xref: /linux-6.15/fs/buffer.c (revision 5b67d439)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7 
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <[email protected]>
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 #include <linux/fsverity.h>
52 #include <linux/sched/isolation.h>
53 
54 #include "internal.h"
55 
56 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
57 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
58 			  enum rw_hint hint, struct writeback_control *wbc);
59 
60 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
61 
62 inline void touch_buffer(struct buffer_head *bh)
63 {
64 	trace_block_touch_buffer(bh);
65 	folio_mark_accessed(bh->b_folio);
66 }
67 EXPORT_SYMBOL(touch_buffer);
68 
69 void __lock_buffer(struct buffer_head *bh)
70 {
71 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
72 }
73 EXPORT_SYMBOL(__lock_buffer);
74 
75 void unlock_buffer(struct buffer_head *bh)
76 {
77 	clear_bit_unlock(BH_Lock, &bh->b_state);
78 	smp_mb__after_atomic();
79 	wake_up_bit(&bh->b_state, BH_Lock);
80 }
81 EXPORT_SYMBOL(unlock_buffer);
82 
83 /*
84  * Returns if the folio has dirty or writeback buffers. If all the buffers
85  * are unlocked and clean then the folio_test_dirty information is stale. If
86  * any of the buffers are locked, it is assumed they are locked for IO.
87  */
88 void buffer_check_dirty_writeback(struct folio *folio,
89 				     bool *dirty, bool *writeback)
90 {
91 	struct buffer_head *head, *bh;
92 	*dirty = false;
93 	*writeback = false;
94 
95 	BUG_ON(!folio_test_locked(folio));
96 
97 	head = folio_buffers(folio);
98 	if (!head)
99 		return;
100 
101 	if (folio_test_writeback(folio))
102 		*writeback = true;
103 
104 	bh = head;
105 	do {
106 		if (buffer_locked(bh))
107 			*writeback = true;
108 
109 		if (buffer_dirty(bh))
110 			*dirty = true;
111 
112 		bh = bh->b_this_page;
113 	} while (bh != head);
114 }
115 
116 /*
117  * Block until a buffer comes unlocked.  This doesn't stop it
118  * from becoming locked again - you have to lock it yourself
119  * if you want to preserve its state.
120  */
121 void __wait_on_buffer(struct buffer_head * bh)
122 {
123 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
124 }
125 EXPORT_SYMBOL(__wait_on_buffer);
126 
127 static void buffer_io_error(struct buffer_head *bh, char *msg)
128 {
129 	if (!test_bit(BH_Quiet, &bh->b_state))
130 		printk_ratelimited(KERN_ERR
131 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
132 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
133 }
134 
135 /*
136  * End-of-IO handler helper function which does not touch the bh after
137  * unlocking it.
138  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
139  * a race there is benign: unlock_buffer() only use the bh's address for
140  * hashing after unlocking the buffer, so it doesn't actually touch the bh
141  * itself.
142  */
143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
144 {
145 	if (uptodate) {
146 		set_buffer_uptodate(bh);
147 	} else {
148 		/* This happens, due to failed read-ahead attempts. */
149 		clear_buffer_uptodate(bh);
150 	}
151 	unlock_buffer(bh);
152 }
153 
154 /*
155  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
156  * unlock the buffer.
157  */
158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
159 {
160 	__end_buffer_read_notouch(bh, uptodate);
161 	put_bh(bh);
162 }
163 EXPORT_SYMBOL(end_buffer_read_sync);
164 
165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
166 {
167 	if (uptodate) {
168 		set_buffer_uptodate(bh);
169 	} else {
170 		buffer_io_error(bh, ", lost sync page write");
171 		mark_buffer_write_io_error(bh);
172 		clear_buffer_uptodate(bh);
173 	}
174 	unlock_buffer(bh);
175 	put_bh(bh);
176 }
177 EXPORT_SYMBOL(end_buffer_write_sync);
178 
179 static struct buffer_head *
180 __find_get_block_slow(struct block_device *bdev, sector_t block, bool atomic)
181 {
182 	struct address_space *bd_mapping = bdev->bd_mapping;
183 	const int blkbits = bd_mapping->host->i_blkbits;
184 	struct buffer_head *ret = NULL;
185 	pgoff_t index;
186 	struct buffer_head *bh;
187 	struct buffer_head *head;
188 	struct folio *folio;
189 	int all_mapped = 1;
190 	static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
191 
192 	index = ((loff_t)block << blkbits) / PAGE_SIZE;
193 	folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0);
194 	if (IS_ERR(folio))
195 		goto out;
196 
197 	/*
198 	 * Folio lock protects the buffers. Callers that cannot block
199 	 * will fallback to serializing vs try_to_free_buffers() via
200 	 * the i_private_lock.
201 	 */
202 	if (atomic)
203 		spin_lock(&bd_mapping->i_private_lock);
204 	else
205 		folio_lock(folio);
206 
207 	head = folio_buffers(folio);
208 	if (!head)
209 		goto out_unlock;
210 	bh = head;
211 	do {
212 		if (!buffer_mapped(bh))
213 			all_mapped = 0;
214 		else if (bh->b_blocknr == block) {
215 			ret = bh;
216 			get_bh(bh);
217 			goto out_unlock;
218 		}
219 		bh = bh->b_this_page;
220 	} while (bh != head);
221 
222 	/* we might be here because some of the buffers on this page are
223 	 * not mapped.  This is due to various races between
224 	 * file io on the block device and getblk.  It gets dealt with
225 	 * elsewhere, don't buffer_error if we had some unmapped buffers
226 	 */
227 	ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
228 	if (all_mapped && __ratelimit(&last_warned)) {
229 		printk("__find_get_block_slow() failed. block=%llu, "
230 		       "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
231 		       "device %pg blocksize: %d\n",
232 		       (unsigned long long)block,
233 		       (unsigned long long)bh->b_blocknr,
234 		       bh->b_state, bh->b_size, bdev,
235 		       1 << blkbits);
236 	}
237 out_unlock:
238 	if (atomic)
239 		spin_unlock(&bd_mapping->i_private_lock);
240 	else
241 		folio_unlock(folio);
242 	folio_put(folio);
243 out:
244 	return ret;
245 }
246 
247 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
248 {
249 	unsigned long flags;
250 	struct buffer_head *first;
251 	struct buffer_head *tmp;
252 	struct folio *folio;
253 	int folio_uptodate = 1;
254 
255 	BUG_ON(!buffer_async_read(bh));
256 
257 	folio = bh->b_folio;
258 	if (uptodate) {
259 		set_buffer_uptodate(bh);
260 	} else {
261 		clear_buffer_uptodate(bh);
262 		buffer_io_error(bh, ", async page read");
263 	}
264 
265 	/*
266 	 * Be _very_ careful from here on. Bad things can happen if
267 	 * two buffer heads end IO at almost the same time and both
268 	 * decide that the page is now completely done.
269 	 */
270 	first = folio_buffers(folio);
271 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
272 	clear_buffer_async_read(bh);
273 	unlock_buffer(bh);
274 	tmp = bh;
275 	do {
276 		if (!buffer_uptodate(tmp))
277 			folio_uptodate = 0;
278 		if (buffer_async_read(tmp)) {
279 			BUG_ON(!buffer_locked(tmp));
280 			goto still_busy;
281 		}
282 		tmp = tmp->b_this_page;
283 	} while (tmp != bh);
284 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
285 
286 	folio_end_read(folio, folio_uptodate);
287 	return;
288 
289 still_busy:
290 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
291 	return;
292 }
293 
294 struct postprocess_bh_ctx {
295 	struct work_struct work;
296 	struct buffer_head *bh;
297 };
298 
299 static void verify_bh(struct work_struct *work)
300 {
301 	struct postprocess_bh_ctx *ctx =
302 		container_of(work, struct postprocess_bh_ctx, work);
303 	struct buffer_head *bh = ctx->bh;
304 	bool valid;
305 
306 	valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh));
307 	end_buffer_async_read(bh, valid);
308 	kfree(ctx);
309 }
310 
311 static bool need_fsverity(struct buffer_head *bh)
312 {
313 	struct folio *folio = bh->b_folio;
314 	struct inode *inode = folio->mapping->host;
315 
316 	return fsverity_active(inode) &&
317 		/* needed by ext4 */
318 		folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
319 }
320 
321 static void decrypt_bh(struct work_struct *work)
322 {
323 	struct postprocess_bh_ctx *ctx =
324 		container_of(work, struct postprocess_bh_ctx, work);
325 	struct buffer_head *bh = ctx->bh;
326 	int err;
327 
328 	err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size,
329 					       bh_offset(bh));
330 	if (err == 0 && need_fsverity(bh)) {
331 		/*
332 		 * We use different work queues for decryption and for verity
333 		 * because verity may require reading metadata pages that need
334 		 * decryption, and we shouldn't recurse to the same workqueue.
335 		 */
336 		INIT_WORK(&ctx->work, verify_bh);
337 		fsverity_enqueue_verify_work(&ctx->work);
338 		return;
339 	}
340 	end_buffer_async_read(bh, err == 0);
341 	kfree(ctx);
342 }
343 
344 /*
345  * I/O completion handler for block_read_full_folio() - pages
346  * which come unlocked at the end of I/O.
347  */
348 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
349 {
350 	struct inode *inode = bh->b_folio->mapping->host;
351 	bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
352 	bool verify = need_fsverity(bh);
353 
354 	/* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
355 	if (uptodate && (decrypt || verify)) {
356 		struct postprocess_bh_ctx *ctx =
357 			kmalloc(sizeof(*ctx), GFP_ATOMIC);
358 
359 		if (ctx) {
360 			ctx->bh = bh;
361 			if (decrypt) {
362 				INIT_WORK(&ctx->work, decrypt_bh);
363 				fscrypt_enqueue_decrypt_work(&ctx->work);
364 			} else {
365 				INIT_WORK(&ctx->work, verify_bh);
366 				fsverity_enqueue_verify_work(&ctx->work);
367 			}
368 			return;
369 		}
370 		uptodate = 0;
371 	}
372 	end_buffer_async_read(bh, uptodate);
373 }
374 
375 /*
376  * Completion handler for block_write_full_folio() - folios which are unlocked
377  * during I/O, and which have the writeback flag cleared upon I/O completion.
378  */
379 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
380 {
381 	unsigned long flags;
382 	struct buffer_head *first;
383 	struct buffer_head *tmp;
384 	struct folio *folio;
385 
386 	BUG_ON(!buffer_async_write(bh));
387 
388 	folio = bh->b_folio;
389 	if (uptodate) {
390 		set_buffer_uptodate(bh);
391 	} else {
392 		buffer_io_error(bh, ", lost async page write");
393 		mark_buffer_write_io_error(bh);
394 		clear_buffer_uptodate(bh);
395 	}
396 
397 	first = folio_buffers(folio);
398 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
399 
400 	clear_buffer_async_write(bh);
401 	unlock_buffer(bh);
402 	tmp = bh->b_this_page;
403 	while (tmp != bh) {
404 		if (buffer_async_write(tmp)) {
405 			BUG_ON(!buffer_locked(tmp));
406 			goto still_busy;
407 		}
408 		tmp = tmp->b_this_page;
409 	}
410 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
411 	folio_end_writeback(folio);
412 	return;
413 
414 still_busy:
415 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
416 	return;
417 }
418 
419 /*
420  * If a page's buffers are under async readin (end_buffer_async_read
421  * completion) then there is a possibility that another thread of
422  * control could lock one of the buffers after it has completed
423  * but while some of the other buffers have not completed.  This
424  * locked buffer would confuse end_buffer_async_read() into not unlocking
425  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
426  * that this buffer is not under async I/O.
427  *
428  * The page comes unlocked when it has no locked buffer_async buffers
429  * left.
430  *
431  * PageLocked prevents anyone starting new async I/O reads any of
432  * the buffers.
433  *
434  * PageWriteback is used to prevent simultaneous writeout of the same
435  * page.
436  *
437  * PageLocked prevents anyone from starting writeback of a page which is
438  * under read I/O (PageWriteback is only ever set against a locked page).
439  */
440 static void mark_buffer_async_read(struct buffer_head *bh)
441 {
442 	bh->b_end_io = end_buffer_async_read_io;
443 	set_buffer_async_read(bh);
444 }
445 
446 static void mark_buffer_async_write_endio(struct buffer_head *bh,
447 					  bh_end_io_t *handler)
448 {
449 	bh->b_end_io = handler;
450 	set_buffer_async_write(bh);
451 }
452 
453 void mark_buffer_async_write(struct buffer_head *bh)
454 {
455 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
456 }
457 EXPORT_SYMBOL(mark_buffer_async_write);
458 
459 
460 /*
461  * fs/buffer.c contains helper functions for buffer-backed address space's
462  * fsync functions.  A common requirement for buffer-based filesystems is
463  * that certain data from the backing blockdev needs to be written out for
464  * a successful fsync().  For example, ext2 indirect blocks need to be
465  * written back and waited upon before fsync() returns.
466  *
467  * The functions mark_buffer_dirty_inode(), fsync_inode_buffers(),
468  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
469  * management of a list of dependent buffers at ->i_mapping->i_private_list.
470  *
471  * Locking is a little subtle: try_to_free_buffers() will remove buffers
472  * from their controlling inode's queue when they are being freed.  But
473  * try_to_free_buffers() will be operating against the *blockdev* mapping
474  * at the time, not against the S_ISREG file which depends on those buffers.
475  * So the locking for i_private_list is via the i_private_lock in the address_space
476  * which backs the buffers.  Which is different from the address_space
477  * against which the buffers are listed.  So for a particular address_space,
478  * mapping->i_private_lock does *not* protect mapping->i_private_list!  In fact,
479  * mapping->i_private_list will always be protected by the backing blockdev's
480  * ->i_private_lock.
481  *
482  * Which introduces a requirement: all buffers on an address_space's
483  * ->i_private_list must be from the same address_space: the blockdev's.
484  *
485  * address_spaces which do not place buffers at ->i_private_list via these
486  * utility functions are free to use i_private_lock and i_private_list for
487  * whatever they want.  The only requirement is that list_empty(i_private_list)
488  * be true at clear_inode() time.
489  *
490  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
491  * filesystems should do that.  invalidate_inode_buffers() should just go
492  * BUG_ON(!list_empty).
493  *
494  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
495  * take an address_space, not an inode.  And it should be called
496  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
497  * queued up.
498  *
499  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
500  * list if it is already on a list.  Because if the buffer is on a list,
501  * it *must* already be on the right one.  If not, the filesystem is being
502  * silly.  This will save a ton of locking.  But first we have to ensure
503  * that buffers are taken *off* the old inode's list when they are freed
504  * (presumably in truncate).  That requires careful auditing of all
505  * filesystems (do it inside bforget()).  It could also be done by bringing
506  * b_inode back.
507  */
508 
509 /*
510  * The buffer's backing address_space's i_private_lock must be held
511  */
512 static void __remove_assoc_queue(struct buffer_head *bh)
513 {
514 	list_del_init(&bh->b_assoc_buffers);
515 	WARN_ON(!bh->b_assoc_map);
516 	bh->b_assoc_map = NULL;
517 }
518 
519 int inode_has_buffers(struct inode *inode)
520 {
521 	return !list_empty(&inode->i_data.i_private_list);
522 }
523 
524 /*
525  * osync is designed to support O_SYNC io.  It waits synchronously for
526  * all already-submitted IO to complete, but does not queue any new
527  * writes to the disk.
528  *
529  * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
530  * as you dirty the buffers, and then use osync_inode_buffers to wait for
531  * completion.  Any other dirty buffers which are not yet queued for
532  * write will not be flushed to disk by the osync.
533  */
534 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
535 {
536 	struct buffer_head *bh;
537 	struct list_head *p;
538 	int err = 0;
539 
540 	spin_lock(lock);
541 repeat:
542 	list_for_each_prev(p, list) {
543 		bh = BH_ENTRY(p);
544 		if (buffer_locked(bh)) {
545 			get_bh(bh);
546 			spin_unlock(lock);
547 			wait_on_buffer(bh);
548 			if (!buffer_uptodate(bh))
549 				err = -EIO;
550 			brelse(bh);
551 			spin_lock(lock);
552 			goto repeat;
553 		}
554 	}
555 	spin_unlock(lock);
556 	return err;
557 }
558 
559 /**
560  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
561  * @mapping: the mapping which wants those buffers written
562  *
563  * Starts I/O against the buffers at mapping->i_private_list, and waits upon
564  * that I/O.
565  *
566  * Basically, this is a convenience function for fsync().
567  * @mapping is a file or directory which needs those buffers to be written for
568  * a successful fsync().
569  */
570 int sync_mapping_buffers(struct address_space *mapping)
571 {
572 	struct address_space *buffer_mapping = mapping->i_private_data;
573 
574 	if (buffer_mapping == NULL || list_empty(&mapping->i_private_list))
575 		return 0;
576 
577 	return fsync_buffers_list(&buffer_mapping->i_private_lock,
578 					&mapping->i_private_list);
579 }
580 EXPORT_SYMBOL(sync_mapping_buffers);
581 
582 /**
583  * generic_buffers_fsync_noflush - generic buffer fsync implementation
584  * for simple filesystems with no inode lock
585  *
586  * @file:	file to synchronize
587  * @start:	start offset in bytes
588  * @end:	end offset in bytes (inclusive)
589  * @datasync:	only synchronize essential metadata if true
590  *
591  * This is a generic implementation of the fsync method for simple
592  * filesystems which track all non-inode metadata in the buffers list
593  * hanging off the address_space structure.
594  */
595 int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end,
596 				  bool datasync)
597 {
598 	struct inode *inode = file->f_mapping->host;
599 	int err;
600 	int ret;
601 
602 	err = file_write_and_wait_range(file, start, end);
603 	if (err)
604 		return err;
605 
606 	ret = sync_mapping_buffers(inode->i_mapping);
607 	if (!(inode->i_state & I_DIRTY_ALL))
608 		goto out;
609 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
610 		goto out;
611 
612 	err = sync_inode_metadata(inode, 1);
613 	if (ret == 0)
614 		ret = err;
615 
616 out:
617 	/* check and advance again to catch errors after syncing out buffers */
618 	err = file_check_and_advance_wb_err(file);
619 	if (ret == 0)
620 		ret = err;
621 	return ret;
622 }
623 EXPORT_SYMBOL(generic_buffers_fsync_noflush);
624 
625 /**
626  * generic_buffers_fsync - generic buffer fsync implementation
627  * for simple filesystems with no inode lock
628  *
629  * @file:	file to synchronize
630  * @start:	start offset in bytes
631  * @end:	end offset in bytes (inclusive)
632  * @datasync:	only synchronize essential metadata if true
633  *
634  * This is a generic implementation of the fsync method for simple
635  * filesystems which track all non-inode metadata in the buffers list
636  * hanging off the address_space structure. This also makes sure that
637  * a device cache flush operation is called at the end.
638  */
639 int generic_buffers_fsync(struct file *file, loff_t start, loff_t end,
640 			  bool datasync)
641 {
642 	struct inode *inode = file->f_mapping->host;
643 	int ret;
644 
645 	ret = generic_buffers_fsync_noflush(file, start, end, datasync);
646 	if (!ret)
647 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
648 	return ret;
649 }
650 EXPORT_SYMBOL(generic_buffers_fsync);
651 
652 /*
653  * Called when we've recently written block `bblock', and it is known that
654  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
655  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
656  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
657  */
658 void write_boundary_block(struct block_device *bdev,
659 			sector_t bblock, unsigned blocksize)
660 {
661 	struct buffer_head *bh;
662 
663 	bh = __find_get_block_nonatomic(bdev, bblock + 1, blocksize);
664 	if (bh) {
665 		if (buffer_dirty(bh))
666 			write_dirty_buffer(bh, 0);
667 		put_bh(bh);
668 	}
669 }
670 
671 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
672 {
673 	struct address_space *mapping = inode->i_mapping;
674 	struct address_space *buffer_mapping = bh->b_folio->mapping;
675 
676 	mark_buffer_dirty(bh);
677 	if (!mapping->i_private_data) {
678 		mapping->i_private_data = buffer_mapping;
679 	} else {
680 		BUG_ON(mapping->i_private_data != buffer_mapping);
681 	}
682 	if (!bh->b_assoc_map) {
683 		spin_lock(&buffer_mapping->i_private_lock);
684 		list_move_tail(&bh->b_assoc_buffers,
685 				&mapping->i_private_list);
686 		bh->b_assoc_map = mapping;
687 		spin_unlock(&buffer_mapping->i_private_lock);
688 	}
689 }
690 EXPORT_SYMBOL(mark_buffer_dirty_inode);
691 
692 /**
693  * block_dirty_folio - Mark a folio as dirty.
694  * @mapping: The address space containing this folio.
695  * @folio: The folio to mark dirty.
696  *
697  * Filesystems which use buffer_heads can use this function as their
698  * ->dirty_folio implementation.  Some filesystems need to do a little
699  * work before calling this function.  Filesystems which do not use
700  * buffer_heads should call filemap_dirty_folio() instead.
701  *
702  * If the folio has buffers, the uptodate buffers are set dirty, to
703  * preserve dirty-state coherency between the folio and the buffers.
704  * Buffers added to a dirty folio are created dirty.
705  *
706  * The buffers are dirtied before the folio is dirtied.  There's a small
707  * race window in which writeback may see the folio cleanness but not the
708  * buffer dirtiness.  That's fine.  If this code were to set the folio
709  * dirty before the buffers, writeback could clear the folio dirty flag,
710  * see a bunch of clean buffers and we'd end up with dirty buffers/clean
711  * folio on the dirty folio list.
712  *
713  * We use i_private_lock to lock against try_to_free_buffers() while
714  * using the folio's buffer list.  This also prevents clean buffers
715  * being added to the folio after it was set dirty.
716  *
717  * Context: May only be called from process context.  Does not sleep.
718  * Caller must ensure that @folio cannot be truncated during this call,
719  * typically by holding the folio lock or having a page in the folio
720  * mapped and holding the page table lock.
721  *
722  * Return: True if the folio was dirtied; false if it was already dirtied.
723  */
724 bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
725 {
726 	struct buffer_head *head;
727 	bool newly_dirty;
728 
729 	spin_lock(&mapping->i_private_lock);
730 	head = folio_buffers(folio);
731 	if (head) {
732 		struct buffer_head *bh = head;
733 
734 		do {
735 			set_buffer_dirty(bh);
736 			bh = bh->b_this_page;
737 		} while (bh != head);
738 	}
739 	/*
740 	 * Lock out page's memcg migration to keep PageDirty
741 	 * synchronized with per-memcg dirty page counters.
742 	 */
743 	newly_dirty = !folio_test_set_dirty(folio);
744 	spin_unlock(&mapping->i_private_lock);
745 
746 	if (newly_dirty)
747 		__folio_mark_dirty(folio, mapping, 1);
748 
749 	if (newly_dirty)
750 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
751 
752 	return newly_dirty;
753 }
754 EXPORT_SYMBOL(block_dirty_folio);
755 
756 /*
757  * Write out and wait upon a list of buffers.
758  *
759  * We have conflicting pressures: we want to make sure that all
760  * initially dirty buffers get waited on, but that any subsequently
761  * dirtied buffers don't.  After all, we don't want fsync to last
762  * forever if somebody is actively writing to the file.
763  *
764  * Do this in two main stages: first we copy dirty buffers to a
765  * temporary inode list, queueing the writes as we go.  Then we clean
766  * up, waiting for those writes to complete.
767  *
768  * During this second stage, any subsequent updates to the file may end
769  * up refiling the buffer on the original inode's dirty list again, so
770  * there is a chance we will end up with a buffer queued for write but
771  * not yet completed on that list.  So, as a final cleanup we go through
772  * the osync code to catch these locked, dirty buffers without requeuing
773  * any newly dirty buffers for write.
774  */
775 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
776 {
777 	struct buffer_head *bh;
778 	struct address_space *mapping;
779 	int err = 0, err2;
780 	struct blk_plug plug;
781 	LIST_HEAD(tmp);
782 
783 	blk_start_plug(&plug);
784 
785 	spin_lock(lock);
786 	while (!list_empty(list)) {
787 		bh = BH_ENTRY(list->next);
788 		mapping = bh->b_assoc_map;
789 		__remove_assoc_queue(bh);
790 		/* Avoid race with mark_buffer_dirty_inode() which does
791 		 * a lockless check and we rely on seeing the dirty bit */
792 		smp_mb();
793 		if (buffer_dirty(bh) || buffer_locked(bh)) {
794 			list_add(&bh->b_assoc_buffers, &tmp);
795 			bh->b_assoc_map = mapping;
796 			if (buffer_dirty(bh)) {
797 				get_bh(bh);
798 				spin_unlock(lock);
799 				/*
800 				 * Ensure any pending I/O completes so that
801 				 * write_dirty_buffer() actually writes the
802 				 * current contents - it is a noop if I/O is
803 				 * still in flight on potentially older
804 				 * contents.
805 				 */
806 				write_dirty_buffer(bh, REQ_SYNC);
807 
808 				/*
809 				 * Kick off IO for the previous mapping. Note
810 				 * that we will not run the very last mapping,
811 				 * wait_on_buffer() will do that for us
812 				 * through sync_buffer().
813 				 */
814 				brelse(bh);
815 				spin_lock(lock);
816 			}
817 		}
818 	}
819 
820 	spin_unlock(lock);
821 	blk_finish_plug(&plug);
822 	spin_lock(lock);
823 
824 	while (!list_empty(&tmp)) {
825 		bh = BH_ENTRY(tmp.prev);
826 		get_bh(bh);
827 		mapping = bh->b_assoc_map;
828 		__remove_assoc_queue(bh);
829 		/* Avoid race with mark_buffer_dirty_inode() which does
830 		 * a lockless check and we rely on seeing the dirty bit */
831 		smp_mb();
832 		if (buffer_dirty(bh)) {
833 			list_add(&bh->b_assoc_buffers,
834 				 &mapping->i_private_list);
835 			bh->b_assoc_map = mapping;
836 		}
837 		spin_unlock(lock);
838 		wait_on_buffer(bh);
839 		if (!buffer_uptodate(bh))
840 			err = -EIO;
841 		brelse(bh);
842 		spin_lock(lock);
843 	}
844 
845 	spin_unlock(lock);
846 	err2 = osync_buffers_list(lock, list);
847 	if (err)
848 		return err;
849 	else
850 		return err2;
851 }
852 
853 /*
854  * Invalidate any and all dirty buffers on a given inode.  We are
855  * probably unmounting the fs, but that doesn't mean we have already
856  * done a sync().  Just drop the buffers from the inode list.
857  *
858  * NOTE: we take the inode's blockdev's mapping's i_private_lock.  Which
859  * assumes that all the buffers are against the blockdev.
860  */
861 void invalidate_inode_buffers(struct inode *inode)
862 {
863 	if (inode_has_buffers(inode)) {
864 		struct address_space *mapping = &inode->i_data;
865 		struct list_head *list = &mapping->i_private_list;
866 		struct address_space *buffer_mapping = mapping->i_private_data;
867 
868 		spin_lock(&buffer_mapping->i_private_lock);
869 		while (!list_empty(list))
870 			__remove_assoc_queue(BH_ENTRY(list->next));
871 		spin_unlock(&buffer_mapping->i_private_lock);
872 	}
873 }
874 EXPORT_SYMBOL(invalidate_inode_buffers);
875 
876 /*
877  * Remove any clean buffers from the inode's buffer list.  This is called
878  * when we're trying to free the inode itself.  Those buffers can pin it.
879  *
880  * Returns true if all buffers were removed.
881  */
882 int remove_inode_buffers(struct inode *inode)
883 {
884 	int ret = 1;
885 
886 	if (inode_has_buffers(inode)) {
887 		struct address_space *mapping = &inode->i_data;
888 		struct list_head *list = &mapping->i_private_list;
889 		struct address_space *buffer_mapping = mapping->i_private_data;
890 
891 		spin_lock(&buffer_mapping->i_private_lock);
892 		while (!list_empty(list)) {
893 			struct buffer_head *bh = BH_ENTRY(list->next);
894 			if (buffer_dirty(bh)) {
895 				ret = 0;
896 				break;
897 			}
898 			__remove_assoc_queue(bh);
899 		}
900 		spin_unlock(&buffer_mapping->i_private_lock);
901 	}
902 	return ret;
903 }
904 
905 /*
906  * Create the appropriate buffers when given a folio for data area and
907  * the size of each buffer.. Use the bh->b_this_page linked list to
908  * follow the buffers created.  Return NULL if unable to create more
909  * buffers.
910  *
911  * The retry flag is used to differentiate async IO (paging, swapping)
912  * which may not fail from ordinary buffer allocations.
913  */
914 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
915 					gfp_t gfp)
916 {
917 	struct buffer_head *bh, *head;
918 	long offset;
919 	struct mem_cgroup *memcg, *old_memcg;
920 
921 	/* The folio lock pins the memcg */
922 	memcg = folio_memcg(folio);
923 	old_memcg = set_active_memcg(memcg);
924 
925 	head = NULL;
926 	offset = folio_size(folio);
927 	while ((offset -= size) >= 0) {
928 		bh = alloc_buffer_head(gfp);
929 		if (!bh)
930 			goto no_grow;
931 
932 		bh->b_this_page = head;
933 		bh->b_blocknr = -1;
934 		head = bh;
935 
936 		bh->b_size = size;
937 
938 		/* Link the buffer to its folio */
939 		folio_set_bh(bh, folio, offset);
940 	}
941 out:
942 	set_active_memcg(old_memcg);
943 	return head;
944 /*
945  * In case anything failed, we just free everything we got.
946  */
947 no_grow:
948 	if (head) {
949 		do {
950 			bh = head;
951 			head = head->b_this_page;
952 			free_buffer_head(bh);
953 		} while (head);
954 	}
955 
956 	goto out;
957 }
958 EXPORT_SYMBOL_GPL(folio_alloc_buffers);
959 
960 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size)
961 {
962 	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
963 
964 	return folio_alloc_buffers(page_folio(page), size, gfp);
965 }
966 EXPORT_SYMBOL_GPL(alloc_page_buffers);
967 
968 static inline void link_dev_buffers(struct folio *folio,
969 		struct buffer_head *head)
970 {
971 	struct buffer_head *bh, *tail;
972 
973 	bh = head;
974 	do {
975 		tail = bh;
976 		bh = bh->b_this_page;
977 	} while (bh);
978 	tail->b_this_page = head;
979 	folio_attach_private(folio, head);
980 }
981 
982 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
983 {
984 	sector_t retval = ~((sector_t)0);
985 	loff_t sz = bdev_nr_bytes(bdev);
986 
987 	if (sz) {
988 		unsigned int sizebits = blksize_bits(size);
989 		retval = (sz >> sizebits);
990 	}
991 	return retval;
992 }
993 
994 /*
995  * Initialise the state of a blockdev folio's buffers.
996  */
997 static sector_t folio_init_buffers(struct folio *folio,
998 		struct block_device *bdev, unsigned size)
999 {
1000 	struct buffer_head *head = folio_buffers(folio);
1001 	struct buffer_head *bh = head;
1002 	bool uptodate = folio_test_uptodate(folio);
1003 	sector_t block = div_u64(folio_pos(folio), size);
1004 	sector_t end_block = blkdev_max_block(bdev, size);
1005 
1006 	do {
1007 		if (!buffer_mapped(bh)) {
1008 			bh->b_end_io = NULL;
1009 			bh->b_private = NULL;
1010 			bh->b_bdev = bdev;
1011 			bh->b_blocknr = block;
1012 			if (uptodate)
1013 				set_buffer_uptodate(bh);
1014 			if (block < end_block)
1015 				set_buffer_mapped(bh);
1016 		}
1017 		block++;
1018 		bh = bh->b_this_page;
1019 	} while (bh != head);
1020 
1021 	/*
1022 	 * Caller needs to validate requested block against end of device.
1023 	 */
1024 	return end_block;
1025 }
1026 
1027 /*
1028  * Create the page-cache folio that contains the requested block.
1029  *
1030  * This is used purely for blockdev mappings.
1031  *
1032  * Returns false if we have a failure which cannot be cured by retrying
1033  * without sleeping.  Returns true if we succeeded, or the caller should retry.
1034  */
1035 static bool grow_dev_folio(struct block_device *bdev, sector_t block,
1036 		pgoff_t index, unsigned size, gfp_t gfp)
1037 {
1038 	struct address_space *mapping = bdev->bd_mapping;
1039 	struct folio *folio;
1040 	struct buffer_head *bh;
1041 	sector_t end_block = 0;
1042 
1043 	folio = __filemap_get_folio(mapping, index,
1044 			FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1045 	if (IS_ERR(folio))
1046 		return false;
1047 
1048 	bh = folio_buffers(folio);
1049 	if (bh) {
1050 		if (bh->b_size == size) {
1051 			end_block = folio_init_buffers(folio, bdev, size);
1052 			goto unlock;
1053 		}
1054 
1055 		/*
1056 		 * Retrying may succeed; for example the folio may finish
1057 		 * writeback, or buffers may be cleaned.  This should not
1058 		 * happen very often; maybe we have old buffers attached to
1059 		 * this blockdev's page cache and we're trying to change
1060 		 * the block size?
1061 		 */
1062 		if (!try_to_free_buffers(folio)) {
1063 			end_block = ~0ULL;
1064 			goto unlock;
1065 		}
1066 	}
1067 
1068 	bh = folio_alloc_buffers(folio, size, gfp | __GFP_ACCOUNT);
1069 	if (!bh)
1070 		goto unlock;
1071 
1072 	/*
1073 	 * Link the folio to the buffers and initialise them.  Take the
1074 	 * lock to be atomic wrt __find_get_block(), which does not
1075 	 * run under the folio lock.
1076 	 */
1077 	spin_lock(&mapping->i_private_lock);
1078 	link_dev_buffers(folio, bh);
1079 	end_block = folio_init_buffers(folio, bdev, size);
1080 	spin_unlock(&mapping->i_private_lock);
1081 unlock:
1082 	folio_unlock(folio);
1083 	folio_put(folio);
1084 	return block < end_block;
1085 }
1086 
1087 /*
1088  * Create buffers for the specified block device block's folio.  If
1089  * that folio was dirty, the buffers are set dirty also.  Returns false
1090  * if we've hit a permanent error.
1091  */
1092 static bool grow_buffers(struct block_device *bdev, sector_t block,
1093 		unsigned size, gfp_t gfp)
1094 {
1095 	loff_t pos;
1096 
1097 	/*
1098 	 * Check for a block which lies outside our maximum possible
1099 	 * pagecache index.
1100 	 */
1101 	if (check_mul_overflow(block, (sector_t)size, &pos) || pos > MAX_LFS_FILESIZE) {
1102 		printk(KERN_ERR "%s: requested out-of-range block %llu for device %pg\n",
1103 			__func__, (unsigned long long)block,
1104 			bdev);
1105 		return false;
1106 	}
1107 
1108 	/* Create a folio with the proper size buffers */
1109 	return grow_dev_folio(bdev, block, pos / PAGE_SIZE, size, gfp);
1110 }
1111 
1112 static struct buffer_head *
1113 __getblk_slow(struct block_device *bdev, sector_t block,
1114 	     unsigned size, gfp_t gfp)
1115 {
1116 	/* Size must be multiple of hard sectorsize */
1117 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1118 			(size < 512 || size > PAGE_SIZE))) {
1119 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1120 					size);
1121 		printk(KERN_ERR "logical block size: %d\n",
1122 					bdev_logical_block_size(bdev));
1123 
1124 		dump_stack();
1125 		return NULL;
1126 	}
1127 
1128 	for (;;) {
1129 		struct buffer_head *bh;
1130 
1131 		bh = __find_get_block(bdev, block, size);
1132 		if (bh)
1133 			return bh;
1134 
1135 		if (!grow_buffers(bdev, block, size, gfp))
1136 			return NULL;
1137 	}
1138 }
1139 
1140 /*
1141  * The relationship between dirty buffers and dirty pages:
1142  *
1143  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1144  * the page is tagged dirty in the page cache.
1145  *
1146  * At all times, the dirtiness of the buffers represents the dirtiness of
1147  * subsections of the page.  If the page has buffers, the page dirty bit is
1148  * merely a hint about the true dirty state.
1149  *
1150  * When a page is set dirty in its entirety, all its buffers are marked dirty
1151  * (if the page has buffers).
1152  *
1153  * When a buffer is marked dirty, its page is dirtied, but the page's other
1154  * buffers are not.
1155  *
1156  * Also.  When blockdev buffers are explicitly read with bread(), they
1157  * individually become uptodate.  But their backing page remains not
1158  * uptodate - even if all of its buffers are uptodate.  A subsequent
1159  * block_read_full_folio() against that folio will discover all the uptodate
1160  * buffers, will set the folio uptodate and will perform no I/O.
1161  */
1162 
1163 /**
1164  * mark_buffer_dirty - mark a buffer_head as needing writeout
1165  * @bh: the buffer_head to mark dirty
1166  *
1167  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1168  * its backing page dirty, then tag the page as dirty in the page cache
1169  * and then attach the address_space's inode to its superblock's dirty
1170  * inode list.
1171  *
1172  * mark_buffer_dirty() is atomic.  It takes bh->b_folio->mapping->i_private_lock,
1173  * i_pages lock and mapping->host->i_lock.
1174  */
1175 void mark_buffer_dirty(struct buffer_head *bh)
1176 {
1177 	WARN_ON_ONCE(!buffer_uptodate(bh));
1178 
1179 	trace_block_dirty_buffer(bh);
1180 
1181 	/*
1182 	 * Very *carefully* optimize the it-is-already-dirty case.
1183 	 *
1184 	 * Don't let the final "is it dirty" escape to before we
1185 	 * perhaps modified the buffer.
1186 	 */
1187 	if (buffer_dirty(bh)) {
1188 		smp_mb();
1189 		if (buffer_dirty(bh))
1190 			return;
1191 	}
1192 
1193 	if (!test_set_buffer_dirty(bh)) {
1194 		struct folio *folio = bh->b_folio;
1195 		struct address_space *mapping = NULL;
1196 
1197 		if (!folio_test_set_dirty(folio)) {
1198 			mapping = folio->mapping;
1199 			if (mapping)
1200 				__folio_mark_dirty(folio, mapping, 0);
1201 		}
1202 		if (mapping)
1203 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1204 	}
1205 }
1206 EXPORT_SYMBOL(mark_buffer_dirty);
1207 
1208 void mark_buffer_write_io_error(struct buffer_head *bh)
1209 {
1210 	set_buffer_write_io_error(bh);
1211 	/* FIXME: do we need to set this in both places? */
1212 	if (bh->b_folio && bh->b_folio->mapping)
1213 		mapping_set_error(bh->b_folio->mapping, -EIO);
1214 	if (bh->b_assoc_map) {
1215 		mapping_set_error(bh->b_assoc_map, -EIO);
1216 		errseq_set(&bh->b_assoc_map->host->i_sb->s_wb_err, -EIO);
1217 	}
1218 }
1219 EXPORT_SYMBOL(mark_buffer_write_io_error);
1220 
1221 /**
1222  * __brelse - Release a buffer.
1223  * @bh: The buffer to release.
1224  *
1225  * This variant of brelse() can be called if @bh is guaranteed to not be NULL.
1226  */
1227 void __brelse(struct buffer_head *bh)
1228 {
1229 	if (atomic_read(&bh->b_count)) {
1230 		put_bh(bh);
1231 		return;
1232 	}
1233 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1234 }
1235 EXPORT_SYMBOL(__brelse);
1236 
1237 /**
1238  * __bforget - Discard any dirty data in a buffer.
1239  * @bh: The buffer to forget.
1240  *
1241  * This variant of bforget() can be called if @bh is guaranteed to not
1242  * be NULL.
1243  */
1244 void __bforget(struct buffer_head *bh)
1245 {
1246 	clear_buffer_dirty(bh);
1247 	if (bh->b_assoc_map) {
1248 		struct address_space *buffer_mapping = bh->b_folio->mapping;
1249 
1250 		spin_lock(&buffer_mapping->i_private_lock);
1251 		list_del_init(&bh->b_assoc_buffers);
1252 		bh->b_assoc_map = NULL;
1253 		spin_unlock(&buffer_mapping->i_private_lock);
1254 	}
1255 	__brelse(bh);
1256 }
1257 EXPORT_SYMBOL(__bforget);
1258 
1259 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1260 {
1261 	lock_buffer(bh);
1262 	if (buffer_uptodate(bh)) {
1263 		unlock_buffer(bh);
1264 		return bh;
1265 	} else {
1266 		get_bh(bh);
1267 		bh->b_end_io = end_buffer_read_sync;
1268 		submit_bh(REQ_OP_READ, bh);
1269 		wait_on_buffer(bh);
1270 		if (buffer_uptodate(bh))
1271 			return bh;
1272 	}
1273 	brelse(bh);
1274 	return NULL;
1275 }
1276 
1277 /*
1278  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1279  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1280  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1281  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1282  * CPU's LRUs at the same time.
1283  *
1284  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1285  * sb_find_get_block().
1286  *
1287  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1288  * a local interrupt disable for that.
1289  */
1290 
1291 #define BH_LRU_SIZE	16
1292 
1293 struct bh_lru {
1294 	struct buffer_head *bhs[BH_LRU_SIZE];
1295 };
1296 
1297 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1298 
1299 #ifdef CONFIG_SMP
1300 #define bh_lru_lock()	local_irq_disable()
1301 #define bh_lru_unlock()	local_irq_enable()
1302 #else
1303 #define bh_lru_lock()	preempt_disable()
1304 #define bh_lru_unlock()	preempt_enable()
1305 #endif
1306 
1307 static inline void check_irqs_on(void)
1308 {
1309 #ifdef irqs_disabled
1310 	BUG_ON(irqs_disabled());
1311 #endif
1312 }
1313 
1314 /*
1315  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1316  * inserted at the front, and the buffer_head at the back if any is evicted.
1317  * Or, if already in the LRU it is moved to the front.
1318  */
1319 static void bh_lru_install(struct buffer_head *bh)
1320 {
1321 	struct buffer_head *evictee = bh;
1322 	struct bh_lru *b;
1323 	int i;
1324 
1325 	check_irqs_on();
1326 	bh_lru_lock();
1327 
1328 	/*
1329 	 * the refcount of buffer_head in bh_lru prevents dropping the
1330 	 * attached page(i.e., try_to_free_buffers) so it could cause
1331 	 * failing page migration.
1332 	 * Skip putting upcoming bh into bh_lru until migration is done.
1333 	 */
1334 	if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) {
1335 		bh_lru_unlock();
1336 		return;
1337 	}
1338 
1339 	b = this_cpu_ptr(&bh_lrus);
1340 	for (i = 0; i < BH_LRU_SIZE; i++) {
1341 		swap(evictee, b->bhs[i]);
1342 		if (evictee == bh) {
1343 			bh_lru_unlock();
1344 			return;
1345 		}
1346 	}
1347 
1348 	get_bh(bh);
1349 	bh_lru_unlock();
1350 	brelse(evictee);
1351 }
1352 
1353 /*
1354  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1355  */
1356 static struct buffer_head *
1357 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1358 {
1359 	struct buffer_head *ret = NULL;
1360 	unsigned int i;
1361 
1362 	check_irqs_on();
1363 	bh_lru_lock();
1364 	if (cpu_is_isolated(smp_processor_id())) {
1365 		bh_lru_unlock();
1366 		return NULL;
1367 	}
1368 	for (i = 0; i < BH_LRU_SIZE; i++) {
1369 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1370 
1371 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1372 		    bh->b_size == size) {
1373 			if (i) {
1374 				while (i) {
1375 					__this_cpu_write(bh_lrus.bhs[i],
1376 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1377 					i--;
1378 				}
1379 				__this_cpu_write(bh_lrus.bhs[0], bh);
1380 			}
1381 			get_bh(bh);
1382 			ret = bh;
1383 			break;
1384 		}
1385 	}
1386 	bh_lru_unlock();
1387 	return ret;
1388 }
1389 
1390 /*
1391  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1392  * it in the LRU and mark it as accessed.  If it is not present then return
1393  * NULL
1394  */
1395 static struct buffer_head *
1396 find_get_block_common(struct block_device *bdev, sector_t block,
1397 			unsigned size, bool atomic)
1398 {
1399 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1400 
1401 	if (bh == NULL) {
1402 		/* __find_get_block_slow will mark the page accessed */
1403 		bh = __find_get_block_slow(bdev, block, atomic);
1404 		if (bh)
1405 			bh_lru_install(bh);
1406 	} else
1407 		touch_buffer(bh);
1408 
1409 	return bh;
1410 }
1411 
1412 struct buffer_head *
1413 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1414 {
1415 	return find_get_block_common(bdev, block, size, true);
1416 }
1417 EXPORT_SYMBOL(__find_get_block);
1418 
1419 /* same as __find_get_block() but allows sleeping contexts */
1420 struct buffer_head *
1421 __find_get_block_nonatomic(struct block_device *bdev, sector_t block,
1422 			   unsigned size)
1423 {
1424 	return find_get_block_common(bdev, block, size, false);
1425 }
1426 EXPORT_SYMBOL(__find_get_block_nonatomic);
1427 
1428 /**
1429  * bdev_getblk - Get a buffer_head in a block device's buffer cache.
1430  * @bdev: The block device.
1431  * @block: The block number.
1432  * @size: The size of buffer_heads for this @bdev.
1433  * @gfp: The memory allocation flags to use.
1434  *
1435  * The returned buffer head has its reference count incremented, but is
1436  * not locked.  The caller should call brelse() when it has finished
1437  * with the buffer.  The buffer may not be uptodate.  If needed, the
1438  * caller can bring it uptodate either by reading it or overwriting it.
1439  *
1440  * Return: The buffer head, or NULL if memory could not be allocated.
1441  */
1442 struct buffer_head *bdev_getblk(struct block_device *bdev, sector_t block,
1443 		unsigned size, gfp_t gfp)
1444 {
1445 	struct buffer_head *bh;
1446 
1447 	if (gfpflags_allow_blocking(gfp))
1448 		bh = __find_get_block_nonatomic(bdev, block, size);
1449 	else
1450 		bh = __find_get_block(bdev, block, size);
1451 
1452 	might_alloc(gfp);
1453 	if (bh)
1454 		return bh;
1455 
1456 	return __getblk_slow(bdev, block, size, gfp);
1457 }
1458 EXPORT_SYMBOL(bdev_getblk);
1459 
1460 /*
1461  * Do async read-ahead on a buffer..
1462  */
1463 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1464 {
1465 	struct buffer_head *bh = bdev_getblk(bdev, block, size,
1466 			GFP_NOWAIT | __GFP_MOVABLE);
1467 
1468 	if (likely(bh)) {
1469 		bh_readahead(bh, REQ_RAHEAD);
1470 		brelse(bh);
1471 	}
1472 }
1473 EXPORT_SYMBOL(__breadahead);
1474 
1475 /**
1476  * __bread_gfp() - Read a block.
1477  * @bdev: The block device to read from.
1478  * @block: Block number in units of block size.
1479  * @size: The block size of this device in bytes.
1480  * @gfp: Not page allocation flags; see below.
1481  *
1482  * You are not expected to call this function.  You should use one of
1483  * sb_bread(), sb_bread_unmovable() or __bread().
1484  *
1485  * Read a specified block, and return the buffer head that refers to it.
1486  * If @gfp is 0, the memory will be allocated using the block device's
1487  * default GFP flags.  If @gfp is __GFP_MOVABLE, the memory may be
1488  * allocated from a movable area.  Do not pass in a complete set of
1489  * GFP flags.
1490  *
1491  * The returned buffer head has its refcount increased.  The caller should
1492  * call brelse() when it has finished with the buffer.
1493  *
1494  * Context: May sleep waiting for I/O.
1495  * Return: NULL if the block was unreadable.
1496  */
1497 struct buffer_head *__bread_gfp(struct block_device *bdev, sector_t block,
1498 		unsigned size, gfp_t gfp)
1499 {
1500 	struct buffer_head *bh;
1501 
1502 	gfp |= mapping_gfp_constraint(bdev->bd_mapping, ~__GFP_FS);
1503 
1504 	/*
1505 	 * Prefer looping in the allocator rather than here, at least that
1506 	 * code knows what it's doing.
1507 	 */
1508 	gfp |= __GFP_NOFAIL;
1509 
1510 	bh = bdev_getblk(bdev, block, size, gfp);
1511 
1512 	if (likely(bh) && !buffer_uptodate(bh))
1513 		bh = __bread_slow(bh);
1514 	return bh;
1515 }
1516 EXPORT_SYMBOL(__bread_gfp);
1517 
1518 static void __invalidate_bh_lrus(struct bh_lru *b)
1519 {
1520 	int i;
1521 
1522 	for (i = 0; i < BH_LRU_SIZE; i++) {
1523 		brelse(b->bhs[i]);
1524 		b->bhs[i] = NULL;
1525 	}
1526 }
1527 /*
1528  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1529  * This doesn't race because it runs in each cpu either in irq
1530  * or with preempt disabled.
1531  */
1532 static void invalidate_bh_lru(void *arg)
1533 {
1534 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1535 
1536 	__invalidate_bh_lrus(b);
1537 	put_cpu_var(bh_lrus);
1538 }
1539 
1540 bool has_bh_in_lru(int cpu, void *dummy)
1541 {
1542 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1543 	int i;
1544 
1545 	for (i = 0; i < BH_LRU_SIZE; i++) {
1546 		if (b->bhs[i])
1547 			return true;
1548 	}
1549 
1550 	return false;
1551 }
1552 
1553 void invalidate_bh_lrus(void)
1554 {
1555 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1556 }
1557 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1558 
1559 /*
1560  * It's called from workqueue context so we need a bh_lru_lock to close
1561  * the race with preemption/irq.
1562  */
1563 void invalidate_bh_lrus_cpu(void)
1564 {
1565 	struct bh_lru *b;
1566 
1567 	bh_lru_lock();
1568 	b = this_cpu_ptr(&bh_lrus);
1569 	__invalidate_bh_lrus(b);
1570 	bh_lru_unlock();
1571 }
1572 
1573 void folio_set_bh(struct buffer_head *bh, struct folio *folio,
1574 		  unsigned long offset)
1575 {
1576 	bh->b_folio = folio;
1577 	BUG_ON(offset >= folio_size(folio));
1578 	if (folio_test_highmem(folio))
1579 		/*
1580 		 * This catches illegal uses and preserves the offset:
1581 		 */
1582 		bh->b_data = (char *)(0 + offset);
1583 	else
1584 		bh->b_data = folio_address(folio) + offset;
1585 }
1586 EXPORT_SYMBOL(folio_set_bh);
1587 
1588 /*
1589  * Called when truncating a buffer on a page completely.
1590  */
1591 
1592 /* Bits that are cleared during an invalidate */
1593 #define BUFFER_FLAGS_DISCARD \
1594 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1595 	 1 << BH_Delay | 1 << BH_Unwritten)
1596 
1597 static void discard_buffer(struct buffer_head * bh)
1598 {
1599 	unsigned long b_state;
1600 
1601 	lock_buffer(bh);
1602 	clear_buffer_dirty(bh);
1603 	bh->b_bdev = NULL;
1604 	b_state = READ_ONCE(bh->b_state);
1605 	do {
1606 	} while (!try_cmpxchg(&bh->b_state, &b_state,
1607 			      b_state & ~BUFFER_FLAGS_DISCARD));
1608 	unlock_buffer(bh);
1609 }
1610 
1611 /**
1612  * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1613  * @folio: The folio which is affected.
1614  * @offset: start of the range to invalidate
1615  * @length: length of the range to invalidate
1616  *
1617  * block_invalidate_folio() is called when all or part of the folio has been
1618  * invalidated by a truncate operation.
1619  *
1620  * block_invalidate_folio() does not have to release all buffers, but it must
1621  * ensure that no dirty buffer is left outside @offset and that no I/O
1622  * is underway against any of the blocks which are outside the truncation
1623  * point.  Because the caller is about to free (and possibly reuse) those
1624  * blocks on-disk.
1625  */
1626 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1627 {
1628 	struct buffer_head *head, *bh, *next;
1629 	size_t curr_off = 0;
1630 	size_t stop = length + offset;
1631 
1632 	BUG_ON(!folio_test_locked(folio));
1633 
1634 	/*
1635 	 * Check for overflow
1636 	 */
1637 	BUG_ON(stop > folio_size(folio) || stop < length);
1638 
1639 	head = folio_buffers(folio);
1640 	if (!head)
1641 		return;
1642 
1643 	bh = head;
1644 	do {
1645 		size_t next_off = curr_off + bh->b_size;
1646 		next = bh->b_this_page;
1647 
1648 		/*
1649 		 * Are we still fully in range ?
1650 		 */
1651 		if (next_off > stop)
1652 			goto out;
1653 
1654 		/*
1655 		 * is this block fully invalidated?
1656 		 */
1657 		if (offset <= curr_off)
1658 			discard_buffer(bh);
1659 		curr_off = next_off;
1660 		bh = next;
1661 	} while (bh != head);
1662 
1663 	/*
1664 	 * We release buffers only if the entire folio is being invalidated.
1665 	 * The get_block cached value has been unconditionally invalidated,
1666 	 * so real IO is not possible anymore.
1667 	 */
1668 	if (length == folio_size(folio))
1669 		filemap_release_folio(folio, 0);
1670 out:
1671 	folio_clear_mappedtodisk(folio);
1672 	return;
1673 }
1674 EXPORT_SYMBOL(block_invalidate_folio);
1675 
1676 /*
1677  * We attach and possibly dirty the buffers atomically wrt
1678  * block_dirty_folio() via i_private_lock.  try_to_free_buffers
1679  * is already excluded via the folio lock.
1680  */
1681 struct buffer_head *create_empty_buffers(struct folio *folio,
1682 		unsigned long blocksize, unsigned long b_state)
1683 {
1684 	struct buffer_head *bh, *head, *tail;
1685 	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT | __GFP_NOFAIL;
1686 
1687 	head = folio_alloc_buffers(folio, blocksize, gfp);
1688 	bh = head;
1689 	do {
1690 		bh->b_state |= b_state;
1691 		tail = bh;
1692 		bh = bh->b_this_page;
1693 	} while (bh);
1694 	tail->b_this_page = head;
1695 
1696 	spin_lock(&folio->mapping->i_private_lock);
1697 	if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
1698 		bh = head;
1699 		do {
1700 			if (folio_test_dirty(folio))
1701 				set_buffer_dirty(bh);
1702 			if (folio_test_uptodate(folio))
1703 				set_buffer_uptodate(bh);
1704 			bh = bh->b_this_page;
1705 		} while (bh != head);
1706 	}
1707 	folio_attach_private(folio, head);
1708 	spin_unlock(&folio->mapping->i_private_lock);
1709 
1710 	return head;
1711 }
1712 EXPORT_SYMBOL(create_empty_buffers);
1713 
1714 /**
1715  * clean_bdev_aliases: clean a range of buffers in block device
1716  * @bdev: Block device to clean buffers in
1717  * @block: Start of a range of blocks to clean
1718  * @len: Number of blocks to clean
1719  *
1720  * We are taking a range of blocks for data and we don't want writeback of any
1721  * buffer-cache aliases starting from return from this function and until the
1722  * moment when something will explicitly mark the buffer dirty (hopefully that
1723  * will not happen until we will free that block ;-) We don't even need to mark
1724  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1725  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1726  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1727  * would confuse anyone who might pick it with bread() afterwards...
1728  *
1729  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1730  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1731  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1732  * need to.  That happens here.
1733  */
1734 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1735 {
1736 	struct address_space *bd_mapping = bdev->bd_mapping;
1737 	const int blkbits = bd_mapping->host->i_blkbits;
1738 	struct folio_batch fbatch;
1739 	pgoff_t index = ((loff_t)block << blkbits) / PAGE_SIZE;
1740 	pgoff_t end;
1741 	int i, count;
1742 	struct buffer_head *bh;
1743 	struct buffer_head *head;
1744 
1745 	end = ((loff_t)(block + len - 1) << blkbits) / PAGE_SIZE;
1746 	folio_batch_init(&fbatch);
1747 	while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1748 		count = folio_batch_count(&fbatch);
1749 		for (i = 0; i < count; i++) {
1750 			struct folio *folio = fbatch.folios[i];
1751 
1752 			if (!folio_buffers(folio))
1753 				continue;
1754 			/*
1755 			 * We use folio lock instead of bd_mapping->i_private_lock
1756 			 * to pin buffers here since we can afford to sleep and
1757 			 * it scales better than a global spinlock lock.
1758 			 */
1759 			folio_lock(folio);
1760 			/* Recheck when the folio is locked which pins bhs */
1761 			head = folio_buffers(folio);
1762 			if (!head)
1763 				goto unlock_page;
1764 			bh = head;
1765 			do {
1766 				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1767 					goto next;
1768 				if (bh->b_blocknr >= block + len)
1769 					break;
1770 				clear_buffer_dirty(bh);
1771 				wait_on_buffer(bh);
1772 				clear_buffer_req(bh);
1773 next:
1774 				bh = bh->b_this_page;
1775 			} while (bh != head);
1776 unlock_page:
1777 			folio_unlock(folio);
1778 		}
1779 		folio_batch_release(&fbatch);
1780 		cond_resched();
1781 		/* End of range already reached? */
1782 		if (index > end || !index)
1783 			break;
1784 	}
1785 }
1786 EXPORT_SYMBOL(clean_bdev_aliases);
1787 
1788 static struct buffer_head *folio_create_buffers(struct folio *folio,
1789 						struct inode *inode,
1790 						unsigned int b_state)
1791 {
1792 	struct buffer_head *bh;
1793 
1794 	BUG_ON(!folio_test_locked(folio));
1795 
1796 	bh = folio_buffers(folio);
1797 	if (!bh)
1798 		bh = create_empty_buffers(folio,
1799 				1 << READ_ONCE(inode->i_blkbits), b_state);
1800 	return bh;
1801 }
1802 
1803 /*
1804  * NOTE! All mapped/uptodate combinations are valid:
1805  *
1806  *	Mapped	Uptodate	Meaning
1807  *
1808  *	No	No		"unknown" - must do get_block()
1809  *	No	Yes		"hole" - zero-filled
1810  *	Yes	No		"allocated" - allocated on disk, not read in
1811  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1812  *
1813  * "Dirty" is valid only with the last case (mapped+uptodate).
1814  */
1815 
1816 /*
1817  * While block_write_full_folio is writing back the dirty buffers under
1818  * the page lock, whoever dirtied the buffers may decide to clean them
1819  * again at any time.  We handle that by only looking at the buffer
1820  * state inside lock_buffer().
1821  *
1822  * If block_write_full_folio() is called for regular writeback
1823  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1824  * locked buffer.   This only can happen if someone has written the buffer
1825  * directly, with submit_bh().  At the address_space level PageWriteback
1826  * prevents this contention from occurring.
1827  *
1828  * If block_write_full_folio() is called with wbc->sync_mode ==
1829  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1830  * causes the writes to be flagged as synchronous writes.
1831  */
1832 int __block_write_full_folio(struct inode *inode, struct folio *folio,
1833 			get_block_t *get_block, struct writeback_control *wbc)
1834 {
1835 	int err;
1836 	sector_t block;
1837 	sector_t last_block;
1838 	struct buffer_head *bh, *head;
1839 	size_t blocksize;
1840 	int nr_underway = 0;
1841 	blk_opf_t write_flags = wbc_to_write_flags(wbc);
1842 
1843 	head = folio_create_buffers(folio, inode,
1844 				    (1 << BH_Dirty) | (1 << BH_Uptodate));
1845 
1846 	/*
1847 	 * Be very careful.  We have no exclusion from block_dirty_folio
1848 	 * here, and the (potentially unmapped) buffers may become dirty at
1849 	 * any time.  If a buffer becomes dirty here after we've inspected it
1850 	 * then we just miss that fact, and the folio stays dirty.
1851 	 *
1852 	 * Buffers outside i_size may be dirtied by block_dirty_folio;
1853 	 * handle that here by just cleaning them.
1854 	 */
1855 
1856 	bh = head;
1857 	blocksize = bh->b_size;
1858 
1859 	block = div_u64(folio_pos(folio), blocksize);
1860 	last_block = div_u64(i_size_read(inode) - 1, blocksize);
1861 
1862 	/*
1863 	 * Get all the dirty buffers mapped to disk addresses and
1864 	 * handle any aliases from the underlying blockdev's mapping.
1865 	 */
1866 	do {
1867 		if (block > last_block) {
1868 			/*
1869 			 * mapped buffers outside i_size will occur, because
1870 			 * this folio can be outside i_size when there is a
1871 			 * truncate in progress.
1872 			 */
1873 			/*
1874 			 * The buffer was zeroed by block_write_full_folio()
1875 			 */
1876 			clear_buffer_dirty(bh);
1877 			set_buffer_uptodate(bh);
1878 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1879 			   buffer_dirty(bh)) {
1880 			WARN_ON(bh->b_size != blocksize);
1881 			err = get_block(inode, block, bh, 1);
1882 			if (err)
1883 				goto recover;
1884 			clear_buffer_delay(bh);
1885 			if (buffer_new(bh)) {
1886 				/* blockdev mappings never come here */
1887 				clear_buffer_new(bh);
1888 				clean_bdev_bh_alias(bh);
1889 			}
1890 		}
1891 		bh = bh->b_this_page;
1892 		block++;
1893 	} while (bh != head);
1894 
1895 	do {
1896 		if (!buffer_mapped(bh))
1897 			continue;
1898 		/*
1899 		 * If it's a fully non-blocking write attempt and we cannot
1900 		 * lock the buffer then redirty the folio.  Note that this can
1901 		 * potentially cause a busy-wait loop from writeback threads
1902 		 * and kswapd activity, but those code paths have their own
1903 		 * higher-level throttling.
1904 		 */
1905 		if (wbc->sync_mode != WB_SYNC_NONE) {
1906 			lock_buffer(bh);
1907 		} else if (!trylock_buffer(bh)) {
1908 			folio_redirty_for_writepage(wbc, folio);
1909 			continue;
1910 		}
1911 		if (test_clear_buffer_dirty(bh)) {
1912 			mark_buffer_async_write_endio(bh,
1913 				end_buffer_async_write);
1914 		} else {
1915 			unlock_buffer(bh);
1916 		}
1917 	} while ((bh = bh->b_this_page) != head);
1918 
1919 	/*
1920 	 * The folio and its buffers are protected by the writeback flag,
1921 	 * so we can drop the bh refcounts early.
1922 	 */
1923 	BUG_ON(folio_test_writeback(folio));
1924 	folio_start_writeback(folio);
1925 
1926 	do {
1927 		struct buffer_head *next = bh->b_this_page;
1928 		if (buffer_async_write(bh)) {
1929 			submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
1930 				      inode->i_write_hint, wbc);
1931 			nr_underway++;
1932 		}
1933 		bh = next;
1934 	} while (bh != head);
1935 	folio_unlock(folio);
1936 
1937 	err = 0;
1938 done:
1939 	if (nr_underway == 0) {
1940 		/*
1941 		 * The folio was marked dirty, but the buffers were
1942 		 * clean.  Someone wrote them back by hand with
1943 		 * write_dirty_buffer/submit_bh.  A rare case.
1944 		 */
1945 		folio_end_writeback(folio);
1946 
1947 		/*
1948 		 * The folio and buffer_heads can be released at any time from
1949 		 * here on.
1950 		 */
1951 	}
1952 	return err;
1953 
1954 recover:
1955 	/*
1956 	 * ENOSPC, or some other error.  We may already have added some
1957 	 * blocks to the file, so we need to write these out to avoid
1958 	 * exposing stale data.
1959 	 * The folio is currently locked and not marked for writeback
1960 	 */
1961 	bh = head;
1962 	/* Recovery: lock and submit the mapped buffers */
1963 	do {
1964 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1965 		    !buffer_delay(bh)) {
1966 			lock_buffer(bh);
1967 			mark_buffer_async_write_endio(bh,
1968 				end_buffer_async_write);
1969 		} else {
1970 			/*
1971 			 * The buffer may have been set dirty during
1972 			 * attachment to a dirty folio.
1973 			 */
1974 			clear_buffer_dirty(bh);
1975 		}
1976 	} while ((bh = bh->b_this_page) != head);
1977 	BUG_ON(folio_test_writeback(folio));
1978 	mapping_set_error(folio->mapping, err);
1979 	folio_start_writeback(folio);
1980 	do {
1981 		struct buffer_head *next = bh->b_this_page;
1982 		if (buffer_async_write(bh)) {
1983 			clear_buffer_dirty(bh);
1984 			submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
1985 				      inode->i_write_hint, wbc);
1986 			nr_underway++;
1987 		}
1988 		bh = next;
1989 	} while (bh != head);
1990 	folio_unlock(folio);
1991 	goto done;
1992 }
1993 EXPORT_SYMBOL(__block_write_full_folio);
1994 
1995 /*
1996  * If a folio has any new buffers, zero them out here, and mark them uptodate
1997  * and dirty so they'll be written out (in order to prevent uninitialised
1998  * block data from leaking). And clear the new bit.
1999  */
2000 void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to)
2001 {
2002 	size_t block_start, block_end;
2003 	struct buffer_head *head, *bh;
2004 
2005 	BUG_ON(!folio_test_locked(folio));
2006 	head = folio_buffers(folio);
2007 	if (!head)
2008 		return;
2009 
2010 	bh = head;
2011 	block_start = 0;
2012 	do {
2013 		block_end = block_start + bh->b_size;
2014 
2015 		if (buffer_new(bh)) {
2016 			if (block_end > from && block_start < to) {
2017 				if (!folio_test_uptodate(folio)) {
2018 					size_t start, xend;
2019 
2020 					start = max(from, block_start);
2021 					xend = min(to, block_end);
2022 
2023 					folio_zero_segment(folio, start, xend);
2024 					set_buffer_uptodate(bh);
2025 				}
2026 
2027 				clear_buffer_new(bh);
2028 				mark_buffer_dirty(bh);
2029 			}
2030 		}
2031 
2032 		block_start = block_end;
2033 		bh = bh->b_this_page;
2034 	} while (bh != head);
2035 }
2036 EXPORT_SYMBOL(folio_zero_new_buffers);
2037 
2038 static int
2039 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
2040 		const struct iomap *iomap)
2041 {
2042 	loff_t offset = (loff_t)block << inode->i_blkbits;
2043 
2044 	bh->b_bdev = iomap->bdev;
2045 
2046 	/*
2047 	 * Block points to offset in file we need to map, iomap contains
2048 	 * the offset at which the map starts. If the map ends before the
2049 	 * current block, then do not map the buffer and let the caller
2050 	 * handle it.
2051 	 */
2052 	if (offset >= iomap->offset + iomap->length)
2053 		return -EIO;
2054 
2055 	switch (iomap->type) {
2056 	case IOMAP_HOLE:
2057 		/*
2058 		 * If the buffer is not up to date or beyond the current EOF,
2059 		 * we need to mark it as new to ensure sub-block zeroing is
2060 		 * executed if necessary.
2061 		 */
2062 		if (!buffer_uptodate(bh) ||
2063 		    (offset >= i_size_read(inode)))
2064 			set_buffer_new(bh);
2065 		return 0;
2066 	case IOMAP_DELALLOC:
2067 		if (!buffer_uptodate(bh) ||
2068 		    (offset >= i_size_read(inode)))
2069 			set_buffer_new(bh);
2070 		set_buffer_uptodate(bh);
2071 		set_buffer_mapped(bh);
2072 		set_buffer_delay(bh);
2073 		return 0;
2074 	case IOMAP_UNWRITTEN:
2075 		/*
2076 		 * For unwritten regions, we always need to ensure that regions
2077 		 * in the block we are not writing to are zeroed. Mark the
2078 		 * buffer as new to ensure this.
2079 		 */
2080 		set_buffer_new(bh);
2081 		set_buffer_unwritten(bh);
2082 		fallthrough;
2083 	case IOMAP_MAPPED:
2084 		if ((iomap->flags & IOMAP_F_NEW) ||
2085 		    offset >= i_size_read(inode)) {
2086 			/*
2087 			 * This can happen if truncating the block device races
2088 			 * with the check in the caller as i_size updates on
2089 			 * block devices aren't synchronized by i_rwsem for
2090 			 * block devices.
2091 			 */
2092 			if (S_ISBLK(inode->i_mode))
2093 				return -EIO;
2094 			set_buffer_new(bh);
2095 		}
2096 		bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2097 				inode->i_blkbits;
2098 		set_buffer_mapped(bh);
2099 		return 0;
2100 	default:
2101 		WARN_ON_ONCE(1);
2102 		return -EIO;
2103 	}
2104 }
2105 
2106 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
2107 		get_block_t *get_block, const struct iomap *iomap)
2108 {
2109 	size_t from = offset_in_folio(folio, pos);
2110 	size_t to = from + len;
2111 	struct inode *inode = folio->mapping->host;
2112 	size_t block_start, block_end;
2113 	sector_t block;
2114 	int err = 0;
2115 	size_t blocksize;
2116 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2117 
2118 	BUG_ON(!folio_test_locked(folio));
2119 	BUG_ON(to > folio_size(folio));
2120 	BUG_ON(from > to);
2121 
2122 	head = folio_create_buffers(folio, inode, 0);
2123 	blocksize = head->b_size;
2124 	block = div_u64(folio_pos(folio), blocksize);
2125 
2126 	for (bh = head, block_start = 0; bh != head || !block_start;
2127 	    block++, block_start=block_end, bh = bh->b_this_page) {
2128 		block_end = block_start + blocksize;
2129 		if (block_end <= from || block_start >= to) {
2130 			if (folio_test_uptodate(folio)) {
2131 				if (!buffer_uptodate(bh))
2132 					set_buffer_uptodate(bh);
2133 			}
2134 			continue;
2135 		}
2136 		if (buffer_new(bh))
2137 			clear_buffer_new(bh);
2138 		if (!buffer_mapped(bh)) {
2139 			WARN_ON(bh->b_size != blocksize);
2140 			if (get_block)
2141 				err = get_block(inode, block, bh, 1);
2142 			else
2143 				err = iomap_to_bh(inode, block, bh, iomap);
2144 			if (err)
2145 				break;
2146 
2147 			if (buffer_new(bh)) {
2148 				clean_bdev_bh_alias(bh);
2149 				if (folio_test_uptodate(folio)) {
2150 					clear_buffer_new(bh);
2151 					set_buffer_uptodate(bh);
2152 					mark_buffer_dirty(bh);
2153 					continue;
2154 				}
2155 				if (block_end > to || block_start < from)
2156 					folio_zero_segments(folio,
2157 						to, block_end,
2158 						block_start, from);
2159 				continue;
2160 			}
2161 		}
2162 		if (folio_test_uptodate(folio)) {
2163 			if (!buffer_uptodate(bh))
2164 				set_buffer_uptodate(bh);
2165 			continue;
2166 		}
2167 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2168 		    !buffer_unwritten(bh) &&
2169 		     (block_start < from || block_end > to)) {
2170 			bh_read_nowait(bh, 0);
2171 			*wait_bh++=bh;
2172 		}
2173 	}
2174 	/*
2175 	 * If we issued read requests - let them complete.
2176 	 */
2177 	while(wait_bh > wait) {
2178 		wait_on_buffer(*--wait_bh);
2179 		if (!buffer_uptodate(*wait_bh))
2180 			err = -EIO;
2181 	}
2182 	if (unlikely(err))
2183 		folio_zero_new_buffers(folio, from, to);
2184 	return err;
2185 }
2186 
2187 int __block_write_begin(struct folio *folio, loff_t pos, unsigned len,
2188 		get_block_t *get_block)
2189 {
2190 	return __block_write_begin_int(folio, pos, len, get_block, NULL);
2191 }
2192 EXPORT_SYMBOL(__block_write_begin);
2193 
2194 void block_commit_write(struct folio *folio, size_t from, size_t to)
2195 {
2196 	size_t block_start, block_end;
2197 	bool partial = false;
2198 	unsigned blocksize;
2199 	struct buffer_head *bh, *head;
2200 
2201 	bh = head = folio_buffers(folio);
2202 	if (!bh)
2203 		return;
2204 	blocksize = bh->b_size;
2205 
2206 	block_start = 0;
2207 	do {
2208 		block_end = block_start + blocksize;
2209 		if (block_end <= from || block_start >= to) {
2210 			if (!buffer_uptodate(bh))
2211 				partial = true;
2212 		} else {
2213 			set_buffer_uptodate(bh);
2214 			mark_buffer_dirty(bh);
2215 		}
2216 		if (buffer_new(bh))
2217 			clear_buffer_new(bh);
2218 
2219 		block_start = block_end;
2220 		bh = bh->b_this_page;
2221 	} while (bh != head);
2222 
2223 	/*
2224 	 * If this is a partial write which happened to make all buffers
2225 	 * uptodate then we can optimize away a bogus read_folio() for
2226 	 * the next read(). Here we 'discover' whether the folio went
2227 	 * uptodate as a result of this (potentially partial) write.
2228 	 */
2229 	if (!partial)
2230 		folio_mark_uptodate(folio);
2231 }
2232 EXPORT_SYMBOL(block_commit_write);
2233 
2234 /*
2235  * block_write_begin takes care of the basic task of block allocation and
2236  * bringing partial write blocks uptodate first.
2237  *
2238  * The filesystem needs to handle block truncation upon failure.
2239  */
2240 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2241 		struct folio **foliop, get_block_t *get_block)
2242 {
2243 	pgoff_t index = pos >> PAGE_SHIFT;
2244 	struct folio *folio;
2245 	int status;
2246 
2247 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2248 			mapping_gfp_mask(mapping));
2249 	if (IS_ERR(folio))
2250 		return PTR_ERR(folio);
2251 
2252 	status = __block_write_begin_int(folio, pos, len, get_block, NULL);
2253 	if (unlikely(status)) {
2254 		folio_unlock(folio);
2255 		folio_put(folio);
2256 		folio = NULL;
2257 	}
2258 
2259 	*foliop = folio;
2260 	return status;
2261 }
2262 EXPORT_SYMBOL(block_write_begin);
2263 
2264 int block_write_end(struct file *file, struct address_space *mapping,
2265 			loff_t pos, unsigned len, unsigned copied,
2266 			struct folio *folio, void *fsdata)
2267 {
2268 	size_t start = pos - folio_pos(folio);
2269 
2270 	if (unlikely(copied < len)) {
2271 		/*
2272 		 * The buffers that were written will now be uptodate, so
2273 		 * we don't have to worry about a read_folio reading them
2274 		 * and overwriting a partial write. However if we have
2275 		 * encountered a short write and only partially written
2276 		 * into a buffer, it will not be marked uptodate, so a
2277 		 * read_folio might come in and destroy our partial write.
2278 		 *
2279 		 * Do the simplest thing, and just treat any short write to a
2280 		 * non uptodate folio as a zero-length write, and force the
2281 		 * caller to redo the whole thing.
2282 		 */
2283 		if (!folio_test_uptodate(folio))
2284 			copied = 0;
2285 
2286 		folio_zero_new_buffers(folio, start+copied, start+len);
2287 	}
2288 	flush_dcache_folio(folio);
2289 
2290 	/* This could be a short (even 0-length) commit */
2291 	block_commit_write(folio, start, start + copied);
2292 
2293 	return copied;
2294 }
2295 EXPORT_SYMBOL(block_write_end);
2296 
2297 int generic_write_end(struct file *file, struct address_space *mapping,
2298 			loff_t pos, unsigned len, unsigned copied,
2299 			struct folio *folio, void *fsdata)
2300 {
2301 	struct inode *inode = mapping->host;
2302 	loff_t old_size = inode->i_size;
2303 	bool i_size_changed = false;
2304 
2305 	copied = block_write_end(file, mapping, pos, len, copied, folio, fsdata);
2306 
2307 	/*
2308 	 * No need to use i_size_read() here, the i_size cannot change under us
2309 	 * because we hold i_rwsem.
2310 	 *
2311 	 * But it's important to update i_size while still holding folio lock:
2312 	 * page writeout could otherwise come in and zero beyond i_size.
2313 	 */
2314 	if (pos + copied > inode->i_size) {
2315 		i_size_write(inode, pos + copied);
2316 		i_size_changed = true;
2317 	}
2318 
2319 	folio_unlock(folio);
2320 	folio_put(folio);
2321 
2322 	if (old_size < pos)
2323 		pagecache_isize_extended(inode, old_size, pos);
2324 	/*
2325 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2326 	 * makes the holding time of page lock longer. Second, it forces lock
2327 	 * ordering of page lock and transaction start for journaling
2328 	 * filesystems.
2329 	 */
2330 	if (i_size_changed)
2331 		mark_inode_dirty(inode);
2332 	return copied;
2333 }
2334 EXPORT_SYMBOL(generic_write_end);
2335 
2336 /*
2337  * block_is_partially_uptodate checks whether buffers within a folio are
2338  * uptodate or not.
2339  *
2340  * Returns true if all buffers which correspond to the specified part
2341  * of the folio are uptodate.
2342  */
2343 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2344 {
2345 	unsigned block_start, block_end, blocksize;
2346 	unsigned to;
2347 	struct buffer_head *bh, *head;
2348 	bool ret = true;
2349 
2350 	head = folio_buffers(folio);
2351 	if (!head)
2352 		return false;
2353 	blocksize = head->b_size;
2354 	to = min_t(unsigned, folio_size(folio) - from, count);
2355 	to = from + to;
2356 	if (from < blocksize && to > folio_size(folio) - blocksize)
2357 		return false;
2358 
2359 	bh = head;
2360 	block_start = 0;
2361 	do {
2362 		block_end = block_start + blocksize;
2363 		if (block_end > from && block_start < to) {
2364 			if (!buffer_uptodate(bh)) {
2365 				ret = false;
2366 				break;
2367 			}
2368 			if (block_end >= to)
2369 				break;
2370 		}
2371 		block_start = block_end;
2372 		bh = bh->b_this_page;
2373 	} while (bh != head);
2374 
2375 	return ret;
2376 }
2377 EXPORT_SYMBOL(block_is_partially_uptodate);
2378 
2379 /*
2380  * Generic "read_folio" function for block devices that have the normal
2381  * get_block functionality. This is most of the block device filesystems.
2382  * Reads the folio asynchronously --- the unlock_buffer() and
2383  * set/clear_buffer_uptodate() functions propagate buffer state into the
2384  * folio once IO has completed.
2385  */
2386 int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2387 {
2388 	struct inode *inode = folio->mapping->host;
2389 	sector_t iblock, lblock;
2390 	struct buffer_head *bh, *head, *prev = NULL;
2391 	size_t blocksize;
2392 	int fully_mapped = 1;
2393 	bool page_error = false;
2394 	loff_t limit = i_size_read(inode);
2395 
2396 	/* This is needed for ext4. */
2397 	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2398 		limit = inode->i_sb->s_maxbytes;
2399 
2400 	head = folio_create_buffers(folio, inode, 0);
2401 	blocksize = head->b_size;
2402 
2403 	iblock = div_u64(folio_pos(folio), blocksize);
2404 	lblock = div_u64(limit + blocksize - 1, blocksize);
2405 	bh = head;
2406 
2407 	do {
2408 		if (buffer_uptodate(bh))
2409 			continue;
2410 
2411 		if (!buffer_mapped(bh)) {
2412 			int err = 0;
2413 
2414 			fully_mapped = 0;
2415 			if (iblock < lblock) {
2416 				WARN_ON(bh->b_size != blocksize);
2417 				err = get_block(inode, iblock, bh, 0);
2418 				if (err)
2419 					page_error = true;
2420 			}
2421 			if (!buffer_mapped(bh)) {
2422 				folio_zero_range(folio, bh_offset(bh),
2423 						blocksize);
2424 				if (!err)
2425 					set_buffer_uptodate(bh);
2426 				continue;
2427 			}
2428 			/*
2429 			 * get_block() might have updated the buffer
2430 			 * synchronously
2431 			 */
2432 			if (buffer_uptodate(bh))
2433 				continue;
2434 		}
2435 
2436 		lock_buffer(bh);
2437 		if (buffer_uptodate(bh)) {
2438 			unlock_buffer(bh);
2439 			continue;
2440 		}
2441 
2442 		mark_buffer_async_read(bh);
2443 		if (prev)
2444 			submit_bh(REQ_OP_READ, prev);
2445 		prev = bh;
2446 	} while (iblock++, (bh = bh->b_this_page) != head);
2447 
2448 	if (fully_mapped)
2449 		folio_set_mappedtodisk(folio);
2450 
2451 	/*
2452 	 * All buffers are uptodate or get_block() returned an error
2453 	 * when trying to map them - we must finish the read because
2454 	 * end_buffer_async_read() will never be called on any buffer
2455 	 * in this folio.
2456 	 */
2457 	if (prev)
2458 		submit_bh(REQ_OP_READ, prev);
2459 	else
2460 		folio_end_read(folio, !page_error);
2461 
2462 	return 0;
2463 }
2464 EXPORT_SYMBOL(block_read_full_folio);
2465 
2466 /* utility function for filesystems that need to do work on expanding
2467  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2468  * deal with the hole.
2469  */
2470 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2471 {
2472 	struct address_space *mapping = inode->i_mapping;
2473 	const struct address_space_operations *aops = mapping->a_ops;
2474 	struct folio *folio;
2475 	void *fsdata = NULL;
2476 	int err;
2477 
2478 	err = inode_newsize_ok(inode, size);
2479 	if (err)
2480 		goto out;
2481 
2482 	err = aops->write_begin(NULL, mapping, size, 0, &folio, &fsdata);
2483 	if (err)
2484 		goto out;
2485 
2486 	err = aops->write_end(NULL, mapping, size, 0, 0, folio, fsdata);
2487 	BUG_ON(err > 0);
2488 
2489 out:
2490 	return err;
2491 }
2492 EXPORT_SYMBOL(generic_cont_expand_simple);
2493 
2494 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2495 			    loff_t pos, loff_t *bytes)
2496 {
2497 	struct inode *inode = mapping->host;
2498 	const struct address_space_operations *aops = mapping->a_ops;
2499 	unsigned int blocksize = i_blocksize(inode);
2500 	struct folio *folio;
2501 	void *fsdata = NULL;
2502 	pgoff_t index, curidx;
2503 	loff_t curpos;
2504 	unsigned zerofrom, offset, len;
2505 	int err = 0;
2506 
2507 	index = pos >> PAGE_SHIFT;
2508 	offset = pos & ~PAGE_MASK;
2509 
2510 	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2511 		zerofrom = curpos & ~PAGE_MASK;
2512 		if (zerofrom & (blocksize-1)) {
2513 			*bytes |= (blocksize-1);
2514 			(*bytes)++;
2515 		}
2516 		len = PAGE_SIZE - zerofrom;
2517 
2518 		err = aops->write_begin(file, mapping, curpos, len,
2519 					    &folio, &fsdata);
2520 		if (err)
2521 			goto out;
2522 		folio_zero_range(folio, offset_in_folio(folio, curpos), len);
2523 		err = aops->write_end(file, mapping, curpos, len, len,
2524 						folio, fsdata);
2525 		if (err < 0)
2526 			goto out;
2527 		BUG_ON(err != len);
2528 		err = 0;
2529 
2530 		balance_dirty_pages_ratelimited(mapping);
2531 
2532 		if (fatal_signal_pending(current)) {
2533 			err = -EINTR;
2534 			goto out;
2535 		}
2536 	}
2537 
2538 	/* page covers the boundary, find the boundary offset */
2539 	if (index == curidx) {
2540 		zerofrom = curpos & ~PAGE_MASK;
2541 		/* if we will expand the thing last block will be filled */
2542 		if (offset <= zerofrom) {
2543 			goto out;
2544 		}
2545 		if (zerofrom & (blocksize-1)) {
2546 			*bytes |= (blocksize-1);
2547 			(*bytes)++;
2548 		}
2549 		len = offset - zerofrom;
2550 
2551 		err = aops->write_begin(file, mapping, curpos, len,
2552 					    &folio, &fsdata);
2553 		if (err)
2554 			goto out;
2555 		folio_zero_range(folio, offset_in_folio(folio, curpos), len);
2556 		err = aops->write_end(file, mapping, curpos, len, len,
2557 						folio, fsdata);
2558 		if (err < 0)
2559 			goto out;
2560 		BUG_ON(err != len);
2561 		err = 0;
2562 	}
2563 out:
2564 	return err;
2565 }
2566 
2567 /*
2568  * For moronic filesystems that do not allow holes in file.
2569  * We may have to extend the file.
2570  */
2571 int cont_write_begin(struct file *file, struct address_space *mapping,
2572 			loff_t pos, unsigned len,
2573 			struct folio **foliop, void **fsdata,
2574 			get_block_t *get_block, loff_t *bytes)
2575 {
2576 	struct inode *inode = mapping->host;
2577 	unsigned int blocksize = i_blocksize(inode);
2578 	unsigned int zerofrom;
2579 	int err;
2580 
2581 	err = cont_expand_zero(file, mapping, pos, bytes);
2582 	if (err)
2583 		return err;
2584 
2585 	zerofrom = *bytes & ~PAGE_MASK;
2586 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2587 		*bytes |= (blocksize-1);
2588 		(*bytes)++;
2589 	}
2590 
2591 	return block_write_begin(mapping, pos, len, foliop, get_block);
2592 }
2593 EXPORT_SYMBOL(cont_write_begin);
2594 
2595 /*
2596  * block_page_mkwrite() is not allowed to change the file size as it gets
2597  * called from a page fault handler when a page is first dirtied. Hence we must
2598  * be careful to check for EOF conditions here. We set the page up correctly
2599  * for a written page which means we get ENOSPC checking when writing into
2600  * holes and correct delalloc and unwritten extent mapping on filesystems that
2601  * support these features.
2602  *
2603  * We are not allowed to take the i_mutex here so we have to play games to
2604  * protect against truncate races as the page could now be beyond EOF.  Because
2605  * truncate writes the inode size before removing pages, once we have the
2606  * page lock we can determine safely if the page is beyond EOF. If it is not
2607  * beyond EOF, then the page is guaranteed safe against truncation until we
2608  * unlock the page.
2609  *
2610  * Direct callers of this function should protect against filesystem freezing
2611  * using sb_start_pagefault() - sb_end_pagefault() functions.
2612  */
2613 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2614 			 get_block_t get_block)
2615 {
2616 	struct folio *folio = page_folio(vmf->page);
2617 	struct inode *inode = file_inode(vma->vm_file);
2618 	unsigned long end;
2619 	loff_t size;
2620 	int ret;
2621 
2622 	folio_lock(folio);
2623 	size = i_size_read(inode);
2624 	if ((folio->mapping != inode->i_mapping) ||
2625 	    (folio_pos(folio) >= size)) {
2626 		/* We overload EFAULT to mean page got truncated */
2627 		ret = -EFAULT;
2628 		goto out_unlock;
2629 	}
2630 
2631 	end = folio_size(folio);
2632 	/* folio is wholly or partially inside EOF */
2633 	if (folio_pos(folio) + end > size)
2634 		end = size - folio_pos(folio);
2635 
2636 	ret = __block_write_begin_int(folio, 0, end, get_block, NULL);
2637 	if (unlikely(ret))
2638 		goto out_unlock;
2639 
2640 	block_commit_write(folio, 0, end);
2641 
2642 	folio_mark_dirty(folio);
2643 	folio_wait_stable(folio);
2644 	return 0;
2645 out_unlock:
2646 	folio_unlock(folio);
2647 	return ret;
2648 }
2649 EXPORT_SYMBOL(block_page_mkwrite);
2650 
2651 int block_truncate_page(struct address_space *mapping,
2652 			loff_t from, get_block_t *get_block)
2653 {
2654 	pgoff_t index = from >> PAGE_SHIFT;
2655 	unsigned blocksize;
2656 	sector_t iblock;
2657 	size_t offset, length, pos;
2658 	struct inode *inode = mapping->host;
2659 	struct folio *folio;
2660 	struct buffer_head *bh;
2661 	int err = 0;
2662 
2663 	blocksize = i_blocksize(inode);
2664 	length = from & (blocksize - 1);
2665 
2666 	/* Block boundary? Nothing to do */
2667 	if (!length)
2668 		return 0;
2669 
2670 	length = blocksize - length;
2671 	iblock = ((loff_t)index * PAGE_SIZE) >> inode->i_blkbits;
2672 
2673 	folio = filemap_grab_folio(mapping, index);
2674 	if (IS_ERR(folio))
2675 		return PTR_ERR(folio);
2676 
2677 	bh = folio_buffers(folio);
2678 	if (!bh)
2679 		bh = create_empty_buffers(folio, blocksize, 0);
2680 
2681 	/* Find the buffer that contains "offset" */
2682 	offset = offset_in_folio(folio, from);
2683 	pos = blocksize;
2684 	while (offset >= pos) {
2685 		bh = bh->b_this_page;
2686 		iblock++;
2687 		pos += blocksize;
2688 	}
2689 
2690 	if (!buffer_mapped(bh)) {
2691 		WARN_ON(bh->b_size != blocksize);
2692 		err = get_block(inode, iblock, bh, 0);
2693 		if (err)
2694 			goto unlock;
2695 		/* unmapped? It's a hole - nothing to do */
2696 		if (!buffer_mapped(bh))
2697 			goto unlock;
2698 	}
2699 
2700 	/* Ok, it's mapped. Make sure it's up-to-date */
2701 	if (folio_test_uptodate(folio))
2702 		set_buffer_uptodate(bh);
2703 
2704 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2705 		err = bh_read(bh, 0);
2706 		/* Uhhuh. Read error. Complain and punt. */
2707 		if (err < 0)
2708 			goto unlock;
2709 	}
2710 
2711 	folio_zero_range(folio, offset, length);
2712 	mark_buffer_dirty(bh);
2713 
2714 unlock:
2715 	folio_unlock(folio);
2716 	folio_put(folio);
2717 
2718 	return err;
2719 }
2720 EXPORT_SYMBOL(block_truncate_page);
2721 
2722 /*
2723  * The generic ->writepage function for buffer-backed address_spaces
2724  */
2725 int block_write_full_folio(struct folio *folio, struct writeback_control *wbc,
2726 		void *get_block)
2727 {
2728 	struct inode * const inode = folio->mapping->host;
2729 	loff_t i_size = i_size_read(inode);
2730 
2731 	/* Is the folio fully inside i_size? */
2732 	if (folio_pos(folio) + folio_size(folio) <= i_size)
2733 		return __block_write_full_folio(inode, folio, get_block, wbc);
2734 
2735 	/* Is the folio fully outside i_size? (truncate in progress) */
2736 	if (folio_pos(folio) >= i_size) {
2737 		folio_unlock(folio);
2738 		return 0; /* don't care */
2739 	}
2740 
2741 	/*
2742 	 * The folio straddles i_size.  It must be zeroed out on each and every
2743 	 * writepage invocation because it may be mmapped.  "A file is mapped
2744 	 * in multiples of the page size.  For a file that is not a multiple of
2745 	 * the page size, the remaining memory is zeroed when mapped, and
2746 	 * writes to that region are not written out to the file."
2747 	 */
2748 	folio_zero_segment(folio, offset_in_folio(folio, i_size),
2749 			folio_size(folio));
2750 	return __block_write_full_folio(inode, folio, get_block, wbc);
2751 }
2752 
2753 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2754 			    get_block_t *get_block)
2755 {
2756 	struct inode *inode = mapping->host;
2757 	struct buffer_head tmp = {
2758 		.b_size = i_blocksize(inode),
2759 	};
2760 
2761 	get_block(inode, block, &tmp, 0);
2762 	return tmp.b_blocknr;
2763 }
2764 EXPORT_SYMBOL(generic_block_bmap);
2765 
2766 static void end_bio_bh_io_sync(struct bio *bio)
2767 {
2768 	struct buffer_head *bh = bio->bi_private;
2769 
2770 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
2771 		set_bit(BH_Quiet, &bh->b_state);
2772 
2773 	bh->b_end_io(bh, !bio->bi_status);
2774 	bio_put(bio);
2775 }
2776 
2777 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2778 			  enum rw_hint write_hint,
2779 			  struct writeback_control *wbc)
2780 {
2781 	const enum req_op op = opf & REQ_OP_MASK;
2782 	struct bio *bio;
2783 
2784 	BUG_ON(!buffer_locked(bh));
2785 	BUG_ON(!buffer_mapped(bh));
2786 	BUG_ON(!bh->b_end_io);
2787 	BUG_ON(buffer_delay(bh));
2788 	BUG_ON(buffer_unwritten(bh));
2789 
2790 	/*
2791 	 * Only clear out a write error when rewriting
2792 	 */
2793 	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2794 		clear_buffer_write_io_error(bh);
2795 
2796 	if (buffer_meta(bh))
2797 		opf |= REQ_META;
2798 	if (buffer_prio(bh))
2799 		opf |= REQ_PRIO;
2800 
2801 	bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2802 
2803 	fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2804 
2805 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2806 	bio->bi_write_hint = write_hint;
2807 
2808 	bio_add_folio_nofail(bio, bh->b_folio, bh->b_size, bh_offset(bh));
2809 
2810 	bio->bi_end_io = end_bio_bh_io_sync;
2811 	bio->bi_private = bh;
2812 
2813 	/* Take care of bh's that straddle the end of the device */
2814 	guard_bio_eod(bio);
2815 
2816 	if (wbc) {
2817 		wbc_init_bio(wbc, bio);
2818 		wbc_account_cgroup_owner(wbc, bh->b_folio, bh->b_size);
2819 	}
2820 
2821 	submit_bio(bio);
2822 }
2823 
2824 void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2825 {
2826 	submit_bh_wbc(opf, bh, WRITE_LIFE_NOT_SET, NULL);
2827 }
2828 EXPORT_SYMBOL(submit_bh);
2829 
2830 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2831 {
2832 	lock_buffer(bh);
2833 	if (!test_clear_buffer_dirty(bh)) {
2834 		unlock_buffer(bh);
2835 		return;
2836 	}
2837 	bh->b_end_io = end_buffer_write_sync;
2838 	get_bh(bh);
2839 	submit_bh(REQ_OP_WRITE | op_flags, bh);
2840 }
2841 EXPORT_SYMBOL(write_dirty_buffer);
2842 
2843 /*
2844  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2845  * and then start new I/O and then wait upon it.  The caller must have a ref on
2846  * the buffer_head.
2847  */
2848 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2849 {
2850 	WARN_ON(atomic_read(&bh->b_count) < 1);
2851 	lock_buffer(bh);
2852 	if (test_clear_buffer_dirty(bh)) {
2853 		/*
2854 		 * The bh should be mapped, but it might not be if the
2855 		 * device was hot-removed. Not much we can do but fail the I/O.
2856 		 */
2857 		if (!buffer_mapped(bh)) {
2858 			unlock_buffer(bh);
2859 			return -EIO;
2860 		}
2861 
2862 		get_bh(bh);
2863 		bh->b_end_io = end_buffer_write_sync;
2864 		submit_bh(REQ_OP_WRITE | op_flags, bh);
2865 		wait_on_buffer(bh);
2866 		if (!buffer_uptodate(bh))
2867 			return -EIO;
2868 	} else {
2869 		unlock_buffer(bh);
2870 	}
2871 	return 0;
2872 }
2873 EXPORT_SYMBOL(__sync_dirty_buffer);
2874 
2875 int sync_dirty_buffer(struct buffer_head *bh)
2876 {
2877 	return __sync_dirty_buffer(bh, REQ_SYNC);
2878 }
2879 EXPORT_SYMBOL(sync_dirty_buffer);
2880 
2881 static inline int buffer_busy(struct buffer_head *bh)
2882 {
2883 	return atomic_read(&bh->b_count) |
2884 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2885 }
2886 
2887 static bool
2888 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2889 {
2890 	struct buffer_head *head = folio_buffers(folio);
2891 	struct buffer_head *bh;
2892 
2893 	bh = head;
2894 	do {
2895 		if (buffer_busy(bh))
2896 			goto failed;
2897 		bh = bh->b_this_page;
2898 	} while (bh != head);
2899 
2900 	do {
2901 		struct buffer_head *next = bh->b_this_page;
2902 
2903 		if (bh->b_assoc_map)
2904 			__remove_assoc_queue(bh);
2905 		bh = next;
2906 	} while (bh != head);
2907 	*buffers_to_free = head;
2908 	folio_detach_private(folio);
2909 	return true;
2910 failed:
2911 	return false;
2912 }
2913 
2914 /**
2915  * try_to_free_buffers - Release buffers attached to this folio.
2916  * @folio: The folio.
2917  *
2918  * If any buffers are in use (dirty, under writeback, elevated refcount),
2919  * no buffers will be freed.
2920  *
2921  * If the folio is dirty but all the buffers are clean then we need to
2922  * be sure to mark the folio clean as well.  This is because the folio
2923  * may be against a block device, and a later reattachment of buffers
2924  * to a dirty folio will set *all* buffers dirty.  Which would corrupt
2925  * filesystem data on the same device.
2926  *
2927  * The same applies to regular filesystem folios: if all the buffers are
2928  * clean then we set the folio clean and proceed.  To do that, we require
2929  * total exclusion from block_dirty_folio().  That is obtained with
2930  * i_private_lock.
2931  *
2932  * Exclusion against try_to_free_buffers may be obtained by either
2933  * locking the folio or by holding its mapping's i_private_lock.
2934  *
2935  * Context: Process context.  @folio must be locked.  Will not sleep.
2936  * Return: true if all buffers attached to this folio were freed.
2937  */
2938 bool try_to_free_buffers(struct folio *folio)
2939 {
2940 	struct address_space * const mapping = folio->mapping;
2941 	struct buffer_head *buffers_to_free = NULL;
2942 	bool ret = 0;
2943 
2944 	BUG_ON(!folio_test_locked(folio));
2945 	if (folio_test_writeback(folio))
2946 		return false;
2947 
2948 	if (mapping == NULL) {		/* can this still happen? */
2949 		ret = drop_buffers(folio, &buffers_to_free);
2950 		goto out;
2951 	}
2952 
2953 	spin_lock(&mapping->i_private_lock);
2954 	ret = drop_buffers(folio, &buffers_to_free);
2955 
2956 	/*
2957 	 * If the filesystem writes its buffers by hand (eg ext3)
2958 	 * then we can have clean buffers against a dirty folio.  We
2959 	 * clean the folio here; otherwise the VM will never notice
2960 	 * that the filesystem did any IO at all.
2961 	 *
2962 	 * Also, during truncate, discard_buffer will have marked all
2963 	 * the folio's buffers clean.  We discover that here and clean
2964 	 * the folio also.
2965 	 *
2966 	 * i_private_lock must be held over this entire operation in order
2967 	 * to synchronise against block_dirty_folio and prevent the
2968 	 * dirty bit from being lost.
2969 	 */
2970 	if (ret)
2971 		folio_cancel_dirty(folio);
2972 	spin_unlock(&mapping->i_private_lock);
2973 out:
2974 	if (buffers_to_free) {
2975 		struct buffer_head *bh = buffers_to_free;
2976 
2977 		do {
2978 			struct buffer_head *next = bh->b_this_page;
2979 			free_buffer_head(bh);
2980 			bh = next;
2981 		} while (bh != buffers_to_free);
2982 	}
2983 	return ret;
2984 }
2985 EXPORT_SYMBOL(try_to_free_buffers);
2986 
2987 /*
2988  * Buffer-head allocation
2989  */
2990 static struct kmem_cache *bh_cachep __ro_after_init;
2991 
2992 /*
2993  * Once the number of bh's in the machine exceeds this level, we start
2994  * stripping them in writeback.
2995  */
2996 static unsigned long max_buffer_heads __ro_after_init;
2997 
2998 int buffer_heads_over_limit;
2999 
3000 struct bh_accounting {
3001 	int nr;			/* Number of live bh's */
3002 	int ratelimit;		/* Limit cacheline bouncing */
3003 };
3004 
3005 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3006 
3007 static void recalc_bh_state(void)
3008 {
3009 	int i;
3010 	int tot = 0;
3011 
3012 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3013 		return;
3014 	__this_cpu_write(bh_accounting.ratelimit, 0);
3015 	for_each_online_cpu(i)
3016 		tot += per_cpu(bh_accounting, i).nr;
3017 	buffer_heads_over_limit = (tot > max_buffer_heads);
3018 }
3019 
3020 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3021 {
3022 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3023 	if (ret) {
3024 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3025 		spin_lock_init(&ret->b_uptodate_lock);
3026 		preempt_disable();
3027 		__this_cpu_inc(bh_accounting.nr);
3028 		recalc_bh_state();
3029 		preempt_enable();
3030 	}
3031 	return ret;
3032 }
3033 EXPORT_SYMBOL(alloc_buffer_head);
3034 
3035 void free_buffer_head(struct buffer_head *bh)
3036 {
3037 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3038 	kmem_cache_free(bh_cachep, bh);
3039 	preempt_disable();
3040 	__this_cpu_dec(bh_accounting.nr);
3041 	recalc_bh_state();
3042 	preempt_enable();
3043 }
3044 EXPORT_SYMBOL(free_buffer_head);
3045 
3046 static int buffer_exit_cpu_dead(unsigned int cpu)
3047 {
3048 	int i;
3049 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3050 
3051 	for (i = 0; i < BH_LRU_SIZE; i++) {
3052 		brelse(b->bhs[i]);
3053 		b->bhs[i] = NULL;
3054 	}
3055 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3056 	per_cpu(bh_accounting, cpu).nr = 0;
3057 	return 0;
3058 }
3059 
3060 /**
3061  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3062  * @bh: struct buffer_head
3063  *
3064  * Return true if the buffer is up-to-date and false,
3065  * with the buffer locked, if not.
3066  */
3067 int bh_uptodate_or_lock(struct buffer_head *bh)
3068 {
3069 	if (!buffer_uptodate(bh)) {
3070 		lock_buffer(bh);
3071 		if (!buffer_uptodate(bh))
3072 			return 0;
3073 		unlock_buffer(bh);
3074 	}
3075 	return 1;
3076 }
3077 EXPORT_SYMBOL(bh_uptodate_or_lock);
3078 
3079 /**
3080  * __bh_read - Submit read for a locked buffer
3081  * @bh: struct buffer_head
3082  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3083  * @wait: wait until reading finish
3084  *
3085  * Returns zero on success or don't wait, and -EIO on error.
3086  */
3087 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3088 {
3089 	int ret = 0;
3090 
3091 	BUG_ON(!buffer_locked(bh));
3092 
3093 	get_bh(bh);
3094 	bh->b_end_io = end_buffer_read_sync;
3095 	submit_bh(REQ_OP_READ | op_flags, bh);
3096 	if (wait) {
3097 		wait_on_buffer(bh);
3098 		if (!buffer_uptodate(bh))
3099 			ret = -EIO;
3100 	}
3101 	return ret;
3102 }
3103 EXPORT_SYMBOL(__bh_read);
3104 
3105 /**
3106  * __bh_read_batch - Submit read for a batch of unlocked buffers
3107  * @nr: entry number of the buffer batch
3108  * @bhs: a batch of struct buffer_head
3109  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3110  * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3111  *              buffer that cannot lock.
3112  *
3113  * Returns zero on success or don't wait, and -EIO on error.
3114  */
3115 void __bh_read_batch(int nr, struct buffer_head *bhs[],
3116 		     blk_opf_t op_flags, bool force_lock)
3117 {
3118 	int i;
3119 
3120 	for (i = 0; i < nr; i++) {
3121 		struct buffer_head *bh = bhs[i];
3122 
3123 		if (buffer_uptodate(bh))
3124 			continue;
3125 
3126 		if (force_lock)
3127 			lock_buffer(bh);
3128 		else
3129 			if (!trylock_buffer(bh))
3130 				continue;
3131 
3132 		if (buffer_uptodate(bh)) {
3133 			unlock_buffer(bh);
3134 			continue;
3135 		}
3136 
3137 		bh->b_end_io = end_buffer_read_sync;
3138 		get_bh(bh);
3139 		submit_bh(REQ_OP_READ | op_flags, bh);
3140 	}
3141 }
3142 EXPORT_SYMBOL(__bh_read_batch);
3143 
3144 void __init buffer_init(void)
3145 {
3146 	unsigned long nrpages;
3147 	int ret;
3148 
3149 	bh_cachep = KMEM_CACHE(buffer_head,
3150 				SLAB_RECLAIM_ACCOUNT|SLAB_PANIC);
3151 	/*
3152 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3153 	 */
3154 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3155 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3156 	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3157 					NULL, buffer_exit_cpu_dead);
3158 	WARN_ON(ret < 0);
3159 }
3160