1 /* 2 * RTC subsystem, interface functions 3 * 4 * Copyright (C) 2005 Tower Technologies 5 * Author: Alessandro Zummo <[email protected]> 6 * 7 * based on arch/arm/common/rtctime.c 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 14 #include <linux/rtc.h> 15 #include <linux/sched.h> 16 #include <linux/module.h> 17 #include <linux/log2.h> 18 #include <linux/workqueue.h> 19 20 #define CREATE_TRACE_POINTS 21 #include <trace/events/rtc.h> 22 23 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer); 24 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer); 25 26 static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm) 27 { 28 time64_t secs; 29 30 if (!rtc->offset_secs) 31 return; 32 33 secs = rtc_tm_to_time64(tm); 34 35 /* 36 * Since the reading time values from RTC device are always in the RTC 37 * original valid range, but we need to skip the overlapped region 38 * between expanded range and original range, which is no need to add 39 * the offset. 40 */ 41 if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) || 42 (rtc->start_secs < rtc->range_min && 43 secs <= (rtc->start_secs + rtc->range_max - rtc->range_min))) 44 return; 45 46 rtc_time64_to_tm(secs + rtc->offset_secs, tm); 47 } 48 49 static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm) 50 { 51 time64_t secs; 52 53 if (!rtc->offset_secs) 54 return; 55 56 secs = rtc_tm_to_time64(tm); 57 58 /* 59 * If the setting time values are in the valid range of RTC hardware 60 * device, then no need to subtract the offset when setting time to RTC 61 * device. Otherwise we need to subtract the offset to make the time 62 * values are valid for RTC hardware device. 63 */ 64 if (secs >= rtc->range_min && secs <= rtc->range_max) 65 return; 66 67 rtc_time64_to_tm(secs - rtc->offset_secs, tm); 68 } 69 70 static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm) 71 { 72 if (rtc->range_min != rtc->range_max) { 73 time64_t time = rtc_tm_to_time64(tm); 74 time64_t range_min = rtc->set_start_time ? rtc->start_secs : 75 rtc->range_min; 76 time64_t range_max = rtc->set_start_time ? 77 (rtc->start_secs + rtc->range_max - rtc->range_min) : 78 rtc->range_max; 79 80 if (time < range_min || time > range_max) 81 return -ERANGE; 82 } 83 84 return 0; 85 } 86 87 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm) 88 { 89 int err; 90 if (!rtc->ops) 91 err = -ENODEV; 92 else if (!rtc->ops->read_time) 93 err = -EINVAL; 94 else { 95 memset(tm, 0, sizeof(struct rtc_time)); 96 err = rtc->ops->read_time(rtc->dev.parent, tm); 97 if (err < 0) { 98 dev_dbg(&rtc->dev, "read_time: fail to read: %d\n", 99 err); 100 return err; 101 } 102 103 rtc_add_offset(rtc, tm); 104 105 err = rtc_valid_tm(tm); 106 if (err < 0) 107 dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n"); 108 } 109 return err; 110 } 111 112 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm) 113 { 114 int err; 115 116 err = mutex_lock_interruptible(&rtc->ops_lock); 117 if (err) 118 return err; 119 120 err = __rtc_read_time(rtc, tm); 121 mutex_unlock(&rtc->ops_lock); 122 123 trace_rtc_read_time(rtc_tm_to_time64(tm), err); 124 return err; 125 } 126 EXPORT_SYMBOL_GPL(rtc_read_time); 127 128 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm) 129 { 130 int err; 131 132 err = rtc_valid_tm(tm); 133 if (err != 0) 134 return err; 135 136 err = rtc_valid_range(rtc, tm); 137 if (err) 138 return err; 139 140 rtc_subtract_offset(rtc, tm); 141 142 err = mutex_lock_interruptible(&rtc->ops_lock); 143 if (err) 144 return err; 145 146 if (!rtc->ops) 147 err = -ENODEV; 148 else if (rtc->ops->set_time) 149 err = rtc->ops->set_time(rtc->dev.parent, tm); 150 else if (rtc->ops->set_mmss64) { 151 time64_t secs64 = rtc_tm_to_time64(tm); 152 153 err = rtc->ops->set_mmss64(rtc->dev.parent, secs64); 154 } else if (rtc->ops->set_mmss) { 155 time64_t secs64 = rtc_tm_to_time64(tm); 156 err = rtc->ops->set_mmss(rtc->dev.parent, secs64); 157 } else 158 err = -EINVAL; 159 160 pm_stay_awake(rtc->dev.parent); 161 mutex_unlock(&rtc->ops_lock); 162 /* A timer might have just expired */ 163 schedule_work(&rtc->irqwork); 164 165 trace_rtc_set_time(rtc_tm_to_time64(tm), err); 166 return err; 167 } 168 EXPORT_SYMBOL_GPL(rtc_set_time); 169 170 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 171 { 172 int err; 173 174 err = mutex_lock_interruptible(&rtc->ops_lock); 175 if (err) 176 return err; 177 178 if (rtc->ops == NULL) 179 err = -ENODEV; 180 else if (!rtc->ops->read_alarm) 181 err = -EINVAL; 182 else { 183 alarm->enabled = 0; 184 alarm->pending = 0; 185 alarm->time.tm_sec = -1; 186 alarm->time.tm_min = -1; 187 alarm->time.tm_hour = -1; 188 alarm->time.tm_mday = -1; 189 alarm->time.tm_mon = -1; 190 alarm->time.tm_year = -1; 191 alarm->time.tm_wday = -1; 192 alarm->time.tm_yday = -1; 193 alarm->time.tm_isdst = -1; 194 err = rtc->ops->read_alarm(rtc->dev.parent, alarm); 195 } 196 197 mutex_unlock(&rtc->ops_lock); 198 199 trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err); 200 return err; 201 } 202 203 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 204 { 205 int err; 206 struct rtc_time before, now; 207 int first_time = 1; 208 time64_t t_now, t_alm; 209 enum { none, day, month, year } missing = none; 210 unsigned days; 211 212 /* The lower level RTC driver may return -1 in some fields, 213 * creating invalid alarm->time values, for reasons like: 214 * 215 * - The hardware may not be capable of filling them in; 216 * many alarms match only on time-of-day fields, not 217 * day/month/year calendar data. 218 * 219 * - Some hardware uses illegal values as "wildcard" match 220 * values, which non-Linux firmware (like a BIOS) may try 221 * to set up as e.g. "alarm 15 minutes after each hour". 222 * Linux uses only oneshot alarms. 223 * 224 * When we see that here, we deal with it by using values from 225 * a current RTC timestamp for any missing (-1) values. The 226 * RTC driver prevents "periodic alarm" modes. 227 * 228 * But this can be racey, because some fields of the RTC timestamp 229 * may have wrapped in the interval since we read the RTC alarm, 230 * which would lead to us inserting inconsistent values in place 231 * of the -1 fields. 232 * 233 * Reading the alarm and timestamp in the reverse sequence 234 * would have the same race condition, and not solve the issue. 235 * 236 * So, we must first read the RTC timestamp, 237 * then read the RTC alarm value, 238 * and then read a second RTC timestamp. 239 * 240 * If any fields of the second timestamp have changed 241 * when compared with the first timestamp, then we know 242 * our timestamp may be inconsistent with that used by 243 * the low-level rtc_read_alarm_internal() function. 244 * 245 * So, when the two timestamps disagree, we just loop and do 246 * the process again to get a fully consistent set of values. 247 * 248 * This could all instead be done in the lower level driver, 249 * but since more than one lower level RTC implementation needs it, 250 * then it's probably best best to do it here instead of there.. 251 */ 252 253 /* Get the "before" timestamp */ 254 err = rtc_read_time(rtc, &before); 255 if (err < 0) 256 return err; 257 do { 258 if (!first_time) 259 memcpy(&before, &now, sizeof(struct rtc_time)); 260 first_time = 0; 261 262 /* get the RTC alarm values, which may be incomplete */ 263 err = rtc_read_alarm_internal(rtc, alarm); 264 if (err) 265 return err; 266 267 /* full-function RTCs won't have such missing fields */ 268 if (rtc_valid_tm(&alarm->time) == 0) { 269 rtc_add_offset(rtc, &alarm->time); 270 return 0; 271 } 272 273 /* get the "after" timestamp, to detect wrapped fields */ 274 err = rtc_read_time(rtc, &now); 275 if (err < 0) 276 return err; 277 278 /* note that tm_sec is a "don't care" value here: */ 279 } while ( before.tm_min != now.tm_min 280 || before.tm_hour != now.tm_hour 281 || before.tm_mon != now.tm_mon 282 || before.tm_year != now.tm_year); 283 284 /* Fill in the missing alarm fields using the timestamp; we 285 * know there's at least one since alarm->time is invalid. 286 */ 287 if (alarm->time.tm_sec == -1) 288 alarm->time.tm_sec = now.tm_sec; 289 if (alarm->time.tm_min == -1) 290 alarm->time.tm_min = now.tm_min; 291 if (alarm->time.tm_hour == -1) 292 alarm->time.tm_hour = now.tm_hour; 293 294 /* For simplicity, only support date rollover for now */ 295 if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) { 296 alarm->time.tm_mday = now.tm_mday; 297 missing = day; 298 } 299 if ((unsigned)alarm->time.tm_mon >= 12) { 300 alarm->time.tm_mon = now.tm_mon; 301 if (missing == none) 302 missing = month; 303 } 304 if (alarm->time.tm_year == -1) { 305 alarm->time.tm_year = now.tm_year; 306 if (missing == none) 307 missing = year; 308 } 309 310 /* Can't proceed if alarm is still invalid after replacing 311 * missing fields. 312 */ 313 err = rtc_valid_tm(&alarm->time); 314 if (err) 315 goto done; 316 317 /* with luck, no rollover is needed */ 318 t_now = rtc_tm_to_time64(&now); 319 t_alm = rtc_tm_to_time64(&alarm->time); 320 if (t_now < t_alm) 321 goto done; 322 323 switch (missing) { 324 325 /* 24 hour rollover ... if it's now 10am Monday, an alarm that 326 * that will trigger at 5am will do so at 5am Tuesday, which 327 * could also be in the next month or year. This is a common 328 * case, especially for PCs. 329 */ 330 case day: 331 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day"); 332 t_alm += 24 * 60 * 60; 333 rtc_time64_to_tm(t_alm, &alarm->time); 334 break; 335 336 /* Month rollover ... if it's the 31th, an alarm on the 3rd will 337 * be next month. An alarm matching on the 30th, 29th, or 28th 338 * may end up in the month after that! Many newer PCs support 339 * this type of alarm. 340 */ 341 case month: 342 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month"); 343 do { 344 if (alarm->time.tm_mon < 11) 345 alarm->time.tm_mon++; 346 else { 347 alarm->time.tm_mon = 0; 348 alarm->time.tm_year++; 349 } 350 days = rtc_month_days(alarm->time.tm_mon, 351 alarm->time.tm_year); 352 } while (days < alarm->time.tm_mday); 353 break; 354 355 /* Year rollover ... easy except for leap years! */ 356 case year: 357 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year"); 358 do { 359 alarm->time.tm_year++; 360 } while (!is_leap_year(alarm->time.tm_year + 1900) 361 && rtc_valid_tm(&alarm->time) != 0); 362 break; 363 364 default: 365 dev_warn(&rtc->dev, "alarm rollover not handled\n"); 366 } 367 368 err = rtc_valid_tm(&alarm->time); 369 370 done: 371 if (err) 372 dev_warn(&rtc->dev, "invalid alarm value: %ptR\n", &alarm->time); 373 374 return err; 375 } 376 377 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 378 { 379 int err; 380 381 err = mutex_lock_interruptible(&rtc->ops_lock); 382 if (err) 383 return err; 384 if (rtc->ops == NULL) 385 err = -ENODEV; 386 else if (!rtc->ops->read_alarm) 387 err = -EINVAL; 388 else { 389 memset(alarm, 0, sizeof(struct rtc_wkalrm)); 390 alarm->enabled = rtc->aie_timer.enabled; 391 alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires); 392 } 393 mutex_unlock(&rtc->ops_lock); 394 395 trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err); 396 return err; 397 } 398 EXPORT_SYMBOL_GPL(rtc_read_alarm); 399 400 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 401 { 402 struct rtc_time tm; 403 time64_t now, scheduled; 404 int err; 405 406 err = rtc_valid_tm(&alarm->time); 407 if (err) 408 return err; 409 410 scheduled = rtc_tm_to_time64(&alarm->time); 411 412 /* Make sure we're not setting alarms in the past */ 413 err = __rtc_read_time(rtc, &tm); 414 if (err) 415 return err; 416 now = rtc_tm_to_time64(&tm); 417 if (scheduled <= now) 418 return -ETIME; 419 /* 420 * XXX - We just checked to make sure the alarm time is not 421 * in the past, but there is still a race window where if 422 * the is alarm set for the next second and the second ticks 423 * over right here, before we set the alarm. 424 */ 425 426 rtc_subtract_offset(rtc, &alarm->time); 427 428 if (!rtc->ops) 429 err = -ENODEV; 430 else if (!rtc->ops->set_alarm) 431 err = -EINVAL; 432 else 433 err = rtc->ops->set_alarm(rtc->dev.parent, alarm); 434 435 trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err); 436 return err; 437 } 438 439 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 440 { 441 int err; 442 443 if (!rtc->ops) 444 return -ENODEV; 445 else if (!rtc->ops->set_alarm) 446 return -EINVAL; 447 448 err = rtc_valid_tm(&alarm->time); 449 if (err != 0) 450 return err; 451 452 err = rtc_valid_range(rtc, &alarm->time); 453 if (err) 454 return err; 455 456 err = mutex_lock_interruptible(&rtc->ops_lock); 457 if (err) 458 return err; 459 if (rtc->aie_timer.enabled) 460 rtc_timer_remove(rtc, &rtc->aie_timer); 461 462 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time); 463 rtc->aie_timer.period = 0; 464 if (alarm->enabled) 465 err = rtc_timer_enqueue(rtc, &rtc->aie_timer); 466 467 mutex_unlock(&rtc->ops_lock); 468 469 return err; 470 } 471 EXPORT_SYMBOL_GPL(rtc_set_alarm); 472 473 /* Called once per device from rtc_device_register */ 474 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 475 { 476 int err; 477 struct rtc_time now; 478 479 err = rtc_valid_tm(&alarm->time); 480 if (err != 0) 481 return err; 482 483 err = rtc_read_time(rtc, &now); 484 if (err) 485 return err; 486 487 err = mutex_lock_interruptible(&rtc->ops_lock); 488 if (err) 489 return err; 490 491 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time); 492 rtc->aie_timer.period = 0; 493 494 /* Alarm has to be enabled & in the future for us to enqueue it */ 495 if (alarm->enabled && (rtc_tm_to_ktime(now) < 496 rtc->aie_timer.node.expires)) { 497 498 rtc->aie_timer.enabled = 1; 499 timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node); 500 trace_rtc_timer_enqueue(&rtc->aie_timer); 501 } 502 mutex_unlock(&rtc->ops_lock); 503 return err; 504 } 505 EXPORT_SYMBOL_GPL(rtc_initialize_alarm); 506 507 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled) 508 { 509 int err = mutex_lock_interruptible(&rtc->ops_lock); 510 if (err) 511 return err; 512 513 if (rtc->aie_timer.enabled != enabled) { 514 if (enabled) 515 err = rtc_timer_enqueue(rtc, &rtc->aie_timer); 516 else 517 rtc_timer_remove(rtc, &rtc->aie_timer); 518 } 519 520 if (err) 521 /* nothing */; 522 else if (!rtc->ops) 523 err = -ENODEV; 524 else if (!rtc->ops->alarm_irq_enable) 525 err = -EINVAL; 526 else 527 err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled); 528 529 mutex_unlock(&rtc->ops_lock); 530 531 trace_rtc_alarm_irq_enable(enabled, err); 532 return err; 533 } 534 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable); 535 536 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled) 537 { 538 int err = mutex_lock_interruptible(&rtc->ops_lock); 539 if (err) 540 return err; 541 542 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL 543 if (enabled == 0 && rtc->uie_irq_active) { 544 mutex_unlock(&rtc->ops_lock); 545 return rtc_dev_update_irq_enable_emul(rtc, 0); 546 } 547 #endif 548 /* make sure we're changing state */ 549 if (rtc->uie_rtctimer.enabled == enabled) 550 goto out; 551 552 if (rtc->uie_unsupported) { 553 err = -EINVAL; 554 goto out; 555 } 556 557 if (enabled) { 558 struct rtc_time tm; 559 ktime_t now, onesec; 560 561 __rtc_read_time(rtc, &tm); 562 onesec = ktime_set(1, 0); 563 now = rtc_tm_to_ktime(tm); 564 rtc->uie_rtctimer.node.expires = ktime_add(now, onesec); 565 rtc->uie_rtctimer.period = ktime_set(1, 0); 566 err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer); 567 } else 568 rtc_timer_remove(rtc, &rtc->uie_rtctimer); 569 570 out: 571 mutex_unlock(&rtc->ops_lock); 572 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL 573 /* 574 * Enable emulation if the driver did not provide 575 * the update_irq_enable function pointer or if returned 576 * -EINVAL to signal that it has been configured without 577 * interrupts or that are not available at the moment. 578 */ 579 if (err == -EINVAL) 580 err = rtc_dev_update_irq_enable_emul(rtc, enabled); 581 #endif 582 return err; 583 584 } 585 EXPORT_SYMBOL_GPL(rtc_update_irq_enable); 586 587 588 /** 589 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook 590 * @rtc: pointer to the rtc device 591 * 592 * This function is called when an AIE, UIE or PIE mode interrupt 593 * has occurred (or been emulated). 594 * 595 */ 596 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode) 597 { 598 unsigned long flags; 599 600 /* mark one irq of the appropriate mode */ 601 spin_lock_irqsave(&rtc->irq_lock, flags); 602 rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode); 603 spin_unlock_irqrestore(&rtc->irq_lock, flags); 604 605 wake_up_interruptible(&rtc->irq_queue); 606 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN); 607 } 608 609 610 /** 611 * rtc_aie_update_irq - AIE mode rtctimer hook 612 * @private: pointer to the rtc_device 613 * 614 * This functions is called when the aie_timer expires. 615 */ 616 void rtc_aie_update_irq(void *private) 617 { 618 struct rtc_device *rtc = (struct rtc_device *)private; 619 rtc_handle_legacy_irq(rtc, 1, RTC_AF); 620 } 621 622 623 /** 624 * rtc_uie_update_irq - UIE mode rtctimer hook 625 * @private: pointer to the rtc_device 626 * 627 * This functions is called when the uie_timer expires. 628 */ 629 void rtc_uie_update_irq(void *private) 630 { 631 struct rtc_device *rtc = (struct rtc_device *)private; 632 rtc_handle_legacy_irq(rtc, 1, RTC_UF); 633 } 634 635 636 /** 637 * rtc_pie_update_irq - PIE mode hrtimer hook 638 * @timer: pointer to the pie mode hrtimer 639 * 640 * This function is used to emulate PIE mode interrupts 641 * using an hrtimer. This function is called when the periodic 642 * hrtimer expires. 643 */ 644 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer) 645 { 646 struct rtc_device *rtc; 647 ktime_t period; 648 int count; 649 rtc = container_of(timer, struct rtc_device, pie_timer); 650 651 period = NSEC_PER_SEC / rtc->irq_freq; 652 count = hrtimer_forward_now(timer, period); 653 654 rtc_handle_legacy_irq(rtc, count, RTC_PF); 655 656 return HRTIMER_RESTART; 657 } 658 659 /** 660 * rtc_update_irq - Triggered when a RTC interrupt occurs. 661 * @rtc: the rtc device 662 * @num: how many irqs are being reported (usually one) 663 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF 664 * Context: any 665 */ 666 void rtc_update_irq(struct rtc_device *rtc, 667 unsigned long num, unsigned long events) 668 { 669 if (IS_ERR_OR_NULL(rtc)) 670 return; 671 672 pm_stay_awake(rtc->dev.parent); 673 schedule_work(&rtc->irqwork); 674 } 675 EXPORT_SYMBOL_GPL(rtc_update_irq); 676 677 static int __rtc_match(struct device *dev, const void *data) 678 { 679 const char *name = data; 680 681 if (strcmp(dev_name(dev), name) == 0) 682 return 1; 683 return 0; 684 } 685 686 struct rtc_device *rtc_class_open(const char *name) 687 { 688 struct device *dev; 689 struct rtc_device *rtc = NULL; 690 691 dev = class_find_device(rtc_class, NULL, name, __rtc_match); 692 if (dev) 693 rtc = to_rtc_device(dev); 694 695 if (rtc) { 696 if (!try_module_get(rtc->owner)) { 697 put_device(dev); 698 rtc = NULL; 699 } 700 } 701 702 return rtc; 703 } 704 EXPORT_SYMBOL_GPL(rtc_class_open); 705 706 void rtc_class_close(struct rtc_device *rtc) 707 { 708 module_put(rtc->owner); 709 put_device(&rtc->dev); 710 } 711 EXPORT_SYMBOL_GPL(rtc_class_close); 712 713 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled) 714 { 715 /* 716 * We always cancel the timer here first, because otherwise 717 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK); 718 * when we manage to start the timer before the callback 719 * returns HRTIMER_RESTART. 720 * 721 * We cannot use hrtimer_cancel() here as a running callback 722 * could be blocked on rtc->irq_task_lock and hrtimer_cancel() 723 * would spin forever. 724 */ 725 if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0) 726 return -1; 727 728 if (enabled) { 729 ktime_t period = NSEC_PER_SEC / rtc->irq_freq; 730 731 hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL); 732 } 733 return 0; 734 } 735 736 /** 737 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs 738 * @rtc: the rtc device 739 * @enabled: true to enable periodic IRQs 740 * Context: any 741 * 742 * Note that rtc_irq_set_freq() should previously have been used to 743 * specify the desired frequency of periodic IRQ. 744 */ 745 int rtc_irq_set_state(struct rtc_device *rtc, int enabled) 746 { 747 int err = 0; 748 749 while (rtc_update_hrtimer(rtc, enabled) < 0) 750 cpu_relax(); 751 752 rtc->pie_enabled = enabled; 753 754 trace_rtc_irq_set_state(enabled, err); 755 return err; 756 } 757 758 /** 759 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ 760 * @rtc: the rtc device 761 * @freq: positive frequency 762 * Context: any 763 * 764 * Note that rtc_irq_set_state() is used to enable or disable the 765 * periodic IRQs. 766 */ 767 int rtc_irq_set_freq(struct rtc_device *rtc, int freq) 768 { 769 int err = 0; 770 771 if (freq <= 0 || freq > RTC_MAX_FREQ) 772 return -EINVAL; 773 774 rtc->irq_freq = freq; 775 while (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) 776 cpu_relax(); 777 778 trace_rtc_irq_set_freq(freq, err); 779 return err; 780 } 781 782 /** 783 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue 784 * @rtc rtc device 785 * @timer timer being added. 786 * 787 * Enqueues a timer onto the rtc devices timerqueue and sets 788 * the next alarm event appropriately. 789 * 790 * Sets the enabled bit on the added timer. 791 * 792 * Must hold ops_lock for proper serialization of timerqueue 793 */ 794 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer) 795 { 796 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue); 797 struct rtc_time tm; 798 ktime_t now; 799 800 timer->enabled = 1; 801 __rtc_read_time(rtc, &tm); 802 now = rtc_tm_to_ktime(tm); 803 804 /* Skip over expired timers */ 805 while (next) { 806 if (next->expires >= now) 807 break; 808 next = timerqueue_iterate_next(next); 809 } 810 811 timerqueue_add(&rtc->timerqueue, &timer->node); 812 trace_rtc_timer_enqueue(timer); 813 if (!next || ktime_before(timer->node.expires, next->expires)) { 814 struct rtc_wkalrm alarm; 815 int err; 816 alarm.time = rtc_ktime_to_tm(timer->node.expires); 817 alarm.enabled = 1; 818 err = __rtc_set_alarm(rtc, &alarm); 819 if (err == -ETIME) { 820 pm_stay_awake(rtc->dev.parent); 821 schedule_work(&rtc->irqwork); 822 } else if (err) { 823 timerqueue_del(&rtc->timerqueue, &timer->node); 824 trace_rtc_timer_dequeue(timer); 825 timer->enabled = 0; 826 return err; 827 } 828 } 829 return 0; 830 } 831 832 static void rtc_alarm_disable(struct rtc_device *rtc) 833 { 834 if (!rtc->ops || !rtc->ops->alarm_irq_enable) 835 return; 836 837 rtc->ops->alarm_irq_enable(rtc->dev.parent, false); 838 trace_rtc_alarm_irq_enable(0, 0); 839 } 840 841 /** 842 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue 843 * @rtc rtc device 844 * @timer timer being removed. 845 * 846 * Removes a timer onto the rtc devices timerqueue and sets 847 * the next alarm event appropriately. 848 * 849 * Clears the enabled bit on the removed timer. 850 * 851 * Must hold ops_lock for proper serialization of timerqueue 852 */ 853 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer) 854 { 855 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue); 856 timerqueue_del(&rtc->timerqueue, &timer->node); 857 trace_rtc_timer_dequeue(timer); 858 timer->enabled = 0; 859 if (next == &timer->node) { 860 struct rtc_wkalrm alarm; 861 int err; 862 next = timerqueue_getnext(&rtc->timerqueue); 863 if (!next) { 864 rtc_alarm_disable(rtc); 865 return; 866 } 867 alarm.time = rtc_ktime_to_tm(next->expires); 868 alarm.enabled = 1; 869 err = __rtc_set_alarm(rtc, &alarm); 870 if (err == -ETIME) { 871 pm_stay_awake(rtc->dev.parent); 872 schedule_work(&rtc->irqwork); 873 } 874 } 875 } 876 877 /** 878 * rtc_timer_do_work - Expires rtc timers 879 * @rtc rtc device 880 * @timer timer being removed. 881 * 882 * Expires rtc timers. Reprograms next alarm event if needed. 883 * Called via worktask. 884 * 885 * Serializes access to timerqueue via ops_lock mutex 886 */ 887 void rtc_timer_do_work(struct work_struct *work) 888 { 889 struct rtc_timer *timer; 890 struct timerqueue_node *next; 891 ktime_t now; 892 struct rtc_time tm; 893 894 struct rtc_device *rtc = 895 container_of(work, struct rtc_device, irqwork); 896 897 mutex_lock(&rtc->ops_lock); 898 again: 899 __rtc_read_time(rtc, &tm); 900 now = rtc_tm_to_ktime(tm); 901 while ((next = timerqueue_getnext(&rtc->timerqueue))) { 902 if (next->expires > now) 903 break; 904 905 /* expire timer */ 906 timer = container_of(next, struct rtc_timer, node); 907 timerqueue_del(&rtc->timerqueue, &timer->node); 908 trace_rtc_timer_dequeue(timer); 909 timer->enabled = 0; 910 if (timer->func) 911 timer->func(timer->private_data); 912 913 trace_rtc_timer_fired(timer); 914 /* Re-add/fwd periodic timers */ 915 if (ktime_to_ns(timer->period)) { 916 timer->node.expires = ktime_add(timer->node.expires, 917 timer->period); 918 timer->enabled = 1; 919 timerqueue_add(&rtc->timerqueue, &timer->node); 920 trace_rtc_timer_enqueue(timer); 921 } 922 } 923 924 /* Set next alarm */ 925 if (next) { 926 struct rtc_wkalrm alarm; 927 int err; 928 int retry = 3; 929 930 alarm.time = rtc_ktime_to_tm(next->expires); 931 alarm.enabled = 1; 932 reprogram: 933 err = __rtc_set_alarm(rtc, &alarm); 934 if (err == -ETIME) 935 goto again; 936 else if (err) { 937 if (retry-- > 0) 938 goto reprogram; 939 940 timer = container_of(next, struct rtc_timer, node); 941 timerqueue_del(&rtc->timerqueue, &timer->node); 942 trace_rtc_timer_dequeue(timer); 943 timer->enabled = 0; 944 dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err); 945 goto again; 946 } 947 } else 948 rtc_alarm_disable(rtc); 949 950 pm_relax(rtc->dev.parent); 951 mutex_unlock(&rtc->ops_lock); 952 } 953 954 955 /* rtc_timer_init - Initializes an rtc_timer 956 * @timer: timer to be intiialized 957 * @f: function pointer to be called when timer fires 958 * @data: private data passed to function pointer 959 * 960 * Kernel interface to initializing an rtc_timer. 961 */ 962 void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data) 963 { 964 timerqueue_init(&timer->node); 965 timer->enabled = 0; 966 timer->func = f; 967 timer->private_data = data; 968 } 969 970 /* rtc_timer_start - Sets an rtc_timer to fire in the future 971 * @ rtc: rtc device to be used 972 * @ timer: timer being set 973 * @ expires: time at which to expire the timer 974 * @ period: period that the timer will recur 975 * 976 * Kernel interface to set an rtc_timer 977 */ 978 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer, 979 ktime_t expires, ktime_t period) 980 { 981 int ret = 0; 982 mutex_lock(&rtc->ops_lock); 983 if (timer->enabled) 984 rtc_timer_remove(rtc, timer); 985 986 timer->node.expires = expires; 987 timer->period = period; 988 989 ret = rtc_timer_enqueue(rtc, timer); 990 991 mutex_unlock(&rtc->ops_lock); 992 return ret; 993 } 994 995 /* rtc_timer_cancel - Stops an rtc_timer 996 * @ rtc: rtc device to be used 997 * @ timer: timer being set 998 * 999 * Kernel interface to cancel an rtc_timer 1000 */ 1001 void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer) 1002 { 1003 mutex_lock(&rtc->ops_lock); 1004 if (timer->enabled) 1005 rtc_timer_remove(rtc, timer); 1006 mutex_unlock(&rtc->ops_lock); 1007 } 1008 1009 /** 1010 * rtc_read_offset - Read the amount of rtc offset in parts per billion 1011 * @ rtc: rtc device to be used 1012 * @ offset: the offset in parts per billion 1013 * 1014 * see below for details. 1015 * 1016 * Kernel interface to read rtc clock offset 1017 * Returns 0 on success, or a negative number on error. 1018 * If read_offset() is not implemented for the rtc, return -EINVAL 1019 */ 1020 int rtc_read_offset(struct rtc_device *rtc, long *offset) 1021 { 1022 int ret; 1023 1024 if (!rtc->ops) 1025 return -ENODEV; 1026 1027 if (!rtc->ops->read_offset) 1028 return -EINVAL; 1029 1030 mutex_lock(&rtc->ops_lock); 1031 ret = rtc->ops->read_offset(rtc->dev.parent, offset); 1032 mutex_unlock(&rtc->ops_lock); 1033 1034 trace_rtc_read_offset(*offset, ret); 1035 return ret; 1036 } 1037 1038 /** 1039 * rtc_set_offset - Adjusts the duration of the average second 1040 * @ rtc: rtc device to be used 1041 * @ offset: the offset in parts per billion 1042 * 1043 * Some rtc's allow an adjustment to the average duration of a second 1044 * to compensate for differences in the actual clock rate due to temperature, 1045 * the crystal, capacitor, etc. 1046 * 1047 * The adjustment applied is as follows: 1048 * t = t0 * (1 + offset * 1e-9) 1049 * where t0 is the measured length of 1 RTC second with offset = 0 1050 * 1051 * Kernel interface to adjust an rtc clock offset. 1052 * Return 0 on success, or a negative number on error. 1053 * If the rtc offset is not setable (or not implemented), return -EINVAL 1054 */ 1055 int rtc_set_offset(struct rtc_device *rtc, long offset) 1056 { 1057 int ret; 1058 1059 if (!rtc->ops) 1060 return -ENODEV; 1061 1062 if (!rtc->ops->set_offset) 1063 return -EINVAL; 1064 1065 mutex_lock(&rtc->ops_lock); 1066 ret = rtc->ops->set_offset(rtc->dev.parent, offset); 1067 mutex_unlock(&rtc->ops_lock); 1068 1069 trace_rtc_set_offset(offset, ret); 1070 return ret; 1071 } 1072