1 /* 2 * NVEC: NVIDIA compliant embedded controller interface 3 * 4 * Copyright (C) 2011 The AC100 Kernel Team <[email protected]> 5 * 6 * Authors: Pierre-Hugues Husson <[email protected]> 7 * Ilya Petrov <[email protected]> 8 * Marc Dietrich <[email protected]> 9 * Julian Andres Klode <[email protected]> 10 * 11 * This file is subject to the terms and conditions of the GNU General Public 12 * License. See the file "COPYING" in the main directory of this archive 13 * for more details. 14 * 15 */ 16 17 /* #define DEBUG */ 18 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <linux/atomic.h> 22 #include <linux/clk.h> 23 #include <linux/completion.h> 24 #include <linux/delay.h> 25 #include <linux/err.h> 26 #include <linux/gpio.h> 27 #include <linux/interrupt.h> 28 #include <linux/io.h> 29 #include <linux/irq.h> 30 #include <linux/of.h> 31 #include <linux/of_gpio.h> 32 #include <linux/list.h> 33 #include <linux/mfd/core.h> 34 #include <linux/mutex.h> 35 #include <linux/notifier.h> 36 #include <linux/platform_device.h> 37 #include <linux/slab.h> 38 #include <linux/spinlock.h> 39 #include <linux/workqueue.h> 40 41 #include <mach/clk.h> 42 43 #include "nvec.h" 44 45 #define I2C_CNFG 0x00 46 #define I2C_CNFG_PACKET_MODE_EN (1<<10) 47 #define I2C_CNFG_NEW_MASTER_SFM (1<<11) 48 #define I2C_CNFG_DEBOUNCE_CNT_SHIFT 12 49 50 #define I2C_SL_CNFG 0x20 51 #define I2C_SL_NEWSL (1<<2) 52 #define I2C_SL_NACK (1<<1) 53 #define I2C_SL_RESP (1<<0) 54 #define I2C_SL_IRQ (1<<3) 55 #define END_TRANS (1<<4) 56 #define RCVD (1<<2) 57 #define RNW (1<<1) 58 59 #define I2C_SL_RCVD 0x24 60 #define I2C_SL_STATUS 0x28 61 #define I2C_SL_ADDR1 0x2c 62 #define I2C_SL_ADDR2 0x30 63 #define I2C_SL_DELAY_COUNT 0x3c 64 65 /** 66 * enum nvec_msg_category - Message categories for nvec_msg_alloc() 67 * @NVEC_MSG_RX: The message is an incoming message (from EC) 68 * @NVEC_MSG_TX: The message is an outgoing message (to EC) 69 */ 70 enum nvec_msg_category { 71 NVEC_MSG_RX, 72 NVEC_MSG_TX, 73 }; 74 75 static const unsigned char EC_DISABLE_EVENT_REPORTING[3] = "\x04\x00\x00"; 76 static const unsigned char EC_ENABLE_EVENT_REPORTING[3] = "\x04\x00\x01"; 77 static const unsigned char EC_GET_FIRMWARE_VERSION[2] = "\x07\x15"; 78 79 static struct nvec_chip *nvec_power_handle; 80 81 static struct mfd_cell nvec_devices[] = { 82 { 83 .name = "nvec-kbd", 84 .id = 1, 85 }, 86 { 87 .name = "nvec-mouse", 88 .id = 1, 89 }, 90 { 91 .name = "nvec-power", 92 .id = 1, 93 }, 94 { 95 .name = "nvec-power", 96 .id = 2, 97 }, 98 { 99 .name = "nvec-paz00", 100 .id = 1, 101 }, 102 }; 103 104 /** 105 * nvec_register_notifier - Register a notifier with nvec 106 * @nvec: A &struct nvec_chip 107 * @nb: The notifier block to register 108 * 109 * Registers a notifier with @nvec. The notifier will be added to an atomic 110 * notifier chain that is called for all received messages except those that 111 * correspond to a request initiated by nvec_write_sync(). 112 */ 113 int nvec_register_notifier(struct nvec_chip *nvec, struct notifier_block *nb, 114 unsigned int events) 115 { 116 return atomic_notifier_chain_register(&nvec->notifier_list, nb); 117 } 118 EXPORT_SYMBOL_GPL(nvec_register_notifier); 119 120 /** 121 * nvec_status_notifier - The final notifier 122 * 123 * Prints a message about control events not handled in the notifier 124 * chain. 125 */ 126 static int nvec_status_notifier(struct notifier_block *nb, 127 unsigned long event_type, void *data) 128 { 129 struct nvec_chip *nvec = container_of(nb, struct nvec_chip, 130 nvec_status_notifier); 131 unsigned char *msg = (unsigned char *)data; 132 133 if (event_type != NVEC_CNTL) 134 return NOTIFY_DONE; 135 136 dev_warn(nvec->dev, "unhandled msg type %ld\n", event_type); 137 print_hex_dump(KERN_WARNING, "payload: ", DUMP_PREFIX_NONE, 16, 1, 138 msg, msg[1] + 2, true); 139 140 return NOTIFY_OK; 141 } 142 143 /** 144 * nvec_msg_alloc: 145 * @nvec: A &struct nvec_chip 146 * @category: Pool category, see &enum nvec_msg_category 147 * 148 * Allocate a single &struct nvec_msg object from the message pool of 149 * @nvec. The result shall be passed to nvec_msg_free() if no longer 150 * used. 151 * 152 * Outgoing messages are placed in the upper 75% of the pool, keeping the 153 * lower 25% available for RX buffers only. The reason is to prevent a 154 * situation where all buffers are full and a message is thus endlessly 155 * retried because the response could never be processed. 156 */ 157 static struct nvec_msg *nvec_msg_alloc(struct nvec_chip *nvec, 158 enum nvec_msg_category category) 159 { 160 int i = (category == NVEC_MSG_TX) ? (NVEC_POOL_SIZE / 4) : 0; 161 162 for (; i < NVEC_POOL_SIZE; i++) { 163 if (atomic_xchg(&nvec->msg_pool[i].used, 1) == 0) { 164 dev_vdbg(nvec->dev, "INFO: Allocate %i\n", i); 165 return &nvec->msg_pool[i]; 166 } 167 } 168 169 dev_err(nvec->dev, "could not allocate %s buffer\n", 170 (category == NVEC_MSG_TX) ? "TX" : "RX"); 171 172 return NULL; 173 } 174 175 /** 176 * nvec_msg_free: 177 * @nvec: A &struct nvec_chip 178 * @msg: A message (must be allocated by nvec_msg_alloc() and belong to @nvec) 179 * 180 * Free the given message 181 */ 182 inline void nvec_msg_free(struct nvec_chip *nvec, struct nvec_msg *msg) 183 { 184 if (msg != &nvec->tx_scratch) 185 dev_vdbg(nvec->dev, "INFO: Free %ti\n", msg - nvec->msg_pool); 186 atomic_set(&msg->used, 0); 187 } 188 EXPORT_SYMBOL_GPL(nvec_msg_free); 189 190 /** 191 * nvec_msg_is_event - Return %true if @msg is an event 192 * @msg: A message 193 */ 194 static bool nvec_msg_is_event(struct nvec_msg *msg) 195 { 196 return msg->data[0] >> 7; 197 } 198 199 /** 200 * nvec_msg_size - Get the size of a message 201 * @msg: The message to get the size for 202 * 203 * This only works for received messages, not for outgoing messages. 204 */ 205 static size_t nvec_msg_size(struct nvec_msg *msg) 206 { 207 bool is_event = nvec_msg_is_event(msg); 208 int event_length = (msg->data[0] & 0x60) >> 5; 209 210 /* for variable size, payload size in byte 1 + count (1) + cmd (1) */ 211 if (!is_event || event_length == NVEC_VAR_SIZE) 212 return (msg->pos || msg->size) ? (msg->data[1] + 2) : 0; 213 else if (event_length == NVEC_2BYTES) 214 return 2; 215 else if (event_length == NVEC_3BYTES) 216 return 3; 217 else 218 return 0; 219 } 220 221 /** 222 * nvec_gpio_set_value - Set the GPIO value 223 * @nvec: A &struct nvec_chip 224 * @value: The value to write (0 or 1) 225 * 226 * Like gpio_set_value(), but generating debugging information 227 */ 228 static void nvec_gpio_set_value(struct nvec_chip *nvec, int value) 229 { 230 dev_dbg(nvec->dev, "GPIO changed from %u to %u\n", 231 gpio_get_value(nvec->gpio), value); 232 gpio_set_value(nvec->gpio, value); 233 } 234 235 /** 236 * nvec_write_async - Asynchronously write a message to NVEC 237 * @nvec: An nvec_chip instance 238 * @data: The message data, starting with the request type 239 * @size: The size of @data 240 * 241 * Queue a single message to be transferred to the embedded controller 242 * and return immediately. 243 * 244 * Returns: 0 on success, a negative error code on failure. If a failure 245 * occured, the nvec driver may print an error. 246 */ 247 int nvec_write_async(struct nvec_chip *nvec, const unsigned char *data, 248 short size) 249 { 250 struct nvec_msg *msg; 251 unsigned long flags; 252 253 msg = nvec_msg_alloc(nvec, NVEC_MSG_TX); 254 255 if (msg == NULL) 256 return -ENOMEM; 257 258 msg->data[0] = size; 259 memcpy(msg->data + 1, data, size); 260 msg->size = size + 1; 261 262 spin_lock_irqsave(&nvec->tx_lock, flags); 263 list_add_tail(&msg->node, &nvec->tx_data); 264 spin_unlock_irqrestore(&nvec->tx_lock, flags); 265 266 schedule_work(&nvec->tx_work); 267 268 return 0; 269 } 270 EXPORT_SYMBOL(nvec_write_async); 271 272 /** 273 * nvec_write_sync - Write a message to nvec and read the response 274 * @nvec: An &struct nvec_chip 275 * @data: The data to write 276 * @size: The size of @data 277 * 278 * This is similar to nvec_write_async(), but waits for the 279 * request to be answered before returning. This function 280 * uses a mutex and can thus not be called from e.g. 281 * interrupt handlers. 282 * 283 * Returns: A pointer to the response message on success, 284 * %NULL on failure. Free with nvec_msg_free() once no longer 285 * used. 286 */ 287 struct nvec_msg *nvec_write_sync(struct nvec_chip *nvec, 288 const unsigned char *data, short size) 289 { 290 struct nvec_msg *msg; 291 292 mutex_lock(&nvec->sync_write_mutex); 293 294 nvec->sync_write_pending = (data[1] << 8) + data[0]; 295 296 if (nvec_write_async(nvec, data, size) < 0) { 297 mutex_unlock(&nvec->sync_write_mutex); 298 return NULL; 299 } 300 301 dev_dbg(nvec->dev, "nvec_sync_write: 0x%04x\n", 302 nvec->sync_write_pending); 303 if (!(wait_for_completion_timeout(&nvec->sync_write, 304 msecs_to_jiffies(2000)))) { 305 dev_warn(nvec->dev, "timeout waiting for sync write to complete\n"); 306 mutex_unlock(&nvec->sync_write_mutex); 307 return NULL; 308 } 309 310 dev_dbg(nvec->dev, "nvec_sync_write: pong!\n"); 311 312 msg = nvec->last_sync_msg; 313 314 mutex_unlock(&nvec->sync_write_mutex); 315 316 return msg; 317 } 318 EXPORT_SYMBOL(nvec_write_sync); 319 320 /** 321 * nvec_request_master - Process outgoing messages 322 * @work: A &struct work_struct (the tx_worker member of &struct nvec_chip) 323 * 324 * Processes all outgoing requests by sending the request and awaiting the 325 * response, then continuing with the next request. Once a request has a 326 * matching response, it will be freed and removed from the list. 327 */ 328 static void nvec_request_master(struct work_struct *work) 329 { 330 struct nvec_chip *nvec = container_of(work, struct nvec_chip, tx_work); 331 unsigned long flags; 332 long err; 333 struct nvec_msg *msg; 334 335 spin_lock_irqsave(&nvec->tx_lock, flags); 336 while (!list_empty(&nvec->tx_data)) { 337 msg = list_first_entry(&nvec->tx_data, struct nvec_msg, node); 338 spin_unlock_irqrestore(&nvec->tx_lock, flags); 339 nvec_gpio_set_value(nvec, 0); 340 err = wait_for_completion_interruptible_timeout( 341 &nvec->ec_transfer, msecs_to_jiffies(5000)); 342 343 if (err == 0) { 344 dev_warn(nvec->dev, "timeout waiting for ec transfer\n"); 345 nvec_gpio_set_value(nvec, 1); 346 msg->pos = 0; 347 } 348 349 spin_lock_irqsave(&nvec->tx_lock, flags); 350 351 if (err > 0) { 352 list_del_init(&msg->node); 353 nvec_msg_free(nvec, msg); 354 } 355 } 356 spin_unlock_irqrestore(&nvec->tx_lock, flags); 357 } 358 359 /** 360 * parse_msg - Print some information and call the notifiers on an RX message 361 * @nvec: A &struct nvec_chip 362 * @msg: A message received by @nvec 363 * 364 * Paarse some pieces of the message and then call the chain of notifiers 365 * registered via nvec_register_notifier. 366 */ 367 static int parse_msg(struct nvec_chip *nvec, struct nvec_msg *msg) 368 { 369 if ((msg->data[0] & 1 << 7) == 0 && msg->data[3]) { 370 dev_err(nvec->dev, "ec responded %*ph\n", 4, msg->data); 371 return -EINVAL; 372 } 373 374 if ((msg->data[0] >> 7) == 1 && (msg->data[0] & 0x0f) == 5) 375 print_hex_dump(KERN_WARNING, "ec system event ", 376 DUMP_PREFIX_NONE, 16, 1, msg->data, 377 msg->data[1] + 2, true); 378 379 atomic_notifier_call_chain(&nvec->notifier_list, msg->data[0] & 0x8f, 380 msg->data); 381 382 return 0; 383 } 384 385 /** 386 * nvec_dispatch - Process messages received from the EC 387 * @work: A &struct work_struct (the tx_worker member of &struct nvec_chip) 388 * 389 * Process messages previously received from the EC and put into the RX 390 * queue of the &struct nvec_chip instance associated with @work. 391 */ 392 static void nvec_dispatch(struct work_struct *work) 393 { 394 struct nvec_chip *nvec = container_of(work, struct nvec_chip, rx_work); 395 unsigned long flags; 396 struct nvec_msg *msg; 397 398 spin_lock_irqsave(&nvec->rx_lock, flags); 399 while (!list_empty(&nvec->rx_data)) { 400 msg = list_first_entry(&nvec->rx_data, struct nvec_msg, node); 401 list_del_init(&msg->node); 402 spin_unlock_irqrestore(&nvec->rx_lock, flags); 403 404 if (nvec->sync_write_pending == 405 (msg->data[2] << 8) + msg->data[0]) { 406 dev_dbg(nvec->dev, "sync write completed!\n"); 407 nvec->sync_write_pending = 0; 408 nvec->last_sync_msg = msg; 409 complete(&nvec->sync_write); 410 } else { 411 parse_msg(nvec, msg); 412 nvec_msg_free(nvec, msg); 413 } 414 spin_lock_irqsave(&nvec->rx_lock, flags); 415 } 416 spin_unlock_irqrestore(&nvec->rx_lock, flags); 417 } 418 419 /** 420 * nvec_tx_completed - Complete the current transfer 421 * @nvec: A &struct nvec_chip 422 * 423 * This is called when we have received an END_TRANS on a TX transfer. 424 */ 425 static void nvec_tx_completed(struct nvec_chip *nvec) 426 { 427 /* We got an END_TRANS, let's skip this, maybe there's an event */ 428 if (nvec->tx->pos != nvec->tx->size) { 429 dev_err(nvec->dev, "premature END_TRANS, resending\n"); 430 nvec->tx->pos = 0; 431 nvec_gpio_set_value(nvec, 0); 432 } else { 433 nvec->state = 0; 434 } 435 } 436 437 /** 438 * nvec_rx_completed - Complete the current transfer 439 * @nvec: A &struct nvec_chip 440 * 441 * This is called when we have received an END_TRANS on a RX transfer. 442 */ 443 static void nvec_rx_completed(struct nvec_chip *nvec) 444 { 445 if (nvec->rx->pos != nvec_msg_size(nvec->rx)) { 446 dev_err(nvec->dev, "RX incomplete: Expected %u bytes, got %u\n", 447 (uint) nvec_msg_size(nvec->rx), 448 (uint) nvec->rx->pos); 449 450 nvec_msg_free(nvec, nvec->rx); 451 nvec->state = 0; 452 453 /* Battery quirk - Often incomplete, and likes to crash */ 454 if (nvec->rx->data[0] == NVEC_BAT) 455 complete(&nvec->ec_transfer); 456 457 return; 458 } 459 460 spin_lock(&nvec->rx_lock); 461 462 /* add the received data to the work list 463 and move the ring buffer pointer to the next entry */ 464 list_add_tail(&nvec->rx->node, &nvec->rx_data); 465 466 spin_unlock(&nvec->rx_lock); 467 468 nvec->state = 0; 469 470 if (!nvec_msg_is_event(nvec->rx)) 471 complete(&nvec->ec_transfer); 472 473 schedule_work(&nvec->rx_work); 474 } 475 476 /** 477 * nvec_invalid_flags - Send an error message about invalid flags and jump 478 * @nvec: The nvec device 479 * @status: The status flags 480 * @reset: Whether we shall jump to state 0. 481 */ 482 static void nvec_invalid_flags(struct nvec_chip *nvec, unsigned int status, 483 bool reset) 484 { 485 dev_err(nvec->dev, "unexpected status flags 0x%02x during state %i\n", 486 status, nvec->state); 487 if (reset) 488 nvec->state = 0; 489 } 490 491 /** 492 * nvec_tx_set - Set the message to transfer (nvec->tx) 493 * @nvec: A &struct nvec_chip 494 * 495 * Gets the first entry from the tx_data list of @nvec and sets the 496 * tx member to it. If the tx_data list is empty, this uses the 497 * tx_scratch message to send a no operation message. 498 */ 499 static void nvec_tx_set(struct nvec_chip *nvec) 500 { 501 spin_lock(&nvec->tx_lock); 502 if (list_empty(&nvec->tx_data)) { 503 dev_err(nvec->dev, "empty tx - sending no-op\n"); 504 memcpy(nvec->tx_scratch.data, "\x02\x07\x02", 3); 505 nvec->tx_scratch.size = 3; 506 nvec->tx_scratch.pos = 0; 507 nvec->tx = &nvec->tx_scratch; 508 list_add_tail(&nvec->tx->node, &nvec->tx_data); 509 } else { 510 nvec->tx = list_first_entry(&nvec->tx_data, struct nvec_msg, 511 node); 512 nvec->tx->pos = 0; 513 } 514 spin_unlock(&nvec->tx_lock); 515 516 dev_dbg(nvec->dev, "Sending message of length %u, command 0x%x\n", 517 (uint)nvec->tx->size, nvec->tx->data[1]); 518 } 519 520 /** 521 * nvec_interrupt - Interrupt handler 522 * @irq: The IRQ 523 * @dev: The nvec device 524 * 525 * Interrupt handler that fills our RX buffers and empties our TX 526 * buffers. This uses a finite state machine with ridiculous amounts 527 * of error checking, in order to be fairly reliable. 528 */ 529 static irqreturn_t nvec_interrupt(int irq, void *dev) 530 { 531 unsigned long status; 532 unsigned int received = 0; 533 unsigned char to_send = 0xff; 534 const unsigned long irq_mask = I2C_SL_IRQ | END_TRANS | RCVD | RNW; 535 struct nvec_chip *nvec = dev; 536 unsigned int state = nvec->state; 537 538 status = readl(nvec->base + I2C_SL_STATUS); 539 540 /* Filter out some errors */ 541 if ((status & irq_mask) == 0 && (status & ~irq_mask) != 0) { 542 dev_err(nvec->dev, "unexpected irq mask %lx\n", status); 543 return IRQ_HANDLED; 544 } 545 if ((status & I2C_SL_IRQ) == 0) { 546 dev_err(nvec->dev, "Spurious IRQ\n"); 547 return IRQ_HANDLED; 548 } 549 550 /* The EC did not request a read, so it send us something, read it */ 551 if ((status & RNW) == 0) { 552 received = readl(nvec->base + I2C_SL_RCVD); 553 if (status & RCVD) 554 writel(0, nvec->base + I2C_SL_RCVD); 555 } 556 557 if (status == (I2C_SL_IRQ | RCVD)) 558 nvec->state = 0; 559 560 switch (nvec->state) { 561 case 0: /* Verify that its a transfer start, the rest later */ 562 if (status != (I2C_SL_IRQ | RCVD)) 563 nvec_invalid_flags(nvec, status, false); 564 break; 565 case 1: /* command byte */ 566 if (status != I2C_SL_IRQ) { 567 nvec_invalid_flags(nvec, status, true); 568 } else { 569 nvec->rx = nvec_msg_alloc(nvec, NVEC_MSG_RX); 570 /* Should not happen in a normal world */ 571 if (unlikely(nvec->rx == NULL)) { 572 nvec->state = 0; 573 break; 574 } 575 nvec->rx->data[0] = received; 576 nvec->rx->pos = 1; 577 nvec->state = 2; 578 } 579 break; 580 case 2: /* first byte after command */ 581 if (status == (I2C_SL_IRQ | RNW | RCVD)) { 582 udelay(33); 583 if (nvec->rx->data[0] != 0x01) { 584 dev_err(nvec->dev, 585 "Read without prior read command\n"); 586 nvec->state = 0; 587 break; 588 } 589 nvec_msg_free(nvec, nvec->rx); 590 nvec->state = 3; 591 nvec_tx_set(nvec); 592 BUG_ON(nvec->tx->size < 1); 593 to_send = nvec->tx->data[0]; 594 nvec->tx->pos = 1; 595 } else if (status == (I2C_SL_IRQ)) { 596 BUG_ON(nvec->rx == NULL); 597 nvec->rx->data[1] = received; 598 nvec->rx->pos = 2; 599 nvec->state = 4; 600 } else { 601 nvec_invalid_flags(nvec, status, true); 602 } 603 break; 604 case 3: /* EC does a block read, we transmit data */ 605 if (status & END_TRANS) { 606 nvec_tx_completed(nvec); 607 } else if ((status & RNW) == 0 || (status & RCVD)) { 608 nvec_invalid_flags(nvec, status, true); 609 } else if (nvec->tx && nvec->tx->pos < nvec->tx->size) { 610 to_send = nvec->tx->data[nvec->tx->pos++]; 611 } else { 612 dev_err(nvec->dev, "tx buffer underflow on %p (%u > %u)\n", 613 nvec->tx, 614 (uint) (nvec->tx ? nvec->tx->pos : 0), 615 (uint) (nvec->tx ? nvec->tx->size : 0)); 616 nvec->state = 0; 617 } 618 break; 619 case 4: /* EC does some write, we read the data */ 620 if ((status & (END_TRANS | RNW)) == END_TRANS) 621 nvec_rx_completed(nvec); 622 else if (status & (RNW | RCVD)) 623 nvec_invalid_flags(nvec, status, true); 624 else if (nvec->rx && nvec->rx->pos < NVEC_MSG_SIZE) 625 nvec->rx->data[nvec->rx->pos++] = received; 626 else 627 dev_err(nvec->dev, 628 "RX buffer overflow on %p: " 629 "Trying to write byte %u of %u\n", 630 nvec->rx, nvec->rx->pos, NVEC_MSG_SIZE); 631 break; 632 default: 633 nvec->state = 0; 634 } 635 636 /* If we are told that a new transfer starts, verify it */ 637 if ((status & (RCVD | RNW)) == RCVD) { 638 if (received != nvec->i2c_addr) 639 dev_err(nvec->dev, 640 "received address 0x%02x, expected 0x%02x\n", 641 received, nvec->i2c_addr); 642 nvec->state = 1; 643 } 644 645 /* Send data if requested, but not on end of transmission */ 646 if ((status & (RNW | END_TRANS)) == RNW) 647 writel(to_send, nvec->base + I2C_SL_RCVD); 648 649 /* If we have send the first byte */ 650 if (status == (I2C_SL_IRQ | RNW | RCVD)) 651 nvec_gpio_set_value(nvec, 1); 652 653 dev_dbg(nvec->dev, 654 "Handled: %s 0x%02x, %s 0x%02x in state %u [%s%s%s]\n", 655 (status & RNW) == 0 ? "received" : "R=", 656 received, 657 (status & (RNW | END_TRANS)) ? "sent" : "S=", 658 to_send, 659 state, 660 status & END_TRANS ? " END_TRANS" : "", 661 status & RCVD ? " RCVD" : "", 662 status & RNW ? " RNW" : ""); 663 664 665 /* 666 * TODO: A correct fix needs to be found for this. 667 * 668 * We experience less incomplete messages with this delay than without 669 * it, but we don't know why. Help is appreciated. 670 */ 671 udelay(100); 672 673 return IRQ_HANDLED; 674 } 675 676 static void tegra_init_i2c_slave(struct nvec_chip *nvec) 677 { 678 u32 val; 679 680 clk_prepare_enable(nvec->i2c_clk); 681 682 tegra_periph_reset_assert(nvec->i2c_clk); 683 udelay(2); 684 tegra_periph_reset_deassert(nvec->i2c_clk); 685 686 val = I2C_CNFG_NEW_MASTER_SFM | I2C_CNFG_PACKET_MODE_EN | 687 (0x2 << I2C_CNFG_DEBOUNCE_CNT_SHIFT); 688 writel(val, nvec->base + I2C_CNFG); 689 690 clk_set_rate(nvec->i2c_clk, 8 * 80000); 691 692 writel(I2C_SL_NEWSL, nvec->base + I2C_SL_CNFG); 693 writel(0x1E, nvec->base + I2C_SL_DELAY_COUNT); 694 695 writel(nvec->i2c_addr>>1, nvec->base + I2C_SL_ADDR1); 696 writel(0, nvec->base + I2C_SL_ADDR2); 697 698 enable_irq(nvec->irq); 699 700 clk_disable_unprepare(nvec->i2c_clk); 701 } 702 703 #ifdef CONFIG_PM_SLEEP 704 static void nvec_disable_i2c_slave(struct nvec_chip *nvec) 705 { 706 disable_irq(nvec->irq); 707 writel(I2C_SL_NEWSL | I2C_SL_NACK, nvec->base + I2C_SL_CNFG); 708 clk_disable_unprepare(nvec->i2c_clk); 709 } 710 #endif 711 712 static void nvec_power_off(void) 713 { 714 nvec_write_async(nvec_power_handle, EC_DISABLE_EVENT_REPORTING, 3); 715 nvec_write_async(nvec_power_handle, "\x04\x01", 2); 716 } 717 718 static int tegra_nvec_probe(struct platform_device *pdev) 719 { 720 int err, ret; 721 struct clk *i2c_clk; 722 struct nvec_platform_data *pdata = pdev->dev.platform_data; 723 struct nvec_chip *nvec; 724 struct nvec_msg *msg; 725 struct resource *res; 726 void __iomem *base; 727 728 nvec = devm_kzalloc(&pdev->dev, sizeof(struct nvec_chip), GFP_KERNEL); 729 if (nvec == NULL) { 730 dev_err(&pdev->dev, "failed to reserve memory\n"); 731 return -ENOMEM; 732 } 733 platform_set_drvdata(pdev, nvec); 734 nvec->dev = &pdev->dev; 735 736 if (pdata) { 737 nvec->gpio = pdata->gpio; 738 nvec->i2c_addr = pdata->i2c_addr; 739 } else if (nvec->dev->of_node) { 740 nvec->gpio = of_get_named_gpio(nvec->dev->of_node, 741 "request-gpios", 0); 742 if (nvec->gpio < 0) { 743 dev_err(&pdev->dev, "no gpio specified"); 744 return -ENODEV; 745 } 746 if (of_property_read_u32(nvec->dev->of_node, 747 "slave-addr", &nvec->i2c_addr)) { 748 dev_err(&pdev->dev, "no i2c address specified"); 749 return -ENODEV; 750 } 751 } else { 752 dev_err(&pdev->dev, "no platform data\n"); 753 return -ENODEV; 754 } 755 756 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 757 if (!res) { 758 dev_err(&pdev->dev, "no mem resource?\n"); 759 return -ENODEV; 760 } 761 762 base = devm_request_and_ioremap(&pdev->dev, res); 763 if (!base) { 764 dev_err(&pdev->dev, "Can't ioremap I2C region\n"); 765 return -ENOMEM; 766 } 767 768 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); 769 if (!res) { 770 dev_err(&pdev->dev, "no irq resource?\n"); 771 return -ENODEV; 772 } 773 774 i2c_clk = clk_get_sys("tegra-i2c.2", "div-clk"); 775 if (IS_ERR(i2c_clk)) { 776 dev_err(nvec->dev, "failed to get controller clock\n"); 777 return -ENODEV; 778 } 779 780 nvec->base = base; 781 nvec->irq = res->start; 782 nvec->i2c_clk = i2c_clk; 783 nvec->rx = &nvec->msg_pool[0]; 784 785 ATOMIC_INIT_NOTIFIER_HEAD(&nvec->notifier_list); 786 787 init_completion(&nvec->sync_write); 788 init_completion(&nvec->ec_transfer); 789 mutex_init(&nvec->sync_write_mutex); 790 spin_lock_init(&nvec->tx_lock); 791 spin_lock_init(&nvec->rx_lock); 792 INIT_LIST_HEAD(&nvec->rx_data); 793 INIT_LIST_HEAD(&nvec->tx_data); 794 INIT_WORK(&nvec->rx_work, nvec_dispatch); 795 INIT_WORK(&nvec->tx_work, nvec_request_master); 796 797 err = devm_gpio_request_one(&pdev->dev, nvec->gpio, GPIOF_OUT_INIT_HIGH, 798 "nvec gpio"); 799 if (err < 0) { 800 dev_err(nvec->dev, "couldn't request gpio\n"); 801 return -ENODEV; 802 } 803 804 err = devm_request_irq(&pdev->dev, nvec->irq, nvec_interrupt, 0, 805 "nvec", nvec); 806 if (err) { 807 dev_err(nvec->dev, "couldn't request irq\n"); 808 return -ENODEV; 809 } 810 disable_irq(nvec->irq); 811 812 tegra_init_i2c_slave(nvec); 813 814 clk_prepare_enable(i2c_clk); 815 816 817 /* enable event reporting */ 818 nvec_write_async(nvec, EC_ENABLE_EVENT_REPORTING, 819 sizeof(EC_ENABLE_EVENT_REPORTING)); 820 821 nvec->nvec_status_notifier.notifier_call = nvec_status_notifier; 822 nvec_register_notifier(nvec, &nvec->nvec_status_notifier, 0); 823 824 nvec_power_handle = nvec; 825 pm_power_off = nvec_power_off; 826 827 /* Get Firmware Version */ 828 msg = nvec_write_sync(nvec, EC_GET_FIRMWARE_VERSION, 829 sizeof(EC_GET_FIRMWARE_VERSION)); 830 831 if (msg) { 832 dev_warn(nvec->dev, "ec firmware version %02x.%02x.%02x / %02x\n", 833 msg->data[4], msg->data[5], msg->data[6], msg->data[7]); 834 835 nvec_msg_free(nvec, msg); 836 } 837 838 ret = mfd_add_devices(nvec->dev, -1, nvec_devices, 839 ARRAY_SIZE(nvec_devices), base, 0, NULL); 840 if (ret) 841 dev_err(nvec->dev, "error adding subdevices\n"); 842 843 /* unmute speakers? */ 844 nvec_write_async(nvec, "\x0d\x10\x59\x95", 4); 845 846 /* enable lid switch event */ 847 nvec_write_async(nvec, "\x01\x01\x01\x00\x00\x02\x00", 7); 848 849 /* enable power button event */ 850 nvec_write_async(nvec, "\x01\x01\x01\x00\x00\x80\x00", 7); 851 852 return 0; 853 } 854 855 static int tegra_nvec_remove(struct platform_device *pdev) 856 { 857 struct nvec_chip *nvec = platform_get_drvdata(pdev); 858 859 nvec_write_async(nvec, EC_DISABLE_EVENT_REPORTING, 3); 860 mfd_remove_devices(nvec->dev); 861 cancel_work_sync(&nvec->rx_work); 862 cancel_work_sync(&nvec->tx_work); 863 864 return 0; 865 } 866 867 #ifdef CONFIG_PM_SLEEP 868 static int nvec_suspend(struct device *dev) 869 { 870 struct platform_device *pdev = to_platform_device(dev); 871 struct nvec_chip *nvec = platform_get_drvdata(pdev); 872 struct nvec_msg *msg; 873 874 dev_dbg(nvec->dev, "suspending\n"); 875 876 /* keep these sync or you'll break suspend */ 877 msg = nvec_write_sync(nvec, EC_DISABLE_EVENT_REPORTING, 3); 878 nvec_msg_free(nvec, msg); 879 msg = nvec_write_sync(nvec, "\x04\x02", 2); 880 nvec_msg_free(nvec, msg); 881 882 nvec_disable_i2c_slave(nvec); 883 884 return 0; 885 } 886 887 static int nvec_resume(struct device *dev) 888 { 889 struct platform_device *pdev = to_platform_device(dev); 890 struct nvec_chip *nvec = platform_get_drvdata(pdev); 891 892 dev_dbg(nvec->dev, "resuming\n"); 893 tegra_init_i2c_slave(nvec); 894 nvec_write_async(nvec, EC_ENABLE_EVENT_REPORTING, 3); 895 896 return 0; 897 } 898 #endif 899 900 static const SIMPLE_DEV_PM_OPS(nvec_pm_ops, nvec_suspend, nvec_resume); 901 902 /* Match table for of_platform binding */ 903 static const struct of_device_id nvidia_nvec_of_match[] = { 904 { .compatible = "nvidia,nvec", }, 905 {}, 906 }; 907 MODULE_DEVICE_TABLE(of, nvidia_nvec_of_match); 908 909 static struct platform_driver nvec_device_driver = { 910 .probe = tegra_nvec_probe, 911 .remove = tegra_nvec_remove, 912 .driver = { 913 .name = "nvec", 914 .owner = THIS_MODULE, 915 .pm = &nvec_pm_ops, 916 .of_match_table = nvidia_nvec_of_match, 917 } 918 }; 919 920 module_platform_driver(nvec_device_driver); 921 922 MODULE_ALIAS("platform:nvec"); 923 MODULE_DESCRIPTION("NVIDIA compliant embedded controller interface"); 924 MODULE_AUTHOR("Marc Dietrich <[email protected]>"); 925 MODULE_LICENSE("GPL"); 926