1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Compaq Hot Plug Controller Driver
4  *
5  * Copyright (C) 1995,2001 Compaq Computer Corporation
6  * Copyright (C) 2001 Greg Kroah-Hartman ([email protected])
7  * Copyright (C) 2001 IBM Corp.
8  *
9  * All rights reserved.
10  *
11  * Send feedback to <[email protected]>
12  *
13  */
14 
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/slab.h>
19 #include <linux/workqueue.h>
20 #include <linux/interrupt.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/pci.h>
24 #include <linux/pci_hotplug.h>
25 #include <linux/kthread.h>
26 #include "cpqphp.h"
27 
28 static u32 configure_new_device(struct controller *ctrl, struct pci_func *func,
29 			u8 behind_bridge, struct resource_lists *resources);
30 static int configure_new_function(struct controller *ctrl, struct pci_func *func,
31 			u8 behind_bridge, struct resource_lists *resources);
32 static void interrupt_event_handler(struct controller *ctrl);
33 
34 
35 static struct task_struct *cpqhp_event_thread;
36 static struct timer_list *pushbutton_pending;	/* = NULL */
37 
38 /* delay is in jiffies to wait for */
39 static void long_delay(int delay)
40 {
41 	/*
42 	 * XXX(hch): if someone is bored please convert all callers
43 	 * to call msleep_interruptible directly.  They really want
44 	 * to specify timeouts in natural units and spend a lot of
45 	 * effort converting them to jiffies..
46 	 */
47 	msleep_interruptible(jiffies_to_msecs(delay));
48 }
49 
50 
51 /* FIXME: The following line needs to be somewhere else... */
52 #define WRONG_BUS_FREQUENCY 0x07
53 static u8 handle_switch_change(u8 change, struct controller *ctrl)
54 {
55 	int hp_slot;
56 	u8 rc = 0;
57 	u16 temp_word;
58 	struct pci_func *func;
59 	struct event_info *taskInfo;
60 
61 	if (!change)
62 		return 0;
63 
64 	/* Switch Change */
65 	dbg("cpqsbd:  Switch interrupt received.\n");
66 
67 	for (hp_slot = 0; hp_slot < 6; hp_slot++) {
68 		if (change & (0x1L << hp_slot)) {
69 			/*
70 			 * this one changed.
71 			 */
72 			func = cpqhp_slot_find(ctrl->bus,
73 				(hp_slot + ctrl->slot_device_offset), 0);
74 
75 			/* this is the structure that tells the worker thread
76 			 * what to do
77 			 */
78 			taskInfo = &(ctrl->event_queue[ctrl->next_event]);
79 			ctrl->next_event = (ctrl->next_event + 1) % 10;
80 			taskInfo->hp_slot = hp_slot;
81 
82 			rc++;
83 
84 			temp_word = ctrl->ctrl_int_comp >> 16;
85 			func->presence_save = (temp_word >> hp_slot) & 0x01;
86 			func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
87 
88 			if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
89 				/*
90 				 * Switch opened
91 				 */
92 
93 				func->switch_save = 0;
94 
95 				taskInfo->event_type = INT_SWITCH_OPEN;
96 			} else {
97 				/*
98 				 * Switch closed
99 				 */
100 
101 				func->switch_save = 0x10;
102 
103 				taskInfo->event_type = INT_SWITCH_CLOSE;
104 			}
105 		}
106 	}
107 
108 	return rc;
109 }
110 
111 /**
112  * cpqhp_find_slot - find the struct slot of given device
113  * @ctrl: scan lots of this controller
114  * @device: the device id to find
115  */
116 static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
117 {
118 	struct slot *slot = ctrl->slot;
119 
120 	while (slot && (slot->device != device))
121 		slot = slot->next;
122 
123 	return slot;
124 }
125 
126 
127 static u8 handle_presence_change(u16 change, struct controller *ctrl)
128 {
129 	int hp_slot;
130 	u8 rc = 0;
131 	u8 temp_byte;
132 	u16 temp_word;
133 	struct pci_func *func;
134 	struct event_info *taskInfo;
135 	struct slot *p_slot;
136 
137 	if (!change)
138 		return 0;
139 
140 	/*
141 	 * Presence Change
142 	 */
143 	dbg("cpqsbd:  Presence/Notify input change.\n");
144 	dbg("         Changed bits are 0x%4.4x\n", change);
145 
146 	for (hp_slot = 0; hp_slot < 6; hp_slot++) {
147 		if (change & (0x0101 << hp_slot)) {
148 			/*
149 			 * this one changed.
150 			 */
151 			func = cpqhp_slot_find(ctrl->bus,
152 				(hp_slot + ctrl->slot_device_offset), 0);
153 
154 			taskInfo = &(ctrl->event_queue[ctrl->next_event]);
155 			ctrl->next_event = (ctrl->next_event + 1) % 10;
156 			taskInfo->hp_slot = hp_slot;
157 
158 			rc++;
159 
160 			p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
161 			if (!p_slot)
162 				return 0;
163 
164 			/* If the switch closed, must be a button
165 			 * If not in button mode, nevermind
166 			 */
167 			if (func->switch_save && (ctrl->push_button == 1)) {
168 				temp_word = ctrl->ctrl_int_comp >> 16;
169 				temp_byte = (temp_word >> hp_slot) & 0x01;
170 				temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
171 
172 				if (temp_byte != func->presence_save) {
173 					/*
174 					 * button Pressed (doesn't do anything)
175 					 */
176 					dbg("hp_slot %d button pressed\n", hp_slot);
177 					taskInfo->event_type = INT_BUTTON_PRESS;
178 				} else {
179 					/*
180 					 * button Released - TAKE ACTION!!!!
181 					 */
182 					dbg("hp_slot %d button released\n", hp_slot);
183 					taskInfo->event_type = INT_BUTTON_RELEASE;
184 
185 					/* Cancel if we are still blinking */
186 					if ((p_slot->state == BLINKINGON_STATE)
187 					    || (p_slot->state == BLINKINGOFF_STATE)) {
188 						taskInfo->event_type = INT_BUTTON_CANCEL;
189 						dbg("hp_slot %d button cancel\n", hp_slot);
190 					} else if ((p_slot->state == POWERON_STATE)
191 						   || (p_slot->state == POWEROFF_STATE)) {
192 						/* info(msg_button_ignore, p_slot->number); */
193 						taskInfo->event_type = INT_BUTTON_IGNORE;
194 						dbg("hp_slot %d button ignore\n", hp_slot);
195 					}
196 				}
197 			} else {
198 				/* Switch is open, assume a presence change
199 				 * Save the presence state
200 				 */
201 				temp_word = ctrl->ctrl_int_comp >> 16;
202 				func->presence_save = (temp_word >> hp_slot) & 0x01;
203 				func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
204 
205 				if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
206 				    (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
207 					/* Present */
208 					taskInfo->event_type = INT_PRESENCE_ON;
209 				} else {
210 					/* Not Present */
211 					taskInfo->event_type = INT_PRESENCE_OFF;
212 				}
213 			}
214 		}
215 	}
216 
217 	return rc;
218 }
219 
220 
221 static u8 handle_power_fault(u8 change, struct controller *ctrl)
222 {
223 	int hp_slot;
224 	u8 rc = 0;
225 	struct pci_func *func;
226 	struct event_info *taskInfo;
227 
228 	if (!change)
229 		return 0;
230 
231 	/*
232 	 * power fault
233 	 */
234 
235 	info("power fault interrupt\n");
236 
237 	for (hp_slot = 0; hp_slot < 6; hp_slot++) {
238 		if (change & (0x01 << hp_slot)) {
239 			/*
240 			 * this one changed.
241 			 */
242 			func = cpqhp_slot_find(ctrl->bus,
243 				(hp_slot + ctrl->slot_device_offset), 0);
244 
245 			taskInfo = &(ctrl->event_queue[ctrl->next_event]);
246 			ctrl->next_event = (ctrl->next_event + 1) % 10;
247 			taskInfo->hp_slot = hp_slot;
248 
249 			rc++;
250 
251 			if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
252 				/*
253 				 * power fault Cleared
254 				 */
255 				func->status = 0x00;
256 
257 				taskInfo->event_type = INT_POWER_FAULT_CLEAR;
258 			} else {
259 				/*
260 				 * power fault
261 				 */
262 				taskInfo->event_type = INT_POWER_FAULT;
263 
264 				if (ctrl->rev < 4) {
265 					amber_LED_on(ctrl, hp_slot);
266 					green_LED_off(ctrl, hp_slot);
267 					set_SOGO(ctrl);
268 
269 					/* this is a fatal condition, we want
270 					 * to crash the machine to protect from
271 					 * data corruption. simulated_NMI
272 					 * shouldn't ever return */
273 					/* FIXME
274 					simulated_NMI(hp_slot, ctrl); */
275 
276 					/* The following code causes a software
277 					 * crash just in case simulated_NMI did
278 					 * return */
279 					/*FIXME
280 					panic(msg_power_fault); */
281 				} else {
282 					/* set power fault status for this board */
283 					func->status = 0xFF;
284 					info("power fault bit %x set\n", hp_slot);
285 				}
286 			}
287 		}
288 	}
289 
290 	return rc;
291 }
292 
293 
294 /**
295  * sort_by_size - sort nodes on the list by their length, smallest first.
296  * @head: list to sort
297  */
298 static int sort_by_size(struct pci_resource **head)
299 {
300 	struct pci_resource *current_res;
301 	struct pci_resource *next_res;
302 	int out_of_order = 1;
303 
304 	if (!(*head))
305 		return 1;
306 
307 	if (!((*head)->next))
308 		return 0;
309 
310 	while (out_of_order) {
311 		out_of_order = 0;
312 
313 		/* Special case for swapping list head */
314 		if (((*head)->next) &&
315 		    ((*head)->length > (*head)->next->length)) {
316 			out_of_order++;
317 			current_res = *head;
318 			*head = (*head)->next;
319 			current_res->next = (*head)->next;
320 			(*head)->next = current_res;
321 		}
322 
323 		current_res = *head;
324 
325 		while (current_res->next && current_res->next->next) {
326 			if (current_res->next->length > current_res->next->next->length) {
327 				out_of_order++;
328 				next_res = current_res->next;
329 				current_res->next = current_res->next->next;
330 				current_res = current_res->next;
331 				next_res->next = current_res->next;
332 				current_res->next = next_res;
333 			} else
334 				current_res = current_res->next;
335 		}
336 	}  /* End of out_of_order loop */
337 
338 	return 0;
339 }
340 
341 
342 /**
343  * sort_by_max_size - sort nodes on the list by their length, largest first.
344  * @head: list to sort
345  */
346 static int sort_by_max_size(struct pci_resource **head)
347 {
348 	struct pci_resource *current_res;
349 	struct pci_resource *next_res;
350 	int out_of_order = 1;
351 
352 	if (!(*head))
353 		return 1;
354 
355 	if (!((*head)->next))
356 		return 0;
357 
358 	while (out_of_order) {
359 		out_of_order = 0;
360 
361 		/* Special case for swapping list head */
362 		if (((*head)->next) &&
363 		    ((*head)->length < (*head)->next->length)) {
364 			out_of_order++;
365 			current_res = *head;
366 			*head = (*head)->next;
367 			current_res->next = (*head)->next;
368 			(*head)->next = current_res;
369 		}
370 
371 		current_res = *head;
372 
373 		while (current_res->next && current_res->next->next) {
374 			if (current_res->next->length < current_res->next->next->length) {
375 				out_of_order++;
376 				next_res = current_res->next;
377 				current_res->next = current_res->next->next;
378 				current_res = current_res->next;
379 				next_res->next = current_res->next;
380 				current_res->next = next_res;
381 			} else
382 				current_res = current_res->next;
383 		}
384 	}  /* End of out_of_order loop */
385 
386 	return 0;
387 }
388 
389 
390 /**
391  * do_pre_bridge_resource_split - find node of resources that are unused
392  * @head: new list head
393  * @orig_head: original list head
394  * @alignment: max node size (?)
395  */
396 static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
397 				struct pci_resource **orig_head, u32 alignment)
398 {
399 	struct pci_resource *prevnode = NULL;
400 	struct pci_resource *node;
401 	struct pci_resource *split_node;
402 	u32 rc;
403 	u32 temp_dword;
404 	dbg("do_pre_bridge_resource_split\n");
405 
406 	if (!(*head) || !(*orig_head))
407 		return NULL;
408 
409 	rc = cpqhp_resource_sort_and_combine(head);
410 
411 	if (rc)
412 		return NULL;
413 
414 	if ((*head)->base != (*orig_head)->base)
415 		return NULL;
416 
417 	if ((*head)->length == (*orig_head)->length)
418 		return NULL;
419 
420 
421 	/* If we got here, there the bridge requires some of the resource, but
422 	 * we may be able to split some off of the front
423 	 */
424 
425 	node = *head;
426 
427 	if (node->length & (alignment - 1)) {
428 		/* this one isn't an aligned length, so we'll make a new entry
429 		 * and split it up.
430 		 */
431 		split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
432 
433 		if (!split_node)
434 			return NULL;
435 
436 		temp_dword = (node->length | (alignment-1)) + 1 - alignment;
437 
438 		split_node->base = node->base;
439 		split_node->length = temp_dword;
440 
441 		node->length -= temp_dword;
442 		node->base += split_node->length;
443 
444 		/* Put it in the list */
445 		*head = split_node;
446 		split_node->next = node;
447 	}
448 
449 	if (node->length < alignment)
450 		return NULL;
451 
452 	/* Now unlink it */
453 	if (*head == node) {
454 		*head = node->next;
455 	} else {
456 		prevnode = *head;
457 		while (prevnode->next != node)
458 			prevnode = prevnode->next;
459 
460 		prevnode->next = node->next;
461 	}
462 	node->next = NULL;
463 
464 	return node;
465 }
466 
467 
468 /**
469  * do_bridge_resource_split - find one node of resources that aren't in use
470  * @head: list head
471  * @alignment: max node size (?)
472  */
473 static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
474 {
475 	struct pci_resource *prevnode = NULL;
476 	struct pci_resource *node;
477 	u32 rc;
478 	u32 temp_dword;
479 
480 	rc = cpqhp_resource_sort_and_combine(head);
481 
482 	if (rc)
483 		return NULL;
484 
485 	node = *head;
486 
487 	while (node->next) {
488 		prevnode = node;
489 		node = node->next;
490 		kfree(prevnode);
491 	}
492 
493 	if (node->length < alignment)
494 		goto error;
495 
496 	if (node->base & (alignment - 1)) {
497 		/* Short circuit if adjusted size is too small */
498 		temp_dword = (node->base | (alignment-1)) + 1;
499 		if ((node->length - (temp_dword - node->base)) < alignment)
500 			goto error;
501 
502 		node->length -= (temp_dword - node->base);
503 		node->base = temp_dword;
504 	}
505 
506 	if (node->length & (alignment - 1))
507 		/* There's stuff in use after this node */
508 		goto error;
509 
510 	return node;
511 error:
512 	kfree(node);
513 	return NULL;
514 }
515 
516 
517 /**
518  * get_io_resource - find first node of given size not in ISA aliasing window.
519  * @head: list to search
520  * @size: size of node to find, must be a power of two.
521  *
522  * Description: This function sorts the resource list by size and then returns
523  * returns the first node of "size" length that is not in the ISA aliasing
524  * window.  If it finds a node larger than "size" it will split it up.
525  */
526 static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
527 {
528 	struct pci_resource *prevnode;
529 	struct pci_resource *node;
530 	struct pci_resource *split_node;
531 	u32 temp_dword;
532 
533 	if (!(*head))
534 		return NULL;
535 
536 	if (cpqhp_resource_sort_and_combine(head))
537 		return NULL;
538 
539 	if (sort_by_size(head))
540 		return NULL;
541 
542 	for (node = *head; node; node = node->next) {
543 		if (node->length < size)
544 			continue;
545 
546 		if (node->base & (size - 1)) {
547 			/* this one isn't base aligned properly
548 			 * so we'll make a new entry and split it up
549 			 */
550 			temp_dword = (node->base | (size-1)) + 1;
551 
552 			/* Short circuit if adjusted size is too small */
553 			if ((node->length - (temp_dword - node->base)) < size)
554 				continue;
555 
556 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
557 
558 			if (!split_node)
559 				return NULL;
560 
561 			split_node->base = node->base;
562 			split_node->length = temp_dword - node->base;
563 			node->base = temp_dword;
564 			node->length -= split_node->length;
565 
566 			/* Put it in the list */
567 			split_node->next = node->next;
568 			node->next = split_node;
569 		} /* End of non-aligned base */
570 
571 		/* Don't need to check if too small since we already did */
572 		if (node->length > size) {
573 			/* this one is longer than we need
574 			 * so we'll make a new entry and split it up
575 			 */
576 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
577 
578 			if (!split_node)
579 				return NULL;
580 
581 			split_node->base = node->base + size;
582 			split_node->length = node->length - size;
583 			node->length = size;
584 
585 			/* Put it in the list */
586 			split_node->next = node->next;
587 			node->next = split_node;
588 		}  /* End of too big on top end */
589 
590 		/* For IO make sure it's not in the ISA aliasing space */
591 		if (node->base & 0x300L)
592 			continue;
593 
594 		/* If we got here, then it is the right size
595 		 * Now take it out of the list and break
596 		 */
597 		if (*head == node) {
598 			*head = node->next;
599 		} else {
600 			prevnode = *head;
601 			while (prevnode->next != node)
602 				prevnode = prevnode->next;
603 
604 			prevnode->next = node->next;
605 		}
606 		node->next = NULL;
607 		break;
608 	}
609 
610 	return node;
611 }
612 
613 
614 /**
615  * get_max_resource - get largest node which has at least the given size.
616  * @head: the list to search the node in
617  * @size: the minimum size of the node to find
618  *
619  * Description: Gets the largest node that is at least "size" big from the
620  * list pointed to by head.  It aligns the node on top and bottom
621  * to "size" alignment before returning it.
622  */
623 static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
624 {
625 	struct pci_resource *max;
626 	struct pci_resource *temp;
627 	struct pci_resource *split_node;
628 	u32 temp_dword;
629 
630 	if (cpqhp_resource_sort_and_combine(head))
631 		return NULL;
632 
633 	if (sort_by_max_size(head))
634 		return NULL;
635 
636 	for (max = *head; max; max = max->next) {
637 		/* If not big enough we could probably just bail,
638 		 * instead we'll continue to the next.
639 		 */
640 		if (max->length < size)
641 			continue;
642 
643 		if (max->base & (size - 1)) {
644 			/* this one isn't base aligned properly
645 			 * so we'll make a new entry and split it up
646 			 */
647 			temp_dword = (max->base | (size-1)) + 1;
648 
649 			/* Short circuit if adjusted size is too small */
650 			if ((max->length - (temp_dword - max->base)) < size)
651 				continue;
652 
653 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
654 
655 			if (!split_node)
656 				return NULL;
657 
658 			split_node->base = max->base;
659 			split_node->length = temp_dword - max->base;
660 			max->base = temp_dword;
661 			max->length -= split_node->length;
662 
663 			split_node->next = max->next;
664 			max->next = split_node;
665 		}
666 
667 		if ((max->base + max->length) & (size - 1)) {
668 			/* this one isn't end aligned properly at the top
669 			 * so we'll make a new entry and split it up
670 			 */
671 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
672 
673 			if (!split_node)
674 				return NULL;
675 			temp_dword = ((max->base + max->length) & ~(size - 1));
676 			split_node->base = temp_dword;
677 			split_node->length = max->length + max->base
678 					     - split_node->base;
679 			max->length -= split_node->length;
680 
681 			split_node->next = max->next;
682 			max->next = split_node;
683 		}
684 
685 		/* Make sure it didn't shrink too much when we aligned it */
686 		if (max->length < size)
687 			continue;
688 
689 		/* Now take it out of the list */
690 		temp = *head;
691 		if (temp == max) {
692 			*head = max->next;
693 		} else {
694 			while (temp && temp->next != max)
695 				temp = temp->next;
696 
697 			if (temp)
698 				temp->next = max->next;
699 		}
700 
701 		max->next = NULL;
702 		break;
703 	}
704 
705 	return max;
706 }
707 
708 
709 /**
710  * get_resource - find resource of given size and split up larger ones.
711  * @head: the list to search for resources
712  * @size: the size limit to use
713  *
714  * Description: This function sorts the resource list by size and then
715  * returns the first node of "size" length.  If it finds a node
716  * larger than "size" it will split it up.
717  *
718  * size must be a power of two.
719  */
720 static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
721 {
722 	struct pci_resource *prevnode;
723 	struct pci_resource *node;
724 	struct pci_resource *split_node;
725 	u32 temp_dword;
726 
727 	if (cpqhp_resource_sort_and_combine(head))
728 		return NULL;
729 
730 	if (sort_by_size(head))
731 		return NULL;
732 
733 	for (node = *head; node; node = node->next) {
734 		dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
735 		    __func__, size, node, node->base, node->length);
736 		if (node->length < size)
737 			continue;
738 
739 		if (node->base & (size - 1)) {
740 			dbg("%s: not aligned\n", __func__);
741 			/* this one isn't base aligned properly
742 			 * so we'll make a new entry and split it up
743 			 */
744 			temp_dword = (node->base | (size-1)) + 1;
745 
746 			/* Short circuit if adjusted size is too small */
747 			if ((node->length - (temp_dword - node->base)) < size)
748 				continue;
749 
750 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
751 
752 			if (!split_node)
753 				return NULL;
754 
755 			split_node->base = node->base;
756 			split_node->length = temp_dword - node->base;
757 			node->base = temp_dword;
758 			node->length -= split_node->length;
759 
760 			split_node->next = node->next;
761 			node->next = split_node;
762 		} /* End of non-aligned base */
763 
764 		/* Don't need to check if too small since we already did */
765 		if (node->length > size) {
766 			dbg("%s: too big\n", __func__);
767 			/* this one is longer than we need
768 			 * so we'll make a new entry and split it up
769 			 */
770 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
771 
772 			if (!split_node)
773 				return NULL;
774 
775 			split_node->base = node->base + size;
776 			split_node->length = node->length - size;
777 			node->length = size;
778 
779 			/* Put it in the list */
780 			split_node->next = node->next;
781 			node->next = split_node;
782 		}  /* End of too big on top end */
783 
784 		dbg("%s: got one!!!\n", __func__);
785 		/* If we got here, then it is the right size
786 		 * Now take it out of the list */
787 		if (*head == node) {
788 			*head = node->next;
789 		} else {
790 			prevnode = *head;
791 			while (prevnode->next != node)
792 				prevnode = prevnode->next;
793 
794 			prevnode->next = node->next;
795 		}
796 		node->next = NULL;
797 		break;
798 	}
799 	return node;
800 }
801 
802 
803 /**
804  * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
805  * @head: the list to sort and clean up
806  *
807  * Description: Sorts all of the nodes in the list in ascending order by
808  * their base addresses.  Also does garbage collection by
809  * combining adjacent nodes.
810  *
811  * Returns %0 if success.
812  */
813 int cpqhp_resource_sort_and_combine(struct pci_resource **head)
814 {
815 	struct pci_resource *node1;
816 	struct pci_resource *node2;
817 	int out_of_order = 1;
818 
819 	dbg("%s: head = %p, *head = %p\n", __func__, head, *head);
820 
821 	if (!(*head))
822 		return 1;
823 
824 	dbg("*head->next = %p\n", (*head)->next);
825 
826 	if (!(*head)->next)
827 		return 0;	/* only one item on the list, already sorted! */
828 
829 	dbg("*head->base = 0x%x\n", (*head)->base);
830 	dbg("*head->next->base = 0x%x\n", (*head)->next->base);
831 	while (out_of_order) {
832 		out_of_order = 0;
833 
834 		/* Special case for swapping list head */
835 		if (((*head)->next) &&
836 		    ((*head)->base > (*head)->next->base)) {
837 			node1 = *head;
838 			(*head) = (*head)->next;
839 			node1->next = (*head)->next;
840 			(*head)->next = node1;
841 			out_of_order++;
842 		}
843 
844 		node1 = (*head);
845 
846 		while (node1->next && node1->next->next) {
847 			if (node1->next->base > node1->next->next->base) {
848 				out_of_order++;
849 				node2 = node1->next;
850 				node1->next = node1->next->next;
851 				node1 = node1->next;
852 				node2->next = node1->next;
853 				node1->next = node2;
854 			} else
855 				node1 = node1->next;
856 		}
857 	}  /* End of out_of_order loop */
858 
859 	node1 = *head;
860 
861 	while (node1 && node1->next) {
862 		if ((node1->base + node1->length) == node1->next->base) {
863 			/* Combine */
864 			dbg("8..\n");
865 			node1->length += node1->next->length;
866 			node2 = node1->next;
867 			node1->next = node1->next->next;
868 			kfree(node2);
869 		} else
870 			node1 = node1->next;
871 	}
872 
873 	return 0;
874 }
875 
876 
877 irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
878 {
879 	struct controller *ctrl = data;
880 	u8 schedule_flag = 0;
881 	u8 reset;
882 	u16 misc;
883 	u32 Diff;
884 	u32 temp_dword;
885 
886 
887 	misc = readw(ctrl->hpc_reg + MISC);
888 	/*
889 	 * Check to see if it was our interrupt
890 	 */
891 	if (!(misc & 0x000C))
892 		return IRQ_NONE;
893 
894 	if (misc & 0x0004) {
895 		/*
896 		 * Serial Output interrupt Pending
897 		 */
898 
899 		/* Clear the interrupt */
900 		misc |= 0x0004;
901 		writew(misc, ctrl->hpc_reg + MISC);
902 
903 		/* Read to clear posted writes */
904 		misc = readw(ctrl->hpc_reg + MISC);
905 
906 		dbg("%s - waking up\n", __func__);
907 		wake_up_interruptible(&ctrl->queue);
908 	}
909 
910 	if (misc & 0x0008) {
911 		/* General-interrupt-input interrupt Pending */
912 		Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
913 
914 		ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
915 
916 		/* Clear the interrupt */
917 		writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
918 
919 		/* Read it back to clear any posted writes */
920 		temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
921 
922 		if (!Diff)
923 			/* Clear all interrupts */
924 			writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
925 
926 		schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
927 		schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
928 		schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
929 	}
930 
931 	reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
932 	if (reset & 0x40) {
933 		/* Bus reset has completed */
934 		reset &= 0xCF;
935 		writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
936 		reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
937 		wake_up_interruptible(&ctrl->queue);
938 	}
939 
940 	if (schedule_flag) {
941 		wake_up_process(cpqhp_event_thread);
942 		dbg("Waking even thread");
943 	}
944 	return IRQ_HANDLED;
945 }
946 
947 
948 /**
949  * cpqhp_slot_create - Creates a node and adds it to the proper bus.
950  * @busnumber: bus where new node is to be located
951  *
952  * Returns pointer to the new node or %NULL if unsuccessful.
953  */
954 struct pci_func *cpqhp_slot_create(u8 busnumber)
955 {
956 	struct pci_func *new_slot;
957 	struct pci_func *next;
958 
959 	new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL);
960 	if (new_slot == NULL)
961 		return new_slot;
962 
963 	new_slot->next = NULL;
964 	new_slot->configured = 1;
965 
966 	if (cpqhp_slot_list[busnumber] == NULL) {
967 		cpqhp_slot_list[busnumber] = new_slot;
968 	} else {
969 		next = cpqhp_slot_list[busnumber];
970 		while (next->next != NULL)
971 			next = next->next;
972 		next->next = new_slot;
973 	}
974 	return new_slot;
975 }
976 
977 
978 /**
979  * slot_remove - Removes a node from the linked list of slots.
980  * @old_slot: slot to remove
981  *
982  * Returns %0 if successful, !0 otherwise.
983  */
984 static int slot_remove(struct pci_func *old_slot)
985 {
986 	struct pci_func *next;
987 
988 	if (old_slot == NULL)
989 		return 1;
990 
991 	next = cpqhp_slot_list[old_slot->bus];
992 	if (next == NULL)
993 		return 1;
994 
995 	if (next == old_slot) {
996 		cpqhp_slot_list[old_slot->bus] = old_slot->next;
997 		cpqhp_destroy_board_resources(old_slot);
998 		kfree(old_slot);
999 		return 0;
1000 	}
1001 
1002 	while ((next->next != old_slot) && (next->next != NULL))
1003 		next = next->next;
1004 
1005 	if (next->next == old_slot) {
1006 		next->next = old_slot->next;
1007 		cpqhp_destroy_board_resources(old_slot);
1008 		kfree(old_slot);
1009 		return 0;
1010 	} else
1011 		return 2;
1012 }
1013 
1014 
1015 /**
1016  * bridge_slot_remove - Removes a node from the linked list of slots.
1017  * @bridge: bridge to remove
1018  *
1019  * Returns %0 if successful, !0 otherwise.
1020  */
1021 static int bridge_slot_remove(struct pci_func *bridge)
1022 {
1023 	u8 subordinateBus, secondaryBus;
1024 	u8 tempBus;
1025 	struct pci_func *next;
1026 
1027 	secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1028 	subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1029 
1030 	for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1031 		next = cpqhp_slot_list[tempBus];
1032 
1033 		while (!slot_remove(next))
1034 			next = cpqhp_slot_list[tempBus];
1035 	}
1036 
1037 	next = cpqhp_slot_list[bridge->bus];
1038 
1039 	if (next == NULL)
1040 		return 1;
1041 
1042 	if (next == bridge) {
1043 		cpqhp_slot_list[bridge->bus] = bridge->next;
1044 		goto out;
1045 	}
1046 
1047 	while ((next->next != bridge) && (next->next != NULL))
1048 		next = next->next;
1049 
1050 	if (next->next != bridge)
1051 		return 2;
1052 	next->next = bridge->next;
1053 out:
1054 	kfree(bridge);
1055 	return 0;
1056 }
1057 
1058 
1059 /**
1060  * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1061  * @bus: bus to find
1062  * @device: device to find
1063  * @index: is %0 for first function found, %1 for the second...
1064  *
1065  * Returns pointer to the node if successful, %NULL otherwise.
1066  */
1067 struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1068 {
1069 	int found = -1;
1070 	struct pci_func *func;
1071 
1072 	func = cpqhp_slot_list[bus];
1073 
1074 	if ((func == NULL) || ((func->device == device) && (index == 0)))
1075 		return func;
1076 
1077 	if (func->device == device)
1078 		found++;
1079 
1080 	while (func->next != NULL) {
1081 		func = func->next;
1082 
1083 		if (func->device == device)
1084 			found++;
1085 
1086 		if (found == index)
1087 			return func;
1088 	}
1089 
1090 	return NULL;
1091 }
1092 
1093 
1094 /* DJZ: I don't think is_bridge will work as is.
1095  * FIXME */
1096 static int is_bridge(struct pci_func *func)
1097 {
1098 	/* Check the header type */
1099 	if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1100 		return 1;
1101 	else
1102 		return 0;
1103 }
1104 
1105 
1106 /**
1107  * set_controller_speed - set the frequency and/or mode of a specific controller segment.
1108  * @ctrl: controller to change frequency/mode for.
1109  * @adapter_speed: the speed of the adapter we want to match.
1110  * @hp_slot: the slot number where the adapter is installed.
1111  *
1112  * Returns %0 if we successfully change frequency and/or mode to match the
1113  * adapter speed.
1114  */
1115 static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1116 {
1117 	struct slot *slot;
1118 	struct pci_bus *bus = ctrl->pci_bus;
1119 	u8 reg;
1120 	u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1121 	u16 reg16;
1122 	u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1123 
1124 	if (bus->cur_bus_speed == adapter_speed)
1125 		return 0;
1126 
1127 	/* We don't allow freq/mode changes if we find another adapter running
1128 	 * in another slot on this controller
1129 	 */
1130 	for (slot = ctrl->slot; slot; slot = slot->next) {
1131 		if (slot->device == (hp_slot + ctrl->slot_device_offset))
1132 			continue;
1133 		if (!slot->hotplug_slot)
1134 			continue;
1135 		if (get_presence_status(ctrl, slot) == 0)
1136 			continue;
1137 		/* If another adapter is running on the same segment but at a
1138 		 * lower speed/mode, we allow the new adapter to function at
1139 		 * this rate if supported
1140 		 */
1141 		if (bus->cur_bus_speed < adapter_speed)
1142 			return 0;
1143 
1144 		return 1;
1145 	}
1146 
1147 	/* If the controller doesn't support freq/mode changes and the
1148 	 * controller is running at a higher mode, we bail
1149 	 */
1150 	if ((bus->cur_bus_speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1151 		return 1;
1152 
1153 	/* But we allow the adapter to run at a lower rate if possible */
1154 	if ((bus->cur_bus_speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1155 		return 0;
1156 
1157 	/* We try to set the max speed supported by both the adapter and
1158 	 * controller
1159 	 */
1160 	if (bus->max_bus_speed < adapter_speed) {
1161 		if (bus->cur_bus_speed == bus->max_bus_speed)
1162 			return 0;
1163 		adapter_speed = bus->max_bus_speed;
1164 	}
1165 
1166 	writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1167 	writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1168 
1169 	set_SOGO(ctrl);
1170 	wait_for_ctrl_irq(ctrl);
1171 
1172 	if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1173 		reg = 0xF5;
1174 	else
1175 		reg = 0xF4;
1176 	pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1177 
1178 	reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1179 	reg16 &= ~0x000F;
1180 	switch (adapter_speed) {
1181 		case(PCI_SPEED_133MHz_PCIX):
1182 			reg = 0x75;
1183 			reg16 |= 0xB;
1184 			break;
1185 		case(PCI_SPEED_100MHz_PCIX):
1186 			reg = 0x74;
1187 			reg16 |= 0xA;
1188 			break;
1189 		case(PCI_SPEED_66MHz_PCIX):
1190 			reg = 0x73;
1191 			reg16 |= 0x9;
1192 			break;
1193 		case(PCI_SPEED_66MHz):
1194 			reg = 0x73;
1195 			reg16 |= 0x1;
1196 			break;
1197 		default: /* 33MHz PCI 2.2 */
1198 			reg = 0x71;
1199 			break;
1200 
1201 	}
1202 	reg16 |= 0xB << 12;
1203 	writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1204 
1205 	mdelay(5);
1206 
1207 	/* Reenable interrupts */
1208 	writel(0, ctrl->hpc_reg + INT_MASK);
1209 
1210 	pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1211 
1212 	/* Restart state machine */
1213 	reg = ~0xF;
1214 	pci_read_config_byte(ctrl->pci_dev, 0x43, &reg);
1215 	pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1216 
1217 	/* Only if mode change...*/
1218 	if (((bus->cur_bus_speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1219 		((bus->cur_bus_speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz)))
1220 			set_SOGO(ctrl);
1221 
1222 	wait_for_ctrl_irq(ctrl);
1223 	mdelay(1100);
1224 
1225 	/* Restore LED/Slot state */
1226 	writel(leds, ctrl->hpc_reg + LED_CONTROL);
1227 	writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1228 
1229 	set_SOGO(ctrl);
1230 	wait_for_ctrl_irq(ctrl);
1231 
1232 	bus->cur_bus_speed = adapter_speed;
1233 	slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1234 
1235 	info("Successfully changed frequency/mode for adapter in slot %d\n",
1236 			slot->number);
1237 	return 0;
1238 }
1239 
1240 /* the following routines constitute the bulk of the
1241  * hotplug controller logic
1242  */
1243 
1244 
1245 /**
1246  * board_replaced - Called after a board has been replaced in the system.
1247  * @func: PCI device/function information
1248  * @ctrl: hotplug controller
1249  *
1250  * This is only used if we don't have resources for hot add.
1251  * Turns power on for the board.
1252  * Checks to see if board is the same.
1253  * If board is same, reconfigures it.
1254  * If board isn't same, turns it back off.
1255  */
1256 static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1257 {
1258 	struct pci_bus *bus = ctrl->pci_bus;
1259 	u8 hp_slot;
1260 	u8 temp_byte;
1261 	u8 adapter_speed;
1262 	u32 rc = 0;
1263 
1264 	hp_slot = func->device - ctrl->slot_device_offset;
1265 
1266 	/*
1267 	 * The switch is open.
1268 	 */
1269 	if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot))
1270 		rc = INTERLOCK_OPEN;
1271 	/*
1272 	 * The board is already on
1273 	 */
1274 	else if (is_slot_enabled(ctrl, hp_slot))
1275 		rc = CARD_FUNCTIONING;
1276 	else {
1277 		mutex_lock(&ctrl->crit_sect);
1278 
1279 		/* turn on board without attaching to the bus */
1280 		enable_slot_power(ctrl, hp_slot);
1281 
1282 		set_SOGO(ctrl);
1283 
1284 		/* Wait for SOBS to be unset */
1285 		wait_for_ctrl_irq(ctrl);
1286 
1287 		/* Change bits in slot power register to force another shift out
1288 		 * NOTE: this is to work around the timer bug */
1289 		temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1290 		writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1291 		writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1292 
1293 		set_SOGO(ctrl);
1294 
1295 		/* Wait for SOBS to be unset */
1296 		wait_for_ctrl_irq(ctrl);
1297 
1298 		adapter_speed = get_adapter_speed(ctrl, hp_slot);
1299 		if (bus->cur_bus_speed != adapter_speed)
1300 			if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1301 				rc = WRONG_BUS_FREQUENCY;
1302 
1303 		/* turn off board without attaching to the bus */
1304 		disable_slot_power(ctrl, hp_slot);
1305 
1306 		set_SOGO(ctrl);
1307 
1308 		/* Wait for SOBS to be unset */
1309 		wait_for_ctrl_irq(ctrl);
1310 
1311 		mutex_unlock(&ctrl->crit_sect);
1312 
1313 		if (rc)
1314 			return rc;
1315 
1316 		mutex_lock(&ctrl->crit_sect);
1317 
1318 		slot_enable(ctrl, hp_slot);
1319 		green_LED_blink(ctrl, hp_slot);
1320 
1321 		amber_LED_off(ctrl, hp_slot);
1322 
1323 		set_SOGO(ctrl);
1324 
1325 		/* Wait for SOBS to be unset */
1326 		wait_for_ctrl_irq(ctrl);
1327 
1328 		mutex_unlock(&ctrl->crit_sect);
1329 
1330 		/* Wait for ~1 second because of hot plug spec */
1331 		long_delay(1*HZ);
1332 
1333 		/* Check for a power fault */
1334 		if (func->status == 0xFF) {
1335 			/* power fault occurred, but it was benign */
1336 			rc = POWER_FAILURE;
1337 			func->status = 0;
1338 		} else
1339 			rc = cpqhp_valid_replace(ctrl, func);
1340 
1341 		if (!rc) {
1342 			/* It must be the same board */
1343 
1344 			rc = cpqhp_configure_board(ctrl, func);
1345 
1346 			/* If configuration fails, turn it off
1347 			 * Get slot won't work for devices behind
1348 			 * bridges, but in this case it will always be
1349 			 * called for the "base" bus/dev/func of an
1350 			 * adapter.
1351 			 */
1352 
1353 			mutex_lock(&ctrl->crit_sect);
1354 
1355 			amber_LED_on(ctrl, hp_slot);
1356 			green_LED_off(ctrl, hp_slot);
1357 			slot_disable(ctrl, hp_slot);
1358 
1359 			set_SOGO(ctrl);
1360 
1361 			/* Wait for SOBS to be unset */
1362 			wait_for_ctrl_irq(ctrl);
1363 
1364 			mutex_unlock(&ctrl->crit_sect);
1365 
1366 			if (rc)
1367 				return rc;
1368 			else
1369 				return 1;
1370 
1371 		} else {
1372 			/* Something is wrong
1373 
1374 			 * Get slot won't work for devices behind bridges, but
1375 			 * in this case it will always be called for the "base"
1376 			 * bus/dev/func of an adapter.
1377 			 */
1378 
1379 			mutex_lock(&ctrl->crit_sect);
1380 
1381 			amber_LED_on(ctrl, hp_slot);
1382 			green_LED_off(ctrl, hp_slot);
1383 			slot_disable(ctrl, hp_slot);
1384 
1385 			set_SOGO(ctrl);
1386 
1387 			/* Wait for SOBS to be unset */
1388 			wait_for_ctrl_irq(ctrl);
1389 
1390 			mutex_unlock(&ctrl->crit_sect);
1391 		}
1392 
1393 	}
1394 	return rc;
1395 
1396 }
1397 
1398 
1399 /**
1400  * board_added - Called after a board has been added to the system.
1401  * @func: PCI device/function info
1402  * @ctrl: hotplug controller
1403  *
1404  * Turns power on for the board.
1405  * Configures board.
1406  */
1407 static u32 board_added(struct pci_func *func, struct controller *ctrl)
1408 {
1409 	u8 hp_slot;
1410 	u8 temp_byte;
1411 	u8 adapter_speed;
1412 	int index;
1413 	u32 temp_register = 0xFFFFFFFF;
1414 	u32 rc = 0;
1415 	struct pci_func *new_slot = NULL;
1416 	struct pci_bus *bus = ctrl->pci_bus;
1417 	struct slot *p_slot;
1418 	struct resource_lists res_lists;
1419 
1420 	hp_slot = func->device - ctrl->slot_device_offset;
1421 	dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1422 	    __func__, func->device, ctrl->slot_device_offset, hp_slot);
1423 
1424 	mutex_lock(&ctrl->crit_sect);
1425 
1426 	/* turn on board without attaching to the bus */
1427 	enable_slot_power(ctrl, hp_slot);
1428 
1429 	set_SOGO(ctrl);
1430 
1431 	/* Wait for SOBS to be unset */
1432 	wait_for_ctrl_irq(ctrl);
1433 
1434 	/* Change bits in slot power register to force another shift out
1435 	 * NOTE: this is to work around the timer bug
1436 	 */
1437 	temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1438 	writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1439 	writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1440 
1441 	set_SOGO(ctrl);
1442 
1443 	/* Wait for SOBS to be unset */
1444 	wait_for_ctrl_irq(ctrl);
1445 
1446 	adapter_speed = get_adapter_speed(ctrl, hp_slot);
1447 	if (bus->cur_bus_speed != adapter_speed)
1448 		if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1449 			rc = WRONG_BUS_FREQUENCY;
1450 
1451 	/* turn off board without attaching to the bus */
1452 	disable_slot_power(ctrl, hp_slot);
1453 
1454 	set_SOGO(ctrl);
1455 
1456 	/* Wait for SOBS to be unset */
1457 	wait_for_ctrl_irq(ctrl);
1458 
1459 	mutex_unlock(&ctrl->crit_sect);
1460 
1461 	if (rc)
1462 		return rc;
1463 
1464 	p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1465 
1466 	/* turn on board and blink green LED */
1467 
1468 	dbg("%s: before down\n", __func__);
1469 	mutex_lock(&ctrl->crit_sect);
1470 	dbg("%s: after down\n", __func__);
1471 
1472 	dbg("%s: before slot_enable\n", __func__);
1473 	slot_enable(ctrl, hp_slot);
1474 
1475 	dbg("%s: before green_LED_blink\n", __func__);
1476 	green_LED_blink(ctrl, hp_slot);
1477 
1478 	dbg("%s: before amber_LED_blink\n", __func__);
1479 	amber_LED_off(ctrl, hp_slot);
1480 
1481 	dbg("%s: before set_SOGO\n", __func__);
1482 	set_SOGO(ctrl);
1483 
1484 	/* Wait for SOBS to be unset */
1485 	dbg("%s: before wait_for_ctrl_irq\n", __func__);
1486 	wait_for_ctrl_irq(ctrl);
1487 	dbg("%s: after wait_for_ctrl_irq\n", __func__);
1488 
1489 	dbg("%s: before up\n", __func__);
1490 	mutex_unlock(&ctrl->crit_sect);
1491 	dbg("%s: after up\n", __func__);
1492 
1493 	/* Wait for ~1 second because of hot plug spec */
1494 	dbg("%s: before long_delay\n", __func__);
1495 	long_delay(1*HZ);
1496 	dbg("%s: after long_delay\n", __func__);
1497 
1498 	dbg("%s: func status = %x\n", __func__, func->status);
1499 	/* Check for a power fault */
1500 	if (func->status == 0xFF) {
1501 		/* power fault occurred, but it was benign */
1502 		temp_register = 0xFFFFFFFF;
1503 		dbg("%s: temp register set to %x by power fault\n", __func__, temp_register);
1504 		rc = POWER_FAILURE;
1505 		func->status = 0;
1506 	} else {
1507 		/* Get vendor/device ID u32 */
1508 		ctrl->pci_bus->number = func->bus;
1509 		rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1510 		dbg("%s: pci_read_config_dword returns %d\n", __func__, rc);
1511 		dbg("%s: temp_register is %x\n", __func__, temp_register);
1512 
1513 		if (rc != 0) {
1514 			/* Something's wrong here */
1515 			temp_register = 0xFFFFFFFF;
1516 			dbg("%s: temp register set to %x by error\n", __func__, temp_register);
1517 		}
1518 		/* Preset return code.  It will be changed later if things go okay. */
1519 		rc = NO_ADAPTER_PRESENT;
1520 	}
1521 
1522 	/* All F's is an empty slot or an invalid board */
1523 	if (temp_register != 0xFFFFFFFF) {
1524 		res_lists.io_head = ctrl->io_head;
1525 		res_lists.mem_head = ctrl->mem_head;
1526 		res_lists.p_mem_head = ctrl->p_mem_head;
1527 		res_lists.bus_head = ctrl->bus_head;
1528 		res_lists.irqs = NULL;
1529 
1530 		rc = configure_new_device(ctrl, func, 0, &res_lists);
1531 
1532 		dbg("%s: back from configure_new_device\n", __func__);
1533 		ctrl->io_head = res_lists.io_head;
1534 		ctrl->mem_head = res_lists.mem_head;
1535 		ctrl->p_mem_head = res_lists.p_mem_head;
1536 		ctrl->bus_head = res_lists.bus_head;
1537 
1538 		cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1539 		cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1540 		cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1541 		cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1542 
1543 		if (rc) {
1544 			mutex_lock(&ctrl->crit_sect);
1545 
1546 			amber_LED_on(ctrl, hp_slot);
1547 			green_LED_off(ctrl, hp_slot);
1548 			slot_disable(ctrl, hp_slot);
1549 
1550 			set_SOGO(ctrl);
1551 
1552 			/* Wait for SOBS to be unset */
1553 			wait_for_ctrl_irq(ctrl);
1554 
1555 			mutex_unlock(&ctrl->crit_sect);
1556 			return rc;
1557 		} else {
1558 			cpqhp_save_slot_config(ctrl, func);
1559 		}
1560 
1561 
1562 		func->status = 0;
1563 		func->switch_save = 0x10;
1564 		func->is_a_board = 0x01;
1565 
1566 		/* next, we will instantiate the linux pci_dev structures (with
1567 		 * appropriate driver notification, if already present) */
1568 		dbg("%s: configure linux pci_dev structure\n", __func__);
1569 		index = 0;
1570 		do {
1571 			new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1572 			if (new_slot && !new_slot->pci_dev)
1573 				cpqhp_configure_device(ctrl, new_slot);
1574 		} while (new_slot);
1575 
1576 		mutex_lock(&ctrl->crit_sect);
1577 
1578 		green_LED_on(ctrl, hp_slot);
1579 
1580 		set_SOGO(ctrl);
1581 
1582 		/* Wait for SOBS to be unset */
1583 		wait_for_ctrl_irq(ctrl);
1584 
1585 		mutex_unlock(&ctrl->crit_sect);
1586 	} else {
1587 		mutex_lock(&ctrl->crit_sect);
1588 
1589 		amber_LED_on(ctrl, hp_slot);
1590 		green_LED_off(ctrl, hp_slot);
1591 		slot_disable(ctrl, hp_slot);
1592 
1593 		set_SOGO(ctrl);
1594 
1595 		/* Wait for SOBS to be unset */
1596 		wait_for_ctrl_irq(ctrl);
1597 
1598 		mutex_unlock(&ctrl->crit_sect);
1599 
1600 		return rc;
1601 	}
1602 	return 0;
1603 }
1604 
1605 
1606 /**
1607  * remove_board - Turns off slot and LEDs
1608  * @func: PCI device/function info
1609  * @replace_flag: whether replacing or adding a new device
1610  * @ctrl: target controller
1611  */
1612 static u32 remove_board(struct pci_func *func, u32 replace_flag, struct controller *ctrl)
1613 {
1614 	int index;
1615 	u8 skip = 0;
1616 	u8 device;
1617 	u8 hp_slot;
1618 	u8 temp_byte;
1619 	u32 rc;
1620 	struct resource_lists res_lists;
1621 	struct pci_func *temp_func;
1622 
1623 	if (cpqhp_unconfigure_device(func))
1624 		return 1;
1625 
1626 	device = func->device;
1627 
1628 	hp_slot = func->device - ctrl->slot_device_offset;
1629 	dbg("In %s, hp_slot = %d\n", __func__, hp_slot);
1630 
1631 	/* When we get here, it is safe to change base address registers.
1632 	 * We will attempt to save the base address register lengths */
1633 	if (replace_flag || !ctrl->add_support)
1634 		rc = cpqhp_save_base_addr_length(ctrl, func);
1635 	else if (!func->bus_head && !func->mem_head &&
1636 		 !func->p_mem_head && !func->io_head) {
1637 		/* Here we check to see if we've saved any of the board's
1638 		 * resources already.  If so, we'll skip the attempt to
1639 		 * determine what's being used. */
1640 		index = 0;
1641 		temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1642 		while (temp_func) {
1643 			if (temp_func->bus_head || temp_func->mem_head
1644 			    || temp_func->p_mem_head || temp_func->io_head) {
1645 				skip = 1;
1646 				break;
1647 			}
1648 			temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1649 		}
1650 
1651 		if (!skip)
1652 			rc = cpqhp_save_used_resources(ctrl, func);
1653 	}
1654 	/* Change status to shutdown */
1655 	if (func->is_a_board)
1656 		func->status = 0x01;
1657 	func->configured = 0;
1658 
1659 	mutex_lock(&ctrl->crit_sect);
1660 
1661 	green_LED_off(ctrl, hp_slot);
1662 	slot_disable(ctrl, hp_slot);
1663 
1664 	set_SOGO(ctrl);
1665 
1666 	/* turn off SERR for slot */
1667 	temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1668 	temp_byte &= ~(0x01 << hp_slot);
1669 	writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1670 
1671 	/* Wait for SOBS to be unset */
1672 	wait_for_ctrl_irq(ctrl);
1673 
1674 	mutex_unlock(&ctrl->crit_sect);
1675 
1676 	if (!replace_flag && ctrl->add_support) {
1677 		while (func) {
1678 			res_lists.io_head = ctrl->io_head;
1679 			res_lists.mem_head = ctrl->mem_head;
1680 			res_lists.p_mem_head = ctrl->p_mem_head;
1681 			res_lists.bus_head = ctrl->bus_head;
1682 
1683 			cpqhp_return_board_resources(func, &res_lists);
1684 
1685 			ctrl->io_head = res_lists.io_head;
1686 			ctrl->mem_head = res_lists.mem_head;
1687 			ctrl->p_mem_head = res_lists.p_mem_head;
1688 			ctrl->bus_head = res_lists.bus_head;
1689 
1690 			cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1691 			cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1692 			cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1693 			cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1694 
1695 			if (is_bridge(func)) {
1696 				bridge_slot_remove(func);
1697 			} else
1698 				slot_remove(func);
1699 
1700 			func = cpqhp_slot_find(ctrl->bus, device, 0);
1701 		}
1702 
1703 		/* Setup slot structure with entry for empty slot */
1704 		func = cpqhp_slot_create(ctrl->bus);
1705 
1706 		if (func == NULL)
1707 			return 1;
1708 
1709 		func->bus = ctrl->bus;
1710 		func->device = device;
1711 		func->function = 0;
1712 		func->configured = 0;
1713 		func->switch_save = 0x10;
1714 		func->is_a_board = 0;
1715 		func->p_task_event = NULL;
1716 	}
1717 
1718 	return 0;
1719 }
1720 
1721 static void pushbutton_helper_thread(struct timer_list *t)
1722 {
1723 	pushbutton_pending = t;
1724 
1725 	wake_up_process(cpqhp_event_thread);
1726 }
1727 
1728 
1729 /* this is the main worker thread */
1730 static int event_thread(void *data)
1731 {
1732 	struct controller *ctrl;
1733 
1734 	while (1) {
1735 		dbg("!!!!event_thread sleeping\n");
1736 		set_current_state(TASK_INTERRUPTIBLE);
1737 		schedule();
1738 
1739 		if (kthread_should_stop())
1740 			break;
1741 		/* Do stuff here */
1742 		if (pushbutton_pending)
1743 			cpqhp_pushbutton_thread(pushbutton_pending);
1744 		else
1745 			for (ctrl = cpqhp_ctrl_list; ctrl; ctrl = ctrl->next)
1746 				interrupt_event_handler(ctrl);
1747 	}
1748 	dbg("event_thread signals exit\n");
1749 	return 0;
1750 }
1751 
1752 int cpqhp_event_start_thread(void)
1753 {
1754 	cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event");
1755 	if (IS_ERR(cpqhp_event_thread)) {
1756 		err("Can't start up our event thread\n");
1757 		return PTR_ERR(cpqhp_event_thread);
1758 	}
1759 
1760 	return 0;
1761 }
1762 
1763 
1764 void cpqhp_event_stop_thread(void)
1765 {
1766 	kthread_stop(cpqhp_event_thread);
1767 }
1768 
1769 
1770 static void interrupt_event_handler(struct controller *ctrl)
1771 {
1772 	int loop = 0;
1773 	int change = 1;
1774 	struct pci_func *func;
1775 	u8 hp_slot;
1776 	struct slot *p_slot;
1777 
1778 	while (change) {
1779 		change = 0;
1780 
1781 		for (loop = 0; loop < 10; loop++) {
1782 			/* dbg("loop %d\n", loop); */
1783 			if (ctrl->event_queue[loop].event_type != 0) {
1784 				hp_slot = ctrl->event_queue[loop].hp_slot;
1785 
1786 				func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1787 				if (!func)
1788 					return;
1789 
1790 				p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1791 				if (!p_slot)
1792 					return;
1793 
1794 				dbg("hp_slot %d, func %p, p_slot %p\n",
1795 				    hp_slot, func, p_slot);
1796 
1797 				if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1798 					dbg("button pressed\n");
1799 				} else if (ctrl->event_queue[loop].event_type ==
1800 					   INT_BUTTON_CANCEL) {
1801 					dbg("button cancel\n");
1802 					del_timer(&p_slot->task_event);
1803 
1804 					mutex_lock(&ctrl->crit_sect);
1805 
1806 					if (p_slot->state == BLINKINGOFF_STATE) {
1807 						/* slot is on */
1808 						dbg("turn on green LED\n");
1809 						green_LED_on(ctrl, hp_slot);
1810 					} else if (p_slot->state == BLINKINGON_STATE) {
1811 						/* slot is off */
1812 						dbg("turn off green LED\n");
1813 						green_LED_off(ctrl, hp_slot);
1814 					}
1815 
1816 					info(msg_button_cancel, p_slot->number);
1817 
1818 					p_slot->state = STATIC_STATE;
1819 
1820 					amber_LED_off(ctrl, hp_slot);
1821 
1822 					set_SOGO(ctrl);
1823 
1824 					/* Wait for SOBS to be unset */
1825 					wait_for_ctrl_irq(ctrl);
1826 
1827 					mutex_unlock(&ctrl->crit_sect);
1828 				}
1829 				/*** button Released (No action on press...) */
1830 				else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1831 					dbg("button release\n");
1832 
1833 					if (is_slot_enabled(ctrl, hp_slot)) {
1834 						dbg("slot is on\n");
1835 						p_slot->state = BLINKINGOFF_STATE;
1836 						info(msg_button_off, p_slot->number);
1837 					} else {
1838 						dbg("slot is off\n");
1839 						p_slot->state = BLINKINGON_STATE;
1840 						info(msg_button_on, p_slot->number);
1841 					}
1842 					mutex_lock(&ctrl->crit_sect);
1843 
1844 					dbg("blink green LED and turn off amber\n");
1845 
1846 					amber_LED_off(ctrl, hp_slot);
1847 					green_LED_blink(ctrl, hp_slot);
1848 
1849 					set_SOGO(ctrl);
1850 
1851 					/* Wait for SOBS to be unset */
1852 					wait_for_ctrl_irq(ctrl);
1853 
1854 					mutex_unlock(&ctrl->crit_sect);
1855 					timer_setup(&p_slot->task_event,
1856 						    pushbutton_helper_thread,
1857 						    0);
1858 					p_slot->hp_slot = hp_slot;
1859 					p_slot->ctrl = ctrl;
1860 /*					p_slot->physical_slot = physical_slot; */
1861 					p_slot->task_event.expires = jiffies + 5 * HZ;   /* 5 second delay */
1862 
1863 					dbg("add_timer p_slot = %p\n", p_slot);
1864 					add_timer(&p_slot->task_event);
1865 				}
1866 				/***********POWER FAULT */
1867 				else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1868 					dbg("power fault\n");
1869 				}
1870 
1871 				ctrl->event_queue[loop].event_type = 0;
1872 
1873 				change = 1;
1874 			}
1875 		}		/* End of FOR loop */
1876 	}
1877 
1878 	return;
1879 }
1880 
1881 
1882 /**
1883  * cpqhp_pushbutton_thread - handle pushbutton events
1884  * @slot: target slot (struct)
1885  *
1886  * Scheduled procedure to handle blocking stuff for the pushbuttons.
1887  * Handles all pending events and exits.
1888  */
1889 void cpqhp_pushbutton_thread(struct timer_list *t)
1890 {
1891 	u8 hp_slot;
1892 	u8 device;
1893 	struct pci_func *func;
1894 	struct slot *p_slot = from_timer(p_slot, t, task_event);
1895 	struct controller *ctrl = (struct controller *) p_slot->ctrl;
1896 
1897 	pushbutton_pending = NULL;
1898 	hp_slot = p_slot->hp_slot;
1899 
1900 	device = p_slot->device;
1901 
1902 	if (is_slot_enabled(ctrl, hp_slot)) {
1903 		p_slot->state = POWEROFF_STATE;
1904 		/* power Down board */
1905 		func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1906 		dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
1907 		if (!func) {
1908 			dbg("Error! func NULL in %s\n", __func__);
1909 			return;
1910 		}
1911 
1912 		if (cpqhp_process_SS(ctrl, func) != 0) {
1913 			amber_LED_on(ctrl, hp_slot);
1914 			green_LED_on(ctrl, hp_slot);
1915 
1916 			set_SOGO(ctrl);
1917 
1918 			/* Wait for SOBS to be unset */
1919 			wait_for_ctrl_irq(ctrl);
1920 		}
1921 
1922 		p_slot->state = STATIC_STATE;
1923 	} else {
1924 		p_slot->state = POWERON_STATE;
1925 		/* slot is off */
1926 
1927 		func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1928 		dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
1929 		if (!func) {
1930 			dbg("Error! func NULL in %s\n", __func__);
1931 			return;
1932 		}
1933 
1934 		if (ctrl != NULL) {
1935 			if (cpqhp_process_SI(ctrl, func) != 0) {
1936 				amber_LED_on(ctrl, hp_slot);
1937 				green_LED_off(ctrl, hp_slot);
1938 
1939 				set_SOGO(ctrl);
1940 
1941 				/* Wait for SOBS to be unset */
1942 				wait_for_ctrl_irq(ctrl);
1943 			}
1944 		}
1945 
1946 		p_slot->state = STATIC_STATE;
1947 	}
1948 
1949 	return;
1950 }
1951 
1952 
1953 int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
1954 {
1955 	u8 device, hp_slot;
1956 	u16 temp_word;
1957 	u32 tempdword;
1958 	int rc;
1959 	struct slot *p_slot;
1960 	int physical_slot = 0;
1961 
1962 	tempdword = 0;
1963 
1964 	device = func->device;
1965 	hp_slot = device - ctrl->slot_device_offset;
1966 	p_slot = cpqhp_find_slot(ctrl, device);
1967 	if (p_slot)
1968 		physical_slot = p_slot->number;
1969 
1970 	/* Check to see if the interlock is closed */
1971 	tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
1972 
1973 	if (tempdword & (0x01 << hp_slot))
1974 		return 1;
1975 
1976 	if (func->is_a_board) {
1977 		rc = board_replaced(func, ctrl);
1978 	} else {
1979 		/* add board */
1980 		slot_remove(func);
1981 
1982 		func = cpqhp_slot_create(ctrl->bus);
1983 		if (func == NULL)
1984 			return 1;
1985 
1986 		func->bus = ctrl->bus;
1987 		func->device = device;
1988 		func->function = 0;
1989 		func->configured = 0;
1990 		func->is_a_board = 1;
1991 
1992 		/* We have to save the presence info for these slots */
1993 		temp_word = ctrl->ctrl_int_comp >> 16;
1994 		func->presence_save = (temp_word >> hp_slot) & 0x01;
1995 		func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
1996 
1997 		if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
1998 			func->switch_save = 0;
1999 		} else {
2000 			func->switch_save = 0x10;
2001 		}
2002 
2003 		rc = board_added(func, ctrl);
2004 		if (rc) {
2005 			if (is_bridge(func)) {
2006 				bridge_slot_remove(func);
2007 			} else
2008 				slot_remove(func);
2009 
2010 			/* Setup slot structure with entry for empty slot */
2011 			func = cpqhp_slot_create(ctrl->bus);
2012 
2013 			if (func == NULL)
2014 				return 1;
2015 
2016 			func->bus = ctrl->bus;
2017 			func->device = device;
2018 			func->function = 0;
2019 			func->configured = 0;
2020 			func->is_a_board = 0;
2021 
2022 			/* We have to save the presence info for these slots */
2023 			temp_word = ctrl->ctrl_int_comp >> 16;
2024 			func->presence_save = (temp_word >> hp_slot) & 0x01;
2025 			func->presence_save |=
2026 			(temp_word >> (hp_slot + 7)) & 0x02;
2027 
2028 			if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2029 				func->switch_save = 0;
2030 			} else {
2031 				func->switch_save = 0x10;
2032 			}
2033 		}
2034 	}
2035 
2036 	if (rc)
2037 		dbg("%s: rc = %d\n", __func__, rc);
2038 
2039 	return rc;
2040 }
2041 
2042 
2043 int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2044 {
2045 	u8 device, class_code, header_type, BCR;
2046 	u8 index = 0;
2047 	u8 replace_flag;
2048 	u32 rc = 0;
2049 	unsigned int devfn;
2050 	struct slot *p_slot;
2051 	struct pci_bus *pci_bus = ctrl->pci_bus;
2052 	int physical_slot = 0;
2053 
2054 	device = func->device;
2055 	func = cpqhp_slot_find(ctrl->bus, device, index++);
2056 	p_slot = cpqhp_find_slot(ctrl, device);
2057 	if (p_slot)
2058 		physical_slot = p_slot->number;
2059 
2060 	/* Make sure there are no video controllers here */
2061 	while (func && !rc) {
2062 		pci_bus->number = func->bus;
2063 		devfn = PCI_DEVFN(func->device, func->function);
2064 
2065 		/* Check the Class Code */
2066 		rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2067 		if (rc)
2068 			return rc;
2069 
2070 		if (class_code == PCI_BASE_CLASS_DISPLAY) {
2071 			/* Display/Video adapter (not supported) */
2072 			rc = REMOVE_NOT_SUPPORTED;
2073 		} else {
2074 			/* See if it's a bridge */
2075 			rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2076 			if (rc)
2077 				return rc;
2078 
2079 			/* If it's a bridge, check the VGA Enable bit */
2080 			if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2081 				rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2082 				if (rc)
2083 					return rc;
2084 
2085 				/* If the VGA Enable bit is set, remove isn't
2086 				 * supported */
2087 				if (BCR & PCI_BRIDGE_CTL_VGA)
2088 					rc = REMOVE_NOT_SUPPORTED;
2089 			}
2090 		}
2091 
2092 		func = cpqhp_slot_find(ctrl->bus, device, index++);
2093 	}
2094 
2095 	func = cpqhp_slot_find(ctrl->bus, device, 0);
2096 	if ((func != NULL) && !rc) {
2097 		/* FIXME: Replace flag should be passed into process_SS */
2098 		replace_flag = !(ctrl->add_support);
2099 		rc = remove_board(func, replace_flag, ctrl);
2100 	} else if (!rc) {
2101 		rc = 1;
2102 	}
2103 
2104 	return rc;
2105 }
2106 
2107 /**
2108  * switch_leds - switch the leds, go from one site to the other.
2109  * @ctrl: controller to use
2110  * @num_of_slots: number of slots to use
2111  * @work_LED: LED control value
2112  * @direction: 1 to start from the left side, 0 to start right.
2113  */
2114 static void switch_leds(struct controller *ctrl, const int num_of_slots,
2115 			u32 *work_LED, const int direction)
2116 {
2117 	int loop;
2118 
2119 	for (loop = 0; loop < num_of_slots; loop++) {
2120 		if (direction)
2121 			*work_LED = *work_LED >> 1;
2122 		else
2123 			*work_LED = *work_LED << 1;
2124 		writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2125 
2126 		set_SOGO(ctrl);
2127 
2128 		/* Wait for SOGO interrupt */
2129 		wait_for_ctrl_irq(ctrl);
2130 
2131 		/* Get ready for next iteration */
2132 		long_delay((2*HZ)/10);
2133 	}
2134 }
2135 
2136 /**
2137  * cpqhp_hardware_test - runs hardware tests
2138  * @ctrl: target controller
2139  * @test_num: the number written to the "test" file in sysfs.
2140  *
2141  * For hot plug ctrl folks to play with.
2142  */
2143 int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2144 {
2145 	u32 save_LED;
2146 	u32 work_LED;
2147 	int loop;
2148 	int num_of_slots;
2149 
2150 	num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2151 
2152 	switch (test_num) {
2153 	case 1:
2154 		/* Do stuff here! */
2155 
2156 		/* Do that funky LED thing */
2157 		/* so we can restore them later */
2158 		save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2159 		work_LED = 0x01010101;
2160 		switch_leds(ctrl, num_of_slots, &work_LED, 0);
2161 		switch_leds(ctrl, num_of_slots, &work_LED, 1);
2162 		switch_leds(ctrl, num_of_slots, &work_LED, 0);
2163 		switch_leds(ctrl, num_of_slots, &work_LED, 1);
2164 
2165 		work_LED = 0x01010000;
2166 		writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2167 		switch_leds(ctrl, num_of_slots, &work_LED, 0);
2168 		switch_leds(ctrl, num_of_slots, &work_LED, 1);
2169 		work_LED = 0x00000101;
2170 		writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2171 		switch_leds(ctrl, num_of_slots, &work_LED, 0);
2172 		switch_leds(ctrl, num_of_slots, &work_LED, 1);
2173 
2174 		work_LED = 0x01010000;
2175 		writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2176 		for (loop = 0; loop < num_of_slots; loop++) {
2177 			set_SOGO(ctrl);
2178 
2179 			/* Wait for SOGO interrupt */
2180 			wait_for_ctrl_irq(ctrl);
2181 
2182 			/* Get ready for next iteration */
2183 			long_delay((3*HZ)/10);
2184 			work_LED = work_LED >> 16;
2185 			writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2186 
2187 			set_SOGO(ctrl);
2188 
2189 			/* Wait for SOGO interrupt */
2190 			wait_for_ctrl_irq(ctrl);
2191 
2192 			/* Get ready for next iteration */
2193 			long_delay((3*HZ)/10);
2194 			work_LED = work_LED << 16;
2195 			writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2196 			work_LED = work_LED << 1;
2197 			writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2198 		}
2199 
2200 		/* put it back the way it was */
2201 		writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2202 
2203 		set_SOGO(ctrl);
2204 
2205 		/* Wait for SOBS to be unset */
2206 		wait_for_ctrl_irq(ctrl);
2207 		break;
2208 	case 2:
2209 		/* Do other stuff here! */
2210 		break;
2211 	case 3:
2212 		/* and more... */
2213 		break;
2214 	}
2215 	return 0;
2216 }
2217 
2218 
2219 /**
2220  * configure_new_device - Configures the PCI header information of one board.
2221  * @ctrl: pointer to controller structure
2222  * @func: pointer to function structure
2223  * @behind_bridge: 1 if this is a recursive call, 0 if not
2224  * @resources: pointer to set of resource lists
2225  *
2226  * Returns 0 if success.
2227  */
2228 static u32 configure_new_device(struct controller  *ctrl, struct pci_func  *func,
2229 				 u8 behind_bridge, struct resource_lists  *resources)
2230 {
2231 	u8 temp_byte, function, max_functions, stop_it;
2232 	int rc;
2233 	u32 ID;
2234 	struct pci_func *new_slot;
2235 	int index;
2236 
2237 	new_slot = func;
2238 
2239 	dbg("%s\n", __func__);
2240 	/* Check for Multi-function device */
2241 	ctrl->pci_bus->number = func->bus;
2242 	rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2243 	if (rc) {
2244 		dbg("%s: rc = %d\n", __func__, rc);
2245 		return rc;
2246 	}
2247 
2248 	if (temp_byte & 0x80)	/* Multi-function device */
2249 		max_functions = 8;
2250 	else
2251 		max_functions = 1;
2252 
2253 	function = 0;
2254 
2255 	do {
2256 		rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2257 
2258 		if (rc) {
2259 			dbg("configure_new_function failed %d\n", rc);
2260 			index = 0;
2261 
2262 			while (new_slot) {
2263 				new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2264 
2265 				if (new_slot)
2266 					cpqhp_return_board_resources(new_slot, resources);
2267 			}
2268 
2269 			return rc;
2270 		}
2271 
2272 		function++;
2273 
2274 		stop_it = 0;
2275 
2276 		/* The following loop skips to the next present function
2277 		 * and creates a board structure */
2278 
2279 		while ((function < max_functions) && (!stop_it)) {
2280 			pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2281 
2282 			if (ID == 0xFFFFFFFF) {
2283 				function++;
2284 			} else {
2285 				/* Setup slot structure. */
2286 				new_slot = cpqhp_slot_create(func->bus);
2287 
2288 				if (new_slot == NULL)
2289 					return 1;
2290 
2291 				new_slot->bus = func->bus;
2292 				new_slot->device = func->device;
2293 				new_slot->function = function;
2294 				new_slot->is_a_board = 1;
2295 				new_slot->status = 0;
2296 
2297 				stop_it++;
2298 			}
2299 		}
2300 
2301 	} while (function < max_functions);
2302 	dbg("returning from configure_new_device\n");
2303 
2304 	return 0;
2305 }
2306 
2307 
2308 /*
2309  * Configuration logic that involves the hotplug data structures and
2310  * their bookkeeping
2311  */
2312 
2313 
2314 /**
2315  * configure_new_function - Configures the PCI header information of one device
2316  * @ctrl: pointer to controller structure
2317  * @func: pointer to function structure
2318  * @behind_bridge: 1 if this is a recursive call, 0 if not
2319  * @resources: pointer to set of resource lists
2320  *
2321  * Calls itself recursively for bridged devices.
2322  * Returns 0 if success.
2323  */
2324 static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2325 				   u8 behind_bridge,
2326 				   struct resource_lists *resources)
2327 {
2328 	int cloop;
2329 	u8 IRQ = 0;
2330 	u8 temp_byte;
2331 	u8 device;
2332 	u8 class_code;
2333 	u16 command;
2334 	u16 temp_word;
2335 	u32 temp_dword;
2336 	u32 rc;
2337 	u32 temp_register;
2338 	u32 base;
2339 	u32 ID;
2340 	unsigned int devfn;
2341 	struct pci_resource *mem_node;
2342 	struct pci_resource *p_mem_node;
2343 	struct pci_resource *io_node;
2344 	struct pci_resource *bus_node;
2345 	struct pci_resource *hold_mem_node;
2346 	struct pci_resource *hold_p_mem_node;
2347 	struct pci_resource *hold_IO_node;
2348 	struct pci_resource *hold_bus_node;
2349 	struct irq_mapping irqs;
2350 	struct pci_func *new_slot;
2351 	struct pci_bus *pci_bus;
2352 	struct resource_lists temp_resources;
2353 
2354 	pci_bus = ctrl->pci_bus;
2355 	pci_bus->number = func->bus;
2356 	devfn = PCI_DEVFN(func->device, func->function);
2357 
2358 	/* Check for Bridge */
2359 	rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2360 	if (rc)
2361 		return rc;
2362 
2363 	if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2364 		/* set Primary bus */
2365 		dbg("set Primary bus = %d\n", func->bus);
2366 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2367 		if (rc)
2368 			return rc;
2369 
2370 		/* find range of buses to use */
2371 		dbg("find ranges of buses to use\n");
2372 		bus_node = get_max_resource(&(resources->bus_head), 1);
2373 
2374 		/* If we don't have any buses to allocate, we can't continue */
2375 		if (!bus_node)
2376 			return -ENOMEM;
2377 
2378 		/* set Secondary bus */
2379 		temp_byte = bus_node->base;
2380 		dbg("set Secondary bus = %d\n", bus_node->base);
2381 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2382 		if (rc)
2383 			return rc;
2384 
2385 		/* set subordinate bus */
2386 		temp_byte = bus_node->base + bus_node->length - 1;
2387 		dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2388 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2389 		if (rc)
2390 			return rc;
2391 
2392 		/* set subordinate Latency Timer and base Latency Timer */
2393 		temp_byte = 0x40;
2394 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2395 		if (rc)
2396 			return rc;
2397 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2398 		if (rc)
2399 			return rc;
2400 
2401 		/* set Cache Line size */
2402 		temp_byte = 0x08;
2403 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2404 		if (rc)
2405 			return rc;
2406 
2407 		/* Setup the IO, memory, and prefetchable windows */
2408 		io_node = get_max_resource(&(resources->io_head), 0x1000);
2409 		if (!io_node)
2410 			return -ENOMEM;
2411 		mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2412 		if (!mem_node)
2413 			return -ENOMEM;
2414 		p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2415 		if (!p_mem_node)
2416 			return -ENOMEM;
2417 		dbg("Setup the IO, memory, and prefetchable windows\n");
2418 		dbg("io_node\n");
2419 		dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2420 					io_node->length, io_node->next);
2421 		dbg("mem_node\n");
2422 		dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2423 					mem_node->length, mem_node->next);
2424 		dbg("p_mem_node\n");
2425 		dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2426 					p_mem_node->length, p_mem_node->next);
2427 
2428 		/* set up the IRQ info */
2429 		if (!resources->irqs) {
2430 			irqs.barber_pole = 0;
2431 			irqs.interrupt[0] = 0;
2432 			irqs.interrupt[1] = 0;
2433 			irqs.interrupt[2] = 0;
2434 			irqs.interrupt[3] = 0;
2435 			irqs.valid_INT = 0;
2436 		} else {
2437 			irqs.barber_pole = resources->irqs->barber_pole;
2438 			irqs.interrupt[0] = resources->irqs->interrupt[0];
2439 			irqs.interrupt[1] = resources->irqs->interrupt[1];
2440 			irqs.interrupt[2] = resources->irqs->interrupt[2];
2441 			irqs.interrupt[3] = resources->irqs->interrupt[3];
2442 			irqs.valid_INT = resources->irqs->valid_INT;
2443 		}
2444 
2445 		/* set up resource lists that are now aligned on top and bottom
2446 		 * for anything behind the bridge. */
2447 		temp_resources.bus_head = bus_node;
2448 		temp_resources.io_head = io_node;
2449 		temp_resources.mem_head = mem_node;
2450 		temp_resources.p_mem_head = p_mem_node;
2451 		temp_resources.irqs = &irqs;
2452 
2453 		/* Make copies of the nodes we are going to pass down so that
2454 		 * if there is a problem,we can just use these to free resources
2455 		 */
2456 		hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2457 		hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2458 		hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2459 		hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2460 
2461 		if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2462 			kfree(hold_bus_node);
2463 			kfree(hold_IO_node);
2464 			kfree(hold_mem_node);
2465 			kfree(hold_p_mem_node);
2466 
2467 			return 1;
2468 		}
2469 
2470 		memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2471 
2472 		bus_node->base += 1;
2473 		bus_node->length -= 1;
2474 		bus_node->next = NULL;
2475 
2476 		/* If we have IO resources copy them and fill in the bridge's
2477 		 * IO range registers */
2478 		memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2479 		io_node->next = NULL;
2480 
2481 		/* set IO base and Limit registers */
2482 		temp_byte = io_node->base >> 8;
2483 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2484 
2485 		temp_byte = (io_node->base + io_node->length - 1) >> 8;
2486 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2487 
2488 		/* Copy the memory resources and fill in the bridge's memory
2489 		 * range registers.
2490 		 */
2491 		memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2492 		mem_node->next = NULL;
2493 
2494 		/* set Mem base and Limit registers */
2495 		temp_word = mem_node->base >> 16;
2496 		rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2497 
2498 		temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2499 		rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2500 
2501 		memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2502 		p_mem_node->next = NULL;
2503 
2504 		/* set Pre Mem base and Limit registers */
2505 		temp_word = p_mem_node->base >> 16;
2506 		rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2507 
2508 		temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2509 		rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2510 
2511 		/* Adjust this to compensate for extra adjustment in first loop
2512 		 */
2513 		irqs.barber_pole--;
2514 
2515 		rc = 0;
2516 
2517 		/* Here we actually find the devices and configure them */
2518 		for (device = 0; (device <= 0x1F) && !rc; device++) {
2519 			irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2520 
2521 			ID = 0xFFFFFFFF;
2522 			pci_bus->number = hold_bus_node->base;
2523 			pci_bus_read_config_dword(pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2524 			pci_bus->number = func->bus;
2525 
2526 			if (ID != 0xFFFFFFFF) {	  /*  device present */
2527 				/* Setup slot structure. */
2528 				new_slot = cpqhp_slot_create(hold_bus_node->base);
2529 
2530 				if (new_slot == NULL) {
2531 					rc = -ENOMEM;
2532 					continue;
2533 				}
2534 
2535 				new_slot->bus = hold_bus_node->base;
2536 				new_slot->device = device;
2537 				new_slot->function = 0;
2538 				new_slot->is_a_board = 1;
2539 				new_slot->status = 0;
2540 
2541 				rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2542 				dbg("configure_new_device rc=0x%x\n", rc);
2543 			}	/* End of IF (device in slot?) */
2544 		}		/* End of FOR loop */
2545 
2546 		if (rc)
2547 			goto free_and_out;
2548 		/* save the interrupt routing information */
2549 		if (resources->irqs) {
2550 			resources->irqs->interrupt[0] = irqs.interrupt[0];
2551 			resources->irqs->interrupt[1] = irqs.interrupt[1];
2552 			resources->irqs->interrupt[2] = irqs.interrupt[2];
2553 			resources->irqs->interrupt[3] = irqs.interrupt[3];
2554 			resources->irqs->valid_INT = irqs.valid_INT;
2555 		} else if (!behind_bridge) {
2556 			/* We need to hook up the interrupts here */
2557 			for (cloop = 0; cloop < 4; cloop++) {
2558 				if (irqs.valid_INT & (0x01 << cloop)) {
2559 					rc = cpqhp_set_irq(func->bus, func->device,
2560 							   cloop + 1, irqs.interrupt[cloop]);
2561 					if (rc)
2562 						goto free_and_out;
2563 				}
2564 			}	/* end of for loop */
2565 		}
2566 		/* Return unused bus resources
2567 		 * First use the temporary node to store information for
2568 		 * the board */
2569 		if (bus_node && temp_resources.bus_head) {
2570 			hold_bus_node->length = bus_node->base - hold_bus_node->base;
2571 
2572 			hold_bus_node->next = func->bus_head;
2573 			func->bus_head = hold_bus_node;
2574 
2575 			temp_byte = temp_resources.bus_head->base - 1;
2576 
2577 			/* set subordinate bus */
2578 			rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2579 
2580 			if (temp_resources.bus_head->length == 0) {
2581 				kfree(temp_resources.bus_head);
2582 				temp_resources.bus_head = NULL;
2583 			} else {
2584 				return_resource(&(resources->bus_head), temp_resources.bus_head);
2585 			}
2586 		}
2587 
2588 		/* If we have IO space available and there is some left,
2589 		 * return the unused portion */
2590 		if (hold_IO_node && temp_resources.io_head) {
2591 			io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2592 							       &hold_IO_node, 0x1000);
2593 
2594 			/* Check if we were able to split something off */
2595 			if (io_node) {
2596 				hold_IO_node->base = io_node->base + io_node->length;
2597 
2598 				temp_byte = (hold_IO_node->base) >> 8;
2599 				rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2600 
2601 				return_resource(&(resources->io_head), io_node);
2602 			}
2603 
2604 			io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2605 
2606 			/* Check if we were able to split something off */
2607 			if (io_node) {
2608 				/* First use the temporary node to store
2609 				 * information for the board */
2610 				hold_IO_node->length = io_node->base - hold_IO_node->base;
2611 
2612 				/* If we used any, add it to the board's list */
2613 				if (hold_IO_node->length) {
2614 					hold_IO_node->next = func->io_head;
2615 					func->io_head = hold_IO_node;
2616 
2617 					temp_byte = (io_node->base - 1) >> 8;
2618 					rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2619 
2620 					return_resource(&(resources->io_head), io_node);
2621 				} else {
2622 					/* it doesn't need any IO */
2623 					temp_word = 0x0000;
2624 					rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2625 
2626 					return_resource(&(resources->io_head), io_node);
2627 					kfree(hold_IO_node);
2628 				}
2629 			} else {
2630 				/* it used most of the range */
2631 				hold_IO_node->next = func->io_head;
2632 				func->io_head = hold_IO_node;
2633 			}
2634 		} else if (hold_IO_node) {
2635 			/* it used the whole range */
2636 			hold_IO_node->next = func->io_head;
2637 			func->io_head = hold_IO_node;
2638 		}
2639 		/* If we have memory space available and there is some left,
2640 		 * return the unused portion */
2641 		if (hold_mem_node && temp_resources.mem_head) {
2642 			mem_node = do_pre_bridge_resource_split(&(temp_resources.  mem_head),
2643 								&hold_mem_node, 0x100000);
2644 
2645 			/* Check if we were able to split something off */
2646 			if (mem_node) {
2647 				hold_mem_node->base = mem_node->base + mem_node->length;
2648 
2649 				temp_word = (hold_mem_node->base) >> 16;
2650 				rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2651 
2652 				return_resource(&(resources->mem_head), mem_node);
2653 			}
2654 
2655 			mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2656 
2657 			/* Check if we were able to split something off */
2658 			if (mem_node) {
2659 				/* First use the temporary node to store
2660 				 * information for the board */
2661 				hold_mem_node->length = mem_node->base - hold_mem_node->base;
2662 
2663 				if (hold_mem_node->length) {
2664 					hold_mem_node->next = func->mem_head;
2665 					func->mem_head = hold_mem_node;
2666 
2667 					/* configure end address */
2668 					temp_word = (mem_node->base - 1) >> 16;
2669 					rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2670 
2671 					/* Return unused resources to the pool */
2672 					return_resource(&(resources->mem_head), mem_node);
2673 				} else {
2674 					/* it doesn't need any Mem */
2675 					temp_word = 0x0000;
2676 					rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2677 
2678 					return_resource(&(resources->mem_head), mem_node);
2679 					kfree(hold_mem_node);
2680 				}
2681 			} else {
2682 				/* it used most of the range */
2683 				hold_mem_node->next = func->mem_head;
2684 				func->mem_head = hold_mem_node;
2685 			}
2686 		} else if (hold_mem_node) {
2687 			/* it used the whole range */
2688 			hold_mem_node->next = func->mem_head;
2689 			func->mem_head = hold_mem_node;
2690 		}
2691 		/* If we have prefetchable memory space available and there
2692 		 * is some left at the end, return the unused portion */
2693 		if (temp_resources.p_mem_head) {
2694 			p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2695 								  &hold_p_mem_node, 0x100000);
2696 
2697 			/* Check if we were able to split something off */
2698 			if (p_mem_node) {
2699 				hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2700 
2701 				temp_word = (hold_p_mem_node->base) >> 16;
2702 				rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2703 
2704 				return_resource(&(resources->p_mem_head), p_mem_node);
2705 			}
2706 
2707 			p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2708 
2709 			/* Check if we were able to split something off */
2710 			if (p_mem_node) {
2711 				/* First use the temporary node to store
2712 				 * information for the board */
2713 				hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2714 
2715 				/* If we used any, add it to the board's list */
2716 				if (hold_p_mem_node->length) {
2717 					hold_p_mem_node->next = func->p_mem_head;
2718 					func->p_mem_head = hold_p_mem_node;
2719 
2720 					temp_word = (p_mem_node->base - 1) >> 16;
2721 					rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2722 
2723 					return_resource(&(resources->p_mem_head), p_mem_node);
2724 				} else {
2725 					/* it doesn't need any PMem */
2726 					temp_word = 0x0000;
2727 					rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2728 
2729 					return_resource(&(resources->p_mem_head), p_mem_node);
2730 					kfree(hold_p_mem_node);
2731 				}
2732 			} else {
2733 				/* it used the most of the range */
2734 				hold_p_mem_node->next = func->p_mem_head;
2735 				func->p_mem_head = hold_p_mem_node;
2736 			}
2737 		} else if (hold_p_mem_node) {
2738 			/* it used the whole range */
2739 			hold_p_mem_node->next = func->p_mem_head;
2740 			func->p_mem_head = hold_p_mem_node;
2741 		}
2742 		/* We should be configuring an IRQ and the bridge's base address
2743 		 * registers if it needs them.  Although we have never seen such
2744 		 * a device */
2745 
2746 		/* enable card */
2747 		command = 0x0157;	/* = PCI_COMMAND_IO |
2748 					 *   PCI_COMMAND_MEMORY |
2749 					 *   PCI_COMMAND_MASTER |
2750 					 *   PCI_COMMAND_INVALIDATE |
2751 					 *   PCI_COMMAND_PARITY |
2752 					 *   PCI_COMMAND_SERR */
2753 		rc = pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
2754 
2755 		/* set Bridge Control Register */
2756 		command = 0x07;		/* = PCI_BRIDGE_CTL_PARITY |
2757 					 *   PCI_BRIDGE_CTL_SERR |
2758 					 *   PCI_BRIDGE_CTL_NO_ISA */
2759 		rc = pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2760 	} else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2761 		/* Standard device */
2762 		rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2763 
2764 		if (class_code == PCI_BASE_CLASS_DISPLAY) {
2765 			/* Display (video) adapter (not supported) */
2766 			return DEVICE_TYPE_NOT_SUPPORTED;
2767 		}
2768 		/* Figure out IO and memory needs */
2769 		for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2770 			temp_register = 0xFFFFFFFF;
2771 
2772 			dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2773 			rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
2774 
2775 			rc = pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp_register);
2776 			dbg("CND: base = 0x%x\n", temp_register);
2777 
2778 			if (temp_register) {	  /* If this register is implemented */
2779 				if ((temp_register & 0x03L) == 0x01) {
2780 					/* Map IO */
2781 
2782 					/* set base = amount of IO space */
2783 					base = temp_register & 0xFFFFFFFC;
2784 					base = ~base + 1;
2785 
2786 					dbg("CND:      length = 0x%x\n", base);
2787 					io_node = get_io_resource(&(resources->io_head), base);
2788 					if (!io_node)
2789 						return -ENOMEM;
2790 					dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2791 					    io_node->base, io_node->length, io_node->next);
2792 					dbg("func (%p) io_head (%p)\n", func, func->io_head);
2793 
2794 					/* allocate the resource to the board */
2795 					base = io_node->base;
2796 					io_node->next = func->io_head;
2797 					func->io_head = io_node;
2798 				} else if ((temp_register & 0x0BL) == 0x08) {
2799 					/* Map prefetchable memory */
2800 					base = temp_register & 0xFFFFFFF0;
2801 					base = ~base + 1;
2802 
2803 					dbg("CND:      length = 0x%x\n", base);
2804 					p_mem_node = get_resource(&(resources->p_mem_head), base);
2805 
2806 					/* allocate the resource to the board */
2807 					if (p_mem_node) {
2808 						base = p_mem_node->base;
2809 
2810 						p_mem_node->next = func->p_mem_head;
2811 						func->p_mem_head = p_mem_node;
2812 					} else
2813 						return -ENOMEM;
2814 				} else if ((temp_register & 0x0BL) == 0x00) {
2815 					/* Map memory */
2816 					base = temp_register & 0xFFFFFFF0;
2817 					base = ~base + 1;
2818 
2819 					dbg("CND:      length = 0x%x\n", base);
2820 					mem_node = get_resource(&(resources->mem_head), base);
2821 
2822 					/* allocate the resource to the board */
2823 					if (mem_node) {
2824 						base = mem_node->base;
2825 
2826 						mem_node->next = func->mem_head;
2827 						func->mem_head = mem_node;
2828 					} else
2829 						return -ENOMEM;
2830 				} else {
2831 					/* Reserved bits or requesting space below 1M */
2832 					return NOT_ENOUGH_RESOURCES;
2833 				}
2834 
2835 				rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2836 
2837 				/* Check for 64-bit base */
2838 				if ((temp_register & 0x07L) == 0x04) {
2839 					cloop += 4;
2840 
2841 					/* Upper 32 bits of address always zero
2842 					 * on today's systems */
2843 					/* FIXME this is probably not true on
2844 					 * Alpha and ia64??? */
2845 					base = 0;
2846 					rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2847 				}
2848 			}
2849 		}		/* End of base register loop */
2850 		if (cpqhp_legacy_mode) {
2851 			/* Figure out which interrupt pin this function uses */
2852 			rc = pci_bus_read_config_byte(pci_bus, devfn,
2853 				PCI_INTERRUPT_PIN, &temp_byte);
2854 
2855 			/* If this function needs an interrupt and we are behind
2856 			 * a bridge and the pin is tied to something that's
2857 			 * already mapped, set this one the same */
2858 			if (temp_byte && resources->irqs &&
2859 			    (resources->irqs->valid_INT &
2860 			     (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
2861 				/* We have to share with something already set up */
2862 				IRQ = resources->irqs->interrupt[(temp_byte +
2863 					resources->irqs->barber_pole - 1) & 0x03];
2864 			} else {
2865 				/* Program IRQ based on card type */
2866 				rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2867 
2868 				if (class_code == PCI_BASE_CLASS_STORAGE)
2869 					IRQ = cpqhp_disk_irq;
2870 				else
2871 					IRQ = cpqhp_nic_irq;
2872 			}
2873 
2874 			/* IRQ Line */
2875 			rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
2876 		}
2877 
2878 		if (!behind_bridge) {
2879 			rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ);
2880 			if (rc)
2881 				return 1;
2882 		} else {
2883 			/* TBD - this code may also belong in the other clause
2884 			 * of this If statement */
2885 			resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
2886 			resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
2887 		}
2888 
2889 		/* Latency Timer */
2890 		temp_byte = 0x40;
2891 		rc = pci_bus_write_config_byte(pci_bus, devfn,
2892 					PCI_LATENCY_TIMER, temp_byte);
2893 
2894 		/* Cache Line size */
2895 		temp_byte = 0x08;
2896 		rc = pci_bus_write_config_byte(pci_bus, devfn,
2897 					PCI_CACHE_LINE_SIZE, temp_byte);
2898 
2899 		/* disable ROM base Address */
2900 		temp_dword = 0x00L;
2901 		rc = pci_bus_write_config_word(pci_bus, devfn,
2902 					PCI_ROM_ADDRESS, temp_dword);
2903 
2904 		/* enable card */
2905 		temp_word = 0x0157;	/* = PCI_COMMAND_IO |
2906 					 *   PCI_COMMAND_MEMORY |
2907 					 *   PCI_COMMAND_MASTER |
2908 					 *   PCI_COMMAND_INVALIDATE |
2909 					 *   PCI_COMMAND_PARITY |
2910 					 *   PCI_COMMAND_SERR */
2911 		rc = pci_bus_write_config_word(pci_bus, devfn,
2912 					PCI_COMMAND, temp_word);
2913 	} else {		/* End of Not-A-Bridge else */
2914 		/* It's some strange type of PCI adapter (Cardbus?) */
2915 		return DEVICE_TYPE_NOT_SUPPORTED;
2916 	}
2917 
2918 	func->configured = 1;
2919 
2920 	return 0;
2921 free_and_out:
2922 	cpqhp_destroy_resource_list(&temp_resources);
2923 
2924 	return_resource(&(resources->bus_head), hold_bus_node);
2925 	return_resource(&(resources->io_head), hold_IO_node);
2926 	return_resource(&(resources->mem_head), hold_mem_node);
2927 	return_resource(&(resources->p_mem_head), hold_p_mem_node);
2928 	return rc;
2929 }
2930