1 /* 2 * Tty buffer allocation management 3 */ 4 5 #include <linux/types.h> 6 #include <linux/errno.h> 7 #include <linux/tty.h> 8 #include <linux/tty_driver.h> 9 #include <linux/tty_flip.h> 10 #include <linux/timer.h> 11 #include <linux/string.h> 12 #include <linux/slab.h> 13 #include <linux/sched.h> 14 #include <linux/wait.h> 15 #include <linux/bitops.h> 16 #include <linux/delay.h> 17 #include <linux/module.h> 18 #include <linux/ratelimit.h> 19 20 21 #define MIN_TTYB_SIZE 256 22 #define TTYB_ALIGN_MASK 255 23 24 /* 25 * Byte threshold to limit memory consumption for flip buffers. 26 * The actual memory limit is > 2x this amount. 27 */ 28 #define TTYB_DEFAULT_MEM_LIMIT 65536 29 30 /* 31 * We default to dicing tty buffer allocations to this many characters 32 * in order to avoid multiple page allocations. We know the size of 33 * tty_buffer itself but it must also be taken into account that the 34 * the buffer is 256 byte aligned. See tty_buffer_find for the allocation 35 * logic this must match 36 */ 37 38 #define TTY_BUFFER_PAGE (((PAGE_SIZE - sizeof(struct tty_buffer)) / 2) & ~0xFF) 39 40 41 /** 42 * tty_buffer_lock_exclusive - gain exclusive access to buffer 43 * tty_buffer_unlock_exclusive - release exclusive access 44 * 45 * @port - tty_port owning the flip buffer 46 * 47 * Guarantees safe use of the line discipline's receive_buf() method by 48 * excluding the buffer work and any pending flush from using the flip 49 * buffer. Data can continue to be added concurrently to the flip buffer 50 * from the driver side. 51 * 52 * On release, the buffer work is restarted if there is data in the 53 * flip buffer 54 */ 55 56 void tty_buffer_lock_exclusive(struct tty_port *port) 57 { 58 struct tty_bufhead *buf = &port->buf; 59 60 atomic_inc(&buf->priority); 61 mutex_lock(&buf->lock); 62 } 63 64 void tty_buffer_unlock_exclusive(struct tty_port *port) 65 { 66 struct tty_bufhead *buf = &port->buf; 67 int restart; 68 69 restart = buf->head->commit != buf->head->read; 70 71 atomic_dec(&buf->priority); 72 mutex_unlock(&buf->lock); 73 if (restart) 74 queue_work(system_unbound_wq, &buf->work); 75 } 76 77 /** 78 * tty_buffer_space_avail - return unused buffer space 79 * @port - tty_port owning the flip buffer 80 * 81 * Returns the # of bytes which can be written by the driver without 82 * reaching the buffer limit. 83 * 84 * Note: this does not guarantee that memory is available to write 85 * the returned # of bytes (use tty_prepare_flip_string_xxx() to 86 * pre-allocate if memory guarantee is required). 87 */ 88 89 int tty_buffer_space_avail(struct tty_port *port) 90 { 91 int space = port->buf.mem_limit - atomic_read(&port->buf.mem_used); 92 return max(space, 0); 93 } 94 EXPORT_SYMBOL_GPL(tty_buffer_space_avail); 95 96 static void tty_buffer_reset(struct tty_buffer *p, size_t size) 97 { 98 p->used = 0; 99 p->size = size; 100 p->next = NULL; 101 p->commit = 0; 102 p->read = 0; 103 p->flags = 0; 104 } 105 106 /** 107 * tty_buffer_free_all - free buffers used by a tty 108 * @tty: tty to free from 109 * 110 * Remove all the buffers pending on a tty whether queued with data 111 * or in the free ring. Must be called when the tty is no longer in use 112 */ 113 114 void tty_buffer_free_all(struct tty_port *port) 115 { 116 struct tty_bufhead *buf = &port->buf; 117 struct tty_buffer *p, *next; 118 struct llist_node *llist; 119 120 while ((p = buf->head) != NULL) { 121 buf->head = p->next; 122 if (p->size > 0) 123 kfree(p); 124 } 125 llist = llist_del_all(&buf->free); 126 llist_for_each_entry_safe(p, next, llist, free) 127 kfree(p); 128 129 tty_buffer_reset(&buf->sentinel, 0); 130 buf->head = &buf->sentinel; 131 buf->tail = &buf->sentinel; 132 133 atomic_set(&buf->mem_used, 0); 134 } 135 136 /** 137 * tty_buffer_alloc - allocate a tty buffer 138 * @tty: tty device 139 * @size: desired size (characters) 140 * 141 * Allocate a new tty buffer to hold the desired number of characters. 142 * We round our buffers off in 256 character chunks to get better 143 * allocation behaviour. 144 * Return NULL if out of memory or the allocation would exceed the 145 * per device queue 146 */ 147 148 static struct tty_buffer *tty_buffer_alloc(struct tty_port *port, size_t size) 149 { 150 struct llist_node *free; 151 struct tty_buffer *p; 152 153 /* Round the buffer size out */ 154 size = __ALIGN_MASK(size, TTYB_ALIGN_MASK); 155 156 if (size <= MIN_TTYB_SIZE) { 157 free = llist_del_first(&port->buf.free); 158 if (free) { 159 p = llist_entry(free, struct tty_buffer, free); 160 goto found; 161 } 162 } 163 164 /* Should possibly check if this fails for the largest buffer we 165 have queued and recycle that ? */ 166 if (atomic_read(&port->buf.mem_used) > port->buf.mem_limit) 167 return NULL; 168 p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC); 169 if (p == NULL) 170 return NULL; 171 172 found: 173 tty_buffer_reset(p, size); 174 atomic_add(size, &port->buf.mem_used); 175 return p; 176 } 177 178 /** 179 * tty_buffer_free - free a tty buffer 180 * @tty: tty owning the buffer 181 * @b: the buffer to free 182 * 183 * Free a tty buffer, or add it to the free list according to our 184 * internal strategy 185 */ 186 187 static void tty_buffer_free(struct tty_port *port, struct tty_buffer *b) 188 { 189 struct tty_bufhead *buf = &port->buf; 190 191 /* Dumb strategy for now - should keep some stats */ 192 WARN_ON(atomic_sub_return(b->size, &buf->mem_used) < 0); 193 194 if (b->size > MIN_TTYB_SIZE) 195 kfree(b); 196 else if (b->size > 0) 197 llist_add(&b->free, &buf->free); 198 } 199 200 /** 201 * tty_buffer_flush - flush full tty buffers 202 * @tty: tty to flush 203 * 204 * flush all the buffers containing receive data. 205 * 206 * Locking: takes buffer lock to ensure single-threaded flip buffer 207 * 'consumer' 208 */ 209 210 void tty_buffer_flush(struct tty_struct *tty) 211 { 212 struct tty_port *port = tty->port; 213 struct tty_bufhead *buf = &port->buf; 214 struct tty_buffer *next; 215 216 atomic_inc(&buf->priority); 217 218 mutex_lock(&buf->lock); 219 while ((next = buf->head->next) != NULL) { 220 tty_buffer_free(port, buf->head); 221 buf->head = next; 222 } 223 buf->head->read = buf->head->commit; 224 atomic_dec(&buf->priority); 225 mutex_unlock(&buf->lock); 226 } 227 228 /** 229 * tty_buffer_request_room - grow tty buffer if needed 230 * @tty: tty structure 231 * @size: size desired 232 * @flags: buffer flags if new buffer allocated (default = 0) 233 * 234 * Make at least size bytes of linear space available for the tty 235 * buffer. If we fail return the size we managed to find. 236 * 237 * Will change over to a new buffer if the current buffer is encoded as 238 * TTY_NORMAL (so has no flags buffer) and the new buffer requires 239 * a flags buffer. 240 */ 241 static int __tty_buffer_request_room(struct tty_port *port, size_t size, 242 int flags) 243 { 244 struct tty_bufhead *buf = &port->buf; 245 struct tty_buffer *b, *n; 246 int left, change; 247 248 b = buf->tail; 249 if (b->flags & TTYB_NORMAL) 250 left = 2 * b->size - b->used; 251 else 252 left = b->size - b->used; 253 254 change = (b->flags & TTYB_NORMAL) && (~flags & TTYB_NORMAL); 255 if (change || left < size) { 256 /* This is the slow path - looking for new buffers to use */ 257 if ((n = tty_buffer_alloc(port, size)) != NULL) { 258 unsigned long iflags; 259 260 n->flags = flags; 261 buf->tail = n; 262 263 spin_lock_irqsave(&buf->flush_lock, iflags); 264 b->commit = b->used; 265 b->next = n; 266 spin_unlock_irqrestore(&buf->flush_lock, iflags); 267 268 } else if (change) 269 size = 0; 270 else 271 size = left; 272 } 273 return size; 274 } 275 276 int tty_buffer_request_room(struct tty_port *port, size_t size) 277 { 278 return __tty_buffer_request_room(port, size, 0); 279 } 280 EXPORT_SYMBOL_GPL(tty_buffer_request_room); 281 282 /** 283 * tty_insert_flip_string_fixed_flag - Add characters to the tty buffer 284 * @port: tty port 285 * @chars: characters 286 * @flag: flag value for each character 287 * @size: size 288 * 289 * Queue a series of bytes to the tty buffering. All the characters 290 * passed are marked with the supplied flag. Returns the number added. 291 */ 292 293 int tty_insert_flip_string_fixed_flag(struct tty_port *port, 294 const unsigned char *chars, char flag, size_t size) 295 { 296 int copied = 0; 297 do { 298 int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE); 299 int flags = (flag == TTY_NORMAL) ? TTYB_NORMAL : 0; 300 int space = __tty_buffer_request_room(port, goal, flags); 301 struct tty_buffer *tb = port->buf.tail; 302 if (unlikely(space == 0)) 303 break; 304 memcpy(char_buf_ptr(tb, tb->used), chars, space); 305 if (~tb->flags & TTYB_NORMAL) 306 memset(flag_buf_ptr(tb, tb->used), flag, space); 307 tb->used += space; 308 copied += space; 309 chars += space; 310 /* There is a small chance that we need to split the data over 311 several buffers. If this is the case we must loop */ 312 } while (unlikely(size > copied)); 313 return copied; 314 } 315 EXPORT_SYMBOL(tty_insert_flip_string_fixed_flag); 316 317 /** 318 * tty_insert_flip_string_flags - Add characters to the tty buffer 319 * @port: tty port 320 * @chars: characters 321 * @flags: flag bytes 322 * @size: size 323 * 324 * Queue a series of bytes to the tty buffering. For each character 325 * the flags array indicates the status of the character. Returns the 326 * number added. 327 */ 328 329 int tty_insert_flip_string_flags(struct tty_port *port, 330 const unsigned char *chars, const char *flags, size_t size) 331 { 332 int copied = 0; 333 do { 334 int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE); 335 int space = tty_buffer_request_room(port, goal); 336 struct tty_buffer *tb = port->buf.tail; 337 if (unlikely(space == 0)) 338 break; 339 memcpy(char_buf_ptr(tb, tb->used), chars, space); 340 memcpy(flag_buf_ptr(tb, tb->used), flags, space); 341 tb->used += space; 342 copied += space; 343 chars += space; 344 flags += space; 345 /* There is a small chance that we need to split the data over 346 several buffers. If this is the case we must loop */ 347 } while (unlikely(size > copied)); 348 return copied; 349 } 350 EXPORT_SYMBOL(tty_insert_flip_string_flags); 351 352 /** 353 * tty_schedule_flip - push characters to ldisc 354 * @port: tty port to push from 355 * 356 * Takes any pending buffers and transfers their ownership to the 357 * ldisc side of the queue. It then schedules those characters for 358 * processing by the line discipline. 359 */ 360 361 void tty_schedule_flip(struct tty_port *port) 362 { 363 struct tty_bufhead *buf = &port->buf; 364 365 buf->tail->commit = buf->tail->used; 366 schedule_work(&buf->work); 367 } 368 EXPORT_SYMBOL(tty_schedule_flip); 369 370 /** 371 * tty_prepare_flip_string - make room for characters 372 * @port: tty port 373 * @chars: return pointer for character write area 374 * @size: desired size 375 * 376 * Prepare a block of space in the buffer for data. Returns the length 377 * available and buffer pointer to the space which is now allocated and 378 * accounted for as ready for normal characters. This is used for drivers 379 * that need their own block copy routines into the buffer. There is no 380 * guarantee the buffer is a DMA target! 381 */ 382 383 int tty_prepare_flip_string(struct tty_port *port, unsigned char **chars, 384 size_t size) 385 { 386 int space = __tty_buffer_request_room(port, size, TTYB_NORMAL); 387 if (likely(space)) { 388 struct tty_buffer *tb = port->buf.tail; 389 *chars = char_buf_ptr(tb, tb->used); 390 if (~tb->flags & TTYB_NORMAL) 391 memset(flag_buf_ptr(tb, tb->used), TTY_NORMAL, space); 392 tb->used += space; 393 } 394 return space; 395 } 396 EXPORT_SYMBOL_GPL(tty_prepare_flip_string); 397 398 399 static int 400 receive_buf(struct tty_struct *tty, struct tty_buffer *head, int count) 401 { 402 struct tty_ldisc *disc = tty->ldisc; 403 unsigned char *p = char_buf_ptr(head, head->read); 404 char *f = NULL; 405 406 if (~head->flags & TTYB_NORMAL) 407 f = flag_buf_ptr(head, head->read); 408 409 if (disc->ops->receive_buf2) 410 count = disc->ops->receive_buf2(tty, p, f, count); 411 else { 412 count = min_t(int, count, tty->receive_room); 413 if (count) 414 disc->ops->receive_buf(tty, p, f, count); 415 } 416 head->read += count; 417 return count; 418 } 419 420 /** 421 * flush_to_ldisc 422 * @work: tty structure passed from work queue. 423 * 424 * This routine is called out of the software interrupt to flush data 425 * from the buffer chain to the line discipline. 426 * 427 * The receive_buf method is single threaded for each tty instance. 428 * 429 * Locking: takes buffer lock to ensure single-threaded flip buffer 430 * 'consumer' 431 */ 432 433 static void flush_to_ldisc(struct work_struct *work) 434 { 435 struct tty_port *port = container_of(work, struct tty_port, buf.work); 436 struct tty_bufhead *buf = &port->buf; 437 struct tty_struct *tty; 438 struct tty_ldisc *disc; 439 440 tty = port->itty; 441 if (tty == NULL) 442 return; 443 444 disc = tty_ldisc_ref(tty); 445 if (disc == NULL) 446 return; 447 448 mutex_lock(&buf->lock); 449 450 while (1) { 451 unsigned long flags; 452 struct tty_buffer *head = buf->head; 453 int count; 454 455 /* Ldisc or user is trying to gain exclusive access */ 456 if (atomic_read(&buf->priority)) 457 break; 458 459 spin_lock_irqsave(&buf->flush_lock, flags); 460 count = head->commit - head->read; 461 if (!count) { 462 if (head->next == NULL) { 463 spin_unlock_irqrestore(&buf->flush_lock, flags); 464 break; 465 } 466 buf->head = head->next; 467 spin_unlock_irqrestore(&buf->flush_lock, flags); 468 tty_buffer_free(port, head); 469 continue; 470 } 471 spin_unlock_irqrestore(&buf->flush_lock, flags); 472 473 count = receive_buf(tty, head, count); 474 if (!count) 475 break; 476 } 477 478 mutex_unlock(&buf->lock); 479 480 tty_ldisc_deref(disc); 481 } 482 483 /** 484 * tty_flush_to_ldisc 485 * @tty: tty to push 486 * 487 * Push the terminal flip buffers to the line discipline. 488 * 489 * Must not be called from IRQ context. 490 */ 491 void tty_flush_to_ldisc(struct tty_struct *tty) 492 { 493 flush_work(&tty->port->buf.work); 494 } 495 496 /** 497 * tty_flip_buffer_push - terminal 498 * @port: tty port to push 499 * 500 * Queue a push of the terminal flip buffers to the line discipline. 501 * Can be called from IRQ/atomic context. 502 * 503 * In the event of the queue being busy for flipping the work will be 504 * held off and retried later. 505 */ 506 507 void tty_flip_buffer_push(struct tty_port *port) 508 { 509 tty_schedule_flip(port); 510 } 511 EXPORT_SYMBOL(tty_flip_buffer_push); 512 513 /** 514 * tty_buffer_init - prepare a tty buffer structure 515 * @tty: tty to initialise 516 * 517 * Set up the initial state of the buffer management for a tty device. 518 * Must be called before the other tty buffer functions are used. 519 */ 520 521 void tty_buffer_init(struct tty_port *port) 522 { 523 struct tty_bufhead *buf = &port->buf; 524 525 mutex_init(&buf->lock); 526 spin_lock_init(&buf->flush_lock); 527 tty_buffer_reset(&buf->sentinel, 0); 528 buf->head = &buf->sentinel; 529 buf->tail = &buf->sentinel; 530 init_llist_head(&buf->free); 531 atomic_set(&buf->mem_used, 0); 532 atomic_set(&buf->priority, 0); 533 INIT_WORK(&buf->work, flush_to_ldisc); 534 buf->mem_limit = TTYB_DEFAULT_MEM_LIMIT; 535 } 536 537 /** 538 * tty_buffer_set_limit - change the tty buffer memory limit 539 * @port: tty port to change 540 * 541 * Change the tty buffer memory limit. 542 * Must be called before the other tty buffer functions are used. 543 */ 544 545 int tty_buffer_set_limit(struct tty_port *port, int limit) 546 { 547 if (limit < MIN_TTYB_SIZE) 548 return -EINVAL; 549 port->buf.mem_limit = limit; 550 return 0; 551 } 552 EXPORT_SYMBOL_GPL(tty_buffer_set_limit); 553