1 /* 2 * Compaq Hot Plug Controller Driver 3 * 4 * Copyright (C) 1995,2001 Compaq Computer Corporation 5 * Copyright (C) 2001 Greg Kroah-Hartman ([email protected]) 6 * Copyright (C) 2001 IBM Corp. 7 * 8 * All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or (at 13 * your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 18 * NON INFRINGEMENT. See the GNU General Public License for more 19 * details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; if not, write to the Free Software 23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 24 * 25 * Send feedback to <[email protected]> 26 * 27 */ 28 29 #include <linux/module.h> 30 #include <linux/kernel.h> 31 #include <linux/types.h> 32 #include <linux/slab.h> 33 #include <linux/workqueue.h> 34 #include <linux/interrupt.h> 35 #include <linux/delay.h> 36 #include <linux/wait.h> 37 #include <linux/smp_lock.h> 38 #include <linux/pci.h> 39 #include <linux/pci_hotplug.h> 40 #include <linux/kthread.h> 41 #include "cpqphp.h" 42 43 static u32 configure_new_device(struct controller* ctrl, struct pci_func *func, 44 u8 behind_bridge, struct resource_lists *resources); 45 static int configure_new_function(struct controller* ctrl, struct pci_func *func, 46 u8 behind_bridge, struct resource_lists *resources); 47 static void interrupt_event_handler(struct controller *ctrl); 48 49 50 static struct task_struct *cpqhp_event_thread; 51 static unsigned long pushbutton_pending; /* = 0 */ 52 53 /* delay is in jiffies to wait for */ 54 static void long_delay(int delay) 55 { 56 /* 57 * XXX(hch): if someone is bored please convert all callers 58 * to call msleep_interruptible directly. They really want 59 * to specify timeouts in natural units and spend a lot of 60 * effort converting them to jiffies.. 61 */ 62 msleep_interruptible(jiffies_to_msecs(delay)); 63 } 64 65 66 /* FIXME: The following line needs to be somewhere else... */ 67 #define WRONG_BUS_FREQUENCY 0x07 68 static u8 handle_switch_change(u8 change, struct controller * ctrl) 69 { 70 int hp_slot; 71 u8 rc = 0; 72 u16 temp_word; 73 struct pci_func *func; 74 struct event_info *taskInfo; 75 76 if (!change) 77 return 0; 78 79 /* Switch Change */ 80 dbg("cpqsbd: Switch interrupt received.\n"); 81 82 for (hp_slot = 0; hp_slot < 6; hp_slot++) { 83 if (change & (0x1L << hp_slot)) { 84 /* 85 * this one changed. 86 */ 87 func = cpqhp_slot_find(ctrl->bus, 88 (hp_slot + ctrl->slot_device_offset), 0); 89 90 /* this is the structure that tells the worker thread 91 * what to do 92 */ 93 taskInfo = &(ctrl->event_queue[ctrl->next_event]); 94 ctrl->next_event = (ctrl->next_event + 1) % 10; 95 taskInfo->hp_slot = hp_slot; 96 97 rc++; 98 99 temp_word = ctrl->ctrl_int_comp >> 16; 100 func->presence_save = (temp_word >> hp_slot) & 0x01; 101 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; 102 103 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { 104 /* 105 * Switch opened 106 */ 107 108 func->switch_save = 0; 109 110 taskInfo->event_type = INT_SWITCH_OPEN; 111 } else { 112 /* 113 * Switch closed 114 */ 115 116 func->switch_save = 0x10; 117 118 taskInfo->event_type = INT_SWITCH_CLOSE; 119 } 120 } 121 } 122 123 return rc; 124 } 125 126 /** 127 * cpqhp_find_slot - find the struct slot of given device 128 * @ctrl: scan lots of this controller 129 * @device: the device id to find 130 */ 131 static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device) 132 { 133 struct slot *slot = ctrl->slot; 134 135 while (slot && (slot->device != device)) 136 slot = slot->next; 137 138 return slot; 139 } 140 141 142 static u8 handle_presence_change(u16 change, struct controller * ctrl) 143 { 144 int hp_slot; 145 u8 rc = 0; 146 u8 temp_byte; 147 u16 temp_word; 148 struct pci_func *func; 149 struct event_info *taskInfo; 150 struct slot *p_slot; 151 152 if (!change) 153 return 0; 154 155 /* 156 * Presence Change 157 */ 158 dbg("cpqsbd: Presence/Notify input change.\n"); 159 dbg(" Changed bits are 0x%4.4x\n", change ); 160 161 for (hp_slot = 0; hp_slot < 6; hp_slot++) { 162 if (change & (0x0101 << hp_slot)) { 163 /* 164 * this one changed. 165 */ 166 func = cpqhp_slot_find(ctrl->bus, 167 (hp_slot + ctrl->slot_device_offset), 0); 168 169 taskInfo = &(ctrl->event_queue[ctrl->next_event]); 170 ctrl->next_event = (ctrl->next_event + 1) % 10; 171 taskInfo->hp_slot = hp_slot; 172 173 rc++; 174 175 p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4)); 176 if (!p_slot) 177 return 0; 178 179 /* If the switch closed, must be a button 180 * If not in button mode, nevermind 181 */ 182 if (func->switch_save && (ctrl->push_button == 1)) { 183 temp_word = ctrl->ctrl_int_comp >> 16; 184 temp_byte = (temp_word >> hp_slot) & 0x01; 185 temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02; 186 187 if (temp_byte != func->presence_save) { 188 /* 189 * button Pressed (doesn't do anything) 190 */ 191 dbg("hp_slot %d button pressed\n", hp_slot); 192 taskInfo->event_type = INT_BUTTON_PRESS; 193 } else { 194 /* 195 * button Released - TAKE ACTION!!!! 196 */ 197 dbg("hp_slot %d button released\n", hp_slot); 198 taskInfo->event_type = INT_BUTTON_RELEASE; 199 200 /* Cancel if we are still blinking */ 201 if ((p_slot->state == BLINKINGON_STATE) 202 || (p_slot->state == BLINKINGOFF_STATE)) { 203 taskInfo->event_type = INT_BUTTON_CANCEL; 204 dbg("hp_slot %d button cancel\n", hp_slot); 205 } else if ((p_slot->state == POWERON_STATE) 206 || (p_slot->state == POWEROFF_STATE)) { 207 /* info(msg_button_ignore, p_slot->number); */ 208 taskInfo->event_type = INT_BUTTON_IGNORE; 209 dbg("hp_slot %d button ignore\n", hp_slot); 210 } 211 } 212 } else { 213 /* Switch is open, assume a presence change 214 * Save the presence state 215 */ 216 temp_word = ctrl->ctrl_int_comp >> 16; 217 func->presence_save = (temp_word >> hp_slot) & 0x01; 218 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; 219 220 if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) || 221 (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) { 222 /* Present */ 223 taskInfo->event_type = INT_PRESENCE_ON; 224 } else { 225 /* Not Present */ 226 taskInfo->event_type = INT_PRESENCE_OFF; 227 } 228 } 229 } 230 } 231 232 return rc; 233 } 234 235 236 static u8 handle_power_fault(u8 change, struct controller * ctrl) 237 { 238 int hp_slot; 239 u8 rc = 0; 240 struct pci_func *func; 241 struct event_info *taskInfo; 242 243 if (!change) 244 return 0; 245 246 /* 247 * power fault 248 */ 249 250 info("power fault interrupt\n"); 251 252 for (hp_slot = 0; hp_slot < 6; hp_slot++) { 253 if (change & (0x01 << hp_slot)) { 254 /* 255 * this one changed. 256 */ 257 func = cpqhp_slot_find(ctrl->bus, 258 (hp_slot + ctrl->slot_device_offset), 0); 259 260 taskInfo = &(ctrl->event_queue[ctrl->next_event]); 261 ctrl->next_event = (ctrl->next_event + 1) % 10; 262 taskInfo->hp_slot = hp_slot; 263 264 rc++; 265 266 if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) { 267 /* 268 * power fault Cleared 269 */ 270 func->status = 0x00; 271 272 taskInfo->event_type = INT_POWER_FAULT_CLEAR; 273 } else { 274 /* 275 * power fault 276 */ 277 taskInfo->event_type = INT_POWER_FAULT; 278 279 if (ctrl->rev < 4) { 280 amber_LED_on (ctrl, hp_slot); 281 green_LED_off (ctrl, hp_slot); 282 set_SOGO (ctrl); 283 284 /* this is a fatal condition, we want 285 * to crash the machine to protect from 286 * data corruption. simulated_NMI 287 * shouldn't ever return */ 288 /* FIXME 289 simulated_NMI(hp_slot, ctrl); */ 290 291 /* The following code causes a software 292 * crash just in case simulated_NMI did 293 * return */ 294 /*FIXME 295 panic(msg_power_fault); */ 296 } else { 297 /* set power fault status for this board */ 298 func->status = 0xFF; 299 info("power fault bit %x set\n", hp_slot); 300 } 301 } 302 } 303 } 304 305 return rc; 306 } 307 308 309 /** 310 * sort_by_size - sort nodes on the list by their length, smallest first. 311 * @head: list to sort 312 */ 313 static int sort_by_size(struct pci_resource **head) 314 { 315 struct pci_resource *current_res; 316 struct pci_resource *next_res; 317 int out_of_order = 1; 318 319 if (!(*head)) 320 return 1; 321 322 if (!((*head)->next)) 323 return 0; 324 325 while (out_of_order) { 326 out_of_order = 0; 327 328 /* Special case for swapping list head */ 329 if (((*head)->next) && 330 ((*head)->length > (*head)->next->length)) { 331 out_of_order++; 332 current_res = *head; 333 *head = (*head)->next; 334 current_res->next = (*head)->next; 335 (*head)->next = current_res; 336 } 337 338 current_res = *head; 339 340 while (current_res->next && current_res->next->next) { 341 if (current_res->next->length > current_res->next->next->length) { 342 out_of_order++; 343 next_res = current_res->next; 344 current_res->next = current_res->next->next; 345 current_res = current_res->next; 346 next_res->next = current_res->next; 347 current_res->next = next_res; 348 } else 349 current_res = current_res->next; 350 } 351 } /* End of out_of_order loop */ 352 353 return 0; 354 } 355 356 357 /** 358 * sort_by_max_size - sort nodes on the list by their length, largest first. 359 * @head: list to sort 360 */ 361 static int sort_by_max_size(struct pci_resource **head) 362 { 363 struct pci_resource *current_res; 364 struct pci_resource *next_res; 365 int out_of_order = 1; 366 367 if (!(*head)) 368 return 1; 369 370 if (!((*head)->next)) 371 return 0; 372 373 while (out_of_order) { 374 out_of_order = 0; 375 376 /* Special case for swapping list head */ 377 if (((*head)->next) && 378 ((*head)->length < (*head)->next->length)) { 379 out_of_order++; 380 current_res = *head; 381 *head = (*head)->next; 382 current_res->next = (*head)->next; 383 (*head)->next = current_res; 384 } 385 386 current_res = *head; 387 388 while (current_res->next && current_res->next->next) { 389 if (current_res->next->length < current_res->next->next->length) { 390 out_of_order++; 391 next_res = current_res->next; 392 current_res->next = current_res->next->next; 393 current_res = current_res->next; 394 next_res->next = current_res->next; 395 current_res->next = next_res; 396 } else 397 current_res = current_res->next; 398 } 399 } /* End of out_of_order loop */ 400 401 return 0; 402 } 403 404 405 /** 406 * do_pre_bridge_resource_split - find node of resources that are unused 407 * @head: new list head 408 * @orig_head: original list head 409 * @alignment: max node size (?) 410 */ 411 static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head, 412 struct pci_resource **orig_head, u32 alignment) 413 { 414 struct pci_resource *prevnode = NULL; 415 struct pci_resource *node; 416 struct pci_resource *split_node; 417 u32 rc; 418 u32 temp_dword; 419 dbg("do_pre_bridge_resource_split\n"); 420 421 if (!(*head) || !(*orig_head)) 422 return NULL; 423 424 rc = cpqhp_resource_sort_and_combine(head); 425 426 if (rc) 427 return NULL; 428 429 if ((*head)->base != (*orig_head)->base) 430 return NULL; 431 432 if ((*head)->length == (*orig_head)->length) 433 return NULL; 434 435 436 /* If we got here, there the bridge requires some of the resource, but 437 * we may be able to split some off of the front 438 */ 439 440 node = *head; 441 442 if (node->length & (alignment -1)) { 443 /* this one isn't an aligned length, so we'll make a new entry 444 * and split it up. 445 */ 446 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 447 448 if (!split_node) 449 return NULL; 450 451 temp_dword = (node->length | (alignment-1)) + 1 - alignment; 452 453 split_node->base = node->base; 454 split_node->length = temp_dword; 455 456 node->length -= temp_dword; 457 node->base += split_node->length; 458 459 /* Put it in the list */ 460 *head = split_node; 461 split_node->next = node; 462 } 463 464 if (node->length < alignment) 465 return NULL; 466 467 /* Now unlink it */ 468 if (*head == node) { 469 *head = node->next; 470 } else { 471 prevnode = *head; 472 while (prevnode->next != node) 473 prevnode = prevnode->next; 474 475 prevnode->next = node->next; 476 } 477 node->next = NULL; 478 479 return node; 480 } 481 482 483 /** 484 * do_bridge_resource_split - find one node of resources that aren't in use 485 * @head: list head 486 * @alignment: max node size (?) 487 */ 488 static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment) 489 { 490 struct pci_resource *prevnode = NULL; 491 struct pci_resource *node; 492 u32 rc; 493 u32 temp_dword; 494 495 rc = cpqhp_resource_sort_and_combine(head); 496 497 if (rc) 498 return NULL; 499 500 node = *head; 501 502 while (node->next) { 503 prevnode = node; 504 node = node->next; 505 kfree(prevnode); 506 } 507 508 if (node->length < alignment) 509 goto error; 510 511 if (node->base & (alignment - 1)) { 512 /* Short circuit if adjusted size is too small */ 513 temp_dword = (node->base | (alignment-1)) + 1; 514 if ((node->length - (temp_dword - node->base)) < alignment) 515 goto error; 516 517 node->length -= (temp_dword - node->base); 518 node->base = temp_dword; 519 } 520 521 if (node->length & (alignment - 1)) 522 /* There's stuff in use after this node */ 523 goto error; 524 525 return node; 526 error: 527 kfree(node); 528 return NULL; 529 } 530 531 532 /** 533 * get_io_resource - find first node of given size not in ISA aliasing window. 534 * @head: list to search 535 * @size: size of node to find, must be a power of two. 536 * 537 * Description: This function sorts the resource list by size and then returns 538 * returns the first node of "size" length that is not in the ISA aliasing 539 * window. If it finds a node larger than "size" it will split it up. 540 */ 541 static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size) 542 { 543 struct pci_resource *prevnode; 544 struct pci_resource *node; 545 struct pci_resource *split_node; 546 u32 temp_dword; 547 548 if (!(*head)) 549 return NULL; 550 551 if (cpqhp_resource_sort_and_combine(head)) 552 return NULL; 553 554 if (sort_by_size(head)) 555 return NULL; 556 557 for (node = *head; node; node = node->next) { 558 if (node->length < size) 559 continue; 560 561 if (node->base & (size - 1)) { 562 /* this one isn't base aligned properly 563 * so we'll make a new entry and split it up 564 */ 565 temp_dword = (node->base | (size-1)) + 1; 566 567 /* Short circuit if adjusted size is too small */ 568 if ((node->length - (temp_dword - node->base)) < size) 569 continue; 570 571 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 572 573 if (!split_node) 574 return NULL; 575 576 split_node->base = node->base; 577 split_node->length = temp_dword - node->base; 578 node->base = temp_dword; 579 node->length -= split_node->length; 580 581 /* Put it in the list */ 582 split_node->next = node->next; 583 node->next = split_node; 584 } /* End of non-aligned base */ 585 586 /* Don't need to check if too small since we already did */ 587 if (node->length > size) { 588 /* this one is longer than we need 589 * so we'll make a new entry and split it up 590 */ 591 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 592 593 if (!split_node) 594 return NULL; 595 596 split_node->base = node->base + size; 597 split_node->length = node->length - size; 598 node->length = size; 599 600 /* Put it in the list */ 601 split_node->next = node->next; 602 node->next = split_node; 603 } /* End of too big on top end */ 604 605 /* For IO make sure it's not in the ISA aliasing space */ 606 if (node->base & 0x300L) 607 continue; 608 609 /* If we got here, then it is the right size 610 * Now take it out of the list and break 611 */ 612 if (*head == node) { 613 *head = node->next; 614 } else { 615 prevnode = *head; 616 while (prevnode->next != node) 617 prevnode = prevnode->next; 618 619 prevnode->next = node->next; 620 } 621 node->next = NULL; 622 break; 623 } 624 625 return node; 626 } 627 628 629 /** 630 * get_max_resource - get largest node which has at least the given size. 631 * @head: the list to search the node in 632 * @size: the minimum size of the node to find 633 * 634 * Description: Gets the largest node that is at least "size" big from the 635 * list pointed to by head. It aligns the node on top and bottom 636 * to "size" alignment before returning it. 637 */ 638 static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size) 639 { 640 struct pci_resource *max; 641 struct pci_resource *temp; 642 struct pci_resource *split_node; 643 u32 temp_dword; 644 645 if (cpqhp_resource_sort_and_combine(head)) 646 return NULL; 647 648 if (sort_by_max_size(head)) 649 return NULL; 650 651 for (max = *head; max; max = max->next) { 652 /* If not big enough we could probably just bail, 653 * instead we'll continue to the next. 654 */ 655 if (max->length < size) 656 continue; 657 658 if (max->base & (size - 1)) { 659 /* this one isn't base aligned properly 660 * so we'll make a new entry and split it up 661 */ 662 temp_dword = (max->base | (size-1)) + 1; 663 664 /* Short circuit if adjusted size is too small */ 665 if ((max->length - (temp_dword - max->base)) < size) 666 continue; 667 668 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 669 670 if (!split_node) 671 return NULL; 672 673 split_node->base = max->base; 674 split_node->length = temp_dword - max->base; 675 max->base = temp_dword; 676 max->length -= split_node->length; 677 678 split_node->next = max->next; 679 max->next = split_node; 680 } 681 682 if ((max->base + max->length) & (size - 1)) { 683 /* this one isn't end aligned properly at the top 684 * so we'll make a new entry and split it up 685 */ 686 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 687 688 if (!split_node) 689 return NULL; 690 temp_dword = ((max->base + max->length) & ~(size - 1)); 691 split_node->base = temp_dword; 692 split_node->length = max->length + max->base 693 - split_node->base; 694 max->length -= split_node->length; 695 696 split_node->next = max->next; 697 max->next = split_node; 698 } 699 700 /* Make sure it didn't shrink too much when we aligned it */ 701 if (max->length < size) 702 continue; 703 704 /* Now take it out of the list */ 705 temp = *head; 706 if (temp == max) { 707 *head = max->next; 708 } else { 709 while (temp && temp->next != max) { 710 temp = temp->next; 711 } 712 713 temp->next = max->next; 714 } 715 716 max->next = NULL; 717 break; 718 } 719 720 return max; 721 } 722 723 724 /** 725 * get_resource - find resource of given size and split up larger ones. 726 * @head: the list to search for resources 727 * @size: the size limit to use 728 * 729 * Description: This function sorts the resource list by size and then 730 * returns the first node of "size" length. If it finds a node 731 * larger than "size" it will split it up. 732 * 733 * size must be a power of two. 734 */ 735 static struct pci_resource *get_resource(struct pci_resource **head, u32 size) 736 { 737 struct pci_resource *prevnode; 738 struct pci_resource *node; 739 struct pci_resource *split_node; 740 u32 temp_dword; 741 742 if (cpqhp_resource_sort_and_combine(head)) 743 return NULL; 744 745 if (sort_by_size(head)) 746 return NULL; 747 748 for (node = *head; node; node = node->next) { 749 dbg("%s: req_size =%x node=%p, base=%x, length=%x\n", 750 __func__, size, node, node->base, node->length); 751 if (node->length < size) 752 continue; 753 754 if (node->base & (size - 1)) { 755 dbg("%s: not aligned\n", __func__); 756 /* this one isn't base aligned properly 757 * so we'll make a new entry and split it up 758 */ 759 temp_dword = (node->base | (size-1)) + 1; 760 761 /* Short circuit if adjusted size is too small */ 762 if ((node->length - (temp_dword - node->base)) < size) 763 continue; 764 765 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 766 767 if (!split_node) 768 return NULL; 769 770 split_node->base = node->base; 771 split_node->length = temp_dword - node->base; 772 node->base = temp_dword; 773 node->length -= split_node->length; 774 775 split_node->next = node->next; 776 node->next = split_node; 777 } /* End of non-aligned base */ 778 779 /* Don't need to check if too small since we already did */ 780 if (node->length > size) { 781 dbg("%s: too big\n", __func__); 782 /* this one is longer than we need 783 * so we'll make a new entry and split it up 784 */ 785 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 786 787 if (!split_node) 788 return NULL; 789 790 split_node->base = node->base + size; 791 split_node->length = node->length - size; 792 node->length = size; 793 794 /* Put it in the list */ 795 split_node->next = node->next; 796 node->next = split_node; 797 } /* End of too big on top end */ 798 799 dbg("%s: got one!!!\n", __func__); 800 /* If we got here, then it is the right size 801 * Now take it out of the list */ 802 if (*head == node) { 803 *head = node->next; 804 } else { 805 prevnode = *head; 806 while (prevnode->next != node) 807 prevnode = prevnode->next; 808 809 prevnode->next = node->next; 810 } 811 node->next = NULL; 812 break; 813 } 814 return node; 815 } 816 817 818 /** 819 * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up 820 * @head: the list to sort and clean up 821 * 822 * Description: Sorts all of the nodes in the list in ascending order by 823 * their base addresses. Also does garbage collection by 824 * combining adjacent nodes. 825 * 826 * Returns %0 if success. 827 */ 828 int cpqhp_resource_sort_and_combine(struct pci_resource **head) 829 { 830 struct pci_resource *node1; 831 struct pci_resource *node2; 832 int out_of_order = 1; 833 834 dbg("%s: head = %p, *head = %p\n", __func__, head, *head); 835 836 if (!(*head)) 837 return 1; 838 839 dbg("*head->next = %p\n",(*head)->next); 840 841 if (!(*head)->next) 842 return 0; /* only one item on the list, already sorted! */ 843 844 dbg("*head->base = 0x%x\n",(*head)->base); 845 dbg("*head->next->base = 0x%x\n",(*head)->next->base); 846 while (out_of_order) { 847 out_of_order = 0; 848 849 /* Special case for swapping list head */ 850 if (((*head)->next) && 851 ((*head)->base > (*head)->next->base)) { 852 node1 = *head; 853 (*head) = (*head)->next; 854 node1->next = (*head)->next; 855 (*head)->next = node1; 856 out_of_order++; 857 } 858 859 node1 = (*head); 860 861 while (node1->next && node1->next->next) { 862 if (node1->next->base > node1->next->next->base) { 863 out_of_order++; 864 node2 = node1->next; 865 node1->next = node1->next->next; 866 node1 = node1->next; 867 node2->next = node1->next; 868 node1->next = node2; 869 } else 870 node1 = node1->next; 871 } 872 } /* End of out_of_order loop */ 873 874 node1 = *head; 875 876 while (node1 && node1->next) { 877 if ((node1->base + node1->length) == node1->next->base) { 878 /* Combine */ 879 dbg("8..\n"); 880 node1->length += node1->next->length; 881 node2 = node1->next; 882 node1->next = node1->next->next; 883 kfree(node2); 884 } else 885 node1 = node1->next; 886 } 887 888 return 0; 889 } 890 891 892 irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data) 893 { 894 struct controller *ctrl = data; 895 u8 schedule_flag = 0; 896 u8 reset; 897 u16 misc; 898 u32 Diff; 899 u32 temp_dword; 900 901 902 misc = readw(ctrl->hpc_reg + MISC); 903 /* 904 * Check to see if it was our interrupt 905 */ 906 if (!(misc & 0x000C)) { 907 return IRQ_NONE; 908 } 909 910 if (misc & 0x0004) { 911 /* 912 * Serial Output interrupt Pending 913 */ 914 915 /* Clear the interrupt */ 916 misc |= 0x0004; 917 writew(misc, ctrl->hpc_reg + MISC); 918 919 /* Read to clear posted writes */ 920 misc = readw(ctrl->hpc_reg + MISC); 921 922 dbg ("%s - waking up\n", __func__); 923 wake_up_interruptible(&ctrl->queue); 924 } 925 926 if (misc & 0x0008) { 927 /* General-interrupt-input interrupt Pending */ 928 Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp; 929 930 ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); 931 932 /* Clear the interrupt */ 933 writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR); 934 935 /* Read it back to clear any posted writes */ 936 temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); 937 938 if (!Diff) 939 /* Clear all interrupts */ 940 writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR); 941 942 schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl); 943 schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl); 944 schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl); 945 } 946 947 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE); 948 if (reset & 0x40) { 949 /* Bus reset has completed */ 950 reset &= 0xCF; 951 writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE); 952 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE); 953 wake_up_interruptible(&ctrl->queue); 954 } 955 956 if (schedule_flag) { 957 wake_up_process(cpqhp_event_thread); 958 dbg("Waking even thread"); 959 } 960 return IRQ_HANDLED; 961 } 962 963 964 /** 965 * cpqhp_slot_create - Creates a node and adds it to the proper bus. 966 * @busnumber: bus where new node is to be located 967 * 968 * Returns pointer to the new node or %NULL if unsuccessful. 969 */ 970 struct pci_func *cpqhp_slot_create(u8 busnumber) 971 { 972 struct pci_func *new_slot; 973 struct pci_func *next; 974 975 new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL); 976 if (new_slot == NULL) 977 return new_slot; 978 979 new_slot->next = NULL; 980 new_slot->configured = 1; 981 982 if (cpqhp_slot_list[busnumber] == NULL) { 983 cpqhp_slot_list[busnumber] = new_slot; 984 } else { 985 next = cpqhp_slot_list[busnumber]; 986 while (next->next != NULL) 987 next = next->next; 988 next->next = new_slot; 989 } 990 return new_slot; 991 } 992 993 994 /** 995 * slot_remove - Removes a node from the linked list of slots. 996 * @old_slot: slot to remove 997 * 998 * Returns %0 if successful, !0 otherwise. 999 */ 1000 static int slot_remove(struct pci_func * old_slot) 1001 { 1002 struct pci_func *next; 1003 1004 if (old_slot == NULL) 1005 return 1; 1006 1007 next = cpqhp_slot_list[old_slot->bus]; 1008 if (next == NULL) 1009 return 1; 1010 1011 if (next == old_slot) { 1012 cpqhp_slot_list[old_slot->bus] = old_slot->next; 1013 cpqhp_destroy_board_resources(old_slot); 1014 kfree(old_slot); 1015 return 0; 1016 } 1017 1018 while ((next->next != old_slot) && (next->next != NULL)) 1019 next = next->next; 1020 1021 if (next->next == old_slot) { 1022 next->next = old_slot->next; 1023 cpqhp_destroy_board_resources(old_slot); 1024 kfree(old_slot); 1025 return 0; 1026 } else 1027 return 2; 1028 } 1029 1030 1031 /** 1032 * bridge_slot_remove - Removes a node from the linked list of slots. 1033 * @bridge: bridge to remove 1034 * 1035 * Returns %0 if successful, !0 otherwise. 1036 */ 1037 static int bridge_slot_remove(struct pci_func *bridge) 1038 { 1039 u8 subordinateBus, secondaryBus; 1040 u8 tempBus; 1041 struct pci_func *next; 1042 1043 secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF; 1044 subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF; 1045 1046 for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) { 1047 next = cpqhp_slot_list[tempBus]; 1048 1049 while (!slot_remove(next)) 1050 next = cpqhp_slot_list[tempBus]; 1051 } 1052 1053 next = cpqhp_slot_list[bridge->bus]; 1054 1055 if (next == NULL) 1056 return 1; 1057 1058 if (next == bridge) { 1059 cpqhp_slot_list[bridge->bus] = bridge->next; 1060 goto out; 1061 } 1062 1063 while ((next->next != bridge) && (next->next != NULL)) 1064 next = next->next; 1065 1066 if (next->next != bridge) 1067 return 2; 1068 next->next = bridge->next; 1069 out: 1070 kfree(bridge); 1071 return 0; 1072 } 1073 1074 1075 /** 1076 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed 1077 * @bus: bus to find 1078 * @device: device to find 1079 * @index: is %0 for first function found, %1 for the second... 1080 * 1081 * Returns pointer to the node if successful, %NULL otherwise. 1082 */ 1083 struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index) 1084 { 1085 int found = -1; 1086 struct pci_func *func; 1087 1088 func = cpqhp_slot_list[bus]; 1089 1090 if ((func == NULL) || ((func->device == device) && (index == 0))) 1091 return func; 1092 1093 if (func->device == device) 1094 found++; 1095 1096 while (func->next != NULL) { 1097 func = func->next; 1098 1099 if (func->device == device) 1100 found++; 1101 1102 if (found == index) 1103 return func; 1104 } 1105 1106 return NULL; 1107 } 1108 1109 1110 /* DJZ: I don't think is_bridge will work as is. 1111 * FIXME */ 1112 static int is_bridge(struct pci_func * func) 1113 { 1114 /* Check the header type */ 1115 if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01) 1116 return 1; 1117 else 1118 return 0; 1119 } 1120 1121 1122 /** 1123 * set_controller_speed - set the frequency and/or mode of a specific controller segment. 1124 * @ctrl: controller to change frequency/mode for. 1125 * @adapter_speed: the speed of the adapter we want to match. 1126 * @hp_slot: the slot number where the adapter is installed. 1127 * 1128 * Returns %0 if we successfully change frequency and/or mode to match the 1129 * adapter speed. 1130 */ 1131 static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot) 1132 { 1133 struct slot *slot; 1134 u8 reg; 1135 u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER); 1136 u16 reg16; 1137 u32 leds = readl(ctrl->hpc_reg + LED_CONTROL); 1138 1139 if (ctrl->speed == adapter_speed) 1140 return 0; 1141 1142 /* We don't allow freq/mode changes if we find another adapter running 1143 * in another slot on this controller 1144 */ 1145 for(slot = ctrl->slot; slot; slot = slot->next) { 1146 if (slot->device == (hp_slot + ctrl->slot_device_offset)) 1147 continue; 1148 if (!slot->hotplug_slot || !slot->hotplug_slot->info) 1149 continue; 1150 if (slot->hotplug_slot->info->adapter_status == 0) 1151 continue; 1152 /* If another adapter is running on the same segment but at a 1153 * lower speed/mode, we allow the new adapter to function at 1154 * this rate if supported 1155 */ 1156 if (ctrl->speed < adapter_speed) 1157 return 0; 1158 1159 return 1; 1160 } 1161 1162 /* If the controller doesn't support freq/mode changes and the 1163 * controller is running at a higher mode, we bail 1164 */ 1165 if ((ctrl->speed > adapter_speed) && (!ctrl->pcix_speed_capability)) 1166 return 1; 1167 1168 /* But we allow the adapter to run at a lower rate if possible */ 1169 if ((ctrl->speed < adapter_speed) && (!ctrl->pcix_speed_capability)) 1170 return 0; 1171 1172 /* We try to set the max speed supported by both the adapter and 1173 * controller 1174 */ 1175 if (ctrl->speed_capability < adapter_speed) { 1176 if (ctrl->speed == ctrl->speed_capability) 1177 return 0; 1178 adapter_speed = ctrl->speed_capability; 1179 } 1180 1181 writel(0x0L, ctrl->hpc_reg + LED_CONTROL); 1182 writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE); 1183 1184 set_SOGO(ctrl); 1185 wait_for_ctrl_irq(ctrl); 1186 1187 if (adapter_speed != PCI_SPEED_133MHz_PCIX) 1188 reg = 0xF5; 1189 else 1190 reg = 0xF4; 1191 pci_write_config_byte(ctrl->pci_dev, 0x41, reg); 1192 1193 reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ); 1194 reg16 &= ~0x000F; 1195 switch(adapter_speed) { 1196 case(PCI_SPEED_133MHz_PCIX): 1197 reg = 0x75; 1198 reg16 |= 0xB; 1199 break; 1200 case(PCI_SPEED_100MHz_PCIX): 1201 reg = 0x74; 1202 reg16 |= 0xA; 1203 break; 1204 case(PCI_SPEED_66MHz_PCIX): 1205 reg = 0x73; 1206 reg16 |= 0x9; 1207 break; 1208 case(PCI_SPEED_66MHz): 1209 reg = 0x73; 1210 reg16 |= 0x1; 1211 break; 1212 default: /* 33MHz PCI 2.2 */ 1213 reg = 0x71; 1214 break; 1215 1216 } 1217 reg16 |= 0xB << 12; 1218 writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ); 1219 1220 mdelay(5); 1221 1222 /* Reenable interrupts */ 1223 writel(0, ctrl->hpc_reg + INT_MASK); 1224 1225 pci_write_config_byte(ctrl->pci_dev, 0x41, reg); 1226 1227 /* Restart state machine */ 1228 reg = ~0xF; 1229 pci_read_config_byte(ctrl->pci_dev, 0x43, ®); 1230 pci_write_config_byte(ctrl->pci_dev, 0x43, reg); 1231 1232 /* Only if mode change...*/ 1233 if (((ctrl->speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) || 1234 ((ctrl->speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz))) 1235 set_SOGO(ctrl); 1236 1237 wait_for_ctrl_irq(ctrl); 1238 mdelay(1100); 1239 1240 /* Restore LED/Slot state */ 1241 writel(leds, ctrl->hpc_reg + LED_CONTROL); 1242 writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE); 1243 1244 set_SOGO(ctrl); 1245 wait_for_ctrl_irq(ctrl); 1246 1247 ctrl->speed = adapter_speed; 1248 slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); 1249 1250 info("Successfully changed frequency/mode for adapter in slot %d\n", 1251 slot->number); 1252 return 0; 1253 } 1254 1255 /* the following routines constitute the bulk of the 1256 * hotplug controller logic 1257 */ 1258 1259 1260 /** 1261 * board_replaced - Called after a board has been replaced in the system. 1262 * @func: PCI device/function information 1263 * @ctrl: hotplug controller 1264 * 1265 * This is only used if we don't have resources for hot add. 1266 * Turns power on for the board. 1267 * Checks to see if board is the same. 1268 * If board is same, reconfigures it. 1269 * If board isn't same, turns it back off. 1270 */ 1271 static u32 board_replaced(struct pci_func *func, struct controller *ctrl) 1272 { 1273 u8 hp_slot; 1274 u8 temp_byte; 1275 u8 adapter_speed; 1276 u32 rc = 0; 1277 1278 hp_slot = func->device - ctrl->slot_device_offset; 1279 1280 /* 1281 * The switch is open. 1282 */ 1283 if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot)) 1284 rc = INTERLOCK_OPEN; 1285 /* 1286 * The board is already on 1287 */ 1288 else if (is_slot_enabled (ctrl, hp_slot)) 1289 rc = CARD_FUNCTIONING; 1290 else { 1291 mutex_lock(&ctrl->crit_sect); 1292 1293 /* turn on board without attaching to the bus */ 1294 enable_slot_power (ctrl, hp_slot); 1295 1296 set_SOGO(ctrl); 1297 1298 /* Wait for SOBS to be unset */ 1299 wait_for_ctrl_irq (ctrl); 1300 1301 /* Change bits in slot power register to force another shift out 1302 * NOTE: this is to work around the timer bug */ 1303 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER); 1304 writeb(0x00, ctrl->hpc_reg + SLOT_POWER); 1305 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER); 1306 1307 set_SOGO(ctrl); 1308 1309 /* Wait for SOBS to be unset */ 1310 wait_for_ctrl_irq (ctrl); 1311 1312 adapter_speed = get_adapter_speed(ctrl, hp_slot); 1313 if (ctrl->speed != adapter_speed) 1314 if (set_controller_speed(ctrl, adapter_speed, hp_slot)) 1315 rc = WRONG_BUS_FREQUENCY; 1316 1317 /* turn off board without attaching to the bus */ 1318 disable_slot_power (ctrl, hp_slot); 1319 1320 set_SOGO(ctrl); 1321 1322 /* Wait for SOBS to be unset */ 1323 wait_for_ctrl_irq (ctrl); 1324 1325 mutex_unlock(&ctrl->crit_sect); 1326 1327 if (rc) 1328 return rc; 1329 1330 mutex_lock(&ctrl->crit_sect); 1331 1332 slot_enable (ctrl, hp_slot); 1333 green_LED_blink (ctrl, hp_slot); 1334 1335 amber_LED_off (ctrl, hp_slot); 1336 1337 set_SOGO(ctrl); 1338 1339 /* Wait for SOBS to be unset */ 1340 wait_for_ctrl_irq (ctrl); 1341 1342 mutex_unlock(&ctrl->crit_sect); 1343 1344 /* Wait for ~1 second because of hot plug spec */ 1345 long_delay(1*HZ); 1346 1347 /* Check for a power fault */ 1348 if (func->status == 0xFF) { 1349 /* power fault occurred, but it was benign */ 1350 rc = POWER_FAILURE; 1351 func->status = 0; 1352 } else 1353 rc = cpqhp_valid_replace(ctrl, func); 1354 1355 if (!rc) { 1356 /* It must be the same board */ 1357 1358 rc = cpqhp_configure_board(ctrl, func); 1359 1360 /* If configuration fails, turn it off 1361 * Get slot won't work for devices behind 1362 * bridges, but in this case it will always be 1363 * called for the "base" bus/dev/func of an 1364 * adapter. 1365 */ 1366 1367 mutex_lock(&ctrl->crit_sect); 1368 1369 amber_LED_on (ctrl, hp_slot); 1370 green_LED_off (ctrl, hp_slot); 1371 slot_disable (ctrl, hp_slot); 1372 1373 set_SOGO(ctrl); 1374 1375 /* Wait for SOBS to be unset */ 1376 wait_for_ctrl_irq (ctrl); 1377 1378 mutex_unlock(&ctrl->crit_sect); 1379 1380 if (rc) 1381 return rc; 1382 else 1383 return 1; 1384 1385 } else { 1386 /* Something is wrong 1387 1388 * Get slot won't work for devices behind bridges, but 1389 * in this case it will always be called for the "base" 1390 * bus/dev/func of an adapter. 1391 */ 1392 1393 mutex_lock(&ctrl->crit_sect); 1394 1395 amber_LED_on (ctrl, hp_slot); 1396 green_LED_off (ctrl, hp_slot); 1397 slot_disable (ctrl, hp_slot); 1398 1399 set_SOGO(ctrl); 1400 1401 /* Wait for SOBS to be unset */ 1402 wait_for_ctrl_irq (ctrl); 1403 1404 mutex_unlock(&ctrl->crit_sect); 1405 } 1406 1407 } 1408 return rc; 1409 1410 } 1411 1412 1413 /** 1414 * board_added - Called after a board has been added to the system. 1415 * @func: PCI device/function info 1416 * @ctrl: hotplug controller 1417 * 1418 * Turns power on for the board. 1419 * Configures board. 1420 */ 1421 static u32 board_added(struct pci_func *func, struct controller *ctrl) 1422 { 1423 u8 hp_slot; 1424 u8 temp_byte; 1425 u8 adapter_speed; 1426 int index; 1427 u32 temp_register = 0xFFFFFFFF; 1428 u32 rc = 0; 1429 struct pci_func *new_slot = NULL; 1430 struct slot *p_slot; 1431 struct resource_lists res_lists; 1432 1433 hp_slot = func->device - ctrl->slot_device_offset; 1434 dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n", 1435 __func__, func->device, ctrl->slot_device_offset, hp_slot); 1436 1437 mutex_lock(&ctrl->crit_sect); 1438 1439 /* turn on board without attaching to the bus */ 1440 enable_slot_power(ctrl, hp_slot); 1441 1442 set_SOGO(ctrl); 1443 1444 /* Wait for SOBS to be unset */ 1445 wait_for_ctrl_irq (ctrl); 1446 1447 /* Change bits in slot power register to force another shift out 1448 * NOTE: this is to work around the timer bug 1449 */ 1450 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER); 1451 writeb(0x00, ctrl->hpc_reg + SLOT_POWER); 1452 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER); 1453 1454 set_SOGO(ctrl); 1455 1456 /* Wait for SOBS to be unset */ 1457 wait_for_ctrl_irq (ctrl); 1458 1459 adapter_speed = get_adapter_speed(ctrl, hp_slot); 1460 if (ctrl->speed != adapter_speed) 1461 if (set_controller_speed(ctrl, adapter_speed, hp_slot)) 1462 rc = WRONG_BUS_FREQUENCY; 1463 1464 /* turn off board without attaching to the bus */ 1465 disable_slot_power (ctrl, hp_slot); 1466 1467 set_SOGO(ctrl); 1468 1469 /* Wait for SOBS to be unset */ 1470 wait_for_ctrl_irq(ctrl); 1471 1472 mutex_unlock(&ctrl->crit_sect); 1473 1474 if (rc) 1475 return rc; 1476 1477 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); 1478 1479 /* turn on board and blink green LED */ 1480 1481 dbg("%s: before down\n", __func__); 1482 mutex_lock(&ctrl->crit_sect); 1483 dbg("%s: after down\n", __func__); 1484 1485 dbg("%s: before slot_enable\n", __func__); 1486 slot_enable (ctrl, hp_slot); 1487 1488 dbg("%s: before green_LED_blink\n", __func__); 1489 green_LED_blink (ctrl, hp_slot); 1490 1491 dbg("%s: before amber_LED_blink\n", __func__); 1492 amber_LED_off (ctrl, hp_slot); 1493 1494 dbg("%s: before set_SOGO\n", __func__); 1495 set_SOGO(ctrl); 1496 1497 /* Wait for SOBS to be unset */ 1498 dbg("%s: before wait_for_ctrl_irq\n", __func__); 1499 wait_for_ctrl_irq (ctrl); 1500 dbg("%s: after wait_for_ctrl_irq\n", __func__); 1501 1502 dbg("%s: before up\n", __func__); 1503 mutex_unlock(&ctrl->crit_sect); 1504 dbg("%s: after up\n", __func__); 1505 1506 /* Wait for ~1 second because of hot plug spec */ 1507 dbg("%s: before long_delay\n", __func__); 1508 long_delay(1*HZ); 1509 dbg("%s: after long_delay\n", __func__); 1510 1511 dbg("%s: func status = %x\n", __func__, func->status); 1512 /* Check for a power fault */ 1513 if (func->status == 0xFF) { 1514 /* power fault occurred, but it was benign */ 1515 temp_register = 0xFFFFFFFF; 1516 dbg("%s: temp register set to %x by power fault\n", __func__, temp_register); 1517 rc = POWER_FAILURE; 1518 func->status = 0; 1519 } else { 1520 /* Get vendor/device ID u32 */ 1521 ctrl->pci_bus->number = func->bus; 1522 rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register); 1523 dbg("%s: pci_read_config_dword returns %d\n", __func__, rc); 1524 dbg("%s: temp_register is %x\n", __func__, temp_register); 1525 1526 if (rc != 0) { 1527 /* Something's wrong here */ 1528 temp_register = 0xFFFFFFFF; 1529 dbg("%s: temp register set to %x by error\n", __func__, temp_register); 1530 } 1531 /* Preset return code. It will be changed later if things go okay. */ 1532 rc = NO_ADAPTER_PRESENT; 1533 } 1534 1535 /* All F's is an empty slot or an invalid board */ 1536 if (temp_register != 0xFFFFFFFF) { 1537 res_lists.io_head = ctrl->io_head; 1538 res_lists.mem_head = ctrl->mem_head; 1539 res_lists.p_mem_head = ctrl->p_mem_head; 1540 res_lists.bus_head = ctrl->bus_head; 1541 res_lists.irqs = NULL; 1542 1543 rc = configure_new_device(ctrl, func, 0, &res_lists); 1544 1545 dbg("%s: back from configure_new_device\n", __func__); 1546 ctrl->io_head = res_lists.io_head; 1547 ctrl->mem_head = res_lists.mem_head; 1548 ctrl->p_mem_head = res_lists.p_mem_head; 1549 ctrl->bus_head = res_lists.bus_head; 1550 1551 cpqhp_resource_sort_and_combine(&(ctrl->mem_head)); 1552 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head)); 1553 cpqhp_resource_sort_and_combine(&(ctrl->io_head)); 1554 cpqhp_resource_sort_and_combine(&(ctrl->bus_head)); 1555 1556 if (rc) { 1557 mutex_lock(&ctrl->crit_sect); 1558 1559 amber_LED_on (ctrl, hp_slot); 1560 green_LED_off (ctrl, hp_slot); 1561 slot_disable (ctrl, hp_slot); 1562 1563 set_SOGO(ctrl); 1564 1565 /* Wait for SOBS to be unset */ 1566 wait_for_ctrl_irq (ctrl); 1567 1568 mutex_unlock(&ctrl->crit_sect); 1569 return rc; 1570 } else { 1571 cpqhp_save_slot_config(ctrl, func); 1572 } 1573 1574 1575 func->status = 0; 1576 func->switch_save = 0x10; 1577 func->is_a_board = 0x01; 1578 1579 /* next, we will instantiate the linux pci_dev structures (with 1580 * appropriate driver notification, if already present) */ 1581 dbg("%s: configure linux pci_dev structure\n", __func__); 1582 index = 0; 1583 do { 1584 new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++); 1585 if (new_slot && !new_slot->pci_dev) 1586 cpqhp_configure_device(ctrl, new_slot); 1587 } while (new_slot); 1588 1589 mutex_lock(&ctrl->crit_sect); 1590 1591 green_LED_on (ctrl, hp_slot); 1592 1593 set_SOGO(ctrl); 1594 1595 /* Wait for SOBS to be unset */ 1596 wait_for_ctrl_irq (ctrl); 1597 1598 mutex_unlock(&ctrl->crit_sect); 1599 } else { 1600 mutex_lock(&ctrl->crit_sect); 1601 1602 amber_LED_on (ctrl, hp_slot); 1603 green_LED_off (ctrl, hp_slot); 1604 slot_disable (ctrl, hp_slot); 1605 1606 set_SOGO(ctrl); 1607 1608 /* Wait for SOBS to be unset */ 1609 wait_for_ctrl_irq (ctrl); 1610 1611 mutex_unlock(&ctrl->crit_sect); 1612 1613 return rc; 1614 } 1615 return 0; 1616 } 1617 1618 1619 /** 1620 * remove_board - Turns off slot and LEDs 1621 * @func: PCI device/function info 1622 * @replace_flag: whether replacing or adding a new device 1623 * @ctrl: target controller 1624 */ 1625 static u32 remove_board(struct pci_func * func, u32 replace_flag, struct controller * ctrl) 1626 { 1627 int index; 1628 u8 skip = 0; 1629 u8 device; 1630 u8 hp_slot; 1631 u8 temp_byte; 1632 u32 rc; 1633 struct resource_lists res_lists; 1634 struct pci_func *temp_func; 1635 1636 if (cpqhp_unconfigure_device(func)) 1637 return 1; 1638 1639 device = func->device; 1640 1641 hp_slot = func->device - ctrl->slot_device_offset; 1642 dbg("In %s, hp_slot = %d\n", __func__, hp_slot); 1643 1644 /* When we get here, it is safe to change base address registers. 1645 * We will attempt to save the base address register lengths */ 1646 if (replace_flag || !ctrl->add_support) 1647 rc = cpqhp_save_base_addr_length(ctrl, func); 1648 else if (!func->bus_head && !func->mem_head && 1649 !func->p_mem_head && !func->io_head) { 1650 /* Here we check to see if we've saved any of the board's 1651 * resources already. If so, we'll skip the attempt to 1652 * determine what's being used. */ 1653 index = 0; 1654 temp_func = cpqhp_slot_find(func->bus, func->device, index++); 1655 while (temp_func) { 1656 if (temp_func->bus_head || temp_func->mem_head 1657 || temp_func->p_mem_head || temp_func->io_head) { 1658 skip = 1; 1659 break; 1660 } 1661 temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++); 1662 } 1663 1664 if (!skip) 1665 rc = cpqhp_save_used_resources(ctrl, func); 1666 } 1667 /* Change status to shutdown */ 1668 if (func->is_a_board) 1669 func->status = 0x01; 1670 func->configured = 0; 1671 1672 mutex_lock(&ctrl->crit_sect); 1673 1674 green_LED_off (ctrl, hp_slot); 1675 slot_disable (ctrl, hp_slot); 1676 1677 set_SOGO(ctrl); 1678 1679 /* turn off SERR for slot */ 1680 temp_byte = readb(ctrl->hpc_reg + SLOT_SERR); 1681 temp_byte &= ~(0x01 << hp_slot); 1682 writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR); 1683 1684 /* Wait for SOBS to be unset */ 1685 wait_for_ctrl_irq (ctrl); 1686 1687 mutex_unlock(&ctrl->crit_sect); 1688 1689 if (!replace_flag && ctrl->add_support) { 1690 while (func) { 1691 res_lists.io_head = ctrl->io_head; 1692 res_lists.mem_head = ctrl->mem_head; 1693 res_lists.p_mem_head = ctrl->p_mem_head; 1694 res_lists.bus_head = ctrl->bus_head; 1695 1696 cpqhp_return_board_resources(func, &res_lists); 1697 1698 ctrl->io_head = res_lists.io_head; 1699 ctrl->mem_head = res_lists.mem_head; 1700 ctrl->p_mem_head = res_lists.p_mem_head; 1701 ctrl->bus_head = res_lists.bus_head; 1702 1703 cpqhp_resource_sort_and_combine(&(ctrl->mem_head)); 1704 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head)); 1705 cpqhp_resource_sort_and_combine(&(ctrl->io_head)); 1706 cpqhp_resource_sort_and_combine(&(ctrl->bus_head)); 1707 1708 if (is_bridge(func)) { 1709 bridge_slot_remove(func); 1710 } else 1711 slot_remove(func); 1712 1713 func = cpqhp_slot_find(ctrl->bus, device, 0); 1714 } 1715 1716 /* Setup slot structure with entry for empty slot */ 1717 func = cpqhp_slot_create(ctrl->bus); 1718 1719 if (func == NULL) 1720 return 1; 1721 1722 func->bus = ctrl->bus; 1723 func->device = device; 1724 func->function = 0; 1725 func->configured = 0; 1726 func->switch_save = 0x10; 1727 func->is_a_board = 0; 1728 func->p_task_event = NULL; 1729 } 1730 1731 return 0; 1732 } 1733 1734 static void pushbutton_helper_thread(unsigned long data) 1735 { 1736 pushbutton_pending = data; 1737 wake_up_process(cpqhp_event_thread); 1738 } 1739 1740 1741 /* this is the main worker thread */ 1742 static int event_thread(void* data) 1743 { 1744 struct controller *ctrl; 1745 1746 while (1) { 1747 dbg("!!!!event_thread sleeping\n"); 1748 set_current_state(TASK_INTERRUPTIBLE); 1749 schedule(); 1750 1751 if (kthread_should_stop()) 1752 break; 1753 /* Do stuff here */ 1754 if (pushbutton_pending) 1755 cpqhp_pushbutton_thread(pushbutton_pending); 1756 else 1757 for (ctrl = cpqhp_ctrl_list; ctrl; ctrl=ctrl->next) 1758 interrupt_event_handler(ctrl); 1759 } 1760 dbg("event_thread signals exit\n"); 1761 return 0; 1762 } 1763 1764 int cpqhp_event_start_thread(void) 1765 { 1766 cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event"); 1767 if (IS_ERR(cpqhp_event_thread)) { 1768 err ("Can't start up our event thread\n"); 1769 return PTR_ERR(cpqhp_event_thread); 1770 } 1771 1772 return 0; 1773 } 1774 1775 1776 void cpqhp_event_stop_thread(void) 1777 { 1778 kthread_stop(cpqhp_event_thread); 1779 } 1780 1781 1782 static int update_slot_info(struct controller *ctrl, struct slot *slot) 1783 { 1784 struct hotplug_slot_info *info; 1785 int result; 1786 1787 info = kmalloc(sizeof(*info), GFP_KERNEL); 1788 if (!info) 1789 return -ENOMEM; 1790 1791 info->power_status = get_slot_enabled(ctrl, slot); 1792 info->attention_status = cpq_get_attention_status(ctrl, slot); 1793 info->latch_status = cpq_get_latch_status(ctrl, slot); 1794 info->adapter_status = get_presence_status(ctrl, slot); 1795 result = pci_hp_change_slot_info(slot->hotplug_slot, info); 1796 kfree (info); 1797 return result; 1798 } 1799 1800 static void interrupt_event_handler(struct controller *ctrl) 1801 { 1802 int loop = 0; 1803 int change = 1; 1804 struct pci_func *func; 1805 u8 hp_slot; 1806 struct slot *p_slot; 1807 1808 while (change) { 1809 change = 0; 1810 1811 for (loop = 0; loop < 10; loop++) { 1812 /* dbg("loop %d\n", loop); */ 1813 if (ctrl->event_queue[loop].event_type != 0) { 1814 hp_slot = ctrl->event_queue[loop].hp_slot; 1815 1816 func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0); 1817 if (!func) 1818 return; 1819 1820 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); 1821 if (!p_slot) 1822 return; 1823 1824 dbg("hp_slot %d, func %p, p_slot %p\n", 1825 hp_slot, func, p_slot); 1826 1827 if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) { 1828 dbg("button pressed\n"); 1829 } else if (ctrl->event_queue[loop].event_type == 1830 INT_BUTTON_CANCEL) { 1831 dbg("button cancel\n"); 1832 del_timer(&p_slot->task_event); 1833 1834 mutex_lock(&ctrl->crit_sect); 1835 1836 if (p_slot->state == BLINKINGOFF_STATE) { 1837 /* slot is on */ 1838 dbg("turn on green LED\n"); 1839 green_LED_on (ctrl, hp_slot); 1840 } else if (p_slot->state == BLINKINGON_STATE) { 1841 /* slot is off */ 1842 dbg("turn off green LED\n"); 1843 green_LED_off (ctrl, hp_slot); 1844 } 1845 1846 info(msg_button_cancel, p_slot->number); 1847 1848 p_slot->state = STATIC_STATE; 1849 1850 amber_LED_off (ctrl, hp_slot); 1851 1852 set_SOGO(ctrl); 1853 1854 /* Wait for SOBS to be unset */ 1855 wait_for_ctrl_irq (ctrl); 1856 1857 mutex_unlock(&ctrl->crit_sect); 1858 } 1859 /*** button Released (No action on press...) */ 1860 else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) { 1861 dbg("button release\n"); 1862 1863 if (is_slot_enabled (ctrl, hp_slot)) { 1864 dbg("slot is on\n"); 1865 p_slot->state = BLINKINGOFF_STATE; 1866 info(msg_button_off, p_slot->number); 1867 } else { 1868 dbg("slot is off\n"); 1869 p_slot->state = BLINKINGON_STATE; 1870 info(msg_button_on, p_slot->number); 1871 } 1872 mutex_lock(&ctrl->crit_sect); 1873 1874 dbg("blink green LED and turn off amber\n"); 1875 1876 amber_LED_off (ctrl, hp_slot); 1877 green_LED_blink (ctrl, hp_slot); 1878 1879 set_SOGO(ctrl); 1880 1881 /* Wait for SOBS to be unset */ 1882 wait_for_ctrl_irq (ctrl); 1883 1884 mutex_unlock(&ctrl->crit_sect); 1885 init_timer(&p_slot->task_event); 1886 p_slot->hp_slot = hp_slot; 1887 p_slot->ctrl = ctrl; 1888 /* p_slot->physical_slot = physical_slot; */ 1889 p_slot->task_event.expires = jiffies + 5 * HZ; /* 5 second delay */ 1890 p_slot->task_event.function = pushbutton_helper_thread; 1891 p_slot->task_event.data = (u32) p_slot; 1892 1893 dbg("add_timer p_slot = %p\n", p_slot); 1894 add_timer(&p_slot->task_event); 1895 } 1896 /***********POWER FAULT */ 1897 else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) { 1898 dbg("power fault\n"); 1899 } else { 1900 /* refresh notification */ 1901 if (p_slot) 1902 update_slot_info(ctrl, p_slot); 1903 } 1904 1905 ctrl->event_queue[loop].event_type = 0; 1906 1907 change = 1; 1908 } 1909 } /* End of FOR loop */ 1910 } 1911 1912 return; 1913 } 1914 1915 1916 /** 1917 * cpqhp_pushbutton_thread - handle pushbutton events 1918 * @slot: target slot (struct) 1919 * 1920 * Scheduled procedure to handle blocking stuff for the pushbuttons. 1921 * Handles all pending events and exits. 1922 */ 1923 void cpqhp_pushbutton_thread(unsigned long slot) 1924 { 1925 u8 hp_slot; 1926 u8 device; 1927 struct pci_func *func; 1928 struct slot *p_slot = (struct slot *) slot; 1929 struct controller *ctrl = (struct controller *) p_slot->ctrl; 1930 1931 pushbutton_pending = 0; 1932 hp_slot = p_slot->hp_slot; 1933 1934 device = p_slot->device; 1935 1936 if (is_slot_enabled(ctrl, hp_slot)) { 1937 p_slot->state = POWEROFF_STATE; 1938 /* power Down board */ 1939 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0); 1940 dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl); 1941 if (!func) { 1942 dbg("Error! func NULL in %s\n", __func__); 1943 return ; 1944 } 1945 1946 if (cpqhp_process_SS(ctrl, func) != 0) { 1947 amber_LED_on(ctrl, hp_slot); 1948 green_LED_on(ctrl, hp_slot); 1949 1950 set_SOGO(ctrl); 1951 1952 /* Wait for SOBS to be unset */ 1953 wait_for_ctrl_irq(ctrl); 1954 } 1955 1956 p_slot->state = STATIC_STATE; 1957 } else { 1958 p_slot->state = POWERON_STATE; 1959 /* slot is off */ 1960 1961 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0); 1962 dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl); 1963 if (!func) { 1964 dbg("Error! func NULL in %s\n", __func__); 1965 return ; 1966 } 1967 1968 if (ctrl != NULL) { 1969 if (cpqhp_process_SI(ctrl, func) != 0) { 1970 amber_LED_on(ctrl, hp_slot); 1971 green_LED_off(ctrl, hp_slot); 1972 1973 set_SOGO(ctrl); 1974 1975 /* Wait for SOBS to be unset */ 1976 wait_for_ctrl_irq (ctrl); 1977 } 1978 } 1979 1980 p_slot->state = STATIC_STATE; 1981 } 1982 1983 return; 1984 } 1985 1986 1987 int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func) 1988 { 1989 u8 device, hp_slot; 1990 u16 temp_word; 1991 u32 tempdword; 1992 int rc; 1993 struct slot* p_slot; 1994 int physical_slot = 0; 1995 1996 tempdword = 0; 1997 1998 device = func->device; 1999 hp_slot = device - ctrl->slot_device_offset; 2000 p_slot = cpqhp_find_slot(ctrl, device); 2001 if (p_slot) 2002 physical_slot = p_slot->number; 2003 2004 /* Check to see if the interlock is closed */ 2005 tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); 2006 2007 if (tempdword & (0x01 << hp_slot)) { 2008 return 1; 2009 } 2010 2011 if (func->is_a_board) { 2012 rc = board_replaced(func, ctrl); 2013 } else { 2014 /* add board */ 2015 slot_remove(func); 2016 2017 func = cpqhp_slot_create(ctrl->bus); 2018 if (func == NULL) 2019 return 1; 2020 2021 func->bus = ctrl->bus; 2022 func->device = device; 2023 func->function = 0; 2024 func->configured = 0; 2025 func->is_a_board = 1; 2026 2027 /* We have to save the presence info for these slots */ 2028 temp_word = ctrl->ctrl_int_comp >> 16; 2029 func->presence_save = (temp_word >> hp_slot) & 0x01; 2030 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; 2031 2032 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { 2033 func->switch_save = 0; 2034 } else { 2035 func->switch_save = 0x10; 2036 } 2037 2038 rc = board_added(func, ctrl); 2039 if (rc) { 2040 if (is_bridge(func)) { 2041 bridge_slot_remove(func); 2042 } else 2043 slot_remove(func); 2044 2045 /* Setup slot structure with entry for empty slot */ 2046 func = cpqhp_slot_create(ctrl->bus); 2047 2048 if (func == NULL) 2049 return 1; 2050 2051 func->bus = ctrl->bus; 2052 func->device = device; 2053 func->function = 0; 2054 func->configured = 0; 2055 func->is_a_board = 0; 2056 2057 /* We have to save the presence info for these slots */ 2058 temp_word = ctrl->ctrl_int_comp >> 16; 2059 func->presence_save = (temp_word >> hp_slot) & 0x01; 2060 func->presence_save |= 2061 (temp_word >> (hp_slot + 7)) & 0x02; 2062 2063 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { 2064 func->switch_save = 0; 2065 } else { 2066 func->switch_save = 0x10; 2067 } 2068 } 2069 } 2070 2071 if (rc) { 2072 dbg("%s: rc = %d\n", __func__, rc); 2073 } 2074 2075 if (p_slot) 2076 update_slot_info(ctrl, p_slot); 2077 2078 return rc; 2079 } 2080 2081 2082 int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func) 2083 { 2084 u8 device, class_code, header_type, BCR; 2085 u8 index = 0; 2086 u8 replace_flag; 2087 u32 rc = 0; 2088 unsigned int devfn; 2089 struct slot* p_slot; 2090 struct pci_bus *pci_bus = ctrl->pci_bus; 2091 int physical_slot=0; 2092 2093 device = func->device; 2094 func = cpqhp_slot_find(ctrl->bus, device, index++); 2095 p_slot = cpqhp_find_slot(ctrl, device); 2096 if (p_slot) { 2097 physical_slot = p_slot->number; 2098 } 2099 2100 /* Make sure there are no video controllers here */ 2101 while (func && !rc) { 2102 pci_bus->number = func->bus; 2103 devfn = PCI_DEVFN(func->device, func->function); 2104 2105 /* Check the Class Code */ 2106 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code); 2107 if (rc) 2108 return rc; 2109 2110 if (class_code == PCI_BASE_CLASS_DISPLAY) { 2111 /* Display/Video adapter (not supported) */ 2112 rc = REMOVE_NOT_SUPPORTED; 2113 } else { 2114 /* See if it's a bridge */ 2115 rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type); 2116 if (rc) 2117 return rc; 2118 2119 /* If it's a bridge, check the VGA Enable bit */ 2120 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { 2121 rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR); 2122 if (rc) 2123 return rc; 2124 2125 /* If the VGA Enable bit is set, remove isn't 2126 * supported */ 2127 if (BCR & PCI_BRIDGE_CTL_VGA) 2128 rc = REMOVE_NOT_SUPPORTED; 2129 } 2130 } 2131 2132 func = cpqhp_slot_find(ctrl->bus, device, index++); 2133 } 2134 2135 func = cpqhp_slot_find(ctrl->bus, device, 0); 2136 if ((func != NULL) && !rc) { 2137 /* FIXME: Replace flag should be passed into process_SS */ 2138 replace_flag = !(ctrl->add_support); 2139 rc = remove_board(func, replace_flag, ctrl); 2140 } else if (!rc) { 2141 rc = 1; 2142 } 2143 2144 if (p_slot) 2145 update_slot_info(ctrl, p_slot); 2146 2147 return rc; 2148 } 2149 2150 /** 2151 * switch_leds - switch the leds, go from one site to the other. 2152 * @ctrl: controller to use 2153 * @num_of_slots: number of slots to use 2154 * @work_LED: LED control value 2155 * @direction: 1 to start from the left side, 0 to start right. 2156 */ 2157 static void switch_leds(struct controller *ctrl, const int num_of_slots, 2158 u32 *work_LED, const int direction) 2159 { 2160 int loop; 2161 2162 for (loop = 0; loop < num_of_slots; loop++) { 2163 if (direction) 2164 *work_LED = *work_LED >> 1; 2165 else 2166 *work_LED = *work_LED << 1; 2167 writel(*work_LED, ctrl->hpc_reg + LED_CONTROL); 2168 2169 set_SOGO(ctrl); 2170 2171 /* Wait for SOGO interrupt */ 2172 wait_for_ctrl_irq(ctrl); 2173 2174 /* Get ready for next iteration */ 2175 long_delay((2*HZ)/10); 2176 } 2177 } 2178 2179 /** 2180 * cpqhp_hardware_test - runs hardware tests 2181 * @ctrl: target controller 2182 * @test_num: the number written to the "test" file in sysfs. 2183 * 2184 * For hot plug ctrl folks to play with. 2185 */ 2186 int cpqhp_hardware_test(struct controller *ctrl, int test_num) 2187 { 2188 u32 save_LED; 2189 u32 work_LED; 2190 int loop; 2191 int num_of_slots; 2192 2193 num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f; 2194 2195 switch (test_num) { 2196 case 1: 2197 /* Do stuff here! */ 2198 2199 /* Do that funky LED thing */ 2200 /* so we can restore them later */ 2201 save_LED = readl(ctrl->hpc_reg + LED_CONTROL); 2202 work_LED = 0x01010101; 2203 switch_leds(ctrl, num_of_slots, &work_LED, 0); 2204 switch_leds(ctrl, num_of_slots, &work_LED, 1); 2205 switch_leds(ctrl, num_of_slots, &work_LED, 0); 2206 switch_leds(ctrl, num_of_slots, &work_LED, 1); 2207 2208 work_LED = 0x01010000; 2209 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2210 switch_leds(ctrl, num_of_slots, &work_LED, 0); 2211 switch_leds(ctrl, num_of_slots, &work_LED, 1); 2212 work_LED = 0x00000101; 2213 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2214 switch_leds(ctrl, num_of_slots, &work_LED, 0); 2215 switch_leds(ctrl, num_of_slots, &work_LED, 1); 2216 2217 work_LED = 0x01010000; 2218 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2219 for (loop = 0; loop < num_of_slots; loop++) { 2220 set_SOGO(ctrl); 2221 2222 /* Wait for SOGO interrupt */ 2223 wait_for_ctrl_irq (ctrl); 2224 2225 /* Get ready for next iteration */ 2226 long_delay((3*HZ)/10); 2227 work_LED = work_LED >> 16; 2228 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2229 2230 set_SOGO(ctrl); 2231 2232 /* Wait for SOGO interrupt */ 2233 wait_for_ctrl_irq (ctrl); 2234 2235 /* Get ready for next iteration */ 2236 long_delay((3*HZ)/10); 2237 work_LED = work_LED << 16; 2238 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2239 work_LED = work_LED << 1; 2240 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2241 } 2242 2243 /* put it back the way it was */ 2244 writel(save_LED, ctrl->hpc_reg + LED_CONTROL); 2245 2246 set_SOGO(ctrl); 2247 2248 /* Wait for SOBS to be unset */ 2249 wait_for_ctrl_irq (ctrl); 2250 break; 2251 case 2: 2252 /* Do other stuff here! */ 2253 break; 2254 case 3: 2255 /* and more... */ 2256 break; 2257 } 2258 return 0; 2259 } 2260 2261 2262 /** 2263 * configure_new_device - Configures the PCI header information of one board. 2264 * @ctrl: pointer to controller structure 2265 * @func: pointer to function structure 2266 * @behind_bridge: 1 if this is a recursive call, 0 if not 2267 * @resources: pointer to set of resource lists 2268 * 2269 * Returns 0 if success. 2270 */ 2271 static u32 configure_new_device(struct controller * ctrl, struct pci_func * func, 2272 u8 behind_bridge, struct resource_lists * resources) 2273 { 2274 u8 temp_byte, function, max_functions, stop_it; 2275 int rc; 2276 u32 ID; 2277 struct pci_func *new_slot; 2278 int index; 2279 2280 new_slot = func; 2281 2282 dbg("%s\n", __func__); 2283 /* Check for Multi-function device */ 2284 ctrl->pci_bus->number = func->bus; 2285 rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte); 2286 if (rc) { 2287 dbg("%s: rc = %d\n", __func__, rc); 2288 return rc; 2289 } 2290 2291 if (temp_byte & 0x80) /* Multi-function device */ 2292 max_functions = 8; 2293 else 2294 max_functions = 1; 2295 2296 function = 0; 2297 2298 do { 2299 rc = configure_new_function(ctrl, new_slot, behind_bridge, resources); 2300 2301 if (rc) { 2302 dbg("configure_new_function failed %d\n",rc); 2303 index = 0; 2304 2305 while (new_slot) { 2306 new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++); 2307 2308 if (new_slot) 2309 cpqhp_return_board_resources(new_slot, resources); 2310 } 2311 2312 return rc; 2313 } 2314 2315 function++; 2316 2317 stop_it = 0; 2318 2319 /* The following loop skips to the next present function 2320 * and creates a board structure */ 2321 2322 while ((function < max_functions) && (!stop_it)) { 2323 pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID); 2324 2325 if (ID == 0xFFFFFFFF) { 2326 function++; 2327 } else { 2328 /* Setup slot structure. */ 2329 new_slot = cpqhp_slot_create(func->bus); 2330 2331 if (new_slot == NULL) 2332 return 1; 2333 2334 new_slot->bus = func->bus; 2335 new_slot->device = func->device; 2336 new_slot->function = function; 2337 new_slot->is_a_board = 1; 2338 new_slot->status = 0; 2339 2340 stop_it++; 2341 } 2342 } 2343 2344 } while (function < max_functions); 2345 dbg("returning from configure_new_device\n"); 2346 2347 return 0; 2348 } 2349 2350 2351 /* 2352 * Configuration logic that involves the hotplug data structures and 2353 * their bookkeeping 2354 */ 2355 2356 2357 /** 2358 * configure_new_function - Configures the PCI header information of one device 2359 * @ctrl: pointer to controller structure 2360 * @func: pointer to function structure 2361 * @behind_bridge: 1 if this is a recursive call, 0 if not 2362 * @resources: pointer to set of resource lists 2363 * 2364 * Calls itself recursively for bridged devices. 2365 * Returns 0 if success. 2366 */ 2367 static int configure_new_function(struct controller *ctrl, struct pci_func *func, 2368 u8 behind_bridge, 2369 struct resource_lists *resources) 2370 { 2371 int cloop; 2372 u8 IRQ = 0; 2373 u8 temp_byte; 2374 u8 device; 2375 u8 class_code; 2376 u16 command; 2377 u16 temp_word; 2378 u32 temp_dword; 2379 u32 rc; 2380 u32 temp_register; 2381 u32 base; 2382 u32 ID; 2383 unsigned int devfn; 2384 struct pci_resource *mem_node; 2385 struct pci_resource *p_mem_node; 2386 struct pci_resource *io_node; 2387 struct pci_resource *bus_node; 2388 struct pci_resource *hold_mem_node; 2389 struct pci_resource *hold_p_mem_node; 2390 struct pci_resource *hold_IO_node; 2391 struct pci_resource *hold_bus_node; 2392 struct irq_mapping irqs; 2393 struct pci_func *new_slot; 2394 struct pci_bus *pci_bus; 2395 struct resource_lists temp_resources; 2396 2397 pci_bus = ctrl->pci_bus; 2398 pci_bus->number = func->bus; 2399 devfn = PCI_DEVFN(func->device, func->function); 2400 2401 /* Check for Bridge */ 2402 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte); 2403 if (rc) 2404 return rc; 2405 2406 if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { 2407 /* set Primary bus */ 2408 dbg("set Primary bus = %d\n", func->bus); 2409 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus); 2410 if (rc) 2411 return rc; 2412 2413 /* find range of busses to use */ 2414 dbg("find ranges of buses to use\n"); 2415 bus_node = get_max_resource(&(resources->bus_head), 1); 2416 2417 /* If we don't have any busses to allocate, we can't continue */ 2418 if (!bus_node) 2419 return -ENOMEM; 2420 2421 /* set Secondary bus */ 2422 temp_byte = bus_node->base; 2423 dbg("set Secondary bus = %d\n", bus_node->base); 2424 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte); 2425 if (rc) 2426 return rc; 2427 2428 /* set subordinate bus */ 2429 temp_byte = bus_node->base + bus_node->length - 1; 2430 dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1); 2431 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte); 2432 if (rc) 2433 return rc; 2434 2435 /* set subordinate Latency Timer and base Latency Timer */ 2436 temp_byte = 0x40; 2437 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte); 2438 if (rc) 2439 return rc; 2440 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte); 2441 if (rc) 2442 return rc; 2443 2444 /* set Cache Line size */ 2445 temp_byte = 0x08; 2446 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte); 2447 if (rc) 2448 return rc; 2449 2450 /* Setup the IO, memory, and prefetchable windows */ 2451 io_node = get_max_resource(&(resources->io_head), 0x1000); 2452 if (!io_node) 2453 return -ENOMEM; 2454 mem_node = get_max_resource(&(resources->mem_head), 0x100000); 2455 if (!mem_node) 2456 return -ENOMEM; 2457 p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000); 2458 if (!p_mem_node) 2459 return -ENOMEM; 2460 dbg("Setup the IO, memory, and prefetchable windows\n"); 2461 dbg("io_node\n"); 2462 dbg("(base, len, next) (%x, %x, %p)\n", io_node->base, 2463 io_node->length, io_node->next); 2464 dbg("mem_node\n"); 2465 dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base, 2466 mem_node->length, mem_node->next); 2467 dbg("p_mem_node\n"); 2468 dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base, 2469 p_mem_node->length, p_mem_node->next); 2470 2471 /* set up the IRQ info */ 2472 if (!resources->irqs) { 2473 irqs.barber_pole = 0; 2474 irqs.interrupt[0] = 0; 2475 irqs.interrupt[1] = 0; 2476 irqs.interrupt[2] = 0; 2477 irqs.interrupt[3] = 0; 2478 irqs.valid_INT = 0; 2479 } else { 2480 irqs.barber_pole = resources->irqs->barber_pole; 2481 irqs.interrupt[0] = resources->irqs->interrupt[0]; 2482 irqs.interrupt[1] = resources->irqs->interrupt[1]; 2483 irqs.interrupt[2] = resources->irqs->interrupt[2]; 2484 irqs.interrupt[3] = resources->irqs->interrupt[3]; 2485 irqs.valid_INT = resources->irqs->valid_INT; 2486 } 2487 2488 /* set up resource lists that are now aligned on top and bottom 2489 * for anything behind the bridge. */ 2490 temp_resources.bus_head = bus_node; 2491 temp_resources.io_head = io_node; 2492 temp_resources.mem_head = mem_node; 2493 temp_resources.p_mem_head = p_mem_node; 2494 temp_resources.irqs = &irqs; 2495 2496 /* Make copies of the nodes we are going to pass down so that 2497 * if there is a problem,we can just use these to free resources 2498 */ 2499 hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL); 2500 hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL); 2501 hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL); 2502 hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL); 2503 2504 if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) { 2505 kfree(hold_bus_node); 2506 kfree(hold_IO_node); 2507 kfree(hold_mem_node); 2508 kfree(hold_p_mem_node); 2509 2510 return 1; 2511 } 2512 2513 memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource)); 2514 2515 bus_node->base += 1; 2516 bus_node->length -= 1; 2517 bus_node->next = NULL; 2518 2519 /* If we have IO resources copy them and fill in the bridge's 2520 * IO range registers */ 2521 if (io_node) { 2522 memcpy(hold_IO_node, io_node, sizeof(struct pci_resource)); 2523 io_node->next = NULL; 2524 2525 /* set IO base and Limit registers */ 2526 temp_byte = io_node->base >> 8; 2527 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte); 2528 2529 temp_byte = (io_node->base + io_node->length - 1) >> 8; 2530 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte); 2531 } else { 2532 kfree(hold_IO_node); 2533 hold_IO_node = NULL; 2534 } 2535 2536 /* If we have memory resources copy them and fill in the 2537 * bridge's memory range registers. Otherwise, fill in the 2538 * range registers with values that disable them. */ 2539 if (mem_node) { 2540 memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource)); 2541 mem_node->next = NULL; 2542 2543 /* set Mem base and Limit registers */ 2544 temp_word = mem_node->base >> 16; 2545 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word); 2546 2547 temp_word = (mem_node->base + mem_node->length - 1) >> 16; 2548 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); 2549 } else { 2550 temp_word = 0xFFFF; 2551 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word); 2552 2553 temp_word = 0x0000; 2554 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); 2555 2556 kfree(hold_mem_node); 2557 hold_mem_node = NULL; 2558 } 2559 2560 memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource)); 2561 p_mem_node->next = NULL; 2562 2563 /* set Pre Mem base and Limit registers */ 2564 temp_word = p_mem_node->base >> 16; 2565 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word); 2566 2567 temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16; 2568 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); 2569 2570 /* Adjust this to compensate for extra adjustment in first loop 2571 */ 2572 irqs.barber_pole--; 2573 2574 rc = 0; 2575 2576 /* Here we actually find the devices and configure them */ 2577 for (device = 0; (device <= 0x1F) && !rc; device++) { 2578 irqs.barber_pole = (irqs.barber_pole + 1) & 0x03; 2579 2580 ID = 0xFFFFFFFF; 2581 pci_bus->number = hold_bus_node->base; 2582 pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), 0x00, &ID); 2583 pci_bus->number = func->bus; 2584 2585 if (ID != 0xFFFFFFFF) { /* device present */ 2586 /* Setup slot structure. */ 2587 new_slot = cpqhp_slot_create(hold_bus_node->base); 2588 2589 if (new_slot == NULL) { 2590 rc = -ENOMEM; 2591 continue; 2592 } 2593 2594 new_slot->bus = hold_bus_node->base; 2595 new_slot->device = device; 2596 new_slot->function = 0; 2597 new_slot->is_a_board = 1; 2598 new_slot->status = 0; 2599 2600 rc = configure_new_device(ctrl, new_slot, 1, &temp_resources); 2601 dbg("configure_new_device rc=0x%x\n",rc); 2602 } /* End of IF (device in slot?) */ 2603 } /* End of FOR loop */ 2604 2605 if (rc) 2606 goto free_and_out; 2607 /* save the interrupt routing information */ 2608 if (resources->irqs) { 2609 resources->irqs->interrupt[0] = irqs.interrupt[0]; 2610 resources->irqs->interrupt[1] = irqs.interrupt[1]; 2611 resources->irqs->interrupt[2] = irqs.interrupt[2]; 2612 resources->irqs->interrupt[3] = irqs.interrupt[3]; 2613 resources->irqs->valid_INT = irqs.valid_INT; 2614 } else if (!behind_bridge) { 2615 /* We need to hook up the interrupts here */ 2616 for (cloop = 0; cloop < 4; cloop++) { 2617 if (irqs.valid_INT & (0x01 << cloop)) { 2618 rc = cpqhp_set_irq(func->bus, func->device, 2619 cloop + 1, irqs.interrupt[cloop]); 2620 if (rc) 2621 goto free_and_out; 2622 } 2623 } /* end of for loop */ 2624 } 2625 /* Return unused bus resources 2626 * First use the temporary node to store information for 2627 * the board */ 2628 if (hold_bus_node && bus_node && temp_resources.bus_head) { 2629 hold_bus_node->length = bus_node->base - hold_bus_node->base; 2630 2631 hold_bus_node->next = func->bus_head; 2632 func->bus_head = hold_bus_node; 2633 2634 temp_byte = temp_resources.bus_head->base - 1; 2635 2636 /* set subordinate bus */ 2637 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte); 2638 2639 if (temp_resources.bus_head->length == 0) { 2640 kfree(temp_resources.bus_head); 2641 temp_resources.bus_head = NULL; 2642 } else { 2643 return_resource(&(resources->bus_head), temp_resources.bus_head); 2644 } 2645 } 2646 2647 /* If we have IO space available and there is some left, 2648 * return the unused portion */ 2649 if (hold_IO_node && temp_resources.io_head) { 2650 io_node = do_pre_bridge_resource_split(&(temp_resources.io_head), 2651 &hold_IO_node, 0x1000); 2652 2653 /* Check if we were able to split something off */ 2654 if (io_node) { 2655 hold_IO_node->base = io_node->base + io_node->length; 2656 2657 temp_byte = (hold_IO_node->base) >> 8; 2658 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_BASE, temp_byte); 2659 2660 return_resource(&(resources->io_head), io_node); 2661 } 2662 2663 io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000); 2664 2665 /* Check if we were able to split something off */ 2666 if (io_node) { 2667 /* First use the temporary node to store 2668 * information for the board */ 2669 hold_IO_node->length = io_node->base - hold_IO_node->base; 2670 2671 /* If we used any, add it to the board's list */ 2672 if (hold_IO_node->length) { 2673 hold_IO_node->next = func->io_head; 2674 func->io_head = hold_IO_node; 2675 2676 temp_byte = (io_node->base - 1) >> 8; 2677 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte); 2678 2679 return_resource(&(resources->io_head), io_node); 2680 } else { 2681 /* it doesn't need any IO */ 2682 temp_word = 0x0000; 2683 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_LIMIT, temp_word); 2684 2685 return_resource(&(resources->io_head), io_node); 2686 kfree(hold_IO_node); 2687 } 2688 } else { 2689 /* it used most of the range */ 2690 hold_IO_node->next = func->io_head; 2691 func->io_head = hold_IO_node; 2692 } 2693 } else if (hold_IO_node) { 2694 /* it used the whole range */ 2695 hold_IO_node->next = func->io_head; 2696 func->io_head = hold_IO_node; 2697 } 2698 /* If we have memory space available and there is some left, 2699 * return the unused portion */ 2700 if (hold_mem_node && temp_resources.mem_head) { 2701 mem_node = do_pre_bridge_resource_split(&(temp_resources. mem_head), 2702 &hold_mem_node, 0x100000); 2703 2704 /* Check if we were able to split something off */ 2705 if (mem_node) { 2706 hold_mem_node->base = mem_node->base + mem_node->length; 2707 2708 temp_word = (hold_mem_node->base) >> 16; 2709 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word); 2710 2711 return_resource(&(resources->mem_head), mem_node); 2712 } 2713 2714 mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000); 2715 2716 /* Check if we were able to split something off */ 2717 if (mem_node) { 2718 /* First use the temporary node to store 2719 * information for the board */ 2720 hold_mem_node->length = mem_node->base - hold_mem_node->base; 2721 2722 if (hold_mem_node->length) { 2723 hold_mem_node->next = func->mem_head; 2724 func->mem_head = hold_mem_node; 2725 2726 /* configure end address */ 2727 temp_word = (mem_node->base - 1) >> 16; 2728 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); 2729 2730 /* Return unused resources to the pool */ 2731 return_resource(&(resources->mem_head), mem_node); 2732 } else { 2733 /* it doesn't need any Mem */ 2734 temp_word = 0x0000; 2735 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); 2736 2737 return_resource(&(resources->mem_head), mem_node); 2738 kfree(hold_mem_node); 2739 } 2740 } else { 2741 /* it used most of the range */ 2742 hold_mem_node->next = func->mem_head; 2743 func->mem_head = hold_mem_node; 2744 } 2745 } else if (hold_mem_node) { 2746 /* it used the whole range */ 2747 hold_mem_node->next = func->mem_head; 2748 func->mem_head = hold_mem_node; 2749 } 2750 /* If we have prefetchable memory space available and there 2751 * is some left at the end, return the unused portion */ 2752 if (hold_p_mem_node && temp_resources.p_mem_head) { 2753 p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head), 2754 &hold_p_mem_node, 0x100000); 2755 2756 /* Check if we were able to split something off */ 2757 if (p_mem_node) { 2758 hold_p_mem_node->base = p_mem_node->base + p_mem_node->length; 2759 2760 temp_word = (hold_p_mem_node->base) >> 16; 2761 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word); 2762 2763 return_resource(&(resources->p_mem_head), p_mem_node); 2764 } 2765 2766 p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000); 2767 2768 /* Check if we were able to split something off */ 2769 if (p_mem_node) { 2770 /* First use the temporary node to store 2771 * information for the board */ 2772 hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base; 2773 2774 /* If we used any, add it to the board's list */ 2775 if (hold_p_mem_node->length) { 2776 hold_p_mem_node->next = func->p_mem_head; 2777 func->p_mem_head = hold_p_mem_node; 2778 2779 temp_word = (p_mem_node->base - 1) >> 16; 2780 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); 2781 2782 return_resource(&(resources->p_mem_head), p_mem_node); 2783 } else { 2784 /* it doesn't need any PMem */ 2785 temp_word = 0x0000; 2786 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); 2787 2788 return_resource(&(resources->p_mem_head), p_mem_node); 2789 kfree(hold_p_mem_node); 2790 } 2791 } else { 2792 /* it used the most of the range */ 2793 hold_p_mem_node->next = func->p_mem_head; 2794 func->p_mem_head = hold_p_mem_node; 2795 } 2796 } else if (hold_p_mem_node) { 2797 /* it used the whole range */ 2798 hold_p_mem_node->next = func->p_mem_head; 2799 func->p_mem_head = hold_p_mem_node; 2800 } 2801 /* We should be configuring an IRQ and the bridge's base address 2802 * registers if it needs them. Although we have never seen such 2803 * a device */ 2804 2805 /* enable card */ 2806 command = 0x0157; /* = PCI_COMMAND_IO | 2807 * PCI_COMMAND_MEMORY | 2808 * PCI_COMMAND_MASTER | 2809 * PCI_COMMAND_INVALIDATE | 2810 * PCI_COMMAND_PARITY | 2811 * PCI_COMMAND_SERR */ 2812 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_COMMAND, command); 2813 2814 /* set Bridge Control Register */ 2815 command = 0x07; /* = PCI_BRIDGE_CTL_PARITY | 2816 * PCI_BRIDGE_CTL_SERR | 2817 * PCI_BRIDGE_CTL_NO_ISA */ 2818 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_BRIDGE_CONTROL, command); 2819 } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) { 2820 /* Standard device */ 2821 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code); 2822 2823 if (class_code == PCI_BASE_CLASS_DISPLAY) { 2824 /* Display (video) adapter (not supported) */ 2825 return DEVICE_TYPE_NOT_SUPPORTED; 2826 } 2827 /* Figure out IO and memory needs */ 2828 for (cloop = 0x10; cloop <= 0x24; cloop += 4) { 2829 temp_register = 0xFFFFFFFF; 2830 2831 dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop); 2832 rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register); 2833 2834 rc = pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp_register); 2835 dbg("CND: base = 0x%x\n", temp_register); 2836 2837 if (temp_register) { /* If this register is implemented */ 2838 if ((temp_register & 0x03L) == 0x01) { 2839 /* Map IO */ 2840 2841 /* set base = amount of IO space */ 2842 base = temp_register & 0xFFFFFFFC; 2843 base = ~base + 1; 2844 2845 dbg("CND: length = 0x%x\n", base); 2846 io_node = get_io_resource(&(resources->io_head), base); 2847 dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n", 2848 io_node->base, io_node->length, io_node->next); 2849 dbg("func (%p) io_head (%p)\n", func, func->io_head); 2850 2851 /* allocate the resource to the board */ 2852 if (io_node) { 2853 base = io_node->base; 2854 2855 io_node->next = func->io_head; 2856 func->io_head = io_node; 2857 } else 2858 return -ENOMEM; 2859 } else if ((temp_register & 0x0BL) == 0x08) { 2860 /* Map prefetchable memory */ 2861 base = temp_register & 0xFFFFFFF0; 2862 base = ~base + 1; 2863 2864 dbg("CND: length = 0x%x\n", base); 2865 p_mem_node = get_resource(&(resources->p_mem_head), base); 2866 2867 /* allocate the resource to the board */ 2868 if (p_mem_node) { 2869 base = p_mem_node->base; 2870 2871 p_mem_node->next = func->p_mem_head; 2872 func->p_mem_head = p_mem_node; 2873 } else 2874 return -ENOMEM; 2875 } else if ((temp_register & 0x0BL) == 0x00) { 2876 /* Map memory */ 2877 base = temp_register & 0xFFFFFFF0; 2878 base = ~base + 1; 2879 2880 dbg("CND: length = 0x%x\n", base); 2881 mem_node = get_resource(&(resources->mem_head), base); 2882 2883 /* allocate the resource to the board */ 2884 if (mem_node) { 2885 base = mem_node->base; 2886 2887 mem_node->next = func->mem_head; 2888 func->mem_head = mem_node; 2889 } else 2890 return -ENOMEM; 2891 } else if ((temp_register & 0x0BL) == 0x04) { 2892 /* Map memory */ 2893 base = temp_register & 0xFFFFFFF0; 2894 base = ~base + 1; 2895 2896 dbg("CND: length = 0x%x\n", base); 2897 mem_node = get_resource(&(resources->mem_head), base); 2898 2899 /* allocate the resource to the board */ 2900 if (mem_node) { 2901 base = mem_node->base; 2902 2903 mem_node->next = func->mem_head; 2904 func->mem_head = mem_node; 2905 } else 2906 return -ENOMEM; 2907 } else if ((temp_register & 0x0BL) == 0x06) { 2908 /* Those bits are reserved, we can't handle this */ 2909 return 1; 2910 } else { 2911 /* Requesting space below 1M */ 2912 return NOT_ENOUGH_RESOURCES; 2913 } 2914 2915 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base); 2916 2917 /* Check for 64-bit base */ 2918 if ((temp_register & 0x07L) == 0x04) { 2919 cloop += 4; 2920 2921 /* Upper 32 bits of address always zero 2922 * on today's systems */ 2923 /* FIXME this is probably not true on 2924 * Alpha and ia64??? */ 2925 base = 0; 2926 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base); 2927 } 2928 } 2929 } /* End of base register loop */ 2930 if (cpqhp_legacy_mode) { 2931 /* Figure out which interrupt pin this function uses */ 2932 rc = pci_bus_read_config_byte (pci_bus, devfn, 2933 PCI_INTERRUPT_PIN, &temp_byte); 2934 2935 /* If this function needs an interrupt and we are behind 2936 * a bridge and the pin is tied to something that's 2937 * alread mapped, set this one the same */ 2938 if (temp_byte && resources->irqs && 2939 (resources->irqs->valid_INT & 2940 (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) { 2941 /* We have to share with something already set up */ 2942 IRQ = resources->irqs->interrupt[(temp_byte + 2943 resources->irqs->barber_pole - 1) & 0x03]; 2944 } else { 2945 /* Program IRQ based on card type */ 2946 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code); 2947 2948 if (class_code == PCI_BASE_CLASS_STORAGE) 2949 IRQ = cpqhp_disk_irq; 2950 else 2951 IRQ = cpqhp_nic_irq; 2952 } 2953 2954 /* IRQ Line */ 2955 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ); 2956 } 2957 2958 if (!behind_bridge) { 2959 rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ); 2960 if (rc) 2961 return 1; 2962 } else { 2963 /* TBD - this code may also belong in the other clause 2964 * of this If statement */ 2965 resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ; 2966 resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03; 2967 } 2968 2969 /* Latency Timer */ 2970 temp_byte = 0x40; 2971 rc = pci_bus_write_config_byte(pci_bus, devfn, 2972 PCI_LATENCY_TIMER, temp_byte); 2973 2974 /* Cache Line size */ 2975 temp_byte = 0x08; 2976 rc = pci_bus_write_config_byte(pci_bus, devfn, 2977 PCI_CACHE_LINE_SIZE, temp_byte); 2978 2979 /* disable ROM base Address */ 2980 temp_dword = 0x00L; 2981 rc = pci_bus_write_config_word(pci_bus, devfn, 2982 PCI_ROM_ADDRESS, temp_dword); 2983 2984 /* enable card */ 2985 temp_word = 0x0157; /* = PCI_COMMAND_IO | 2986 * PCI_COMMAND_MEMORY | 2987 * PCI_COMMAND_MASTER | 2988 * PCI_COMMAND_INVALIDATE | 2989 * PCI_COMMAND_PARITY | 2990 * PCI_COMMAND_SERR */ 2991 rc = pci_bus_write_config_word (pci_bus, devfn, 2992 PCI_COMMAND, temp_word); 2993 } else { /* End of Not-A-Bridge else */ 2994 /* It's some strange type of PCI adapter (Cardbus?) */ 2995 return DEVICE_TYPE_NOT_SUPPORTED; 2996 } 2997 2998 func->configured = 1; 2999 3000 return 0; 3001 free_and_out: 3002 cpqhp_destroy_resource_list (&temp_resources); 3003 3004 return_resource(&(resources-> bus_head), hold_bus_node); 3005 return_resource(&(resources-> io_head), hold_IO_node); 3006 return_resource(&(resources-> mem_head), hold_mem_node); 3007 return_resource(&(resources-> p_mem_head), hold_p_mem_node); 3008 return rc; 3009 } 3010