1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/buffer.c 4 * 5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 6 */ 7 8 /* 9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 10 * 11 * Removed a lot of unnecessary code and simplified things now that 12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 13 * 14 * Speed up hash, lru, and free list operations. Use gfp() for allocating 15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 16 * 17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 18 * 19 * async buffer flushing, 1999 Andrea Arcangeli <[email protected]> 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/sched/signal.h> 24 #include <linux/syscalls.h> 25 #include <linux/fs.h> 26 #include <linux/iomap.h> 27 #include <linux/mm.h> 28 #include <linux/percpu.h> 29 #include <linux/slab.h> 30 #include <linux/capability.h> 31 #include <linux/blkdev.h> 32 #include <linux/file.h> 33 #include <linux/quotaops.h> 34 #include <linux/highmem.h> 35 #include <linux/export.h> 36 #include <linux/backing-dev.h> 37 #include <linux/writeback.h> 38 #include <linux/hash.h> 39 #include <linux/suspend.h> 40 #include <linux/buffer_head.h> 41 #include <linux/task_io_accounting_ops.h> 42 #include <linux/bio.h> 43 #include <linux/cpu.h> 44 #include <linux/bitops.h> 45 #include <linux/mpage.h> 46 #include <linux/bit_spinlock.h> 47 #include <linux/pagevec.h> 48 #include <linux/sched/mm.h> 49 #include <trace/events/block.h> 50 #include <linux/fscrypt.h> 51 #include <linux/fsverity.h> 52 #include <linux/sched/isolation.h> 53 54 #include "internal.h" 55 56 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 57 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, 58 enum rw_hint hint, struct writeback_control *wbc); 59 60 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 61 62 inline void touch_buffer(struct buffer_head *bh) 63 { 64 trace_block_touch_buffer(bh); 65 folio_mark_accessed(bh->b_folio); 66 } 67 EXPORT_SYMBOL(touch_buffer); 68 69 void __lock_buffer(struct buffer_head *bh) 70 { 71 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 72 } 73 EXPORT_SYMBOL(__lock_buffer); 74 75 void unlock_buffer(struct buffer_head *bh) 76 { 77 clear_bit_unlock(BH_Lock, &bh->b_state); 78 smp_mb__after_atomic(); 79 wake_up_bit(&bh->b_state, BH_Lock); 80 } 81 EXPORT_SYMBOL(unlock_buffer); 82 83 /* 84 * Returns if the folio has dirty or writeback buffers. If all the buffers 85 * are unlocked and clean then the folio_test_dirty information is stale. If 86 * any of the buffers are locked, it is assumed they are locked for IO. 87 */ 88 void buffer_check_dirty_writeback(struct folio *folio, 89 bool *dirty, bool *writeback) 90 { 91 struct buffer_head *head, *bh; 92 *dirty = false; 93 *writeback = false; 94 95 BUG_ON(!folio_test_locked(folio)); 96 97 head = folio_buffers(folio); 98 if (!head) 99 return; 100 101 if (folio_test_writeback(folio)) 102 *writeback = true; 103 104 bh = head; 105 do { 106 if (buffer_locked(bh)) 107 *writeback = true; 108 109 if (buffer_dirty(bh)) 110 *dirty = true; 111 112 bh = bh->b_this_page; 113 } while (bh != head); 114 } 115 116 /* 117 * Block until a buffer comes unlocked. This doesn't stop it 118 * from becoming locked again - you have to lock it yourself 119 * if you want to preserve its state. 120 */ 121 void __wait_on_buffer(struct buffer_head * bh) 122 { 123 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 124 } 125 EXPORT_SYMBOL(__wait_on_buffer); 126 127 static void buffer_io_error(struct buffer_head *bh, char *msg) 128 { 129 if (!test_bit(BH_Quiet, &bh->b_state)) 130 printk_ratelimited(KERN_ERR 131 "Buffer I/O error on dev %pg, logical block %llu%s\n", 132 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); 133 } 134 135 /* 136 * End-of-IO handler helper function which does not touch the bh after 137 * unlocking it. 138 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 139 * a race there is benign: unlock_buffer() only use the bh's address for 140 * hashing after unlocking the buffer, so it doesn't actually touch the bh 141 * itself. 142 */ 143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 144 { 145 if (uptodate) { 146 set_buffer_uptodate(bh); 147 } else { 148 /* This happens, due to failed read-ahead attempts. */ 149 clear_buffer_uptodate(bh); 150 } 151 unlock_buffer(bh); 152 } 153 154 /* 155 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 156 * unlock the buffer. 157 */ 158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 159 { 160 __end_buffer_read_notouch(bh, uptodate); 161 put_bh(bh); 162 } 163 EXPORT_SYMBOL(end_buffer_read_sync); 164 165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 166 { 167 if (uptodate) { 168 set_buffer_uptodate(bh); 169 } else { 170 buffer_io_error(bh, ", lost sync page write"); 171 mark_buffer_write_io_error(bh); 172 clear_buffer_uptodate(bh); 173 } 174 unlock_buffer(bh); 175 put_bh(bh); 176 } 177 EXPORT_SYMBOL(end_buffer_write_sync); 178 179 /* 180 * Various filesystems appear to want __find_get_block to be non-blocking. 181 * But it's the page lock which protects the buffers. To get around this, 182 * we get exclusion from try_to_free_buffers with the blockdev mapping's 183 * i_private_lock. 184 * 185 * Hack idea: for the blockdev mapping, i_private_lock contention 186 * may be quite high. This code could TryLock the page, and if that 187 * succeeds, there is no need to take i_private_lock. 188 */ 189 static struct buffer_head * 190 __find_get_block_slow(struct block_device *bdev, sector_t block) 191 { 192 struct address_space *bd_mapping = bdev->bd_mapping; 193 const int blkbits = bd_mapping->host->i_blkbits; 194 struct buffer_head *ret = NULL; 195 pgoff_t index; 196 struct buffer_head *bh; 197 struct buffer_head *head; 198 struct folio *folio; 199 int all_mapped = 1; 200 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1); 201 202 index = ((loff_t)block << blkbits) / PAGE_SIZE; 203 folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0); 204 if (IS_ERR(folio)) 205 goto out; 206 207 spin_lock(&bd_mapping->i_private_lock); 208 head = folio_buffers(folio); 209 if (!head) 210 goto out_unlock; 211 bh = head; 212 do { 213 if (!buffer_mapped(bh)) 214 all_mapped = 0; 215 else if (bh->b_blocknr == block) { 216 ret = bh; 217 get_bh(bh); 218 goto out_unlock; 219 } 220 bh = bh->b_this_page; 221 } while (bh != head); 222 223 /* we might be here because some of the buffers on this page are 224 * not mapped. This is due to various races between 225 * file io on the block device and getblk. It gets dealt with 226 * elsewhere, don't buffer_error if we had some unmapped buffers 227 */ 228 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE); 229 if (all_mapped && __ratelimit(&last_warned)) { 230 printk("__find_get_block_slow() failed. block=%llu, " 231 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, " 232 "device %pg blocksize: %d\n", 233 (unsigned long long)block, 234 (unsigned long long)bh->b_blocknr, 235 bh->b_state, bh->b_size, bdev, 236 1 << blkbits); 237 } 238 out_unlock: 239 spin_unlock(&bd_mapping->i_private_lock); 240 folio_put(folio); 241 out: 242 return ret; 243 } 244 245 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 246 { 247 unsigned long flags; 248 struct buffer_head *first; 249 struct buffer_head *tmp; 250 struct folio *folio; 251 int folio_uptodate = 1; 252 253 BUG_ON(!buffer_async_read(bh)); 254 255 folio = bh->b_folio; 256 if (uptodate) { 257 set_buffer_uptodate(bh); 258 } else { 259 clear_buffer_uptodate(bh); 260 buffer_io_error(bh, ", async page read"); 261 } 262 263 /* 264 * Be _very_ careful from here on. Bad things can happen if 265 * two buffer heads end IO at almost the same time and both 266 * decide that the page is now completely done. 267 */ 268 first = folio_buffers(folio); 269 spin_lock_irqsave(&first->b_uptodate_lock, flags); 270 clear_buffer_async_read(bh); 271 unlock_buffer(bh); 272 tmp = bh; 273 do { 274 if (!buffer_uptodate(tmp)) 275 folio_uptodate = 0; 276 if (buffer_async_read(tmp)) { 277 BUG_ON(!buffer_locked(tmp)); 278 goto still_busy; 279 } 280 tmp = tmp->b_this_page; 281 } while (tmp != bh); 282 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 283 284 folio_end_read(folio, folio_uptodate); 285 return; 286 287 still_busy: 288 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 289 return; 290 } 291 292 struct postprocess_bh_ctx { 293 struct work_struct work; 294 struct buffer_head *bh; 295 }; 296 297 static void verify_bh(struct work_struct *work) 298 { 299 struct postprocess_bh_ctx *ctx = 300 container_of(work, struct postprocess_bh_ctx, work); 301 struct buffer_head *bh = ctx->bh; 302 bool valid; 303 304 valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh)); 305 end_buffer_async_read(bh, valid); 306 kfree(ctx); 307 } 308 309 static bool need_fsverity(struct buffer_head *bh) 310 { 311 struct folio *folio = bh->b_folio; 312 struct inode *inode = folio->mapping->host; 313 314 return fsverity_active(inode) && 315 /* needed by ext4 */ 316 folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); 317 } 318 319 static void decrypt_bh(struct work_struct *work) 320 { 321 struct postprocess_bh_ctx *ctx = 322 container_of(work, struct postprocess_bh_ctx, work); 323 struct buffer_head *bh = ctx->bh; 324 int err; 325 326 err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size, 327 bh_offset(bh)); 328 if (err == 0 && need_fsverity(bh)) { 329 /* 330 * We use different work queues for decryption and for verity 331 * because verity may require reading metadata pages that need 332 * decryption, and we shouldn't recurse to the same workqueue. 333 */ 334 INIT_WORK(&ctx->work, verify_bh); 335 fsverity_enqueue_verify_work(&ctx->work); 336 return; 337 } 338 end_buffer_async_read(bh, err == 0); 339 kfree(ctx); 340 } 341 342 /* 343 * I/O completion handler for block_read_full_folio() - pages 344 * which come unlocked at the end of I/O. 345 */ 346 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate) 347 { 348 struct inode *inode = bh->b_folio->mapping->host; 349 bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode); 350 bool verify = need_fsverity(bh); 351 352 /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */ 353 if (uptodate && (decrypt || verify)) { 354 struct postprocess_bh_ctx *ctx = 355 kmalloc(sizeof(*ctx), GFP_ATOMIC); 356 357 if (ctx) { 358 ctx->bh = bh; 359 if (decrypt) { 360 INIT_WORK(&ctx->work, decrypt_bh); 361 fscrypt_enqueue_decrypt_work(&ctx->work); 362 } else { 363 INIT_WORK(&ctx->work, verify_bh); 364 fsverity_enqueue_verify_work(&ctx->work); 365 } 366 return; 367 } 368 uptodate = 0; 369 } 370 end_buffer_async_read(bh, uptodate); 371 } 372 373 /* 374 * Completion handler for block_write_full_folio() - folios which are unlocked 375 * during I/O, and which have the writeback flag cleared upon I/O completion. 376 */ 377 static void end_buffer_async_write(struct buffer_head *bh, int uptodate) 378 { 379 unsigned long flags; 380 struct buffer_head *first; 381 struct buffer_head *tmp; 382 struct folio *folio; 383 384 BUG_ON(!buffer_async_write(bh)); 385 386 folio = bh->b_folio; 387 if (uptodate) { 388 set_buffer_uptodate(bh); 389 } else { 390 buffer_io_error(bh, ", lost async page write"); 391 mark_buffer_write_io_error(bh); 392 clear_buffer_uptodate(bh); 393 } 394 395 first = folio_buffers(folio); 396 spin_lock_irqsave(&first->b_uptodate_lock, flags); 397 398 clear_buffer_async_write(bh); 399 unlock_buffer(bh); 400 tmp = bh->b_this_page; 401 while (tmp != bh) { 402 if (buffer_async_write(tmp)) { 403 BUG_ON(!buffer_locked(tmp)); 404 goto still_busy; 405 } 406 tmp = tmp->b_this_page; 407 } 408 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 409 folio_end_writeback(folio); 410 return; 411 412 still_busy: 413 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 414 return; 415 } 416 417 /* 418 * If a page's buffers are under async readin (end_buffer_async_read 419 * completion) then there is a possibility that another thread of 420 * control could lock one of the buffers after it has completed 421 * but while some of the other buffers have not completed. This 422 * locked buffer would confuse end_buffer_async_read() into not unlocking 423 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 424 * that this buffer is not under async I/O. 425 * 426 * The page comes unlocked when it has no locked buffer_async buffers 427 * left. 428 * 429 * PageLocked prevents anyone starting new async I/O reads any of 430 * the buffers. 431 * 432 * PageWriteback is used to prevent simultaneous writeout of the same 433 * page. 434 * 435 * PageLocked prevents anyone from starting writeback of a page which is 436 * under read I/O (PageWriteback is only ever set against a locked page). 437 */ 438 static void mark_buffer_async_read(struct buffer_head *bh) 439 { 440 bh->b_end_io = end_buffer_async_read_io; 441 set_buffer_async_read(bh); 442 } 443 444 static void mark_buffer_async_write_endio(struct buffer_head *bh, 445 bh_end_io_t *handler) 446 { 447 bh->b_end_io = handler; 448 set_buffer_async_write(bh); 449 } 450 451 void mark_buffer_async_write(struct buffer_head *bh) 452 { 453 mark_buffer_async_write_endio(bh, end_buffer_async_write); 454 } 455 EXPORT_SYMBOL(mark_buffer_async_write); 456 457 458 /* 459 * fs/buffer.c contains helper functions for buffer-backed address space's 460 * fsync functions. A common requirement for buffer-based filesystems is 461 * that certain data from the backing blockdev needs to be written out for 462 * a successful fsync(). For example, ext2 indirect blocks need to be 463 * written back and waited upon before fsync() returns. 464 * 465 * The functions mark_buffer_dirty_inode(), fsync_inode_buffers(), 466 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 467 * management of a list of dependent buffers at ->i_mapping->i_private_list. 468 * 469 * Locking is a little subtle: try_to_free_buffers() will remove buffers 470 * from their controlling inode's queue when they are being freed. But 471 * try_to_free_buffers() will be operating against the *blockdev* mapping 472 * at the time, not against the S_ISREG file which depends on those buffers. 473 * So the locking for i_private_list is via the i_private_lock in the address_space 474 * which backs the buffers. Which is different from the address_space 475 * against which the buffers are listed. So for a particular address_space, 476 * mapping->i_private_lock does *not* protect mapping->i_private_list! In fact, 477 * mapping->i_private_list will always be protected by the backing blockdev's 478 * ->i_private_lock. 479 * 480 * Which introduces a requirement: all buffers on an address_space's 481 * ->i_private_list must be from the same address_space: the blockdev's. 482 * 483 * address_spaces which do not place buffers at ->i_private_list via these 484 * utility functions are free to use i_private_lock and i_private_list for 485 * whatever they want. The only requirement is that list_empty(i_private_list) 486 * be true at clear_inode() time. 487 * 488 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 489 * filesystems should do that. invalidate_inode_buffers() should just go 490 * BUG_ON(!list_empty). 491 * 492 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 493 * take an address_space, not an inode. And it should be called 494 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 495 * queued up. 496 * 497 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 498 * list if it is already on a list. Because if the buffer is on a list, 499 * it *must* already be on the right one. If not, the filesystem is being 500 * silly. This will save a ton of locking. But first we have to ensure 501 * that buffers are taken *off* the old inode's list when they are freed 502 * (presumably in truncate). That requires careful auditing of all 503 * filesystems (do it inside bforget()). It could also be done by bringing 504 * b_inode back. 505 */ 506 507 /* 508 * The buffer's backing address_space's i_private_lock must be held 509 */ 510 static void __remove_assoc_queue(struct buffer_head *bh) 511 { 512 list_del_init(&bh->b_assoc_buffers); 513 WARN_ON(!bh->b_assoc_map); 514 bh->b_assoc_map = NULL; 515 } 516 517 int inode_has_buffers(struct inode *inode) 518 { 519 return !list_empty(&inode->i_data.i_private_list); 520 } 521 522 /* 523 * osync is designed to support O_SYNC io. It waits synchronously for 524 * all already-submitted IO to complete, but does not queue any new 525 * writes to the disk. 526 * 527 * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer 528 * as you dirty the buffers, and then use osync_inode_buffers to wait for 529 * completion. Any other dirty buffers which are not yet queued for 530 * write will not be flushed to disk by the osync. 531 */ 532 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 533 { 534 struct buffer_head *bh; 535 struct list_head *p; 536 int err = 0; 537 538 spin_lock(lock); 539 repeat: 540 list_for_each_prev(p, list) { 541 bh = BH_ENTRY(p); 542 if (buffer_locked(bh)) { 543 get_bh(bh); 544 spin_unlock(lock); 545 wait_on_buffer(bh); 546 if (!buffer_uptodate(bh)) 547 err = -EIO; 548 brelse(bh); 549 spin_lock(lock); 550 goto repeat; 551 } 552 } 553 spin_unlock(lock); 554 return err; 555 } 556 557 /** 558 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 559 * @mapping: the mapping which wants those buffers written 560 * 561 * Starts I/O against the buffers at mapping->i_private_list, and waits upon 562 * that I/O. 563 * 564 * Basically, this is a convenience function for fsync(). 565 * @mapping is a file or directory which needs those buffers to be written for 566 * a successful fsync(). 567 */ 568 int sync_mapping_buffers(struct address_space *mapping) 569 { 570 struct address_space *buffer_mapping = mapping->i_private_data; 571 572 if (buffer_mapping == NULL || list_empty(&mapping->i_private_list)) 573 return 0; 574 575 return fsync_buffers_list(&buffer_mapping->i_private_lock, 576 &mapping->i_private_list); 577 } 578 EXPORT_SYMBOL(sync_mapping_buffers); 579 580 /** 581 * generic_buffers_fsync_noflush - generic buffer fsync implementation 582 * for simple filesystems with no inode lock 583 * 584 * @file: file to synchronize 585 * @start: start offset in bytes 586 * @end: end offset in bytes (inclusive) 587 * @datasync: only synchronize essential metadata if true 588 * 589 * This is a generic implementation of the fsync method for simple 590 * filesystems which track all non-inode metadata in the buffers list 591 * hanging off the address_space structure. 592 */ 593 int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end, 594 bool datasync) 595 { 596 struct inode *inode = file->f_mapping->host; 597 int err; 598 int ret; 599 600 err = file_write_and_wait_range(file, start, end); 601 if (err) 602 return err; 603 604 ret = sync_mapping_buffers(inode->i_mapping); 605 if (!(inode->i_state & I_DIRTY_ALL)) 606 goto out; 607 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 608 goto out; 609 610 err = sync_inode_metadata(inode, 1); 611 if (ret == 0) 612 ret = err; 613 614 out: 615 /* check and advance again to catch errors after syncing out buffers */ 616 err = file_check_and_advance_wb_err(file); 617 if (ret == 0) 618 ret = err; 619 return ret; 620 } 621 EXPORT_SYMBOL(generic_buffers_fsync_noflush); 622 623 /** 624 * generic_buffers_fsync - generic buffer fsync implementation 625 * for simple filesystems with no inode lock 626 * 627 * @file: file to synchronize 628 * @start: start offset in bytes 629 * @end: end offset in bytes (inclusive) 630 * @datasync: only synchronize essential metadata if true 631 * 632 * This is a generic implementation of the fsync method for simple 633 * filesystems which track all non-inode metadata in the buffers list 634 * hanging off the address_space structure. This also makes sure that 635 * a device cache flush operation is called at the end. 636 */ 637 int generic_buffers_fsync(struct file *file, loff_t start, loff_t end, 638 bool datasync) 639 { 640 struct inode *inode = file->f_mapping->host; 641 int ret; 642 643 ret = generic_buffers_fsync_noflush(file, start, end, datasync); 644 if (!ret) 645 ret = blkdev_issue_flush(inode->i_sb->s_bdev); 646 return ret; 647 } 648 EXPORT_SYMBOL(generic_buffers_fsync); 649 650 /* 651 * Called when we've recently written block `bblock', and it is known that 652 * `bblock' was for a buffer_boundary() buffer. This means that the block at 653 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 654 * dirty, schedule it for IO. So that indirects merge nicely with their data. 655 */ 656 void write_boundary_block(struct block_device *bdev, 657 sector_t bblock, unsigned blocksize) 658 { 659 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 660 if (bh) { 661 if (buffer_dirty(bh)) 662 write_dirty_buffer(bh, 0); 663 put_bh(bh); 664 } 665 } 666 667 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 668 { 669 struct address_space *mapping = inode->i_mapping; 670 struct address_space *buffer_mapping = bh->b_folio->mapping; 671 672 mark_buffer_dirty(bh); 673 if (!mapping->i_private_data) { 674 mapping->i_private_data = buffer_mapping; 675 } else { 676 BUG_ON(mapping->i_private_data != buffer_mapping); 677 } 678 if (!bh->b_assoc_map) { 679 spin_lock(&buffer_mapping->i_private_lock); 680 list_move_tail(&bh->b_assoc_buffers, 681 &mapping->i_private_list); 682 bh->b_assoc_map = mapping; 683 spin_unlock(&buffer_mapping->i_private_lock); 684 } 685 } 686 EXPORT_SYMBOL(mark_buffer_dirty_inode); 687 688 /** 689 * block_dirty_folio - Mark a folio as dirty. 690 * @mapping: The address space containing this folio. 691 * @folio: The folio to mark dirty. 692 * 693 * Filesystems which use buffer_heads can use this function as their 694 * ->dirty_folio implementation. Some filesystems need to do a little 695 * work before calling this function. Filesystems which do not use 696 * buffer_heads should call filemap_dirty_folio() instead. 697 * 698 * If the folio has buffers, the uptodate buffers are set dirty, to 699 * preserve dirty-state coherency between the folio and the buffers. 700 * Buffers added to a dirty folio are created dirty. 701 * 702 * The buffers are dirtied before the folio is dirtied. There's a small 703 * race window in which writeback may see the folio cleanness but not the 704 * buffer dirtiness. That's fine. If this code were to set the folio 705 * dirty before the buffers, writeback could clear the folio dirty flag, 706 * see a bunch of clean buffers and we'd end up with dirty buffers/clean 707 * folio on the dirty folio list. 708 * 709 * We use i_private_lock to lock against try_to_free_buffers() while 710 * using the folio's buffer list. This also prevents clean buffers 711 * being added to the folio after it was set dirty. 712 * 713 * Context: May only be called from process context. Does not sleep. 714 * Caller must ensure that @folio cannot be truncated during this call, 715 * typically by holding the folio lock or having a page in the folio 716 * mapped and holding the page table lock. 717 * 718 * Return: True if the folio was dirtied; false if it was already dirtied. 719 */ 720 bool block_dirty_folio(struct address_space *mapping, struct folio *folio) 721 { 722 struct buffer_head *head; 723 bool newly_dirty; 724 725 spin_lock(&mapping->i_private_lock); 726 head = folio_buffers(folio); 727 if (head) { 728 struct buffer_head *bh = head; 729 730 do { 731 set_buffer_dirty(bh); 732 bh = bh->b_this_page; 733 } while (bh != head); 734 } 735 /* 736 * Lock out page's memcg migration to keep PageDirty 737 * synchronized with per-memcg dirty page counters. 738 */ 739 folio_memcg_lock(folio); 740 newly_dirty = !folio_test_set_dirty(folio); 741 spin_unlock(&mapping->i_private_lock); 742 743 if (newly_dirty) 744 __folio_mark_dirty(folio, mapping, 1); 745 746 folio_memcg_unlock(folio); 747 748 if (newly_dirty) 749 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 750 751 return newly_dirty; 752 } 753 EXPORT_SYMBOL(block_dirty_folio); 754 755 /* 756 * Write out and wait upon a list of buffers. 757 * 758 * We have conflicting pressures: we want to make sure that all 759 * initially dirty buffers get waited on, but that any subsequently 760 * dirtied buffers don't. After all, we don't want fsync to last 761 * forever if somebody is actively writing to the file. 762 * 763 * Do this in two main stages: first we copy dirty buffers to a 764 * temporary inode list, queueing the writes as we go. Then we clean 765 * up, waiting for those writes to complete. 766 * 767 * During this second stage, any subsequent updates to the file may end 768 * up refiling the buffer on the original inode's dirty list again, so 769 * there is a chance we will end up with a buffer queued for write but 770 * not yet completed on that list. So, as a final cleanup we go through 771 * the osync code to catch these locked, dirty buffers without requeuing 772 * any newly dirty buffers for write. 773 */ 774 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 775 { 776 struct buffer_head *bh; 777 struct list_head tmp; 778 struct address_space *mapping; 779 int err = 0, err2; 780 struct blk_plug plug; 781 782 INIT_LIST_HEAD(&tmp); 783 blk_start_plug(&plug); 784 785 spin_lock(lock); 786 while (!list_empty(list)) { 787 bh = BH_ENTRY(list->next); 788 mapping = bh->b_assoc_map; 789 __remove_assoc_queue(bh); 790 /* Avoid race with mark_buffer_dirty_inode() which does 791 * a lockless check and we rely on seeing the dirty bit */ 792 smp_mb(); 793 if (buffer_dirty(bh) || buffer_locked(bh)) { 794 list_add(&bh->b_assoc_buffers, &tmp); 795 bh->b_assoc_map = mapping; 796 if (buffer_dirty(bh)) { 797 get_bh(bh); 798 spin_unlock(lock); 799 /* 800 * Ensure any pending I/O completes so that 801 * write_dirty_buffer() actually writes the 802 * current contents - it is a noop if I/O is 803 * still in flight on potentially older 804 * contents. 805 */ 806 write_dirty_buffer(bh, REQ_SYNC); 807 808 /* 809 * Kick off IO for the previous mapping. Note 810 * that we will not run the very last mapping, 811 * wait_on_buffer() will do that for us 812 * through sync_buffer(). 813 */ 814 brelse(bh); 815 spin_lock(lock); 816 } 817 } 818 } 819 820 spin_unlock(lock); 821 blk_finish_plug(&plug); 822 spin_lock(lock); 823 824 while (!list_empty(&tmp)) { 825 bh = BH_ENTRY(tmp.prev); 826 get_bh(bh); 827 mapping = bh->b_assoc_map; 828 __remove_assoc_queue(bh); 829 /* Avoid race with mark_buffer_dirty_inode() which does 830 * a lockless check and we rely on seeing the dirty bit */ 831 smp_mb(); 832 if (buffer_dirty(bh)) { 833 list_add(&bh->b_assoc_buffers, 834 &mapping->i_private_list); 835 bh->b_assoc_map = mapping; 836 } 837 spin_unlock(lock); 838 wait_on_buffer(bh); 839 if (!buffer_uptodate(bh)) 840 err = -EIO; 841 brelse(bh); 842 spin_lock(lock); 843 } 844 845 spin_unlock(lock); 846 err2 = osync_buffers_list(lock, list); 847 if (err) 848 return err; 849 else 850 return err2; 851 } 852 853 /* 854 * Invalidate any and all dirty buffers on a given inode. We are 855 * probably unmounting the fs, but that doesn't mean we have already 856 * done a sync(). Just drop the buffers from the inode list. 857 * 858 * NOTE: we take the inode's blockdev's mapping's i_private_lock. Which 859 * assumes that all the buffers are against the blockdev. Not true 860 * for reiserfs. 861 */ 862 void invalidate_inode_buffers(struct inode *inode) 863 { 864 if (inode_has_buffers(inode)) { 865 struct address_space *mapping = &inode->i_data; 866 struct list_head *list = &mapping->i_private_list; 867 struct address_space *buffer_mapping = mapping->i_private_data; 868 869 spin_lock(&buffer_mapping->i_private_lock); 870 while (!list_empty(list)) 871 __remove_assoc_queue(BH_ENTRY(list->next)); 872 spin_unlock(&buffer_mapping->i_private_lock); 873 } 874 } 875 EXPORT_SYMBOL(invalidate_inode_buffers); 876 877 /* 878 * Remove any clean buffers from the inode's buffer list. This is called 879 * when we're trying to free the inode itself. Those buffers can pin it. 880 * 881 * Returns true if all buffers were removed. 882 */ 883 int remove_inode_buffers(struct inode *inode) 884 { 885 int ret = 1; 886 887 if (inode_has_buffers(inode)) { 888 struct address_space *mapping = &inode->i_data; 889 struct list_head *list = &mapping->i_private_list; 890 struct address_space *buffer_mapping = mapping->i_private_data; 891 892 spin_lock(&buffer_mapping->i_private_lock); 893 while (!list_empty(list)) { 894 struct buffer_head *bh = BH_ENTRY(list->next); 895 if (buffer_dirty(bh)) { 896 ret = 0; 897 break; 898 } 899 __remove_assoc_queue(bh); 900 } 901 spin_unlock(&buffer_mapping->i_private_lock); 902 } 903 return ret; 904 } 905 906 /* 907 * Create the appropriate buffers when given a folio for data area and 908 * the size of each buffer.. Use the bh->b_this_page linked list to 909 * follow the buffers created. Return NULL if unable to create more 910 * buffers. 911 * 912 * The retry flag is used to differentiate async IO (paging, swapping) 913 * which may not fail from ordinary buffer allocations. 914 */ 915 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size, 916 gfp_t gfp) 917 { 918 struct buffer_head *bh, *head; 919 long offset; 920 struct mem_cgroup *memcg, *old_memcg; 921 922 /* The folio lock pins the memcg */ 923 memcg = folio_memcg(folio); 924 old_memcg = set_active_memcg(memcg); 925 926 head = NULL; 927 offset = folio_size(folio); 928 while ((offset -= size) >= 0) { 929 bh = alloc_buffer_head(gfp); 930 if (!bh) 931 goto no_grow; 932 933 bh->b_this_page = head; 934 bh->b_blocknr = -1; 935 head = bh; 936 937 bh->b_size = size; 938 939 /* Link the buffer to its folio */ 940 folio_set_bh(bh, folio, offset); 941 } 942 out: 943 set_active_memcg(old_memcg); 944 return head; 945 /* 946 * In case anything failed, we just free everything we got. 947 */ 948 no_grow: 949 if (head) { 950 do { 951 bh = head; 952 head = head->b_this_page; 953 free_buffer_head(bh); 954 } while (head); 955 } 956 957 goto out; 958 } 959 EXPORT_SYMBOL_GPL(folio_alloc_buffers); 960 961 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 962 bool retry) 963 { 964 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT; 965 if (retry) 966 gfp |= __GFP_NOFAIL; 967 968 return folio_alloc_buffers(page_folio(page), size, gfp); 969 } 970 EXPORT_SYMBOL_GPL(alloc_page_buffers); 971 972 static inline void link_dev_buffers(struct folio *folio, 973 struct buffer_head *head) 974 { 975 struct buffer_head *bh, *tail; 976 977 bh = head; 978 do { 979 tail = bh; 980 bh = bh->b_this_page; 981 } while (bh); 982 tail->b_this_page = head; 983 folio_attach_private(folio, head); 984 } 985 986 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 987 { 988 sector_t retval = ~((sector_t)0); 989 loff_t sz = bdev_nr_bytes(bdev); 990 991 if (sz) { 992 unsigned int sizebits = blksize_bits(size); 993 retval = (sz >> sizebits); 994 } 995 return retval; 996 } 997 998 /* 999 * Initialise the state of a blockdev folio's buffers. 1000 */ 1001 static sector_t folio_init_buffers(struct folio *folio, 1002 struct block_device *bdev, unsigned size) 1003 { 1004 struct buffer_head *head = folio_buffers(folio); 1005 struct buffer_head *bh = head; 1006 bool uptodate = folio_test_uptodate(folio); 1007 sector_t block = div_u64(folio_pos(folio), size); 1008 sector_t end_block = blkdev_max_block(bdev, size); 1009 1010 do { 1011 if (!buffer_mapped(bh)) { 1012 bh->b_end_io = NULL; 1013 bh->b_private = NULL; 1014 bh->b_bdev = bdev; 1015 bh->b_blocknr = block; 1016 if (uptodate) 1017 set_buffer_uptodate(bh); 1018 if (block < end_block) 1019 set_buffer_mapped(bh); 1020 } 1021 block++; 1022 bh = bh->b_this_page; 1023 } while (bh != head); 1024 1025 /* 1026 * Caller needs to validate requested block against end of device. 1027 */ 1028 return end_block; 1029 } 1030 1031 /* 1032 * Create the page-cache folio that contains the requested block. 1033 * 1034 * This is used purely for blockdev mappings. 1035 * 1036 * Returns false if we have a failure which cannot be cured by retrying 1037 * without sleeping. Returns true if we succeeded, or the caller should retry. 1038 */ 1039 static bool grow_dev_folio(struct block_device *bdev, sector_t block, 1040 pgoff_t index, unsigned size, gfp_t gfp) 1041 { 1042 struct address_space *mapping = bdev->bd_mapping; 1043 struct folio *folio; 1044 struct buffer_head *bh; 1045 sector_t end_block = 0; 1046 1047 folio = __filemap_get_folio(mapping, index, 1048 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp); 1049 if (IS_ERR(folio)) 1050 return false; 1051 1052 bh = folio_buffers(folio); 1053 if (bh) { 1054 if (bh->b_size == size) { 1055 end_block = folio_init_buffers(folio, bdev, size); 1056 goto unlock; 1057 } 1058 1059 /* 1060 * Retrying may succeed; for example the folio may finish 1061 * writeback, or buffers may be cleaned. This should not 1062 * happen very often; maybe we have old buffers attached to 1063 * this blockdev's page cache and we're trying to change 1064 * the block size? 1065 */ 1066 if (!try_to_free_buffers(folio)) { 1067 end_block = ~0ULL; 1068 goto unlock; 1069 } 1070 } 1071 1072 bh = folio_alloc_buffers(folio, size, gfp | __GFP_ACCOUNT); 1073 if (!bh) 1074 goto unlock; 1075 1076 /* 1077 * Link the folio to the buffers and initialise them. Take the 1078 * lock to be atomic wrt __find_get_block(), which does not 1079 * run under the folio lock. 1080 */ 1081 spin_lock(&mapping->i_private_lock); 1082 link_dev_buffers(folio, bh); 1083 end_block = folio_init_buffers(folio, bdev, size); 1084 spin_unlock(&mapping->i_private_lock); 1085 unlock: 1086 folio_unlock(folio); 1087 folio_put(folio); 1088 return block < end_block; 1089 } 1090 1091 /* 1092 * Create buffers for the specified block device block's folio. If 1093 * that folio was dirty, the buffers are set dirty also. Returns false 1094 * if we've hit a permanent error. 1095 */ 1096 static bool grow_buffers(struct block_device *bdev, sector_t block, 1097 unsigned size, gfp_t gfp) 1098 { 1099 loff_t pos; 1100 1101 /* 1102 * Check for a block which lies outside our maximum possible 1103 * pagecache index. 1104 */ 1105 if (check_mul_overflow(block, (sector_t)size, &pos) || pos > MAX_LFS_FILESIZE) { 1106 printk(KERN_ERR "%s: requested out-of-range block %llu for device %pg\n", 1107 __func__, (unsigned long long)block, 1108 bdev); 1109 return false; 1110 } 1111 1112 /* Create a folio with the proper size buffers */ 1113 return grow_dev_folio(bdev, block, pos / PAGE_SIZE, size, gfp); 1114 } 1115 1116 static struct buffer_head * 1117 __getblk_slow(struct block_device *bdev, sector_t block, 1118 unsigned size, gfp_t gfp) 1119 { 1120 /* Size must be multiple of hard sectorsize */ 1121 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1122 (size < 512 || size > PAGE_SIZE))) { 1123 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1124 size); 1125 printk(KERN_ERR "logical block size: %d\n", 1126 bdev_logical_block_size(bdev)); 1127 1128 dump_stack(); 1129 return NULL; 1130 } 1131 1132 for (;;) { 1133 struct buffer_head *bh; 1134 1135 bh = __find_get_block(bdev, block, size); 1136 if (bh) 1137 return bh; 1138 1139 if (!grow_buffers(bdev, block, size, gfp)) 1140 return NULL; 1141 } 1142 } 1143 1144 /* 1145 * The relationship between dirty buffers and dirty pages: 1146 * 1147 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1148 * the page is tagged dirty in the page cache. 1149 * 1150 * At all times, the dirtiness of the buffers represents the dirtiness of 1151 * subsections of the page. If the page has buffers, the page dirty bit is 1152 * merely a hint about the true dirty state. 1153 * 1154 * When a page is set dirty in its entirety, all its buffers are marked dirty 1155 * (if the page has buffers). 1156 * 1157 * When a buffer is marked dirty, its page is dirtied, but the page's other 1158 * buffers are not. 1159 * 1160 * Also. When blockdev buffers are explicitly read with bread(), they 1161 * individually become uptodate. But their backing page remains not 1162 * uptodate - even if all of its buffers are uptodate. A subsequent 1163 * block_read_full_folio() against that folio will discover all the uptodate 1164 * buffers, will set the folio uptodate and will perform no I/O. 1165 */ 1166 1167 /** 1168 * mark_buffer_dirty - mark a buffer_head as needing writeout 1169 * @bh: the buffer_head to mark dirty 1170 * 1171 * mark_buffer_dirty() will set the dirty bit against the buffer, then set 1172 * its backing page dirty, then tag the page as dirty in the page cache 1173 * and then attach the address_space's inode to its superblock's dirty 1174 * inode list. 1175 * 1176 * mark_buffer_dirty() is atomic. It takes bh->b_folio->mapping->i_private_lock, 1177 * i_pages lock and mapping->host->i_lock. 1178 */ 1179 void mark_buffer_dirty(struct buffer_head *bh) 1180 { 1181 WARN_ON_ONCE(!buffer_uptodate(bh)); 1182 1183 trace_block_dirty_buffer(bh); 1184 1185 /* 1186 * Very *carefully* optimize the it-is-already-dirty case. 1187 * 1188 * Don't let the final "is it dirty" escape to before we 1189 * perhaps modified the buffer. 1190 */ 1191 if (buffer_dirty(bh)) { 1192 smp_mb(); 1193 if (buffer_dirty(bh)) 1194 return; 1195 } 1196 1197 if (!test_set_buffer_dirty(bh)) { 1198 struct folio *folio = bh->b_folio; 1199 struct address_space *mapping = NULL; 1200 1201 folio_memcg_lock(folio); 1202 if (!folio_test_set_dirty(folio)) { 1203 mapping = folio->mapping; 1204 if (mapping) 1205 __folio_mark_dirty(folio, mapping, 0); 1206 } 1207 folio_memcg_unlock(folio); 1208 if (mapping) 1209 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1210 } 1211 } 1212 EXPORT_SYMBOL(mark_buffer_dirty); 1213 1214 void mark_buffer_write_io_error(struct buffer_head *bh) 1215 { 1216 set_buffer_write_io_error(bh); 1217 /* FIXME: do we need to set this in both places? */ 1218 if (bh->b_folio && bh->b_folio->mapping) 1219 mapping_set_error(bh->b_folio->mapping, -EIO); 1220 if (bh->b_assoc_map) { 1221 mapping_set_error(bh->b_assoc_map, -EIO); 1222 errseq_set(&bh->b_assoc_map->host->i_sb->s_wb_err, -EIO); 1223 } 1224 } 1225 EXPORT_SYMBOL(mark_buffer_write_io_error); 1226 1227 /** 1228 * __brelse - Release a buffer. 1229 * @bh: The buffer to release. 1230 * 1231 * This variant of brelse() can be called if @bh is guaranteed to not be NULL. 1232 */ 1233 void __brelse(struct buffer_head *bh) 1234 { 1235 if (atomic_read(&bh->b_count)) { 1236 put_bh(bh); 1237 return; 1238 } 1239 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1240 } 1241 EXPORT_SYMBOL(__brelse); 1242 1243 /** 1244 * __bforget - Discard any dirty data in a buffer. 1245 * @bh: The buffer to forget. 1246 * 1247 * This variant of bforget() can be called if @bh is guaranteed to not 1248 * be NULL. 1249 */ 1250 void __bforget(struct buffer_head *bh) 1251 { 1252 clear_buffer_dirty(bh); 1253 if (bh->b_assoc_map) { 1254 struct address_space *buffer_mapping = bh->b_folio->mapping; 1255 1256 spin_lock(&buffer_mapping->i_private_lock); 1257 list_del_init(&bh->b_assoc_buffers); 1258 bh->b_assoc_map = NULL; 1259 spin_unlock(&buffer_mapping->i_private_lock); 1260 } 1261 __brelse(bh); 1262 } 1263 EXPORT_SYMBOL(__bforget); 1264 1265 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1266 { 1267 lock_buffer(bh); 1268 if (buffer_uptodate(bh)) { 1269 unlock_buffer(bh); 1270 return bh; 1271 } else { 1272 get_bh(bh); 1273 bh->b_end_io = end_buffer_read_sync; 1274 submit_bh(REQ_OP_READ, bh); 1275 wait_on_buffer(bh); 1276 if (buffer_uptodate(bh)) 1277 return bh; 1278 } 1279 brelse(bh); 1280 return NULL; 1281 } 1282 1283 /* 1284 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1285 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1286 * refcount elevated by one when they're in an LRU. A buffer can only appear 1287 * once in a particular CPU's LRU. A single buffer can be present in multiple 1288 * CPU's LRUs at the same time. 1289 * 1290 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1291 * sb_find_get_block(). 1292 * 1293 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1294 * a local interrupt disable for that. 1295 */ 1296 1297 #define BH_LRU_SIZE 16 1298 1299 struct bh_lru { 1300 struct buffer_head *bhs[BH_LRU_SIZE]; 1301 }; 1302 1303 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1304 1305 #ifdef CONFIG_SMP 1306 #define bh_lru_lock() local_irq_disable() 1307 #define bh_lru_unlock() local_irq_enable() 1308 #else 1309 #define bh_lru_lock() preempt_disable() 1310 #define bh_lru_unlock() preempt_enable() 1311 #endif 1312 1313 static inline void check_irqs_on(void) 1314 { 1315 #ifdef irqs_disabled 1316 BUG_ON(irqs_disabled()); 1317 #endif 1318 } 1319 1320 /* 1321 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is 1322 * inserted at the front, and the buffer_head at the back if any is evicted. 1323 * Or, if already in the LRU it is moved to the front. 1324 */ 1325 static void bh_lru_install(struct buffer_head *bh) 1326 { 1327 struct buffer_head *evictee = bh; 1328 struct bh_lru *b; 1329 int i; 1330 1331 check_irqs_on(); 1332 bh_lru_lock(); 1333 1334 /* 1335 * the refcount of buffer_head in bh_lru prevents dropping the 1336 * attached page(i.e., try_to_free_buffers) so it could cause 1337 * failing page migration. 1338 * Skip putting upcoming bh into bh_lru until migration is done. 1339 */ 1340 if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) { 1341 bh_lru_unlock(); 1342 return; 1343 } 1344 1345 b = this_cpu_ptr(&bh_lrus); 1346 for (i = 0; i < BH_LRU_SIZE; i++) { 1347 swap(evictee, b->bhs[i]); 1348 if (evictee == bh) { 1349 bh_lru_unlock(); 1350 return; 1351 } 1352 } 1353 1354 get_bh(bh); 1355 bh_lru_unlock(); 1356 brelse(evictee); 1357 } 1358 1359 /* 1360 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1361 */ 1362 static struct buffer_head * 1363 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1364 { 1365 struct buffer_head *ret = NULL; 1366 unsigned int i; 1367 1368 check_irqs_on(); 1369 bh_lru_lock(); 1370 if (cpu_is_isolated(smp_processor_id())) { 1371 bh_lru_unlock(); 1372 return NULL; 1373 } 1374 for (i = 0; i < BH_LRU_SIZE; i++) { 1375 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1376 1377 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1378 bh->b_size == size) { 1379 if (i) { 1380 while (i) { 1381 __this_cpu_write(bh_lrus.bhs[i], 1382 __this_cpu_read(bh_lrus.bhs[i - 1])); 1383 i--; 1384 } 1385 __this_cpu_write(bh_lrus.bhs[0], bh); 1386 } 1387 get_bh(bh); 1388 ret = bh; 1389 break; 1390 } 1391 } 1392 bh_lru_unlock(); 1393 return ret; 1394 } 1395 1396 /* 1397 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1398 * it in the LRU and mark it as accessed. If it is not present then return 1399 * NULL 1400 */ 1401 struct buffer_head * 1402 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1403 { 1404 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1405 1406 if (bh == NULL) { 1407 /* __find_get_block_slow will mark the page accessed */ 1408 bh = __find_get_block_slow(bdev, block); 1409 if (bh) 1410 bh_lru_install(bh); 1411 } else 1412 touch_buffer(bh); 1413 1414 return bh; 1415 } 1416 EXPORT_SYMBOL(__find_get_block); 1417 1418 /** 1419 * bdev_getblk - Get a buffer_head in a block device's buffer cache. 1420 * @bdev: The block device. 1421 * @block: The block number. 1422 * @size: The size of buffer_heads for this @bdev. 1423 * @gfp: The memory allocation flags to use. 1424 * 1425 * The returned buffer head has its reference count incremented, but is 1426 * not locked. The caller should call brelse() when it has finished 1427 * with the buffer. The buffer may not be uptodate. If needed, the 1428 * caller can bring it uptodate either by reading it or overwriting it. 1429 * 1430 * Return: The buffer head, or NULL if memory could not be allocated. 1431 */ 1432 struct buffer_head *bdev_getblk(struct block_device *bdev, sector_t block, 1433 unsigned size, gfp_t gfp) 1434 { 1435 struct buffer_head *bh = __find_get_block(bdev, block, size); 1436 1437 might_alloc(gfp); 1438 if (bh) 1439 return bh; 1440 1441 return __getblk_slow(bdev, block, size, gfp); 1442 } 1443 EXPORT_SYMBOL(bdev_getblk); 1444 1445 /* 1446 * Do async read-ahead on a buffer.. 1447 */ 1448 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1449 { 1450 struct buffer_head *bh = bdev_getblk(bdev, block, size, 1451 GFP_NOWAIT | __GFP_MOVABLE); 1452 1453 if (likely(bh)) { 1454 bh_readahead(bh, REQ_RAHEAD); 1455 brelse(bh); 1456 } 1457 } 1458 EXPORT_SYMBOL(__breadahead); 1459 1460 /** 1461 * __bread_gfp() - Read a block. 1462 * @bdev: The block device to read from. 1463 * @block: Block number in units of block size. 1464 * @size: The block size of this device in bytes. 1465 * @gfp: Not page allocation flags; see below. 1466 * 1467 * You are not expected to call this function. You should use one of 1468 * sb_bread(), sb_bread_unmovable() or __bread(). 1469 * 1470 * Read a specified block, and return the buffer head that refers to it. 1471 * If @gfp is 0, the memory will be allocated using the block device's 1472 * default GFP flags. If @gfp is __GFP_MOVABLE, the memory may be 1473 * allocated from a movable area. Do not pass in a complete set of 1474 * GFP flags. 1475 * 1476 * The returned buffer head has its refcount increased. The caller should 1477 * call brelse() when it has finished with the buffer. 1478 * 1479 * Context: May sleep waiting for I/O. 1480 * Return: NULL if the block was unreadable. 1481 */ 1482 struct buffer_head *__bread_gfp(struct block_device *bdev, sector_t block, 1483 unsigned size, gfp_t gfp) 1484 { 1485 struct buffer_head *bh; 1486 1487 gfp |= mapping_gfp_constraint(bdev->bd_mapping, ~__GFP_FS); 1488 1489 /* 1490 * Prefer looping in the allocator rather than here, at least that 1491 * code knows what it's doing. 1492 */ 1493 gfp |= __GFP_NOFAIL; 1494 1495 bh = bdev_getblk(bdev, block, size, gfp); 1496 1497 if (likely(bh) && !buffer_uptodate(bh)) 1498 bh = __bread_slow(bh); 1499 return bh; 1500 } 1501 EXPORT_SYMBOL(__bread_gfp); 1502 1503 static void __invalidate_bh_lrus(struct bh_lru *b) 1504 { 1505 int i; 1506 1507 for (i = 0; i < BH_LRU_SIZE; i++) { 1508 brelse(b->bhs[i]); 1509 b->bhs[i] = NULL; 1510 } 1511 } 1512 /* 1513 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1514 * This doesn't race because it runs in each cpu either in irq 1515 * or with preempt disabled. 1516 */ 1517 static void invalidate_bh_lru(void *arg) 1518 { 1519 struct bh_lru *b = &get_cpu_var(bh_lrus); 1520 1521 __invalidate_bh_lrus(b); 1522 put_cpu_var(bh_lrus); 1523 } 1524 1525 bool has_bh_in_lru(int cpu, void *dummy) 1526 { 1527 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1528 int i; 1529 1530 for (i = 0; i < BH_LRU_SIZE; i++) { 1531 if (b->bhs[i]) 1532 return true; 1533 } 1534 1535 return false; 1536 } 1537 1538 void invalidate_bh_lrus(void) 1539 { 1540 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1); 1541 } 1542 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1543 1544 /* 1545 * It's called from workqueue context so we need a bh_lru_lock to close 1546 * the race with preemption/irq. 1547 */ 1548 void invalidate_bh_lrus_cpu(void) 1549 { 1550 struct bh_lru *b; 1551 1552 bh_lru_lock(); 1553 b = this_cpu_ptr(&bh_lrus); 1554 __invalidate_bh_lrus(b); 1555 bh_lru_unlock(); 1556 } 1557 1558 void folio_set_bh(struct buffer_head *bh, struct folio *folio, 1559 unsigned long offset) 1560 { 1561 bh->b_folio = folio; 1562 BUG_ON(offset >= folio_size(folio)); 1563 if (folio_test_highmem(folio)) 1564 /* 1565 * This catches illegal uses and preserves the offset: 1566 */ 1567 bh->b_data = (char *)(0 + offset); 1568 else 1569 bh->b_data = folio_address(folio) + offset; 1570 } 1571 EXPORT_SYMBOL(folio_set_bh); 1572 1573 /* 1574 * Called when truncating a buffer on a page completely. 1575 */ 1576 1577 /* Bits that are cleared during an invalidate */ 1578 #define BUFFER_FLAGS_DISCARD \ 1579 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1580 1 << BH_Delay | 1 << BH_Unwritten) 1581 1582 static void discard_buffer(struct buffer_head * bh) 1583 { 1584 unsigned long b_state; 1585 1586 lock_buffer(bh); 1587 clear_buffer_dirty(bh); 1588 bh->b_bdev = NULL; 1589 b_state = READ_ONCE(bh->b_state); 1590 do { 1591 } while (!try_cmpxchg(&bh->b_state, &b_state, 1592 b_state & ~BUFFER_FLAGS_DISCARD)); 1593 unlock_buffer(bh); 1594 } 1595 1596 /** 1597 * block_invalidate_folio - Invalidate part or all of a buffer-backed folio. 1598 * @folio: The folio which is affected. 1599 * @offset: start of the range to invalidate 1600 * @length: length of the range to invalidate 1601 * 1602 * block_invalidate_folio() is called when all or part of the folio has been 1603 * invalidated by a truncate operation. 1604 * 1605 * block_invalidate_folio() does not have to release all buffers, but it must 1606 * ensure that no dirty buffer is left outside @offset and that no I/O 1607 * is underway against any of the blocks which are outside the truncation 1608 * point. Because the caller is about to free (and possibly reuse) those 1609 * blocks on-disk. 1610 */ 1611 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length) 1612 { 1613 struct buffer_head *head, *bh, *next; 1614 size_t curr_off = 0; 1615 size_t stop = length + offset; 1616 1617 BUG_ON(!folio_test_locked(folio)); 1618 1619 /* 1620 * Check for overflow 1621 */ 1622 BUG_ON(stop > folio_size(folio) || stop < length); 1623 1624 head = folio_buffers(folio); 1625 if (!head) 1626 return; 1627 1628 bh = head; 1629 do { 1630 size_t next_off = curr_off + bh->b_size; 1631 next = bh->b_this_page; 1632 1633 /* 1634 * Are we still fully in range ? 1635 */ 1636 if (next_off > stop) 1637 goto out; 1638 1639 /* 1640 * is this block fully invalidated? 1641 */ 1642 if (offset <= curr_off) 1643 discard_buffer(bh); 1644 curr_off = next_off; 1645 bh = next; 1646 } while (bh != head); 1647 1648 /* 1649 * We release buffers only if the entire folio is being invalidated. 1650 * The get_block cached value has been unconditionally invalidated, 1651 * so real IO is not possible anymore. 1652 */ 1653 if (length == folio_size(folio)) 1654 filemap_release_folio(folio, 0); 1655 out: 1656 return; 1657 } 1658 EXPORT_SYMBOL(block_invalidate_folio); 1659 1660 /* 1661 * We attach and possibly dirty the buffers atomically wrt 1662 * block_dirty_folio() via i_private_lock. try_to_free_buffers 1663 * is already excluded via the folio lock. 1664 */ 1665 struct buffer_head *create_empty_buffers(struct folio *folio, 1666 unsigned long blocksize, unsigned long b_state) 1667 { 1668 struct buffer_head *bh, *head, *tail; 1669 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT | __GFP_NOFAIL; 1670 1671 head = folio_alloc_buffers(folio, blocksize, gfp); 1672 bh = head; 1673 do { 1674 bh->b_state |= b_state; 1675 tail = bh; 1676 bh = bh->b_this_page; 1677 } while (bh); 1678 tail->b_this_page = head; 1679 1680 spin_lock(&folio->mapping->i_private_lock); 1681 if (folio_test_uptodate(folio) || folio_test_dirty(folio)) { 1682 bh = head; 1683 do { 1684 if (folio_test_dirty(folio)) 1685 set_buffer_dirty(bh); 1686 if (folio_test_uptodate(folio)) 1687 set_buffer_uptodate(bh); 1688 bh = bh->b_this_page; 1689 } while (bh != head); 1690 } 1691 folio_attach_private(folio, head); 1692 spin_unlock(&folio->mapping->i_private_lock); 1693 1694 return head; 1695 } 1696 EXPORT_SYMBOL(create_empty_buffers); 1697 1698 /** 1699 * clean_bdev_aliases: clean a range of buffers in block device 1700 * @bdev: Block device to clean buffers in 1701 * @block: Start of a range of blocks to clean 1702 * @len: Number of blocks to clean 1703 * 1704 * We are taking a range of blocks for data and we don't want writeback of any 1705 * buffer-cache aliases starting from return from this function and until the 1706 * moment when something will explicitly mark the buffer dirty (hopefully that 1707 * will not happen until we will free that block ;-) We don't even need to mark 1708 * it not-uptodate - nobody can expect anything from a newly allocated buffer 1709 * anyway. We used to use unmap_buffer() for such invalidation, but that was 1710 * wrong. We definitely don't want to mark the alias unmapped, for example - it 1711 * would confuse anyone who might pick it with bread() afterwards... 1712 * 1713 * Also.. Note that bforget() doesn't lock the buffer. So there can be 1714 * writeout I/O going on against recently-freed buffers. We don't wait on that 1715 * I/O in bforget() - it's more efficient to wait on the I/O only if we really 1716 * need to. That happens here. 1717 */ 1718 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) 1719 { 1720 struct address_space *bd_mapping = bdev->bd_mapping; 1721 const int blkbits = bd_mapping->host->i_blkbits; 1722 struct folio_batch fbatch; 1723 pgoff_t index = ((loff_t)block << blkbits) / PAGE_SIZE; 1724 pgoff_t end; 1725 int i, count; 1726 struct buffer_head *bh; 1727 struct buffer_head *head; 1728 1729 end = ((loff_t)(block + len - 1) << blkbits) / PAGE_SIZE; 1730 folio_batch_init(&fbatch); 1731 while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) { 1732 count = folio_batch_count(&fbatch); 1733 for (i = 0; i < count; i++) { 1734 struct folio *folio = fbatch.folios[i]; 1735 1736 if (!folio_buffers(folio)) 1737 continue; 1738 /* 1739 * We use folio lock instead of bd_mapping->i_private_lock 1740 * to pin buffers here since we can afford to sleep and 1741 * it scales better than a global spinlock lock. 1742 */ 1743 folio_lock(folio); 1744 /* Recheck when the folio is locked which pins bhs */ 1745 head = folio_buffers(folio); 1746 if (!head) 1747 goto unlock_page; 1748 bh = head; 1749 do { 1750 if (!buffer_mapped(bh) || (bh->b_blocknr < block)) 1751 goto next; 1752 if (bh->b_blocknr >= block + len) 1753 break; 1754 clear_buffer_dirty(bh); 1755 wait_on_buffer(bh); 1756 clear_buffer_req(bh); 1757 next: 1758 bh = bh->b_this_page; 1759 } while (bh != head); 1760 unlock_page: 1761 folio_unlock(folio); 1762 } 1763 folio_batch_release(&fbatch); 1764 cond_resched(); 1765 /* End of range already reached? */ 1766 if (index > end || !index) 1767 break; 1768 } 1769 } 1770 EXPORT_SYMBOL(clean_bdev_aliases); 1771 1772 static struct buffer_head *folio_create_buffers(struct folio *folio, 1773 struct inode *inode, 1774 unsigned int b_state) 1775 { 1776 struct buffer_head *bh; 1777 1778 BUG_ON(!folio_test_locked(folio)); 1779 1780 bh = folio_buffers(folio); 1781 if (!bh) 1782 bh = create_empty_buffers(folio, 1783 1 << READ_ONCE(inode->i_blkbits), b_state); 1784 return bh; 1785 } 1786 1787 /* 1788 * NOTE! All mapped/uptodate combinations are valid: 1789 * 1790 * Mapped Uptodate Meaning 1791 * 1792 * No No "unknown" - must do get_block() 1793 * No Yes "hole" - zero-filled 1794 * Yes No "allocated" - allocated on disk, not read in 1795 * Yes Yes "valid" - allocated and up-to-date in memory. 1796 * 1797 * "Dirty" is valid only with the last case (mapped+uptodate). 1798 */ 1799 1800 /* 1801 * While block_write_full_folio is writing back the dirty buffers under 1802 * the page lock, whoever dirtied the buffers may decide to clean them 1803 * again at any time. We handle that by only looking at the buffer 1804 * state inside lock_buffer(). 1805 * 1806 * If block_write_full_folio() is called for regular writeback 1807 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1808 * locked buffer. This only can happen if someone has written the buffer 1809 * directly, with submit_bh(). At the address_space level PageWriteback 1810 * prevents this contention from occurring. 1811 * 1812 * If block_write_full_folio() is called with wbc->sync_mode == 1813 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this 1814 * causes the writes to be flagged as synchronous writes. 1815 */ 1816 int __block_write_full_folio(struct inode *inode, struct folio *folio, 1817 get_block_t *get_block, struct writeback_control *wbc) 1818 { 1819 int err; 1820 sector_t block; 1821 sector_t last_block; 1822 struct buffer_head *bh, *head; 1823 size_t blocksize; 1824 int nr_underway = 0; 1825 blk_opf_t write_flags = wbc_to_write_flags(wbc); 1826 1827 head = folio_create_buffers(folio, inode, 1828 (1 << BH_Dirty) | (1 << BH_Uptodate)); 1829 1830 /* 1831 * Be very careful. We have no exclusion from block_dirty_folio 1832 * here, and the (potentially unmapped) buffers may become dirty at 1833 * any time. If a buffer becomes dirty here after we've inspected it 1834 * then we just miss that fact, and the folio stays dirty. 1835 * 1836 * Buffers outside i_size may be dirtied by block_dirty_folio; 1837 * handle that here by just cleaning them. 1838 */ 1839 1840 bh = head; 1841 blocksize = bh->b_size; 1842 1843 block = div_u64(folio_pos(folio), blocksize); 1844 last_block = div_u64(i_size_read(inode) - 1, blocksize); 1845 1846 /* 1847 * Get all the dirty buffers mapped to disk addresses and 1848 * handle any aliases from the underlying blockdev's mapping. 1849 */ 1850 do { 1851 if (block > last_block) { 1852 /* 1853 * mapped buffers outside i_size will occur, because 1854 * this folio can be outside i_size when there is a 1855 * truncate in progress. 1856 */ 1857 /* 1858 * The buffer was zeroed by block_write_full_folio() 1859 */ 1860 clear_buffer_dirty(bh); 1861 set_buffer_uptodate(bh); 1862 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1863 buffer_dirty(bh)) { 1864 WARN_ON(bh->b_size != blocksize); 1865 err = get_block(inode, block, bh, 1); 1866 if (err) 1867 goto recover; 1868 clear_buffer_delay(bh); 1869 if (buffer_new(bh)) { 1870 /* blockdev mappings never come here */ 1871 clear_buffer_new(bh); 1872 clean_bdev_bh_alias(bh); 1873 } 1874 } 1875 bh = bh->b_this_page; 1876 block++; 1877 } while (bh != head); 1878 1879 do { 1880 if (!buffer_mapped(bh)) 1881 continue; 1882 /* 1883 * If it's a fully non-blocking write attempt and we cannot 1884 * lock the buffer then redirty the folio. Note that this can 1885 * potentially cause a busy-wait loop from writeback threads 1886 * and kswapd activity, but those code paths have their own 1887 * higher-level throttling. 1888 */ 1889 if (wbc->sync_mode != WB_SYNC_NONE) { 1890 lock_buffer(bh); 1891 } else if (!trylock_buffer(bh)) { 1892 folio_redirty_for_writepage(wbc, folio); 1893 continue; 1894 } 1895 if (test_clear_buffer_dirty(bh)) { 1896 mark_buffer_async_write_endio(bh, 1897 end_buffer_async_write); 1898 } else { 1899 unlock_buffer(bh); 1900 } 1901 } while ((bh = bh->b_this_page) != head); 1902 1903 /* 1904 * The folio and its buffers are protected by the writeback flag, 1905 * so we can drop the bh refcounts early. 1906 */ 1907 BUG_ON(folio_test_writeback(folio)); 1908 folio_start_writeback(folio); 1909 1910 do { 1911 struct buffer_head *next = bh->b_this_page; 1912 if (buffer_async_write(bh)) { 1913 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, 1914 inode->i_write_hint, wbc); 1915 nr_underway++; 1916 } 1917 bh = next; 1918 } while (bh != head); 1919 folio_unlock(folio); 1920 1921 err = 0; 1922 done: 1923 if (nr_underway == 0) { 1924 /* 1925 * The folio was marked dirty, but the buffers were 1926 * clean. Someone wrote them back by hand with 1927 * write_dirty_buffer/submit_bh. A rare case. 1928 */ 1929 folio_end_writeback(folio); 1930 1931 /* 1932 * The folio and buffer_heads can be released at any time from 1933 * here on. 1934 */ 1935 } 1936 return err; 1937 1938 recover: 1939 /* 1940 * ENOSPC, or some other error. We may already have added some 1941 * blocks to the file, so we need to write these out to avoid 1942 * exposing stale data. 1943 * The folio is currently locked and not marked for writeback 1944 */ 1945 bh = head; 1946 /* Recovery: lock and submit the mapped buffers */ 1947 do { 1948 if (buffer_mapped(bh) && buffer_dirty(bh) && 1949 !buffer_delay(bh)) { 1950 lock_buffer(bh); 1951 mark_buffer_async_write_endio(bh, 1952 end_buffer_async_write); 1953 } else { 1954 /* 1955 * The buffer may have been set dirty during 1956 * attachment to a dirty folio. 1957 */ 1958 clear_buffer_dirty(bh); 1959 } 1960 } while ((bh = bh->b_this_page) != head); 1961 BUG_ON(folio_test_writeback(folio)); 1962 mapping_set_error(folio->mapping, err); 1963 folio_start_writeback(folio); 1964 do { 1965 struct buffer_head *next = bh->b_this_page; 1966 if (buffer_async_write(bh)) { 1967 clear_buffer_dirty(bh); 1968 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, 1969 inode->i_write_hint, wbc); 1970 nr_underway++; 1971 } 1972 bh = next; 1973 } while (bh != head); 1974 folio_unlock(folio); 1975 goto done; 1976 } 1977 EXPORT_SYMBOL(__block_write_full_folio); 1978 1979 /* 1980 * If a folio has any new buffers, zero them out here, and mark them uptodate 1981 * and dirty so they'll be written out (in order to prevent uninitialised 1982 * block data from leaking). And clear the new bit. 1983 */ 1984 void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to) 1985 { 1986 size_t block_start, block_end; 1987 struct buffer_head *head, *bh; 1988 1989 BUG_ON(!folio_test_locked(folio)); 1990 head = folio_buffers(folio); 1991 if (!head) 1992 return; 1993 1994 bh = head; 1995 block_start = 0; 1996 do { 1997 block_end = block_start + bh->b_size; 1998 1999 if (buffer_new(bh)) { 2000 if (block_end > from && block_start < to) { 2001 if (!folio_test_uptodate(folio)) { 2002 size_t start, xend; 2003 2004 start = max(from, block_start); 2005 xend = min(to, block_end); 2006 2007 folio_zero_segment(folio, start, xend); 2008 set_buffer_uptodate(bh); 2009 } 2010 2011 clear_buffer_new(bh); 2012 mark_buffer_dirty(bh); 2013 } 2014 } 2015 2016 block_start = block_end; 2017 bh = bh->b_this_page; 2018 } while (bh != head); 2019 } 2020 EXPORT_SYMBOL(folio_zero_new_buffers); 2021 2022 static int 2023 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, 2024 const struct iomap *iomap) 2025 { 2026 loff_t offset = (loff_t)block << inode->i_blkbits; 2027 2028 bh->b_bdev = iomap->bdev; 2029 2030 /* 2031 * Block points to offset in file we need to map, iomap contains 2032 * the offset at which the map starts. If the map ends before the 2033 * current block, then do not map the buffer and let the caller 2034 * handle it. 2035 */ 2036 if (offset >= iomap->offset + iomap->length) 2037 return -EIO; 2038 2039 switch (iomap->type) { 2040 case IOMAP_HOLE: 2041 /* 2042 * If the buffer is not up to date or beyond the current EOF, 2043 * we need to mark it as new to ensure sub-block zeroing is 2044 * executed if necessary. 2045 */ 2046 if (!buffer_uptodate(bh) || 2047 (offset >= i_size_read(inode))) 2048 set_buffer_new(bh); 2049 return 0; 2050 case IOMAP_DELALLOC: 2051 if (!buffer_uptodate(bh) || 2052 (offset >= i_size_read(inode))) 2053 set_buffer_new(bh); 2054 set_buffer_uptodate(bh); 2055 set_buffer_mapped(bh); 2056 set_buffer_delay(bh); 2057 return 0; 2058 case IOMAP_UNWRITTEN: 2059 /* 2060 * For unwritten regions, we always need to ensure that regions 2061 * in the block we are not writing to are zeroed. Mark the 2062 * buffer as new to ensure this. 2063 */ 2064 set_buffer_new(bh); 2065 set_buffer_unwritten(bh); 2066 fallthrough; 2067 case IOMAP_MAPPED: 2068 if ((iomap->flags & IOMAP_F_NEW) || 2069 offset >= i_size_read(inode)) { 2070 /* 2071 * This can happen if truncating the block device races 2072 * with the check in the caller as i_size updates on 2073 * block devices aren't synchronized by i_rwsem for 2074 * block devices. 2075 */ 2076 if (S_ISBLK(inode->i_mode)) 2077 return -EIO; 2078 set_buffer_new(bh); 2079 } 2080 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >> 2081 inode->i_blkbits; 2082 set_buffer_mapped(bh); 2083 return 0; 2084 default: 2085 WARN_ON_ONCE(1); 2086 return -EIO; 2087 } 2088 } 2089 2090 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len, 2091 get_block_t *get_block, const struct iomap *iomap) 2092 { 2093 size_t from = offset_in_folio(folio, pos); 2094 size_t to = from + len; 2095 struct inode *inode = folio->mapping->host; 2096 size_t block_start, block_end; 2097 sector_t block; 2098 int err = 0; 2099 size_t blocksize; 2100 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 2101 2102 BUG_ON(!folio_test_locked(folio)); 2103 BUG_ON(to > folio_size(folio)); 2104 BUG_ON(from > to); 2105 2106 head = folio_create_buffers(folio, inode, 0); 2107 blocksize = head->b_size; 2108 block = div_u64(folio_pos(folio), blocksize); 2109 2110 for (bh = head, block_start = 0; bh != head || !block_start; 2111 block++, block_start=block_end, bh = bh->b_this_page) { 2112 block_end = block_start + blocksize; 2113 if (block_end <= from || block_start >= to) { 2114 if (folio_test_uptodate(folio)) { 2115 if (!buffer_uptodate(bh)) 2116 set_buffer_uptodate(bh); 2117 } 2118 continue; 2119 } 2120 if (buffer_new(bh)) 2121 clear_buffer_new(bh); 2122 if (!buffer_mapped(bh)) { 2123 WARN_ON(bh->b_size != blocksize); 2124 if (get_block) 2125 err = get_block(inode, block, bh, 1); 2126 else 2127 err = iomap_to_bh(inode, block, bh, iomap); 2128 if (err) 2129 break; 2130 2131 if (buffer_new(bh)) { 2132 clean_bdev_bh_alias(bh); 2133 if (folio_test_uptodate(folio)) { 2134 clear_buffer_new(bh); 2135 set_buffer_uptodate(bh); 2136 mark_buffer_dirty(bh); 2137 continue; 2138 } 2139 if (block_end > to || block_start < from) 2140 folio_zero_segments(folio, 2141 to, block_end, 2142 block_start, from); 2143 continue; 2144 } 2145 } 2146 if (folio_test_uptodate(folio)) { 2147 if (!buffer_uptodate(bh)) 2148 set_buffer_uptodate(bh); 2149 continue; 2150 } 2151 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 2152 !buffer_unwritten(bh) && 2153 (block_start < from || block_end > to)) { 2154 bh_read_nowait(bh, 0); 2155 *wait_bh++=bh; 2156 } 2157 } 2158 /* 2159 * If we issued read requests - let them complete. 2160 */ 2161 while(wait_bh > wait) { 2162 wait_on_buffer(*--wait_bh); 2163 if (!buffer_uptodate(*wait_bh)) 2164 err = -EIO; 2165 } 2166 if (unlikely(err)) 2167 folio_zero_new_buffers(folio, from, to); 2168 return err; 2169 } 2170 2171 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 2172 get_block_t *get_block) 2173 { 2174 return __block_write_begin_int(page_folio(page), pos, len, get_block, 2175 NULL); 2176 } 2177 EXPORT_SYMBOL(__block_write_begin); 2178 2179 static void __block_commit_write(struct folio *folio, size_t from, size_t to) 2180 { 2181 size_t block_start, block_end; 2182 bool partial = false; 2183 unsigned blocksize; 2184 struct buffer_head *bh, *head; 2185 2186 bh = head = folio_buffers(folio); 2187 blocksize = bh->b_size; 2188 2189 block_start = 0; 2190 do { 2191 block_end = block_start + blocksize; 2192 if (block_end <= from || block_start >= to) { 2193 if (!buffer_uptodate(bh)) 2194 partial = true; 2195 } else { 2196 set_buffer_uptodate(bh); 2197 mark_buffer_dirty(bh); 2198 } 2199 if (buffer_new(bh)) 2200 clear_buffer_new(bh); 2201 2202 block_start = block_end; 2203 bh = bh->b_this_page; 2204 } while (bh != head); 2205 2206 /* 2207 * If this is a partial write which happened to make all buffers 2208 * uptodate then we can optimize away a bogus read_folio() for 2209 * the next read(). Here we 'discover' whether the folio went 2210 * uptodate as a result of this (potentially partial) write. 2211 */ 2212 if (!partial) 2213 folio_mark_uptodate(folio); 2214 } 2215 2216 /* 2217 * block_write_begin takes care of the basic task of block allocation and 2218 * bringing partial write blocks uptodate first. 2219 * 2220 * The filesystem needs to handle block truncation upon failure. 2221 */ 2222 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2223 struct page **pagep, get_block_t *get_block) 2224 { 2225 pgoff_t index = pos >> PAGE_SHIFT; 2226 struct page *page; 2227 int status; 2228 2229 page = grab_cache_page_write_begin(mapping, index); 2230 if (!page) 2231 return -ENOMEM; 2232 2233 status = __block_write_begin(page, pos, len, get_block); 2234 if (unlikely(status)) { 2235 unlock_page(page); 2236 put_page(page); 2237 page = NULL; 2238 } 2239 2240 *pagep = page; 2241 return status; 2242 } 2243 EXPORT_SYMBOL(block_write_begin); 2244 2245 int block_write_end(struct file *file, struct address_space *mapping, 2246 loff_t pos, unsigned len, unsigned copied, 2247 struct page *page, void *fsdata) 2248 { 2249 struct folio *folio = page_folio(page); 2250 size_t start = pos - folio_pos(folio); 2251 2252 if (unlikely(copied < len)) { 2253 /* 2254 * The buffers that were written will now be uptodate, so 2255 * we don't have to worry about a read_folio reading them 2256 * and overwriting a partial write. However if we have 2257 * encountered a short write and only partially written 2258 * into a buffer, it will not be marked uptodate, so a 2259 * read_folio might come in and destroy our partial write. 2260 * 2261 * Do the simplest thing, and just treat any short write to a 2262 * non uptodate folio as a zero-length write, and force the 2263 * caller to redo the whole thing. 2264 */ 2265 if (!folio_test_uptodate(folio)) 2266 copied = 0; 2267 2268 folio_zero_new_buffers(folio, start+copied, start+len); 2269 } 2270 flush_dcache_folio(folio); 2271 2272 /* This could be a short (even 0-length) commit */ 2273 __block_commit_write(folio, start, start + copied); 2274 2275 return copied; 2276 } 2277 EXPORT_SYMBOL(block_write_end); 2278 2279 int generic_write_end(struct file *file, struct address_space *mapping, 2280 loff_t pos, unsigned len, unsigned copied, 2281 struct page *page, void *fsdata) 2282 { 2283 struct inode *inode = mapping->host; 2284 loff_t old_size = inode->i_size; 2285 bool i_size_changed = false; 2286 2287 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2288 2289 /* 2290 * No need to use i_size_read() here, the i_size cannot change under us 2291 * because we hold i_rwsem. 2292 * 2293 * But it's important to update i_size while still holding page lock: 2294 * page writeout could otherwise come in and zero beyond i_size. 2295 */ 2296 if (pos + copied > inode->i_size) { 2297 i_size_write(inode, pos + copied); 2298 i_size_changed = true; 2299 } 2300 2301 unlock_page(page); 2302 put_page(page); 2303 2304 if (old_size < pos) 2305 pagecache_isize_extended(inode, old_size, pos); 2306 /* 2307 * Don't mark the inode dirty under page lock. First, it unnecessarily 2308 * makes the holding time of page lock longer. Second, it forces lock 2309 * ordering of page lock and transaction start for journaling 2310 * filesystems. 2311 */ 2312 if (i_size_changed) 2313 mark_inode_dirty(inode); 2314 return copied; 2315 } 2316 EXPORT_SYMBOL(generic_write_end); 2317 2318 /* 2319 * block_is_partially_uptodate checks whether buffers within a folio are 2320 * uptodate or not. 2321 * 2322 * Returns true if all buffers which correspond to the specified part 2323 * of the folio are uptodate. 2324 */ 2325 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count) 2326 { 2327 unsigned block_start, block_end, blocksize; 2328 unsigned to; 2329 struct buffer_head *bh, *head; 2330 bool ret = true; 2331 2332 head = folio_buffers(folio); 2333 if (!head) 2334 return false; 2335 blocksize = head->b_size; 2336 to = min_t(unsigned, folio_size(folio) - from, count); 2337 to = from + to; 2338 if (from < blocksize && to > folio_size(folio) - blocksize) 2339 return false; 2340 2341 bh = head; 2342 block_start = 0; 2343 do { 2344 block_end = block_start + blocksize; 2345 if (block_end > from && block_start < to) { 2346 if (!buffer_uptodate(bh)) { 2347 ret = false; 2348 break; 2349 } 2350 if (block_end >= to) 2351 break; 2352 } 2353 block_start = block_end; 2354 bh = bh->b_this_page; 2355 } while (bh != head); 2356 2357 return ret; 2358 } 2359 EXPORT_SYMBOL(block_is_partially_uptodate); 2360 2361 /* 2362 * Generic "read_folio" function for block devices that have the normal 2363 * get_block functionality. This is most of the block device filesystems. 2364 * Reads the folio asynchronously --- the unlock_buffer() and 2365 * set/clear_buffer_uptodate() functions propagate buffer state into the 2366 * folio once IO has completed. 2367 */ 2368 int block_read_full_folio(struct folio *folio, get_block_t *get_block) 2369 { 2370 struct inode *inode = folio->mapping->host; 2371 sector_t iblock, lblock; 2372 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2373 size_t blocksize; 2374 int nr, i; 2375 int fully_mapped = 1; 2376 bool page_error = false; 2377 loff_t limit = i_size_read(inode); 2378 2379 /* This is needed for ext4. */ 2380 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode)) 2381 limit = inode->i_sb->s_maxbytes; 2382 2383 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 2384 2385 head = folio_create_buffers(folio, inode, 0); 2386 blocksize = head->b_size; 2387 2388 iblock = div_u64(folio_pos(folio), blocksize); 2389 lblock = div_u64(limit + blocksize - 1, blocksize); 2390 bh = head; 2391 nr = 0; 2392 i = 0; 2393 2394 do { 2395 if (buffer_uptodate(bh)) 2396 continue; 2397 2398 if (!buffer_mapped(bh)) { 2399 int err = 0; 2400 2401 fully_mapped = 0; 2402 if (iblock < lblock) { 2403 WARN_ON(bh->b_size != blocksize); 2404 err = get_block(inode, iblock, bh, 0); 2405 if (err) 2406 page_error = true; 2407 } 2408 if (!buffer_mapped(bh)) { 2409 folio_zero_range(folio, i * blocksize, 2410 blocksize); 2411 if (!err) 2412 set_buffer_uptodate(bh); 2413 continue; 2414 } 2415 /* 2416 * get_block() might have updated the buffer 2417 * synchronously 2418 */ 2419 if (buffer_uptodate(bh)) 2420 continue; 2421 } 2422 arr[nr++] = bh; 2423 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2424 2425 if (fully_mapped) 2426 folio_set_mappedtodisk(folio); 2427 2428 if (!nr) { 2429 /* 2430 * All buffers are uptodate or get_block() returned an 2431 * error when trying to map them - we can finish the read. 2432 */ 2433 folio_end_read(folio, !page_error); 2434 return 0; 2435 } 2436 2437 /* Stage two: lock the buffers */ 2438 for (i = 0; i < nr; i++) { 2439 bh = arr[i]; 2440 lock_buffer(bh); 2441 mark_buffer_async_read(bh); 2442 } 2443 2444 /* 2445 * Stage 3: start the IO. Check for uptodateness 2446 * inside the buffer lock in case another process reading 2447 * the underlying blockdev brought it uptodate (the sct fix). 2448 */ 2449 for (i = 0; i < nr; i++) { 2450 bh = arr[i]; 2451 if (buffer_uptodate(bh)) 2452 end_buffer_async_read(bh, 1); 2453 else 2454 submit_bh(REQ_OP_READ, bh); 2455 } 2456 return 0; 2457 } 2458 EXPORT_SYMBOL(block_read_full_folio); 2459 2460 /* utility function for filesystems that need to do work on expanding 2461 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2462 * deal with the hole. 2463 */ 2464 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2465 { 2466 struct address_space *mapping = inode->i_mapping; 2467 const struct address_space_operations *aops = mapping->a_ops; 2468 struct page *page; 2469 void *fsdata = NULL; 2470 int err; 2471 2472 err = inode_newsize_ok(inode, size); 2473 if (err) 2474 goto out; 2475 2476 err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata); 2477 if (err) 2478 goto out; 2479 2480 err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata); 2481 BUG_ON(err > 0); 2482 2483 out: 2484 return err; 2485 } 2486 EXPORT_SYMBOL(generic_cont_expand_simple); 2487 2488 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2489 loff_t pos, loff_t *bytes) 2490 { 2491 struct inode *inode = mapping->host; 2492 const struct address_space_operations *aops = mapping->a_ops; 2493 unsigned int blocksize = i_blocksize(inode); 2494 struct page *page; 2495 void *fsdata = NULL; 2496 pgoff_t index, curidx; 2497 loff_t curpos; 2498 unsigned zerofrom, offset, len; 2499 int err = 0; 2500 2501 index = pos >> PAGE_SHIFT; 2502 offset = pos & ~PAGE_MASK; 2503 2504 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { 2505 zerofrom = curpos & ~PAGE_MASK; 2506 if (zerofrom & (blocksize-1)) { 2507 *bytes |= (blocksize-1); 2508 (*bytes)++; 2509 } 2510 len = PAGE_SIZE - zerofrom; 2511 2512 err = aops->write_begin(file, mapping, curpos, len, 2513 &page, &fsdata); 2514 if (err) 2515 goto out; 2516 zero_user(page, zerofrom, len); 2517 err = aops->write_end(file, mapping, curpos, len, len, 2518 page, fsdata); 2519 if (err < 0) 2520 goto out; 2521 BUG_ON(err != len); 2522 err = 0; 2523 2524 balance_dirty_pages_ratelimited(mapping); 2525 2526 if (fatal_signal_pending(current)) { 2527 err = -EINTR; 2528 goto out; 2529 } 2530 } 2531 2532 /* page covers the boundary, find the boundary offset */ 2533 if (index == curidx) { 2534 zerofrom = curpos & ~PAGE_MASK; 2535 /* if we will expand the thing last block will be filled */ 2536 if (offset <= zerofrom) { 2537 goto out; 2538 } 2539 if (zerofrom & (blocksize-1)) { 2540 *bytes |= (blocksize-1); 2541 (*bytes)++; 2542 } 2543 len = offset - zerofrom; 2544 2545 err = aops->write_begin(file, mapping, curpos, len, 2546 &page, &fsdata); 2547 if (err) 2548 goto out; 2549 zero_user(page, zerofrom, len); 2550 err = aops->write_end(file, mapping, curpos, len, len, 2551 page, fsdata); 2552 if (err < 0) 2553 goto out; 2554 BUG_ON(err != len); 2555 err = 0; 2556 } 2557 out: 2558 return err; 2559 } 2560 2561 /* 2562 * For moronic filesystems that do not allow holes in file. 2563 * We may have to extend the file. 2564 */ 2565 int cont_write_begin(struct file *file, struct address_space *mapping, 2566 loff_t pos, unsigned len, 2567 struct page **pagep, void **fsdata, 2568 get_block_t *get_block, loff_t *bytes) 2569 { 2570 struct inode *inode = mapping->host; 2571 unsigned int blocksize = i_blocksize(inode); 2572 unsigned int zerofrom; 2573 int err; 2574 2575 err = cont_expand_zero(file, mapping, pos, bytes); 2576 if (err) 2577 return err; 2578 2579 zerofrom = *bytes & ~PAGE_MASK; 2580 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2581 *bytes |= (blocksize-1); 2582 (*bytes)++; 2583 } 2584 2585 return block_write_begin(mapping, pos, len, pagep, get_block); 2586 } 2587 EXPORT_SYMBOL(cont_write_begin); 2588 2589 void block_commit_write(struct page *page, unsigned from, unsigned to) 2590 { 2591 struct folio *folio = page_folio(page); 2592 __block_commit_write(folio, from, to); 2593 } 2594 EXPORT_SYMBOL(block_commit_write); 2595 2596 /* 2597 * block_page_mkwrite() is not allowed to change the file size as it gets 2598 * called from a page fault handler when a page is first dirtied. Hence we must 2599 * be careful to check for EOF conditions here. We set the page up correctly 2600 * for a written page which means we get ENOSPC checking when writing into 2601 * holes and correct delalloc and unwritten extent mapping on filesystems that 2602 * support these features. 2603 * 2604 * We are not allowed to take the i_mutex here so we have to play games to 2605 * protect against truncate races as the page could now be beyond EOF. Because 2606 * truncate writes the inode size before removing pages, once we have the 2607 * page lock we can determine safely if the page is beyond EOF. If it is not 2608 * beyond EOF, then the page is guaranteed safe against truncation until we 2609 * unlock the page. 2610 * 2611 * Direct callers of this function should protect against filesystem freezing 2612 * using sb_start_pagefault() - sb_end_pagefault() functions. 2613 */ 2614 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2615 get_block_t get_block) 2616 { 2617 struct folio *folio = page_folio(vmf->page); 2618 struct inode *inode = file_inode(vma->vm_file); 2619 unsigned long end; 2620 loff_t size; 2621 int ret; 2622 2623 folio_lock(folio); 2624 size = i_size_read(inode); 2625 if ((folio->mapping != inode->i_mapping) || 2626 (folio_pos(folio) >= size)) { 2627 /* We overload EFAULT to mean page got truncated */ 2628 ret = -EFAULT; 2629 goto out_unlock; 2630 } 2631 2632 end = folio_size(folio); 2633 /* folio is wholly or partially inside EOF */ 2634 if (folio_pos(folio) + end > size) 2635 end = size - folio_pos(folio); 2636 2637 ret = __block_write_begin_int(folio, 0, end, get_block, NULL); 2638 if (unlikely(ret)) 2639 goto out_unlock; 2640 2641 __block_commit_write(folio, 0, end); 2642 2643 folio_mark_dirty(folio); 2644 folio_wait_stable(folio); 2645 return 0; 2646 out_unlock: 2647 folio_unlock(folio); 2648 return ret; 2649 } 2650 EXPORT_SYMBOL(block_page_mkwrite); 2651 2652 int block_truncate_page(struct address_space *mapping, 2653 loff_t from, get_block_t *get_block) 2654 { 2655 pgoff_t index = from >> PAGE_SHIFT; 2656 unsigned blocksize; 2657 sector_t iblock; 2658 size_t offset, length, pos; 2659 struct inode *inode = mapping->host; 2660 struct folio *folio; 2661 struct buffer_head *bh; 2662 int err = 0; 2663 2664 blocksize = i_blocksize(inode); 2665 length = from & (blocksize - 1); 2666 2667 /* Block boundary? Nothing to do */ 2668 if (!length) 2669 return 0; 2670 2671 length = blocksize - length; 2672 iblock = ((loff_t)index * PAGE_SIZE) >> inode->i_blkbits; 2673 2674 folio = filemap_grab_folio(mapping, index); 2675 if (IS_ERR(folio)) 2676 return PTR_ERR(folio); 2677 2678 bh = folio_buffers(folio); 2679 if (!bh) 2680 bh = create_empty_buffers(folio, blocksize, 0); 2681 2682 /* Find the buffer that contains "offset" */ 2683 offset = offset_in_folio(folio, from); 2684 pos = blocksize; 2685 while (offset >= pos) { 2686 bh = bh->b_this_page; 2687 iblock++; 2688 pos += blocksize; 2689 } 2690 2691 if (!buffer_mapped(bh)) { 2692 WARN_ON(bh->b_size != blocksize); 2693 err = get_block(inode, iblock, bh, 0); 2694 if (err) 2695 goto unlock; 2696 /* unmapped? It's a hole - nothing to do */ 2697 if (!buffer_mapped(bh)) 2698 goto unlock; 2699 } 2700 2701 /* Ok, it's mapped. Make sure it's up-to-date */ 2702 if (folio_test_uptodate(folio)) 2703 set_buffer_uptodate(bh); 2704 2705 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2706 err = bh_read(bh, 0); 2707 /* Uhhuh. Read error. Complain and punt. */ 2708 if (err < 0) 2709 goto unlock; 2710 } 2711 2712 folio_zero_range(folio, offset, length); 2713 mark_buffer_dirty(bh); 2714 2715 unlock: 2716 folio_unlock(folio); 2717 folio_put(folio); 2718 2719 return err; 2720 } 2721 EXPORT_SYMBOL(block_truncate_page); 2722 2723 /* 2724 * The generic ->writepage function for buffer-backed address_spaces 2725 */ 2726 int block_write_full_folio(struct folio *folio, struct writeback_control *wbc, 2727 void *get_block) 2728 { 2729 struct inode * const inode = folio->mapping->host; 2730 loff_t i_size = i_size_read(inode); 2731 2732 /* Is the folio fully inside i_size? */ 2733 if (folio_pos(folio) + folio_size(folio) <= i_size) 2734 return __block_write_full_folio(inode, folio, get_block, wbc); 2735 2736 /* Is the folio fully outside i_size? (truncate in progress) */ 2737 if (folio_pos(folio) >= i_size) { 2738 folio_unlock(folio); 2739 return 0; /* don't care */ 2740 } 2741 2742 /* 2743 * The folio straddles i_size. It must be zeroed out on each and every 2744 * writepage invocation because it may be mmapped. "A file is mapped 2745 * in multiples of the page size. For a file that is not a multiple of 2746 * the page size, the remaining memory is zeroed when mapped, and 2747 * writes to that region are not written out to the file." 2748 */ 2749 folio_zero_segment(folio, offset_in_folio(folio, i_size), 2750 folio_size(folio)); 2751 return __block_write_full_folio(inode, folio, get_block, wbc); 2752 } 2753 2754 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2755 get_block_t *get_block) 2756 { 2757 struct inode *inode = mapping->host; 2758 struct buffer_head tmp = { 2759 .b_size = i_blocksize(inode), 2760 }; 2761 2762 get_block(inode, block, &tmp, 0); 2763 return tmp.b_blocknr; 2764 } 2765 EXPORT_SYMBOL(generic_block_bmap); 2766 2767 static void end_bio_bh_io_sync(struct bio *bio) 2768 { 2769 struct buffer_head *bh = bio->bi_private; 2770 2771 if (unlikely(bio_flagged(bio, BIO_QUIET))) 2772 set_bit(BH_Quiet, &bh->b_state); 2773 2774 bh->b_end_io(bh, !bio->bi_status); 2775 bio_put(bio); 2776 } 2777 2778 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, 2779 enum rw_hint write_hint, 2780 struct writeback_control *wbc) 2781 { 2782 const enum req_op op = opf & REQ_OP_MASK; 2783 struct bio *bio; 2784 2785 BUG_ON(!buffer_locked(bh)); 2786 BUG_ON(!buffer_mapped(bh)); 2787 BUG_ON(!bh->b_end_io); 2788 BUG_ON(buffer_delay(bh)); 2789 BUG_ON(buffer_unwritten(bh)); 2790 2791 /* 2792 * Only clear out a write error when rewriting 2793 */ 2794 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) 2795 clear_buffer_write_io_error(bh); 2796 2797 if (buffer_meta(bh)) 2798 opf |= REQ_META; 2799 if (buffer_prio(bh)) 2800 opf |= REQ_PRIO; 2801 2802 bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO); 2803 2804 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO); 2805 2806 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2807 bio->bi_write_hint = write_hint; 2808 2809 __bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 2810 2811 bio->bi_end_io = end_bio_bh_io_sync; 2812 bio->bi_private = bh; 2813 2814 /* Take care of bh's that straddle the end of the device */ 2815 guard_bio_eod(bio); 2816 2817 if (wbc) { 2818 wbc_init_bio(wbc, bio); 2819 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size); 2820 } 2821 2822 submit_bio(bio); 2823 } 2824 2825 void submit_bh(blk_opf_t opf, struct buffer_head *bh) 2826 { 2827 submit_bh_wbc(opf, bh, WRITE_LIFE_NOT_SET, NULL); 2828 } 2829 EXPORT_SYMBOL(submit_bh); 2830 2831 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) 2832 { 2833 lock_buffer(bh); 2834 if (!test_clear_buffer_dirty(bh)) { 2835 unlock_buffer(bh); 2836 return; 2837 } 2838 bh->b_end_io = end_buffer_write_sync; 2839 get_bh(bh); 2840 submit_bh(REQ_OP_WRITE | op_flags, bh); 2841 } 2842 EXPORT_SYMBOL(write_dirty_buffer); 2843 2844 /* 2845 * For a data-integrity writeout, we need to wait upon any in-progress I/O 2846 * and then start new I/O and then wait upon it. The caller must have a ref on 2847 * the buffer_head. 2848 */ 2849 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) 2850 { 2851 WARN_ON(atomic_read(&bh->b_count) < 1); 2852 lock_buffer(bh); 2853 if (test_clear_buffer_dirty(bh)) { 2854 /* 2855 * The bh should be mapped, but it might not be if the 2856 * device was hot-removed. Not much we can do but fail the I/O. 2857 */ 2858 if (!buffer_mapped(bh)) { 2859 unlock_buffer(bh); 2860 return -EIO; 2861 } 2862 2863 get_bh(bh); 2864 bh->b_end_io = end_buffer_write_sync; 2865 submit_bh(REQ_OP_WRITE | op_flags, bh); 2866 wait_on_buffer(bh); 2867 if (!buffer_uptodate(bh)) 2868 return -EIO; 2869 } else { 2870 unlock_buffer(bh); 2871 } 2872 return 0; 2873 } 2874 EXPORT_SYMBOL(__sync_dirty_buffer); 2875 2876 int sync_dirty_buffer(struct buffer_head *bh) 2877 { 2878 return __sync_dirty_buffer(bh, REQ_SYNC); 2879 } 2880 EXPORT_SYMBOL(sync_dirty_buffer); 2881 2882 static inline int buffer_busy(struct buffer_head *bh) 2883 { 2884 return atomic_read(&bh->b_count) | 2885 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 2886 } 2887 2888 static bool 2889 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free) 2890 { 2891 struct buffer_head *head = folio_buffers(folio); 2892 struct buffer_head *bh; 2893 2894 bh = head; 2895 do { 2896 if (buffer_busy(bh)) 2897 goto failed; 2898 bh = bh->b_this_page; 2899 } while (bh != head); 2900 2901 do { 2902 struct buffer_head *next = bh->b_this_page; 2903 2904 if (bh->b_assoc_map) 2905 __remove_assoc_queue(bh); 2906 bh = next; 2907 } while (bh != head); 2908 *buffers_to_free = head; 2909 folio_detach_private(folio); 2910 return true; 2911 failed: 2912 return false; 2913 } 2914 2915 /** 2916 * try_to_free_buffers - Release buffers attached to this folio. 2917 * @folio: The folio. 2918 * 2919 * If any buffers are in use (dirty, under writeback, elevated refcount), 2920 * no buffers will be freed. 2921 * 2922 * If the folio is dirty but all the buffers are clean then we need to 2923 * be sure to mark the folio clean as well. This is because the folio 2924 * may be against a block device, and a later reattachment of buffers 2925 * to a dirty folio will set *all* buffers dirty. Which would corrupt 2926 * filesystem data on the same device. 2927 * 2928 * The same applies to regular filesystem folios: if all the buffers are 2929 * clean then we set the folio clean and proceed. To do that, we require 2930 * total exclusion from block_dirty_folio(). That is obtained with 2931 * i_private_lock. 2932 * 2933 * Exclusion against try_to_free_buffers may be obtained by either 2934 * locking the folio or by holding its mapping's i_private_lock. 2935 * 2936 * Context: Process context. @folio must be locked. Will not sleep. 2937 * Return: true if all buffers attached to this folio were freed. 2938 */ 2939 bool try_to_free_buffers(struct folio *folio) 2940 { 2941 struct address_space * const mapping = folio->mapping; 2942 struct buffer_head *buffers_to_free = NULL; 2943 bool ret = 0; 2944 2945 BUG_ON(!folio_test_locked(folio)); 2946 if (folio_test_writeback(folio)) 2947 return false; 2948 2949 if (mapping == NULL) { /* can this still happen? */ 2950 ret = drop_buffers(folio, &buffers_to_free); 2951 goto out; 2952 } 2953 2954 spin_lock(&mapping->i_private_lock); 2955 ret = drop_buffers(folio, &buffers_to_free); 2956 2957 /* 2958 * If the filesystem writes its buffers by hand (eg ext3) 2959 * then we can have clean buffers against a dirty folio. We 2960 * clean the folio here; otherwise the VM will never notice 2961 * that the filesystem did any IO at all. 2962 * 2963 * Also, during truncate, discard_buffer will have marked all 2964 * the folio's buffers clean. We discover that here and clean 2965 * the folio also. 2966 * 2967 * i_private_lock must be held over this entire operation in order 2968 * to synchronise against block_dirty_folio and prevent the 2969 * dirty bit from being lost. 2970 */ 2971 if (ret) 2972 folio_cancel_dirty(folio); 2973 spin_unlock(&mapping->i_private_lock); 2974 out: 2975 if (buffers_to_free) { 2976 struct buffer_head *bh = buffers_to_free; 2977 2978 do { 2979 struct buffer_head *next = bh->b_this_page; 2980 free_buffer_head(bh); 2981 bh = next; 2982 } while (bh != buffers_to_free); 2983 } 2984 return ret; 2985 } 2986 EXPORT_SYMBOL(try_to_free_buffers); 2987 2988 /* 2989 * Buffer-head allocation 2990 */ 2991 static struct kmem_cache *bh_cachep __ro_after_init; 2992 2993 /* 2994 * Once the number of bh's in the machine exceeds this level, we start 2995 * stripping them in writeback. 2996 */ 2997 static unsigned long max_buffer_heads __ro_after_init; 2998 2999 int buffer_heads_over_limit; 3000 3001 struct bh_accounting { 3002 int nr; /* Number of live bh's */ 3003 int ratelimit; /* Limit cacheline bouncing */ 3004 }; 3005 3006 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3007 3008 static void recalc_bh_state(void) 3009 { 3010 int i; 3011 int tot = 0; 3012 3013 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3014 return; 3015 __this_cpu_write(bh_accounting.ratelimit, 0); 3016 for_each_online_cpu(i) 3017 tot += per_cpu(bh_accounting, i).nr; 3018 buffer_heads_over_limit = (tot > max_buffer_heads); 3019 } 3020 3021 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3022 { 3023 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3024 if (ret) { 3025 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3026 spin_lock_init(&ret->b_uptodate_lock); 3027 preempt_disable(); 3028 __this_cpu_inc(bh_accounting.nr); 3029 recalc_bh_state(); 3030 preempt_enable(); 3031 } 3032 return ret; 3033 } 3034 EXPORT_SYMBOL(alloc_buffer_head); 3035 3036 void free_buffer_head(struct buffer_head *bh) 3037 { 3038 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3039 kmem_cache_free(bh_cachep, bh); 3040 preempt_disable(); 3041 __this_cpu_dec(bh_accounting.nr); 3042 recalc_bh_state(); 3043 preempt_enable(); 3044 } 3045 EXPORT_SYMBOL(free_buffer_head); 3046 3047 static int buffer_exit_cpu_dead(unsigned int cpu) 3048 { 3049 int i; 3050 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3051 3052 for (i = 0; i < BH_LRU_SIZE; i++) { 3053 brelse(b->bhs[i]); 3054 b->bhs[i] = NULL; 3055 } 3056 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3057 per_cpu(bh_accounting, cpu).nr = 0; 3058 return 0; 3059 } 3060 3061 /** 3062 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3063 * @bh: struct buffer_head 3064 * 3065 * Return true if the buffer is up-to-date and false, 3066 * with the buffer locked, if not. 3067 */ 3068 int bh_uptodate_or_lock(struct buffer_head *bh) 3069 { 3070 if (!buffer_uptodate(bh)) { 3071 lock_buffer(bh); 3072 if (!buffer_uptodate(bh)) 3073 return 0; 3074 unlock_buffer(bh); 3075 } 3076 return 1; 3077 } 3078 EXPORT_SYMBOL(bh_uptodate_or_lock); 3079 3080 /** 3081 * __bh_read - Submit read for a locked buffer 3082 * @bh: struct buffer_head 3083 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ 3084 * @wait: wait until reading finish 3085 * 3086 * Returns zero on success or don't wait, and -EIO on error. 3087 */ 3088 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait) 3089 { 3090 int ret = 0; 3091 3092 BUG_ON(!buffer_locked(bh)); 3093 3094 get_bh(bh); 3095 bh->b_end_io = end_buffer_read_sync; 3096 submit_bh(REQ_OP_READ | op_flags, bh); 3097 if (wait) { 3098 wait_on_buffer(bh); 3099 if (!buffer_uptodate(bh)) 3100 ret = -EIO; 3101 } 3102 return ret; 3103 } 3104 EXPORT_SYMBOL(__bh_read); 3105 3106 /** 3107 * __bh_read_batch - Submit read for a batch of unlocked buffers 3108 * @nr: entry number of the buffer batch 3109 * @bhs: a batch of struct buffer_head 3110 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ 3111 * @force_lock: force to get a lock on the buffer if set, otherwise drops any 3112 * buffer that cannot lock. 3113 * 3114 * Returns zero on success or don't wait, and -EIO on error. 3115 */ 3116 void __bh_read_batch(int nr, struct buffer_head *bhs[], 3117 blk_opf_t op_flags, bool force_lock) 3118 { 3119 int i; 3120 3121 for (i = 0; i < nr; i++) { 3122 struct buffer_head *bh = bhs[i]; 3123 3124 if (buffer_uptodate(bh)) 3125 continue; 3126 3127 if (force_lock) 3128 lock_buffer(bh); 3129 else 3130 if (!trylock_buffer(bh)) 3131 continue; 3132 3133 if (buffer_uptodate(bh)) { 3134 unlock_buffer(bh); 3135 continue; 3136 } 3137 3138 bh->b_end_io = end_buffer_read_sync; 3139 get_bh(bh); 3140 submit_bh(REQ_OP_READ | op_flags, bh); 3141 } 3142 } 3143 EXPORT_SYMBOL(__bh_read_batch); 3144 3145 void __init buffer_init(void) 3146 { 3147 unsigned long nrpages; 3148 int ret; 3149 3150 bh_cachep = KMEM_CACHE(buffer_head, 3151 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC); 3152 /* 3153 * Limit the bh occupancy to 10% of ZONE_NORMAL 3154 */ 3155 nrpages = (nr_free_buffer_pages() * 10) / 100; 3156 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3157 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", 3158 NULL, buffer_exit_cpu_dead); 3159 WARN_ON(ret < 0); 3160 } 3161