1 /*
2  * Compaq Hot Plug Controller Driver
3  *
4  * Copyright (C) 1995,2001 Compaq Computer Corporation
5  * Copyright (C) 2001 Greg Kroah-Hartman ([email protected])
6  * Copyright (C) 2001 IBM Corp.
7  *
8  * All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or (at
13  * your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18  * NON INFRINGEMENT.  See the GNU General Public License for more
19  * details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24  *
25  * Send feedback to <[email protected]>
26  *
27  */
28 
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/slab.h>
33 #include <linux/workqueue.h>
34 #include <linux/interrupt.h>
35 #include <linux/delay.h>
36 #include <linux/wait.h>
37 #include <linux/smp_lock.h>
38 #include <linux/pci.h>
39 #include <linux/pci_hotplug.h>
40 #include <linux/kthread.h>
41 #include "cpqphp.h"
42 
43 static u32 configure_new_device(struct controller* ctrl, struct pci_func *func,
44 			u8 behind_bridge, struct resource_lists *resources);
45 static int configure_new_function(struct controller* ctrl, struct pci_func *func,
46 			u8 behind_bridge, struct resource_lists *resources);
47 static void interrupt_event_handler(struct controller *ctrl);
48 
49 
50 static struct task_struct *cpqhp_event_thread;
51 static unsigned long pushbutton_pending;	/* = 0 */
52 
53 /* delay is in jiffies to wait for */
54 static void long_delay(int delay)
55 {
56 	/*
57 	 * XXX(hch): if someone is bored please convert all callers
58 	 * to call msleep_interruptible directly.  They really want
59 	 * to specify timeouts in natural units and spend a lot of
60 	 * effort converting them to jiffies..
61 	 */
62 	msleep_interruptible(jiffies_to_msecs(delay));
63 }
64 
65 
66 /* FIXME: The following line needs to be somewhere else... */
67 #define WRONG_BUS_FREQUENCY 0x07
68 static u8 handle_switch_change(u8 change, struct controller * ctrl)
69 {
70 	int hp_slot;
71 	u8 rc = 0;
72 	u16 temp_word;
73 	struct pci_func *func;
74 	struct event_info *taskInfo;
75 
76 	if (!change)
77 		return 0;
78 
79 	/* Switch Change */
80 	dbg("cpqsbd:  Switch interrupt received.\n");
81 
82 	for (hp_slot = 0; hp_slot < 6; hp_slot++) {
83 		if (change & (0x1L << hp_slot)) {
84 			/*
85 			 * this one changed.
86 			 */
87 			func = cpqhp_slot_find(ctrl->bus,
88 				(hp_slot + ctrl->slot_device_offset), 0);
89 
90 			/* this is the structure that tells the worker thread
91 			 * what to do
92 			 */
93 			taskInfo = &(ctrl->event_queue[ctrl->next_event]);
94 			ctrl->next_event = (ctrl->next_event + 1) % 10;
95 			taskInfo->hp_slot = hp_slot;
96 
97 			rc++;
98 
99 			temp_word = ctrl->ctrl_int_comp >> 16;
100 			func->presence_save = (temp_word >> hp_slot) & 0x01;
101 			func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
102 
103 			if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
104 				/*
105 				 * Switch opened
106 				 */
107 
108 				func->switch_save = 0;
109 
110 				taskInfo->event_type = INT_SWITCH_OPEN;
111 			} else {
112 				/*
113 				 * Switch closed
114 				 */
115 
116 				func->switch_save = 0x10;
117 
118 				taskInfo->event_type = INT_SWITCH_CLOSE;
119 			}
120 		}
121 	}
122 
123 	return rc;
124 }
125 
126 /**
127  * cpqhp_find_slot - find the struct slot of given device
128  * @ctrl: scan lots of this controller
129  * @device: the device id to find
130  */
131 static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
132 {
133 	struct slot *slot = ctrl->slot;
134 
135 	while (slot && (slot->device != device))
136 		slot = slot->next;
137 
138 	return slot;
139 }
140 
141 
142 static u8 handle_presence_change(u16 change, struct controller * ctrl)
143 {
144 	int hp_slot;
145 	u8 rc = 0;
146 	u8 temp_byte;
147 	u16 temp_word;
148 	struct pci_func *func;
149 	struct event_info *taskInfo;
150 	struct slot *p_slot;
151 
152 	if (!change)
153 		return 0;
154 
155 	/*
156 	 * Presence Change
157 	 */
158 	dbg("cpqsbd:  Presence/Notify input change.\n");
159 	dbg("         Changed bits are 0x%4.4x\n", change );
160 
161 	for (hp_slot = 0; hp_slot < 6; hp_slot++) {
162 		if (change & (0x0101 << hp_slot)) {
163 			/*
164 			 * this one changed.
165 			 */
166 			func = cpqhp_slot_find(ctrl->bus,
167 				(hp_slot + ctrl->slot_device_offset), 0);
168 
169 			taskInfo = &(ctrl->event_queue[ctrl->next_event]);
170 			ctrl->next_event = (ctrl->next_event + 1) % 10;
171 			taskInfo->hp_slot = hp_slot;
172 
173 			rc++;
174 
175 			p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
176 			if (!p_slot)
177 				return 0;
178 
179 			/* If the switch closed, must be a button
180 			 * If not in button mode, nevermind
181 			 */
182 			if (func->switch_save && (ctrl->push_button == 1)) {
183 				temp_word = ctrl->ctrl_int_comp >> 16;
184 				temp_byte = (temp_word >> hp_slot) & 0x01;
185 				temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
186 
187 				if (temp_byte != func->presence_save) {
188 					/*
189 					 * button Pressed (doesn't do anything)
190 					 */
191 					dbg("hp_slot %d button pressed\n", hp_slot);
192 					taskInfo->event_type = INT_BUTTON_PRESS;
193 				} else {
194 					/*
195 					 * button Released - TAKE ACTION!!!!
196 					 */
197 					dbg("hp_slot %d button released\n", hp_slot);
198 					taskInfo->event_type = INT_BUTTON_RELEASE;
199 
200 					/* Cancel if we are still blinking */
201 					if ((p_slot->state == BLINKINGON_STATE)
202 					    || (p_slot->state == BLINKINGOFF_STATE)) {
203 						taskInfo->event_type = INT_BUTTON_CANCEL;
204 						dbg("hp_slot %d button cancel\n", hp_slot);
205 					} else if ((p_slot->state == POWERON_STATE)
206 						   || (p_slot->state == POWEROFF_STATE)) {
207 						/* info(msg_button_ignore, p_slot->number); */
208 						taskInfo->event_type = INT_BUTTON_IGNORE;
209 						dbg("hp_slot %d button ignore\n", hp_slot);
210 					}
211 				}
212 			} else {
213 				/* Switch is open, assume a presence change
214 				 * Save the presence state
215 				 */
216 				temp_word = ctrl->ctrl_int_comp >> 16;
217 				func->presence_save = (temp_word >> hp_slot) & 0x01;
218 				func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
219 
220 				if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
221 				    (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
222 					/* Present */
223 					taskInfo->event_type = INT_PRESENCE_ON;
224 				} else {
225 					/* Not Present */
226 					taskInfo->event_type = INT_PRESENCE_OFF;
227 				}
228 			}
229 		}
230 	}
231 
232 	return rc;
233 }
234 
235 
236 static u8 handle_power_fault(u8 change, struct controller * ctrl)
237 {
238 	int hp_slot;
239 	u8 rc = 0;
240 	struct pci_func *func;
241 	struct event_info *taskInfo;
242 
243 	if (!change)
244 		return 0;
245 
246 	/*
247 	 * power fault
248 	 */
249 
250 	info("power fault interrupt\n");
251 
252 	for (hp_slot = 0; hp_slot < 6; hp_slot++) {
253 		if (change & (0x01 << hp_slot)) {
254 			/*
255 			 * this one changed.
256 			 */
257 			func = cpqhp_slot_find(ctrl->bus,
258 				(hp_slot + ctrl->slot_device_offset), 0);
259 
260 			taskInfo = &(ctrl->event_queue[ctrl->next_event]);
261 			ctrl->next_event = (ctrl->next_event + 1) % 10;
262 			taskInfo->hp_slot = hp_slot;
263 
264 			rc++;
265 
266 			if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
267 				/*
268 				 * power fault Cleared
269 				 */
270 				func->status = 0x00;
271 
272 				taskInfo->event_type = INT_POWER_FAULT_CLEAR;
273 			} else {
274 				/*
275 				 * power fault
276 				 */
277 				taskInfo->event_type = INT_POWER_FAULT;
278 
279 				if (ctrl->rev < 4) {
280 					amber_LED_on (ctrl, hp_slot);
281 					green_LED_off (ctrl, hp_slot);
282 					set_SOGO (ctrl);
283 
284 					/* this is a fatal condition, we want
285 					 * to crash the machine to protect from
286 					 * data corruption. simulated_NMI
287 					 * shouldn't ever return */
288 					/* FIXME
289 					simulated_NMI(hp_slot, ctrl); */
290 
291 					/* The following code causes a software
292 					 * crash just in case simulated_NMI did
293 					 * return */
294 					/*FIXME
295 					panic(msg_power_fault); */
296 				} else {
297 					/* set power fault status for this board */
298 					func->status = 0xFF;
299 					info("power fault bit %x set\n", hp_slot);
300 				}
301 			}
302 		}
303 	}
304 
305 	return rc;
306 }
307 
308 
309 /**
310  * sort_by_size - sort nodes on the list by their length, smallest first.
311  * @head: list to sort
312  */
313 static int sort_by_size(struct pci_resource **head)
314 {
315 	struct pci_resource *current_res;
316 	struct pci_resource *next_res;
317 	int out_of_order = 1;
318 
319 	if (!(*head))
320 		return 1;
321 
322 	if (!((*head)->next))
323 		return 0;
324 
325 	while (out_of_order) {
326 		out_of_order = 0;
327 
328 		/* Special case for swapping list head */
329 		if (((*head)->next) &&
330 		    ((*head)->length > (*head)->next->length)) {
331 			out_of_order++;
332 			current_res = *head;
333 			*head = (*head)->next;
334 			current_res->next = (*head)->next;
335 			(*head)->next = current_res;
336 		}
337 
338 		current_res = *head;
339 
340 		while (current_res->next && current_res->next->next) {
341 			if (current_res->next->length > current_res->next->next->length) {
342 				out_of_order++;
343 				next_res = current_res->next;
344 				current_res->next = current_res->next->next;
345 				current_res = current_res->next;
346 				next_res->next = current_res->next;
347 				current_res->next = next_res;
348 			} else
349 				current_res = current_res->next;
350 		}
351 	}  /* End of out_of_order loop */
352 
353 	return 0;
354 }
355 
356 
357 /**
358  * sort_by_max_size - sort nodes on the list by their length, largest first.
359  * @head: list to sort
360  */
361 static int sort_by_max_size(struct pci_resource **head)
362 {
363 	struct pci_resource *current_res;
364 	struct pci_resource *next_res;
365 	int out_of_order = 1;
366 
367 	if (!(*head))
368 		return 1;
369 
370 	if (!((*head)->next))
371 		return 0;
372 
373 	while (out_of_order) {
374 		out_of_order = 0;
375 
376 		/* Special case for swapping list head */
377 		if (((*head)->next) &&
378 		    ((*head)->length < (*head)->next->length)) {
379 			out_of_order++;
380 			current_res = *head;
381 			*head = (*head)->next;
382 			current_res->next = (*head)->next;
383 			(*head)->next = current_res;
384 		}
385 
386 		current_res = *head;
387 
388 		while (current_res->next && current_res->next->next) {
389 			if (current_res->next->length < current_res->next->next->length) {
390 				out_of_order++;
391 				next_res = current_res->next;
392 				current_res->next = current_res->next->next;
393 				current_res = current_res->next;
394 				next_res->next = current_res->next;
395 				current_res->next = next_res;
396 			} else
397 				current_res = current_res->next;
398 		}
399 	}  /* End of out_of_order loop */
400 
401 	return 0;
402 }
403 
404 
405 /**
406  * do_pre_bridge_resource_split - find node of resources that are unused
407  * @head: new list head
408  * @orig_head: original list head
409  * @alignment: max node size (?)
410  */
411 static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
412 				struct pci_resource **orig_head, u32 alignment)
413 {
414 	struct pci_resource *prevnode = NULL;
415 	struct pci_resource *node;
416 	struct pci_resource *split_node;
417 	u32 rc;
418 	u32 temp_dword;
419 	dbg("do_pre_bridge_resource_split\n");
420 
421 	if (!(*head) || !(*orig_head))
422 		return NULL;
423 
424 	rc = cpqhp_resource_sort_and_combine(head);
425 
426 	if (rc)
427 		return NULL;
428 
429 	if ((*head)->base != (*orig_head)->base)
430 		return NULL;
431 
432 	if ((*head)->length == (*orig_head)->length)
433 		return NULL;
434 
435 
436 	/* If we got here, there the bridge requires some of the resource, but
437 	 * we may be able to split some off of the front
438 	 */
439 
440 	node = *head;
441 
442 	if (node->length & (alignment -1)) {
443 		/* this one isn't an aligned length, so we'll make a new entry
444 		 * and split it up.
445 		 */
446 		split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
447 
448 		if (!split_node)
449 			return NULL;
450 
451 		temp_dword = (node->length | (alignment-1)) + 1 - alignment;
452 
453 		split_node->base = node->base;
454 		split_node->length = temp_dword;
455 
456 		node->length -= temp_dword;
457 		node->base += split_node->length;
458 
459 		/* Put it in the list */
460 		*head = split_node;
461 		split_node->next = node;
462 	}
463 
464 	if (node->length < alignment)
465 		return NULL;
466 
467 	/* Now unlink it */
468 	if (*head == node) {
469 		*head = node->next;
470 	} else {
471 		prevnode = *head;
472 		while (prevnode->next != node)
473 			prevnode = prevnode->next;
474 
475 		prevnode->next = node->next;
476 	}
477 	node->next = NULL;
478 
479 	return node;
480 }
481 
482 
483 /**
484  * do_bridge_resource_split - find one node of resources that aren't in use
485  * @head: list head
486  * @alignment: max node size (?)
487  */
488 static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
489 {
490 	struct pci_resource *prevnode = NULL;
491 	struct pci_resource *node;
492 	u32 rc;
493 	u32 temp_dword;
494 
495 	rc = cpqhp_resource_sort_and_combine(head);
496 
497 	if (rc)
498 		return NULL;
499 
500 	node = *head;
501 
502 	while (node->next) {
503 		prevnode = node;
504 		node = node->next;
505 		kfree(prevnode);
506 	}
507 
508 	if (node->length < alignment)
509 		goto error;
510 
511 	if (node->base & (alignment - 1)) {
512 		/* Short circuit if adjusted size is too small */
513 		temp_dword = (node->base | (alignment-1)) + 1;
514 		if ((node->length - (temp_dword - node->base)) < alignment)
515 			goto error;
516 
517 		node->length -= (temp_dword - node->base);
518 		node->base = temp_dword;
519 	}
520 
521 	if (node->length & (alignment - 1))
522 		/* There's stuff in use after this node */
523 		goto error;
524 
525 	return node;
526 error:
527 	kfree(node);
528 	return NULL;
529 }
530 
531 
532 /**
533  * get_io_resource - find first node of given size not in ISA aliasing window.
534  * @head: list to search
535  * @size: size of node to find, must be a power of two.
536  *
537  * Description: This function sorts the resource list by size and then returns
538  * returns the first node of "size" length that is not in the ISA aliasing
539  * window.  If it finds a node larger than "size" it will split it up.
540  */
541 static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
542 {
543 	struct pci_resource *prevnode;
544 	struct pci_resource *node;
545 	struct pci_resource *split_node;
546 	u32 temp_dword;
547 
548 	if (!(*head))
549 		return NULL;
550 
551 	if (cpqhp_resource_sort_and_combine(head))
552 		return NULL;
553 
554 	if (sort_by_size(head))
555 		return NULL;
556 
557 	for (node = *head; node; node = node->next) {
558 		if (node->length < size)
559 			continue;
560 
561 		if (node->base & (size - 1)) {
562 			/* this one isn't base aligned properly
563 			 * so we'll make a new entry and split it up
564 			 */
565 			temp_dword = (node->base | (size-1)) + 1;
566 
567 			/* Short circuit if adjusted size is too small */
568 			if ((node->length - (temp_dword - node->base)) < size)
569 				continue;
570 
571 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
572 
573 			if (!split_node)
574 				return NULL;
575 
576 			split_node->base = node->base;
577 			split_node->length = temp_dword - node->base;
578 			node->base = temp_dword;
579 			node->length -= split_node->length;
580 
581 			/* Put it in the list */
582 			split_node->next = node->next;
583 			node->next = split_node;
584 		} /* End of non-aligned base */
585 
586 		/* Don't need to check if too small since we already did */
587 		if (node->length > size) {
588 			/* this one is longer than we need
589 			 * so we'll make a new entry and split it up
590 			 */
591 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
592 
593 			if (!split_node)
594 				return NULL;
595 
596 			split_node->base = node->base + size;
597 			split_node->length = node->length - size;
598 			node->length = size;
599 
600 			/* Put it in the list */
601 			split_node->next = node->next;
602 			node->next = split_node;
603 		}  /* End of too big on top end */
604 
605 		/* For IO make sure it's not in the ISA aliasing space */
606 		if (node->base & 0x300L)
607 			continue;
608 
609 		/* If we got here, then it is the right size
610 		 * Now take it out of the list and break
611 		 */
612 		if (*head == node) {
613 			*head = node->next;
614 		} else {
615 			prevnode = *head;
616 			while (prevnode->next != node)
617 				prevnode = prevnode->next;
618 
619 			prevnode->next = node->next;
620 		}
621 		node->next = NULL;
622 		break;
623 	}
624 
625 	return node;
626 }
627 
628 
629 /**
630  * get_max_resource - get largest node which has at least the given size.
631  * @head: the list to search the node in
632  * @size: the minimum size of the node to find
633  *
634  * Description: Gets the largest node that is at least "size" big from the
635  * list pointed to by head.  It aligns the node on top and bottom
636  * to "size" alignment before returning it.
637  */
638 static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
639 {
640 	struct pci_resource *max;
641 	struct pci_resource *temp;
642 	struct pci_resource *split_node;
643 	u32 temp_dword;
644 
645 	if (cpqhp_resource_sort_and_combine(head))
646 		return NULL;
647 
648 	if (sort_by_max_size(head))
649 		return NULL;
650 
651 	for (max = *head; max; max = max->next) {
652 		/* If not big enough we could probably just bail,
653 		 * instead we'll continue to the next.
654 		 */
655 		if (max->length < size)
656 			continue;
657 
658 		if (max->base & (size - 1)) {
659 			/* this one isn't base aligned properly
660 			 * so we'll make a new entry and split it up
661 			 */
662 			temp_dword = (max->base | (size-1)) + 1;
663 
664 			/* Short circuit if adjusted size is too small */
665 			if ((max->length - (temp_dword - max->base)) < size)
666 				continue;
667 
668 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
669 
670 			if (!split_node)
671 				return NULL;
672 
673 			split_node->base = max->base;
674 			split_node->length = temp_dword - max->base;
675 			max->base = temp_dword;
676 			max->length -= split_node->length;
677 
678 			split_node->next = max->next;
679 			max->next = split_node;
680 		}
681 
682 		if ((max->base + max->length) & (size - 1)) {
683 			/* this one isn't end aligned properly at the top
684 			 * so we'll make a new entry and split it up
685 			 */
686 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
687 
688 			if (!split_node)
689 				return NULL;
690 			temp_dword = ((max->base + max->length) & ~(size - 1));
691 			split_node->base = temp_dword;
692 			split_node->length = max->length + max->base
693 					     - split_node->base;
694 			max->length -= split_node->length;
695 
696 			split_node->next = max->next;
697 			max->next = split_node;
698 		}
699 
700 		/* Make sure it didn't shrink too much when we aligned it */
701 		if (max->length < size)
702 			continue;
703 
704 		/* Now take it out of the list */
705 		temp = *head;
706 		if (temp == max) {
707 			*head = max->next;
708 		} else {
709 			while (temp && temp->next != max) {
710 				temp = temp->next;
711 			}
712 
713 			temp->next = max->next;
714 		}
715 
716 		max->next = NULL;
717 		break;
718 	}
719 
720 	return max;
721 }
722 
723 
724 /**
725  * get_resource - find resource of given size and split up larger ones.
726  * @head: the list to search for resources
727  * @size: the size limit to use
728  *
729  * Description: This function sorts the resource list by size and then
730  * returns the first node of "size" length.  If it finds a node
731  * larger than "size" it will split it up.
732  *
733  * size must be a power of two.
734  */
735 static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
736 {
737 	struct pci_resource *prevnode;
738 	struct pci_resource *node;
739 	struct pci_resource *split_node;
740 	u32 temp_dword;
741 
742 	if (cpqhp_resource_sort_and_combine(head))
743 		return NULL;
744 
745 	if (sort_by_size(head))
746 		return NULL;
747 
748 	for (node = *head; node; node = node->next) {
749 		dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
750 		    __func__, size, node, node->base, node->length);
751 		if (node->length < size)
752 			continue;
753 
754 		if (node->base & (size - 1)) {
755 			dbg("%s: not aligned\n", __func__);
756 			/* this one isn't base aligned properly
757 			 * so we'll make a new entry and split it up
758 			 */
759 			temp_dword = (node->base | (size-1)) + 1;
760 
761 			/* Short circuit if adjusted size is too small */
762 			if ((node->length - (temp_dword - node->base)) < size)
763 				continue;
764 
765 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
766 
767 			if (!split_node)
768 				return NULL;
769 
770 			split_node->base = node->base;
771 			split_node->length = temp_dword - node->base;
772 			node->base = temp_dword;
773 			node->length -= split_node->length;
774 
775 			split_node->next = node->next;
776 			node->next = split_node;
777 		} /* End of non-aligned base */
778 
779 		/* Don't need to check if too small since we already did */
780 		if (node->length > size) {
781 			dbg("%s: too big\n", __func__);
782 			/* this one is longer than we need
783 			 * so we'll make a new entry and split it up
784 			 */
785 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
786 
787 			if (!split_node)
788 				return NULL;
789 
790 			split_node->base = node->base + size;
791 			split_node->length = node->length - size;
792 			node->length = size;
793 
794 			/* Put it in the list */
795 			split_node->next = node->next;
796 			node->next = split_node;
797 		}  /* End of too big on top end */
798 
799 		dbg("%s: got one!!!\n", __func__);
800 		/* If we got here, then it is the right size
801 		 * Now take it out of the list */
802 		if (*head == node) {
803 			*head = node->next;
804 		} else {
805 			prevnode = *head;
806 			while (prevnode->next != node)
807 				prevnode = prevnode->next;
808 
809 			prevnode->next = node->next;
810 		}
811 		node->next = NULL;
812 		break;
813 	}
814 	return node;
815 }
816 
817 
818 /**
819  * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
820  * @head: the list to sort and clean up
821  *
822  * Description: Sorts all of the nodes in the list in ascending order by
823  * their base addresses.  Also does garbage collection by
824  * combining adjacent nodes.
825  *
826  * Returns %0 if success.
827  */
828 int cpqhp_resource_sort_and_combine(struct pci_resource **head)
829 {
830 	struct pci_resource *node1;
831 	struct pci_resource *node2;
832 	int out_of_order = 1;
833 
834 	dbg("%s: head = %p, *head = %p\n", __func__, head, *head);
835 
836 	if (!(*head))
837 		return 1;
838 
839 	dbg("*head->next = %p\n",(*head)->next);
840 
841 	if (!(*head)->next)
842 		return 0;	/* only one item on the list, already sorted! */
843 
844 	dbg("*head->base = 0x%x\n",(*head)->base);
845 	dbg("*head->next->base = 0x%x\n",(*head)->next->base);
846 	while (out_of_order) {
847 		out_of_order = 0;
848 
849 		/* Special case for swapping list head */
850 		if (((*head)->next) &&
851 		    ((*head)->base > (*head)->next->base)) {
852 			node1 = *head;
853 			(*head) = (*head)->next;
854 			node1->next = (*head)->next;
855 			(*head)->next = node1;
856 			out_of_order++;
857 		}
858 
859 		node1 = (*head);
860 
861 		while (node1->next && node1->next->next) {
862 			if (node1->next->base > node1->next->next->base) {
863 				out_of_order++;
864 				node2 = node1->next;
865 				node1->next = node1->next->next;
866 				node1 = node1->next;
867 				node2->next = node1->next;
868 				node1->next = node2;
869 			} else
870 				node1 = node1->next;
871 		}
872 	}  /* End of out_of_order loop */
873 
874 	node1 = *head;
875 
876 	while (node1 && node1->next) {
877 		if ((node1->base + node1->length) == node1->next->base) {
878 			/* Combine */
879 			dbg("8..\n");
880 			node1->length += node1->next->length;
881 			node2 = node1->next;
882 			node1->next = node1->next->next;
883 			kfree(node2);
884 		} else
885 			node1 = node1->next;
886 	}
887 
888 	return 0;
889 }
890 
891 
892 irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
893 {
894 	struct controller *ctrl = data;
895 	u8 schedule_flag = 0;
896 	u8 reset;
897 	u16 misc;
898 	u32 Diff;
899 	u32 temp_dword;
900 
901 
902 	misc = readw(ctrl->hpc_reg + MISC);
903 	/*
904 	 * Check to see if it was our interrupt
905 	 */
906 	if (!(misc & 0x000C)) {
907 		return IRQ_NONE;
908 	}
909 
910 	if (misc & 0x0004) {
911 		/*
912 		 * Serial Output interrupt Pending
913 		 */
914 
915 		/* Clear the interrupt */
916 		misc |= 0x0004;
917 		writew(misc, ctrl->hpc_reg + MISC);
918 
919 		/* Read to clear posted writes */
920 		misc = readw(ctrl->hpc_reg + MISC);
921 
922 		dbg ("%s - waking up\n", __func__);
923 		wake_up_interruptible(&ctrl->queue);
924 	}
925 
926 	if (misc & 0x0008) {
927 		/* General-interrupt-input interrupt Pending */
928 		Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
929 
930 		ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
931 
932 		/* Clear the interrupt */
933 		writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
934 
935 		/* Read it back to clear any posted writes */
936 		temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
937 
938 		if (!Diff)
939 			/* Clear all interrupts */
940 			writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
941 
942 		schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
943 		schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
944 		schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
945 	}
946 
947 	reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
948 	if (reset & 0x40) {
949 		/* Bus reset has completed */
950 		reset &= 0xCF;
951 		writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
952 		reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
953 		wake_up_interruptible(&ctrl->queue);
954 	}
955 
956 	if (schedule_flag) {
957 		wake_up_process(cpqhp_event_thread);
958 		dbg("Waking even thread");
959 	}
960 	return IRQ_HANDLED;
961 }
962 
963 
964 /**
965  * cpqhp_slot_create - Creates a node and adds it to the proper bus.
966  * @busnumber: bus where new node is to be located
967  *
968  * Returns pointer to the new node or %NULL if unsuccessful.
969  */
970 struct pci_func *cpqhp_slot_create(u8 busnumber)
971 {
972 	struct pci_func *new_slot;
973 	struct pci_func *next;
974 
975 	new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL);
976 	if (new_slot == NULL)
977 		return new_slot;
978 
979 	new_slot->next = NULL;
980 	new_slot->configured = 1;
981 
982 	if (cpqhp_slot_list[busnumber] == NULL) {
983 		cpqhp_slot_list[busnumber] = new_slot;
984 	} else {
985 		next = cpqhp_slot_list[busnumber];
986 		while (next->next != NULL)
987 			next = next->next;
988 		next->next = new_slot;
989 	}
990 	return new_slot;
991 }
992 
993 
994 /**
995  * slot_remove - Removes a node from the linked list of slots.
996  * @old_slot: slot to remove
997  *
998  * Returns %0 if successful, !0 otherwise.
999  */
1000 static int slot_remove(struct pci_func * old_slot)
1001 {
1002 	struct pci_func *next;
1003 
1004 	if (old_slot == NULL)
1005 		return 1;
1006 
1007 	next = cpqhp_slot_list[old_slot->bus];
1008 	if (next == NULL)
1009 		return 1;
1010 
1011 	if (next == old_slot) {
1012 		cpqhp_slot_list[old_slot->bus] = old_slot->next;
1013 		cpqhp_destroy_board_resources(old_slot);
1014 		kfree(old_slot);
1015 		return 0;
1016 	}
1017 
1018 	while ((next->next != old_slot) && (next->next != NULL))
1019 		next = next->next;
1020 
1021 	if (next->next == old_slot) {
1022 		next->next = old_slot->next;
1023 		cpqhp_destroy_board_resources(old_slot);
1024 		kfree(old_slot);
1025 		return 0;
1026 	} else
1027 		return 2;
1028 }
1029 
1030 
1031 /**
1032  * bridge_slot_remove - Removes a node from the linked list of slots.
1033  * @bridge: bridge to remove
1034  *
1035  * Returns %0 if successful, !0 otherwise.
1036  */
1037 static int bridge_slot_remove(struct pci_func *bridge)
1038 {
1039 	u8 subordinateBus, secondaryBus;
1040 	u8 tempBus;
1041 	struct pci_func *next;
1042 
1043 	secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1044 	subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1045 
1046 	for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1047 		next = cpqhp_slot_list[tempBus];
1048 
1049 		while (!slot_remove(next))
1050 			next = cpqhp_slot_list[tempBus];
1051 	}
1052 
1053 	next = cpqhp_slot_list[bridge->bus];
1054 
1055 	if (next == NULL)
1056 		return 1;
1057 
1058 	if (next == bridge) {
1059 		cpqhp_slot_list[bridge->bus] = bridge->next;
1060 		goto out;
1061 	}
1062 
1063 	while ((next->next != bridge) && (next->next != NULL))
1064 		next = next->next;
1065 
1066 	if (next->next != bridge)
1067 		return 2;
1068 	next->next = bridge->next;
1069 out:
1070 	kfree(bridge);
1071 	return 0;
1072 }
1073 
1074 
1075 /**
1076  * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1077  * @bus: bus to find
1078  * @device: device to find
1079  * @index: is %0 for first function found, %1 for the second...
1080  *
1081  * Returns pointer to the node if successful, %NULL otherwise.
1082  */
1083 struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1084 {
1085 	int found = -1;
1086 	struct pci_func *func;
1087 
1088 	func = cpqhp_slot_list[bus];
1089 
1090 	if ((func == NULL) || ((func->device == device) && (index == 0)))
1091 		return func;
1092 
1093 	if (func->device == device)
1094 		found++;
1095 
1096 	while (func->next != NULL) {
1097 		func = func->next;
1098 
1099 		if (func->device == device)
1100 			found++;
1101 
1102 		if (found == index)
1103 			return func;
1104 	}
1105 
1106 	return NULL;
1107 }
1108 
1109 
1110 /* DJZ: I don't think is_bridge will work as is.
1111  * FIXME */
1112 static int is_bridge(struct pci_func * func)
1113 {
1114 	/* Check the header type */
1115 	if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1116 		return 1;
1117 	else
1118 		return 0;
1119 }
1120 
1121 
1122 /**
1123  * set_controller_speed - set the frequency and/or mode of a specific controller segment.
1124  * @ctrl: controller to change frequency/mode for.
1125  * @adapter_speed: the speed of the adapter we want to match.
1126  * @hp_slot: the slot number where the adapter is installed.
1127  *
1128  * Returns %0 if we successfully change frequency and/or mode to match the
1129  * adapter speed.
1130  */
1131 static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1132 {
1133 	struct slot *slot;
1134 	u8 reg;
1135 	u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1136 	u16 reg16;
1137 	u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1138 
1139 	if (ctrl->speed == adapter_speed)
1140 		return 0;
1141 
1142 	/* We don't allow freq/mode changes if we find another adapter running
1143 	 * in another slot on this controller
1144 	 */
1145 	for(slot = ctrl->slot; slot; slot = slot->next) {
1146 		if (slot->device == (hp_slot + ctrl->slot_device_offset))
1147 			continue;
1148 		if (!slot->hotplug_slot || !slot->hotplug_slot->info)
1149 			continue;
1150 		if (slot->hotplug_slot->info->adapter_status == 0)
1151 			continue;
1152 		/* If another adapter is running on the same segment but at a
1153 		 * lower speed/mode, we allow the new adapter to function at
1154 		 * this rate if supported
1155 		 */
1156 		if (ctrl->speed < adapter_speed)
1157 			return 0;
1158 
1159 		return 1;
1160 	}
1161 
1162 	/* If the controller doesn't support freq/mode changes and the
1163 	 * controller is running at a higher mode, we bail
1164 	 */
1165 	if ((ctrl->speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1166 		return 1;
1167 
1168 	/* But we allow the adapter to run at a lower rate if possible */
1169 	if ((ctrl->speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1170 		return 0;
1171 
1172 	/* We try to set the max speed supported by both the adapter and
1173 	 * controller
1174 	 */
1175 	if (ctrl->speed_capability < adapter_speed) {
1176 		if (ctrl->speed == ctrl->speed_capability)
1177 			return 0;
1178 		adapter_speed = ctrl->speed_capability;
1179 	}
1180 
1181 	writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1182 	writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1183 
1184 	set_SOGO(ctrl);
1185 	wait_for_ctrl_irq(ctrl);
1186 
1187 	if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1188 		reg = 0xF5;
1189 	else
1190 		reg = 0xF4;
1191 	pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1192 
1193 	reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1194 	reg16 &= ~0x000F;
1195 	switch(adapter_speed) {
1196 		case(PCI_SPEED_133MHz_PCIX):
1197 			reg = 0x75;
1198 			reg16 |= 0xB;
1199 			break;
1200 		case(PCI_SPEED_100MHz_PCIX):
1201 			reg = 0x74;
1202 			reg16 |= 0xA;
1203 			break;
1204 		case(PCI_SPEED_66MHz_PCIX):
1205 			reg = 0x73;
1206 			reg16 |= 0x9;
1207 			break;
1208 		case(PCI_SPEED_66MHz):
1209 			reg = 0x73;
1210 			reg16 |= 0x1;
1211 			break;
1212 		default: /* 33MHz PCI 2.2 */
1213 			reg = 0x71;
1214 			break;
1215 
1216 	}
1217 	reg16 |= 0xB << 12;
1218 	writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1219 
1220 	mdelay(5);
1221 
1222 	/* Reenable interrupts */
1223 	writel(0, ctrl->hpc_reg + INT_MASK);
1224 
1225 	pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1226 
1227 	/* Restart state machine */
1228 	reg = ~0xF;
1229 	pci_read_config_byte(ctrl->pci_dev, 0x43, &reg);
1230 	pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1231 
1232 	/* Only if mode change...*/
1233 	if (((ctrl->speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1234 		((ctrl->speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz)))
1235 			set_SOGO(ctrl);
1236 
1237 	wait_for_ctrl_irq(ctrl);
1238 	mdelay(1100);
1239 
1240 	/* Restore LED/Slot state */
1241 	writel(leds, ctrl->hpc_reg + LED_CONTROL);
1242 	writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1243 
1244 	set_SOGO(ctrl);
1245 	wait_for_ctrl_irq(ctrl);
1246 
1247 	ctrl->speed = adapter_speed;
1248 	slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1249 
1250 	info("Successfully changed frequency/mode for adapter in slot %d\n",
1251 			slot->number);
1252 	return 0;
1253 }
1254 
1255 /* the following routines constitute the bulk of the
1256  * hotplug controller logic
1257  */
1258 
1259 
1260 /**
1261  * board_replaced - Called after a board has been replaced in the system.
1262  * @func: PCI device/function information
1263  * @ctrl: hotplug controller
1264  *
1265  * This is only used if we don't have resources for hot add.
1266  * Turns power on for the board.
1267  * Checks to see if board is the same.
1268  * If board is same, reconfigures it.
1269  * If board isn't same, turns it back off.
1270  */
1271 static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1272 {
1273 	u8 hp_slot;
1274 	u8 temp_byte;
1275 	u8 adapter_speed;
1276 	u32 rc = 0;
1277 
1278 	hp_slot = func->device - ctrl->slot_device_offset;
1279 
1280 	/*
1281 	 * The switch is open.
1282 	 */
1283 	if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot))
1284 		rc = INTERLOCK_OPEN;
1285 	/*
1286 	 * The board is already on
1287 	 */
1288 	else if (is_slot_enabled (ctrl, hp_slot))
1289 		rc = CARD_FUNCTIONING;
1290 	else {
1291 		mutex_lock(&ctrl->crit_sect);
1292 
1293 		/* turn on board without attaching to the bus */
1294 		enable_slot_power (ctrl, hp_slot);
1295 
1296 		set_SOGO(ctrl);
1297 
1298 		/* Wait for SOBS to be unset */
1299 		wait_for_ctrl_irq (ctrl);
1300 
1301 		/* Change bits in slot power register to force another shift out
1302 		 * NOTE: this is to work around the timer bug */
1303 		temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1304 		writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1305 		writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1306 
1307 		set_SOGO(ctrl);
1308 
1309 		/* Wait for SOBS to be unset */
1310 		wait_for_ctrl_irq (ctrl);
1311 
1312 		adapter_speed = get_adapter_speed(ctrl, hp_slot);
1313 		if (ctrl->speed != adapter_speed)
1314 			if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1315 				rc = WRONG_BUS_FREQUENCY;
1316 
1317 		/* turn off board without attaching to the bus */
1318 		disable_slot_power (ctrl, hp_slot);
1319 
1320 		set_SOGO(ctrl);
1321 
1322 		/* Wait for SOBS to be unset */
1323 		wait_for_ctrl_irq (ctrl);
1324 
1325 		mutex_unlock(&ctrl->crit_sect);
1326 
1327 		if (rc)
1328 			return rc;
1329 
1330 		mutex_lock(&ctrl->crit_sect);
1331 
1332 		slot_enable (ctrl, hp_slot);
1333 		green_LED_blink (ctrl, hp_slot);
1334 
1335 		amber_LED_off (ctrl, hp_slot);
1336 
1337 		set_SOGO(ctrl);
1338 
1339 		/* Wait for SOBS to be unset */
1340 		wait_for_ctrl_irq (ctrl);
1341 
1342 		mutex_unlock(&ctrl->crit_sect);
1343 
1344 		/* Wait for ~1 second because of hot plug spec */
1345 		long_delay(1*HZ);
1346 
1347 		/* Check for a power fault */
1348 		if (func->status == 0xFF) {
1349 			/* power fault occurred, but it was benign */
1350 			rc = POWER_FAILURE;
1351 			func->status = 0;
1352 		} else
1353 			rc = cpqhp_valid_replace(ctrl, func);
1354 
1355 		if (!rc) {
1356 			/* It must be the same board */
1357 
1358 			rc = cpqhp_configure_board(ctrl, func);
1359 
1360 			/* If configuration fails, turn it off
1361 			 * Get slot won't work for devices behind
1362 			 * bridges, but in this case it will always be
1363 			 * called for the "base" bus/dev/func of an
1364 			 * adapter.
1365 			 */
1366 
1367 			mutex_lock(&ctrl->crit_sect);
1368 
1369 			amber_LED_on (ctrl, hp_slot);
1370 			green_LED_off (ctrl, hp_slot);
1371 			slot_disable (ctrl, hp_slot);
1372 
1373 			set_SOGO(ctrl);
1374 
1375 			/* Wait for SOBS to be unset */
1376 			wait_for_ctrl_irq (ctrl);
1377 
1378 			mutex_unlock(&ctrl->crit_sect);
1379 
1380 			if (rc)
1381 				return rc;
1382 			else
1383 				return 1;
1384 
1385 		} else {
1386 			/* Something is wrong
1387 
1388 			 * Get slot won't work for devices behind bridges, but
1389 			 * in this case it will always be called for the "base"
1390 			 * bus/dev/func of an adapter.
1391 			 */
1392 
1393 			mutex_lock(&ctrl->crit_sect);
1394 
1395 			amber_LED_on (ctrl, hp_slot);
1396 			green_LED_off (ctrl, hp_slot);
1397 			slot_disable (ctrl, hp_slot);
1398 
1399 			set_SOGO(ctrl);
1400 
1401 			/* Wait for SOBS to be unset */
1402 			wait_for_ctrl_irq (ctrl);
1403 
1404 			mutex_unlock(&ctrl->crit_sect);
1405 		}
1406 
1407 	}
1408 	return rc;
1409 
1410 }
1411 
1412 
1413 /**
1414  * board_added - Called after a board has been added to the system.
1415  * @func: PCI device/function info
1416  * @ctrl: hotplug controller
1417  *
1418  * Turns power on for the board.
1419  * Configures board.
1420  */
1421 static u32 board_added(struct pci_func *func, struct controller *ctrl)
1422 {
1423 	u8 hp_slot;
1424 	u8 temp_byte;
1425 	u8 adapter_speed;
1426 	int index;
1427 	u32 temp_register = 0xFFFFFFFF;
1428 	u32 rc = 0;
1429 	struct pci_func *new_slot = NULL;
1430 	struct slot *p_slot;
1431 	struct resource_lists res_lists;
1432 
1433 	hp_slot = func->device - ctrl->slot_device_offset;
1434 	dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1435 	    __func__, func->device, ctrl->slot_device_offset, hp_slot);
1436 
1437 	mutex_lock(&ctrl->crit_sect);
1438 
1439 	/* turn on board without attaching to the bus */
1440 	enable_slot_power(ctrl, hp_slot);
1441 
1442 	set_SOGO(ctrl);
1443 
1444 	/* Wait for SOBS to be unset */
1445 	wait_for_ctrl_irq (ctrl);
1446 
1447 	/* Change bits in slot power register to force another shift out
1448 	 * NOTE: this is to work around the timer bug
1449 	 */
1450 	temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1451 	writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1452 	writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1453 
1454 	set_SOGO(ctrl);
1455 
1456 	/* Wait for SOBS to be unset */
1457 	wait_for_ctrl_irq (ctrl);
1458 
1459 	adapter_speed = get_adapter_speed(ctrl, hp_slot);
1460 	if (ctrl->speed != adapter_speed)
1461 		if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1462 			rc = WRONG_BUS_FREQUENCY;
1463 
1464 	/* turn off board without attaching to the bus */
1465 	disable_slot_power (ctrl, hp_slot);
1466 
1467 	set_SOGO(ctrl);
1468 
1469 	/* Wait for SOBS to be unset */
1470 	wait_for_ctrl_irq(ctrl);
1471 
1472 	mutex_unlock(&ctrl->crit_sect);
1473 
1474 	if (rc)
1475 		return rc;
1476 
1477 	p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1478 
1479 	/* turn on board and blink green LED */
1480 
1481 	dbg("%s: before down\n", __func__);
1482 	mutex_lock(&ctrl->crit_sect);
1483 	dbg("%s: after down\n", __func__);
1484 
1485 	dbg("%s: before slot_enable\n", __func__);
1486 	slot_enable (ctrl, hp_slot);
1487 
1488 	dbg("%s: before green_LED_blink\n", __func__);
1489 	green_LED_blink (ctrl, hp_slot);
1490 
1491 	dbg("%s: before amber_LED_blink\n", __func__);
1492 	amber_LED_off (ctrl, hp_slot);
1493 
1494 	dbg("%s: before set_SOGO\n", __func__);
1495 	set_SOGO(ctrl);
1496 
1497 	/* Wait for SOBS to be unset */
1498 	dbg("%s: before wait_for_ctrl_irq\n", __func__);
1499 	wait_for_ctrl_irq (ctrl);
1500 	dbg("%s: after wait_for_ctrl_irq\n", __func__);
1501 
1502 	dbg("%s: before up\n", __func__);
1503 	mutex_unlock(&ctrl->crit_sect);
1504 	dbg("%s: after up\n", __func__);
1505 
1506 	/* Wait for ~1 second because of hot plug spec */
1507 	dbg("%s: before long_delay\n", __func__);
1508 	long_delay(1*HZ);
1509 	dbg("%s: after long_delay\n", __func__);
1510 
1511 	dbg("%s: func status = %x\n", __func__, func->status);
1512 	/* Check for a power fault */
1513 	if (func->status == 0xFF) {
1514 		/* power fault occurred, but it was benign */
1515 		temp_register = 0xFFFFFFFF;
1516 		dbg("%s: temp register set to %x by power fault\n", __func__, temp_register);
1517 		rc = POWER_FAILURE;
1518 		func->status = 0;
1519 	} else {
1520 		/* Get vendor/device ID u32 */
1521 		ctrl->pci_bus->number = func->bus;
1522 		rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1523 		dbg("%s: pci_read_config_dword returns %d\n", __func__, rc);
1524 		dbg("%s: temp_register is %x\n", __func__, temp_register);
1525 
1526 		if (rc != 0) {
1527 			/* Something's wrong here */
1528 			temp_register = 0xFFFFFFFF;
1529 			dbg("%s: temp register set to %x by error\n", __func__, temp_register);
1530 		}
1531 		/* Preset return code.  It will be changed later if things go okay. */
1532 		rc = NO_ADAPTER_PRESENT;
1533 	}
1534 
1535 	/* All F's is an empty slot or an invalid board */
1536 	if (temp_register != 0xFFFFFFFF) {
1537 		res_lists.io_head = ctrl->io_head;
1538 		res_lists.mem_head = ctrl->mem_head;
1539 		res_lists.p_mem_head = ctrl->p_mem_head;
1540 		res_lists.bus_head = ctrl->bus_head;
1541 		res_lists.irqs = NULL;
1542 
1543 		rc = configure_new_device(ctrl, func, 0, &res_lists);
1544 
1545 		dbg("%s: back from configure_new_device\n", __func__);
1546 		ctrl->io_head = res_lists.io_head;
1547 		ctrl->mem_head = res_lists.mem_head;
1548 		ctrl->p_mem_head = res_lists.p_mem_head;
1549 		ctrl->bus_head = res_lists.bus_head;
1550 
1551 		cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1552 		cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1553 		cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1554 		cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1555 
1556 		if (rc) {
1557 			mutex_lock(&ctrl->crit_sect);
1558 
1559 			amber_LED_on (ctrl, hp_slot);
1560 			green_LED_off (ctrl, hp_slot);
1561 			slot_disable (ctrl, hp_slot);
1562 
1563 			set_SOGO(ctrl);
1564 
1565 			/* Wait for SOBS to be unset */
1566 			wait_for_ctrl_irq (ctrl);
1567 
1568 			mutex_unlock(&ctrl->crit_sect);
1569 			return rc;
1570 		} else {
1571 			cpqhp_save_slot_config(ctrl, func);
1572 		}
1573 
1574 
1575 		func->status = 0;
1576 		func->switch_save = 0x10;
1577 		func->is_a_board = 0x01;
1578 
1579 		/* next, we will instantiate the linux pci_dev structures (with
1580 		 * appropriate driver notification, if already present) */
1581 		dbg("%s: configure linux pci_dev structure\n", __func__);
1582 		index = 0;
1583 		do {
1584 			new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1585 			if (new_slot && !new_slot->pci_dev)
1586 				cpqhp_configure_device(ctrl, new_slot);
1587 		} while (new_slot);
1588 
1589 		mutex_lock(&ctrl->crit_sect);
1590 
1591 		green_LED_on (ctrl, hp_slot);
1592 
1593 		set_SOGO(ctrl);
1594 
1595 		/* Wait for SOBS to be unset */
1596 		wait_for_ctrl_irq (ctrl);
1597 
1598 		mutex_unlock(&ctrl->crit_sect);
1599 	} else {
1600 		mutex_lock(&ctrl->crit_sect);
1601 
1602 		amber_LED_on (ctrl, hp_slot);
1603 		green_LED_off (ctrl, hp_slot);
1604 		slot_disable (ctrl, hp_slot);
1605 
1606 		set_SOGO(ctrl);
1607 
1608 		/* Wait for SOBS to be unset */
1609 		wait_for_ctrl_irq (ctrl);
1610 
1611 		mutex_unlock(&ctrl->crit_sect);
1612 
1613 		return rc;
1614 	}
1615 	return 0;
1616 }
1617 
1618 
1619 /**
1620  * remove_board - Turns off slot and LEDs
1621  * @func: PCI device/function info
1622  * @replace_flag: whether replacing or adding a new device
1623  * @ctrl: target controller
1624  */
1625 static u32 remove_board(struct pci_func * func, u32 replace_flag, struct controller * ctrl)
1626 {
1627 	int index;
1628 	u8 skip = 0;
1629 	u8 device;
1630 	u8 hp_slot;
1631 	u8 temp_byte;
1632 	u32 rc;
1633 	struct resource_lists res_lists;
1634 	struct pci_func *temp_func;
1635 
1636 	if (cpqhp_unconfigure_device(func))
1637 		return 1;
1638 
1639 	device = func->device;
1640 
1641 	hp_slot = func->device - ctrl->slot_device_offset;
1642 	dbg("In %s, hp_slot = %d\n", __func__, hp_slot);
1643 
1644 	/* When we get here, it is safe to change base address registers.
1645 	 * We will attempt to save the base address register lengths */
1646 	if (replace_flag || !ctrl->add_support)
1647 		rc = cpqhp_save_base_addr_length(ctrl, func);
1648 	else if (!func->bus_head && !func->mem_head &&
1649 		 !func->p_mem_head && !func->io_head) {
1650 		/* Here we check to see if we've saved any of the board's
1651 		 * resources already.  If so, we'll skip the attempt to
1652 		 * determine what's being used. */
1653 		index = 0;
1654 		temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1655 		while (temp_func) {
1656 			if (temp_func->bus_head || temp_func->mem_head
1657 			    || temp_func->p_mem_head || temp_func->io_head) {
1658 				skip = 1;
1659 				break;
1660 			}
1661 			temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1662 		}
1663 
1664 		if (!skip)
1665 			rc = cpqhp_save_used_resources(ctrl, func);
1666 	}
1667 	/* Change status to shutdown */
1668 	if (func->is_a_board)
1669 		func->status = 0x01;
1670 	func->configured = 0;
1671 
1672 	mutex_lock(&ctrl->crit_sect);
1673 
1674 	green_LED_off (ctrl, hp_slot);
1675 	slot_disable (ctrl, hp_slot);
1676 
1677 	set_SOGO(ctrl);
1678 
1679 	/* turn off SERR for slot */
1680 	temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1681 	temp_byte &= ~(0x01 << hp_slot);
1682 	writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1683 
1684 	/* Wait for SOBS to be unset */
1685 	wait_for_ctrl_irq (ctrl);
1686 
1687 	mutex_unlock(&ctrl->crit_sect);
1688 
1689 	if (!replace_flag && ctrl->add_support) {
1690 		while (func) {
1691 			res_lists.io_head = ctrl->io_head;
1692 			res_lists.mem_head = ctrl->mem_head;
1693 			res_lists.p_mem_head = ctrl->p_mem_head;
1694 			res_lists.bus_head = ctrl->bus_head;
1695 
1696 			cpqhp_return_board_resources(func, &res_lists);
1697 
1698 			ctrl->io_head = res_lists.io_head;
1699 			ctrl->mem_head = res_lists.mem_head;
1700 			ctrl->p_mem_head = res_lists.p_mem_head;
1701 			ctrl->bus_head = res_lists.bus_head;
1702 
1703 			cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1704 			cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1705 			cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1706 			cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1707 
1708 			if (is_bridge(func)) {
1709 				bridge_slot_remove(func);
1710 			} else
1711 				slot_remove(func);
1712 
1713 			func = cpqhp_slot_find(ctrl->bus, device, 0);
1714 		}
1715 
1716 		/* Setup slot structure with entry for empty slot */
1717 		func = cpqhp_slot_create(ctrl->bus);
1718 
1719 		if (func == NULL)
1720 			return 1;
1721 
1722 		func->bus = ctrl->bus;
1723 		func->device = device;
1724 		func->function = 0;
1725 		func->configured = 0;
1726 		func->switch_save = 0x10;
1727 		func->is_a_board = 0;
1728 		func->p_task_event = NULL;
1729 	}
1730 
1731 	return 0;
1732 }
1733 
1734 static void pushbutton_helper_thread(unsigned long data)
1735 {
1736 	pushbutton_pending = data;
1737 	wake_up_process(cpqhp_event_thread);
1738 }
1739 
1740 
1741 /* this is the main worker thread */
1742 static int event_thread(void* data)
1743 {
1744 	struct controller *ctrl;
1745 
1746 	while (1) {
1747 		dbg("!!!!event_thread sleeping\n");
1748 		set_current_state(TASK_INTERRUPTIBLE);
1749 		schedule();
1750 
1751 		if (kthread_should_stop())
1752 			break;
1753 		/* Do stuff here */
1754 		if (pushbutton_pending)
1755 			cpqhp_pushbutton_thread(pushbutton_pending);
1756 		else
1757 			for (ctrl = cpqhp_ctrl_list; ctrl; ctrl=ctrl->next)
1758 				interrupt_event_handler(ctrl);
1759 	}
1760 	dbg("event_thread signals exit\n");
1761 	return 0;
1762 }
1763 
1764 int cpqhp_event_start_thread(void)
1765 {
1766 	cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event");
1767 	if (IS_ERR(cpqhp_event_thread)) {
1768 		err ("Can't start up our event thread\n");
1769 		return PTR_ERR(cpqhp_event_thread);
1770 	}
1771 
1772 	return 0;
1773 }
1774 
1775 
1776 void cpqhp_event_stop_thread(void)
1777 {
1778 	kthread_stop(cpqhp_event_thread);
1779 }
1780 
1781 
1782 static int update_slot_info(struct controller *ctrl, struct slot *slot)
1783 {
1784 	struct hotplug_slot_info *info;
1785 	int result;
1786 
1787 	info = kmalloc(sizeof(*info), GFP_KERNEL);
1788 	if (!info)
1789 		return -ENOMEM;
1790 
1791 	info->power_status = get_slot_enabled(ctrl, slot);
1792 	info->attention_status = cpq_get_attention_status(ctrl, slot);
1793 	info->latch_status = cpq_get_latch_status(ctrl, slot);
1794 	info->adapter_status = get_presence_status(ctrl, slot);
1795 	result = pci_hp_change_slot_info(slot->hotplug_slot, info);
1796 	kfree (info);
1797 	return result;
1798 }
1799 
1800 static void interrupt_event_handler(struct controller *ctrl)
1801 {
1802 	int loop = 0;
1803 	int change = 1;
1804 	struct pci_func *func;
1805 	u8 hp_slot;
1806 	struct slot *p_slot;
1807 
1808 	while (change) {
1809 		change = 0;
1810 
1811 		for (loop = 0; loop < 10; loop++) {
1812 			/* dbg("loop %d\n", loop); */
1813 			if (ctrl->event_queue[loop].event_type != 0) {
1814 				hp_slot = ctrl->event_queue[loop].hp_slot;
1815 
1816 				func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1817 				if (!func)
1818 					return;
1819 
1820 				p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1821 				if (!p_slot)
1822 					return;
1823 
1824 				dbg("hp_slot %d, func %p, p_slot %p\n",
1825 				    hp_slot, func, p_slot);
1826 
1827 				if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1828 					dbg("button pressed\n");
1829 				} else if (ctrl->event_queue[loop].event_type ==
1830 					   INT_BUTTON_CANCEL) {
1831 					dbg("button cancel\n");
1832 					del_timer(&p_slot->task_event);
1833 
1834 					mutex_lock(&ctrl->crit_sect);
1835 
1836 					if (p_slot->state == BLINKINGOFF_STATE) {
1837 						/* slot is on */
1838 						dbg("turn on green LED\n");
1839 						green_LED_on (ctrl, hp_slot);
1840 					} else if (p_slot->state == BLINKINGON_STATE) {
1841 						/* slot is off */
1842 						dbg("turn off green LED\n");
1843 						green_LED_off (ctrl, hp_slot);
1844 					}
1845 
1846 					info(msg_button_cancel, p_slot->number);
1847 
1848 					p_slot->state = STATIC_STATE;
1849 
1850 					amber_LED_off (ctrl, hp_slot);
1851 
1852 					set_SOGO(ctrl);
1853 
1854 					/* Wait for SOBS to be unset */
1855 					wait_for_ctrl_irq (ctrl);
1856 
1857 					mutex_unlock(&ctrl->crit_sect);
1858 				}
1859 				/*** button Released (No action on press...) */
1860 				else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1861 					dbg("button release\n");
1862 
1863 					if (is_slot_enabled (ctrl, hp_slot)) {
1864 						dbg("slot is on\n");
1865 						p_slot->state = BLINKINGOFF_STATE;
1866 						info(msg_button_off, p_slot->number);
1867 					} else {
1868 						dbg("slot is off\n");
1869 						p_slot->state = BLINKINGON_STATE;
1870 						info(msg_button_on, p_slot->number);
1871 					}
1872 					mutex_lock(&ctrl->crit_sect);
1873 
1874 					dbg("blink green LED and turn off amber\n");
1875 
1876 					amber_LED_off (ctrl, hp_slot);
1877 					green_LED_blink (ctrl, hp_slot);
1878 
1879 					set_SOGO(ctrl);
1880 
1881 					/* Wait for SOBS to be unset */
1882 					wait_for_ctrl_irq (ctrl);
1883 
1884 					mutex_unlock(&ctrl->crit_sect);
1885 					init_timer(&p_slot->task_event);
1886 					p_slot->hp_slot = hp_slot;
1887 					p_slot->ctrl = ctrl;
1888 /*					p_slot->physical_slot = physical_slot; */
1889 					p_slot->task_event.expires = jiffies + 5 * HZ;   /* 5 second delay */
1890 					p_slot->task_event.function = pushbutton_helper_thread;
1891 					p_slot->task_event.data = (u32) p_slot;
1892 
1893 					dbg("add_timer p_slot = %p\n", p_slot);
1894 					add_timer(&p_slot->task_event);
1895 				}
1896 				/***********POWER FAULT */
1897 				else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1898 					dbg("power fault\n");
1899 				} else {
1900 					/* refresh notification */
1901 					if (p_slot)
1902 						update_slot_info(ctrl, p_slot);
1903 				}
1904 
1905 				ctrl->event_queue[loop].event_type = 0;
1906 
1907 				change = 1;
1908 			}
1909 		}		/* End of FOR loop */
1910 	}
1911 
1912 	return;
1913 }
1914 
1915 
1916 /**
1917  * cpqhp_pushbutton_thread - handle pushbutton events
1918  * @slot: target slot (struct)
1919  *
1920  * Scheduled procedure to handle blocking stuff for the pushbuttons.
1921  * Handles all pending events and exits.
1922  */
1923 void cpqhp_pushbutton_thread(unsigned long slot)
1924 {
1925 	u8 hp_slot;
1926 	u8 device;
1927 	struct pci_func *func;
1928 	struct slot *p_slot = (struct slot *) slot;
1929 	struct controller *ctrl = (struct controller *) p_slot->ctrl;
1930 
1931 	pushbutton_pending = 0;
1932 	hp_slot = p_slot->hp_slot;
1933 
1934 	device = p_slot->device;
1935 
1936 	if (is_slot_enabled(ctrl, hp_slot)) {
1937 		p_slot->state = POWEROFF_STATE;
1938 		/* power Down board */
1939 		func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1940 		dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
1941 		if (!func) {
1942 			dbg("Error! func NULL in %s\n", __func__);
1943 			return ;
1944 		}
1945 
1946 		if (cpqhp_process_SS(ctrl, func) != 0) {
1947 			amber_LED_on(ctrl, hp_slot);
1948 			green_LED_on(ctrl, hp_slot);
1949 
1950 			set_SOGO(ctrl);
1951 
1952 			/* Wait for SOBS to be unset */
1953 			wait_for_ctrl_irq(ctrl);
1954 		}
1955 
1956 		p_slot->state = STATIC_STATE;
1957 	} else {
1958 		p_slot->state = POWERON_STATE;
1959 		/* slot is off */
1960 
1961 		func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1962 		dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
1963 		if (!func) {
1964 			dbg("Error! func NULL in %s\n", __func__);
1965 			return ;
1966 		}
1967 
1968 		if (ctrl != NULL) {
1969 			if (cpqhp_process_SI(ctrl, func) != 0) {
1970 				amber_LED_on(ctrl, hp_slot);
1971 				green_LED_off(ctrl, hp_slot);
1972 
1973 				set_SOGO(ctrl);
1974 
1975 				/* Wait for SOBS to be unset */
1976 				wait_for_ctrl_irq (ctrl);
1977 			}
1978 		}
1979 
1980 		p_slot->state = STATIC_STATE;
1981 	}
1982 
1983 	return;
1984 }
1985 
1986 
1987 int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
1988 {
1989 	u8 device, hp_slot;
1990 	u16 temp_word;
1991 	u32 tempdword;
1992 	int rc;
1993 	struct slot* p_slot;
1994 	int physical_slot = 0;
1995 
1996 	tempdword = 0;
1997 
1998 	device = func->device;
1999 	hp_slot = device - ctrl->slot_device_offset;
2000 	p_slot = cpqhp_find_slot(ctrl, device);
2001 	if (p_slot)
2002 		physical_slot = p_slot->number;
2003 
2004 	/* Check to see if the interlock is closed */
2005 	tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
2006 
2007 	if (tempdword & (0x01 << hp_slot)) {
2008 		return 1;
2009 	}
2010 
2011 	if (func->is_a_board) {
2012 		rc = board_replaced(func, ctrl);
2013 	} else {
2014 		/* add board */
2015 		slot_remove(func);
2016 
2017 		func = cpqhp_slot_create(ctrl->bus);
2018 		if (func == NULL)
2019 			return 1;
2020 
2021 		func->bus = ctrl->bus;
2022 		func->device = device;
2023 		func->function = 0;
2024 		func->configured = 0;
2025 		func->is_a_board = 1;
2026 
2027 		/* We have to save the presence info for these slots */
2028 		temp_word = ctrl->ctrl_int_comp >> 16;
2029 		func->presence_save = (temp_word >> hp_slot) & 0x01;
2030 		func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
2031 
2032 		if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2033 			func->switch_save = 0;
2034 		} else {
2035 			func->switch_save = 0x10;
2036 		}
2037 
2038 		rc = board_added(func, ctrl);
2039 		if (rc) {
2040 			if (is_bridge(func)) {
2041 				bridge_slot_remove(func);
2042 			} else
2043 				slot_remove(func);
2044 
2045 			/* Setup slot structure with entry for empty slot */
2046 			func = cpqhp_slot_create(ctrl->bus);
2047 
2048 			if (func == NULL)
2049 				return 1;
2050 
2051 			func->bus = ctrl->bus;
2052 			func->device = device;
2053 			func->function = 0;
2054 			func->configured = 0;
2055 			func->is_a_board = 0;
2056 
2057 			/* We have to save the presence info for these slots */
2058 			temp_word = ctrl->ctrl_int_comp >> 16;
2059 			func->presence_save = (temp_word >> hp_slot) & 0x01;
2060 			func->presence_save |=
2061 			(temp_word >> (hp_slot + 7)) & 0x02;
2062 
2063 			if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2064 				func->switch_save = 0;
2065 			} else {
2066 				func->switch_save = 0x10;
2067 			}
2068 		}
2069 	}
2070 
2071 	if (rc) {
2072 		dbg("%s: rc = %d\n", __func__, rc);
2073 	}
2074 
2075 	if (p_slot)
2076 		update_slot_info(ctrl, p_slot);
2077 
2078 	return rc;
2079 }
2080 
2081 
2082 int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2083 {
2084 	u8 device, class_code, header_type, BCR;
2085 	u8 index = 0;
2086 	u8 replace_flag;
2087 	u32 rc = 0;
2088 	unsigned int devfn;
2089 	struct slot* p_slot;
2090 	struct pci_bus *pci_bus = ctrl->pci_bus;
2091 	int physical_slot=0;
2092 
2093 	device = func->device;
2094 	func = cpqhp_slot_find(ctrl->bus, device, index++);
2095 	p_slot = cpqhp_find_slot(ctrl, device);
2096 	if (p_slot) {
2097 		physical_slot = p_slot->number;
2098 	}
2099 
2100 	/* Make sure there are no video controllers here */
2101 	while (func && !rc) {
2102 		pci_bus->number = func->bus;
2103 		devfn = PCI_DEVFN(func->device, func->function);
2104 
2105 		/* Check the Class Code */
2106 		rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2107 		if (rc)
2108 			return rc;
2109 
2110 		if (class_code == PCI_BASE_CLASS_DISPLAY) {
2111 			/* Display/Video adapter (not supported) */
2112 			rc = REMOVE_NOT_SUPPORTED;
2113 		} else {
2114 			/* See if it's a bridge */
2115 			rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2116 			if (rc)
2117 				return rc;
2118 
2119 			/* If it's a bridge, check the VGA Enable bit */
2120 			if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2121 				rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2122 				if (rc)
2123 					return rc;
2124 
2125 				/* If the VGA Enable bit is set, remove isn't
2126 				 * supported */
2127 				if (BCR & PCI_BRIDGE_CTL_VGA)
2128 					rc = REMOVE_NOT_SUPPORTED;
2129 			}
2130 		}
2131 
2132 		func = cpqhp_slot_find(ctrl->bus, device, index++);
2133 	}
2134 
2135 	func = cpqhp_slot_find(ctrl->bus, device, 0);
2136 	if ((func != NULL) && !rc) {
2137 		/* FIXME: Replace flag should be passed into process_SS */
2138 		replace_flag = !(ctrl->add_support);
2139 		rc = remove_board(func, replace_flag, ctrl);
2140 	} else if (!rc) {
2141 		rc = 1;
2142 	}
2143 
2144 	if (p_slot)
2145 		update_slot_info(ctrl, p_slot);
2146 
2147 	return rc;
2148 }
2149 
2150 /**
2151  * switch_leds - switch the leds, go from one site to the other.
2152  * @ctrl: controller to use
2153  * @num_of_slots: number of slots to use
2154  * @work_LED: LED control value
2155  * @direction: 1 to start from the left side, 0 to start right.
2156  */
2157 static void switch_leds(struct controller *ctrl, const int num_of_slots,
2158 			u32 *work_LED, const int direction)
2159 {
2160 	int loop;
2161 
2162 	for (loop = 0; loop < num_of_slots; loop++) {
2163 		if (direction)
2164 			*work_LED = *work_LED >> 1;
2165 		else
2166 			*work_LED = *work_LED << 1;
2167 		writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2168 
2169 		set_SOGO(ctrl);
2170 
2171 		/* Wait for SOGO interrupt */
2172 		wait_for_ctrl_irq(ctrl);
2173 
2174 		/* Get ready for next iteration */
2175 		long_delay((2*HZ)/10);
2176 	}
2177 }
2178 
2179 /**
2180  * cpqhp_hardware_test - runs hardware tests
2181  * @ctrl: target controller
2182  * @test_num: the number written to the "test" file in sysfs.
2183  *
2184  * For hot plug ctrl folks to play with.
2185  */
2186 int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2187 {
2188 	u32 save_LED;
2189 	u32 work_LED;
2190 	int loop;
2191 	int num_of_slots;
2192 
2193 	num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2194 
2195 	switch (test_num) {
2196 	case 1:
2197 		/* Do stuff here! */
2198 
2199 		/* Do that funky LED thing */
2200 		/* so we can restore them later */
2201 		save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2202 		work_LED = 0x01010101;
2203 		switch_leds(ctrl, num_of_slots, &work_LED, 0);
2204 		switch_leds(ctrl, num_of_slots, &work_LED, 1);
2205 		switch_leds(ctrl, num_of_slots, &work_LED, 0);
2206 		switch_leds(ctrl, num_of_slots, &work_LED, 1);
2207 
2208 		work_LED = 0x01010000;
2209 		writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2210 		switch_leds(ctrl, num_of_slots, &work_LED, 0);
2211 		switch_leds(ctrl, num_of_slots, &work_LED, 1);
2212 		work_LED = 0x00000101;
2213 		writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2214 		switch_leds(ctrl, num_of_slots, &work_LED, 0);
2215 		switch_leds(ctrl, num_of_slots, &work_LED, 1);
2216 
2217 		work_LED = 0x01010000;
2218 		writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2219 		for (loop = 0; loop < num_of_slots; loop++) {
2220 			set_SOGO(ctrl);
2221 
2222 			/* Wait for SOGO interrupt */
2223 			wait_for_ctrl_irq (ctrl);
2224 
2225 			/* Get ready for next iteration */
2226 			long_delay((3*HZ)/10);
2227 			work_LED = work_LED >> 16;
2228 			writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2229 
2230 			set_SOGO(ctrl);
2231 
2232 			/* Wait for SOGO interrupt */
2233 			wait_for_ctrl_irq (ctrl);
2234 
2235 			/* Get ready for next iteration */
2236 			long_delay((3*HZ)/10);
2237 			work_LED = work_LED << 16;
2238 			writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2239 			work_LED = work_LED << 1;
2240 			writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2241 		}
2242 
2243 		/* put it back the way it was */
2244 		writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2245 
2246 		set_SOGO(ctrl);
2247 
2248 		/* Wait for SOBS to be unset */
2249 		wait_for_ctrl_irq (ctrl);
2250 		break;
2251 	case 2:
2252 		/* Do other stuff here! */
2253 		break;
2254 	case 3:
2255 		/* and more... */
2256 		break;
2257 	}
2258 	return 0;
2259 }
2260 
2261 
2262 /**
2263  * configure_new_device - Configures the PCI header information of one board.
2264  * @ctrl: pointer to controller structure
2265  * @func: pointer to function structure
2266  * @behind_bridge: 1 if this is a recursive call, 0 if not
2267  * @resources: pointer to set of resource lists
2268  *
2269  * Returns 0 if success.
2270  */
2271 static u32 configure_new_device(struct controller * ctrl, struct pci_func * func,
2272 				 u8 behind_bridge, struct resource_lists * resources)
2273 {
2274 	u8 temp_byte, function, max_functions, stop_it;
2275 	int rc;
2276 	u32 ID;
2277 	struct pci_func *new_slot;
2278 	int index;
2279 
2280 	new_slot = func;
2281 
2282 	dbg("%s\n", __func__);
2283 	/* Check for Multi-function device */
2284 	ctrl->pci_bus->number = func->bus;
2285 	rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2286 	if (rc) {
2287 		dbg("%s: rc = %d\n", __func__, rc);
2288 		return rc;
2289 	}
2290 
2291 	if (temp_byte & 0x80)	/* Multi-function device */
2292 		max_functions = 8;
2293 	else
2294 		max_functions = 1;
2295 
2296 	function = 0;
2297 
2298 	do {
2299 		rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2300 
2301 		if (rc) {
2302 			dbg("configure_new_function failed %d\n",rc);
2303 			index = 0;
2304 
2305 			while (new_slot) {
2306 				new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2307 
2308 				if (new_slot)
2309 					cpqhp_return_board_resources(new_slot, resources);
2310 			}
2311 
2312 			return rc;
2313 		}
2314 
2315 		function++;
2316 
2317 		stop_it = 0;
2318 
2319 		/* The following loop skips to the next present function
2320 		 * and creates a board structure */
2321 
2322 		while ((function < max_functions) && (!stop_it)) {
2323 			pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2324 
2325 			if (ID == 0xFFFFFFFF) {
2326 				function++;
2327 			} else {
2328 				/* Setup slot structure. */
2329 				new_slot = cpqhp_slot_create(func->bus);
2330 
2331 				if (new_slot == NULL)
2332 					return 1;
2333 
2334 				new_slot->bus = func->bus;
2335 				new_slot->device = func->device;
2336 				new_slot->function = function;
2337 				new_slot->is_a_board = 1;
2338 				new_slot->status = 0;
2339 
2340 				stop_it++;
2341 			}
2342 		}
2343 
2344 	} while (function < max_functions);
2345 	dbg("returning from configure_new_device\n");
2346 
2347 	return 0;
2348 }
2349 
2350 
2351 /*
2352  * Configuration logic that involves the hotplug data structures and
2353  * their bookkeeping
2354  */
2355 
2356 
2357 /**
2358  * configure_new_function - Configures the PCI header information of one device
2359  * @ctrl: pointer to controller structure
2360  * @func: pointer to function structure
2361  * @behind_bridge: 1 if this is a recursive call, 0 if not
2362  * @resources: pointer to set of resource lists
2363  *
2364  * Calls itself recursively for bridged devices.
2365  * Returns 0 if success.
2366  */
2367 static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2368 				   u8 behind_bridge,
2369 				   struct resource_lists *resources)
2370 {
2371 	int cloop;
2372 	u8 IRQ = 0;
2373 	u8 temp_byte;
2374 	u8 device;
2375 	u8 class_code;
2376 	u16 command;
2377 	u16 temp_word;
2378 	u32 temp_dword;
2379 	u32 rc;
2380 	u32 temp_register;
2381 	u32 base;
2382 	u32 ID;
2383 	unsigned int devfn;
2384 	struct pci_resource *mem_node;
2385 	struct pci_resource *p_mem_node;
2386 	struct pci_resource *io_node;
2387 	struct pci_resource *bus_node;
2388 	struct pci_resource *hold_mem_node;
2389 	struct pci_resource *hold_p_mem_node;
2390 	struct pci_resource *hold_IO_node;
2391 	struct pci_resource *hold_bus_node;
2392 	struct irq_mapping irqs;
2393 	struct pci_func *new_slot;
2394 	struct pci_bus *pci_bus;
2395 	struct resource_lists temp_resources;
2396 
2397 	pci_bus = ctrl->pci_bus;
2398 	pci_bus->number = func->bus;
2399 	devfn = PCI_DEVFN(func->device, func->function);
2400 
2401 	/* Check for Bridge */
2402 	rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2403 	if (rc)
2404 		return rc;
2405 
2406 	if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2407 		/* set Primary bus */
2408 		dbg("set Primary bus = %d\n", func->bus);
2409 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2410 		if (rc)
2411 			return rc;
2412 
2413 		/* find range of busses to use */
2414 		dbg("find ranges of buses to use\n");
2415 		bus_node = get_max_resource(&(resources->bus_head), 1);
2416 
2417 		/* If we don't have any busses to allocate, we can't continue */
2418 		if (!bus_node)
2419 			return -ENOMEM;
2420 
2421 		/* set Secondary bus */
2422 		temp_byte = bus_node->base;
2423 		dbg("set Secondary bus = %d\n", bus_node->base);
2424 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2425 		if (rc)
2426 			return rc;
2427 
2428 		/* set subordinate bus */
2429 		temp_byte = bus_node->base + bus_node->length - 1;
2430 		dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2431 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2432 		if (rc)
2433 			return rc;
2434 
2435 		/* set subordinate Latency Timer and base Latency Timer */
2436 		temp_byte = 0x40;
2437 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2438 		if (rc)
2439 			return rc;
2440 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2441 		if (rc)
2442 			return rc;
2443 
2444 		/* set Cache Line size */
2445 		temp_byte = 0x08;
2446 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2447 		if (rc)
2448 			return rc;
2449 
2450 		/* Setup the IO, memory, and prefetchable windows */
2451 		io_node = get_max_resource(&(resources->io_head), 0x1000);
2452 		if (!io_node)
2453 			return -ENOMEM;
2454 		mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2455 		if (!mem_node)
2456 			return -ENOMEM;
2457 		p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2458 		if (!p_mem_node)
2459 			return -ENOMEM;
2460 		dbg("Setup the IO, memory, and prefetchable windows\n");
2461 		dbg("io_node\n");
2462 		dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2463 					io_node->length, io_node->next);
2464 		dbg("mem_node\n");
2465 		dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2466 					mem_node->length, mem_node->next);
2467 		dbg("p_mem_node\n");
2468 		dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2469 					p_mem_node->length, p_mem_node->next);
2470 
2471 		/* set up the IRQ info */
2472 		if (!resources->irqs) {
2473 			irqs.barber_pole = 0;
2474 			irqs.interrupt[0] = 0;
2475 			irqs.interrupt[1] = 0;
2476 			irqs.interrupt[2] = 0;
2477 			irqs.interrupt[3] = 0;
2478 			irqs.valid_INT = 0;
2479 		} else {
2480 			irqs.barber_pole = resources->irqs->barber_pole;
2481 			irqs.interrupt[0] = resources->irqs->interrupt[0];
2482 			irqs.interrupt[1] = resources->irqs->interrupt[1];
2483 			irqs.interrupt[2] = resources->irqs->interrupt[2];
2484 			irqs.interrupt[3] = resources->irqs->interrupt[3];
2485 			irqs.valid_INT = resources->irqs->valid_INT;
2486 		}
2487 
2488 		/* set up resource lists that are now aligned on top and bottom
2489 		 * for anything behind the bridge. */
2490 		temp_resources.bus_head = bus_node;
2491 		temp_resources.io_head = io_node;
2492 		temp_resources.mem_head = mem_node;
2493 		temp_resources.p_mem_head = p_mem_node;
2494 		temp_resources.irqs = &irqs;
2495 
2496 		/* Make copies of the nodes we are going to pass down so that
2497 		 * if there is a problem,we can just use these to free resources
2498 		 */
2499 		hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2500 		hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2501 		hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2502 		hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2503 
2504 		if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2505 			kfree(hold_bus_node);
2506 			kfree(hold_IO_node);
2507 			kfree(hold_mem_node);
2508 			kfree(hold_p_mem_node);
2509 
2510 			return 1;
2511 		}
2512 
2513 		memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2514 
2515 		bus_node->base += 1;
2516 		bus_node->length -= 1;
2517 		bus_node->next = NULL;
2518 
2519 		/* If we have IO resources copy them and fill in the bridge's
2520 		 * IO range registers */
2521 		if (io_node) {
2522 			memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2523 			io_node->next = NULL;
2524 
2525 			/* set IO base and Limit registers */
2526 			temp_byte = io_node->base >> 8;
2527 			rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2528 
2529 			temp_byte = (io_node->base + io_node->length - 1) >> 8;
2530 			rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2531 		} else {
2532 			kfree(hold_IO_node);
2533 			hold_IO_node = NULL;
2534 		}
2535 
2536 		/* If we have memory resources copy them and fill in the
2537 		 * bridge's memory range registers.  Otherwise, fill in the
2538 		 * range registers with values that disable them. */
2539 		if (mem_node) {
2540 			memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2541 			mem_node->next = NULL;
2542 
2543 			/* set Mem base and Limit registers */
2544 			temp_word = mem_node->base >> 16;
2545 			rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2546 
2547 			temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2548 			rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2549 		} else {
2550 			temp_word = 0xFFFF;
2551 			rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2552 
2553 			temp_word = 0x0000;
2554 			rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2555 
2556 			kfree(hold_mem_node);
2557 			hold_mem_node = NULL;
2558 		}
2559 
2560 		memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2561 		p_mem_node->next = NULL;
2562 
2563 		/* set Pre Mem base and Limit registers */
2564 		temp_word = p_mem_node->base >> 16;
2565 		rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2566 
2567 		temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2568 		rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2569 
2570 		/* Adjust this to compensate for extra adjustment in first loop
2571 		 */
2572 		irqs.barber_pole--;
2573 
2574 		rc = 0;
2575 
2576 		/* Here we actually find the devices and configure them */
2577 		for (device = 0; (device <= 0x1F) && !rc; device++) {
2578 			irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2579 
2580 			ID = 0xFFFFFFFF;
2581 			pci_bus->number = hold_bus_node->base;
2582 			pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2583 			pci_bus->number = func->bus;
2584 
2585 			if (ID != 0xFFFFFFFF) {	  /*  device present */
2586 				/* Setup slot structure. */
2587 				new_slot = cpqhp_slot_create(hold_bus_node->base);
2588 
2589 				if (new_slot == NULL) {
2590 					rc = -ENOMEM;
2591 					continue;
2592 				}
2593 
2594 				new_slot->bus = hold_bus_node->base;
2595 				new_slot->device = device;
2596 				new_slot->function = 0;
2597 				new_slot->is_a_board = 1;
2598 				new_slot->status = 0;
2599 
2600 				rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2601 				dbg("configure_new_device rc=0x%x\n",rc);
2602 			}	/* End of IF (device in slot?) */
2603 		}		/* End of FOR loop */
2604 
2605 		if (rc)
2606 			goto free_and_out;
2607 		/* save the interrupt routing information */
2608 		if (resources->irqs) {
2609 			resources->irqs->interrupt[0] = irqs.interrupt[0];
2610 			resources->irqs->interrupt[1] = irqs.interrupt[1];
2611 			resources->irqs->interrupt[2] = irqs.interrupt[2];
2612 			resources->irqs->interrupt[3] = irqs.interrupt[3];
2613 			resources->irqs->valid_INT = irqs.valid_INT;
2614 		} else if (!behind_bridge) {
2615 			/* We need to hook up the interrupts here */
2616 			for (cloop = 0; cloop < 4; cloop++) {
2617 				if (irqs.valid_INT & (0x01 << cloop)) {
2618 					rc = cpqhp_set_irq(func->bus, func->device,
2619 							   cloop + 1, irqs.interrupt[cloop]);
2620 					if (rc)
2621 						goto free_and_out;
2622 				}
2623 			}	/* end of for loop */
2624 		}
2625 		/* Return unused bus resources
2626 		 * First use the temporary node to store information for
2627 		 * the board */
2628 		if (hold_bus_node && bus_node && temp_resources.bus_head) {
2629 			hold_bus_node->length = bus_node->base - hold_bus_node->base;
2630 
2631 			hold_bus_node->next = func->bus_head;
2632 			func->bus_head = hold_bus_node;
2633 
2634 			temp_byte = temp_resources.bus_head->base - 1;
2635 
2636 			/* set subordinate bus */
2637 			rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2638 
2639 			if (temp_resources.bus_head->length == 0) {
2640 				kfree(temp_resources.bus_head);
2641 				temp_resources.bus_head = NULL;
2642 			} else {
2643 				return_resource(&(resources->bus_head), temp_resources.bus_head);
2644 			}
2645 		}
2646 
2647 		/* If we have IO space available and there is some left,
2648 		 * return the unused portion */
2649 		if (hold_IO_node && temp_resources.io_head) {
2650 			io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2651 							       &hold_IO_node, 0x1000);
2652 
2653 			/* Check if we were able to split something off */
2654 			if (io_node) {
2655 				hold_IO_node->base = io_node->base + io_node->length;
2656 
2657 				temp_byte = (hold_IO_node->base) >> 8;
2658 				rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_BASE, temp_byte);
2659 
2660 				return_resource(&(resources->io_head), io_node);
2661 			}
2662 
2663 			io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2664 
2665 			/* Check if we were able to split something off */
2666 			if (io_node) {
2667 				/* First use the temporary node to store
2668 				 * information for the board */
2669 				hold_IO_node->length = io_node->base - hold_IO_node->base;
2670 
2671 				/* If we used any, add it to the board's list */
2672 				if (hold_IO_node->length) {
2673 					hold_IO_node->next = func->io_head;
2674 					func->io_head = hold_IO_node;
2675 
2676 					temp_byte = (io_node->base - 1) >> 8;
2677 					rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2678 
2679 					return_resource(&(resources->io_head), io_node);
2680 				} else {
2681 					/* it doesn't need any IO */
2682 					temp_word = 0x0000;
2683 					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2684 
2685 					return_resource(&(resources->io_head), io_node);
2686 					kfree(hold_IO_node);
2687 				}
2688 			} else {
2689 				/* it used most of the range */
2690 				hold_IO_node->next = func->io_head;
2691 				func->io_head = hold_IO_node;
2692 			}
2693 		} else if (hold_IO_node) {
2694 			/* it used the whole range */
2695 			hold_IO_node->next = func->io_head;
2696 			func->io_head = hold_IO_node;
2697 		}
2698 		/* If we have memory space available and there is some left,
2699 		 * return the unused portion */
2700 		if (hold_mem_node && temp_resources.mem_head) {
2701 			mem_node = do_pre_bridge_resource_split(&(temp_resources.  mem_head),
2702 								&hold_mem_node, 0x100000);
2703 
2704 			/* Check if we were able to split something off */
2705 			if (mem_node) {
2706 				hold_mem_node->base = mem_node->base + mem_node->length;
2707 
2708 				temp_word = (hold_mem_node->base) >> 16;
2709 				rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2710 
2711 				return_resource(&(resources->mem_head), mem_node);
2712 			}
2713 
2714 			mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2715 
2716 			/* Check if we were able to split something off */
2717 			if (mem_node) {
2718 				/* First use the temporary node to store
2719 				 * information for the board */
2720 				hold_mem_node->length = mem_node->base - hold_mem_node->base;
2721 
2722 				if (hold_mem_node->length) {
2723 					hold_mem_node->next = func->mem_head;
2724 					func->mem_head = hold_mem_node;
2725 
2726 					/* configure end address */
2727 					temp_word = (mem_node->base - 1) >> 16;
2728 					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2729 
2730 					/* Return unused resources to the pool */
2731 					return_resource(&(resources->mem_head), mem_node);
2732 				} else {
2733 					/* it doesn't need any Mem */
2734 					temp_word = 0x0000;
2735 					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2736 
2737 					return_resource(&(resources->mem_head), mem_node);
2738 					kfree(hold_mem_node);
2739 				}
2740 			} else {
2741 				/* it used most of the range */
2742 				hold_mem_node->next = func->mem_head;
2743 				func->mem_head = hold_mem_node;
2744 			}
2745 		} else if (hold_mem_node) {
2746 			/* it used the whole range */
2747 			hold_mem_node->next = func->mem_head;
2748 			func->mem_head = hold_mem_node;
2749 		}
2750 		/* If we have prefetchable memory space available and there
2751 		 * is some left at the end, return the unused portion */
2752 		if (hold_p_mem_node && temp_resources.p_mem_head) {
2753 			p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2754 								  &hold_p_mem_node, 0x100000);
2755 
2756 			/* Check if we were able to split something off */
2757 			if (p_mem_node) {
2758 				hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2759 
2760 				temp_word = (hold_p_mem_node->base) >> 16;
2761 				rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2762 
2763 				return_resource(&(resources->p_mem_head), p_mem_node);
2764 			}
2765 
2766 			p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2767 
2768 			/* Check if we were able to split something off */
2769 			if (p_mem_node) {
2770 				/* First use the temporary node to store
2771 				 * information for the board */
2772 				hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2773 
2774 				/* If we used any, add it to the board's list */
2775 				if (hold_p_mem_node->length) {
2776 					hold_p_mem_node->next = func->p_mem_head;
2777 					func->p_mem_head = hold_p_mem_node;
2778 
2779 					temp_word = (p_mem_node->base - 1) >> 16;
2780 					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2781 
2782 					return_resource(&(resources->p_mem_head), p_mem_node);
2783 				} else {
2784 					/* it doesn't need any PMem */
2785 					temp_word = 0x0000;
2786 					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2787 
2788 					return_resource(&(resources->p_mem_head), p_mem_node);
2789 					kfree(hold_p_mem_node);
2790 				}
2791 			} else {
2792 				/* it used the most of the range */
2793 				hold_p_mem_node->next = func->p_mem_head;
2794 				func->p_mem_head = hold_p_mem_node;
2795 			}
2796 		} else if (hold_p_mem_node) {
2797 			/* it used the whole range */
2798 			hold_p_mem_node->next = func->p_mem_head;
2799 			func->p_mem_head = hold_p_mem_node;
2800 		}
2801 		/* We should be configuring an IRQ and the bridge's base address
2802 		 * registers if it needs them.  Although we have never seen such
2803 		 * a device */
2804 
2805 		/* enable card */
2806 		command = 0x0157;	/* = PCI_COMMAND_IO |
2807 					 *   PCI_COMMAND_MEMORY |
2808 					 *   PCI_COMMAND_MASTER |
2809 					 *   PCI_COMMAND_INVALIDATE |
2810 					 *   PCI_COMMAND_PARITY |
2811 					 *   PCI_COMMAND_SERR */
2812 		rc = pci_bus_write_config_word (pci_bus, devfn, PCI_COMMAND, command);
2813 
2814 		/* set Bridge Control Register */
2815 		command = 0x07;		/* = PCI_BRIDGE_CTL_PARITY |
2816 					 *   PCI_BRIDGE_CTL_SERR |
2817 					 *   PCI_BRIDGE_CTL_NO_ISA */
2818 		rc = pci_bus_write_config_word (pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2819 	} else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2820 		/* Standard device */
2821 		rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2822 
2823 		if (class_code == PCI_BASE_CLASS_DISPLAY) {
2824 			/* Display (video) adapter (not supported) */
2825 			return DEVICE_TYPE_NOT_SUPPORTED;
2826 		}
2827 		/* Figure out IO and memory needs */
2828 		for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2829 			temp_register = 0xFFFFFFFF;
2830 
2831 			dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2832 			rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
2833 
2834 			rc = pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp_register);
2835 			dbg("CND: base = 0x%x\n", temp_register);
2836 
2837 			if (temp_register) {	  /* If this register is implemented */
2838 				if ((temp_register & 0x03L) == 0x01) {
2839 					/* Map IO */
2840 
2841 					/* set base = amount of IO space */
2842 					base = temp_register & 0xFFFFFFFC;
2843 					base = ~base + 1;
2844 
2845 					dbg("CND:      length = 0x%x\n", base);
2846 					io_node = get_io_resource(&(resources->io_head), base);
2847 					dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2848 					    io_node->base, io_node->length, io_node->next);
2849 					dbg("func (%p) io_head (%p)\n", func, func->io_head);
2850 
2851 					/* allocate the resource to the board */
2852 					if (io_node) {
2853 						base = io_node->base;
2854 
2855 						io_node->next = func->io_head;
2856 						func->io_head = io_node;
2857 					} else
2858 						return -ENOMEM;
2859 				} else if ((temp_register & 0x0BL) == 0x08) {
2860 					/* Map prefetchable memory */
2861 					base = temp_register & 0xFFFFFFF0;
2862 					base = ~base + 1;
2863 
2864 					dbg("CND:      length = 0x%x\n", base);
2865 					p_mem_node = get_resource(&(resources->p_mem_head), base);
2866 
2867 					/* allocate the resource to the board */
2868 					if (p_mem_node) {
2869 						base = p_mem_node->base;
2870 
2871 						p_mem_node->next = func->p_mem_head;
2872 						func->p_mem_head = p_mem_node;
2873 					} else
2874 						return -ENOMEM;
2875 				} else if ((temp_register & 0x0BL) == 0x00) {
2876 					/* Map memory */
2877 					base = temp_register & 0xFFFFFFF0;
2878 					base = ~base + 1;
2879 
2880 					dbg("CND:      length = 0x%x\n", base);
2881 					mem_node = get_resource(&(resources->mem_head), base);
2882 
2883 					/* allocate the resource to the board */
2884 					if (mem_node) {
2885 						base = mem_node->base;
2886 
2887 						mem_node->next = func->mem_head;
2888 						func->mem_head = mem_node;
2889 					} else
2890 						return -ENOMEM;
2891 				} else if ((temp_register & 0x0BL) == 0x04) {
2892 					/* Map memory */
2893 					base = temp_register & 0xFFFFFFF0;
2894 					base = ~base + 1;
2895 
2896 					dbg("CND:      length = 0x%x\n", base);
2897 					mem_node = get_resource(&(resources->mem_head), base);
2898 
2899 					/* allocate the resource to the board */
2900 					if (mem_node) {
2901 						base = mem_node->base;
2902 
2903 						mem_node->next = func->mem_head;
2904 						func->mem_head = mem_node;
2905 					} else
2906 						return -ENOMEM;
2907 				} else if ((temp_register & 0x0BL) == 0x06) {
2908 					/* Those bits are reserved, we can't handle this */
2909 					return 1;
2910 				} else {
2911 					/* Requesting space below 1M */
2912 					return NOT_ENOUGH_RESOURCES;
2913 				}
2914 
2915 				rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2916 
2917 				/* Check for 64-bit base */
2918 				if ((temp_register & 0x07L) == 0x04) {
2919 					cloop += 4;
2920 
2921 					/* Upper 32 bits of address always zero
2922 					 * on today's systems */
2923 					/* FIXME this is probably not true on
2924 					 * Alpha and ia64??? */
2925 					base = 0;
2926 					rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2927 				}
2928 			}
2929 		}		/* End of base register loop */
2930 		if (cpqhp_legacy_mode) {
2931 			/* Figure out which interrupt pin this function uses */
2932 			rc = pci_bus_read_config_byte (pci_bus, devfn,
2933 				PCI_INTERRUPT_PIN, &temp_byte);
2934 
2935 			/* If this function needs an interrupt and we are behind
2936 			 * a bridge and the pin is tied to something that's
2937 			 * alread mapped, set this one the same */
2938 			if (temp_byte && resources->irqs &&
2939 			    (resources->irqs->valid_INT &
2940 			     (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
2941 				/* We have to share with something already set up */
2942 				IRQ = resources->irqs->interrupt[(temp_byte +
2943 					resources->irqs->barber_pole - 1) & 0x03];
2944 			} else {
2945 				/* Program IRQ based on card type */
2946 				rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2947 
2948 				if (class_code == PCI_BASE_CLASS_STORAGE)
2949 					IRQ = cpqhp_disk_irq;
2950 				else
2951 					IRQ = cpqhp_nic_irq;
2952 			}
2953 
2954 			/* IRQ Line */
2955 			rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
2956 		}
2957 
2958 		if (!behind_bridge) {
2959 			rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ);
2960 			if (rc)
2961 				return 1;
2962 		} else {
2963 			/* TBD - this code may also belong in the other clause
2964 			 * of this If statement */
2965 			resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
2966 			resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
2967 		}
2968 
2969 		/* Latency Timer */
2970 		temp_byte = 0x40;
2971 		rc = pci_bus_write_config_byte(pci_bus, devfn,
2972 					PCI_LATENCY_TIMER, temp_byte);
2973 
2974 		/* Cache Line size */
2975 		temp_byte = 0x08;
2976 		rc = pci_bus_write_config_byte(pci_bus, devfn,
2977 					PCI_CACHE_LINE_SIZE, temp_byte);
2978 
2979 		/* disable ROM base Address */
2980 		temp_dword = 0x00L;
2981 		rc = pci_bus_write_config_word(pci_bus, devfn,
2982 					PCI_ROM_ADDRESS, temp_dword);
2983 
2984 		/* enable card */
2985 		temp_word = 0x0157;	/* = PCI_COMMAND_IO |
2986 					 *   PCI_COMMAND_MEMORY |
2987 					 *   PCI_COMMAND_MASTER |
2988 					 *   PCI_COMMAND_INVALIDATE |
2989 					 *   PCI_COMMAND_PARITY |
2990 					 *   PCI_COMMAND_SERR */
2991 		rc = pci_bus_write_config_word (pci_bus, devfn,
2992 					PCI_COMMAND, temp_word);
2993 	} else {		/* End of Not-A-Bridge else */
2994 		/* It's some strange type of PCI adapter (Cardbus?) */
2995 		return DEVICE_TYPE_NOT_SUPPORTED;
2996 	}
2997 
2998 	func->configured = 1;
2999 
3000 	return 0;
3001 free_and_out:
3002 	cpqhp_destroy_resource_list (&temp_resources);
3003 
3004 	return_resource(&(resources-> bus_head), hold_bus_node);
3005 	return_resource(&(resources-> io_head), hold_IO_node);
3006 	return_resource(&(resources-> mem_head), hold_mem_node);
3007 	return_resource(&(resources-> p_mem_head), hold_p_mem_node);
3008 	return rc;
3009 }
3010