pid(leader, tsk, PIDTYPE_SID);
1184 
1185 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1186 		list_replace_init(&leader->sibling, &tsk->sibling);
1187 
1188 		tsk->group_leader = tsk;
1189 		leader->group_leader = tsk;
1190 
1191 		tsk->exit_signal = SIGCHLD;
1192 		leader->exit_signal = -1;
1193 
1194 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1195 		leader->exit_state = EXIT_DEAD;
1196 		/*
1197 		 * We are going to release_task()->ptrace_unlink() silently,
1198 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1199 		 * the tracer won't block again waiting for this thread.
1200 		 */
1201 		if (unlikely(leader->ptrace))
1202 			__wake_up_parent(leader, leader->parent);
1203 		write_unlock_irq(&tasklist_lock);
1204 		cgroup_threadgroup_change_end(tsk);
1205 
1206 		release_task(leader);
1207 	}
1208 
1209 	sig->group_exec_task = NULL;
1210 	sig->notify_count = 0;
1211 
1212 no_thread_group:
1213 	/* we have changed execution domain */
1214 	tsk->exit_signal = SIGCHLD;
1215 
1216 	BUG_ON(!thread_group_leader(tsk));
1217 	return 0;
1218 
1219 killed:
1220 	/* protects against exit_notify() and __exit_signal() */
1221 	read_lock(&tasklist_lock);
1222 	sig->group_exec_task = NULL;
1223 	sig->notify_count = 0;
1224 	read_unlock(&tasklist_lock);
1225 	return -EAGAIN;
1226 }
1227 
1228 
1229 /*
1230  * This function makes sure the current process has its own signal table,
1231  * so that flush_signal_handlers can later reset the handlers without
1232  * disturbing other processes.  (Other processes might share the signal
1233  * table via the CLONE_SIGHAND option to clone().)
1234  */
1235 static int unshare_sighand(struct task_struct *me)
1236 {
1237 	struct sighand_struct *oldsighand = me->sighand;
1238 
1239 	if (refcount_read(&oldsighand->count) != 1) {
1240 		struct sighand_struct *newsighand;
1241 		/*
1242 		 * This ->sighand is shared with the CLONE_SIGHAND
1243 		 * but not CLONE_THREAD task, switch to the new one.
1244 		 */
1245 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1246 		if (!newsighand)
1247 			return -ENOMEM;
1248 
1249 		refcount_set(&newsighand->count, 1);
1250 
1251 		write_lock_irq(&tasklist_lock);
1252 		spin_lock(&oldsighand->siglock);
1253 		memcpy(newsighand->action, oldsighand->action,
1254 		       sizeof(newsighand->action));
1255 		rcu_assign_pointer(me->sighand, newsighand);
1256 		spin_unlock(&oldsighand->siglock);
1257 		write_unlock_irq(&tasklist_lock);
1258 
1259 		__cleanup_sighand(oldsighand);
1260 	}
1261 	return 0;
1262 }
1263 
1264 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1265 {
1266 	task_lock(tsk);
1267 	/* Always NUL terminated and zero-padded */
1268 	strscpy_pad(buf, tsk->comm, buf_size);
1269 	task_unlock(tsk);
1270 	return buf;
1271 }
1272 EXPORT_SYMBOL_GPL(__get_task_comm);
1273 
1274 /*
1275  * These functions flushes out all traces of the currently running executable
1276  * so that a new one can be started
1277  */
1278 
1279 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1280 {
1281 	task_lock(tsk);
1282 	trace_task_rename(tsk, buf);
1283 	strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1284 	task_unlock(tsk);
1285 	perf_event_comm(tsk, exec);
1286 }
1287 
1288 /*
1289  * Calling this is the point of no return. None of the failures will be
1290  * seen by userspace since either the process is already taking a fatal
1291  * signal (via de_thread() or coredump), or will have SEGV raised
1292  * (after exec_mmap()) by search_binary_handler (see below).
1293  */
1294 int begin_new_exec(struct linux_binprm * bprm)
1295 {
1296 	struct task_struct *me = current;
1297 	int retval;
1298 
1299 	/* Once we are committed compute the creds */
1300 	retval = bprm_creds_from_file(bprm);
1301 	if (retval)
1302 		return retval;
1303 
1304 	/*
1305 	 * This tracepoint marks the point before flushing the old exec where
1306 	 * the current task is still unchanged, but errors are fatal (point of
1307 	 * no return). The later "sched_process_exec" tracepoint is called after
1308 	 * the current task has successfully switched to the new exec.
1309 	 */
1310 	trace_sched_prepare_exec(current, bprm);
1311 
1312 	/*
1313 	 * Ensure all future errors are fatal.
1314 	 */
1315 	bprm->point_of_no_return = true;
1316 
1317 	/*
1318 	 * Make this the only thread in the thread group.
1319 	 */
1320 	retval = de_thread(me);
1321 	if (retval)
1322 		goto out;
1323 
1324 	/*
1325 	 * Cancel any io_uring activity across execve
1326 	 */
1327 	io_uring_task_cancel();
1328 
1329 	/* Ensure the files table is not shared. */
1330 	retval = unshare_files();
1331 	if (retval)
1332 		goto out;
1333 
1334 	/*
1335 	 * Must be called _before_ exec_mmap() as bprm->mm is
1336 	 * not visible until then. Doing it here also ensures
1337 	 * we don't race against replace_mm_exe_file().
1338 	 */
1339 	retval = set_mm_exe_file(bprm->mm, bprm->file);
1340 	if (retval)
1341 		goto out;
1342 
1343 	/* If the binary is not readable then enforce mm->dumpable=0 */
1344 	would_dump(bprm, bprm->file);
1345 	if (bprm->have_execfd)
1346 		would_dump(bprm, bprm->executable);
1347 
1348 	/*
1349 	 * Release all of the old mmap stuff
1350 	 */
1351 	acct_arg_size(bprm, 0);
1352 	retval = exec_mmap(bprm->mm);
1353 	if (retval)
1354 		goto out;
1355 
1356 	bprm->mm = NULL;
1357 
1358 	retval = exec_task_namespaces();
1359 	if (retval)
1360 		goto out_unlock;
1361 
1362 #ifdef CONFIG_POSIX_TIMERS
1363 	spin_lock_irq(&me->sighand->siglock);
1364 	posix_cpu_timers_exit(me);
1365 	spin_unlock_irq(&me->sighand->siglock);
1366 	exit_itimers(me);
1367 	flush_itimer_signals();
1368 #endif
1369 
1370 	/*
1371 	 * Make the signal table private.
1372 	 */
1373 	retval = unshare_sighand(me);
1374 	if (retval)
1375 		goto out_unlock;
1376 
1377 	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1378 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1379 	flush_thread();
1380 	me->personality &= ~bprm->per_clear;
1381 
1382 	clear_syscall_work_syscall_user_dispatch(me);
1383 
1384 	/*
1385 	 * We have to apply CLOEXEC before we change whether the process is
1386 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1387 	 * trying to access the should-be-closed file descriptors of a process
1388 	 * undergoing exec(2).
1389 	 */
1390 	do_close_on_exec(me->files);
1391 
1392 	if (bprm->secureexec) {
1393 		/* Make sure parent cannot signal privileged process. */
1394 		me->pdeath_signal = 0;
1395 
1396 		/*
1397 		 * For secureexec, reset the stack limit to sane default to
1398 		 * avoid bad behavior from the prior rlimits. This has to
1399 		 * happen before arch_pick_mmap_layout(), which examines
1400 		 * RLIMIT_STACK, but after the point of no return to avoid
1401 		 * needing to clean up the change on failure.
1402 		 */
1403 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1404 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1405 	}
1406 
1407 	me->sas_ss_sp = me->sas_ss_size = 0;
1408 
1409 	/*
1410 	 * Figure out dumpability. Note that this checking only of current
1411 	 * is wrong, but userspace depends on it. This should be testing
1412 	 * bprm->secureexec instead.
1413 	 */
1414 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1415 	    !(uid_eq(current_euid(), current_uid()) &&
1416 	      gid_eq(current_egid(), current_gid())))
1417 		set_dumpable(current->mm, suid_dumpable);
1418 	else
1419 		set_dumpable(current->mm, SUID_DUMP_USER);
1420 
1421 	perf_event_exec();
1422 	__set_task_comm(me, kbasename(bprm->filename), true);
1423 
1424 	/* An exec changes our domain. We are no longer part of the thread
1425 	   group */
1426 	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1427 	flush_signal_handlers(me, 0);
1428 
1429 	retval = set_cred_ucounts(bprm->cred);
1430 	if (retval < 0)
1431 		goto out_unlock;
1432 
1433 	/*
1434 	 * install the new credentials for this executable
1435 	 */
1436 	security_bprm_committing_creds(bprm);
1437 
1438 	commit_creds(bprm->cred);
1439 	bprm->cred = NULL;
1440 
1441 	/*
1442 	 * Disable monitoring for regular users
1443 	 * when executing setuid binaries. Must
1444 	 * wait until new credentials are committed
1445 	 * by commit_creds() above
1446 	 */
1447 	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1448 		perf_event_exit_task(me);
1449 	/*
1450 	 * cred_guard_mutex must be held at least to this point to prevent
1451 	 * ptrace_attach() from altering our determination of the task's
1452 	 * credentials; any time after this it may be unlocked.
1453 	 */
1454 	security_bprm_committed_creds(bprm);
1455 
1456 	/* Pass the opened binary to the interpreter. */
1457 	if (bprm->have_execfd) {
1458 		retval = get_unused_fd_flags(0);
1459 		if (retval < 0)
1460 			goto out_unlock;
1461 		fd_install(retval, bprm->executable);
1462 		bprm->executable = NULL;
1463 		bprm->execfd = retval;
1464 	}
1465 	return 0;
1466 
1467 out_unlock:
1468 	up_write(&me->signal->exec_update_lock);
1469 	if (!bprm->cred)
1470 		mutex_unlock(&me->signal->cred_guard_mutex);
1471 
1472 out:
1473 	return retval;
1474 }
1475 EXPORT_SYMBOL(begin_new_exec);
1476 
1477 void would_dump(struct linux_binprm *bprm, struct file *file)
1478 {
1479 	struct inode *inode = file_inode(file);
1480 	struct mnt_idmap *idmap = file_mnt_idmap(file);
1481 	if (inode_permission(idmap, inode, MAY_READ) < 0) {
1482 		struct user_namespace *old, *user_ns;
1483 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1484 
1485 		/* Ensure mm->user_ns contains the executable */
1486 		user_ns = old = bprm->mm->user_ns;
1487 		while ((user_ns != &init_user_ns) &&
1488 		       !privileged_wrt_inode_uidgid(user_ns, idmap, inode))
1489 			user_ns = user_ns->parent;
1490 
1491 		if (old != user_ns) {
1492 			bprm->mm->user_ns = get_user_ns(user_ns);
1493 			put_user_ns(old);
1494 		}
1495 	}
1496 }
1497 EXPORT_SYMBOL(would_dump);
1498 
1499 void setup_new_exec(struct linux_binprm * bprm)
1500 {
1501 	/* Setup things that can depend upon the personality */
1502 	struct task_struct *me = current;
1503 
1504 	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1505 
1506 	arch_setup_new_exec();
1507 
1508 	/* Set the new mm task size. We have to do that late because it may
1509 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1510 	 * some architectures like powerpc
1511 	 */
1512 	me->mm->task_size = TASK_SIZE;
1513 	up_write(&me->signal->exec_update_lock);
1514 	mutex_unlock(&me->signal->cred_guard_mutex);
1515 }
1516 EXPORT_SYMBOL(setup_new_exec);
1517 
1518 /* Runs immediately before start_thread() takes over. */
1519 void finalize_exec(struct linux_binprm *bprm)
1520 {
1521 	/* Store any stack rlimit changes before starting thread. */
1522 	task_lock(current->group_leader);
1523 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1524 	task_unlock(current->group_leader);
1525 }
1526 EXPORT_SYMBOL(finalize_exec);
1527 
1528 /*
1529  * Prepare credentials and lock ->cred_guard_mutex.
1530  * setup_new_exec() commits the new creds and drops the lock.
1531  * Or, if exec fails before, free_bprm() should release ->cred
1532  * and unlock.
1533  */
1534 static int prepare_bprm_creds(struct linux_binprm *bprm)
1535 {
1536 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1537 		return -ERESTARTNOINTR;
1538 
1539 	bprm->cred = prepare_exec_creds();
1540 	if (likely(bprm->cred))
1541 		return 0;
1542 
1543 	mutex_unlock(&current->signal->cred_guard_mutex);
1544 	return -ENOMEM;
1545 }
1546 
1547 /* Matches do_open_execat() */
1548 static void do_close_execat(struct file *file)
1549 {
1550 	if (!file)
1551 		return;
1552 	allow_write_access(file);
1553 	fput(file);
1554 }
1555 
1556 static void free_bprm(struct linux_binprm *bprm)
1557 {
1558 	if (bprm->mm) {
1559 		acct_arg_size(bprm, 0);
1560 		mmput(bprm->mm);
1561 	}
1562 	free_arg_pages(bprm);
1563 	if (bprm->cred) {
1564 		mutex_unlock(&current->signal->cred_guard_mutex);
1565 		abort_creds(bprm->cred);
1566 	}
1567 	do_close_execat(bprm->file);
1568 	if (bprm->executable)
1569 		fput(bprm->executable);
1570 	/* If a binfmt changed the interp, free it. */
1571 	if (bprm->interp != bprm->filename)
1572 		kfree(bprm->interp);
1573 	kfree(bprm->fdpath);
1574 	kfree(bprm);
1575 }
1576 
1577 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename, int flags)
1578 {
1579 	struct linux_binprm *bprm;
1580 	struct file *file;
1581 	int retval = -ENOMEM;
1582 
1583 	file = do_open_execat(fd, filename, flags);
1584 	if (IS_ERR(file))
1585 		return ERR_CAST(file);
1586 
1587 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1588 	if (!bprm) {
1589 		do_close_execat(file);
1590 		return ERR_PTR(-ENOMEM);
1591 	}
1592 
1593 	bprm->file = file;
1594 
1595 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1596 		bprm->filename = filename->name;
1597 	} else {
1598 		if (filename->name[0] == '\0')
1599 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1600 		else
1601 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1602 						  fd, filename->name);
1603 		if (!bprm->fdpath)
1604 			goto out_free;
1605 
1606 		/*
1607 		 * Record that a name derived from an O_CLOEXEC fd will be
1608 		 * inaccessible after exec.  This allows the code in exec to
1609 		 * choose to fail when the executable is not mmaped into the
1610 		 * interpreter and an open file descriptor is not passed to
1611 		 * the interpreter.  This makes for a better user experience
1612 		 * than having the interpreter start and then immediately fail
1613 		 * when it finds the executable is inaccessible.
1614 		 */
1615 		if (get_close_on_exec(fd))
1616 			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1617 
1618 		bprm->filename = bprm->fdpath;
1619 	}
1620 	bprm->interp = bprm->filename;
1621 
1622 	retval = bprm_mm_init(bprm);
1623 	if (!retval)
1624 		return bprm;
1625 
1626 out_free:
1627 	free_bprm(bprm);
1628 	return ERR_PTR(retval);
1629 }
1630 
1631 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1632 {
1633 	/* If a binfmt changed the interp, free it first. */
1634 	if (bprm->interp != bprm->filename)
1635 		kfree(bprm->interp);
1636 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1637 	if (!bprm->interp)
1638 		return -ENOMEM;
1639 	return 0;
1640 }
1641 EXPORT_SYMBOL(bprm_change_interp);
1642 
1643 /*
1644  * determine how safe it is to execute the proposed program
1645  * - the caller must hold ->cred_guard_mutex to protect against
1646  *   PTRACE_ATTACH or seccomp thread-sync
1647  */
1648 static void check_unsafe_exec(struct linux_binprm *bprm)
1649 {
1650 	struct task_struct *p = current, *t;
1651 	unsigned n_fs;
1652 
1653 	if (p->ptrace)
1654 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1655 
1656 	/*
1657 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1658 	 * mess up.
1659 	 */
1660 	if (task_no_new_privs(current))
1661 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1662 
1663 	/*
1664 	 * If another task is sharing our fs, we cannot safely
1665 	 * suid exec because the differently privileged task
1666 	 * will be able to manipulate the current directory, etc.
1667 	 * It would be nice to force an unshare instead...
1668 	 */
1669 	n_fs = 1;
1670 	spin_lock(&p->fs->lock);
1671 	rcu_read_lock();
1672 	for_other_threads(p, t) {
1673 		if (t->fs == p->fs)
1674 			n_fs++;
1675 	}
1676 	rcu_read_unlock();
1677 
1678 	/* "users" and "in_exec" locked for copy_fs() */
1679 	if (p->fs->users > n_fs)
1680 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1681 	else
1682 		p->fs->in_exec = 1;
1683 	spin_unlock(&p->fs->lock);
1684 }
1685 
1686 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1687 {
1688 	/* Handle suid and sgid on files */
1689 	struct mnt_idmap *idmap;
1690 	struct inode *inode = file_inode(file);
1691 	unsigned int mode;
1692 	vfsuid_t vfsuid;
1693 	vfsgid_t vfsgid;
1694 
1695 	if (!mnt_may_suid(file->f_path.mnt))
1696 		return;
1697 
1698 	if (task_no_new_privs(current))
1699 		return;
1700 
1701 	mode = READ_ONCE(inode->i_mode);
1702 	if (!(mode & (S_ISUID|S_ISGID)))
1703 		return;
1704 
1705 	idmap = file_mnt_idmap(file);
1706 
1707 	/* Be careful if suid/sgid is set */
1708 	inode_lock(inode);
1709 
1710 	/* reload atomically mode/uid/gid now that lock held */
1711 	mode = inode->i_mode;
1712 	vfsuid = i_uid_into_vfsuid(idmap, inode);
1713 	vfsgid = i_gid_into_vfsgid(idmap, inode);
1714 	inode_unlock(inode);
1715 
1716 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1717 	if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1718 	    !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1719 		return;
1720 
1721 	if (mode & S_ISUID) {
1722 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1723 		bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1724 	}
1725 
1726 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1727 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1728 		bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1729 	}
1730 }
1731 
1732 /*
1733  * Compute brpm->cred based upon the final binary.
1734  */
1735 static int bprm_creds_from_file(struct linux_binprm *bprm)
1736 {
1737 	/* Compute creds based on which file? */
1738 	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1739 
1740 	bprm_fill_uid(bprm, file);
1741 	return security_bprm_creds_from_file(bprm, file);
1742 }
1743 
1744 /*
1745  * Fill the binprm structure from the inode.
1746  * Read the first BINPRM_BUF_SIZE bytes
1747  *
1748  * This may be called multiple times for binary chains (scripts for example).
1749  */
1750 static int prepare_binprm(struct linux_binprm *bprm)
1751 {
1752 	loff_t pos = 0;
1753 
1754 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1755 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1756 }
1757 
1758 /*
1759  * Arguments are '\0' separated strings found at the location bprm->p
1760  * points to; chop off the first by relocating brpm->p to right after
1761  * the first '\0' encountered.
1762  */
1763 int remove_arg_zero(struct linux_binprm *bprm)
1764 {
1765 	unsigned long offset;
1766 	char *kaddr;
1767 	struct page *page;
1768 
1769 	if (!bprm->argc)
1770 		return 0;
1771 
1772 	do {
1773 		offset = bprm->p & ~PAGE_MASK;
1774 		page = get_arg_page(bprm, bprm->p, 0);
1775 		if (!page)
1776 			return -EFAULT;
1777 		kaddr = kmap_local_page(page);
1778 
1779 		for (; offset < PAGE_SIZE && kaddr[offset];
1780 				offset++, bprm->p++)
1781 			;
1782 
1783 		kunmap_local(kaddr);
1784 		put_arg_page(page);
1785 	} while (offset == PAGE_SIZE);
1786 
1787 	bprm->p++;
1788 	bprm->argc--;
1789 
1790 	return 0;
1791 }
1792 EXPORT_SYMBOL(remove_arg_zero);
1793 
1794 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1795 /*
1796  * cycle the list of binary formats handler, until one recognizes the image
1797  */
1798 static int search_binary_handler(struct linux_binprm *bprm)
1799 {
1800 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1801 	struct linux_binfmt *fmt;
1802 	int retval;
1803 
1804 	retval = prepare_binprm(bprm);
1805 	if (retval < 0)
1806 		return retval;
1807 
1808 	retval = security_bprm_check(bprm);
1809 	if (retval)
1810 		return retval;
1811 
1812 	retval = -ENOENT;
1813  retry:
1814 	read_lock(&binfmt_lock);
1815 	list_for_each_entry(fmt, &formats, lh) {
1816 		if (!try_module_get(fmt->module))
1817 			continue;
1818 		read_unlock(&binfmt_lock);
1819 
1820 		retval = fmt->load_binary(bprm);
1821 
1822 		read_lock(&binfmt_lock);
1823 		put_binfmt(fmt);
1824 		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1825 			read_unlock(&binfmt_lock);
1826 			return retval;
1827 		}
1828 	}
1829 	read_unlock(&binfmt_lock);
1830 
1831 	if (need_retry) {
1832 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1833 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1834 			return retval;
1835 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1836 			return retval;
1837 		need_retry = false;
1838 		goto retry;
1839 	}
1840 
1841 	return retval;
1842 }
1843 
1844 /* binfmt handlers will call back into begin_new_exec() on success. */
1845 static int exec_binprm(struct linux_binprm *bprm)
1846 {
1847 	pid_t old_pid, old_vpid;
1848 	int ret, depth;
1849 
1850 	/* Need to fetch pid before load_binary changes it */
1851 	old_pid = current->pid;
1852 	rcu_read_lock();
1853 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1854 	rcu_read_unlock();
1855 
1856 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1857 	for (depth = 0;; depth++) {
1858 		struct file *exec;
1859 		if (depth > 5)
1860 			return -ELOOP;
1861 
1862 		ret = search_binary_handler(bprm);
1863 		if (ret < 0)
1864 			return ret;
1865 		if (!bprm->interpreter)
1866 			break;
1867 
1868 		exec = bprm->file;
1869 		bprm->file = bprm->interpreter;
1870 		bprm->interpreter = NULL;
1871 
1872 		allow_write_access(exec);
1873 		if (unlikely(bprm->have_execfd)) {
1874 			if (bprm->executable) {
1875 				fput(exec);
1876 				return -ENOEXEC;
1877 			}
1878 			bprm->executable = exec;
1879 		} else
1880 			fput(exec);
1881 	}
1882 
1883 	audit_bprm(bprm);
1884 	trace_sched_process_exec(current, old_pid, bprm);
1885 	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1886 	proc_exec_connector(current);
1887 	return 0;
1888 }
1889 
1890 static int bprm_execve(struct linux_binprm *bprm)
1891 {
1892 	int retval;
1893 
1894 	retval = prepare_bprm_creds(bprm);
1895 	if (retval)
1896 		return retval;
1897 
1898 	/*
1899 	 * Check for unsafe execution states before exec_binprm(), which
1900 	 * will call back into begin_new_exec(), into bprm_creds_from_file(),
1901 	 * where setuid-ness is evaluated.
1902 	 */
1903 	check_unsafe_exec(bprm);
1904 	current->in_execve = 1;
1905 	sched_mm_cid_before_execve(current);
1906 
1907 	sched_exec();
1908 
1909 	/* Set the unchanging part of bprm->cred */
1910 	retval = security_bprm_creds_for_exec(bprm);
1911 	if (retval)
1912 		goto out;
1913 
1914 	retval = exec_binprm(bprm);
1915 	if (retval < 0)
1916 		goto out;
1917 
1918 	sched_mm_cid_after_execve(current);
1919 	/* execve succeeded */
1920 	current->fs->in_exec = 0;
1921 	current->in_execve = 0;
1922 	rseq_execve(current);
1923 	user_events_execve(current);
1924 	acct_update_integrals(current);
1925 	task_numa_free(current, false);
1926 	return retval;
1927 
1928 out:
1929 	/*
1930 	 * If past the point of no return ensure the code never
1931 	 * returns to the userspace process.  Use an existing fatal
1932 	 * signal if present otherwise terminate the process with
1933 	 * SIGSEGV.
1934 	 */
1935 	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1936 		force_fatal_sig(SIGSEGV);
1937 
1938 	sched_mm_cid_after_execve(current);
1939 	current->fs->in_exec = 0;
1940 	current->in_execve = 0;
1941 
1942 	return retval;
1943 }
1944 
1945 static int do_execveat_common(int fd, struct filename *filename,
1946 			      struct user_arg_ptr argv,
1947 			      struct user_arg_ptr envp,
1948 			      int flags)
1949 {
1950 	struct linux_binprm *bprm;
1951 	int retval;
1952 
1953 	if (IS_ERR(filename))
1954 		return PTR_ERR(filename);
1955 
1956 	/*
1957 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1958 	 * set*uid() to execve() because too many poorly written programs
1959 	 * don't check setuid() return code.  Here we additionally recheck
1960 	 * whether NPROC limit is still exceeded.
1961 	 */
1962 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1963 	    is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1964 		retval = -EAGAIN;
1965 		goto out_ret;
1966 	}
1967 
1968 	/* We're below the limit (still or again), so we don't want to make
1969 	 * further execve() calls fail. */
1970 	current->flags &= ~PF_NPROC_EXCEEDED;
1971 
1972 	bprm = alloc_bprm(fd, filename, flags);
1973 	if (IS_ERR(bprm)) {
1974 		retval = PTR_ERR(bprm);
1975 		goto out_ret;
1976 	}
1977 
1978 	retval = count(argv, MAX_ARG_STRINGS);
1979 	if (retval == 0)
1980 		pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1981 			     current->comm, bprm->filename);
1982 	if (retval < 0)
1983 		goto out_free;
1984 	bprm->argc = retval;
1985 
1986 	retval = count(envp, MAX_ARG_STRINGS);
1987 	if (retval < 0)
1988 		goto out_free;
1989 	bprm->envc = retval;
1990 
1991 	retval = bprm_stack_limits(bprm);
1992 	if (retval < 0)
1993 		goto out_free;
1994 
1995 	retval = copy_string_kernel(bprm->filename, bprm);
1996 	if (retval < 0)
1997 		goto out_free;
1998 	bprm->exec = bprm->p;
1999 
2000 	retval = copy_strings(bprm->envc, envp, bprm);
2001 	if (retval < 0)
2002 		goto out_free;
2003 
2004 	retval = copy_strings(bprm->argc, argv, bprm);
2005 	if (retval < 0)
2006 		goto out_free;
2007 
2008 	/*
2009 	 * When argv is empty, add an empty string ("") as argv[0] to
2010 	 * ensure confused userspace programs that start processing
2011 	 * from argv[1] won't end up walking envp. See also
2012 	 * bprm_stack_limits().
2013 	 */
2014 	if (bprm->argc == 0) {
2015 		retval = copy_string_kernel("", bprm);
2016 		if (retval < 0)
2017 			goto out_free;
2018 		bprm->argc = 1;
2019 	}
2020 
2021 	retval = bprm_execve(bprm);
2022 out_free:
2023 	free_bprm(bprm);
2024 
2025 out_ret:
2026 	putname(filename);
2027 	return retval;
2028 }
2029 
2030 int kernel_execve(const char *kernel_filename,
2031 		  const char *const *argv, const char *const *envp)
2032 {
2033 	struct filename *filename;
2034 	struct linux_binprm *bprm;
2035 	int fd = AT_FDCWD;
2036 	int retval;
2037 
2038 	/* It is non-sense for kernel threads to call execve */
2039 	if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
2040 		return -EINVAL;
2041 
2042 	filename = getname_kernel(kernel_filename);
2043 	if (IS_ERR(filename))
2044 		return PTR_ERR(filename);
2045 
2046 	bprm = alloc_bprm(fd, filename, 0);
2047 	if (IS_ERR(bprm)) {
2048 		retval = PTR_ERR(bprm);
2049 		goto out_ret;
2050 	}
2051 
2052 	retval = count_strings_kernel(argv);
2053 	if (WARN_ON_ONCE(retval == 0))
2054 		retval = -EINVAL;
2055 	if (retval < 0)
2056 		goto out_free;
2057 	bprm->argc = retval;
2058 
2059 	retval = count_strings_kernel(envp);
2060 	if (retval < 0)
2061 		goto out_free;
2062 	bprm->envc = retval;
2063 
2064 	retval = bprm_stack_limits(bprm);
2065 	if (retval < 0)
2066 		goto out_free;
2067 
2068 	retval = copy_string_kernel(bprm->filename, bprm);
2069 	if (retval < 0)
2070 		goto out_free;
2071 	bprm->exec = bprm->p;
2072 
2073 	retval = copy_strings_kernel(bprm->envc, envp, bprm);
2074 	if (retval < 0)
2075 		goto out_free;
2076 
2077 	retval = copy_strings_kernel(bprm->argc, argv, bprm);
2078 	if (retval < 0)
2079 		goto out_free;
2080 
2081 	retval = bprm_execve(bprm);
2082 out_free:
2083 	free_bprm(bprm);
2084 out_ret:
2085 	putname(filename);
2086 	return retval;
2087 }
2088 
2089 static int do_execve(struct filename *filename,
2090 	const char __user *const __user *__argv,
2091 	const char __user *const __user *__envp)
2092 {
2093 	struct user_arg_ptr argv = { .ptr.native = __argv };
2094 	struct user_arg_ptr envp = { .ptr.native = __envp };
2095 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2096 }
2097 
2098 static int do_execveat(int fd, struct filename *filename,
2099 		const char __user *const __user *__argv,
2100 		const char __user *const __user *__envp,
2101 		int flags)
2102 {
2103 	struct user_arg_ptr argv = { .ptr.native = __argv };
2104 	struct user_arg_ptr envp = { .ptr.native = __envp };
2105 
2106 	return do_execveat_common(fd, filename, argv, envp, flags);
2107 }
2108 
2109 #ifdef CONFIG_COMPAT
2110 static int compat_do_execve(struct filename *filename,
2111 	const compat_uptr_t __user *__argv,
2112 	const compat_uptr_t __user *__envp)
2113 {
2114 	struct user_arg_ptr argv = {
2115 		.is_compat = true,
2116 		.ptr.compat = __argv,
2117 	};
2118 	struct user_arg_ptr envp = {
2119 		.is_compat = true,
2120 		.ptr.compat = __envp,
2121 	};
2122 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2123 }
2124 
2125 static int compat_do_execveat(int fd, struct filename *filename,
2126 			      const compat_uptr_t __user *__argv,
2127 			      const compat_uptr_t __user *__envp,
2128 			      int flags)
2129 {
2130 	struct user_arg_ptr argv = {
2131 		.is_compat = true,
2132 		.ptr.compat = __argv,
2133 	};
2134 	struct user_arg_ptr envp = {
2135 		.is_compat = true,
2136 		.ptr.compat = __envp,
2137 	};
2138 	return do_execveat_common(fd, filename, argv, envp, flags);
2139 }
2140 #endif
2141 
2142 void set_binfmt(struct linux_binfmt *new)
2143 {
2144 	struct mm_struct *mm = current->mm;
2145 
2146 	if (mm->binfmt)
2147 		module_put(mm->binfmt->module);
2148 
2149 	mm->binfmt = new;
2150 	if (new)
2151 		__module_get(new->module);
2152 }
2153 EXPORT_SYMBOL(set_binfmt);
2154 
2155 /*
2156  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2157  */
2158 void set_dumpable(struct mm_struct *mm, int value)
2159 {
2160 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2161 		return;
2162 
2163 	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2164 }
2165 
2166 SYSCALL_DEFINE3(execve,
2167 		const char __user *, filename,
2168 		const char __user *const __user *, argv,
2169 		const char __user *const __user *, envp)
2170 {
2171 	return do_execve(getname(filename), argv, envp);
2172 }
2173 
2174 SYSCALL_DEFINE5(execveat,
2175 		int, fd, const char __user *, filename,
2176 		const char __user *const __user *, argv,
2177 		const char __user *const __user *, envp,
2178 		int, flags)
2179 {
2180 	return do_execveat(fd,
2181 			   getname_uflags(filename, flags),
2182 			   argv, envp, flags);
2183 }
2184 
2185 #ifdef CONFIG_COMPAT
2186 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2187 	const compat_uptr_t __user *, argv,
2188 	const compat_uptr_t __user *, envp)
2189 {
2190 	return compat_do_execve(getname(filename), argv, envp);
2191 }
2192 
2193 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2194 		       const char __user *, filename,
2195 		       const compat_uptr_t __user *, argv,
2196 		       const compat_uptr_t __user *, envp,
2197 		       int,  flags)
2198 {
2199 	return compat_do_execveat(fd,
2200 				  getname_uflags(filename, flags),
2201 				  argv, envp, flags);
2202 }
2203 #endif
2204 
2205 #ifdef CONFIG_SYSCTL
2206 
2207 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
2208 		void *buffer, size_t *lenp, loff_t *ppos)
2209 {
2210 	int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2211 
2212 	if (!error)
2213 		validate_coredump_safety();
2214 	return error;
2215 }
2216 
2217 static struct ctl_table fs_exec_sysctls[] = {
2218 	{
2219 		.procname	= "suid_dumpable",
2220 		.data		= &suid_dumpable,
2221 		.maxlen		= sizeof(int),
2222 		.mode		= 0644,
2223 		.proc_handler	= proc_dointvec_minmax_coredump,
2224 		.extra1		= SYSCTL_ZERO,
2225 		.extra2		= SYSCTL_TWO,
2226 	},
2227 };
2228 
2229 static int __init init_fs_exec_sysctls(void)
2230 {
2231 	register_sysctl_init("fs", fs_exec_sysctls);
2232 	return 0;
2233 }
2234 
2235 fs_initcall(init_fs_exec_sysctls);
2236 #endif /* CONFIG_SYSCTL */
2237 
2238 #ifdef CONFIG_EXEC_KUNIT_TEST
2239 #include "exec_test.c"
2240 #endif
2241