xref: /linux-6.15/drivers/staging/nvec/nvec.c (revision 8fdff1dc)
1 /*
2  * NVEC: NVIDIA compliant embedded controller interface
3  *
4  * Copyright (C) 2011 The AC100 Kernel Team <[email protected]>
5  *
6  * Authors:  Pierre-Hugues Husson <[email protected]>
7  *           Ilya Petrov <[email protected]>
8  *           Marc Dietrich <[email protected]>
9  *           Julian Andres Klode <[email protected]>
10  *
11  * This file is subject to the terms and conditions of the GNU General Public
12  * License.  See the file "COPYING" in the main directory of this archive
13  * for more details.
14  *
15  */
16 
17 /* #define DEBUG */
18 
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/atomic.h>
22 #include <linux/clk.h>
23 #include <linux/completion.h>
24 #include <linux/delay.h>
25 #include <linux/err.h>
26 #include <linux/gpio.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/irq.h>
30 #include <linux/of.h>
31 #include <linux/of_gpio.h>
32 #include <linux/list.h>
33 #include <linux/mfd/core.h>
34 #include <linux/mutex.h>
35 #include <linux/notifier.h>
36 #include <linux/platform_device.h>
37 #include <linux/slab.h>
38 #include <linux/spinlock.h>
39 #include <linux/workqueue.h>
40 
41 #include <mach/clk.h>
42 
43 #include "nvec.h"
44 
45 #define I2C_CNFG			0x00
46 #define I2C_CNFG_PACKET_MODE_EN		(1<<10)
47 #define I2C_CNFG_NEW_MASTER_SFM		(1<<11)
48 #define I2C_CNFG_DEBOUNCE_CNT_SHIFT	12
49 
50 #define I2C_SL_CNFG		0x20
51 #define I2C_SL_NEWSL		(1<<2)
52 #define I2C_SL_NACK		(1<<1)
53 #define I2C_SL_RESP		(1<<0)
54 #define I2C_SL_IRQ		(1<<3)
55 #define END_TRANS		(1<<4)
56 #define RCVD			(1<<2)
57 #define RNW			(1<<1)
58 
59 #define I2C_SL_RCVD		0x24
60 #define I2C_SL_STATUS		0x28
61 #define I2C_SL_ADDR1		0x2c
62 #define I2C_SL_ADDR2		0x30
63 #define I2C_SL_DELAY_COUNT	0x3c
64 
65 /**
66  * enum nvec_msg_category - Message categories for nvec_msg_alloc()
67  * @NVEC_MSG_RX: The message is an incoming message (from EC)
68  * @NVEC_MSG_TX: The message is an outgoing message (to EC)
69  */
70 enum nvec_msg_category  {
71 	NVEC_MSG_RX,
72 	NVEC_MSG_TX,
73 };
74 
75 static const unsigned char EC_DISABLE_EVENT_REPORTING[3] = "\x04\x00\x00";
76 static const unsigned char EC_ENABLE_EVENT_REPORTING[3]  = "\x04\x00\x01";
77 static const unsigned char EC_GET_FIRMWARE_VERSION[2]    = "\x07\x15";
78 
79 static struct nvec_chip *nvec_power_handle;
80 
81 static struct mfd_cell nvec_devices[] = {
82 	{
83 		.name = "nvec-kbd",
84 		.id = 1,
85 	},
86 	{
87 		.name = "nvec-mouse",
88 		.id = 1,
89 	},
90 	{
91 		.name = "nvec-power",
92 		.id = 1,
93 	},
94 	{
95 		.name = "nvec-power",
96 		.id = 2,
97 	},
98 	{
99 		.name = "nvec-paz00",
100 		.id = 1,
101 	},
102 };
103 
104 /**
105  * nvec_register_notifier - Register a notifier with nvec
106  * @nvec: A &struct nvec_chip
107  * @nb: The notifier block to register
108  *
109  * Registers a notifier with @nvec. The notifier will be added to an atomic
110  * notifier chain that is called for all received messages except those that
111  * correspond to a request initiated by nvec_write_sync().
112  */
113 int nvec_register_notifier(struct nvec_chip *nvec, struct notifier_block *nb,
114 			   unsigned int events)
115 {
116 	return atomic_notifier_chain_register(&nvec->notifier_list, nb);
117 }
118 EXPORT_SYMBOL_GPL(nvec_register_notifier);
119 
120 /**
121  * nvec_status_notifier - The final notifier
122  *
123  * Prints a message about control events not handled in the notifier
124  * chain.
125  */
126 static int nvec_status_notifier(struct notifier_block *nb,
127 				unsigned long event_type, void *data)
128 {
129 	struct nvec_chip *nvec = container_of(nb, struct nvec_chip,
130 						nvec_status_notifier);
131 	unsigned char *msg = (unsigned char *)data;
132 
133 	if (event_type != NVEC_CNTL)
134 		return NOTIFY_DONE;
135 
136 	dev_warn(nvec->dev, "unhandled msg type %ld\n", event_type);
137 	print_hex_dump(KERN_WARNING, "payload: ", DUMP_PREFIX_NONE, 16, 1,
138 		msg, msg[1] + 2, true);
139 
140 	return NOTIFY_OK;
141 }
142 
143 /**
144  * nvec_msg_alloc:
145  * @nvec: A &struct nvec_chip
146  * @category: Pool category, see &enum nvec_msg_category
147  *
148  * Allocate a single &struct nvec_msg object from the message pool of
149  * @nvec. The result shall be passed to nvec_msg_free() if no longer
150  * used.
151  *
152  * Outgoing messages are placed in the upper 75% of the pool, keeping the
153  * lower 25% available for RX buffers only. The reason is to prevent a
154  * situation where all buffers are full and a message is thus endlessly
155  * retried because the response could never be processed.
156  */
157 static struct nvec_msg *nvec_msg_alloc(struct nvec_chip *nvec,
158 				       enum nvec_msg_category category)
159 {
160 	int i = (category == NVEC_MSG_TX) ? (NVEC_POOL_SIZE / 4) : 0;
161 
162 	for (; i < NVEC_POOL_SIZE; i++) {
163 		if (atomic_xchg(&nvec->msg_pool[i].used, 1) == 0) {
164 			dev_vdbg(nvec->dev, "INFO: Allocate %i\n", i);
165 			return &nvec->msg_pool[i];
166 		}
167 	}
168 
169 	dev_err(nvec->dev, "could not allocate %s buffer\n",
170 		(category == NVEC_MSG_TX) ? "TX" : "RX");
171 
172 	return NULL;
173 }
174 
175 /**
176  * nvec_msg_free:
177  * @nvec: A &struct nvec_chip
178  * @msg:  A message (must be allocated by nvec_msg_alloc() and belong to @nvec)
179  *
180  * Free the given message
181  */
182 inline void nvec_msg_free(struct nvec_chip *nvec, struct nvec_msg *msg)
183 {
184 	if (msg != &nvec->tx_scratch)
185 		dev_vdbg(nvec->dev, "INFO: Free %ti\n", msg - nvec->msg_pool);
186 	atomic_set(&msg->used, 0);
187 }
188 EXPORT_SYMBOL_GPL(nvec_msg_free);
189 
190 /**
191  * nvec_msg_is_event - Return %true if @msg is an event
192  * @msg: A message
193  */
194 static bool nvec_msg_is_event(struct nvec_msg *msg)
195 {
196 	return msg->data[0] >> 7;
197 }
198 
199 /**
200  * nvec_msg_size - Get the size of a message
201  * @msg: The message to get the size for
202  *
203  * This only works for received messages, not for outgoing messages.
204  */
205 static size_t nvec_msg_size(struct nvec_msg *msg)
206 {
207 	bool is_event = nvec_msg_is_event(msg);
208 	int event_length = (msg->data[0] & 0x60) >> 5;
209 
210 	/* for variable size, payload size in byte 1 + count (1) + cmd (1) */
211 	if (!is_event || event_length == NVEC_VAR_SIZE)
212 		return (msg->pos || msg->size) ? (msg->data[1] + 2) : 0;
213 	else if (event_length == NVEC_2BYTES)
214 		return 2;
215 	else if (event_length == NVEC_3BYTES)
216 		return 3;
217 	else
218 		return 0;
219 }
220 
221 /**
222  * nvec_gpio_set_value - Set the GPIO value
223  * @nvec: A &struct nvec_chip
224  * @value: The value to write (0 or 1)
225  *
226  * Like gpio_set_value(), but generating debugging information
227  */
228 static void nvec_gpio_set_value(struct nvec_chip *nvec, int value)
229 {
230 	dev_dbg(nvec->dev, "GPIO changed from %u to %u\n",
231 		gpio_get_value(nvec->gpio), value);
232 	gpio_set_value(nvec->gpio, value);
233 }
234 
235 /**
236  * nvec_write_async - Asynchronously write a message to NVEC
237  * @nvec: An nvec_chip instance
238  * @data: The message data, starting with the request type
239  * @size: The size of @data
240  *
241  * Queue a single message to be transferred to the embedded controller
242  * and return immediately.
243  *
244  * Returns: 0 on success, a negative error code on failure. If a failure
245  * occured, the nvec driver may print an error.
246  */
247 int nvec_write_async(struct nvec_chip *nvec, const unsigned char *data,
248 			short size)
249 {
250 	struct nvec_msg *msg;
251 	unsigned long flags;
252 
253 	msg = nvec_msg_alloc(nvec, NVEC_MSG_TX);
254 
255 	if (msg == NULL)
256 		return -ENOMEM;
257 
258 	msg->data[0] = size;
259 	memcpy(msg->data + 1, data, size);
260 	msg->size = size + 1;
261 
262 	spin_lock_irqsave(&nvec->tx_lock, flags);
263 	list_add_tail(&msg->node, &nvec->tx_data);
264 	spin_unlock_irqrestore(&nvec->tx_lock, flags);
265 
266 	schedule_work(&nvec->tx_work);
267 
268 	return 0;
269 }
270 EXPORT_SYMBOL(nvec_write_async);
271 
272 /**
273  * nvec_write_sync - Write a message to nvec and read the response
274  * @nvec: An &struct nvec_chip
275  * @data: The data to write
276  * @size: The size of @data
277  *
278  * This is similar to nvec_write_async(), but waits for the
279  * request to be answered before returning. This function
280  * uses a mutex and can thus not be called from e.g.
281  * interrupt handlers.
282  *
283  * Returns: A pointer to the response message on success,
284  * %NULL on failure. Free with nvec_msg_free() once no longer
285  * used.
286  */
287 struct nvec_msg *nvec_write_sync(struct nvec_chip *nvec,
288 		const unsigned char *data, short size)
289 {
290 	struct nvec_msg *msg;
291 
292 	mutex_lock(&nvec->sync_write_mutex);
293 
294 	nvec->sync_write_pending = (data[1] << 8) + data[0];
295 
296 	if (nvec_write_async(nvec, data, size) < 0) {
297 		mutex_unlock(&nvec->sync_write_mutex);
298 		return NULL;
299 	}
300 
301 	dev_dbg(nvec->dev, "nvec_sync_write: 0x%04x\n",
302 					nvec->sync_write_pending);
303 	if (!(wait_for_completion_timeout(&nvec->sync_write,
304 				msecs_to_jiffies(2000)))) {
305 		dev_warn(nvec->dev, "timeout waiting for sync write to complete\n");
306 		mutex_unlock(&nvec->sync_write_mutex);
307 		return NULL;
308 	}
309 
310 	dev_dbg(nvec->dev, "nvec_sync_write: pong!\n");
311 
312 	msg = nvec->last_sync_msg;
313 
314 	mutex_unlock(&nvec->sync_write_mutex);
315 
316 	return msg;
317 }
318 EXPORT_SYMBOL(nvec_write_sync);
319 
320 /**
321  * nvec_request_master - Process outgoing messages
322  * @work: A &struct work_struct (the tx_worker member of &struct nvec_chip)
323  *
324  * Processes all outgoing requests by sending the request and awaiting the
325  * response, then continuing with the next request. Once a request has a
326  * matching response, it will be freed and removed from the list.
327  */
328 static void nvec_request_master(struct work_struct *work)
329 {
330 	struct nvec_chip *nvec = container_of(work, struct nvec_chip, tx_work);
331 	unsigned long flags;
332 	long err;
333 	struct nvec_msg *msg;
334 
335 	spin_lock_irqsave(&nvec->tx_lock, flags);
336 	while (!list_empty(&nvec->tx_data)) {
337 		msg = list_first_entry(&nvec->tx_data, struct nvec_msg, node);
338 		spin_unlock_irqrestore(&nvec->tx_lock, flags);
339 		nvec_gpio_set_value(nvec, 0);
340 		err = wait_for_completion_interruptible_timeout(
341 				&nvec->ec_transfer, msecs_to_jiffies(5000));
342 
343 		if (err == 0) {
344 			dev_warn(nvec->dev, "timeout waiting for ec transfer\n");
345 			nvec_gpio_set_value(nvec, 1);
346 			msg->pos = 0;
347 		}
348 
349 		spin_lock_irqsave(&nvec->tx_lock, flags);
350 
351 		if (err > 0) {
352 			list_del_init(&msg->node);
353 			nvec_msg_free(nvec, msg);
354 		}
355 	}
356 	spin_unlock_irqrestore(&nvec->tx_lock, flags);
357 }
358 
359 /**
360  * parse_msg - Print some information and call the notifiers on an RX message
361  * @nvec: A &struct nvec_chip
362  * @msg: A message received by @nvec
363  *
364  * Paarse some pieces of the message and then call the chain of notifiers
365  * registered via nvec_register_notifier.
366  */
367 static int parse_msg(struct nvec_chip *nvec, struct nvec_msg *msg)
368 {
369 	if ((msg->data[0] & 1 << 7) == 0 && msg->data[3]) {
370 		dev_err(nvec->dev, "ec responded %*ph\n", 4, msg->data);
371 		return -EINVAL;
372 	}
373 
374 	if ((msg->data[0] >> 7) == 1 && (msg->data[0] & 0x0f) == 5)
375 		print_hex_dump(KERN_WARNING, "ec system event ",
376 				DUMP_PREFIX_NONE, 16, 1, msg->data,
377 				msg->data[1] + 2, true);
378 
379 	atomic_notifier_call_chain(&nvec->notifier_list, msg->data[0] & 0x8f,
380 				   msg->data);
381 
382 	return 0;
383 }
384 
385 /**
386  * nvec_dispatch - Process messages received from the EC
387  * @work: A &struct work_struct (the tx_worker member of &struct nvec_chip)
388  *
389  * Process messages previously received from the EC and put into the RX
390  * queue of the &struct nvec_chip instance associated with @work.
391  */
392 static void nvec_dispatch(struct work_struct *work)
393 {
394 	struct nvec_chip *nvec = container_of(work, struct nvec_chip, rx_work);
395 	unsigned long flags;
396 	struct nvec_msg *msg;
397 
398 	spin_lock_irqsave(&nvec->rx_lock, flags);
399 	while (!list_empty(&nvec->rx_data)) {
400 		msg = list_first_entry(&nvec->rx_data, struct nvec_msg, node);
401 		list_del_init(&msg->node);
402 		spin_unlock_irqrestore(&nvec->rx_lock, flags);
403 
404 		if (nvec->sync_write_pending ==
405 		      (msg->data[2] << 8) + msg->data[0]) {
406 			dev_dbg(nvec->dev, "sync write completed!\n");
407 			nvec->sync_write_pending = 0;
408 			nvec->last_sync_msg = msg;
409 			complete(&nvec->sync_write);
410 		} else {
411 			parse_msg(nvec, msg);
412 			nvec_msg_free(nvec, msg);
413 		}
414 		spin_lock_irqsave(&nvec->rx_lock, flags);
415 	}
416 	spin_unlock_irqrestore(&nvec->rx_lock, flags);
417 }
418 
419 /**
420  * nvec_tx_completed - Complete the current transfer
421  * @nvec: A &struct nvec_chip
422  *
423  * This is called when we have received an END_TRANS on a TX transfer.
424  */
425 static void nvec_tx_completed(struct nvec_chip *nvec)
426 {
427 	/* We got an END_TRANS, let's skip this, maybe there's an event */
428 	if (nvec->tx->pos != nvec->tx->size) {
429 		dev_err(nvec->dev, "premature END_TRANS, resending\n");
430 		nvec->tx->pos = 0;
431 		nvec_gpio_set_value(nvec, 0);
432 	} else {
433 		nvec->state = 0;
434 	}
435 }
436 
437 /**
438  * nvec_rx_completed - Complete the current transfer
439  * @nvec: A &struct nvec_chip
440  *
441  * This is called when we have received an END_TRANS on a RX transfer.
442  */
443 static void nvec_rx_completed(struct nvec_chip *nvec)
444 {
445 	if (nvec->rx->pos != nvec_msg_size(nvec->rx)) {
446 		dev_err(nvec->dev, "RX incomplete: Expected %u bytes, got %u\n",
447 			   (uint) nvec_msg_size(nvec->rx),
448 			   (uint) nvec->rx->pos);
449 
450 		nvec_msg_free(nvec, nvec->rx);
451 		nvec->state = 0;
452 
453 		/* Battery quirk - Often incomplete, and likes to crash */
454 		if (nvec->rx->data[0] == NVEC_BAT)
455 			complete(&nvec->ec_transfer);
456 
457 		return;
458 	}
459 
460 	spin_lock(&nvec->rx_lock);
461 
462 	/* add the received data to the work list
463 	   and move the ring buffer pointer to the next entry */
464 	list_add_tail(&nvec->rx->node, &nvec->rx_data);
465 
466 	spin_unlock(&nvec->rx_lock);
467 
468 	nvec->state = 0;
469 
470 	if (!nvec_msg_is_event(nvec->rx))
471 		complete(&nvec->ec_transfer);
472 
473 	schedule_work(&nvec->rx_work);
474 }
475 
476 /**
477  * nvec_invalid_flags - Send an error message about invalid flags and jump
478  * @nvec: The nvec device
479  * @status: The status flags
480  * @reset: Whether we shall jump to state 0.
481  */
482 static void nvec_invalid_flags(struct nvec_chip *nvec, unsigned int status,
483 			       bool reset)
484 {
485 	dev_err(nvec->dev, "unexpected status flags 0x%02x during state %i\n",
486 		status, nvec->state);
487 	if (reset)
488 		nvec->state = 0;
489 }
490 
491 /**
492  * nvec_tx_set - Set the message to transfer (nvec->tx)
493  * @nvec: A &struct nvec_chip
494  *
495  * Gets the first entry from the tx_data list of @nvec and sets the
496  * tx member to it. If the tx_data list is empty, this uses the
497  * tx_scratch message to send a no operation message.
498  */
499 static void nvec_tx_set(struct nvec_chip *nvec)
500 {
501 	spin_lock(&nvec->tx_lock);
502 	if (list_empty(&nvec->tx_data)) {
503 		dev_err(nvec->dev, "empty tx - sending no-op\n");
504 		memcpy(nvec->tx_scratch.data, "\x02\x07\x02", 3);
505 		nvec->tx_scratch.size = 3;
506 		nvec->tx_scratch.pos = 0;
507 		nvec->tx = &nvec->tx_scratch;
508 		list_add_tail(&nvec->tx->node, &nvec->tx_data);
509 	} else {
510 		nvec->tx = list_first_entry(&nvec->tx_data, struct nvec_msg,
511 					    node);
512 		nvec->tx->pos = 0;
513 	}
514 	spin_unlock(&nvec->tx_lock);
515 
516 	dev_dbg(nvec->dev, "Sending message of length %u, command 0x%x\n",
517 		(uint)nvec->tx->size, nvec->tx->data[1]);
518 }
519 
520 /**
521  * nvec_interrupt - Interrupt handler
522  * @irq: The IRQ
523  * @dev: The nvec device
524  *
525  * Interrupt handler that fills our RX buffers and empties our TX
526  * buffers. This uses a finite state machine with ridiculous amounts
527  * of error checking, in order to be fairly reliable.
528  */
529 static irqreturn_t nvec_interrupt(int irq, void *dev)
530 {
531 	unsigned long status;
532 	unsigned int received = 0;
533 	unsigned char to_send = 0xff;
534 	const unsigned long irq_mask = I2C_SL_IRQ | END_TRANS | RCVD | RNW;
535 	struct nvec_chip *nvec = dev;
536 	unsigned int state = nvec->state;
537 
538 	status = readl(nvec->base + I2C_SL_STATUS);
539 
540 	/* Filter out some errors */
541 	if ((status & irq_mask) == 0 && (status & ~irq_mask) != 0) {
542 		dev_err(nvec->dev, "unexpected irq mask %lx\n", status);
543 		return IRQ_HANDLED;
544 	}
545 	if ((status & I2C_SL_IRQ) == 0) {
546 		dev_err(nvec->dev, "Spurious IRQ\n");
547 		return IRQ_HANDLED;
548 	}
549 
550 	/* The EC did not request a read, so it send us something, read it */
551 	if ((status & RNW) == 0) {
552 		received = readl(nvec->base + I2C_SL_RCVD);
553 		if (status & RCVD)
554 			writel(0, nvec->base + I2C_SL_RCVD);
555 	}
556 
557 	if (status == (I2C_SL_IRQ | RCVD))
558 		nvec->state = 0;
559 
560 	switch (nvec->state) {
561 	case 0:		/* Verify that its a transfer start, the rest later */
562 		if (status != (I2C_SL_IRQ | RCVD))
563 			nvec_invalid_flags(nvec, status, false);
564 		break;
565 	case 1:		/* command byte */
566 		if (status != I2C_SL_IRQ) {
567 			nvec_invalid_flags(nvec, status, true);
568 		} else {
569 			nvec->rx = nvec_msg_alloc(nvec, NVEC_MSG_RX);
570 			/* Should not happen in a normal world */
571 			if (unlikely(nvec->rx == NULL)) {
572 				nvec->state = 0;
573 				break;
574 			}
575 			nvec->rx->data[0] = received;
576 			nvec->rx->pos = 1;
577 			nvec->state = 2;
578 		}
579 		break;
580 	case 2:		/* first byte after command */
581 		if (status == (I2C_SL_IRQ | RNW | RCVD)) {
582 			udelay(33);
583 			if (nvec->rx->data[0] != 0x01) {
584 				dev_err(nvec->dev,
585 					"Read without prior read command\n");
586 				nvec->state = 0;
587 				break;
588 			}
589 			nvec_msg_free(nvec, nvec->rx);
590 			nvec->state = 3;
591 			nvec_tx_set(nvec);
592 			BUG_ON(nvec->tx->size < 1);
593 			to_send = nvec->tx->data[0];
594 			nvec->tx->pos = 1;
595 		} else if (status == (I2C_SL_IRQ)) {
596 			BUG_ON(nvec->rx == NULL);
597 			nvec->rx->data[1] = received;
598 			nvec->rx->pos = 2;
599 			nvec->state = 4;
600 		} else {
601 			nvec_invalid_flags(nvec, status, true);
602 		}
603 		break;
604 	case 3:		/* EC does a block read, we transmit data */
605 		if (status & END_TRANS) {
606 			nvec_tx_completed(nvec);
607 		} else if ((status & RNW) == 0 || (status & RCVD)) {
608 			nvec_invalid_flags(nvec, status, true);
609 		} else if (nvec->tx && nvec->tx->pos < nvec->tx->size) {
610 			to_send = nvec->tx->data[nvec->tx->pos++];
611 		} else {
612 			dev_err(nvec->dev, "tx buffer underflow on %p (%u > %u)\n",
613 				nvec->tx,
614 				(uint) (nvec->tx ? nvec->tx->pos : 0),
615 				(uint) (nvec->tx ? nvec->tx->size : 0));
616 			nvec->state = 0;
617 		}
618 		break;
619 	case 4:		/* EC does some write, we read the data */
620 		if ((status & (END_TRANS | RNW)) == END_TRANS)
621 			nvec_rx_completed(nvec);
622 		else if (status & (RNW | RCVD))
623 			nvec_invalid_flags(nvec, status, true);
624 		else if (nvec->rx && nvec->rx->pos < NVEC_MSG_SIZE)
625 			nvec->rx->data[nvec->rx->pos++] = received;
626 		else
627 			dev_err(nvec->dev,
628 				"RX buffer overflow on %p: "
629 				"Trying to write byte %u of %u\n",
630 				nvec->rx, nvec->rx->pos, NVEC_MSG_SIZE);
631 		break;
632 	default:
633 		nvec->state = 0;
634 	}
635 
636 	/* If we are told that a new transfer starts, verify it */
637 	if ((status & (RCVD | RNW)) == RCVD) {
638 		if (received != nvec->i2c_addr)
639 			dev_err(nvec->dev,
640 			"received address 0x%02x, expected 0x%02x\n",
641 			received, nvec->i2c_addr);
642 		nvec->state = 1;
643 	}
644 
645 	/* Send data if requested, but not on end of transmission */
646 	if ((status & (RNW | END_TRANS)) == RNW)
647 		writel(to_send, nvec->base + I2C_SL_RCVD);
648 
649 	/* If we have send the first byte */
650 	if (status == (I2C_SL_IRQ | RNW | RCVD))
651 		nvec_gpio_set_value(nvec, 1);
652 
653 	dev_dbg(nvec->dev,
654 		"Handled: %s 0x%02x, %s 0x%02x in state %u [%s%s%s]\n",
655 		(status & RNW) == 0 ? "received" : "R=",
656 		received,
657 		(status & (RNW | END_TRANS)) ? "sent" : "S=",
658 		to_send,
659 		state,
660 		status & END_TRANS ? " END_TRANS" : "",
661 		status & RCVD ? " RCVD" : "",
662 		status & RNW ? " RNW" : "");
663 
664 
665 	/*
666 	 * TODO: A correct fix needs to be found for this.
667 	 *
668 	 * We experience less incomplete messages with this delay than without
669 	 * it, but we don't know why. Help is appreciated.
670 	 */
671 	udelay(100);
672 
673 	return IRQ_HANDLED;
674 }
675 
676 static void tegra_init_i2c_slave(struct nvec_chip *nvec)
677 {
678 	u32 val;
679 
680 	clk_prepare_enable(nvec->i2c_clk);
681 
682 	tegra_periph_reset_assert(nvec->i2c_clk);
683 	udelay(2);
684 	tegra_periph_reset_deassert(nvec->i2c_clk);
685 
686 	val = I2C_CNFG_NEW_MASTER_SFM | I2C_CNFG_PACKET_MODE_EN |
687 	    (0x2 << I2C_CNFG_DEBOUNCE_CNT_SHIFT);
688 	writel(val, nvec->base + I2C_CNFG);
689 
690 	clk_set_rate(nvec->i2c_clk, 8 * 80000);
691 
692 	writel(I2C_SL_NEWSL, nvec->base + I2C_SL_CNFG);
693 	writel(0x1E, nvec->base + I2C_SL_DELAY_COUNT);
694 
695 	writel(nvec->i2c_addr>>1, nvec->base + I2C_SL_ADDR1);
696 	writel(0, nvec->base + I2C_SL_ADDR2);
697 
698 	enable_irq(nvec->irq);
699 
700 	clk_disable_unprepare(nvec->i2c_clk);
701 }
702 
703 #ifdef CONFIG_PM_SLEEP
704 static void nvec_disable_i2c_slave(struct nvec_chip *nvec)
705 {
706 	disable_irq(nvec->irq);
707 	writel(I2C_SL_NEWSL | I2C_SL_NACK, nvec->base + I2C_SL_CNFG);
708 	clk_disable_unprepare(nvec->i2c_clk);
709 }
710 #endif
711 
712 static void nvec_power_off(void)
713 {
714 	nvec_write_async(nvec_power_handle, EC_DISABLE_EVENT_REPORTING, 3);
715 	nvec_write_async(nvec_power_handle, "\x04\x01", 2);
716 }
717 
718 static int tegra_nvec_probe(struct platform_device *pdev)
719 {
720 	int err, ret;
721 	struct clk *i2c_clk;
722 	struct nvec_platform_data *pdata = pdev->dev.platform_data;
723 	struct nvec_chip *nvec;
724 	struct nvec_msg *msg;
725 	struct resource *res;
726 	void __iomem *base;
727 
728 	nvec = devm_kzalloc(&pdev->dev, sizeof(struct nvec_chip), GFP_KERNEL);
729 	if (nvec == NULL) {
730 		dev_err(&pdev->dev, "failed to reserve memory\n");
731 		return -ENOMEM;
732 	}
733 	platform_set_drvdata(pdev, nvec);
734 	nvec->dev = &pdev->dev;
735 
736 	if (pdata) {
737 		nvec->gpio = pdata->gpio;
738 		nvec->i2c_addr = pdata->i2c_addr;
739 	} else if (nvec->dev->of_node) {
740 		nvec->gpio = of_get_named_gpio(nvec->dev->of_node,
741 					"request-gpios", 0);
742 		if (nvec->gpio < 0) {
743 			dev_err(&pdev->dev, "no gpio specified");
744 			return -ENODEV;
745 		}
746 		if (of_property_read_u32(nvec->dev->of_node,
747 					"slave-addr", &nvec->i2c_addr)) {
748 			dev_err(&pdev->dev, "no i2c address specified");
749 			return -ENODEV;
750 		}
751 	} else {
752 		dev_err(&pdev->dev, "no platform data\n");
753 		return -ENODEV;
754 	}
755 
756 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
757 	if (!res) {
758 		dev_err(&pdev->dev, "no mem resource?\n");
759 		return -ENODEV;
760 	}
761 
762 	base = devm_request_and_ioremap(&pdev->dev, res);
763 	if (!base) {
764 		dev_err(&pdev->dev, "Can't ioremap I2C region\n");
765 		return -ENOMEM;
766 	}
767 
768 	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
769 	if (!res) {
770 		dev_err(&pdev->dev, "no irq resource?\n");
771 		return -ENODEV;
772 	}
773 
774 	i2c_clk = clk_get_sys("tegra-i2c.2", "div-clk");
775 	if (IS_ERR(i2c_clk)) {
776 		dev_err(nvec->dev, "failed to get controller clock\n");
777 		return -ENODEV;
778 	}
779 
780 	nvec->base = base;
781 	nvec->irq = res->start;
782 	nvec->i2c_clk = i2c_clk;
783 	nvec->rx = &nvec->msg_pool[0];
784 
785 	ATOMIC_INIT_NOTIFIER_HEAD(&nvec->notifier_list);
786 
787 	init_completion(&nvec->sync_write);
788 	init_completion(&nvec->ec_transfer);
789 	mutex_init(&nvec->sync_write_mutex);
790 	spin_lock_init(&nvec->tx_lock);
791 	spin_lock_init(&nvec->rx_lock);
792 	INIT_LIST_HEAD(&nvec->rx_data);
793 	INIT_LIST_HEAD(&nvec->tx_data);
794 	INIT_WORK(&nvec->rx_work, nvec_dispatch);
795 	INIT_WORK(&nvec->tx_work, nvec_request_master);
796 
797 	err = devm_gpio_request_one(&pdev->dev, nvec->gpio, GPIOF_OUT_INIT_HIGH,
798 					"nvec gpio");
799 	if (err < 0) {
800 		dev_err(nvec->dev, "couldn't request gpio\n");
801 		return -ENODEV;
802 	}
803 
804 	err = devm_request_irq(&pdev->dev, nvec->irq, nvec_interrupt, 0,
805 				"nvec", nvec);
806 	if (err) {
807 		dev_err(nvec->dev, "couldn't request irq\n");
808 		return -ENODEV;
809 	}
810 	disable_irq(nvec->irq);
811 
812 	tegra_init_i2c_slave(nvec);
813 
814 	clk_prepare_enable(i2c_clk);
815 
816 
817 	/* enable event reporting */
818 	nvec_write_async(nvec, EC_ENABLE_EVENT_REPORTING,
819 			 sizeof(EC_ENABLE_EVENT_REPORTING));
820 
821 	nvec->nvec_status_notifier.notifier_call = nvec_status_notifier;
822 	nvec_register_notifier(nvec, &nvec->nvec_status_notifier, 0);
823 
824 	nvec_power_handle = nvec;
825 	pm_power_off = nvec_power_off;
826 
827 	/* Get Firmware Version */
828 	msg = nvec_write_sync(nvec, EC_GET_FIRMWARE_VERSION,
829 		sizeof(EC_GET_FIRMWARE_VERSION));
830 
831 	if (msg) {
832 		dev_warn(nvec->dev, "ec firmware version %02x.%02x.%02x / %02x\n",
833 			msg->data[4], msg->data[5], msg->data[6], msg->data[7]);
834 
835 		nvec_msg_free(nvec, msg);
836 	}
837 
838 	ret = mfd_add_devices(nvec->dev, -1, nvec_devices,
839 			      ARRAY_SIZE(nvec_devices), base, 0, NULL);
840 	if (ret)
841 		dev_err(nvec->dev, "error adding subdevices\n");
842 
843 	/* unmute speakers? */
844 	nvec_write_async(nvec, "\x0d\x10\x59\x95", 4);
845 
846 	/* enable lid switch event */
847 	nvec_write_async(nvec, "\x01\x01\x01\x00\x00\x02\x00", 7);
848 
849 	/* enable power button event */
850 	nvec_write_async(nvec, "\x01\x01\x01\x00\x00\x80\x00", 7);
851 
852 	return 0;
853 }
854 
855 static int tegra_nvec_remove(struct platform_device *pdev)
856 {
857 	struct nvec_chip *nvec = platform_get_drvdata(pdev);
858 
859 	nvec_write_async(nvec, EC_DISABLE_EVENT_REPORTING, 3);
860 	mfd_remove_devices(nvec->dev);
861 	cancel_work_sync(&nvec->rx_work);
862 	cancel_work_sync(&nvec->tx_work);
863 
864 	return 0;
865 }
866 
867 #ifdef CONFIG_PM_SLEEP
868 static int nvec_suspend(struct device *dev)
869 {
870 	struct platform_device *pdev = to_platform_device(dev);
871 	struct nvec_chip *nvec = platform_get_drvdata(pdev);
872 	struct nvec_msg *msg;
873 
874 	dev_dbg(nvec->dev, "suspending\n");
875 
876 	/* keep these sync or you'll break suspend */
877 	msg = nvec_write_sync(nvec, EC_DISABLE_EVENT_REPORTING, 3);
878 	nvec_msg_free(nvec, msg);
879 	msg = nvec_write_sync(nvec, "\x04\x02", 2);
880 	nvec_msg_free(nvec, msg);
881 
882 	nvec_disable_i2c_slave(nvec);
883 
884 	return 0;
885 }
886 
887 static int nvec_resume(struct device *dev)
888 {
889 	struct platform_device *pdev = to_platform_device(dev);
890 	struct nvec_chip *nvec = platform_get_drvdata(pdev);
891 
892 	dev_dbg(nvec->dev, "resuming\n");
893 	tegra_init_i2c_slave(nvec);
894 	nvec_write_async(nvec, EC_ENABLE_EVENT_REPORTING, 3);
895 
896 	return 0;
897 }
898 #endif
899 
900 static const SIMPLE_DEV_PM_OPS(nvec_pm_ops, nvec_suspend, nvec_resume);
901 
902 /* Match table for of_platform binding */
903 static const struct of_device_id nvidia_nvec_of_match[] = {
904 	{ .compatible = "nvidia,nvec", },
905 	{},
906 };
907 MODULE_DEVICE_TABLE(of, nvidia_nvec_of_match);
908 
909 static struct platform_driver nvec_device_driver = {
910 	.probe   = tegra_nvec_probe,
911 	.remove  = tegra_nvec_remove,
912 	.driver  = {
913 		.name = "nvec",
914 		.owner = THIS_MODULE,
915 		.pm = &nvec_pm_ops,
916 		.of_match_table = nvidia_nvec_of_match,
917 	}
918 };
919 
920 module_platform_driver(nvec_device_driver);
921 
922 MODULE_ALIAS("platform:nvec");
923 MODULE_DESCRIPTION("NVIDIA compliant embedded controller interface");
924 MODULE_AUTHOR("Marc Dietrich <[email protected]>");
925 MODULE_LICENSE("GPL");
926