xref: /linux-6.15/fs/buffer.c (revision fb6f20ec)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7 
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <[email protected]>
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 #include <linux/fsverity.h>
52 #include <linux/sched/isolation.h>
53 
54 #include "internal.h"
55 
56 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
57 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
58 			  enum rw_hint hint, struct writeback_control *wbc);
59 
60 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
61 
62 inline void touch_buffer(struct buffer_head *bh)
63 {
64 	trace_block_touch_buffer(bh);
65 	folio_mark_accessed(bh->b_folio);
66 }
67 EXPORT_SYMBOL(touch_buffer);
68 
69 void __lock_buffer(struct buffer_head *bh)
70 {
71 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
72 }
73 EXPORT_SYMBOL(__lock_buffer);
74 
75 void unlock_buffer(struct buffer_head *bh)
76 {
77 	clear_bit_unlock(BH_Lock, &bh->b_state);
78 	smp_mb__after_atomic();
79 	wake_up_bit(&bh->b_state, BH_Lock);
80 }
81 EXPORT_SYMBOL(unlock_buffer);
82 
83 /*
84  * Returns if the folio has dirty or writeback buffers. If all the buffers
85  * are unlocked and clean then the folio_test_dirty information is stale. If
86  * any of the buffers are locked, it is assumed they are locked for IO.
87  */
88 void buffer_check_dirty_writeback(struct folio *folio,
89 				     bool *dirty, bool *writeback)
90 {
91 	struct buffer_head *head, *bh;
92 	*dirty = false;
93 	*writeback = false;
94 
95 	BUG_ON(!folio_test_locked(folio));
96 
97 	head = folio_buffers(folio);
98 	if (!head)
99 		return;
100 
101 	if (folio_test_writeback(folio))
102 		*writeback = true;
103 
104 	bh = head;
105 	do {
106 		if (buffer_locked(bh))
107 			*writeback = true;
108 
109 		if (buffer_dirty(bh))
110 			*dirty = true;
111 
112 		bh = bh->b_this_page;
113 	} while (bh != head);
114 }
115 
116 /*
117  * Block until a buffer comes unlocked.  This doesn't stop it
118  * from becoming locked again - you have to lock it yourself
119  * if you want to preserve its state.
120  */
121 void __wait_on_buffer(struct buffer_head * bh)
122 {
123 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
124 }
125 EXPORT_SYMBOL(__wait_on_buffer);
126 
127 static void buffer_io_error(struct buffer_head *bh, char *msg)
128 {
129 	if (!test_bit(BH_Quiet, &bh->b_state))
130 		printk_ratelimited(KERN_ERR
131 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
132 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
133 }
134 
135 /*
136  * End-of-IO handler helper function which does not touch the bh after
137  * unlocking it.
138  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
139  * a race there is benign: unlock_buffer() only use the bh's address for
140  * hashing after unlocking the buffer, so it doesn't actually touch the bh
141  * itself.
142  */
143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
144 {
145 	if (uptodate) {
146 		set_buffer_uptodate(bh);
147 	} else {
148 		/* This happens, due to failed read-ahead attempts. */
149 		clear_buffer_uptodate(bh);
150 	}
151 	unlock_buffer(bh);
152 }
153 
154 /*
155  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
156  * unlock the buffer.
157  */
158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
159 {
160 	__end_buffer_read_notouch(bh, uptodate);
161 	put_bh(bh);
162 }
163 EXPORT_SYMBOL(end_buffer_read_sync);
164 
165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
166 {
167 	if (uptodate) {
168 		set_buffer_uptodate(bh);
169 	} else {
170 		buffer_io_error(bh, ", lost sync page write");
171 		mark_buffer_write_io_error(bh);
172 		clear_buffer_uptodate(bh);
173 	}
174 	unlock_buffer(bh);
175 	put_bh(bh);
176 }
177 EXPORT_SYMBOL(end_buffer_write_sync);
178 
179 /*
180  * Various filesystems appear to want __find_get_block to be non-blocking.
181  * But it's the page lock which protects the buffers.  To get around this,
182  * we get exclusion from try_to_free_buffers with the blockdev mapping's
183  * i_private_lock.
184  *
185  * Hack idea: for the blockdev mapping, i_private_lock contention
186  * may be quite high.  This code could TryLock the page, and if that
187  * succeeds, there is no need to take i_private_lock.
188  */
189 static struct buffer_head *
190 __find_get_block_slow(struct block_device *bdev, sector_t block)
191 {
192 	struct address_space *bd_mapping = bdev->bd_mapping;
193 	const int blkbits = bd_mapping->host->i_blkbits;
194 	struct buffer_head *ret = NULL;
195 	pgoff_t index;
196 	struct buffer_head *bh;
197 	struct buffer_head *head;
198 	struct folio *folio;
199 	int all_mapped = 1;
200 	static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
201 
202 	index = ((loff_t)block << blkbits) / PAGE_SIZE;
203 	folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0);
204 	if (IS_ERR(folio))
205 		goto out;
206 
207 	spin_lock(&bd_mapping->i_private_lock);
208 	head = folio_buffers(folio);
209 	if (!head)
210 		goto out_unlock;
211 	bh = head;
212 	do {
213 		if (!buffer_mapped(bh))
214 			all_mapped = 0;
215 		else if (bh->b_blocknr == block) {
216 			ret = bh;
217 			get_bh(bh);
218 			goto out_unlock;
219 		}
220 		bh = bh->b_this_page;
221 	} while (bh != head);
222 
223 	/* we might be here because some of the buffers on this page are
224 	 * not mapped.  This is due to various races between
225 	 * file io on the block device and getblk.  It gets dealt with
226 	 * elsewhere, don't buffer_error if we had some unmapped buffers
227 	 */
228 	ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
229 	if (all_mapped && __ratelimit(&last_warned)) {
230 		printk("__find_get_block_slow() failed. block=%llu, "
231 		       "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
232 		       "device %pg blocksize: %d\n",
233 		       (unsigned long long)block,
234 		       (unsigned long long)bh->b_blocknr,
235 		       bh->b_state, bh->b_size, bdev,
236 		       1 << blkbits);
237 	}
238 out_unlock:
239 	spin_unlock(&bd_mapping->i_private_lock);
240 	folio_put(folio);
241 out:
242 	return ret;
243 }
244 
245 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
246 {
247 	unsigned long flags;
248 	struct buffer_head *first;
249 	struct buffer_head *tmp;
250 	struct folio *folio;
251 	int folio_uptodate = 1;
252 
253 	BUG_ON(!buffer_async_read(bh));
254 
255 	folio = bh->b_folio;
256 	if (uptodate) {
257 		set_buffer_uptodate(bh);
258 	} else {
259 		clear_buffer_uptodate(bh);
260 		buffer_io_error(bh, ", async page read");
261 	}
262 
263 	/*
264 	 * Be _very_ careful from here on. Bad things can happen if
265 	 * two buffer heads end IO at almost the same time and both
266 	 * decide that the page is now completely done.
267 	 */
268 	first = folio_buffers(folio);
269 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
270 	clear_buffer_async_read(bh);
271 	unlock_buffer(bh);
272 	tmp = bh;
273 	do {
274 		if (!buffer_uptodate(tmp))
275 			folio_uptodate = 0;
276 		if (buffer_async_read(tmp)) {
277 			BUG_ON(!buffer_locked(tmp));
278 			goto still_busy;
279 		}
280 		tmp = tmp->b_this_page;
281 	} while (tmp != bh);
282 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
283 
284 	folio_end_read(folio, folio_uptodate);
285 	return;
286 
287 still_busy:
288 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
289 	return;
290 }
291 
292 struct postprocess_bh_ctx {
293 	struct work_struct work;
294 	struct buffer_head *bh;
295 };
296 
297 static void verify_bh(struct work_struct *work)
298 {
299 	struct postprocess_bh_ctx *ctx =
300 		container_of(work, struct postprocess_bh_ctx, work);
301 	struct buffer_head *bh = ctx->bh;
302 	bool valid;
303 
304 	valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh));
305 	end_buffer_async_read(bh, valid);
306 	kfree(ctx);
307 }
308 
309 static bool need_fsverity(struct buffer_head *bh)
310 {
311 	struct folio *folio = bh->b_folio;
312 	struct inode *inode = folio->mapping->host;
313 
314 	return fsverity_active(inode) &&
315 		/* needed by ext4 */
316 		folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
317 }
318 
319 static void decrypt_bh(struct work_struct *work)
320 {
321 	struct postprocess_bh_ctx *ctx =
322 		container_of(work, struct postprocess_bh_ctx, work);
323 	struct buffer_head *bh = ctx->bh;
324 	int err;
325 
326 	err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size,
327 					       bh_offset(bh));
328 	if (err == 0 && need_fsverity(bh)) {
329 		/*
330 		 * We use different work queues for decryption and for verity
331 		 * because verity may require reading metadata pages that need
332 		 * decryption, and we shouldn't recurse to the same workqueue.
333 		 */
334 		INIT_WORK(&ctx->work, verify_bh);
335 		fsverity_enqueue_verify_work(&ctx->work);
336 		return;
337 	}
338 	end_buffer_async_read(bh, err == 0);
339 	kfree(ctx);
340 }
341 
342 /*
343  * I/O completion handler for block_read_full_folio() - pages
344  * which come unlocked at the end of I/O.
345  */
346 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
347 {
348 	struct inode *inode = bh->b_folio->mapping->host;
349 	bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
350 	bool verify = need_fsverity(bh);
351 
352 	/* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
353 	if (uptodate && (decrypt || verify)) {
354 		struct postprocess_bh_ctx *ctx =
355 			kmalloc(sizeof(*ctx), GFP_ATOMIC);
356 
357 		if (ctx) {
358 			ctx->bh = bh;
359 			if (decrypt) {
360 				INIT_WORK(&ctx->work, decrypt_bh);
361 				fscrypt_enqueue_decrypt_work(&ctx->work);
362 			} else {
363 				INIT_WORK(&ctx->work, verify_bh);
364 				fsverity_enqueue_verify_work(&ctx->work);
365 			}
366 			return;
367 		}
368 		uptodate = 0;
369 	}
370 	end_buffer_async_read(bh, uptodate);
371 }
372 
373 /*
374  * Completion handler for block_write_full_folio() - folios which are unlocked
375  * during I/O, and which have the writeback flag cleared upon I/O completion.
376  */
377 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
378 {
379 	unsigned long flags;
380 	struct buffer_head *first;
381 	struct buffer_head *tmp;
382 	struct folio *folio;
383 
384 	BUG_ON(!buffer_async_write(bh));
385 
386 	folio = bh->b_folio;
387 	if (uptodate) {
388 		set_buffer_uptodate(bh);
389 	} else {
390 		buffer_io_error(bh, ", lost async page write");
391 		mark_buffer_write_io_error(bh);
392 		clear_buffer_uptodate(bh);
393 	}
394 
395 	first = folio_buffers(folio);
396 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
397 
398 	clear_buffer_async_write(bh);
399 	unlock_buffer(bh);
400 	tmp = bh->b_this_page;
401 	while (tmp != bh) {
402 		if (buffer_async_write(tmp)) {
403 			BUG_ON(!buffer_locked(tmp));
404 			goto still_busy;
405 		}
406 		tmp = tmp->b_this_page;
407 	}
408 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
409 	folio_end_writeback(folio);
410 	return;
411 
412 still_busy:
413 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
414 	return;
415 }
416 
417 /*
418  * If a page's buffers are under async readin (end_buffer_async_read
419  * completion) then there is a possibility that another thread of
420  * control could lock one of the buffers after it has completed
421  * but while some of the other buffers have not completed.  This
422  * locked buffer would confuse end_buffer_async_read() into not unlocking
423  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
424  * that this buffer is not under async I/O.
425  *
426  * The page comes unlocked when it has no locked buffer_async buffers
427  * left.
428  *
429  * PageLocked prevents anyone starting new async I/O reads any of
430  * the buffers.
431  *
432  * PageWriteback is used to prevent simultaneous writeout of the same
433  * page.
434  *
435  * PageLocked prevents anyone from starting writeback of a page which is
436  * under read I/O (PageWriteback is only ever set against a locked page).
437  */
438 static void mark_buffer_async_read(struct buffer_head *bh)
439 {
440 	bh->b_end_io = end_buffer_async_read_io;
441 	set_buffer_async_read(bh);
442 }
443 
444 static void mark_buffer_async_write_endio(struct buffer_head *bh,
445 					  bh_end_io_t *handler)
446 {
447 	bh->b_end_io = handler;
448 	set_buffer_async_write(bh);
449 }
450 
451 void mark_buffer_async_write(struct buffer_head *bh)
452 {
453 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
454 }
455 EXPORT_SYMBOL(mark_buffer_async_write);
456 
457 
458 /*
459  * fs/buffer.c contains helper functions for buffer-backed address space's
460  * fsync functions.  A common requirement for buffer-based filesystems is
461  * that certain data from the backing blockdev needs to be written out for
462  * a successful fsync().  For example, ext2 indirect blocks need to be
463  * written back and waited upon before fsync() returns.
464  *
465  * The functions mark_buffer_dirty_inode(), fsync_inode_buffers(),
466  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
467  * management of a list of dependent buffers at ->i_mapping->i_private_list.
468  *
469  * Locking is a little subtle: try_to_free_buffers() will remove buffers
470  * from their controlling inode's queue when they are being freed.  But
471  * try_to_free_buffers() will be operating against the *blockdev* mapping
472  * at the time, not against the S_ISREG file which depends on those buffers.
473  * So the locking for i_private_list is via the i_private_lock in the address_space
474  * which backs the buffers.  Which is different from the address_space
475  * against which the buffers are listed.  So for a particular address_space,
476  * mapping->i_private_lock does *not* protect mapping->i_private_list!  In fact,
477  * mapping->i_private_list will always be protected by the backing blockdev's
478  * ->i_private_lock.
479  *
480  * Which introduces a requirement: all buffers on an address_space's
481  * ->i_private_list must be from the same address_space: the blockdev's.
482  *
483  * address_spaces which do not place buffers at ->i_private_list via these
484  * utility functions are free to use i_private_lock and i_private_list for
485  * whatever they want.  The only requirement is that list_empty(i_private_list)
486  * be true at clear_inode() time.
487  *
488  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
489  * filesystems should do that.  invalidate_inode_buffers() should just go
490  * BUG_ON(!list_empty).
491  *
492  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
493  * take an address_space, not an inode.  And it should be called
494  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
495  * queued up.
496  *
497  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
498  * list if it is already on a list.  Because if the buffer is on a list,
499  * it *must* already be on the right one.  If not, the filesystem is being
500  * silly.  This will save a ton of locking.  But first we have to ensure
501  * that buffers are taken *off* the old inode's list when they are freed
502  * (presumably in truncate).  That requires careful auditing of all
503  * filesystems (do it inside bforget()).  It could also be done by bringing
504  * b_inode back.
505  */
506 
507 /*
508  * The buffer's backing address_space's i_private_lock must be held
509  */
510 static void __remove_assoc_queue(struct buffer_head *bh)
511 {
512 	list_del_init(&bh->b_assoc_buffers);
513 	WARN_ON(!bh->b_assoc_map);
514 	bh->b_assoc_map = NULL;
515 }
516 
517 int inode_has_buffers(struct inode *inode)
518 {
519 	return !list_empty(&inode->i_data.i_private_list);
520 }
521 
522 /*
523  * osync is designed to support O_SYNC io.  It waits synchronously for
524  * all already-submitted IO to complete, but does not queue any new
525  * writes to the disk.
526  *
527  * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
528  * as you dirty the buffers, and then use osync_inode_buffers to wait for
529  * completion.  Any other dirty buffers which are not yet queued for
530  * write will not be flushed to disk by the osync.
531  */
532 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
533 {
534 	struct buffer_head *bh;
535 	struct list_head *p;
536 	int err = 0;
537 
538 	spin_lock(lock);
539 repeat:
540 	list_for_each_prev(p, list) {
541 		bh = BH_ENTRY(p);
542 		if (buffer_locked(bh)) {
543 			get_bh(bh);
544 			spin_unlock(lock);
545 			wait_on_buffer(bh);
546 			if (!buffer_uptodate(bh))
547 				err = -EIO;
548 			brelse(bh);
549 			spin_lock(lock);
550 			goto repeat;
551 		}
552 	}
553 	spin_unlock(lock);
554 	return err;
555 }
556 
557 /**
558  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
559  * @mapping: the mapping which wants those buffers written
560  *
561  * Starts I/O against the buffers at mapping->i_private_list, and waits upon
562  * that I/O.
563  *
564  * Basically, this is a convenience function for fsync().
565  * @mapping is a file or directory which needs those buffers to be written for
566  * a successful fsync().
567  */
568 int sync_mapping_buffers(struct address_space *mapping)
569 {
570 	struct address_space *buffer_mapping = mapping->i_private_data;
571 
572 	if (buffer_mapping == NULL || list_empty(&mapping->i_private_list))
573 		return 0;
574 
575 	return fsync_buffers_list(&buffer_mapping->i_private_lock,
576 					&mapping->i_private_list);
577 }
578 EXPORT_SYMBOL(sync_mapping_buffers);
579 
580 /**
581  * generic_buffers_fsync_noflush - generic buffer fsync implementation
582  * for simple filesystems with no inode lock
583  *
584  * @file:	file to synchronize
585  * @start:	start offset in bytes
586  * @end:	end offset in bytes (inclusive)
587  * @datasync:	only synchronize essential metadata if true
588  *
589  * This is a generic implementation of the fsync method for simple
590  * filesystems which track all non-inode metadata in the buffers list
591  * hanging off the address_space structure.
592  */
593 int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end,
594 				  bool datasync)
595 {
596 	struct inode *inode = file->f_mapping->host;
597 	int err;
598 	int ret;
599 
600 	err = file_write_and_wait_range(file, start, end);
601 	if (err)
602 		return err;
603 
604 	ret = sync_mapping_buffers(inode->i_mapping);
605 	if (!(inode->i_state & I_DIRTY_ALL))
606 		goto out;
607 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
608 		goto out;
609 
610 	err = sync_inode_metadata(inode, 1);
611 	if (ret == 0)
612 		ret = err;
613 
614 out:
615 	/* check and advance again to catch errors after syncing out buffers */
616 	err = file_check_and_advance_wb_err(file);
617 	if (ret == 0)
618 		ret = err;
619 	return ret;
620 }
621 EXPORT_SYMBOL(generic_buffers_fsync_noflush);
622 
623 /**
624  * generic_buffers_fsync - generic buffer fsync implementation
625  * for simple filesystems with no inode lock
626  *
627  * @file:	file to synchronize
628  * @start:	start offset in bytes
629  * @end:	end offset in bytes (inclusive)
630  * @datasync:	only synchronize essential metadata if true
631  *
632  * This is a generic implementation of the fsync method for simple
633  * filesystems which track all non-inode metadata in the buffers list
634  * hanging off the address_space structure. This also makes sure that
635  * a device cache flush operation is called at the end.
636  */
637 int generic_buffers_fsync(struct file *file, loff_t start, loff_t end,
638 			  bool datasync)
639 {
640 	struct inode *inode = file->f_mapping->host;
641 	int ret;
642 
643 	ret = generic_buffers_fsync_noflush(file, start, end, datasync);
644 	if (!ret)
645 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
646 	return ret;
647 }
648 EXPORT_SYMBOL(generic_buffers_fsync);
649 
650 /*
651  * Called when we've recently written block `bblock', and it is known that
652  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
653  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
654  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
655  */
656 void write_boundary_block(struct block_device *bdev,
657 			sector_t bblock, unsigned blocksize)
658 {
659 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
660 	if (bh) {
661 		if (buffer_dirty(bh))
662 			write_dirty_buffer(bh, 0);
663 		put_bh(bh);
664 	}
665 }
666 
667 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
668 {
669 	struct address_space *mapping = inode->i_mapping;
670 	struct address_space *buffer_mapping = bh->b_folio->mapping;
671 
672 	mark_buffer_dirty(bh);
673 	if (!mapping->i_private_data) {
674 		mapping->i_private_data = buffer_mapping;
675 	} else {
676 		BUG_ON(mapping->i_private_data != buffer_mapping);
677 	}
678 	if (!bh->b_assoc_map) {
679 		spin_lock(&buffer_mapping->i_private_lock);
680 		list_move_tail(&bh->b_assoc_buffers,
681 				&mapping->i_private_list);
682 		bh->b_assoc_map = mapping;
683 		spin_unlock(&buffer_mapping->i_private_lock);
684 	}
685 }
686 EXPORT_SYMBOL(mark_buffer_dirty_inode);
687 
688 /**
689  * block_dirty_folio - Mark a folio as dirty.
690  * @mapping: The address space containing this folio.
691  * @folio: The folio to mark dirty.
692  *
693  * Filesystems which use buffer_heads can use this function as their
694  * ->dirty_folio implementation.  Some filesystems need to do a little
695  * work before calling this function.  Filesystems which do not use
696  * buffer_heads should call filemap_dirty_folio() instead.
697  *
698  * If the folio has buffers, the uptodate buffers are set dirty, to
699  * preserve dirty-state coherency between the folio and the buffers.
700  * Buffers added to a dirty folio are created dirty.
701  *
702  * The buffers are dirtied before the folio is dirtied.  There's a small
703  * race window in which writeback may see the folio cleanness but not the
704  * buffer dirtiness.  That's fine.  If this code were to set the folio
705  * dirty before the buffers, writeback could clear the folio dirty flag,
706  * see a bunch of clean buffers and we'd end up with dirty buffers/clean
707  * folio on the dirty folio list.
708  *
709  * We use i_private_lock to lock against try_to_free_buffers() while
710  * using the folio's buffer list.  This also prevents clean buffers
711  * being added to the folio after it was set dirty.
712  *
713  * Context: May only be called from process context.  Does not sleep.
714  * Caller must ensure that @folio cannot be truncated during this call,
715  * typically by holding the folio lock or having a page in the folio
716  * mapped and holding the page table lock.
717  *
718  * Return: True if the folio was dirtied; false if it was already dirtied.
719  */
720 bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
721 {
722 	struct buffer_head *head;
723 	bool newly_dirty;
724 
725 	spin_lock(&mapping->i_private_lock);
726 	head = folio_buffers(folio);
727 	if (head) {
728 		struct buffer_head *bh = head;
729 
730 		do {
731 			set_buffer_dirty(bh);
732 			bh = bh->b_this_page;
733 		} while (bh != head);
734 	}
735 	/*
736 	 * Lock out page's memcg migration to keep PageDirty
737 	 * synchronized with per-memcg dirty page counters.
738 	 */
739 	folio_memcg_lock(folio);
740 	newly_dirty = !folio_test_set_dirty(folio);
741 	spin_unlock(&mapping->i_private_lock);
742 
743 	if (newly_dirty)
744 		__folio_mark_dirty(folio, mapping, 1);
745 
746 	folio_memcg_unlock(folio);
747 
748 	if (newly_dirty)
749 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
750 
751 	return newly_dirty;
752 }
753 EXPORT_SYMBOL(block_dirty_folio);
754 
755 /*
756  * Write out and wait upon a list of buffers.
757  *
758  * We have conflicting pressures: we want to make sure that all
759  * initially dirty buffers get waited on, but that any subsequently
760  * dirtied buffers don't.  After all, we don't want fsync to last
761  * forever if somebody is actively writing to the file.
762  *
763  * Do this in two main stages: first we copy dirty buffers to a
764  * temporary inode list, queueing the writes as we go.  Then we clean
765  * up, waiting for those writes to complete.
766  *
767  * During this second stage, any subsequent updates to the file may end
768  * up refiling the buffer on the original inode's dirty list again, so
769  * there is a chance we will end up with a buffer queued for write but
770  * not yet completed on that list.  So, as a final cleanup we go through
771  * the osync code to catch these locked, dirty buffers without requeuing
772  * any newly dirty buffers for write.
773  */
774 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
775 {
776 	struct buffer_head *bh;
777 	struct address_space *mapping;
778 	int err = 0, err2;
779 	struct blk_plug plug;
780 	LIST_HEAD(tmp);
781 
782 	blk_start_plug(&plug);
783 
784 	spin_lock(lock);
785 	while (!list_empty(list)) {
786 		bh = BH_ENTRY(list->next);
787 		mapping = bh->b_assoc_map;
788 		__remove_assoc_queue(bh);
789 		/* Avoid race with mark_buffer_dirty_inode() which does
790 		 * a lockless check and we rely on seeing the dirty bit */
791 		smp_mb();
792 		if (buffer_dirty(bh) || buffer_locked(bh)) {
793 			list_add(&bh->b_assoc_buffers, &tmp);
794 			bh->b_assoc_map = mapping;
795 			if (buffer_dirty(bh)) {
796 				get_bh(bh);
797 				spin_unlock(lock);
798 				/*
799 				 * Ensure any pending I/O completes so that
800 				 * write_dirty_buffer() actually writes the
801 				 * current contents - it is a noop if I/O is
802 				 * still in flight on potentially older
803 				 * contents.
804 				 */
805 				write_dirty_buffer(bh, REQ_SYNC);
806 
807 				/*
808 				 * Kick off IO for the previous mapping. Note
809 				 * that we will not run the very last mapping,
810 				 * wait_on_buffer() will do that for us
811 				 * through sync_buffer().
812 				 */
813 				brelse(bh);
814 				spin_lock(lock);
815 			}
816 		}
817 	}
818 
819 	spin_unlock(lock);
820 	blk_finish_plug(&plug);
821 	spin_lock(lock);
822 
823 	while (!list_empty(&tmp)) {
824 		bh = BH_ENTRY(tmp.prev);
825 		get_bh(bh);
826 		mapping = bh->b_assoc_map;
827 		__remove_assoc_queue(bh);
828 		/* Avoid race with mark_buffer_dirty_inode() which does
829 		 * a lockless check and we rely on seeing the dirty bit */
830 		smp_mb();
831 		if (buffer_dirty(bh)) {
832 			list_add(&bh->b_assoc_buffers,
833 				 &mapping->i_private_list);
834 			bh->b_assoc_map = mapping;
835 		}
836 		spin_unlock(lock);
837 		wait_on_buffer(bh);
838 		if (!buffer_uptodate(bh))
839 			err = -EIO;
840 		brelse(bh);
841 		spin_lock(lock);
842 	}
843 
844 	spin_unlock(lock);
845 	err2 = osync_buffers_list(lock, list);
846 	if (err)
847 		return err;
848 	else
849 		return err2;
850 }
851 
852 /*
853  * Invalidate any and all dirty buffers on a given inode.  We are
854  * probably unmounting the fs, but that doesn't mean we have already
855  * done a sync().  Just drop the buffers from the inode list.
856  *
857  * NOTE: we take the inode's blockdev's mapping's i_private_lock.  Which
858  * assumes that all the buffers are against the blockdev.
859  */
860 void invalidate_inode_buffers(struct inode *inode)
861 {
862 	if (inode_has_buffers(inode)) {
863 		struct address_space *mapping = &inode->i_data;
864 		struct list_head *list = &mapping->i_private_list;
865 		struct address_space *buffer_mapping = mapping->i_private_data;
866 
867 		spin_lock(&buffer_mapping->i_private_lock);
868 		while (!list_empty(list))
869 			__remove_assoc_queue(BH_ENTRY(list->next));
870 		spin_unlock(&buffer_mapping->i_private_lock);
871 	}
872 }
873 EXPORT_SYMBOL(invalidate_inode_buffers);
874 
875 /*
876  * Remove any clean buffers from the inode's buffer list.  This is called
877  * when we're trying to free the inode itself.  Those buffers can pin it.
878  *
879  * Returns true if all buffers were removed.
880  */
881 int remove_inode_buffers(struct inode *inode)
882 {
883 	int ret = 1;
884 
885 	if (inode_has_buffers(inode)) {
886 		struct address_space *mapping = &inode->i_data;
887 		struct list_head *list = &mapping->i_private_list;
888 		struct address_space *buffer_mapping = mapping->i_private_data;
889 
890 		spin_lock(&buffer_mapping->i_private_lock);
891 		while (!list_empty(list)) {
892 			struct buffer_head *bh = BH_ENTRY(list->next);
893 			if (buffer_dirty(bh)) {
894 				ret = 0;
895 				break;
896 			}
897 			__remove_assoc_queue(bh);
898 		}
899 		spin_unlock(&buffer_mapping->i_private_lock);
900 	}
901 	return ret;
902 }
903 
904 /*
905  * Create the appropriate buffers when given a folio for data area and
906  * the size of each buffer.. Use the bh->b_this_page linked list to
907  * follow the buffers created.  Return NULL if unable to create more
908  * buffers.
909  *
910  * The retry flag is used to differentiate async IO (paging, swapping)
911  * which may not fail from ordinary buffer allocations.
912  */
913 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
914 					gfp_t gfp)
915 {
916 	struct buffer_head *bh, *head;
917 	long offset;
918 	struct mem_cgroup *memcg, *old_memcg;
919 
920 	/* The folio lock pins the memcg */
921 	memcg = folio_memcg(folio);
922 	old_memcg = set_active_memcg(memcg);
923 
924 	head = NULL;
925 	offset = folio_size(folio);
926 	while ((offset -= size) >= 0) {
927 		bh = alloc_buffer_head(gfp);
928 		if (!bh)
929 			goto no_grow;
930 
931 		bh->b_this_page = head;
932 		bh->b_blocknr = -1;
933 		head = bh;
934 
935 		bh->b_size = size;
936 
937 		/* Link the buffer to its folio */
938 		folio_set_bh(bh, folio, offset);
939 	}
940 out:
941 	set_active_memcg(old_memcg);
942 	return head;
943 /*
944  * In case anything failed, we just free everything we got.
945  */
946 no_grow:
947 	if (head) {
948 		do {
949 			bh = head;
950 			head = head->b_this_page;
951 			free_buffer_head(bh);
952 		} while (head);
953 	}
954 
955 	goto out;
956 }
957 EXPORT_SYMBOL_GPL(folio_alloc_buffers);
958 
959 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size)
960 {
961 	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
962 
963 	return folio_alloc_buffers(page_folio(page), size, gfp);
964 }
965 EXPORT_SYMBOL_GPL(alloc_page_buffers);
966 
967 static inline void link_dev_buffers(struct folio *folio,
968 		struct buffer_head *head)
969 {
970 	struct buffer_head *bh, *tail;
971 
972 	bh = head;
973 	do {
974 		tail = bh;
975 		bh = bh->b_this_page;
976 	} while (bh);
977 	tail->b_this_page = head;
978 	folio_attach_private(folio, head);
979 }
980 
981 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
982 {
983 	sector_t retval = ~((sector_t)0);
984 	loff_t sz = bdev_nr_bytes(bdev);
985 
986 	if (sz) {
987 		unsigned int sizebits = blksize_bits(size);
988 		retval = (sz >> sizebits);
989 	}
990 	return retval;
991 }
992 
993 /*
994  * Initialise the state of a blockdev folio's buffers.
995  */
996 static sector_t folio_init_buffers(struct folio *folio,
997 		struct block_device *bdev, unsigned size)
998 {
999 	struct buffer_head *head = folio_buffers(folio);
1000 	struct buffer_head *bh = head;
1001 	bool uptodate = folio_test_uptodate(folio);
1002 	sector_t block = div_u64(folio_pos(folio), size);
1003 	sector_t end_block = blkdev_max_block(bdev, size);
1004 
1005 	do {
1006 		if (!buffer_mapped(bh)) {
1007 			bh->b_end_io = NULL;
1008 			bh->b_private = NULL;
1009 			bh->b_bdev = bdev;
1010 			bh->b_blocknr = block;
1011 			if (uptodate)
1012 				set_buffer_uptodate(bh);
1013 			if (block < end_block)
1014 				set_buffer_mapped(bh);
1015 		}
1016 		block++;
1017 		bh = bh->b_this_page;
1018 	} while (bh != head);
1019 
1020 	/*
1021 	 * Caller needs to validate requested block against end of device.
1022 	 */
1023 	return end_block;
1024 }
1025 
1026 /*
1027  * Create the page-cache folio that contains the requested block.
1028  *
1029  * This is used purely for blockdev mappings.
1030  *
1031  * Returns false if we have a failure which cannot be cured by retrying
1032  * without sleeping.  Returns true if we succeeded, or the caller should retry.
1033  */
1034 static bool grow_dev_folio(struct block_device *bdev, sector_t block,
1035 		pgoff_t index, unsigned size, gfp_t gfp)
1036 {
1037 	struct address_space *mapping = bdev->bd_mapping;
1038 	struct folio *folio;
1039 	struct buffer_head *bh;
1040 	sector_t end_block = 0;
1041 
1042 	folio = __filemap_get_folio(mapping, index,
1043 			FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1044 	if (IS_ERR(folio))
1045 		return false;
1046 
1047 	bh = folio_buffers(folio);
1048 	if (bh) {
1049 		if (bh->b_size == size) {
1050 			end_block = folio_init_buffers(folio, bdev, size);
1051 			goto unlock;
1052 		}
1053 
1054 		/*
1055 		 * Retrying may succeed; for example the folio may finish
1056 		 * writeback, or buffers may be cleaned.  This should not
1057 		 * happen very often; maybe we have old buffers attached to
1058 		 * this blockdev's page cache and we're trying to change
1059 		 * the block size?
1060 		 */
1061 		if (!try_to_free_buffers(folio)) {
1062 			end_block = ~0ULL;
1063 			goto unlock;
1064 		}
1065 	}
1066 
1067 	bh = folio_alloc_buffers(folio, size, gfp | __GFP_ACCOUNT);
1068 	if (!bh)
1069 		goto unlock;
1070 
1071 	/*
1072 	 * Link the folio to the buffers and initialise them.  Take the
1073 	 * lock to be atomic wrt __find_get_block(), which does not
1074 	 * run under the folio lock.
1075 	 */
1076 	spin_lock(&mapping->i_private_lock);
1077 	link_dev_buffers(folio, bh);
1078 	end_block = folio_init_buffers(folio, bdev, size);
1079 	spin_unlock(&mapping->i_private_lock);
1080 unlock:
1081 	folio_unlock(folio);
1082 	folio_put(folio);
1083 	return block < end_block;
1084 }
1085 
1086 /*
1087  * Create buffers for the specified block device block's folio.  If
1088  * that folio was dirty, the buffers are set dirty also.  Returns false
1089  * if we've hit a permanent error.
1090  */
1091 static bool grow_buffers(struct block_device *bdev, sector_t block,
1092 		unsigned size, gfp_t gfp)
1093 {
1094 	loff_t pos;
1095 
1096 	/*
1097 	 * Check for a block which lies outside our maximum possible
1098 	 * pagecache index.
1099 	 */
1100 	if (check_mul_overflow(block, (sector_t)size, &pos) || pos > MAX_LFS_FILESIZE) {
1101 		printk(KERN_ERR "%s: requested out-of-range block %llu for device %pg\n",
1102 			__func__, (unsigned long long)block,
1103 			bdev);
1104 		return false;
1105 	}
1106 
1107 	/* Create a folio with the proper size buffers */
1108 	return grow_dev_folio(bdev, block, pos / PAGE_SIZE, size, gfp);
1109 }
1110 
1111 static struct buffer_head *
1112 __getblk_slow(struct block_device *bdev, sector_t block,
1113 	     unsigned size, gfp_t gfp)
1114 {
1115 	/* Size must be multiple of hard sectorsize */
1116 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1117 			(size < 512 || size > PAGE_SIZE))) {
1118 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1119 					size);
1120 		printk(KERN_ERR "logical block size: %d\n",
1121 					bdev_logical_block_size(bdev));
1122 
1123 		dump_stack();
1124 		return NULL;
1125 	}
1126 
1127 	for (;;) {
1128 		struct buffer_head *bh;
1129 
1130 		bh = __find_get_block(bdev, block, size);
1131 		if (bh)
1132 			return bh;
1133 
1134 		if (!grow_buffers(bdev, block, size, gfp))
1135 			return NULL;
1136 	}
1137 }
1138 
1139 /*
1140  * The relationship between dirty buffers and dirty pages:
1141  *
1142  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1143  * the page is tagged dirty in the page cache.
1144  *
1145  * At all times, the dirtiness of the buffers represents the dirtiness of
1146  * subsections of the page.  If the page has buffers, the page dirty bit is
1147  * merely a hint about the true dirty state.
1148  *
1149  * When a page is set dirty in its entirety, all its buffers are marked dirty
1150  * (if the page has buffers).
1151  *
1152  * When a buffer is marked dirty, its page is dirtied, but the page's other
1153  * buffers are not.
1154  *
1155  * Also.  When blockdev buffers are explicitly read with bread(), they
1156  * individually become uptodate.  But their backing page remains not
1157  * uptodate - even if all of its buffers are uptodate.  A subsequent
1158  * block_read_full_folio() against that folio will discover all the uptodate
1159  * buffers, will set the folio uptodate and will perform no I/O.
1160  */
1161 
1162 /**
1163  * mark_buffer_dirty - mark a buffer_head as needing writeout
1164  * @bh: the buffer_head to mark dirty
1165  *
1166  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1167  * its backing page dirty, then tag the page as dirty in the page cache
1168  * and then attach the address_space's inode to its superblock's dirty
1169  * inode list.
1170  *
1171  * mark_buffer_dirty() is atomic.  It takes bh->b_folio->mapping->i_private_lock,
1172  * i_pages lock and mapping->host->i_lock.
1173  */
1174 void mark_buffer_dirty(struct buffer_head *bh)
1175 {
1176 	WARN_ON_ONCE(!buffer_uptodate(bh));
1177 
1178 	trace_block_dirty_buffer(bh);
1179 
1180 	/*
1181 	 * Very *carefully* optimize the it-is-already-dirty case.
1182 	 *
1183 	 * Don't let the final "is it dirty" escape to before we
1184 	 * perhaps modified the buffer.
1185 	 */
1186 	if (buffer_dirty(bh)) {
1187 		smp_mb();
1188 		if (buffer_dirty(bh))
1189 			return;
1190 	}
1191 
1192 	if (!test_set_buffer_dirty(bh)) {
1193 		struct folio *folio = bh->b_folio;
1194 		struct address_space *mapping = NULL;
1195 
1196 		folio_memcg_lock(folio);
1197 		if (!folio_test_set_dirty(folio)) {
1198 			mapping = folio->mapping;
1199 			if (mapping)
1200 				__folio_mark_dirty(folio, mapping, 0);
1201 		}
1202 		folio_memcg_unlock(folio);
1203 		if (mapping)
1204 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1205 	}
1206 }
1207 EXPORT_SYMBOL(mark_buffer_dirty);
1208 
1209 void mark_buffer_write_io_error(struct buffer_head *bh)
1210 {
1211 	set_buffer_write_io_error(bh);
1212 	/* FIXME: do we need to set this in both places? */
1213 	if (bh->b_folio && bh->b_folio->mapping)
1214 		mapping_set_error(bh->b_folio->mapping, -EIO);
1215 	if (bh->b_assoc_map) {
1216 		mapping_set_error(bh->b_assoc_map, -EIO);
1217 		errseq_set(&bh->b_assoc_map->host->i_sb->s_wb_err, -EIO);
1218 	}
1219 }
1220 EXPORT_SYMBOL(mark_buffer_write_io_error);
1221 
1222 /**
1223  * __brelse - Release a buffer.
1224  * @bh: The buffer to release.
1225  *
1226  * This variant of brelse() can be called if @bh is guaranteed to not be NULL.
1227  */
1228 void __brelse(struct buffer_head *bh)
1229 {
1230 	if (atomic_read(&bh->b_count)) {
1231 		put_bh(bh);
1232 		return;
1233 	}
1234 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1235 }
1236 EXPORT_SYMBOL(__brelse);
1237 
1238 /**
1239  * __bforget - Discard any dirty data in a buffer.
1240  * @bh: The buffer to forget.
1241  *
1242  * This variant of bforget() can be called if @bh is guaranteed to not
1243  * be NULL.
1244  */
1245 void __bforget(struct buffer_head *bh)
1246 {
1247 	clear_buffer_dirty(bh);
1248 	if (bh->b_assoc_map) {
1249 		struct address_space *buffer_mapping = bh->b_folio->mapping;
1250 
1251 		spin_lock(&buffer_mapping->i_private_lock);
1252 		list_del_init(&bh->b_assoc_buffers);
1253 		bh->b_assoc_map = NULL;
1254 		spin_unlock(&buffer_mapping->i_private_lock);
1255 	}
1256 	__brelse(bh);
1257 }
1258 EXPORT_SYMBOL(__bforget);
1259 
1260 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1261 {
1262 	lock_buffer(bh);
1263 	if (buffer_uptodate(bh)) {
1264 		unlock_buffer(bh);
1265 		return bh;
1266 	} else {
1267 		get_bh(bh);
1268 		bh->b_end_io = end_buffer_read_sync;
1269 		submit_bh(REQ_OP_READ, bh);
1270 		wait_on_buffer(bh);
1271 		if (buffer_uptodate(bh))
1272 			return bh;
1273 	}
1274 	brelse(bh);
1275 	return NULL;
1276 }
1277 
1278 /*
1279  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1280  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1281  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1282  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1283  * CPU's LRUs at the same time.
1284  *
1285  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1286  * sb_find_get_block().
1287  *
1288  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1289  * a local interrupt disable for that.
1290  */
1291 
1292 #define BH_LRU_SIZE	16
1293 
1294 struct bh_lru {
1295 	struct buffer_head *bhs[BH_LRU_SIZE];
1296 };
1297 
1298 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1299 
1300 #ifdef CONFIG_SMP
1301 #define bh_lru_lock()	local_irq_disable()
1302 #define bh_lru_unlock()	local_irq_enable()
1303 #else
1304 #define bh_lru_lock()	preempt_disable()
1305 #define bh_lru_unlock()	preempt_enable()
1306 #endif
1307 
1308 static inline void check_irqs_on(void)
1309 {
1310 #ifdef irqs_disabled
1311 	BUG_ON(irqs_disabled());
1312 #endif
1313 }
1314 
1315 /*
1316  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1317  * inserted at the front, and the buffer_head at the back if any is evicted.
1318  * Or, if already in the LRU it is moved to the front.
1319  */
1320 static void bh_lru_install(struct buffer_head *bh)
1321 {
1322 	struct buffer_head *evictee = bh;
1323 	struct bh_lru *b;
1324 	int i;
1325 
1326 	check_irqs_on();
1327 	bh_lru_lock();
1328 
1329 	/*
1330 	 * the refcount of buffer_head in bh_lru prevents dropping the
1331 	 * attached page(i.e., try_to_free_buffers) so it could cause
1332 	 * failing page migration.
1333 	 * Skip putting upcoming bh into bh_lru until migration is done.
1334 	 */
1335 	if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) {
1336 		bh_lru_unlock();
1337 		return;
1338 	}
1339 
1340 	b = this_cpu_ptr(&bh_lrus);
1341 	for (i = 0; i < BH_LRU_SIZE; i++) {
1342 		swap(evictee, b->bhs[i]);
1343 		if (evictee == bh) {
1344 			bh_lru_unlock();
1345 			return;
1346 		}
1347 	}
1348 
1349 	get_bh(bh);
1350 	bh_lru_unlock();
1351 	brelse(evictee);
1352 }
1353 
1354 /*
1355  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1356  */
1357 static struct buffer_head *
1358 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1359 {
1360 	struct buffer_head *ret = NULL;
1361 	unsigned int i;
1362 
1363 	check_irqs_on();
1364 	bh_lru_lock();
1365 	if (cpu_is_isolated(smp_processor_id())) {
1366 		bh_lru_unlock();
1367 		return NULL;
1368 	}
1369 	for (i = 0; i < BH_LRU_SIZE; i++) {
1370 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1371 
1372 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1373 		    bh->b_size == size) {
1374 			if (i) {
1375 				while (i) {
1376 					__this_cpu_write(bh_lrus.bhs[i],
1377 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1378 					i--;
1379 				}
1380 				__this_cpu_write(bh_lrus.bhs[0], bh);
1381 			}
1382 			get_bh(bh);
1383 			ret = bh;
1384 			break;
1385 		}
1386 	}
1387 	bh_lru_unlock();
1388 	return ret;
1389 }
1390 
1391 /*
1392  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1393  * it in the LRU and mark it as accessed.  If it is not present then return
1394  * NULL
1395  */
1396 struct buffer_head *
1397 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1398 {
1399 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1400 
1401 	if (bh == NULL) {
1402 		/* __find_get_block_slow will mark the page accessed */
1403 		bh = __find_get_block_slow(bdev, block);
1404 		if (bh)
1405 			bh_lru_install(bh);
1406 	} else
1407 		touch_buffer(bh);
1408 
1409 	return bh;
1410 }
1411 EXPORT_SYMBOL(__find_get_block);
1412 
1413 /**
1414  * bdev_getblk - Get a buffer_head in a block device's buffer cache.
1415  * @bdev: The block device.
1416  * @block: The block number.
1417  * @size: The size of buffer_heads for this @bdev.
1418  * @gfp: The memory allocation flags to use.
1419  *
1420  * The returned buffer head has its reference count incremented, but is
1421  * not locked.  The caller should call brelse() when it has finished
1422  * with the buffer.  The buffer may not be uptodate.  If needed, the
1423  * caller can bring it uptodate either by reading it or overwriting it.
1424  *
1425  * Return: The buffer head, or NULL if memory could not be allocated.
1426  */
1427 struct buffer_head *bdev_getblk(struct block_device *bdev, sector_t block,
1428 		unsigned size, gfp_t gfp)
1429 {
1430 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1431 
1432 	might_alloc(gfp);
1433 	if (bh)
1434 		return bh;
1435 
1436 	return __getblk_slow(bdev, block, size, gfp);
1437 }
1438 EXPORT_SYMBOL(bdev_getblk);
1439 
1440 /*
1441  * Do async read-ahead on a buffer..
1442  */
1443 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1444 {
1445 	struct buffer_head *bh = bdev_getblk(bdev, block, size,
1446 			GFP_NOWAIT | __GFP_MOVABLE);
1447 
1448 	if (likely(bh)) {
1449 		bh_readahead(bh, REQ_RAHEAD);
1450 		brelse(bh);
1451 	}
1452 }
1453 EXPORT_SYMBOL(__breadahead);
1454 
1455 /**
1456  * __bread_gfp() - Read a block.
1457  * @bdev: The block device to read from.
1458  * @block: Block number in units of block size.
1459  * @size: The block size of this device in bytes.
1460  * @gfp: Not page allocation flags; see below.
1461  *
1462  * You are not expected to call this function.  You should use one of
1463  * sb_bread(), sb_bread_unmovable() or __bread().
1464  *
1465  * Read a specified block, and return the buffer head that refers to it.
1466  * If @gfp is 0, the memory will be allocated using the block device's
1467  * default GFP flags.  If @gfp is __GFP_MOVABLE, the memory may be
1468  * allocated from a movable area.  Do not pass in a complete set of
1469  * GFP flags.
1470  *
1471  * The returned buffer head has its refcount increased.  The caller should
1472  * call brelse() when it has finished with the buffer.
1473  *
1474  * Context: May sleep waiting for I/O.
1475  * Return: NULL if the block was unreadable.
1476  */
1477 struct buffer_head *__bread_gfp(struct block_device *bdev, sector_t block,
1478 		unsigned size, gfp_t gfp)
1479 {
1480 	struct buffer_head *bh;
1481 
1482 	gfp |= mapping_gfp_constraint(bdev->bd_mapping, ~__GFP_FS);
1483 
1484 	/*
1485 	 * Prefer looping in the allocator rather than here, at least that
1486 	 * code knows what it's doing.
1487 	 */
1488 	gfp |= __GFP_NOFAIL;
1489 
1490 	bh = bdev_getblk(bdev, block, size, gfp);
1491 
1492 	if (likely(bh) && !buffer_uptodate(bh))
1493 		bh = __bread_slow(bh);
1494 	return bh;
1495 }
1496 EXPORT_SYMBOL(__bread_gfp);
1497 
1498 static void __invalidate_bh_lrus(struct bh_lru *b)
1499 {
1500 	int i;
1501 
1502 	for (i = 0; i < BH_LRU_SIZE; i++) {
1503 		brelse(b->bhs[i]);
1504 		b->bhs[i] = NULL;
1505 	}
1506 }
1507 /*
1508  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1509  * This doesn't race because it runs in each cpu either in irq
1510  * or with preempt disabled.
1511  */
1512 static void invalidate_bh_lru(void *arg)
1513 {
1514 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1515 
1516 	__invalidate_bh_lrus(b);
1517 	put_cpu_var(bh_lrus);
1518 }
1519 
1520 bool has_bh_in_lru(int cpu, void *dummy)
1521 {
1522 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1523 	int i;
1524 
1525 	for (i = 0; i < BH_LRU_SIZE; i++) {
1526 		if (b->bhs[i])
1527 			return true;
1528 	}
1529 
1530 	return false;
1531 }
1532 
1533 void invalidate_bh_lrus(void)
1534 {
1535 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1536 }
1537 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1538 
1539 /*
1540  * It's called from workqueue context so we need a bh_lru_lock to close
1541  * the race with preemption/irq.
1542  */
1543 void invalidate_bh_lrus_cpu(void)
1544 {
1545 	struct bh_lru *b;
1546 
1547 	bh_lru_lock();
1548 	b = this_cpu_ptr(&bh_lrus);
1549 	__invalidate_bh_lrus(b);
1550 	bh_lru_unlock();
1551 }
1552 
1553 void folio_set_bh(struct buffer_head *bh, struct folio *folio,
1554 		  unsigned long offset)
1555 {
1556 	bh->b_folio = folio;
1557 	BUG_ON(offset >= folio_size(folio));
1558 	if (folio_test_highmem(folio))
1559 		/*
1560 		 * This catches illegal uses and preserves the offset:
1561 		 */
1562 		bh->b_data = (char *)(0 + offset);
1563 	else
1564 		bh->b_data = folio_address(folio) + offset;
1565 }
1566 EXPORT_SYMBOL(folio_set_bh);
1567 
1568 /*
1569  * Called when truncating a buffer on a page completely.
1570  */
1571 
1572 /* Bits that are cleared during an invalidate */
1573 #define BUFFER_FLAGS_DISCARD \
1574 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1575 	 1 << BH_Delay | 1 << BH_Unwritten)
1576 
1577 static void discard_buffer(struct buffer_head * bh)
1578 {
1579 	unsigned long b_state;
1580 
1581 	lock_buffer(bh);
1582 	clear_buffer_dirty(bh);
1583 	bh->b_bdev = NULL;
1584 	b_state = READ_ONCE(bh->b_state);
1585 	do {
1586 	} while (!try_cmpxchg(&bh->b_state, &b_state,
1587 			      b_state & ~BUFFER_FLAGS_DISCARD));
1588 	unlock_buffer(bh);
1589 }
1590 
1591 /**
1592  * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1593  * @folio: The folio which is affected.
1594  * @offset: start of the range to invalidate
1595  * @length: length of the range to invalidate
1596  *
1597  * block_invalidate_folio() is called when all or part of the folio has been
1598  * invalidated by a truncate operation.
1599  *
1600  * block_invalidate_folio() does not have to release all buffers, but it must
1601  * ensure that no dirty buffer is left outside @offset and that no I/O
1602  * is underway against any of the blocks which are outside the truncation
1603  * point.  Because the caller is about to free (and possibly reuse) those
1604  * blocks on-disk.
1605  */
1606 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1607 {
1608 	struct buffer_head *head, *bh, *next;
1609 	size_t curr_off = 0;
1610 	size_t stop = length + offset;
1611 
1612 	BUG_ON(!folio_test_locked(folio));
1613 
1614 	/*
1615 	 * Check for overflow
1616 	 */
1617 	BUG_ON(stop > folio_size(folio) || stop < length);
1618 
1619 	head = folio_buffers(folio);
1620 	if (!head)
1621 		return;
1622 
1623 	bh = head;
1624 	do {
1625 		size_t next_off = curr_off + bh->b_size;
1626 		next = bh->b_this_page;
1627 
1628 		/*
1629 		 * Are we still fully in range ?
1630 		 */
1631 		if (next_off > stop)
1632 			goto out;
1633 
1634 		/*
1635 		 * is this block fully invalidated?
1636 		 */
1637 		if (offset <= curr_off)
1638 			discard_buffer(bh);
1639 		curr_off = next_off;
1640 		bh = next;
1641 	} while (bh != head);
1642 
1643 	/*
1644 	 * We release buffers only if the entire folio is being invalidated.
1645 	 * The get_block cached value has been unconditionally invalidated,
1646 	 * so real IO is not possible anymore.
1647 	 */
1648 	if (length == folio_size(folio))
1649 		filemap_release_folio(folio, 0);
1650 out:
1651 	return;
1652 }
1653 EXPORT_SYMBOL(block_invalidate_folio);
1654 
1655 /*
1656  * We attach and possibly dirty the buffers atomically wrt
1657  * block_dirty_folio() via i_private_lock.  try_to_free_buffers
1658  * is already excluded via the folio lock.
1659  */
1660 struct buffer_head *create_empty_buffers(struct folio *folio,
1661 		unsigned long blocksize, unsigned long b_state)
1662 {
1663 	struct buffer_head *bh, *head, *tail;
1664 	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT | __GFP_NOFAIL;
1665 
1666 	head = folio_alloc_buffers(folio, blocksize, gfp);
1667 	bh = head;
1668 	do {
1669 		bh->b_state |= b_state;
1670 		tail = bh;
1671 		bh = bh->b_this_page;
1672 	} while (bh);
1673 	tail->b_this_page = head;
1674 
1675 	spin_lock(&folio->mapping->i_private_lock);
1676 	if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
1677 		bh = head;
1678 		do {
1679 			if (folio_test_dirty(folio))
1680 				set_buffer_dirty(bh);
1681 			if (folio_test_uptodate(folio))
1682 				set_buffer_uptodate(bh);
1683 			bh = bh->b_this_page;
1684 		} while (bh != head);
1685 	}
1686 	folio_attach_private(folio, head);
1687 	spin_unlock(&folio->mapping->i_private_lock);
1688 
1689 	return head;
1690 }
1691 EXPORT_SYMBOL(create_empty_buffers);
1692 
1693 /**
1694  * clean_bdev_aliases: clean a range of buffers in block device
1695  * @bdev: Block device to clean buffers in
1696  * @block: Start of a range of blocks to clean
1697  * @len: Number of blocks to clean
1698  *
1699  * We are taking a range of blocks for data and we don't want writeback of any
1700  * buffer-cache aliases starting from return from this function and until the
1701  * moment when something will explicitly mark the buffer dirty (hopefully that
1702  * will not happen until we will free that block ;-) We don't even need to mark
1703  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1704  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1705  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1706  * would confuse anyone who might pick it with bread() afterwards...
1707  *
1708  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1709  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1710  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1711  * need to.  That happens here.
1712  */
1713 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1714 {
1715 	struct address_space *bd_mapping = bdev->bd_mapping;
1716 	const int blkbits = bd_mapping->host->i_blkbits;
1717 	struct folio_batch fbatch;
1718 	pgoff_t index = ((loff_t)block << blkbits) / PAGE_SIZE;
1719 	pgoff_t end;
1720 	int i, count;
1721 	struct buffer_head *bh;
1722 	struct buffer_head *head;
1723 
1724 	end = ((loff_t)(block + len - 1) << blkbits) / PAGE_SIZE;
1725 	folio_batch_init(&fbatch);
1726 	while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1727 		count = folio_batch_count(&fbatch);
1728 		for (i = 0; i < count; i++) {
1729 			struct folio *folio = fbatch.folios[i];
1730 
1731 			if (!folio_buffers(folio))
1732 				continue;
1733 			/*
1734 			 * We use folio lock instead of bd_mapping->i_private_lock
1735 			 * to pin buffers here since we can afford to sleep and
1736 			 * it scales better than a global spinlock lock.
1737 			 */
1738 			folio_lock(folio);
1739 			/* Recheck when the folio is locked which pins bhs */
1740 			head = folio_buffers(folio);
1741 			if (!head)
1742 				goto unlock_page;
1743 			bh = head;
1744 			do {
1745 				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1746 					goto next;
1747 				if (bh->b_blocknr >= block + len)
1748 					break;
1749 				clear_buffer_dirty(bh);
1750 				wait_on_buffer(bh);
1751 				clear_buffer_req(bh);
1752 next:
1753 				bh = bh->b_this_page;
1754 			} while (bh != head);
1755 unlock_page:
1756 			folio_unlock(folio);
1757 		}
1758 		folio_batch_release(&fbatch);
1759 		cond_resched();
1760 		/* End of range already reached? */
1761 		if (index > end || !index)
1762 			break;
1763 	}
1764 }
1765 EXPORT_SYMBOL(clean_bdev_aliases);
1766 
1767 static struct buffer_head *folio_create_buffers(struct folio *folio,
1768 						struct inode *inode,
1769 						unsigned int b_state)
1770 {
1771 	struct buffer_head *bh;
1772 
1773 	BUG_ON(!folio_test_locked(folio));
1774 
1775 	bh = folio_buffers(folio);
1776 	if (!bh)
1777 		bh = create_empty_buffers(folio,
1778 				1 << READ_ONCE(inode->i_blkbits), b_state);
1779 	return bh;
1780 }
1781 
1782 /*
1783  * NOTE! All mapped/uptodate combinations are valid:
1784  *
1785  *	Mapped	Uptodate	Meaning
1786  *
1787  *	No	No		"unknown" - must do get_block()
1788  *	No	Yes		"hole" - zero-filled
1789  *	Yes	No		"allocated" - allocated on disk, not read in
1790  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1791  *
1792  * "Dirty" is valid only with the last case (mapped+uptodate).
1793  */
1794 
1795 /*
1796  * While block_write_full_folio is writing back the dirty buffers under
1797  * the page lock, whoever dirtied the buffers may decide to clean them
1798  * again at any time.  We handle that by only looking at the buffer
1799  * state inside lock_buffer().
1800  *
1801  * If block_write_full_folio() is called for regular writeback
1802  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1803  * locked buffer.   This only can happen if someone has written the buffer
1804  * directly, with submit_bh().  At the address_space level PageWriteback
1805  * prevents this contention from occurring.
1806  *
1807  * If block_write_full_folio() is called with wbc->sync_mode ==
1808  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1809  * causes the writes to be flagged as synchronous writes.
1810  */
1811 int __block_write_full_folio(struct inode *inode, struct folio *folio,
1812 			get_block_t *get_block, struct writeback_control *wbc)
1813 {
1814 	int err;
1815 	sector_t block;
1816 	sector_t last_block;
1817 	struct buffer_head *bh, *head;
1818 	size_t blocksize;
1819 	int nr_underway = 0;
1820 	blk_opf_t write_flags = wbc_to_write_flags(wbc);
1821 
1822 	head = folio_create_buffers(folio, inode,
1823 				    (1 << BH_Dirty) | (1 << BH_Uptodate));
1824 
1825 	/*
1826 	 * Be very careful.  We have no exclusion from block_dirty_folio
1827 	 * here, and the (potentially unmapped) buffers may become dirty at
1828 	 * any time.  If a buffer becomes dirty here after we've inspected it
1829 	 * then we just miss that fact, and the folio stays dirty.
1830 	 *
1831 	 * Buffers outside i_size may be dirtied by block_dirty_folio;
1832 	 * handle that here by just cleaning them.
1833 	 */
1834 
1835 	bh = head;
1836 	blocksize = bh->b_size;
1837 
1838 	block = div_u64(folio_pos(folio), blocksize);
1839 	last_block = div_u64(i_size_read(inode) - 1, blocksize);
1840 
1841 	/*
1842 	 * Get all the dirty buffers mapped to disk addresses and
1843 	 * handle any aliases from the underlying blockdev's mapping.
1844 	 */
1845 	do {
1846 		if (block > last_block) {
1847 			/*
1848 			 * mapped buffers outside i_size will occur, because
1849 			 * this folio can be outside i_size when there is a
1850 			 * truncate in progress.
1851 			 */
1852 			/*
1853 			 * The buffer was zeroed by block_write_full_folio()
1854 			 */
1855 			clear_buffer_dirty(bh);
1856 			set_buffer_uptodate(bh);
1857 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1858 			   buffer_dirty(bh)) {
1859 			WARN_ON(bh->b_size != blocksize);
1860 			err = get_block(inode, block, bh, 1);
1861 			if (err)
1862 				goto recover;
1863 			clear_buffer_delay(bh);
1864 			if (buffer_new(bh)) {
1865 				/* blockdev mappings never come here */
1866 				clear_buffer_new(bh);
1867 				clean_bdev_bh_alias(bh);
1868 			}
1869 		}
1870 		bh = bh->b_this_page;
1871 		block++;
1872 	} while (bh != head);
1873 
1874 	do {
1875 		if (!buffer_mapped(bh))
1876 			continue;
1877 		/*
1878 		 * If it's a fully non-blocking write attempt and we cannot
1879 		 * lock the buffer then redirty the folio.  Note that this can
1880 		 * potentially cause a busy-wait loop from writeback threads
1881 		 * and kswapd activity, but those code paths have their own
1882 		 * higher-level throttling.
1883 		 */
1884 		if (wbc->sync_mode != WB_SYNC_NONE) {
1885 			lock_buffer(bh);
1886 		} else if (!trylock_buffer(bh)) {
1887 			folio_redirty_for_writepage(wbc, folio);
1888 			continue;
1889 		}
1890 		if (test_clear_buffer_dirty(bh)) {
1891 			mark_buffer_async_write_endio(bh,
1892 				end_buffer_async_write);
1893 		} else {
1894 			unlock_buffer(bh);
1895 		}
1896 	} while ((bh = bh->b_this_page) != head);
1897 
1898 	/*
1899 	 * The folio and its buffers are protected by the writeback flag,
1900 	 * so we can drop the bh refcounts early.
1901 	 */
1902 	BUG_ON(folio_test_writeback(folio));
1903 	folio_start_writeback(folio);
1904 
1905 	do {
1906 		struct buffer_head *next = bh->b_this_page;
1907 		if (buffer_async_write(bh)) {
1908 			submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
1909 				      inode->i_write_hint, wbc);
1910 			nr_underway++;
1911 		}
1912 		bh = next;
1913 	} while (bh != head);
1914 	folio_unlock(folio);
1915 
1916 	err = 0;
1917 done:
1918 	if (nr_underway == 0) {
1919 		/*
1920 		 * The folio was marked dirty, but the buffers were
1921 		 * clean.  Someone wrote them back by hand with
1922 		 * write_dirty_buffer/submit_bh.  A rare case.
1923 		 */
1924 		folio_end_writeback(folio);
1925 
1926 		/*
1927 		 * The folio and buffer_heads can be released at any time from
1928 		 * here on.
1929 		 */
1930 	}
1931 	return err;
1932 
1933 recover:
1934 	/*
1935 	 * ENOSPC, or some other error.  We may already have added some
1936 	 * blocks to the file, so we need to write these out to avoid
1937 	 * exposing stale data.
1938 	 * The folio is currently locked and not marked for writeback
1939 	 */
1940 	bh = head;
1941 	/* Recovery: lock and submit the mapped buffers */
1942 	do {
1943 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1944 		    !buffer_delay(bh)) {
1945 			lock_buffer(bh);
1946 			mark_buffer_async_write_endio(bh,
1947 				end_buffer_async_write);
1948 		} else {
1949 			/*
1950 			 * The buffer may have been set dirty during
1951 			 * attachment to a dirty folio.
1952 			 */
1953 			clear_buffer_dirty(bh);
1954 		}
1955 	} while ((bh = bh->b_this_page) != head);
1956 	BUG_ON(folio_test_writeback(folio));
1957 	mapping_set_error(folio->mapping, err);
1958 	folio_start_writeback(folio);
1959 	do {
1960 		struct buffer_head *next = bh->b_this_page;
1961 		if (buffer_async_write(bh)) {
1962 			clear_buffer_dirty(bh);
1963 			submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
1964 				      inode->i_write_hint, wbc);
1965 			nr_underway++;
1966 		}
1967 		bh = next;
1968 	} while (bh != head);
1969 	folio_unlock(folio);
1970 	goto done;
1971 }
1972 EXPORT_SYMBOL(__block_write_full_folio);
1973 
1974 /*
1975  * If a folio has any new buffers, zero them out here, and mark them uptodate
1976  * and dirty so they'll be written out (in order to prevent uninitialised
1977  * block data from leaking). And clear the new bit.
1978  */
1979 void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to)
1980 {
1981 	size_t block_start, block_end;
1982 	struct buffer_head *head, *bh;
1983 
1984 	BUG_ON(!folio_test_locked(folio));
1985 	head = folio_buffers(folio);
1986 	if (!head)
1987 		return;
1988 
1989 	bh = head;
1990 	block_start = 0;
1991 	do {
1992 		block_end = block_start + bh->b_size;
1993 
1994 		if (buffer_new(bh)) {
1995 			if (block_end > from && block_start < to) {
1996 				if (!folio_test_uptodate(folio)) {
1997 					size_t start, xend;
1998 
1999 					start = max(from, block_start);
2000 					xend = min(to, block_end);
2001 
2002 					folio_zero_segment(folio, start, xend);
2003 					set_buffer_uptodate(bh);
2004 				}
2005 
2006 				clear_buffer_new(bh);
2007 				mark_buffer_dirty(bh);
2008 			}
2009 		}
2010 
2011 		block_start = block_end;
2012 		bh = bh->b_this_page;
2013 	} while (bh != head);
2014 }
2015 EXPORT_SYMBOL(folio_zero_new_buffers);
2016 
2017 static int
2018 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
2019 		const struct iomap *iomap)
2020 {
2021 	loff_t offset = (loff_t)block << inode->i_blkbits;
2022 
2023 	bh->b_bdev = iomap->bdev;
2024 
2025 	/*
2026 	 * Block points to offset in file we need to map, iomap contains
2027 	 * the offset at which the map starts. If the map ends before the
2028 	 * current block, then do not map the buffer and let the caller
2029 	 * handle it.
2030 	 */
2031 	if (offset >= iomap->offset + iomap->length)
2032 		return -EIO;
2033 
2034 	switch (iomap->type) {
2035 	case IOMAP_HOLE:
2036 		/*
2037 		 * If the buffer is not up to date or beyond the current EOF,
2038 		 * we need to mark it as new to ensure sub-block zeroing is
2039 		 * executed if necessary.
2040 		 */
2041 		if (!buffer_uptodate(bh) ||
2042 		    (offset >= i_size_read(inode)))
2043 			set_buffer_new(bh);
2044 		return 0;
2045 	case IOMAP_DELALLOC:
2046 		if (!buffer_uptodate(bh) ||
2047 		    (offset >= i_size_read(inode)))
2048 			set_buffer_new(bh);
2049 		set_buffer_uptodate(bh);
2050 		set_buffer_mapped(bh);
2051 		set_buffer_delay(bh);
2052 		return 0;
2053 	case IOMAP_UNWRITTEN:
2054 		/*
2055 		 * For unwritten regions, we always need to ensure that regions
2056 		 * in the block we are not writing to are zeroed. Mark the
2057 		 * buffer as new to ensure this.
2058 		 */
2059 		set_buffer_new(bh);
2060 		set_buffer_unwritten(bh);
2061 		fallthrough;
2062 	case IOMAP_MAPPED:
2063 		if ((iomap->flags & IOMAP_F_NEW) ||
2064 		    offset >= i_size_read(inode)) {
2065 			/*
2066 			 * This can happen if truncating the block device races
2067 			 * with the check in the caller as i_size updates on
2068 			 * block devices aren't synchronized by i_rwsem for
2069 			 * block devices.
2070 			 */
2071 			if (S_ISBLK(inode->i_mode))
2072 				return -EIO;
2073 			set_buffer_new(bh);
2074 		}
2075 		bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2076 				inode->i_blkbits;
2077 		set_buffer_mapped(bh);
2078 		return 0;
2079 	default:
2080 		WARN_ON_ONCE(1);
2081 		return -EIO;
2082 	}
2083 }
2084 
2085 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
2086 		get_block_t *get_block, const struct iomap *iomap)
2087 {
2088 	size_t from = offset_in_folio(folio, pos);
2089 	size_t to = from + len;
2090 	struct inode *inode = folio->mapping->host;
2091 	size_t block_start, block_end;
2092 	sector_t block;
2093 	int err = 0;
2094 	size_t blocksize;
2095 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2096 
2097 	BUG_ON(!folio_test_locked(folio));
2098 	BUG_ON(to > folio_size(folio));
2099 	BUG_ON(from > to);
2100 
2101 	head = folio_create_buffers(folio, inode, 0);
2102 	blocksize = head->b_size;
2103 	block = div_u64(folio_pos(folio), blocksize);
2104 
2105 	for (bh = head, block_start = 0; bh != head || !block_start;
2106 	    block++, block_start=block_end, bh = bh->b_this_page) {
2107 		block_end = block_start + blocksize;
2108 		if (block_end <= from || block_start >= to) {
2109 			if (folio_test_uptodate(folio)) {
2110 				if (!buffer_uptodate(bh))
2111 					set_buffer_uptodate(bh);
2112 			}
2113 			continue;
2114 		}
2115 		if (buffer_new(bh))
2116 			clear_buffer_new(bh);
2117 		if (!buffer_mapped(bh)) {
2118 			WARN_ON(bh->b_size != blocksize);
2119 			if (get_block)
2120 				err = get_block(inode, block, bh, 1);
2121 			else
2122 				err = iomap_to_bh(inode, block, bh, iomap);
2123 			if (err)
2124 				break;
2125 
2126 			if (buffer_new(bh)) {
2127 				clean_bdev_bh_alias(bh);
2128 				if (folio_test_uptodate(folio)) {
2129 					clear_buffer_new(bh);
2130 					set_buffer_uptodate(bh);
2131 					mark_buffer_dirty(bh);
2132 					continue;
2133 				}
2134 				if (block_end > to || block_start < from)
2135 					folio_zero_segments(folio,
2136 						to, block_end,
2137 						block_start, from);
2138 				continue;
2139 			}
2140 		}
2141 		if (folio_test_uptodate(folio)) {
2142 			if (!buffer_uptodate(bh))
2143 				set_buffer_uptodate(bh);
2144 			continue;
2145 		}
2146 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2147 		    !buffer_unwritten(bh) &&
2148 		     (block_start < from || block_end > to)) {
2149 			bh_read_nowait(bh, 0);
2150 			*wait_bh++=bh;
2151 		}
2152 	}
2153 	/*
2154 	 * If we issued read requests - let them complete.
2155 	 */
2156 	while(wait_bh > wait) {
2157 		wait_on_buffer(*--wait_bh);
2158 		if (!buffer_uptodate(*wait_bh))
2159 			err = -EIO;
2160 	}
2161 	if (unlikely(err))
2162 		folio_zero_new_buffers(folio, from, to);
2163 	return err;
2164 }
2165 
2166 int __block_write_begin(struct folio *folio, loff_t pos, unsigned len,
2167 		get_block_t *get_block)
2168 {
2169 	return __block_write_begin_int(folio, pos, len, get_block, NULL);
2170 }
2171 EXPORT_SYMBOL(__block_write_begin);
2172 
2173 static void __block_commit_write(struct folio *folio, size_t from, size_t to)
2174 {
2175 	size_t block_start, block_end;
2176 	bool partial = false;
2177 	unsigned blocksize;
2178 	struct buffer_head *bh, *head;
2179 
2180 	bh = head = folio_buffers(folio);
2181 	if (!bh)
2182 		return;
2183 	blocksize = bh->b_size;
2184 
2185 	block_start = 0;
2186 	do {
2187 		block_end = block_start + blocksize;
2188 		if (block_end <= from || block_start >= to) {
2189 			if (!buffer_uptodate(bh))
2190 				partial = true;
2191 		} else {
2192 			set_buffer_uptodate(bh);
2193 			mark_buffer_dirty(bh);
2194 		}
2195 		if (buffer_new(bh))
2196 			clear_buffer_new(bh);
2197 
2198 		block_start = block_end;
2199 		bh = bh->b_this_page;
2200 	} while (bh != head);
2201 
2202 	/*
2203 	 * If this is a partial write which happened to make all buffers
2204 	 * uptodate then we can optimize away a bogus read_folio() for
2205 	 * the next read(). Here we 'discover' whether the folio went
2206 	 * uptodate as a result of this (potentially partial) write.
2207 	 */
2208 	if (!partial)
2209 		folio_mark_uptodate(folio);
2210 }
2211 
2212 /*
2213  * block_write_begin takes care of the basic task of block allocation and
2214  * bringing partial write blocks uptodate first.
2215  *
2216  * The filesystem needs to handle block truncation upon failure.
2217  */
2218 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2219 		struct folio **foliop, get_block_t *get_block)
2220 {
2221 	pgoff_t index = pos >> PAGE_SHIFT;
2222 	struct folio *folio;
2223 	int status;
2224 
2225 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2226 			mapping_gfp_mask(mapping));
2227 	if (IS_ERR(folio))
2228 		return PTR_ERR(folio);
2229 
2230 	status = __block_write_begin_int(folio, pos, len, get_block, NULL);
2231 	if (unlikely(status)) {
2232 		folio_unlock(folio);
2233 		folio_put(folio);
2234 		folio = NULL;
2235 	}
2236 
2237 	*foliop = folio;
2238 	return status;
2239 }
2240 EXPORT_SYMBOL(block_write_begin);
2241 
2242 int block_write_end(struct file *file, struct address_space *mapping,
2243 			loff_t pos, unsigned len, unsigned copied,
2244 			struct folio *folio, void *fsdata)
2245 {
2246 	size_t start = pos - folio_pos(folio);
2247 
2248 	if (unlikely(copied < len)) {
2249 		/*
2250 		 * The buffers that were written will now be uptodate, so
2251 		 * we don't have to worry about a read_folio reading them
2252 		 * and overwriting a partial write. However if we have
2253 		 * encountered a short write and only partially written
2254 		 * into a buffer, it will not be marked uptodate, so a
2255 		 * read_folio might come in and destroy our partial write.
2256 		 *
2257 		 * Do the simplest thing, and just treat any short write to a
2258 		 * non uptodate folio as a zero-length write, and force the
2259 		 * caller to redo the whole thing.
2260 		 */
2261 		if (!folio_test_uptodate(folio))
2262 			copied = 0;
2263 
2264 		folio_zero_new_buffers(folio, start+copied, start+len);
2265 	}
2266 	flush_dcache_folio(folio);
2267 
2268 	/* This could be a short (even 0-length) commit */
2269 	__block_commit_write(folio, start, start + copied);
2270 
2271 	return copied;
2272 }
2273 EXPORT_SYMBOL(block_write_end);
2274 
2275 int generic_write_end(struct file *file, struct address_space *mapping,
2276 			loff_t pos, unsigned len, unsigned copied,
2277 			struct folio *folio, void *fsdata)
2278 {
2279 	struct inode *inode = mapping->host;
2280 	loff_t old_size = inode->i_size;
2281 	bool i_size_changed = false;
2282 
2283 	copied = block_write_end(file, mapping, pos, len, copied, folio, fsdata);
2284 
2285 	/*
2286 	 * No need to use i_size_read() here, the i_size cannot change under us
2287 	 * because we hold i_rwsem.
2288 	 *
2289 	 * But it's important to update i_size while still holding folio lock:
2290 	 * page writeout could otherwise come in and zero beyond i_size.
2291 	 */
2292 	if (pos + copied > inode->i_size) {
2293 		i_size_write(inode, pos + copied);
2294 		i_size_changed = true;
2295 	}
2296 
2297 	folio_unlock(folio);
2298 	folio_put(folio);
2299 
2300 	if (old_size < pos)
2301 		pagecache_isize_extended(inode, old_size, pos);
2302 	/*
2303 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2304 	 * makes the holding time of page lock longer. Second, it forces lock
2305 	 * ordering of page lock and transaction start for journaling
2306 	 * filesystems.
2307 	 */
2308 	if (i_size_changed)
2309 		mark_inode_dirty(inode);
2310 	return copied;
2311 }
2312 EXPORT_SYMBOL(generic_write_end);
2313 
2314 /*
2315  * block_is_partially_uptodate checks whether buffers within a folio are
2316  * uptodate or not.
2317  *
2318  * Returns true if all buffers which correspond to the specified part
2319  * of the folio are uptodate.
2320  */
2321 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2322 {
2323 	unsigned block_start, block_end, blocksize;
2324 	unsigned to;
2325 	struct buffer_head *bh, *head;
2326 	bool ret = true;
2327 
2328 	head = folio_buffers(folio);
2329 	if (!head)
2330 		return false;
2331 	blocksize = head->b_size;
2332 	to = min_t(unsigned, folio_size(folio) - from, count);
2333 	to = from + to;
2334 	if (from < blocksize && to > folio_size(folio) - blocksize)
2335 		return false;
2336 
2337 	bh = head;
2338 	block_start = 0;
2339 	do {
2340 		block_end = block_start + blocksize;
2341 		if (block_end > from && block_start < to) {
2342 			if (!buffer_uptodate(bh)) {
2343 				ret = false;
2344 				break;
2345 			}
2346 			if (block_end >= to)
2347 				break;
2348 		}
2349 		block_start = block_end;
2350 		bh = bh->b_this_page;
2351 	} while (bh != head);
2352 
2353 	return ret;
2354 }
2355 EXPORT_SYMBOL(block_is_partially_uptodate);
2356 
2357 /*
2358  * Generic "read_folio" function for block devices that have the normal
2359  * get_block functionality. This is most of the block device filesystems.
2360  * Reads the folio asynchronously --- the unlock_buffer() and
2361  * set/clear_buffer_uptodate() functions propagate buffer state into the
2362  * folio once IO has completed.
2363  */
2364 int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2365 {
2366 	struct inode *inode = folio->mapping->host;
2367 	sector_t iblock, lblock;
2368 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2369 	size_t blocksize;
2370 	int nr, i;
2371 	int fully_mapped = 1;
2372 	bool page_error = false;
2373 	loff_t limit = i_size_read(inode);
2374 
2375 	/* This is needed for ext4. */
2376 	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2377 		limit = inode->i_sb->s_maxbytes;
2378 
2379 	VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2380 
2381 	head = folio_create_buffers(folio, inode, 0);
2382 	blocksize = head->b_size;
2383 
2384 	iblock = div_u64(folio_pos(folio), blocksize);
2385 	lblock = div_u64(limit + blocksize - 1, blocksize);
2386 	bh = head;
2387 	nr = 0;
2388 	i = 0;
2389 
2390 	do {
2391 		if (buffer_uptodate(bh))
2392 			continue;
2393 
2394 		if (!buffer_mapped(bh)) {
2395 			int err = 0;
2396 
2397 			fully_mapped = 0;
2398 			if (iblock < lblock) {
2399 				WARN_ON(bh->b_size != blocksize);
2400 				err = get_block(inode, iblock, bh, 0);
2401 				if (err)
2402 					page_error = true;
2403 			}
2404 			if (!buffer_mapped(bh)) {
2405 				folio_zero_range(folio, i * blocksize,
2406 						blocksize);
2407 				if (!err)
2408 					set_buffer_uptodate(bh);
2409 				continue;
2410 			}
2411 			/*
2412 			 * get_block() might have updated the buffer
2413 			 * synchronously
2414 			 */
2415 			if (buffer_uptodate(bh))
2416 				continue;
2417 		}
2418 		arr[nr++] = bh;
2419 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2420 
2421 	if (fully_mapped)
2422 		folio_set_mappedtodisk(folio);
2423 
2424 	if (!nr) {
2425 		/*
2426 		 * All buffers are uptodate or get_block() returned an
2427 		 * error when trying to map them - we can finish the read.
2428 		 */
2429 		folio_end_read(folio, !page_error);
2430 		return 0;
2431 	}
2432 
2433 	/* Stage two: lock the buffers */
2434 	for (i = 0; i < nr; i++) {
2435 		bh = arr[i];
2436 		lock_buffer(bh);
2437 		mark_buffer_async_read(bh);
2438 	}
2439 
2440 	/*
2441 	 * Stage 3: start the IO.  Check for uptodateness
2442 	 * inside the buffer lock in case another process reading
2443 	 * the underlying blockdev brought it uptodate (the sct fix).
2444 	 */
2445 	for (i = 0; i < nr; i++) {
2446 		bh = arr[i];
2447 		if (buffer_uptodate(bh))
2448 			end_buffer_async_read(bh, 1);
2449 		else
2450 			submit_bh(REQ_OP_READ, bh);
2451 	}
2452 	return 0;
2453 }
2454 EXPORT_SYMBOL(block_read_full_folio);
2455 
2456 /* utility function for filesystems that need to do work on expanding
2457  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2458  * deal with the hole.
2459  */
2460 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2461 {
2462 	struct address_space *mapping = inode->i_mapping;
2463 	const struct address_space_operations *aops = mapping->a_ops;
2464 	struct folio *folio;
2465 	void *fsdata = NULL;
2466 	int err;
2467 
2468 	err = inode_newsize_ok(inode, size);
2469 	if (err)
2470 		goto out;
2471 
2472 	err = aops->write_begin(NULL, mapping, size, 0, &folio, &fsdata);
2473 	if (err)
2474 		goto out;
2475 
2476 	err = aops->write_end(NULL, mapping, size, 0, 0, folio, fsdata);
2477 	BUG_ON(err > 0);
2478 
2479 out:
2480 	return err;
2481 }
2482 EXPORT_SYMBOL(generic_cont_expand_simple);
2483 
2484 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2485 			    loff_t pos, loff_t *bytes)
2486 {
2487 	struct inode *inode = mapping->host;
2488 	const struct address_space_operations *aops = mapping->a_ops;
2489 	unsigned int blocksize = i_blocksize(inode);
2490 	struct folio *folio;
2491 	void *fsdata = NULL;
2492 	pgoff_t index, curidx;
2493 	loff_t curpos;
2494 	unsigned zerofrom, offset, len;
2495 	int err = 0;
2496 
2497 	index = pos >> PAGE_SHIFT;
2498 	offset = pos & ~PAGE_MASK;
2499 
2500 	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2501 		zerofrom = curpos & ~PAGE_MASK;
2502 		if (zerofrom & (blocksize-1)) {
2503 			*bytes |= (blocksize-1);
2504 			(*bytes)++;
2505 		}
2506 		len = PAGE_SIZE - zerofrom;
2507 
2508 		err = aops->write_begin(file, mapping, curpos, len,
2509 					    &folio, &fsdata);
2510 		if (err)
2511 			goto out;
2512 		folio_zero_range(folio, offset_in_folio(folio, curpos), len);
2513 		err = aops->write_end(file, mapping, curpos, len, len,
2514 						folio, fsdata);
2515 		if (err < 0)
2516 			goto out;
2517 		BUG_ON(err != len);
2518 		err = 0;
2519 
2520 		balance_dirty_pages_ratelimited(mapping);
2521 
2522 		if (fatal_signal_pending(current)) {
2523 			err = -EINTR;
2524 			goto out;
2525 		}
2526 	}
2527 
2528 	/* page covers the boundary, find the boundary offset */
2529 	if (index == curidx) {
2530 		zerofrom = curpos & ~PAGE_MASK;
2531 		/* if we will expand the thing last block will be filled */
2532 		if (offset <= zerofrom) {
2533 			goto out;
2534 		}
2535 		if (zerofrom & (blocksize-1)) {
2536 			*bytes |= (blocksize-1);
2537 			(*bytes)++;
2538 		}
2539 		len = offset - zerofrom;
2540 
2541 		err = aops->write_begin(file, mapping, curpos, len,
2542 					    &folio, &fsdata);
2543 		if (err)
2544 			goto out;
2545 		folio_zero_range(folio, offset_in_folio(folio, curpos), len);
2546 		err = aops->write_end(file, mapping, curpos, len, len,
2547 						folio, fsdata);
2548 		if (err < 0)
2549 			goto out;
2550 		BUG_ON(err != len);
2551 		err = 0;
2552 	}
2553 out:
2554 	return err;
2555 }
2556 
2557 /*
2558  * For moronic filesystems that do not allow holes in file.
2559  * We may have to extend the file.
2560  */
2561 int cont_write_begin(struct file *file, struct address_space *mapping,
2562 			loff_t pos, unsigned len,
2563 			struct folio **foliop, void **fsdata,
2564 			get_block_t *get_block, loff_t *bytes)
2565 {
2566 	struct inode *inode = mapping->host;
2567 	unsigned int blocksize = i_blocksize(inode);
2568 	unsigned int zerofrom;
2569 	int err;
2570 
2571 	err = cont_expand_zero(file, mapping, pos, bytes);
2572 	if (err)
2573 		return err;
2574 
2575 	zerofrom = *bytes & ~PAGE_MASK;
2576 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2577 		*bytes |= (blocksize-1);
2578 		(*bytes)++;
2579 	}
2580 
2581 	return block_write_begin(mapping, pos, len, foliop, get_block);
2582 }
2583 EXPORT_SYMBOL(cont_write_begin);
2584 
2585 void block_commit_write(struct page *page, unsigned from, unsigned to)
2586 {
2587 	struct folio *folio = page_folio(page);
2588 	__block_commit_write(folio, from, to);
2589 }
2590 EXPORT_SYMBOL(block_commit_write);
2591 
2592 /*
2593  * block_page_mkwrite() is not allowed to change the file size as it gets
2594  * called from a page fault handler when a page is first dirtied. Hence we must
2595  * be careful to check for EOF conditions here. We set the page up correctly
2596  * for a written page which means we get ENOSPC checking when writing into
2597  * holes and correct delalloc and unwritten extent mapping on filesystems that
2598  * support these features.
2599  *
2600  * We are not allowed to take the i_mutex here so we have to play games to
2601  * protect against truncate races as the page could now be beyond EOF.  Because
2602  * truncate writes the inode size before removing pages, once we have the
2603  * page lock we can determine safely if the page is beyond EOF. If it is not
2604  * beyond EOF, then the page is guaranteed safe against truncation until we
2605  * unlock the page.
2606  *
2607  * Direct callers of this function should protect against filesystem freezing
2608  * using sb_start_pagefault() - sb_end_pagefault() functions.
2609  */
2610 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2611 			 get_block_t get_block)
2612 {
2613 	struct folio *folio = page_folio(vmf->page);
2614 	struct inode *inode = file_inode(vma->vm_file);
2615 	unsigned long end;
2616 	loff_t size;
2617 	int ret;
2618 
2619 	folio_lock(folio);
2620 	size = i_size_read(inode);
2621 	if ((folio->mapping != inode->i_mapping) ||
2622 	    (folio_pos(folio) >= size)) {
2623 		/* We overload EFAULT to mean page got truncated */
2624 		ret = -EFAULT;
2625 		goto out_unlock;
2626 	}
2627 
2628 	end = folio_size(folio);
2629 	/* folio is wholly or partially inside EOF */
2630 	if (folio_pos(folio) + end > size)
2631 		end = size - folio_pos(folio);
2632 
2633 	ret = __block_write_begin_int(folio, 0, end, get_block, NULL);
2634 	if (unlikely(ret))
2635 		goto out_unlock;
2636 
2637 	__block_commit_write(folio, 0, end);
2638 
2639 	folio_mark_dirty(folio);
2640 	folio_wait_stable(folio);
2641 	return 0;
2642 out_unlock:
2643 	folio_unlock(folio);
2644 	return ret;
2645 }
2646 EXPORT_SYMBOL(block_page_mkwrite);
2647 
2648 int block_truncate_page(struct address_space *mapping,
2649 			loff_t from, get_block_t *get_block)
2650 {
2651 	pgoff_t index = from >> PAGE_SHIFT;
2652 	unsigned blocksize;
2653 	sector_t iblock;
2654 	size_t offset, length, pos;
2655 	struct inode *inode = mapping->host;
2656 	struct folio *folio;
2657 	struct buffer_head *bh;
2658 	int err = 0;
2659 
2660 	blocksize = i_blocksize(inode);
2661 	length = from & (blocksize - 1);
2662 
2663 	/* Block boundary? Nothing to do */
2664 	if (!length)
2665 		return 0;
2666 
2667 	length = blocksize - length;
2668 	iblock = ((loff_t)index * PAGE_SIZE) >> inode->i_blkbits;
2669 
2670 	folio = filemap_grab_folio(mapping, index);
2671 	if (IS_ERR(folio))
2672 		return PTR_ERR(folio);
2673 
2674 	bh = folio_buffers(folio);
2675 	if (!bh)
2676 		bh = create_empty_buffers(folio, blocksize, 0);
2677 
2678 	/* Find the buffer that contains "offset" */
2679 	offset = offset_in_folio(folio, from);
2680 	pos = blocksize;
2681 	while (offset >= pos) {
2682 		bh = bh->b_this_page;
2683 		iblock++;
2684 		pos += blocksize;
2685 	}
2686 
2687 	if (!buffer_mapped(bh)) {
2688 		WARN_ON(bh->b_size != blocksize);
2689 		err = get_block(inode, iblock, bh, 0);
2690 		if (err)
2691 			goto unlock;
2692 		/* unmapped? It's a hole - nothing to do */
2693 		if (!buffer_mapped(bh))
2694 			goto unlock;
2695 	}
2696 
2697 	/* Ok, it's mapped. Make sure it's up-to-date */
2698 	if (folio_test_uptodate(folio))
2699 		set_buffer_uptodate(bh);
2700 
2701 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2702 		err = bh_read(bh, 0);
2703 		/* Uhhuh. Read error. Complain and punt. */
2704 		if (err < 0)
2705 			goto unlock;
2706 	}
2707 
2708 	folio_zero_range(folio, offset, length);
2709 	mark_buffer_dirty(bh);
2710 
2711 unlock:
2712 	folio_unlock(folio);
2713 	folio_put(folio);
2714 
2715 	return err;
2716 }
2717 EXPORT_SYMBOL(block_truncate_page);
2718 
2719 /*
2720  * The generic ->writepage function for buffer-backed address_spaces
2721  */
2722 int block_write_full_folio(struct folio *folio, struct writeback_control *wbc,
2723 		void *get_block)
2724 {
2725 	struct inode * const inode = folio->mapping->host;
2726 	loff_t i_size = i_size_read(inode);
2727 
2728 	/* Is the folio fully inside i_size? */
2729 	if (folio_pos(folio) + folio_size(folio) <= i_size)
2730 		return __block_write_full_folio(inode, folio, get_block, wbc);
2731 
2732 	/* Is the folio fully outside i_size? (truncate in progress) */
2733 	if (folio_pos(folio) >= i_size) {
2734 		folio_unlock(folio);
2735 		return 0; /* don't care */
2736 	}
2737 
2738 	/*
2739 	 * The folio straddles i_size.  It must be zeroed out on each and every
2740 	 * writepage invocation because it may be mmapped.  "A file is mapped
2741 	 * in multiples of the page size.  For a file that is not a multiple of
2742 	 * the page size, the remaining memory is zeroed when mapped, and
2743 	 * writes to that region are not written out to the file."
2744 	 */
2745 	folio_zero_segment(folio, offset_in_folio(folio, i_size),
2746 			folio_size(folio));
2747 	return __block_write_full_folio(inode, folio, get_block, wbc);
2748 }
2749 
2750 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2751 			    get_block_t *get_block)
2752 {
2753 	struct inode *inode = mapping->host;
2754 	struct buffer_head tmp = {
2755 		.b_size = i_blocksize(inode),
2756 	};
2757 
2758 	get_block(inode, block, &tmp, 0);
2759 	return tmp.b_blocknr;
2760 }
2761 EXPORT_SYMBOL(generic_block_bmap);
2762 
2763 static void end_bio_bh_io_sync(struct bio *bio)
2764 {
2765 	struct buffer_head *bh = bio->bi_private;
2766 
2767 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
2768 		set_bit(BH_Quiet, &bh->b_state);
2769 
2770 	bh->b_end_io(bh, !bio->bi_status);
2771 	bio_put(bio);
2772 }
2773 
2774 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2775 			  enum rw_hint write_hint,
2776 			  struct writeback_control *wbc)
2777 {
2778 	const enum req_op op = opf & REQ_OP_MASK;
2779 	struct bio *bio;
2780 
2781 	BUG_ON(!buffer_locked(bh));
2782 	BUG_ON(!buffer_mapped(bh));
2783 	BUG_ON(!bh->b_end_io);
2784 	BUG_ON(buffer_delay(bh));
2785 	BUG_ON(buffer_unwritten(bh));
2786 
2787 	/*
2788 	 * Only clear out a write error when rewriting
2789 	 */
2790 	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2791 		clear_buffer_write_io_error(bh);
2792 
2793 	if (buffer_meta(bh))
2794 		opf |= REQ_META;
2795 	if (buffer_prio(bh))
2796 		opf |= REQ_PRIO;
2797 
2798 	bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2799 
2800 	fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2801 
2802 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2803 	bio->bi_write_hint = write_hint;
2804 
2805 	__bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
2806 
2807 	bio->bi_end_io = end_bio_bh_io_sync;
2808 	bio->bi_private = bh;
2809 
2810 	/* Take care of bh's that straddle the end of the device */
2811 	guard_bio_eod(bio);
2812 
2813 	if (wbc) {
2814 		wbc_init_bio(wbc, bio);
2815 		wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
2816 	}
2817 
2818 	submit_bio(bio);
2819 }
2820 
2821 void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2822 {
2823 	submit_bh_wbc(opf, bh, WRITE_LIFE_NOT_SET, NULL);
2824 }
2825 EXPORT_SYMBOL(submit_bh);
2826 
2827 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2828 {
2829 	lock_buffer(bh);
2830 	if (!test_clear_buffer_dirty(bh)) {
2831 		unlock_buffer(bh);
2832 		return;
2833 	}
2834 	bh->b_end_io = end_buffer_write_sync;
2835 	get_bh(bh);
2836 	submit_bh(REQ_OP_WRITE | op_flags, bh);
2837 }
2838 EXPORT_SYMBOL(write_dirty_buffer);
2839 
2840 /*
2841  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2842  * and then start new I/O and then wait upon it.  The caller must have a ref on
2843  * the buffer_head.
2844  */
2845 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2846 {
2847 	WARN_ON(atomic_read(&bh->b_count) < 1);
2848 	lock_buffer(bh);
2849 	if (test_clear_buffer_dirty(bh)) {
2850 		/*
2851 		 * The bh should be mapped, but it might not be if the
2852 		 * device was hot-removed. Not much we can do but fail the I/O.
2853 		 */
2854 		if (!buffer_mapped(bh)) {
2855 			unlock_buffer(bh);
2856 			return -EIO;
2857 		}
2858 
2859 		get_bh(bh);
2860 		bh->b_end_io = end_buffer_write_sync;
2861 		submit_bh(REQ_OP_WRITE | op_flags, bh);
2862 		wait_on_buffer(bh);
2863 		if (!buffer_uptodate(bh))
2864 			return -EIO;
2865 	} else {
2866 		unlock_buffer(bh);
2867 	}
2868 	return 0;
2869 }
2870 EXPORT_SYMBOL(__sync_dirty_buffer);
2871 
2872 int sync_dirty_buffer(struct buffer_head *bh)
2873 {
2874 	return __sync_dirty_buffer(bh, REQ_SYNC);
2875 }
2876 EXPORT_SYMBOL(sync_dirty_buffer);
2877 
2878 static inline int buffer_busy(struct buffer_head *bh)
2879 {
2880 	return atomic_read(&bh->b_count) |
2881 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2882 }
2883 
2884 static bool
2885 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2886 {
2887 	struct buffer_head *head = folio_buffers(folio);
2888 	struct buffer_head *bh;
2889 
2890 	bh = head;
2891 	do {
2892 		if (buffer_busy(bh))
2893 			goto failed;
2894 		bh = bh->b_this_page;
2895 	} while (bh != head);
2896 
2897 	do {
2898 		struct buffer_head *next = bh->b_this_page;
2899 
2900 		if (bh->b_assoc_map)
2901 			__remove_assoc_queue(bh);
2902 		bh = next;
2903 	} while (bh != head);
2904 	*buffers_to_free = head;
2905 	folio_detach_private(folio);
2906 	return true;
2907 failed:
2908 	return false;
2909 }
2910 
2911 /**
2912  * try_to_free_buffers - Release buffers attached to this folio.
2913  * @folio: The folio.
2914  *
2915  * If any buffers are in use (dirty, under writeback, elevated refcount),
2916  * no buffers will be freed.
2917  *
2918  * If the folio is dirty but all the buffers are clean then we need to
2919  * be sure to mark the folio clean as well.  This is because the folio
2920  * may be against a block device, and a later reattachment of buffers
2921  * to a dirty folio will set *all* buffers dirty.  Which would corrupt
2922  * filesystem data on the same device.
2923  *
2924  * The same applies to regular filesystem folios: if all the buffers are
2925  * clean then we set the folio clean and proceed.  To do that, we require
2926  * total exclusion from block_dirty_folio().  That is obtained with
2927  * i_private_lock.
2928  *
2929  * Exclusion against try_to_free_buffers may be obtained by either
2930  * locking the folio or by holding its mapping's i_private_lock.
2931  *
2932  * Context: Process context.  @folio must be locked.  Will not sleep.
2933  * Return: true if all buffers attached to this folio were freed.
2934  */
2935 bool try_to_free_buffers(struct folio *folio)
2936 {
2937 	struct address_space * const mapping = folio->mapping;
2938 	struct buffer_head *buffers_to_free = NULL;
2939 	bool ret = 0;
2940 
2941 	BUG_ON(!folio_test_locked(folio));
2942 	if (folio_test_writeback(folio))
2943 		return false;
2944 
2945 	if (mapping == NULL) {		/* can this still happen? */
2946 		ret = drop_buffers(folio, &buffers_to_free);
2947 		goto out;
2948 	}
2949 
2950 	spin_lock(&mapping->i_private_lock);
2951 	ret = drop_buffers(folio, &buffers_to_free);
2952 
2953 	/*
2954 	 * If the filesystem writes its buffers by hand (eg ext3)
2955 	 * then we can have clean buffers against a dirty folio.  We
2956 	 * clean the folio here; otherwise the VM will never notice
2957 	 * that the filesystem did any IO at all.
2958 	 *
2959 	 * Also, during truncate, discard_buffer will have marked all
2960 	 * the folio's buffers clean.  We discover that here and clean
2961 	 * the folio also.
2962 	 *
2963 	 * i_private_lock must be held over this entire operation in order
2964 	 * to synchronise against block_dirty_folio and prevent the
2965 	 * dirty bit from being lost.
2966 	 */
2967 	if (ret)
2968 		folio_cancel_dirty(folio);
2969 	spin_unlock(&mapping->i_private_lock);
2970 out:
2971 	if (buffers_to_free) {
2972 		struct buffer_head *bh = buffers_to_free;
2973 
2974 		do {
2975 			struct buffer_head *next = bh->b_this_page;
2976 			free_buffer_head(bh);
2977 			bh = next;
2978 		} while (bh != buffers_to_free);
2979 	}
2980 	return ret;
2981 }
2982 EXPORT_SYMBOL(try_to_free_buffers);
2983 
2984 /*
2985  * Buffer-head allocation
2986  */
2987 static struct kmem_cache *bh_cachep __ro_after_init;
2988 
2989 /*
2990  * Once the number of bh's in the machine exceeds this level, we start
2991  * stripping them in writeback.
2992  */
2993 static unsigned long max_buffer_heads __ro_after_init;
2994 
2995 int buffer_heads_over_limit;
2996 
2997 struct bh_accounting {
2998 	int nr;			/* Number of live bh's */
2999 	int ratelimit;		/* Limit cacheline bouncing */
3000 };
3001 
3002 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3003 
3004 static void recalc_bh_state(void)
3005 {
3006 	int i;
3007 	int tot = 0;
3008 
3009 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3010 		return;
3011 	__this_cpu_write(bh_accounting.ratelimit, 0);
3012 	for_each_online_cpu(i)
3013 		tot += per_cpu(bh_accounting, i).nr;
3014 	buffer_heads_over_limit = (tot > max_buffer_heads);
3015 }
3016 
3017 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3018 {
3019 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3020 	if (ret) {
3021 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3022 		spin_lock_init(&ret->b_uptodate_lock);
3023 		preempt_disable();
3024 		__this_cpu_inc(bh_accounting.nr);
3025 		recalc_bh_state();
3026 		preempt_enable();
3027 	}
3028 	return ret;
3029 }
3030 EXPORT_SYMBOL(alloc_buffer_head);
3031 
3032 void free_buffer_head(struct buffer_head *bh)
3033 {
3034 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3035 	kmem_cache_free(bh_cachep, bh);
3036 	preempt_disable();
3037 	__this_cpu_dec(bh_accounting.nr);
3038 	recalc_bh_state();
3039 	preempt_enable();
3040 }
3041 EXPORT_SYMBOL(free_buffer_head);
3042 
3043 static int buffer_exit_cpu_dead(unsigned int cpu)
3044 {
3045 	int i;
3046 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3047 
3048 	for (i = 0; i < BH_LRU_SIZE; i++) {
3049 		brelse(b->bhs[i]);
3050 		b->bhs[i] = NULL;
3051 	}
3052 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3053 	per_cpu(bh_accounting, cpu).nr = 0;
3054 	return 0;
3055 }
3056 
3057 /**
3058  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3059  * @bh: struct buffer_head
3060  *
3061  * Return true if the buffer is up-to-date and false,
3062  * with the buffer locked, if not.
3063  */
3064 int bh_uptodate_or_lock(struct buffer_head *bh)
3065 {
3066 	if (!buffer_uptodate(bh)) {
3067 		lock_buffer(bh);
3068 		if (!buffer_uptodate(bh))
3069 			return 0;
3070 		unlock_buffer(bh);
3071 	}
3072 	return 1;
3073 }
3074 EXPORT_SYMBOL(bh_uptodate_or_lock);
3075 
3076 /**
3077  * __bh_read - Submit read for a locked buffer
3078  * @bh: struct buffer_head
3079  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3080  * @wait: wait until reading finish
3081  *
3082  * Returns zero on success or don't wait, and -EIO on error.
3083  */
3084 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3085 {
3086 	int ret = 0;
3087 
3088 	BUG_ON(!buffer_locked(bh));
3089 
3090 	get_bh(bh);
3091 	bh->b_end_io = end_buffer_read_sync;
3092 	submit_bh(REQ_OP_READ | op_flags, bh);
3093 	if (wait) {
3094 		wait_on_buffer(bh);
3095 		if (!buffer_uptodate(bh))
3096 			ret = -EIO;
3097 	}
3098 	return ret;
3099 }
3100 EXPORT_SYMBOL(__bh_read);
3101 
3102 /**
3103  * __bh_read_batch - Submit read for a batch of unlocked buffers
3104  * @nr: entry number of the buffer batch
3105  * @bhs: a batch of struct buffer_head
3106  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3107  * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3108  *              buffer that cannot lock.
3109  *
3110  * Returns zero on success or don't wait, and -EIO on error.
3111  */
3112 void __bh_read_batch(int nr, struct buffer_head *bhs[],
3113 		     blk_opf_t op_flags, bool force_lock)
3114 {
3115 	int i;
3116 
3117 	for (i = 0; i < nr; i++) {
3118 		struct buffer_head *bh = bhs[i];
3119 
3120 		if (buffer_uptodate(bh))
3121 			continue;
3122 
3123 		if (force_lock)
3124 			lock_buffer(bh);
3125 		else
3126 			if (!trylock_buffer(bh))
3127 				continue;
3128 
3129 		if (buffer_uptodate(bh)) {
3130 			unlock_buffer(bh);
3131 			continue;
3132 		}
3133 
3134 		bh->b_end_io = end_buffer_read_sync;
3135 		get_bh(bh);
3136 		submit_bh(REQ_OP_READ | op_flags, bh);
3137 	}
3138 }
3139 EXPORT_SYMBOL(__bh_read_batch);
3140 
3141 void __init buffer_init(void)
3142 {
3143 	unsigned long nrpages;
3144 	int ret;
3145 
3146 	bh_cachep = KMEM_CACHE(buffer_head,
3147 				SLAB_RECLAIM_ACCOUNT|SLAB_PANIC);
3148 	/*
3149 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3150 	 */
3151 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3152 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3153 	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3154 					NULL, buffer_exit_cpu_dead);
3155 	WARN_ON(ret < 0);
3156 }
3157