1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Compaq Hot Plug Controller Driver 4 * 5 * Copyright (C) 1995,2001 Compaq Computer Corporation 6 * Copyright (C) 2001 Greg Kroah-Hartman ([email protected]) 7 * Copyright (C) 2001 IBM Corp. 8 * 9 * All rights reserved. 10 * 11 * Send feedback to <[email protected]> 12 * 13 */ 14 15 #include <linux/module.h> 16 #include <linux/kernel.h> 17 #include <linux/types.h> 18 #include <linux/slab.h> 19 #include <linux/workqueue.h> 20 #include <linux/interrupt.h> 21 #include <linux/delay.h> 22 #include <linux/wait.h> 23 #include <linux/pci.h> 24 #include <linux/pci_hotplug.h> 25 #include <linux/kthread.h> 26 #include "cpqphp.h" 27 28 static u32 configure_new_device(struct controller *ctrl, struct pci_func *func, 29 u8 behind_bridge, struct resource_lists *resources); 30 static int configure_new_function(struct controller *ctrl, struct pci_func *func, 31 u8 behind_bridge, struct resource_lists *resources); 32 static void interrupt_event_handler(struct controller *ctrl); 33 34 35 static struct task_struct *cpqhp_event_thread; 36 static struct timer_list *pushbutton_pending; /* = NULL */ 37 38 /* delay is in jiffies to wait for */ 39 static void long_delay(int delay) 40 { 41 /* 42 * XXX(hch): if someone is bored please convert all callers 43 * to call msleep_interruptible directly. They really want 44 * to specify timeouts in natural units and spend a lot of 45 * effort converting them to jiffies.. 46 */ 47 msleep_interruptible(jiffies_to_msecs(delay)); 48 } 49 50 51 /* FIXME: The following line needs to be somewhere else... */ 52 #define WRONG_BUS_FREQUENCY 0x07 53 static u8 handle_switch_change(u8 change, struct controller *ctrl) 54 { 55 int hp_slot; 56 u8 rc = 0; 57 u16 temp_word; 58 struct pci_func *func; 59 struct event_info *taskInfo; 60 61 if (!change) 62 return 0; 63 64 /* Switch Change */ 65 dbg("cpqsbd: Switch interrupt received.\n"); 66 67 for (hp_slot = 0; hp_slot < 6; hp_slot++) { 68 if (change & (0x1L << hp_slot)) { 69 /* 70 * this one changed. 71 */ 72 func = cpqhp_slot_find(ctrl->bus, 73 (hp_slot + ctrl->slot_device_offset), 0); 74 75 /* this is the structure that tells the worker thread 76 * what to do 77 */ 78 taskInfo = &(ctrl->event_queue[ctrl->next_event]); 79 ctrl->next_event = (ctrl->next_event + 1) % 10; 80 taskInfo->hp_slot = hp_slot; 81 82 rc++; 83 84 temp_word = ctrl->ctrl_int_comp >> 16; 85 func->presence_save = (temp_word >> hp_slot) & 0x01; 86 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; 87 88 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { 89 /* 90 * Switch opened 91 */ 92 93 func->switch_save = 0; 94 95 taskInfo->event_type = INT_SWITCH_OPEN; 96 } else { 97 /* 98 * Switch closed 99 */ 100 101 func->switch_save = 0x10; 102 103 taskInfo->event_type = INT_SWITCH_CLOSE; 104 } 105 } 106 } 107 108 return rc; 109 } 110 111 /** 112 * cpqhp_find_slot - find the struct slot of given device 113 * @ctrl: scan lots of this controller 114 * @device: the device id to find 115 */ 116 static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device) 117 { 118 struct slot *slot = ctrl->slot; 119 120 while (slot && (slot->device != device)) 121 slot = slot->next; 122 123 return slot; 124 } 125 126 127 static u8 handle_presence_change(u16 change, struct controller *ctrl) 128 { 129 int hp_slot; 130 u8 rc = 0; 131 u8 temp_byte; 132 u16 temp_word; 133 struct pci_func *func; 134 struct event_info *taskInfo; 135 struct slot *p_slot; 136 137 if (!change) 138 return 0; 139 140 /* 141 * Presence Change 142 */ 143 dbg("cpqsbd: Presence/Notify input change.\n"); 144 dbg(" Changed bits are 0x%4.4x\n", change); 145 146 for (hp_slot = 0; hp_slot < 6; hp_slot++) { 147 if (change & (0x0101 << hp_slot)) { 148 /* 149 * this one changed. 150 */ 151 func = cpqhp_slot_find(ctrl->bus, 152 (hp_slot + ctrl->slot_device_offset), 0); 153 154 taskInfo = &(ctrl->event_queue[ctrl->next_event]); 155 ctrl->next_event = (ctrl->next_event + 1) % 10; 156 taskInfo->hp_slot = hp_slot; 157 158 rc++; 159 160 p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4)); 161 if (!p_slot) 162 return 0; 163 164 /* If the switch closed, must be a button 165 * If not in button mode, nevermind 166 */ 167 if (func->switch_save && (ctrl->push_button == 1)) { 168 temp_word = ctrl->ctrl_int_comp >> 16; 169 temp_byte = (temp_word >> hp_slot) & 0x01; 170 temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02; 171 172 if (temp_byte != func->presence_save) { 173 /* 174 * button Pressed (doesn't do anything) 175 */ 176 dbg("hp_slot %d button pressed\n", hp_slot); 177 taskInfo->event_type = INT_BUTTON_PRESS; 178 } else { 179 /* 180 * button Released - TAKE ACTION!!!! 181 */ 182 dbg("hp_slot %d button released\n", hp_slot); 183 taskInfo->event_type = INT_BUTTON_RELEASE; 184 185 /* Cancel if we are still blinking */ 186 if ((p_slot->state == BLINKINGON_STATE) 187 || (p_slot->state == BLINKINGOFF_STATE)) { 188 taskInfo->event_type = INT_BUTTON_CANCEL; 189 dbg("hp_slot %d button cancel\n", hp_slot); 190 } else if ((p_slot->state == POWERON_STATE) 191 || (p_slot->state == POWEROFF_STATE)) { 192 /* info(msg_button_ignore, p_slot->number); */ 193 taskInfo->event_type = INT_BUTTON_IGNORE; 194 dbg("hp_slot %d button ignore\n", hp_slot); 195 } 196 } 197 } else { 198 /* Switch is open, assume a presence change 199 * Save the presence state 200 */ 201 temp_word = ctrl->ctrl_int_comp >> 16; 202 func->presence_save = (temp_word >> hp_slot) & 0x01; 203 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; 204 205 if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) || 206 (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) { 207 /* Present */ 208 taskInfo->event_type = INT_PRESENCE_ON; 209 } else { 210 /* Not Present */ 211 taskInfo->event_type = INT_PRESENCE_OFF; 212 } 213 } 214 } 215 } 216 217 return rc; 218 } 219 220 221 static u8 handle_power_fault(u8 change, struct controller *ctrl) 222 { 223 int hp_slot; 224 u8 rc = 0; 225 struct pci_func *func; 226 struct event_info *taskInfo; 227 228 if (!change) 229 return 0; 230 231 /* 232 * power fault 233 */ 234 235 info("power fault interrupt\n"); 236 237 for (hp_slot = 0; hp_slot < 6; hp_slot++) { 238 if (change & (0x01 << hp_slot)) { 239 /* 240 * this one changed. 241 */ 242 func = cpqhp_slot_find(ctrl->bus, 243 (hp_slot + ctrl->slot_device_offset), 0); 244 245 taskInfo = &(ctrl->event_queue[ctrl->next_event]); 246 ctrl->next_event = (ctrl->next_event + 1) % 10; 247 taskInfo->hp_slot = hp_slot; 248 249 rc++; 250 251 if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) { 252 /* 253 * power fault Cleared 254 */ 255 func->status = 0x00; 256 257 taskInfo->event_type = INT_POWER_FAULT_CLEAR; 258 } else { 259 /* 260 * power fault 261 */ 262 taskInfo->event_type = INT_POWER_FAULT; 263 264 if (ctrl->rev < 4) { 265 amber_LED_on(ctrl, hp_slot); 266 green_LED_off(ctrl, hp_slot); 267 set_SOGO(ctrl); 268 269 /* this is a fatal condition, we want 270 * to crash the machine to protect from 271 * data corruption. simulated_NMI 272 * shouldn't ever return */ 273 /* FIXME 274 simulated_NMI(hp_slot, ctrl); */ 275 276 /* The following code causes a software 277 * crash just in case simulated_NMI did 278 * return */ 279 /*FIXME 280 panic(msg_power_fault); */ 281 } else { 282 /* set power fault status for this board */ 283 func->status = 0xFF; 284 info("power fault bit %x set\n", hp_slot); 285 } 286 } 287 } 288 } 289 290 return rc; 291 } 292 293 294 /** 295 * sort_by_size - sort nodes on the list by their length, smallest first. 296 * @head: list to sort 297 */ 298 static int sort_by_size(struct pci_resource **head) 299 { 300 struct pci_resource *current_res; 301 struct pci_resource *next_res; 302 int out_of_order = 1; 303 304 if (!(*head)) 305 return 1; 306 307 if (!((*head)->next)) 308 return 0; 309 310 while (out_of_order) { 311 out_of_order = 0; 312 313 /* Special case for swapping list head */ 314 if (((*head)->next) && 315 ((*head)->length > (*head)->next->length)) { 316 out_of_order++; 317 current_res = *head; 318 *head = (*head)->next; 319 current_res->next = (*head)->next; 320 (*head)->next = current_res; 321 } 322 323 current_res = *head; 324 325 while (current_res->next && current_res->next->next) { 326 if (current_res->next->length > current_res->next->next->length) { 327 out_of_order++; 328 next_res = current_res->next; 329 current_res->next = current_res->next->next; 330 current_res = current_res->next; 331 next_res->next = current_res->next; 332 current_res->next = next_res; 333 } else 334 current_res = current_res->next; 335 } 336 } /* End of out_of_order loop */ 337 338 return 0; 339 } 340 341 342 /** 343 * sort_by_max_size - sort nodes on the list by their length, largest first. 344 * @head: list to sort 345 */ 346 static int sort_by_max_size(struct pci_resource **head) 347 { 348 struct pci_resource *current_res; 349 struct pci_resource *next_res; 350 int out_of_order = 1; 351 352 if (!(*head)) 353 return 1; 354 355 if (!((*head)->next)) 356 return 0; 357 358 while (out_of_order) { 359 out_of_order = 0; 360 361 /* Special case for swapping list head */ 362 if (((*head)->next) && 363 ((*head)->length < (*head)->next->length)) { 364 out_of_order++; 365 current_res = *head; 366 *head = (*head)->next; 367 current_res->next = (*head)->next; 368 (*head)->next = current_res; 369 } 370 371 current_res = *head; 372 373 while (current_res->next && current_res->next->next) { 374 if (current_res->next->length < current_res->next->next->length) { 375 out_of_order++; 376 next_res = current_res->next; 377 current_res->next = current_res->next->next; 378 current_res = current_res->next; 379 next_res->next = current_res->next; 380 current_res->next = next_res; 381 } else 382 current_res = current_res->next; 383 } 384 } /* End of out_of_order loop */ 385 386 return 0; 387 } 388 389 390 /** 391 * do_pre_bridge_resource_split - find node of resources that are unused 392 * @head: new list head 393 * @orig_head: original list head 394 * @alignment: max node size (?) 395 */ 396 static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head, 397 struct pci_resource **orig_head, u32 alignment) 398 { 399 struct pci_resource *prevnode = NULL; 400 struct pci_resource *node; 401 struct pci_resource *split_node; 402 u32 rc; 403 u32 temp_dword; 404 dbg("do_pre_bridge_resource_split\n"); 405 406 if (!(*head) || !(*orig_head)) 407 return NULL; 408 409 rc = cpqhp_resource_sort_and_combine(head); 410 411 if (rc) 412 return NULL; 413 414 if ((*head)->base != (*orig_head)->base) 415 return NULL; 416 417 if ((*head)->length == (*orig_head)->length) 418 return NULL; 419 420 421 /* If we got here, there the bridge requires some of the resource, but 422 * we may be able to split some off of the front 423 */ 424 425 node = *head; 426 427 if (node->length & (alignment - 1)) { 428 /* this one isn't an aligned length, so we'll make a new entry 429 * and split it up. 430 */ 431 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 432 433 if (!split_node) 434 return NULL; 435 436 temp_dword = (node->length | (alignment-1)) + 1 - alignment; 437 438 split_node->base = node->base; 439 split_node->length = temp_dword; 440 441 node->length -= temp_dword; 442 node->base += split_node->length; 443 444 /* Put it in the list */ 445 *head = split_node; 446 split_node->next = node; 447 } 448 449 if (node->length < alignment) 450 return NULL; 451 452 /* Now unlink it */ 453 if (*head == node) { 454 *head = node->next; 455 } else { 456 prevnode = *head; 457 while (prevnode->next != node) 458 prevnode = prevnode->next; 459 460 prevnode->next = node->next; 461 } 462 node->next = NULL; 463 464 return node; 465 } 466 467 468 /** 469 * do_bridge_resource_split - find one node of resources that aren't in use 470 * @head: list head 471 * @alignment: max node size (?) 472 */ 473 static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment) 474 { 475 struct pci_resource *prevnode = NULL; 476 struct pci_resource *node; 477 u32 rc; 478 u32 temp_dword; 479 480 rc = cpqhp_resource_sort_and_combine(head); 481 482 if (rc) 483 return NULL; 484 485 node = *head; 486 487 while (node->next) { 488 prevnode = node; 489 node = node->next; 490 kfree(prevnode); 491 } 492 493 if (node->length < alignment) 494 goto error; 495 496 if (node->base & (alignment - 1)) { 497 /* Short circuit if adjusted size is too small */ 498 temp_dword = (node->base | (alignment-1)) + 1; 499 if ((node->length - (temp_dword - node->base)) < alignment) 500 goto error; 501 502 node->length -= (temp_dword - node->base); 503 node->base = temp_dword; 504 } 505 506 if (node->length & (alignment - 1)) 507 /* There's stuff in use after this node */ 508 goto error; 509 510 return node; 511 error: 512 kfree(node); 513 return NULL; 514 } 515 516 517 /** 518 * get_io_resource - find first node of given size not in ISA aliasing window. 519 * @head: list to search 520 * @size: size of node to find, must be a power of two. 521 * 522 * Description: This function sorts the resource list by size and then returns 523 * returns the first node of "size" length that is not in the ISA aliasing 524 * window. If it finds a node larger than "size" it will split it up. 525 */ 526 static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size) 527 { 528 struct pci_resource *prevnode; 529 struct pci_resource *node; 530 struct pci_resource *split_node; 531 u32 temp_dword; 532 533 if (!(*head)) 534 return NULL; 535 536 if (cpqhp_resource_sort_and_combine(head)) 537 return NULL; 538 539 if (sort_by_size(head)) 540 return NULL; 541 542 for (node = *head; node; node = node->next) { 543 if (node->length < size) 544 continue; 545 546 if (node->base & (size - 1)) { 547 /* this one isn't base aligned properly 548 * so we'll make a new entry and split it up 549 */ 550 temp_dword = (node->base | (size-1)) + 1; 551 552 /* Short circuit if adjusted size is too small */ 553 if ((node->length - (temp_dword - node->base)) < size) 554 continue; 555 556 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 557 558 if (!split_node) 559 return NULL; 560 561 split_node->base = node->base; 562 split_node->length = temp_dword - node->base; 563 node->base = temp_dword; 564 node->length -= split_node->length; 565 566 /* Put it in the list */ 567 split_node->next = node->next; 568 node->next = split_node; 569 } /* End of non-aligned base */ 570 571 /* Don't need to check if too small since we already did */ 572 if (node->length > size) { 573 /* this one is longer than we need 574 * so we'll make a new entry and split it up 575 */ 576 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 577 578 if (!split_node) 579 return NULL; 580 581 split_node->base = node->base + size; 582 split_node->length = node->length - size; 583 node->length = size; 584 585 /* Put it in the list */ 586 split_node->next = node->next; 587 node->next = split_node; 588 } /* End of too big on top end */ 589 590 /* For IO make sure it's not in the ISA aliasing space */ 591 if (node->base & 0x300L) 592 continue; 593 594 /* If we got here, then it is the right size 595 * Now take it out of the list and break 596 */ 597 if (*head == node) { 598 *head = node->next; 599 } else { 600 prevnode = *head; 601 while (prevnode->next != node) 602 prevnode = prevnode->next; 603 604 prevnode->next = node->next; 605 } 606 node->next = NULL; 607 break; 608 } 609 610 return node; 611 } 612 613 614 /** 615 * get_max_resource - get largest node which has at least the given size. 616 * @head: the list to search the node in 617 * @size: the minimum size of the node to find 618 * 619 * Description: Gets the largest node that is at least "size" big from the 620 * list pointed to by head. It aligns the node on top and bottom 621 * to "size" alignment before returning it. 622 */ 623 static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size) 624 { 625 struct pci_resource *max; 626 struct pci_resource *temp; 627 struct pci_resource *split_node; 628 u32 temp_dword; 629 630 if (cpqhp_resource_sort_and_combine(head)) 631 return NULL; 632 633 if (sort_by_max_size(head)) 634 return NULL; 635 636 for (max = *head; max; max = max->next) { 637 /* If not big enough we could probably just bail, 638 * instead we'll continue to the next. 639 */ 640 if (max->length < size) 641 continue; 642 643 if (max->base & (size - 1)) { 644 /* this one isn't base aligned properly 645 * so we'll make a new entry and split it up 646 */ 647 temp_dword = (max->base | (size-1)) + 1; 648 649 /* Short circuit if adjusted size is too small */ 650 if ((max->length - (temp_dword - max->base)) < size) 651 continue; 652 653 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 654 655 if (!split_node) 656 return NULL; 657 658 split_node->base = max->base; 659 split_node->length = temp_dword - max->base; 660 max->base = temp_dword; 661 max->length -= split_node->length; 662 663 split_node->next = max->next; 664 max->next = split_node; 665 } 666 667 if ((max->base + max->length) & (size - 1)) { 668 /* this one isn't end aligned properly at the top 669 * so we'll make a new entry and split it up 670 */ 671 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 672 673 if (!split_node) 674 return NULL; 675 temp_dword = ((max->base + max->length) & ~(size - 1)); 676 split_node->base = temp_dword; 677 split_node->length = max->length + max->base 678 - split_node->base; 679 max->length -= split_node->length; 680 681 split_node->next = max->next; 682 max->next = split_node; 683 } 684 685 /* Make sure it didn't shrink too much when we aligned it */ 686 if (max->length < size) 687 continue; 688 689 /* Now take it out of the list */ 690 temp = *head; 691 if (temp == max) { 692 *head = max->next; 693 } else { 694 while (temp && temp->next != max) 695 temp = temp->next; 696 697 if (temp) 698 temp->next = max->next; 699 } 700 701 max->next = NULL; 702 break; 703 } 704 705 return max; 706 } 707 708 709 /** 710 * get_resource - find resource of given size and split up larger ones. 711 * @head: the list to search for resources 712 * @size: the size limit to use 713 * 714 * Description: This function sorts the resource list by size and then 715 * returns the first node of "size" length. If it finds a node 716 * larger than "size" it will split it up. 717 * 718 * size must be a power of two. 719 */ 720 static struct pci_resource *get_resource(struct pci_resource **head, u32 size) 721 { 722 struct pci_resource *prevnode; 723 struct pci_resource *node; 724 struct pci_resource *split_node; 725 u32 temp_dword; 726 727 if (cpqhp_resource_sort_and_combine(head)) 728 return NULL; 729 730 if (sort_by_size(head)) 731 return NULL; 732 733 for (node = *head; node; node = node->next) { 734 dbg("%s: req_size =%x node=%p, base=%x, length=%x\n", 735 __func__, size, node, node->base, node->length); 736 if (node->length < size) 737 continue; 738 739 if (node->base & (size - 1)) { 740 dbg("%s: not aligned\n", __func__); 741 /* this one isn't base aligned properly 742 * so we'll make a new entry and split it up 743 */ 744 temp_dword = (node->base | (size-1)) + 1; 745 746 /* Short circuit if adjusted size is too small */ 747 if ((node->length - (temp_dword - node->base)) < size) 748 continue; 749 750 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 751 752 if (!split_node) 753 return NULL; 754 755 split_node->base = node->base; 756 split_node->length = temp_dword - node->base; 757 node->base = temp_dword; 758 node->length -= split_node->length; 759 760 split_node->next = node->next; 761 node->next = split_node; 762 } /* End of non-aligned base */ 763 764 /* Don't need to check if too small since we already did */ 765 if (node->length > size) { 766 dbg("%s: too big\n", __func__); 767 /* this one is longer than we need 768 * so we'll make a new entry and split it up 769 */ 770 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 771 772 if (!split_node) 773 return NULL; 774 775 split_node->base = node->base + size; 776 split_node->length = node->length - size; 777 node->length = size; 778 779 /* Put it in the list */ 780 split_node->next = node->next; 781 node->next = split_node; 782 } /* End of too big on top end */ 783 784 dbg("%s: got one!!!\n", __func__); 785 /* If we got here, then it is the right size 786 * Now take it out of the list */ 787 if (*head == node) { 788 *head = node->next; 789 } else { 790 prevnode = *head; 791 while (prevnode->next != node) 792 prevnode = prevnode->next; 793 794 prevnode->next = node->next; 795 } 796 node->next = NULL; 797 break; 798 } 799 return node; 800 } 801 802 803 /** 804 * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up 805 * @head: the list to sort and clean up 806 * 807 * Description: Sorts all of the nodes in the list in ascending order by 808 * their base addresses. Also does garbage collection by 809 * combining adjacent nodes. 810 * 811 * Returns %0 if success. 812 */ 813 int cpqhp_resource_sort_and_combine(struct pci_resource **head) 814 { 815 struct pci_resource *node1; 816 struct pci_resource *node2; 817 int out_of_order = 1; 818 819 dbg("%s: head = %p, *head = %p\n", __func__, head, *head); 820 821 if (!(*head)) 822 return 1; 823 824 dbg("*head->next = %p\n", (*head)->next); 825 826 if (!(*head)->next) 827 return 0; /* only one item on the list, already sorted! */ 828 829 dbg("*head->base = 0x%x\n", (*head)->base); 830 dbg("*head->next->base = 0x%x\n", (*head)->next->base); 831 while (out_of_order) { 832 out_of_order = 0; 833 834 /* Special case for swapping list head */ 835 if (((*head)->next) && 836 ((*head)->base > (*head)->next->base)) { 837 node1 = *head; 838 (*head) = (*head)->next; 839 node1->next = (*head)->next; 840 (*head)->next = node1; 841 out_of_order++; 842 } 843 844 node1 = (*head); 845 846 while (node1->next && node1->next->next) { 847 if (node1->next->base > node1->next->next->base) { 848 out_of_order++; 849 node2 = node1->next; 850 node1->next = node1->next->next; 851 node1 = node1->next; 852 node2->next = node1->next; 853 node1->next = node2; 854 } else 855 node1 = node1->next; 856 } 857 } /* End of out_of_order loop */ 858 859 node1 = *head; 860 861 while (node1 && node1->next) { 862 if ((node1->base + node1->length) == node1->next->base) { 863 /* Combine */ 864 dbg("8..\n"); 865 node1->length += node1->next->length; 866 node2 = node1->next; 867 node1->next = node1->next->next; 868 kfree(node2); 869 } else 870 node1 = node1->next; 871 } 872 873 return 0; 874 } 875 876 877 irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data) 878 { 879 struct controller *ctrl = data; 880 u8 schedule_flag = 0; 881 u8 reset; 882 u16 misc; 883 u32 Diff; 884 u32 temp_dword; 885 886 887 misc = readw(ctrl->hpc_reg + MISC); 888 /* 889 * Check to see if it was our interrupt 890 */ 891 if (!(misc & 0x000C)) 892 return IRQ_NONE; 893 894 if (misc & 0x0004) { 895 /* 896 * Serial Output interrupt Pending 897 */ 898 899 /* Clear the interrupt */ 900 misc |= 0x0004; 901 writew(misc, ctrl->hpc_reg + MISC); 902 903 /* Read to clear posted writes */ 904 misc = readw(ctrl->hpc_reg + MISC); 905 906 dbg("%s - waking up\n", __func__); 907 wake_up_interruptible(&ctrl->queue); 908 } 909 910 if (misc & 0x0008) { 911 /* General-interrupt-input interrupt Pending */ 912 Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp; 913 914 ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); 915 916 /* Clear the interrupt */ 917 writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR); 918 919 /* Read it back to clear any posted writes */ 920 temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); 921 922 if (!Diff) 923 /* Clear all interrupts */ 924 writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR); 925 926 schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl); 927 schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl); 928 schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl); 929 } 930 931 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE); 932 if (reset & 0x40) { 933 /* Bus reset has completed */ 934 reset &= 0xCF; 935 writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE); 936 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE); 937 wake_up_interruptible(&ctrl->queue); 938 } 939 940 if (schedule_flag) { 941 wake_up_process(cpqhp_event_thread); 942 dbg("Waking even thread"); 943 } 944 return IRQ_HANDLED; 945 } 946 947 948 /** 949 * cpqhp_slot_create - Creates a node and adds it to the proper bus. 950 * @busnumber: bus where new node is to be located 951 * 952 * Returns pointer to the new node or %NULL if unsuccessful. 953 */ 954 struct pci_func *cpqhp_slot_create(u8 busnumber) 955 { 956 struct pci_func *new_slot; 957 struct pci_func *next; 958 959 new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL); 960 if (new_slot == NULL) 961 return new_slot; 962 963 new_slot->next = NULL; 964 new_slot->configured = 1; 965 966 if (cpqhp_slot_list[busnumber] == NULL) { 967 cpqhp_slot_list[busnumber] = new_slot; 968 } else { 969 next = cpqhp_slot_list[busnumber]; 970 while (next->next != NULL) 971 next = next->next; 972 next->next = new_slot; 973 } 974 return new_slot; 975 } 976 977 978 /** 979 * slot_remove - Removes a node from the linked list of slots. 980 * @old_slot: slot to remove 981 * 982 * Returns %0 if successful, !0 otherwise. 983 */ 984 static int slot_remove(struct pci_func *old_slot) 985 { 986 struct pci_func *next; 987 988 if (old_slot == NULL) 989 return 1; 990 991 next = cpqhp_slot_list[old_slot->bus]; 992 if (next == NULL) 993 return 1; 994 995 if (next == old_slot) { 996 cpqhp_slot_list[old_slot->bus] = old_slot->next; 997 cpqhp_destroy_board_resources(old_slot); 998 kfree(old_slot); 999 return 0; 1000 } 1001 1002 while ((next->next != old_slot) && (next->next != NULL)) 1003 next = next->next; 1004 1005 if (next->next == old_slot) { 1006 next->next = old_slot->next; 1007 cpqhp_destroy_board_resources(old_slot); 1008 kfree(old_slot); 1009 return 0; 1010 } else 1011 return 2; 1012 } 1013 1014 1015 /** 1016 * bridge_slot_remove - Removes a node from the linked list of slots. 1017 * @bridge: bridge to remove 1018 * 1019 * Returns %0 if successful, !0 otherwise. 1020 */ 1021 static int bridge_slot_remove(struct pci_func *bridge) 1022 { 1023 u8 subordinateBus, secondaryBus; 1024 u8 tempBus; 1025 struct pci_func *next; 1026 1027 secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF; 1028 subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF; 1029 1030 for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) { 1031 next = cpqhp_slot_list[tempBus]; 1032 1033 while (!slot_remove(next)) 1034 next = cpqhp_slot_list[tempBus]; 1035 } 1036 1037 next = cpqhp_slot_list[bridge->bus]; 1038 1039 if (next == NULL) 1040 return 1; 1041 1042 if (next == bridge) { 1043 cpqhp_slot_list[bridge->bus] = bridge->next; 1044 goto out; 1045 } 1046 1047 while ((next->next != bridge) && (next->next != NULL)) 1048 next = next->next; 1049 1050 if (next->next != bridge) 1051 return 2; 1052 next->next = bridge->next; 1053 out: 1054 kfree(bridge); 1055 return 0; 1056 } 1057 1058 1059 /** 1060 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed 1061 * @bus: bus to find 1062 * @device: device to find 1063 * @index: is %0 for first function found, %1 for the second... 1064 * 1065 * Returns pointer to the node if successful, %NULL otherwise. 1066 */ 1067 struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index) 1068 { 1069 int found = -1; 1070 struct pci_func *func; 1071 1072 func = cpqhp_slot_list[bus]; 1073 1074 if ((func == NULL) || ((func->device == device) && (index == 0))) 1075 return func; 1076 1077 if (func->device == device) 1078 found++; 1079 1080 while (func->next != NULL) { 1081 func = func->next; 1082 1083 if (func->device == device) 1084 found++; 1085 1086 if (found == index) 1087 return func; 1088 } 1089 1090 return NULL; 1091 } 1092 1093 1094 /* DJZ: I don't think is_bridge will work as is. 1095 * FIXME */ 1096 static int is_bridge(struct pci_func *func) 1097 { 1098 /* Check the header type */ 1099 if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01) 1100 return 1; 1101 else 1102 return 0; 1103 } 1104 1105 1106 /** 1107 * set_controller_speed - set the frequency and/or mode of a specific controller segment. 1108 * @ctrl: controller to change frequency/mode for. 1109 * @adapter_speed: the speed of the adapter we want to match. 1110 * @hp_slot: the slot number where the adapter is installed. 1111 * 1112 * Returns %0 if we successfully change frequency and/or mode to match the 1113 * adapter speed. 1114 */ 1115 static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot) 1116 { 1117 struct slot *slot; 1118 struct pci_bus *bus = ctrl->pci_bus; 1119 u8 reg; 1120 u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER); 1121 u16 reg16; 1122 u32 leds = readl(ctrl->hpc_reg + LED_CONTROL); 1123 1124 if (bus->cur_bus_speed == adapter_speed) 1125 return 0; 1126 1127 /* We don't allow freq/mode changes if we find another adapter running 1128 * in another slot on this controller 1129 */ 1130 for (slot = ctrl->slot; slot; slot = slot->next) { 1131 if (slot->device == (hp_slot + ctrl->slot_device_offset)) 1132 continue; 1133 if (!slot->hotplug_slot) 1134 continue; 1135 if (get_presence_status(ctrl, slot) == 0) 1136 continue; 1137 /* If another adapter is running on the same segment but at a 1138 * lower speed/mode, we allow the new adapter to function at 1139 * this rate if supported 1140 */ 1141 if (bus->cur_bus_speed < adapter_speed) 1142 return 0; 1143 1144 return 1; 1145 } 1146 1147 /* If the controller doesn't support freq/mode changes and the 1148 * controller is running at a higher mode, we bail 1149 */ 1150 if ((bus->cur_bus_speed > adapter_speed) && (!ctrl->pcix_speed_capability)) 1151 return 1; 1152 1153 /* But we allow the adapter to run at a lower rate if possible */ 1154 if ((bus->cur_bus_speed < adapter_speed) && (!ctrl->pcix_speed_capability)) 1155 return 0; 1156 1157 /* We try to set the max speed supported by both the adapter and 1158 * controller 1159 */ 1160 if (bus->max_bus_speed < adapter_speed) { 1161 if (bus->cur_bus_speed == bus->max_bus_speed) 1162 return 0; 1163 adapter_speed = bus->max_bus_speed; 1164 } 1165 1166 writel(0x0L, ctrl->hpc_reg + LED_CONTROL); 1167 writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE); 1168 1169 set_SOGO(ctrl); 1170 wait_for_ctrl_irq(ctrl); 1171 1172 if (adapter_speed != PCI_SPEED_133MHz_PCIX) 1173 reg = 0xF5; 1174 else 1175 reg = 0xF4; 1176 pci_write_config_byte(ctrl->pci_dev, 0x41, reg); 1177 1178 reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ); 1179 reg16 &= ~0x000F; 1180 switch (adapter_speed) { 1181 case(PCI_SPEED_133MHz_PCIX): 1182 reg = 0x75; 1183 reg16 |= 0xB; 1184 break; 1185 case(PCI_SPEED_100MHz_PCIX): 1186 reg = 0x74; 1187 reg16 |= 0xA; 1188 break; 1189 case(PCI_SPEED_66MHz_PCIX): 1190 reg = 0x73; 1191 reg16 |= 0x9; 1192 break; 1193 case(PCI_SPEED_66MHz): 1194 reg = 0x73; 1195 reg16 |= 0x1; 1196 break; 1197 default: /* 33MHz PCI 2.2 */ 1198 reg = 0x71; 1199 break; 1200 1201 } 1202 reg16 |= 0xB << 12; 1203 writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ); 1204 1205 mdelay(5); 1206 1207 /* Reenable interrupts */ 1208 writel(0, ctrl->hpc_reg + INT_MASK); 1209 1210 pci_write_config_byte(ctrl->pci_dev, 0x41, reg); 1211 1212 /* Restart state machine */ 1213 reg = ~0xF; 1214 pci_read_config_byte(ctrl->pci_dev, 0x43, ®); 1215 pci_write_config_byte(ctrl->pci_dev, 0x43, reg); 1216 1217 /* Only if mode change...*/ 1218 if (((bus->cur_bus_speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) || 1219 ((bus->cur_bus_speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz))) 1220 set_SOGO(ctrl); 1221 1222 wait_for_ctrl_irq(ctrl); 1223 mdelay(1100); 1224 1225 /* Restore LED/Slot state */ 1226 writel(leds, ctrl->hpc_reg + LED_CONTROL); 1227 writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE); 1228 1229 set_SOGO(ctrl); 1230 wait_for_ctrl_irq(ctrl); 1231 1232 bus->cur_bus_speed = adapter_speed; 1233 slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); 1234 1235 info("Successfully changed frequency/mode for adapter in slot %d\n", 1236 slot->number); 1237 return 0; 1238 } 1239 1240 /* the following routines constitute the bulk of the 1241 * hotplug controller logic 1242 */ 1243 1244 1245 /** 1246 * board_replaced - Called after a board has been replaced in the system. 1247 * @func: PCI device/function information 1248 * @ctrl: hotplug controller 1249 * 1250 * This is only used if we don't have resources for hot add. 1251 * Turns power on for the board. 1252 * Checks to see if board is the same. 1253 * If board is same, reconfigures it. 1254 * If board isn't same, turns it back off. 1255 */ 1256 static u32 board_replaced(struct pci_func *func, struct controller *ctrl) 1257 { 1258 struct pci_bus *bus = ctrl->pci_bus; 1259 u8 hp_slot; 1260 u8 temp_byte; 1261 u8 adapter_speed; 1262 u32 rc = 0; 1263 1264 hp_slot = func->device - ctrl->slot_device_offset; 1265 1266 /* 1267 * The switch is open. 1268 */ 1269 if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot)) 1270 rc = INTERLOCK_OPEN; 1271 /* 1272 * The board is already on 1273 */ 1274 else if (is_slot_enabled(ctrl, hp_slot)) 1275 rc = CARD_FUNCTIONING; 1276 else { 1277 mutex_lock(&ctrl->crit_sect); 1278 1279 /* turn on board without attaching to the bus */ 1280 enable_slot_power(ctrl, hp_slot); 1281 1282 set_SOGO(ctrl); 1283 1284 /* Wait for SOBS to be unset */ 1285 wait_for_ctrl_irq(ctrl); 1286 1287 /* Change bits in slot power register to force another shift out 1288 * NOTE: this is to work around the timer bug */ 1289 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER); 1290 writeb(0x00, ctrl->hpc_reg + SLOT_POWER); 1291 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER); 1292 1293 set_SOGO(ctrl); 1294 1295 /* Wait for SOBS to be unset */ 1296 wait_for_ctrl_irq(ctrl); 1297 1298 adapter_speed = get_adapter_speed(ctrl, hp_slot); 1299 if (bus->cur_bus_speed != adapter_speed) 1300 if (set_controller_speed(ctrl, adapter_speed, hp_slot)) 1301 rc = WRONG_BUS_FREQUENCY; 1302 1303 /* turn off board without attaching to the bus */ 1304 disable_slot_power(ctrl, hp_slot); 1305 1306 set_SOGO(ctrl); 1307 1308 /* Wait for SOBS to be unset */ 1309 wait_for_ctrl_irq(ctrl); 1310 1311 mutex_unlock(&ctrl->crit_sect); 1312 1313 if (rc) 1314 return rc; 1315 1316 mutex_lock(&ctrl->crit_sect); 1317 1318 slot_enable(ctrl, hp_slot); 1319 green_LED_blink(ctrl, hp_slot); 1320 1321 amber_LED_off(ctrl, hp_slot); 1322 1323 set_SOGO(ctrl); 1324 1325 /* Wait for SOBS to be unset */ 1326 wait_for_ctrl_irq(ctrl); 1327 1328 mutex_unlock(&ctrl->crit_sect); 1329 1330 /* Wait for ~1 second because of hot plug spec */ 1331 long_delay(1*HZ); 1332 1333 /* Check for a power fault */ 1334 if (func->status == 0xFF) { 1335 /* power fault occurred, but it was benign */ 1336 rc = POWER_FAILURE; 1337 func->status = 0; 1338 } else 1339 rc = cpqhp_valid_replace(ctrl, func); 1340 1341 if (!rc) { 1342 /* It must be the same board */ 1343 1344 rc = cpqhp_configure_board(ctrl, func); 1345 1346 /* If configuration fails, turn it off 1347 * Get slot won't work for devices behind 1348 * bridges, but in this case it will always be 1349 * called for the "base" bus/dev/func of an 1350 * adapter. 1351 */ 1352 1353 mutex_lock(&ctrl->crit_sect); 1354 1355 amber_LED_on(ctrl, hp_slot); 1356 green_LED_off(ctrl, hp_slot); 1357 slot_disable(ctrl, hp_slot); 1358 1359 set_SOGO(ctrl); 1360 1361 /* Wait for SOBS to be unset */ 1362 wait_for_ctrl_irq(ctrl); 1363 1364 mutex_unlock(&ctrl->crit_sect); 1365 1366 if (rc) 1367 return rc; 1368 else 1369 return 1; 1370 1371 } else { 1372 /* Something is wrong 1373 1374 * Get slot won't work for devices behind bridges, but 1375 * in this case it will always be called for the "base" 1376 * bus/dev/func of an adapter. 1377 */ 1378 1379 mutex_lock(&ctrl->crit_sect); 1380 1381 amber_LED_on(ctrl, hp_slot); 1382 green_LED_off(ctrl, hp_slot); 1383 slot_disable(ctrl, hp_slot); 1384 1385 set_SOGO(ctrl); 1386 1387 /* Wait for SOBS to be unset */ 1388 wait_for_ctrl_irq(ctrl); 1389 1390 mutex_unlock(&ctrl->crit_sect); 1391 } 1392 1393 } 1394 return rc; 1395 1396 } 1397 1398 1399 /** 1400 * board_added - Called after a board has been added to the system. 1401 * @func: PCI device/function info 1402 * @ctrl: hotplug controller 1403 * 1404 * Turns power on for the board. 1405 * Configures board. 1406 */ 1407 static u32 board_added(struct pci_func *func, struct controller *ctrl) 1408 { 1409 u8 hp_slot; 1410 u8 temp_byte; 1411 u8 adapter_speed; 1412 int index; 1413 u32 temp_register = 0xFFFFFFFF; 1414 u32 rc = 0; 1415 struct pci_func *new_slot = NULL; 1416 struct pci_bus *bus = ctrl->pci_bus; 1417 struct slot *p_slot; 1418 struct resource_lists res_lists; 1419 1420 hp_slot = func->device - ctrl->slot_device_offset; 1421 dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n", 1422 __func__, func->device, ctrl->slot_device_offset, hp_slot); 1423 1424 mutex_lock(&ctrl->crit_sect); 1425 1426 /* turn on board without attaching to the bus */ 1427 enable_slot_power(ctrl, hp_slot); 1428 1429 set_SOGO(ctrl); 1430 1431 /* Wait for SOBS to be unset */ 1432 wait_for_ctrl_irq(ctrl); 1433 1434 /* Change bits in slot power register to force another shift out 1435 * NOTE: this is to work around the timer bug 1436 */ 1437 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER); 1438 writeb(0x00, ctrl->hpc_reg + SLOT_POWER); 1439 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER); 1440 1441 set_SOGO(ctrl); 1442 1443 /* Wait for SOBS to be unset */ 1444 wait_for_ctrl_irq(ctrl); 1445 1446 adapter_speed = get_adapter_speed(ctrl, hp_slot); 1447 if (bus->cur_bus_speed != adapter_speed) 1448 if (set_controller_speed(ctrl, adapter_speed, hp_slot)) 1449 rc = WRONG_BUS_FREQUENCY; 1450 1451 /* turn off board without attaching to the bus */ 1452 disable_slot_power(ctrl, hp_slot); 1453 1454 set_SOGO(ctrl); 1455 1456 /* Wait for SOBS to be unset */ 1457 wait_for_ctrl_irq(ctrl); 1458 1459 mutex_unlock(&ctrl->crit_sect); 1460 1461 if (rc) 1462 return rc; 1463 1464 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); 1465 1466 /* turn on board and blink green LED */ 1467 1468 dbg("%s: before down\n", __func__); 1469 mutex_lock(&ctrl->crit_sect); 1470 dbg("%s: after down\n", __func__); 1471 1472 dbg("%s: before slot_enable\n", __func__); 1473 slot_enable(ctrl, hp_slot); 1474 1475 dbg("%s: before green_LED_blink\n", __func__); 1476 green_LED_blink(ctrl, hp_slot); 1477 1478 dbg("%s: before amber_LED_blink\n", __func__); 1479 amber_LED_off(ctrl, hp_slot); 1480 1481 dbg("%s: before set_SOGO\n", __func__); 1482 set_SOGO(ctrl); 1483 1484 /* Wait for SOBS to be unset */ 1485 dbg("%s: before wait_for_ctrl_irq\n", __func__); 1486 wait_for_ctrl_irq(ctrl); 1487 dbg("%s: after wait_for_ctrl_irq\n", __func__); 1488 1489 dbg("%s: before up\n", __func__); 1490 mutex_unlock(&ctrl->crit_sect); 1491 dbg("%s: after up\n", __func__); 1492 1493 /* Wait for ~1 second because of hot plug spec */ 1494 dbg("%s: before long_delay\n", __func__); 1495 long_delay(1*HZ); 1496 dbg("%s: after long_delay\n", __func__); 1497 1498 dbg("%s: func status = %x\n", __func__, func->status); 1499 /* Check for a power fault */ 1500 if (func->status == 0xFF) { 1501 /* power fault occurred, but it was benign */ 1502 temp_register = 0xFFFFFFFF; 1503 dbg("%s: temp register set to %x by power fault\n", __func__, temp_register); 1504 rc = POWER_FAILURE; 1505 func->status = 0; 1506 } else { 1507 /* Get vendor/device ID u32 */ 1508 ctrl->pci_bus->number = func->bus; 1509 rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register); 1510 dbg("%s: pci_read_config_dword returns %d\n", __func__, rc); 1511 dbg("%s: temp_register is %x\n", __func__, temp_register); 1512 1513 if (rc != 0) { 1514 /* Something's wrong here */ 1515 temp_register = 0xFFFFFFFF; 1516 dbg("%s: temp register set to %x by error\n", __func__, temp_register); 1517 } 1518 /* Preset return code. It will be changed later if things go okay. */ 1519 rc = NO_ADAPTER_PRESENT; 1520 } 1521 1522 /* All F's is an empty slot or an invalid board */ 1523 if (temp_register != 0xFFFFFFFF) { 1524 res_lists.io_head = ctrl->io_head; 1525 res_lists.mem_head = ctrl->mem_head; 1526 res_lists.p_mem_head = ctrl->p_mem_head; 1527 res_lists.bus_head = ctrl->bus_head; 1528 res_lists.irqs = NULL; 1529 1530 rc = configure_new_device(ctrl, func, 0, &res_lists); 1531 1532 dbg("%s: back from configure_new_device\n", __func__); 1533 ctrl->io_head = res_lists.io_head; 1534 ctrl->mem_head = res_lists.mem_head; 1535 ctrl->p_mem_head = res_lists.p_mem_head; 1536 ctrl->bus_head = res_lists.bus_head; 1537 1538 cpqhp_resource_sort_and_combine(&(ctrl->mem_head)); 1539 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head)); 1540 cpqhp_resource_sort_and_combine(&(ctrl->io_head)); 1541 cpqhp_resource_sort_and_combine(&(ctrl->bus_head)); 1542 1543 if (rc) { 1544 mutex_lock(&ctrl->crit_sect); 1545 1546 amber_LED_on(ctrl, hp_slot); 1547 green_LED_off(ctrl, hp_slot); 1548 slot_disable(ctrl, hp_slot); 1549 1550 set_SOGO(ctrl); 1551 1552 /* Wait for SOBS to be unset */ 1553 wait_for_ctrl_irq(ctrl); 1554 1555 mutex_unlock(&ctrl->crit_sect); 1556 return rc; 1557 } else { 1558 cpqhp_save_slot_config(ctrl, func); 1559 } 1560 1561 1562 func->status = 0; 1563 func->switch_save = 0x10; 1564 func->is_a_board = 0x01; 1565 1566 /* next, we will instantiate the linux pci_dev structures (with 1567 * appropriate driver notification, if already present) */ 1568 dbg("%s: configure linux pci_dev structure\n", __func__); 1569 index = 0; 1570 do { 1571 new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++); 1572 if (new_slot && !new_slot->pci_dev) 1573 cpqhp_configure_device(ctrl, new_slot); 1574 } while (new_slot); 1575 1576 mutex_lock(&ctrl->crit_sect); 1577 1578 green_LED_on(ctrl, hp_slot); 1579 1580 set_SOGO(ctrl); 1581 1582 /* Wait for SOBS to be unset */ 1583 wait_for_ctrl_irq(ctrl); 1584 1585 mutex_unlock(&ctrl->crit_sect); 1586 } else { 1587 mutex_lock(&ctrl->crit_sect); 1588 1589 amber_LED_on(ctrl, hp_slot); 1590 green_LED_off(ctrl, hp_slot); 1591 slot_disable(ctrl, hp_slot); 1592 1593 set_SOGO(ctrl); 1594 1595 /* Wait for SOBS to be unset */ 1596 wait_for_ctrl_irq(ctrl); 1597 1598 mutex_unlock(&ctrl->crit_sect); 1599 1600 return rc; 1601 } 1602 return 0; 1603 } 1604 1605 1606 /** 1607 * remove_board - Turns off slot and LEDs 1608 * @func: PCI device/function info 1609 * @replace_flag: whether replacing or adding a new device 1610 * @ctrl: target controller 1611 */ 1612 static u32 remove_board(struct pci_func *func, u32 replace_flag, struct controller *ctrl) 1613 { 1614 int index; 1615 u8 skip = 0; 1616 u8 device; 1617 u8 hp_slot; 1618 u8 temp_byte; 1619 u32 rc; 1620 struct resource_lists res_lists; 1621 struct pci_func *temp_func; 1622 1623 if (cpqhp_unconfigure_device(func)) 1624 return 1; 1625 1626 device = func->device; 1627 1628 hp_slot = func->device - ctrl->slot_device_offset; 1629 dbg("In %s, hp_slot = %d\n", __func__, hp_slot); 1630 1631 /* When we get here, it is safe to change base address registers. 1632 * We will attempt to save the base address register lengths */ 1633 if (replace_flag || !ctrl->add_support) 1634 rc = cpqhp_save_base_addr_length(ctrl, func); 1635 else if (!func->bus_head && !func->mem_head && 1636 !func->p_mem_head && !func->io_head) { 1637 /* Here we check to see if we've saved any of the board's 1638 * resources already. If so, we'll skip the attempt to 1639 * determine what's being used. */ 1640 index = 0; 1641 temp_func = cpqhp_slot_find(func->bus, func->device, index++); 1642 while (temp_func) { 1643 if (temp_func->bus_head || temp_func->mem_head 1644 || temp_func->p_mem_head || temp_func->io_head) { 1645 skip = 1; 1646 break; 1647 } 1648 temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++); 1649 } 1650 1651 if (!skip) 1652 rc = cpqhp_save_used_resources(ctrl, func); 1653 } 1654 /* Change status to shutdown */ 1655 if (func->is_a_board) 1656 func->status = 0x01; 1657 func->configured = 0; 1658 1659 mutex_lock(&ctrl->crit_sect); 1660 1661 green_LED_off(ctrl, hp_slot); 1662 slot_disable(ctrl, hp_slot); 1663 1664 set_SOGO(ctrl); 1665 1666 /* turn off SERR for slot */ 1667 temp_byte = readb(ctrl->hpc_reg + SLOT_SERR); 1668 temp_byte &= ~(0x01 << hp_slot); 1669 writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR); 1670 1671 /* Wait for SOBS to be unset */ 1672 wait_for_ctrl_irq(ctrl); 1673 1674 mutex_unlock(&ctrl->crit_sect); 1675 1676 if (!replace_flag && ctrl->add_support) { 1677 while (func) { 1678 res_lists.io_head = ctrl->io_head; 1679 res_lists.mem_head = ctrl->mem_head; 1680 res_lists.p_mem_head = ctrl->p_mem_head; 1681 res_lists.bus_head = ctrl->bus_head; 1682 1683 cpqhp_return_board_resources(func, &res_lists); 1684 1685 ctrl->io_head = res_lists.io_head; 1686 ctrl->mem_head = res_lists.mem_head; 1687 ctrl->p_mem_head = res_lists.p_mem_head; 1688 ctrl->bus_head = res_lists.bus_head; 1689 1690 cpqhp_resource_sort_and_combine(&(ctrl->mem_head)); 1691 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head)); 1692 cpqhp_resource_sort_and_combine(&(ctrl->io_head)); 1693 cpqhp_resource_sort_and_combine(&(ctrl->bus_head)); 1694 1695 if (is_bridge(func)) { 1696 bridge_slot_remove(func); 1697 } else 1698 slot_remove(func); 1699 1700 func = cpqhp_slot_find(ctrl->bus, device, 0); 1701 } 1702 1703 /* Setup slot structure with entry for empty slot */ 1704 func = cpqhp_slot_create(ctrl->bus); 1705 1706 if (func == NULL) 1707 return 1; 1708 1709 func->bus = ctrl->bus; 1710 func->device = device; 1711 func->function = 0; 1712 func->configured = 0; 1713 func->switch_save = 0x10; 1714 func->is_a_board = 0; 1715 func->p_task_event = NULL; 1716 } 1717 1718 return 0; 1719 } 1720 1721 static void pushbutton_helper_thread(struct timer_list *t) 1722 { 1723 pushbutton_pending = t; 1724 1725 wake_up_process(cpqhp_event_thread); 1726 } 1727 1728 1729 /* this is the main worker thread */ 1730 static int event_thread(void *data) 1731 { 1732 struct controller *ctrl; 1733 1734 while (1) { 1735 dbg("!!!!event_thread sleeping\n"); 1736 set_current_state(TASK_INTERRUPTIBLE); 1737 schedule(); 1738 1739 if (kthread_should_stop()) 1740 break; 1741 /* Do stuff here */ 1742 if (pushbutton_pending) 1743 cpqhp_pushbutton_thread(pushbutton_pending); 1744 else 1745 for (ctrl = cpqhp_ctrl_list; ctrl; ctrl = ctrl->next) 1746 interrupt_event_handler(ctrl); 1747 } 1748 dbg("event_thread signals exit\n"); 1749 return 0; 1750 } 1751 1752 int cpqhp_event_start_thread(void) 1753 { 1754 cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event"); 1755 if (IS_ERR(cpqhp_event_thread)) { 1756 err("Can't start up our event thread\n"); 1757 return PTR_ERR(cpqhp_event_thread); 1758 } 1759 1760 return 0; 1761 } 1762 1763 1764 void cpqhp_event_stop_thread(void) 1765 { 1766 kthread_stop(cpqhp_event_thread); 1767 } 1768 1769 1770 static void interrupt_event_handler(struct controller *ctrl) 1771 { 1772 int loop = 0; 1773 int change = 1; 1774 struct pci_func *func; 1775 u8 hp_slot; 1776 struct slot *p_slot; 1777 1778 while (change) { 1779 change = 0; 1780 1781 for (loop = 0; loop < 10; loop++) { 1782 /* dbg("loop %d\n", loop); */ 1783 if (ctrl->event_queue[loop].event_type != 0) { 1784 hp_slot = ctrl->event_queue[loop].hp_slot; 1785 1786 func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0); 1787 if (!func) 1788 return; 1789 1790 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); 1791 if (!p_slot) 1792 return; 1793 1794 dbg("hp_slot %d, func %p, p_slot %p\n", 1795 hp_slot, func, p_slot); 1796 1797 if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) { 1798 dbg("button pressed\n"); 1799 } else if (ctrl->event_queue[loop].event_type == 1800 INT_BUTTON_CANCEL) { 1801 dbg("button cancel\n"); 1802 del_timer(&p_slot->task_event); 1803 1804 mutex_lock(&ctrl->crit_sect); 1805 1806 if (p_slot->state == BLINKINGOFF_STATE) { 1807 /* slot is on */ 1808 dbg("turn on green LED\n"); 1809 green_LED_on(ctrl, hp_slot); 1810 } else if (p_slot->state == BLINKINGON_STATE) { 1811 /* slot is off */ 1812 dbg("turn off green LED\n"); 1813 green_LED_off(ctrl, hp_slot); 1814 } 1815 1816 info(msg_button_cancel, p_slot->number); 1817 1818 p_slot->state = STATIC_STATE; 1819 1820 amber_LED_off(ctrl, hp_slot); 1821 1822 set_SOGO(ctrl); 1823 1824 /* Wait for SOBS to be unset */ 1825 wait_for_ctrl_irq(ctrl); 1826 1827 mutex_unlock(&ctrl->crit_sect); 1828 } 1829 /*** button Released (No action on press...) */ 1830 else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) { 1831 dbg("button release\n"); 1832 1833 if (is_slot_enabled(ctrl, hp_slot)) { 1834 dbg("slot is on\n"); 1835 p_slot->state = BLINKINGOFF_STATE; 1836 info(msg_button_off, p_slot->number); 1837 } else { 1838 dbg("slot is off\n"); 1839 p_slot->state = BLINKINGON_STATE; 1840 info(msg_button_on, p_slot->number); 1841 } 1842 mutex_lock(&ctrl->crit_sect); 1843 1844 dbg("blink green LED and turn off amber\n"); 1845 1846 amber_LED_off(ctrl, hp_slot); 1847 green_LED_blink(ctrl, hp_slot); 1848 1849 set_SOGO(ctrl); 1850 1851 /* Wait for SOBS to be unset */ 1852 wait_for_ctrl_irq(ctrl); 1853 1854 mutex_unlock(&ctrl->crit_sect); 1855 timer_setup(&p_slot->task_event, 1856 pushbutton_helper_thread, 1857 0); 1858 p_slot->hp_slot = hp_slot; 1859 p_slot->ctrl = ctrl; 1860 /* p_slot->physical_slot = physical_slot; */ 1861 p_slot->task_event.expires = jiffies + 5 * HZ; /* 5 second delay */ 1862 1863 dbg("add_timer p_slot = %p\n", p_slot); 1864 add_timer(&p_slot->task_event); 1865 } 1866 /***********POWER FAULT */ 1867 else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) { 1868 dbg("power fault\n"); 1869 } 1870 1871 ctrl->event_queue[loop].event_type = 0; 1872 1873 change = 1; 1874 } 1875 } /* End of FOR loop */ 1876 } 1877 1878 return; 1879 } 1880 1881 1882 /** 1883 * cpqhp_pushbutton_thread - handle pushbutton events 1884 * @slot: target slot (struct) 1885 * 1886 * Scheduled procedure to handle blocking stuff for the pushbuttons. 1887 * Handles all pending events and exits. 1888 */ 1889 void cpqhp_pushbutton_thread(struct timer_list *t) 1890 { 1891 u8 hp_slot; 1892 u8 device; 1893 struct pci_func *func; 1894 struct slot *p_slot = from_timer(p_slot, t, task_event); 1895 struct controller *ctrl = (struct controller *) p_slot->ctrl; 1896 1897 pushbutton_pending = NULL; 1898 hp_slot = p_slot->hp_slot; 1899 1900 device = p_slot->device; 1901 1902 if (is_slot_enabled(ctrl, hp_slot)) { 1903 p_slot->state = POWEROFF_STATE; 1904 /* power Down board */ 1905 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0); 1906 dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl); 1907 if (!func) { 1908 dbg("Error! func NULL in %s\n", __func__); 1909 return; 1910 } 1911 1912 if (cpqhp_process_SS(ctrl, func) != 0) { 1913 amber_LED_on(ctrl, hp_slot); 1914 green_LED_on(ctrl, hp_slot); 1915 1916 set_SOGO(ctrl); 1917 1918 /* Wait for SOBS to be unset */ 1919 wait_for_ctrl_irq(ctrl); 1920 } 1921 1922 p_slot->state = STATIC_STATE; 1923 } else { 1924 p_slot->state = POWERON_STATE; 1925 /* slot is off */ 1926 1927 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0); 1928 dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl); 1929 if (!func) { 1930 dbg("Error! func NULL in %s\n", __func__); 1931 return; 1932 } 1933 1934 if (ctrl != NULL) { 1935 if (cpqhp_process_SI(ctrl, func) != 0) { 1936 amber_LED_on(ctrl, hp_slot); 1937 green_LED_off(ctrl, hp_slot); 1938 1939 set_SOGO(ctrl); 1940 1941 /* Wait for SOBS to be unset */ 1942 wait_for_ctrl_irq(ctrl); 1943 } 1944 } 1945 1946 p_slot->state = STATIC_STATE; 1947 } 1948 1949 return; 1950 } 1951 1952 1953 int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func) 1954 { 1955 u8 device, hp_slot; 1956 u16 temp_word; 1957 u32 tempdword; 1958 int rc; 1959 struct slot *p_slot; 1960 int physical_slot = 0; 1961 1962 tempdword = 0; 1963 1964 device = func->device; 1965 hp_slot = device - ctrl->slot_device_offset; 1966 p_slot = cpqhp_find_slot(ctrl, device); 1967 if (p_slot) 1968 physical_slot = p_slot->number; 1969 1970 /* Check to see if the interlock is closed */ 1971 tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); 1972 1973 if (tempdword & (0x01 << hp_slot)) 1974 return 1; 1975 1976 if (func->is_a_board) { 1977 rc = board_replaced(func, ctrl); 1978 } else { 1979 /* add board */ 1980 slot_remove(func); 1981 1982 func = cpqhp_slot_create(ctrl->bus); 1983 if (func == NULL) 1984 return 1; 1985 1986 func->bus = ctrl->bus; 1987 func->device = device; 1988 func->function = 0; 1989 func->configured = 0; 1990 func->is_a_board = 1; 1991 1992 /* We have to save the presence info for these slots */ 1993 temp_word = ctrl->ctrl_int_comp >> 16; 1994 func->presence_save = (temp_word >> hp_slot) & 0x01; 1995 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; 1996 1997 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { 1998 func->switch_save = 0; 1999 } else { 2000 func->switch_save = 0x10; 2001 } 2002 2003 rc = board_added(func, ctrl); 2004 if (rc) { 2005 if (is_bridge(func)) { 2006 bridge_slot_remove(func); 2007 } else 2008 slot_remove(func); 2009 2010 /* Setup slot structure with entry for empty slot */ 2011 func = cpqhp_slot_create(ctrl->bus); 2012 2013 if (func == NULL) 2014 return 1; 2015 2016 func->bus = ctrl->bus; 2017 func->device = device; 2018 func->function = 0; 2019 func->configured = 0; 2020 func->is_a_board = 0; 2021 2022 /* We have to save the presence info for these slots */ 2023 temp_word = ctrl->ctrl_int_comp >> 16; 2024 func->presence_save = (temp_word >> hp_slot) & 0x01; 2025 func->presence_save |= 2026 (temp_word >> (hp_slot + 7)) & 0x02; 2027 2028 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { 2029 func->switch_save = 0; 2030 } else { 2031 func->switch_save = 0x10; 2032 } 2033 } 2034 } 2035 2036 if (rc) 2037 dbg("%s: rc = %d\n", __func__, rc); 2038 2039 return rc; 2040 } 2041 2042 2043 int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func) 2044 { 2045 u8 device, class_code, header_type, BCR; 2046 u8 index = 0; 2047 u8 replace_flag; 2048 u32 rc = 0; 2049 unsigned int devfn; 2050 struct slot *p_slot; 2051 struct pci_bus *pci_bus = ctrl->pci_bus; 2052 int physical_slot = 0; 2053 2054 device = func->device; 2055 func = cpqhp_slot_find(ctrl->bus, device, index++); 2056 p_slot = cpqhp_find_slot(ctrl, device); 2057 if (p_slot) 2058 physical_slot = p_slot->number; 2059 2060 /* Make sure there are no video controllers here */ 2061 while (func && !rc) { 2062 pci_bus->number = func->bus; 2063 devfn = PCI_DEVFN(func->device, func->function); 2064 2065 /* Check the Class Code */ 2066 rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code); 2067 if (rc) 2068 return rc; 2069 2070 if (class_code == PCI_BASE_CLASS_DISPLAY) { 2071 /* Display/Video adapter (not supported) */ 2072 rc = REMOVE_NOT_SUPPORTED; 2073 } else { 2074 /* See if it's a bridge */ 2075 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type); 2076 if (rc) 2077 return rc; 2078 2079 /* If it's a bridge, check the VGA Enable bit */ 2080 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { 2081 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR); 2082 if (rc) 2083 return rc; 2084 2085 /* If the VGA Enable bit is set, remove isn't 2086 * supported */ 2087 if (BCR & PCI_BRIDGE_CTL_VGA) 2088 rc = REMOVE_NOT_SUPPORTED; 2089 } 2090 } 2091 2092 func = cpqhp_slot_find(ctrl->bus, device, index++); 2093 } 2094 2095 func = cpqhp_slot_find(ctrl->bus, device, 0); 2096 if ((func != NULL) && !rc) { 2097 /* FIXME: Replace flag should be passed into process_SS */ 2098 replace_flag = !(ctrl->add_support); 2099 rc = remove_board(func, replace_flag, ctrl); 2100 } else if (!rc) { 2101 rc = 1; 2102 } 2103 2104 return rc; 2105 } 2106 2107 /** 2108 * switch_leds - switch the leds, go from one site to the other. 2109 * @ctrl: controller to use 2110 * @num_of_slots: number of slots to use 2111 * @work_LED: LED control value 2112 * @direction: 1 to start from the left side, 0 to start right. 2113 */ 2114 static void switch_leds(struct controller *ctrl, const int num_of_slots, 2115 u32 *work_LED, const int direction) 2116 { 2117 int loop; 2118 2119 for (loop = 0; loop < num_of_slots; loop++) { 2120 if (direction) 2121 *work_LED = *work_LED >> 1; 2122 else 2123 *work_LED = *work_LED << 1; 2124 writel(*work_LED, ctrl->hpc_reg + LED_CONTROL); 2125 2126 set_SOGO(ctrl); 2127 2128 /* Wait for SOGO interrupt */ 2129 wait_for_ctrl_irq(ctrl); 2130 2131 /* Get ready for next iteration */ 2132 long_delay((2*HZ)/10); 2133 } 2134 } 2135 2136 /** 2137 * cpqhp_hardware_test - runs hardware tests 2138 * @ctrl: target controller 2139 * @test_num: the number written to the "test" file in sysfs. 2140 * 2141 * For hot plug ctrl folks to play with. 2142 */ 2143 int cpqhp_hardware_test(struct controller *ctrl, int test_num) 2144 { 2145 u32 save_LED; 2146 u32 work_LED; 2147 int loop; 2148 int num_of_slots; 2149 2150 num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f; 2151 2152 switch (test_num) { 2153 case 1: 2154 /* Do stuff here! */ 2155 2156 /* Do that funky LED thing */ 2157 /* so we can restore them later */ 2158 save_LED = readl(ctrl->hpc_reg + LED_CONTROL); 2159 work_LED = 0x01010101; 2160 switch_leds(ctrl, num_of_slots, &work_LED, 0); 2161 switch_leds(ctrl, num_of_slots, &work_LED, 1); 2162 switch_leds(ctrl, num_of_slots, &work_LED, 0); 2163 switch_leds(ctrl, num_of_slots, &work_LED, 1); 2164 2165 work_LED = 0x01010000; 2166 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2167 switch_leds(ctrl, num_of_slots, &work_LED, 0); 2168 switch_leds(ctrl, num_of_slots, &work_LED, 1); 2169 work_LED = 0x00000101; 2170 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2171 switch_leds(ctrl, num_of_slots, &work_LED, 0); 2172 switch_leds(ctrl, num_of_slots, &work_LED, 1); 2173 2174 work_LED = 0x01010000; 2175 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2176 for (loop = 0; loop < num_of_slots; loop++) { 2177 set_SOGO(ctrl); 2178 2179 /* Wait for SOGO interrupt */ 2180 wait_for_ctrl_irq(ctrl); 2181 2182 /* Get ready for next iteration */ 2183 long_delay((3*HZ)/10); 2184 work_LED = work_LED >> 16; 2185 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2186 2187 set_SOGO(ctrl); 2188 2189 /* Wait for SOGO interrupt */ 2190 wait_for_ctrl_irq(ctrl); 2191 2192 /* Get ready for next iteration */ 2193 long_delay((3*HZ)/10); 2194 work_LED = work_LED << 16; 2195 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2196 work_LED = work_LED << 1; 2197 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2198 } 2199 2200 /* put it back the way it was */ 2201 writel(save_LED, ctrl->hpc_reg + LED_CONTROL); 2202 2203 set_SOGO(ctrl); 2204 2205 /* Wait for SOBS to be unset */ 2206 wait_for_ctrl_irq(ctrl); 2207 break; 2208 case 2: 2209 /* Do other stuff here! */ 2210 break; 2211 case 3: 2212 /* and more... */ 2213 break; 2214 } 2215 return 0; 2216 } 2217 2218 2219 /** 2220 * configure_new_device - Configures the PCI header information of one board. 2221 * @ctrl: pointer to controller structure 2222 * @func: pointer to function structure 2223 * @behind_bridge: 1 if this is a recursive call, 0 if not 2224 * @resources: pointer to set of resource lists 2225 * 2226 * Returns 0 if success. 2227 */ 2228 static u32 configure_new_device(struct controller *ctrl, struct pci_func *func, 2229 u8 behind_bridge, struct resource_lists *resources) 2230 { 2231 u8 temp_byte, function, max_functions, stop_it; 2232 int rc; 2233 u32 ID; 2234 struct pci_func *new_slot; 2235 int index; 2236 2237 new_slot = func; 2238 2239 dbg("%s\n", __func__); 2240 /* Check for Multi-function device */ 2241 ctrl->pci_bus->number = func->bus; 2242 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte); 2243 if (rc) { 2244 dbg("%s: rc = %d\n", __func__, rc); 2245 return rc; 2246 } 2247 2248 if (temp_byte & 0x80) /* Multi-function device */ 2249 max_functions = 8; 2250 else 2251 max_functions = 1; 2252 2253 function = 0; 2254 2255 do { 2256 rc = configure_new_function(ctrl, new_slot, behind_bridge, resources); 2257 2258 if (rc) { 2259 dbg("configure_new_function failed %d\n", rc); 2260 index = 0; 2261 2262 while (new_slot) { 2263 new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++); 2264 2265 if (new_slot) 2266 cpqhp_return_board_resources(new_slot, resources); 2267 } 2268 2269 return rc; 2270 } 2271 2272 function++; 2273 2274 stop_it = 0; 2275 2276 /* The following loop skips to the next present function 2277 * and creates a board structure */ 2278 2279 while ((function < max_functions) && (!stop_it)) { 2280 pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID); 2281 2282 if (ID == 0xFFFFFFFF) { 2283 function++; 2284 } else { 2285 /* Setup slot structure. */ 2286 new_slot = cpqhp_slot_create(func->bus); 2287 2288 if (new_slot == NULL) 2289 return 1; 2290 2291 new_slot->bus = func->bus; 2292 new_slot->device = func->device; 2293 new_slot->function = function; 2294 new_slot->is_a_board = 1; 2295 new_slot->status = 0; 2296 2297 stop_it++; 2298 } 2299 } 2300 2301 } while (function < max_functions); 2302 dbg("returning from configure_new_device\n"); 2303 2304 return 0; 2305 } 2306 2307 2308 /* 2309 * Configuration logic that involves the hotplug data structures and 2310 * their bookkeeping 2311 */ 2312 2313 2314 /** 2315 * configure_new_function - Configures the PCI header information of one device 2316 * @ctrl: pointer to controller structure 2317 * @func: pointer to function structure 2318 * @behind_bridge: 1 if this is a recursive call, 0 if not 2319 * @resources: pointer to set of resource lists 2320 * 2321 * Calls itself recursively for bridged devices. 2322 * Returns 0 if success. 2323 */ 2324 static int configure_new_function(struct controller *ctrl, struct pci_func *func, 2325 u8 behind_bridge, 2326 struct resource_lists *resources) 2327 { 2328 int cloop; 2329 u8 IRQ = 0; 2330 u8 temp_byte; 2331 u8 device; 2332 u8 class_code; 2333 u16 command; 2334 u16 temp_word; 2335 u32 temp_dword; 2336 u32 rc; 2337 u32 temp_register; 2338 u32 base; 2339 u32 ID; 2340 unsigned int devfn; 2341 struct pci_resource *mem_node; 2342 struct pci_resource *p_mem_node; 2343 struct pci_resource *io_node; 2344 struct pci_resource *bus_node; 2345 struct pci_resource *hold_mem_node; 2346 struct pci_resource *hold_p_mem_node; 2347 struct pci_resource *hold_IO_node; 2348 struct pci_resource *hold_bus_node; 2349 struct irq_mapping irqs; 2350 struct pci_func *new_slot; 2351 struct pci_bus *pci_bus; 2352 struct resource_lists temp_resources; 2353 2354 pci_bus = ctrl->pci_bus; 2355 pci_bus->number = func->bus; 2356 devfn = PCI_DEVFN(func->device, func->function); 2357 2358 /* Check for Bridge */ 2359 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte); 2360 if (rc) 2361 return rc; 2362 2363 if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { 2364 /* set Primary bus */ 2365 dbg("set Primary bus = %d\n", func->bus); 2366 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus); 2367 if (rc) 2368 return rc; 2369 2370 /* find range of buses to use */ 2371 dbg("find ranges of buses to use\n"); 2372 bus_node = get_max_resource(&(resources->bus_head), 1); 2373 2374 /* If we don't have any buses to allocate, we can't continue */ 2375 if (!bus_node) 2376 return -ENOMEM; 2377 2378 /* set Secondary bus */ 2379 temp_byte = bus_node->base; 2380 dbg("set Secondary bus = %d\n", bus_node->base); 2381 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte); 2382 if (rc) 2383 return rc; 2384 2385 /* set subordinate bus */ 2386 temp_byte = bus_node->base + bus_node->length - 1; 2387 dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1); 2388 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte); 2389 if (rc) 2390 return rc; 2391 2392 /* set subordinate Latency Timer and base Latency Timer */ 2393 temp_byte = 0x40; 2394 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte); 2395 if (rc) 2396 return rc; 2397 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte); 2398 if (rc) 2399 return rc; 2400 2401 /* set Cache Line size */ 2402 temp_byte = 0x08; 2403 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte); 2404 if (rc) 2405 return rc; 2406 2407 /* Setup the IO, memory, and prefetchable windows */ 2408 io_node = get_max_resource(&(resources->io_head), 0x1000); 2409 if (!io_node) 2410 return -ENOMEM; 2411 mem_node = get_max_resource(&(resources->mem_head), 0x100000); 2412 if (!mem_node) 2413 return -ENOMEM; 2414 p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000); 2415 if (!p_mem_node) 2416 return -ENOMEM; 2417 dbg("Setup the IO, memory, and prefetchable windows\n"); 2418 dbg("io_node\n"); 2419 dbg("(base, len, next) (%x, %x, %p)\n", io_node->base, 2420 io_node->length, io_node->next); 2421 dbg("mem_node\n"); 2422 dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base, 2423 mem_node->length, mem_node->next); 2424 dbg("p_mem_node\n"); 2425 dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base, 2426 p_mem_node->length, p_mem_node->next); 2427 2428 /* set up the IRQ info */ 2429 if (!resources->irqs) { 2430 irqs.barber_pole = 0; 2431 irqs.interrupt[0] = 0; 2432 irqs.interrupt[1] = 0; 2433 irqs.interrupt[2] = 0; 2434 irqs.interrupt[3] = 0; 2435 irqs.valid_INT = 0; 2436 } else { 2437 irqs.barber_pole = resources->irqs->barber_pole; 2438 irqs.interrupt[0] = resources->irqs->interrupt[0]; 2439 irqs.interrupt[1] = resources->irqs->interrupt[1]; 2440 irqs.interrupt[2] = resources->irqs->interrupt[2]; 2441 irqs.interrupt[3] = resources->irqs->interrupt[3]; 2442 irqs.valid_INT = resources->irqs->valid_INT; 2443 } 2444 2445 /* set up resource lists that are now aligned on top and bottom 2446 * for anything behind the bridge. */ 2447 temp_resources.bus_head = bus_node; 2448 temp_resources.io_head = io_node; 2449 temp_resources.mem_head = mem_node; 2450 temp_resources.p_mem_head = p_mem_node; 2451 temp_resources.irqs = &irqs; 2452 2453 /* Make copies of the nodes we are going to pass down so that 2454 * if there is a problem,we can just use these to free resources 2455 */ 2456 hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL); 2457 hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL); 2458 hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL); 2459 hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL); 2460 2461 if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) { 2462 kfree(hold_bus_node); 2463 kfree(hold_IO_node); 2464 kfree(hold_mem_node); 2465 kfree(hold_p_mem_node); 2466 2467 return 1; 2468 } 2469 2470 memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource)); 2471 2472 bus_node->base += 1; 2473 bus_node->length -= 1; 2474 bus_node->next = NULL; 2475 2476 /* If we have IO resources copy them and fill in the bridge's 2477 * IO range registers */ 2478 memcpy(hold_IO_node, io_node, sizeof(struct pci_resource)); 2479 io_node->next = NULL; 2480 2481 /* set IO base and Limit registers */ 2482 temp_byte = io_node->base >> 8; 2483 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte); 2484 2485 temp_byte = (io_node->base + io_node->length - 1) >> 8; 2486 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte); 2487 2488 /* Copy the memory resources and fill in the bridge's memory 2489 * range registers. 2490 */ 2491 memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource)); 2492 mem_node->next = NULL; 2493 2494 /* set Mem base and Limit registers */ 2495 temp_word = mem_node->base >> 16; 2496 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word); 2497 2498 temp_word = (mem_node->base + mem_node->length - 1) >> 16; 2499 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); 2500 2501 memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource)); 2502 p_mem_node->next = NULL; 2503 2504 /* set Pre Mem base and Limit registers */ 2505 temp_word = p_mem_node->base >> 16; 2506 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word); 2507 2508 temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16; 2509 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); 2510 2511 /* Adjust this to compensate for extra adjustment in first loop 2512 */ 2513 irqs.barber_pole--; 2514 2515 rc = 0; 2516 2517 /* Here we actually find the devices and configure them */ 2518 for (device = 0; (device <= 0x1F) && !rc; device++) { 2519 irqs.barber_pole = (irqs.barber_pole + 1) & 0x03; 2520 2521 ID = 0xFFFFFFFF; 2522 pci_bus->number = hold_bus_node->base; 2523 pci_bus_read_config_dword(pci_bus, PCI_DEVFN(device, 0), 0x00, &ID); 2524 pci_bus->number = func->bus; 2525 2526 if (ID != 0xFFFFFFFF) { /* device present */ 2527 /* Setup slot structure. */ 2528 new_slot = cpqhp_slot_create(hold_bus_node->base); 2529 2530 if (new_slot == NULL) { 2531 rc = -ENOMEM; 2532 continue; 2533 } 2534 2535 new_slot->bus = hold_bus_node->base; 2536 new_slot->device = device; 2537 new_slot->function = 0; 2538 new_slot->is_a_board = 1; 2539 new_slot->status = 0; 2540 2541 rc = configure_new_device(ctrl, new_slot, 1, &temp_resources); 2542 dbg("configure_new_device rc=0x%x\n", rc); 2543 } /* End of IF (device in slot?) */ 2544 } /* End of FOR loop */ 2545 2546 if (rc) 2547 goto free_and_out; 2548 /* save the interrupt routing information */ 2549 if (resources->irqs) { 2550 resources->irqs->interrupt[0] = irqs.interrupt[0]; 2551 resources->irqs->interrupt[1] = irqs.interrupt[1]; 2552 resources->irqs->interrupt[2] = irqs.interrupt[2]; 2553 resources->irqs->interrupt[3] = irqs.interrupt[3]; 2554 resources->irqs->valid_INT = irqs.valid_INT; 2555 } else if (!behind_bridge) { 2556 /* We need to hook up the interrupts here */ 2557 for (cloop = 0; cloop < 4; cloop++) { 2558 if (irqs.valid_INT & (0x01 << cloop)) { 2559 rc = cpqhp_set_irq(func->bus, func->device, 2560 cloop + 1, irqs.interrupt[cloop]); 2561 if (rc) 2562 goto free_and_out; 2563 } 2564 } /* end of for loop */ 2565 } 2566 /* Return unused bus resources 2567 * First use the temporary node to store information for 2568 * the board */ 2569 if (bus_node && temp_resources.bus_head) { 2570 hold_bus_node->length = bus_node->base - hold_bus_node->base; 2571 2572 hold_bus_node->next = func->bus_head; 2573 func->bus_head = hold_bus_node; 2574 2575 temp_byte = temp_resources.bus_head->base - 1; 2576 2577 /* set subordinate bus */ 2578 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte); 2579 2580 if (temp_resources.bus_head->length == 0) { 2581 kfree(temp_resources.bus_head); 2582 temp_resources.bus_head = NULL; 2583 } else { 2584 return_resource(&(resources->bus_head), temp_resources.bus_head); 2585 } 2586 } 2587 2588 /* If we have IO space available and there is some left, 2589 * return the unused portion */ 2590 if (hold_IO_node && temp_resources.io_head) { 2591 io_node = do_pre_bridge_resource_split(&(temp_resources.io_head), 2592 &hold_IO_node, 0x1000); 2593 2594 /* Check if we were able to split something off */ 2595 if (io_node) { 2596 hold_IO_node->base = io_node->base + io_node->length; 2597 2598 temp_byte = (hold_IO_node->base) >> 8; 2599 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_BASE, temp_byte); 2600 2601 return_resource(&(resources->io_head), io_node); 2602 } 2603 2604 io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000); 2605 2606 /* Check if we were able to split something off */ 2607 if (io_node) { 2608 /* First use the temporary node to store 2609 * information for the board */ 2610 hold_IO_node->length = io_node->base - hold_IO_node->base; 2611 2612 /* If we used any, add it to the board's list */ 2613 if (hold_IO_node->length) { 2614 hold_IO_node->next = func->io_head; 2615 func->io_head = hold_IO_node; 2616 2617 temp_byte = (io_node->base - 1) >> 8; 2618 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte); 2619 2620 return_resource(&(resources->io_head), io_node); 2621 } else { 2622 /* it doesn't need any IO */ 2623 temp_word = 0x0000; 2624 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_LIMIT, temp_word); 2625 2626 return_resource(&(resources->io_head), io_node); 2627 kfree(hold_IO_node); 2628 } 2629 } else { 2630 /* it used most of the range */ 2631 hold_IO_node->next = func->io_head; 2632 func->io_head = hold_IO_node; 2633 } 2634 } else if (hold_IO_node) { 2635 /* it used the whole range */ 2636 hold_IO_node->next = func->io_head; 2637 func->io_head = hold_IO_node; 2638 } 2639 /* If we have memory space available and there is some left, 2640 * return the unused portion */ 2641 if (hold_mem_node && temp_resources.mem_head) { 2642 mem_node = do_pre_bridge_resource_split(&(temp_resources. mem_head), 2643 &hold_mem_node, 0x100000); 2644 2645 /* Check if we were able to split something off */ 2646 if (mem_node) { 2647 hold_mem_node->base = mem_node->base + mem_node->length; 2648 2649 temp_word = (hold_mem_node->base) >> 16; 2650 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word); 2651 2652 return_resource(&(resources->mem_head), mem_node); 2653 } 2654 2655 mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000); 2656 2657 /* Check if we were able to split something off */ 2658 if (mem_node) { 2659 /* First use the temporary node to store 2660 * information for the board */ 2661 hold_mem_node->length = mem_node->base - hold_mem_node->base; 2662 2663 if (hold_mem_node->length) { 2664 hold_mem_node->next = func->mem_head; 2665 func->mem_head = hold_mem_node; 2666 2667 /* configure end address */ 2668 temp_word = (mem_node->base - 1) >> 16; 2669 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); 2670 2671 /* Return unused resources to the pool */ 2672 return_resource(&(resources->mem_head), mem_node); 2673 } else { 2674 /* it doesn't need any Mem */ 2675 temp_word = 0x0000; 2676 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); 2677 2678 return_resource(&(resources->mem_head), mem_node); 2679 kfree(hold_mem_node); 2680 } 2681 } else { 2682 /* it used most of the range */ 2683 hold_mem_node->next = func->mem_head; 2684 func->mem_head = hold_mem_node; 2685 } 2686 } else if (hold_mem_node) { 2687 /* it used the whole range */ 2688 hold_mem_node->next = func->mem_head; 2689 func->mem_head = hold_mem_node; 2690 } 2691 /* If we have prefetchable memory space available and there 2692 * is some left at the end, return the unused portion */ 2693 if (temp_resources.p_mem_head) { 2694 p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head), 2695 &hold_p_mem_node, 0x100000); 2696 2697 /* Check if we were able to split something off */ 2698 if (p_mem_node) { 2699 hold_p_mem_node->base = p_mem_node->base + p_mem_node->length; 2700 2701 temp_word = (hold_p_mem_node->base) >> 16; 2702 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word); 2703 2704 return_resource(&(resources->p_mem_head), p_mem_node); 2705 } 2706 2707 p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000); 2708 2709 /* Check if we were able to split something off */ 2710 if (p_mem_node) { 2711 /* First use the temporary node to store 2712 * information for the board */ 2713 hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base; 2714 2715 /* If we used any, add it to the board's list */ 2716 if (hold_p_mem_node->length) { 2717 hold_p_mem_node->next = func->p_mem_head; 2718 func->p_mem_head = hold_p_mem_node; 2719 2720 temp_word = (p_mem_node->base - 1) >> 16; 2721 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); 2722 2723 return_resource(&(resources->p_mem_head), p_mem_node); 2724 } else { 2725 /* it doesn't need any PMem */ 2726 temp_word = 0x0000; 2727 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); 2728 2729 return_resource(&(resources->p_mem_head), p_mem_node); 2730 kfree(hold_p_mem_node); 2731 } 2732 } else { 2733 /* it used the most of the range */ 2734 hold_p_mem_node->next = func->p_mem_head; 2735 func->p_mem_head = hold_p_mem_node; 2736 } 2737 } else if (hold_p_mem_node) { 2738 /* it used the whole range */ 2739 hold_p_mem_node->next = func->p_mem_head; 2740 func->p_mem_head = hold_p_mem_node; 2741 } 2742 /* We should be configuring an IRQ and the bridge's base address 2743 * registers if it needs them. Although we have never seen such 2744 * a device */ 2745 2746 /* enable card */ 2747 command = 0x0157; /* = PCI_COMMAND_IO | 2748 * PCI_COMMAND_MEMORY | 2749 * PCI_COMMAND_MASTER | 2750 * PCI_COMMAND_INVALIDATE | 2751 * PCI_COMMAND_PARITY | 2752 * PCI_COMMAND_SERR */ 2753 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command); 2754 2755 /* set Bridge Control Register */ 2756 command = 0x07; /* = PCI_BRIDGE_CTL_PARITY | 2757 * PCI_BRIDGE_CTL_SERR | 2758 * PCI_BRIDGE_CTL_NO_ISA */ 2759 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command); 2760 } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) { 2761 /* Standard device */ 2762 rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code); 2763 2764 if (class_code == PCI_BASE_CLASS_DISPLAY) { 2765 /* Display (video) adapter (not supported) */ 2766 return DEVICE_TYPE_NOT_SUPPORTED; 2767 } 2768 /* Figure out IO and memory needs */ 2769 for (cloop = 0x10; cloop <= 0x24; cloop += 4) { 2770 temp_register = 0xFFFFFFFF; 2771 2772 dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop); 2773 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register); 2774 2775 rc = pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp_register); 2776 dbg("CND: base = 0x%x\n", temp_register); 2777 2778 if (temp_register) { /* If this register is implemented */ 2779 if ((temp_register & 0x03L) == 0x01) { 2780 /* Map IO */ 2781 2782 /* set base = amount of IO space */ 2783 base = temp_register & 0xFFFFFFFC; 2784 base = ~base + 1; 2785 2786 dbg("CND: length = 0x%x\n", base); 2787 io_node = get_io_resource(&(resources->io_head), base); 2788 if (!io_node) 2789 return -ENOMEM; 2790 dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n", 2791 io_node->base, io_node->length, io_node->next); 2792 dbg("func (%p) io_head (%p)\n", func, func->io_head); 2793 2794 /* allocate the resource to the board */ 2795 base = io_node->base; 2796 io_node->next = func->io_head; 2797 func->io_head = io_node; 2798 } else if ((temp_register & 0x0BL) == 0x08) { 2799 /* Map prefetchable memory */ 2800 base = temp_register & 0xFFFFFFF0; 2801 base = ~base + 1; 2802 2803 dbg("CND: length = 0x%x\n", base); 2804 p_mem_node = get_resource(&(resources->p_mem_head), base); 2805 2806 /* allocate the resource to the board */ 2807 if (p_mem_node) { 2808 base = p_mem_node->base; 2809 2810 p_mem_node->next = func->p_mem_head; 2811 func->p_mem_head = p_mem_node; 2812 } else 2813 return -ENOMEM; 2814 } else if ((temp_register & 0x0BL) == 0x00) { 2815 /* Map memory */ 2816 base = temp_register & 0xFFFFFFF0; 2817 base = ~base + 1; 2818 2819 dbg("CND: length = 0x%x\n", base); 2820 mem_node = get_resource(&(resources->mem_head), base); 2821 2822 /* allocate the resource to the board */ 2823 if (mem_node) { 2824 base = mem_node->base; 2825 2826 mem_node->next = func->mem_head; 2827 func->mem_head = mem_node; 2828 } else 2829 return -ENOMEM; 2830 } else { 2831 /* Reserved bits or requesting space below 1M */ 2832 return NOT_ENOUGH_RESOURCES; 2833 } 2834 2835 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base); 2836 2837 /* Check for 64-bit base */ 2838 if ((temp_register & 0x07L) == 0x04) { 2839 cloop += 4; 2840 2841 /* Upper 32 bits of address always zero 2842 * on today's systems */ 2843 /* FIXME this is probably not true on 2844 * Alpha and ia64??? */ 2845 base = 0; 2846 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base); 2847 } 2848 } 2849 } /* End of base register loop */ 2850 if (cpqhp_legacy_mode) { 2851 /* Figure out which interrupt pin this function uses */ 2852 rc = pci_bus_read_config_byte(pci_bus, devfn, 2853 PCI_INTERRUPT_PIN, &temp_byte); 2854 2855 /* If this function needs an interrupt and we are behind 2856 * a bridge and the pin is tied to something that's 2857 * already mapped, set this one the same */ 2858 if (temp_byte && resources->irqs && 2859 (resources->irqs->valid_INT & 2860 (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) { 2861 /* We have to share with something already set up */ 2862 IRQ = resources->irqs->interrupt[(temp_byte + 2863 resources->irqs->barber_pole - 1) & 0x03]; 2864 } else { 2865 /* Program IRQ based on card type */ 2866 rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code); 2867 2868 if (class_code == PCI_BASE_CLASS_STORAGE) 2869 IRQ = cpqhp_disk_irq; 2870 else 2871 IRQ = cpqhp_nic_irq; 2872 } 2873 2874 /* IRQ Line */ 2875 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ); 2876 } 2877 2878 if (!behind_bridge) { 2879 rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ); 2880 if (rc) 2881 return 1; 2882 } else { 2883 /* TBD - this code may also belong in the other clause 2884 * of this If statement */ 2885 resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ; 2886 resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03; 2887 } 2888 2889 /* Latency Timer */ 2890 temp_byte = 0x40; 2891 rc = pci_bus_write_config_byte(pci_bus, devfn, 2892 PCI_LATENCY_TIMER, temp_byte); 2893 2894 /* Cache Line size */ 2895 temp_byte = 0x08; 2896 rc = pci_bus_write_config_byte(pci_bus, devfn, 2897 PCI_CACHE_LINE_SIZE, temp_byte); 2898 2899 /* disable ROM base Address */ 2900 temp_dword = 0x00L; 2901 rc = pci_bus_write_config_word(pci_bus, devfn, 2902 PCI_ROM_ADDRESS, temp_dword); 2903 2904 /* enable card */ 2905 temp_word = 0x0157; /* = PCI_COMMAND_IO | 2906 * PCI_COMMAND_MEMORY | 2907 * PCI_COMMAND_MASTER | 2908 * PCI_COMMAND_INVALIDATE | 2909 * PCI_COMMAND_PARITY | 2910 * PCI_COMMAND_SERR */ 2911 rc = pci_bus_write_config_word(pci_bus, devfn, 2912 PCI_COMMAND, temp_word); 2913 } else { /* End of Not-A-Bridge else */ 2914 /* It's some strange type of PCI adapter (Cardbus?) */ 2915 return DEVICE_TYPE_NOT_SUPPORTED; 2916 } 2917 2918 func->configured = 1; 2919 2920 return 0; 2921 free_and_out: 2922 cpqhp_destroy_resource_list(&temp_resources); 2923 2924 return_resource(&(resources->bus_head), hold_bus_node); 2925 return_resource(&(resources->io_head), hold_IO_node); 2926 return_resource(&(resources->mem_head), hold_mem_node); 2927 return_resource(&(resources->p_mem_head), hold_p_mem_node); 2928 return rc; 2929 } 2930