1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Procedures for creating, accessing and interpreting the device tree. 4 * 5 * Paul Mackerras August 1996. 6 * Copyright (C) 1996-2005 Paul Mackerras. 7 * 8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 9 * {engebret|bergner}@us.ibm.com 10 * 11 * Adapted for sparc and sparc64 by David S. Miller [email protected] 12 * 13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 14 * Grant Likely. 15 */ 16 17 #define pr_fmt(fmt) "OF: " fmt 18 19 #include <linux/console.h> 20 #include <linux/ctype.h> 21 #include <linux/cpu.h> 22 #include <linux/module.h> 23 #include <linux/of.h> 24 #include <linux/of_device.h> 25 #include <linux/of_graph.h> 26 #include <linux/spinlock.h> 27 #include <linux/slab.h> 28 #include <linux/string.h> 29 #include <linux/proc_fs.h> 30 31 #include "of_private.h" 32 33 LIST_HEAD(aliases_lookup); 34 35 struct device_node *of_root; 36 EXPORT_SYMBOL(of_root); 37 struct device_node *of_chosen; 38 EXPORT_SYMBOL(of_chosen); 39 struct device_node *of_aliases; 40 struct device_node *of_stdout; 41 static const char *of_stdout_options; 42 43 struct kset *of_kset; 44 45 /* 46 * Used to protect the of_aliases, to hold off addition of nodes to sysfs. 47 * This mutex must be held whenever modifications are being made to the 48 * device tree. The of_{attach,detach}_node() and 49 * of_{add,remove,update}_property() helpers make sure this happens. 50 */ 51 DEFINE_MUTEX(of_mutex); 52 53 /* use when traversing tree through the child, sibling, 54 * or parent members of struct device_node. 55 */ 56 DEFINE_RAW_SPINLOCK(devtree_lock); 57 58 bool of_node_name_eq(const struct device_node *np, const char *name) 59 { 60 const char *node_name; 61 size_t len; 62 63 if (!np) 64 return false; 65 66 node_name = kbasename(np->full_name); 67 len = strchrnul(node_name, '@') - node_name; 68 69 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0); 70 } 71 EXPORT_SYMBOL(of_node_name_eq); 72 73 bool of_node_name_prefix(const struct device_node *np, const char *prefix) 74 { 75 if (!np) 76 return false; 77 78 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0; 79 } 80 EXPORT_SYMBOL(of_node_name_prefix); 81 82 static bool __of_node_is_type(const struct device_node *np, const char *type) 83 { 84 const char *match = __of_get_property(np, "device_type", NULL); 85 86 return np && match && type && !strcmp(match, type); 87 } 88 89 int of_bus_n_addr_cells(struct device_node *np) 90 { 91 u32 cells; 92 93 for (; np; np = np->parent) 94 if (!of_property_read_u32(np, "#address-cells", &cells)) 95 return cells; 96 97 /* No #address-cells property for the root node */ 98 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 99 } 100 101 int of_n_addr_cells(struct device_node *np) 102 { 103 if (np->parent) 104 np = np->parent; 105 106 return of_bus_n_addr_cells(np); 107 } 108 EXPORT_SYMBOL(of_n_addr_cells); 109 110 int of_bus_n_size_cells(struct device_node *np) 111 { 112 u32 cells; 113 114 for (; np; np = np->parent) 115 if (!of_property_read_u32(np, "#size-cells", &cells)) 116 return cells; 117 118 /* No #size-cells property for the root node */ 119 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 120 } 121 122 int of_n_size_cells(struct device_node *np) 123 { 124 if (np->parent) 125 np = np->parent; 126 127 return of_bus_n_size_cells(np); 128 } 129 EXPORT_SYMBOL(of_n_size_cells); 130 131 #ifdef CONFIG_NUMA 132 int __weak of_node_to_nid(struct device_node *np) 133 { 134 return NUMA_NO_NODE; 135 } 136 #endif 137 138 #define OF_PHANDLE_CACHE_BITS 7 139 #define OF_PHANDLE_CACHE_SZ BIT(OF_PHANDLE_CACHE_BITS) 140 141 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ]; 142 143 static u32 of_phandle_cache_hash(phandle handle) 144 { 145 return hash_32(handle, OF_PHANDLE_CACHE_BITS); 146 } 147 148 /* 149 * Caller must hold devtree_lock. 150 */ 151 void __of_phandle_cache_inv_entry(phandle handle) 152 { 153 u32 handle_hash; 154 struct device_node *np; 155 156 if (!handle) 157 return; 158 159 handle_hash = of_phandle_cache_hash(handle); 160 161 np = phandle_cache[handle_hash]; 162 if (np && handle == np->phandle) 163 phandle_cache[handle_hash] = NULL; 164 } 165 166 void __init of_core_init(void) 167 { 168 struct device_node *np; 169 170 of_platform_register_reconfig_notifier(); 171 172 /* Create the kset, and register existing nodes */ 173 mutex_lock(&of_mutex); 174 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 175 if (!of_kset) { 176 mutex_unlock(&of_mutex); 177 pr_err("failed to register existing nodes\n"); 178 return; 179 } 180 for_each_of_allnodes(np) { 181 __of_attach_node_sysfs(np); 182 if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)]) 183 phandle_cache[of_phandle_cache_hash(np->phandle)] = np; 184 } 185 mutex_unlock(&of_mutex); 186 187 /* Symlink in /proc as required by userspace ABI */ 188 if (of_root) 189 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 190 } 191 192 static struct property *__of_find_property(const struct device_node *np, 193 const char *name, int *lenp) 194 { 195 struct property *pp; 196 197 if (!np) 198 return NULL; 199 200 for (pp = np->properties; pp; pp = pp->next) { 201 if (of_prop_cmp(pp->name, name) == 0) { 202 if (lenp) 203 *lenp = pp->length; 204 break; 205 } 206 } 207 208 return pp; 209 } 210 211 struct property *of_find_property(const struct device_node *np, 212 const char *name, 213 int *lenp) 214 { 215 struct property *pp; 216 unsigned long flags; 217 218 raw_spin_lock_irqsave(&devtree_lock, flags); 219 pp = __of_find_property(np, name, lenp); 220 raw_spin_unlock_irqrestore(&devtree_lock, flags); 221 222 return pp; 223 } 224 EXPORT_SYMBOL(of_find_property); 225 226 struct device_node *__of_find_all_nodes(struct device_node *prev) 227 { 228 struct device_node *np; 229 if (!prev) { 230 np = of_root; 231 } else if (prev->child) { 232 np = prev->child; 233 } else { 234 /* Walk back up looking for a sibling, or the end of the structure */ 235 np = prev; 236 while (np->parent && !np->sibling) 237 np = np->parent; 238 np = np->sibling; /* Might be null at the end of the tree */ 239 } 240 return np; 241 } 242 243 /** 244 * of_find_all_nodes - Get next node in global list 245 * @prev: Previous node or NULL to start iteration 246 * of_node_put() will be called on it 247 * 248 * Return: A node pointer with refcount incremented, use 249 * of_node_put() on it when done. 250 */ 251 struct device_node *of_find_all_nodes(struct device_node *prev) 252 { 253 struct device_node *np; 254 unsigned long flags; 255 256 raw_spin_lock_irqsave(&devtree_lock, flags); 257 np = __of_find_all_nodes(prev); 258 of_node_get(np); 259 of_node_put(prev); 260 raw_spin_unlock_irqrestore(&devtree_lock, flags); 261 return np; 262 } 263 EXPORT_SYMBOL(of_find_all_nodes); 264 265 /* 266 * Find a property with a given name for a given node 267 * and return the value. 268 */ 269 const void *__of_get_property(const struct device_node *np, 270 const char *name, int *lenp) 271 { 272 struct property *pp = __of_find_property(np, name, lenp); 273 274 return pp ? pp->value : NULL; 275 } 276 277 /* 278 * Find a property with a given name for a given node 279 * and return the value. 280 */ 281 const void *of_get_property(const struct device_node *np, const char *name, 282 int *lenp) 283 { 284 struct property *pp = of_find_property(np, name, lenp); 285 286 return pp ? pp->value : NULL; 287 } 288 EXPORT_SYMBOL(of_get_property); 289 290 /** 291 * __of_device_is_compatible() - Check if the node matches given constraints 292 * @device: pointer to node 293 * @compat: required compatible string, NULL or "" for any match 294 * @type: required device_type value, NULL or "" for any match 295 * @name: required node name, NULL or "" for any match 296 * 297 * Checks if the given @compat, @type and @name strings match the 298 * properties of the given @device. A constraints can be skipped by 299 * passing NULL or an empty string as the constraint. 300 * 301 * Returns 0 for no match, and a positive integer on match. The return 302 * value is a relative score with larger values indicating better 303 * matches. The score is weighted for the most specific compatible value 304 * to get the highest score. Matching type is next, followed by matching 305 * name. Practically speaking, this results in the following priority 306 * order for matches: 307 * 308 * 1. specific compatible && type && name 309 * 2. specific compatible && type 310 * 3. specific compatible && name 311 * 4. specific compatible 312 * 5. general compatible && type && name 313 * 6. general compatible && type 314 * 7. general compatible && name 315 * 8. general compatible 316 * 9. type && name 317 * 10. type 318 * 11. name 319 */ 320 static int __of_device_is_compatible(const struct device_node *device, 321 const char *compat, const char *type, const char *name) 322 { 323 struct property *prop; 324 const char *cp; 325 int index = 0, score = 0; 326 327 /* Compatible match has highest priority */ 328 if (compat && compat[0]) { 329 prop = __of_find_property(device, "compatible", NULL); 330 for (cp = of_prop_next_string(prop, NULL); cp; 331 cp = of_prop_next_string(prop, cp), index++) { 332 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 333 score = INT_MAX/2 - (index << 2); 334 break; 335 } 336 } 337 if (!score) 338 return 0; 339 } 340 341 /* Matching type is better than matching name */ 342 if (type && type[0]) { 343 if (!__of_node_is_type(device, type)) 344 return 0; 345 score += 2; 346 } 347 348 /* Matching name is a bit better than not */ 349 if (name && name[0]) { 350 if (!of_node_name_eq(device, name)) 351 return 0; 352 score++; 353 } 354 355 return score; 356 } 357 358 /** Checks if the given "compat" string matches one of the strings in 359 * the device's "compatible" property 360 */ 361 int of_device_is_compatible(const struct device_node *device, 362 const char *compat) 363 { 364 unsigned long flags; 365 int res; 366 367 raw_spin_lock_irqsave(&devtree_lock, flags); 368 res = __of_device_is_compatible(device, compat, NULL, NULL); 369 raw_spin_unlock_irqrestore(&devtree_lock, flags); 370 return res; 371 } 372 EXPORT_SYMBOL(of_device_is_compatible); 373 374 /** Checks if the device is compatible with any of the entries in 375 * a NULL terminated array of strings. Returns the best match 376 * score or 0. 377 */ 378 int of_device_compatible_match(const struct device_node *device, 379 const char *const *compat) 380 { 381 unsigned int tmp, score = 0; 382 383 if (!compat) 384 return 0; 385 386 while (*compat) { 387 tmp = of_device_is_compatible(device, *compat); 388 if (tmp > score) 389 score = tmp; 390 compat++; 391 } 392 393 return score; 394 } 395 EXPORT_SYMBOL_GPL(of_device_compatible_match); 396 397 /** 398 * of_machine_compatible_match - Test root of device tree against a compatible array 399 * @compats: NULL terminated array of compatible strings to look for in root node's compatible property. 400 * 401 * Returns true if the root node has any of the given compatible values in its 402 * compatible property. 403 */ 404 bool of_machine_compatible_match(const char *const *compats) 405 { 406 struct device_node *root; 407 int rc = 0; 408 409 root = of_find_node_by_path("/"); 410 if (root) { 411 rc = of_device_compatible_match(root, compats); 412 of_node_put(root); 413 } 414 415 return rc != 0; 416 } 417 EXPORT_SYMBOL(of_machine_compatible_match); 418 419 /** 420 * __of_device_is_available - check if a device is available for use 421 * 422 * @device: Node to check for availability, with locks already held 423 * 424 * Return: True if the status property is absent or set to "okay" or "ok", 425 * false otherwise 426 */ 427 static bool __of_device_is_available(const struct device_node *device) 428 { 429 const char *status; 430 int statlen; 431 432 if (!device) 433 return false; 434 435 status = __of_get_property(device, "status", &statlen); 436 if (status == NULL) 437 return true; 438 439 if (statlen > 0) { 440 if (!strcmp(status, "okay") || !strcmp(status, "ok")) 441 return true; 442 } 443 444 return false; 445 } 446 447 /** 448 * of_device_is_available - check if a device is available for use 449 * 450 * @device: Node to check for availability 451 * 452 * Return: True if the status property is absent or set to "okay" or "ok", 453 * false otherwise 454 */ 455 bool of_device_is_available(const struct device_node *device) 456 { 457 unsigned long flags; 458 bool res; 459 460 raw_spin_lock_irqsave(&devtree_lock, flags); 461 res = __of_device_is_available(device); 462 raw_spin_unlock_irqrestore(&devtree_lock, flags); 463 return res; 464 465 } 466 EXPORT_SYMBOL(of_device_is_available); 467 468 /** 469 * __of_device_is_fail - check if a device has status "fail" or "fail-..." 470 * 471 * @device: Node to check status for, with locks already held 472 * 473 * Return: True if the status property is set to "fail" or "fail-..." (for any 474 * error code suffix), false otherwise 475 */ 476 static bool __of_device_is_fail(const struct device_node *device) 477 { 478 const char *status; 479 480 if (!device) 481 return false; 482 483 status = __of_get_property(device, "status", NULL); 484 if (status == NULL) 485 return false; 486 487 return !strcmp(status, "fail") || !strncmp(status, "fail-", 5); 488 } 489 490 /** 491 * of_device_is_big_endian - check if a device has BE registers 492 * 493 * @device: Node to check for endianness 494 * 495 * Return: True if the device has a "big-endian" property, or if the kernel 496 * was compiled for BE *and* the device has a "native-endian" property. 497 * Returns false otherwise. 498 * 499 * Callers would nominally use ioread32be/iowrite32be if 500 * of_device_is_big_endian() == true, or readl/writel otherwise. 501 */ 502 bool of_device_is_big_endian(const struct device_node *device) 503 { 504 if (of_property_read_bool(device, "big-endian")) 505 return true; 506 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) && 507 of_property_read_bool(device, "native-endian")) 508 return true; 509 return false; 510 } 511 EXPORT_SYMBOL(of_device_is_big_endian); 512 513 /** 514 * of_get_parent - Get a node's parent if any 515 * @node: Node to get parent 516 * 517 * Return: A node pointer with refcount incremented, use 518 * of_node_put() on it when done. 519 */ 520 struct device_node *of_get_parent(const struct device_node *node) 521 { 522 struct device_node *np; 523 unsigned long flags; 524 525 if (!node) 526 return NULL; 527 528 raw_spin_lock_irqsave(&devtree_lock, flags); 529 np = of_node_get(node->parent); 530 raw_spin_unlock_irqrestore(&devtree_lock, flags); 531 return np; 532 } 533 EXPORT_SYMBOL(of_get_parent); 534 535 /** 536 * of_get_next_parent - Iterate to a node's parent 537 * @node: Node to get parent of 538 * 539 * This is like of_get_parent() except that it drops the 540 * refcount on the passed node, making it suitable for iterating 541 * through a node's parents. 542 * 543 * Return: A node pointer with refcount incremented, use 544 * of_node_put() on it when done. 545 */ 546 struct device_node *of_get_next_parent(struct device_node *node) 547 { 548 struct device_node *parent; 549 unsigned long flags; 550 551 if (!node) 552 return NULL; 553 554 raw_spin_lock_irqsave(&devtree_lock, flags); 555 parent = of_node_get(node->parent); 556 of_node_put(node); 557 raw_spin_unlock_irqrestore(&devtree_lock, flags); 558 return parent; 559 } 560 EXPORT_SYMBOL(of_get_next_parent); 561 562 static struct device_node *__of_get_next_child(const struct device_node *node, 563 struct device_node *prev) 564 { 565 struct device_node *next; 566 567 if (!node) 568 return NULL; 569 570 next = prev ? prev->sibling : node->child; 571 of_node_get(next); 572 of_node_put(prev); 573 return next; 574 } 575 #define __for_each_child_of_node(parent, child) \ 576 for (child = __of_get_next_child(parent, NULL); child != NULL; \ 577 child = __of_get_next_child(parent, child)) 578 579 /** 580 * of_get_next_child - Iterate a node childs 581 * @node: parent node 582 * @prev: previous child of the parent node, or NULL to get first 583 * 584 * Return: A node pointer with refcount incremented, use of_node_put() on 585 * it when done. Returns NULL when prev is the last child. Decrements the 586 * refcount of prev. 587 */ 588 struct device_node *of_get_next_child(const struct device_node *node, 589 struct device_node *prev) 590 { 591 struct device_node *next; 592 unsigned long flags; 593 594 raw_spin_lock_irqsave(&devtree_lock, flags); 595 next = __of_get_next_child(node, prev); 596 raw_spin_unlock_irqrestore(&devtree_lock, flags); 597 return next; 598 } 599 EXPORT_SYMBOL(of_get_next_child); 600 601 /** 602 * of_get_next_available_child - Find the next available child node 603 * @node: parent node 604 * @prev: previous child of the parent node, or NULL to get first 605 * 606 * This function is like of_get_next_child(), except that it 607 * automatically skips any disabled nodes (i.e. status = "disabled"). 608 */ 609 struct device_node *of_get_next_available_child(const struct device_node *node, 610 struct device_node *prev) 611 { 612 struct device_node *next; 613 unsigned long flags; 614 615 if (!node) 616 return NULL; 617 618 raw_spin_lock_irqsave(&devtree_lock, flags); 619 next = prev ? prev->sibling : node->child; 620 for (; next; next = next->sibling) { 621 if (!__of_device_is_available(next)) 622 continue; 623 if (of_node_get(next)) 624 break; 625 } 626 of_node_put(prev); 627 raw_spin_unlock_irqrestore(&devtree_lock, flags); 628 return next; 629 } 630 EXPORT_SYMBOL(of_get_next_available_child); 631 632 /** 633 * of_get_next_cpu_node - Iterate on cpu nodes 634 * @prev: previous child of the /cpus node, or NULL to get first 635 * 636 * Unusable CPUs (those with the status property set to "fail" or "fail-...") 637 * will be skipped. 638 * 639 * Return: A cpu node pointer with refcount incremented, use of_node_put() 640 * on it when done. Returns NULL when prev is the last child. Decrements 641 * the refcount of prev. 642 */ 643 struct device_node *of_get_next_cpu_node(struct device_node *prev) 644 { 645 struct device_node *next = NULL; 646 unsigned long flags; 647 struct device_node *node; 648 649 if (!prev) 650 node = of_find_node_by_path("/cpus"); 651 652 raw_spin_lock_irqsave(&devtree_lock, flags); 653 if (prev) 654 next = prev->sibling; 655 else if (node) { 656 next = node->child; 657 of_node_put(node); 658 } 659 for (; next; next = next->sibling) { 660 if (__of_device_is_fail(next)) 661 continue; 662 if (!(of_node_name_eq(next, "cpu") || 663 __of_node_is_type(next, "cpu"))) 664 continue; 665 if (of_node_get(next)) 666 break; 667 } 668 of_node_put(prev); 669 raw_spin_unlock_irqrestore(&devtree_lock, flags); 670 return next; 671 } 672 EXPORT_SYMBOL(of_get_next_cpu_node); 673 674 /** 675 * of_get_compatible_child - Find compatible child node 676 * @parent: parent node 677 * @compatible: compatible string 678 * 679 * Lookup child node whose compatible property contains the given compatible 680 * string. 681 * 682 * Return: a node pointer with refcount incremented, use of_node_put() on it 683 * when done; or NULL if not found. 684 */ 685 struct device_node *of_get_compatible_child(const struct device_node *parent, 686 const char *compatible) 687 { 688 struct device_node *child; 689 690 for_each_child_of_node(parent, child) { 691 if (of_device_is_compatible(child, compatible)) 692 break; 693 } 694 695 return child; 696 } 697 EXPORT_SYMBOL(of_get_compatible_child); 698 699 /** 700 * of_get_child_by_name - Find the child node by name for a given parent 701 * @node: parent node 702 * @name: child name to look for. 703 * 704 * This function looks for child node for given matching name 705 * 706 * Return: A node pointer if found, with refcount incremented, use 707 * of_node_put() on it when done. 708 * Returns NULL if node is not found. 709 */ 710 struct device_node *of_get_child_by_name(const struct device_node *node, 711 const char *name) 712 { 713 struct device_node *child; 714 715 for_each_child_of_node(node, child) 716 if (of_node_name_eq(child, name)) 717 break; 718 return child; 719 } 720 EXPORT_SYMBOL(of_get_child_by_name); 721 722 struct device_node *__of_find_node_by_path(struct device_node *parent, 723 const char *path) 724 { 725 struct device_node *child; 726 int len; 727 728 len = strcspn(path, "/:"); 729 if (!len) 730 return NULL; 731 732 __for_each_child_of_node(parent, child) { 733 const char *name = kbasename(child->full_name); 734 if (strncmp(path, name, len) == 0 && (strlen(name) == len)) 735 return child; 736 } 737 return NULL; 738 } 739 740 struct device_node *__of_find_node_by_full_path(struct device_node *node, 741 const char *path) 742 { 743 const char *separator = strchr(path, ':'); 744 745 while (node && *path == '/') { 746 struct device_node *tmp = node; 747 748 path++; /* Increment past '/' delimiter */ 749 node = __of_find_node_by_path(node, path); 750 of_node_put(tmp); 751 path = strchrnul(path, '/'); 752 if (separator && separator < path) 753 break; 754 } 755 return node; 756 } 757 758 /** 759 * of_find_node_opts_by_path - Find a node matching a full OF path 760 * @path: Either the full path to match, or if the path does not 761 * start with '/', the name of a property of the /aliases 762 * node (an alias). In the case of an alias, the node 763 * matching the alias' value will be returned. 764 * @opts: Address of a pointer into which to store the start of 765 * an options string appended to the end of the path with 766 * a ':' separator. 767 * 768 * Valid paths: 769 * * /foo/bar Full path 770 * * foo Valid alias 771 * * foo/bar Valid alias + relative path 772 * 773 * Return: A node pointer with refcount incremented, use 774 * of_node_put() on it when done. 775 */ 776 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) 777 { 778 struct device_node *np = NULL; 779 struct property *pp; 780 unsigned long flags; 781 const char *separator = strchr(path, ':'); 782 783 if (opts) 784 *opts = separator ? separator + 1 : NULL; 785 786 if (strcmp(path, "/") == 0) 787 return of_node_get(of_root); 788 789 /* The path could begin with an alias */ 790 if (*path != '/') { 791 int len; 792 const char *p = separator; 793 794 if (!p) 795 p = strchrnul(path, '/'); 796 len = p - path; 797 798 /* of_aliases must not be NULL */ 799 if (!of_aliases) 800 return NULL; 801 802 for_each_property_of_node(of_aliases, pp) { 803 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { 804 np = of_find_node_by_path(pp->value); 805 break; 806 } 807 } 808 if (!np) 809 return NULL; 810 path = p; 811 } 812 813 /* Step down the tree matching path components */ 814 raw_spin_lock_irqsave(&devtree_lock, flags); 815 if (!np) 816 np = of_node_get(of_root); 817 np = __of_find_node_by_full_path(np, path); 818 raw_spin_unlock_irqrestore(&devtree_lock, flags); 819 return np; 820 } 821 EXPORT_SYMBOL(of_find_node_opts_by_path); 822 823 /** 824 * of_find_node_by_name - Find a node by its "name" property 825 * @from: The node to start searching from or NULL; the node 826 * you pass will not be searched, only the next one 827 * will. Typically, you pass what the previous call 828 * returned. of_node_put() will be called on @from. 829 * @name: The name string to match against 830 * 831 * Return: A node pointer with refcount incremented, use 832 * of_node_put() on it when done. 833 */ 834 struct device_node *of_find_node_by_name(struct device_node *from, 835 const char *name) 836 { 837 struct device_node *np; 838 unsigned long flags; 839 840 raw_spin_lock_irqsave(&devtree_lock, flags); 841 for_each_of_allnodes_from(from, np) 842 if (of_node_name_eq(np, name) && of_node_get(np)) 843 break; 844 of_node_put(from); 845 raw_spin_unlock_irqrestore(&devtree_lock, flags); 846 return np; 847 } 848 EXPORT_SYMBOL(of_find_node_by_name); 849 850 /** 851 * of_find_node_by_type - Find a node by its "device_type" property 852 * @from: The node to start searching from, or NULL to start searching 853 * the entire device tree. The node you pass will not be 854 * searched, only the next one will; typically, you pass 855 * what the previous call returned. of_node_put() will be 856 * called on from for you. 857 * @type: The type string to match against 858 * 859 * Return: A node pointer with refcount incremented, use 860 * of_node_put() on it when done. 861 */ 862 struct device_node *of_find_node_by_type(struct device_node *from, 863 const char *type) 864 { 865 struct device_node *np; 866 unsigned long flags; 867 868 raw_spin_lock_irqsave(&devtree_lock, flags); 869 for_each_of_allnodes_from(from, np) 870 if (__of_node_is_type(np, type) && of_node_get(np)) 871 break; 872 of_node_put(from); 873 raw_spin_unlock_irqrestore(&devtree_lock, flags); 874 return np; 875 } 876 EXPORT_SYMBOL(of_find_node_by_type); 877 878 /** 879 * of_find_compatible_node - Find a node based on type and one of the 880 * tokens in its "compatible" property 881 * @from: The node to start searching from or NULL, the node 882 * you pass will not be searched, only the next one 883 * will; typically, you pass what the previous call 884 * returned. of_node_put() will be called on it 885 * @type: The type string to match "device_type" or NULL to ignore 886 * @compatible: The string to match to one of the tokens in the device 887 * "compatible" list. 888 * 889 * Return: A node pointer with refcount incremented, use 890 * of_node_put() on it when done. 891 */ 892 struct device_node *of_find_compatible_node(struct device_node *from, 893 const char *type, const char *compatible) 894 { 895 struct device_node *np; 896 unsigned long flags; 897 898 raw_spin_lock_irqsave(&devtree_lock, flags); 899 for_each_of_allnodes_from(from, np) 900 if (__of_device_is_compatible(np, compatible, type, NULL) && 901 of_node_get(np)) 902 break; 903 of_node_put(from); 904 raw_spin_unlock_irqrestore(&devtree_lock, flags); 905 return np; 906 } 907 EXPORT_SYMBOL(of_find_compatible_node); 908 909 /** 910 * of_find_node_with_property - Find a node which has a property with 911 * the given name. 912 * @from: The node to start searching from or NULL, the node 913 * you pass will not be searched, only the next one 914 * will; typically, you pass what the previous call 915 * returned. of_node_put() will be called on it 916 * @prop_name: The name of the property to look for. 917 * 918 * Return: A node pointer with refcount incremented, use 919 * of_node_put() on it when done. 920 */ 921 struct device_node *of_find_node_with_property(struct device_node *from, 922 const char *prop_name) 923 { 924 struct device_node *np; 925 struct property *pp; 926 unsigned long flags; 927 928 raw_spin_lock_irqsave(&devtree_lock, flags); 929 for_each_of_allnodes_from(from, np) { 930 for (pp = np->properties; pp; pp = pp->next) { 931 if (of_prop_cmp(pp->name, prop_name) == 0) { 932 of_node_get(np); 933 goto out; 934 } 935 } 936 } 937 out: 938 of_node_put(from); 939 raw_spin_unlock_irqrestore(&devtree_lock, flags); 940 return np; 941 } 942 EXPORT_SYMBOL(of_find_node_with_property); 943 944 static 945 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 946 const struct device_node *node) 947 { 948 const struct of_device_id *best_match = NULL; 949 int score, best_score = 0; 950 951 if (!matches) 952 return NULL; 953 954 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 955 score = __of_device_is_compatible(node, matches->compatible, 956 matches->type, matches->name); 957 if (score > best_score) { 958 best_match = matches; 959 best_score = score; 960 } 961 } 962 963 return best_match; 964 } 965 966 /** 967 * of_match_node - Tell if a device_node has a matching of_match structure 968 * @matches: array of of device match structures to search in 969 * @node: the of device structure to match against 970 * 971 * Low level utility function used by device matching. 972 */ 973 const struct of_device_id *of_match_node(const struct of_device_id *matches, 974 const struct device_node *node) 975 { 976 const struct of_device_id *match; 977 unsigned long flags; 978 979 raw_spin_lock_irqsave(&devtree_lock, flags); 980 match = __of_match_node(matches, node); 981 raw_spin_unlock_irqrestore(&devtree_lock, flags); 982 return match; 983 } 984 EXPORT_SYMBOL(of_match_node); 985 986 /** 987 * of_find_matching_node_and_match - Find a node based on an of_device_id 988 * match table. 989 * @from: The node to start searching from or NULL, the node 990 * you pass will not be searched, only the next one 991 * will; typically, you pass what the previous call 992 * returned. of_node_put() will be called on it 993 * @matches: array of of device match structures to search in 994 * @match: Updated to point at the matches entry which matched 995 * 996 * Return: A node pointer with refcount incremented, use 997 * of_node_put() on it when done. 998 */ 999 struct device_node *of_find_matching_node_and_match(struct device_node *from, 1000 const struct of_device_id *matches, 1001 const struct of_device_id **match) 1002 { 1003 struct device_node *np; 1004 const struct of_device_id *m; 1005 unsigned long flags; 1006 1007 if (match) 1008 *match = NULL; 1009 1010 raw_spin_lock_irqsave(&devtree_lock, flags); 1011 for_each_of_allnodes_from(from, np) { 1012 m = __of_match_node(matches, np); 1013 if (m && of_node_get(np)) { 1014 if (match) 1015 *match = m; 1016 break; 1017 } 1018 } 1019 of_node_put(from); 1020 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1021 return np; 1022 } 1023 EXPORT_SYMBOL(of_find_matching_node_and_match); 1024 1025 /** 1026 * of_alias_from_compatible - Lookup appropriate alias for a device node 1027 * depending on compatible 1028 * @node: pointer to a device tree node 1029 * @alias: Pointer to buffer that alias value will be copied into 1030 * @len: Length of alias value 1031 * 1032 * Based on the value of the compatible property, this routine will attempt 1033 * to choose an appropriate alias value for a particular device tree node. 1034 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1035 * from the first entry in the compatible list property. 1036 * 1037 * Note: The matching on just the "product" side of the compatible is a relic 1038 * from I2C and SPI. Please do not add any new user. 1039 * 1040 * Return: This routine returns 0 on success, <0 on failure. 1041 */ 1042 int of_alias_from_compatible(const struct device_node *node, char *alias, int len) 1043 { 1044 const char *compatible, *p; 1045 int cplen; 1046 1047 compatible = of_get_property(node, "compatible", &cplen); 1048 if (!compatible || strlen(compatible) > cplen) 1049 return -ENODEV; 1050 p = strchr(compatible, ','); 1051 strscpy(alias, p ? p + 1 : compatible, len); 1052 return 0; 1053 } 1054 EXPORT_SYMBOL_GPL(of_alias_from_compatible); 1055 1056 /** 1057 * of_find_node_by_phandle - Find a node given a phandle 1058 * @handle: phandle of the node to find 1059 * 1060 * Return: A node pointer with refcount incremented, use 1061 * of_node_put() on it when done. 1062 */ 1063 struct device_node *of_find_node_by_phandle(phandle handle) 1064 { 1065 struct device_node *np = NULL; 1066 unsigned long flags; 1067 u32 handle_hash; 1068 1069 if (!handle) 1070 return NULL; 1071 1072 handle_hash = of_phandle_cache_hash(handle); 1073 1074 raw_spin_lock_irqsave(&devtree_lock, flags); 1075 1076 if (phandle_cache[handle_hash] && 1077 handle == phandle_cache[handle_hash]->phandle) 1078 np = phandle_cache[handle_hash]; 1079 1080 if (!np) { 1081 for_each_of_allnodes(np) 1082 if (np->phandle == handle && 1083 !of_node_check_flag(np, OF_DETACHED)) { 1084 phandle_cache[handle_hash] = np; 1085 break; 1086 } 1087 } 1088 1089 of_node_get(np); 1090 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1091 return np; 1092 } 1093 EXPORT_SYMBOL(of_find_node_by_phandle); 1094 1095 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1096 { 1097 int i; 1098 printk("%s %pOF", msg, args->np); 1099 for (i = 0; i < args->args_count; i++) { 1100 const char delim = i ? ',' : ':'; 1101 1102 pr_cont("%c%08x", delim, args->args[i]); 1103 } 1104 pr_cont("\n"); 1105 } 1106 1107 int of_phandle_iterator_init(struct of_phandle_iterator *it, 1108 const struct device_node *np, 1109 const char *list_name, 1110 const char *cells_name, 1111 int cell_count) 1112 { 1113 const __be32 *list; 1114 int size; 1115 1116 memset(it, 0, sizeof(*it)); 1117 1118 /* 1119 * one of cell_count or cells_name must be provided to determine the 1120 * argument length. 1121 */ 1122 if (cell_count < 0 && !cells_name) 1123 return -EINVAL; 1124 1125 list = of_get_property(np, list_name, &size); 1126 if (!list) 1127 return -ENOENT; 1128 1129 it->cells_name = cells_name; 1130 it->cell_count = cell_count; 1131 it->parent = np; 1132 it->list_end = list + size / sizeof(*list); 1133 it->phandle_end = list; 1134 it->cur = list; 1135 1136 return 0; 1137 } 1138 EXPORT_SYMBOL_GPL(of_phandle_iterator_init); 1139 1140 int of_phandle_iterator_next(struct of_phandle_iterator *it) 1141 { 1142 uint32_t count = 0; 1143 1144 if (it->node) { 1145 of_node_put(it->node); 1146 it->node = NULL; 1147 } 1148 1149 if (!it->cur || it->phandle_end >= it->list_end) 1150 return -ENOENT; 1151 1152 it->cur = it->phandle_end; 1153 1154 /* If phandle is 0, then it is an empty entry with no arguments. */ 1155 it->phandle = be32_to_cpup(it->cur++); 1156 1157 if (it->phandle) { 1158 1159 /* 1160 * Find the provider node and parse the #*-cells property to 1161 * determine the argument length. 1162 */ 1163 it->node = of_find_node_by_phandle(it->phandle); 1164 1165 if (it->cells_name) { 1166 if (!it->node) { 1167 pr_err("%pOF: could not find phandle %d\n", 1168 it->parent, it->phandle); 1169 goto err; 1170 } 1171 1172 if (of_property_read_u32(it->node, it->cells_name, 1173 &count)) { 1174 /* 1175 * If both cell_count and cells_name is given, 1176 * fall back to cell_count in absence 1177 * of the cells_name property 1178 */ 1179 if (it->cell_count >= 0) { 1180 count = it->cell_count; 1181 } else { 1182 pr_err("%pOF: could not get %s for %pOF\n", 1183 it->parent, 1184 it->cells_name, 1185 it->node); 1186 goto err; 1187 } 1188 } 1189 } else { 1190 count = it->cell_count; 1191 } 1192 1193 /* 1194 * Make sure that the arguments actually fit in the remaining 1195 * property data length 1196 */ 1197 if (it->cur + count > it->list_end) { 1198 if (it->cells_name) 1199 pr_err("%pOF: %s = %d found %td\n", 1200 it->parent, it->cells_name, 1201 count, it->list_end - it->cur); 1202 else 1203 pr_err("%pOF: phandle %s needs %d, found %td\n", 1204 it->parent, of_node_full_name(it->node), 1205 count, it->list_end - it->cur); 1206 goto err; 1207 } 1208 } 1209 1210 it->phandle_end = it->cur + count; 1211 it->cur_count = count; 1212 1213 return 0; 1214 1215 err: 1216 if (it->node) { 1217 of_node_put(it->node); 1218 it->node = NULL; 1219 } 1220 1221 return -EINVAL; 1222 } 1223 EXPORT_SYMBOL_GPL(of_phandle_iterator_next); 1224 1225 int of_phandle_iterator_args(struct of_phandle_iterator *it, 1226 uint32_t *args, 1227 int size) 1228 { 1229 int i, count; 1230 1231 count = it->cur_count; 1232 1233 if (WARN_ON(size < count)) 1234 count = size; 1235 1236 for (i = 0; i < count; i++) 1237 args[i] = be32_to_cpup(it->cur++); 1238 1239 return count; 1240 } 1241 1242 int __of_parse_phandle_with_args(const struct device_node *np, 1243 const char *list_name, 1244 const char *cells_name, 1245 int cell_count, int index, 1246 struct of_phandle_args *out_args) 1247 { 1248 struct of_phandle_iterator it; 1249 int rc, cur_index = 0; 1250 1251 if (index < 0) 1252 return -EINVAL; 1253 1254 /* Loop over the phandles until all the requested entry is found */ 1255 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) { 1256 /* 1257 * All of the error cases bail out of the loop, so at 1258 * this point, the parsing is successful. If the requested 1259 * index matches, then fill the out_args structure and return, 1260 * or return -ENOENT for an empty entry. 1261 */ 1262 rc = -ENOENT; 1263 if (cur_index == index) { 1264 if (!it.phandle) 1265 goto err; 1266 1267 if (out_args) { 1268 int c; 1269 1270 c = of_phandle_iterator_args(&it, 1271 out_args->args, 1272 MAX_PHANDLE_ARGS); 1273 out_args->np = it.node; 1274 out_args->args_count = c; 1275 } else { 1276 of_node_put(it.node); 1277 } 1278 1279 /* Found it! return success */ 1280 return 0; 1281 } 1282 1283 cur_index++; 1284 } 1285 1286 /* 1287 * Unlock node before returning result; will be one of: 1288 * -ENOENT : index is for empty phandle 1289 * -EINVAL : parsing error on data 1290 */ 1291 1292 err: 1293 of_node_put(it.node); 1294 return rc; 1295 } 1296 EXPORT_SYMBOL(__of_parse_phandle_with_args); 1297 1298 /** 1299 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it 1300 * @np: pointer to a device tree node containing a list 1301 * @list_name: property name that contains a list 1302 * @stem_name: stem of property names that specify phandles' arguments count 1303 * @index: index of a phandle to parse out 1304 * @out_args: optional pointer to output arguments structure (will be filled) 1305 * 1306 * This function is useful to parse lists of phandles and their arguments. 1307 * Returns 0 on success and fills out_args, on error returns appropriate errno 1308 * value. The difference between this function and of_parse_phandle_with_args() 1309 * is that this API remaps a phandle if the node the phandle points to has 1310 * a <@stem_name>-map property. 1311 * 1312 * Caller is responsible to call of_node_put() on the returned out_args->np 1313 * pointer. 1314 * 1315 * Example:: 1316 * 1317 * phandle1: node1 { 1318 * #list-cells = <2>; 1319 * }; 1320 * 1321 * phandle2: node2 { 1322 * #list-cells = <1>; 1323 * }; 1324 * 1325 * phandle3: node3 { 1326 * #list-cells = <1>; 1327 * list-map = <0 &phandle2 3>, 1328 * <1 &phandle2 2>, 1329 * <2 &phandle1 5 1>; 1330 * list-map-mask = <0x3>; 1331 * }; 1332 * 1333 * node4 { 1334 * list = <&phandle1 1 2 &phandle3 0>; 1335 * }; 1336 * 1337 * To get a device_node of the ``node2`` node you may call this: 1338 * of_parse_phandle_with_args(node4, "list", "list", 1, &args); 1339 */ 1340 int of_parse_phandle_with_args_map(const struct device_node *np, 1341 const char *list_name, 1342 const char *stem_name, 1343 int index, struct of_phandle_args *out_args) 1344 { 1345 char *cells_name, *map_name = NULL, *mask_name = NULL; 1346 char *pass_name = NULL; 1347 struct device_node *cur, *new = NULL; 1348 const __be32 *map, *mask, *pass; 1349 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 }; 1350 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 }; 1351 __be32 initial_match_array[MAX_PHANDLE_ARGS]; 1352 const __be32 *match_array = initial_match_array; 1353 int i, ret, map_len, match; 1354 u32 list_size, new_size; 1355 1356 if (index < 0) 1357 return -EINVAL; 1358 1359 cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name); 1360 if (!cells_name) 1361 return -ENOMEM; 1362 1363 ret = -ENOMEM; 1364 map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name); 1365 if (!map_name) 1366 goto free; 1367 1368 mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name); 1369 if (!mask_name) 1370 goto free; 1371 1372 pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name); 1373 if (!pass_name) 1374 goto free; 1375 1376 ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index, 1377 out_args); 1378 if (ret) 1379 goto free; 1380 1381 /* Get the #<list>-cells property */ 1382 cur = out_args->np; 1383 ret = of_property_read_u32(cur, cells_name, &list_size); 1384 if (ret < 0) 1385 goto put; 1386 1387 /* Precalculate the match array - this simplifies match loop */ 1388 for (i = 0; i < list_size; i++) 1389 initial_match_array[i] = cpu_to_be32(out_args->args[i]); 1390 1391 ret = -EINVAL; 1392 while (cur) { 1393 /* Get the <list>-map property */ 1394 map = of_get_property(cur, map_name, &map_len); 1395 if (!map) { 1396 ret = 0; 1397 goto free; 1398 } 1399 map_len /= sizeof(u32); 1400 1401 /* Get the <list>-map-mask property (optional) */ 1402 mask = of_get_property(cur, mask_name, NULL); 1403 if (!mask) 1404 mask = dummy_mask; 1405 /* Iterate through <list>-map property */ 1406 match = 0; 1407 while (map_len > (list_size + 1) && !match) { 1408 /* Compare specifiers */ 1409 match = 1; 1410 for (i = 0; i < list_size; i++, map_len--) 1411 match &= !((match_array[i] ^ *map++) & mask[i]); 1412 1413 of_node_put(new); 1414 new = of_find_node_by_phandle(be32_to_cpup(map)); 1415 map++; 1416 map_len--; 1417 1418 /* Check if not found */ 1419 if (!new) 1420 goto put; 1421 1422 if (!of_device_is_available(new)) 1423 match = 0; 1424 1425 ret = of_property_read_u32(new, cells_name, &new_size); 1426 if (ret) 1427 goto put; 1428 1429 /* Check for malformed properties */ 1430 if (WARN_ON(new_size > MAX_PHANDLE_ARGS)) 1431 goto put; 1432 if (map_len < new_size) 1433 goto put; 1434 1435 /* Move forward by new node's #<list>-cells amount */ 1436 map += new_size; 1437 map_len -= new_size; 1438 } 1439 if (!match) 1440 goto put; 1441 1442 /* Get the <list>-map-pass-thru property (optional) */ 1443 pass = of_get_property(cur, pass_name, NULL); 1444 if (!pass) 1445 pass = dummy_pass; 1446 1447 /* 1448 * Successfully parsed a <list>-map translation; copy new 1449 * specifier into the out_args structure, keeping the 1450 * bits specified in <list>-map-pass-thru. 1451 */ 1452 match_array = map - new_size; 1453 for (i = 0; i < new_size; i++) { 1454 __be32 val = *(map - new_size + i); 1455 1456 if (i < list_size) { 1457 val &= ~pass[i]; 1458 val |= cpu_to_be32(out_args->args[i]) & pass[i]; 1459 } 1460 1461 out_args->args[i] = be32_to_cpu(val); 1462 } 1463 out_args->args_count = list_size = new_size; 1464 /* Iterate again with new provider */ 1465 out_args->np = new; 1466 of_node_put(cur); 1467 cur = new; 1468 new = NULL; 1469 } 1470 put: 1471 of_node_put(cur); 1472 of_node_put(new); 1473 free: 1474 kfree(mask_name); 1475 kfree(map_name); 1476 kfree(cells_name); 1477 kfree(pass_name); 1478 1479 return ret; 1480 } 1481 EXPORT_SYMBOL(of_parse_phandle_with_args_map); 1482 1483 /** 1484 * of_count_phandle_with_args() - Find the number of phandles references in a property 1485 * @np: pointer to a device tree node containing a list 1486 * @list_name: property name that contains a list 1487 * @cells_name: property name that specifies phandles' arguments count 1488 * 1489 * Return: The number of phandle + argument tuples within a property. It 1490 * is a typical pattern to encode a list of phandle and variable 1491 * arguments into a single property. The number of arguments is encoded 1492 * by a property in the phandle-target node. For example, a gpios 1493 * property would contain a list of GPIO specifies consisting of a 1494 * phandle and 1 or more arguments. The number of arguments are 1495 * determined by the #gpio-cells property in the node pointed to by the 1496 * phandle. 1497 */ 1498 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1499 const char *cells_name) 1500 { 1501 struct of_phandle_iterator it; 1502 int rc, cur_index = 0; 1503 1504 /* 1505 * If cells_name is NULL we assume a cell count of 0. This makes 1506 * counting the phandles trivial as each 32bit word in the list is a 1507 * phandle and no arguments are to consider. So we don't iterate through 1508 * the list but just use the length to determine the phandle count. 1509 */ 1510 if (!cells_name) { 1511 const __be32 *list; 1512 int size; 1513 1514 list = of_get_property(np, list_name, &size); 1515 if (!list) 1516 return -ENOENT; 1517 1518 return size / sizeof(*list); 1519 } 1520 1521 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1); 1522 if (rc) 1523 return rc; 1524 1525 while ((rc = of_phandle_iterator_next(&it)) == 0) 1526 cur_index += 1; 1527 1528 if (rc != -ENOENT) 1529 return rc; 1530 1531 return cur_index; 1532 } 1533 EXPORT_SYMBOL(of_count_phandle_with_args); 1534 1535 static struct property *__of_remove_property_from_list(struct property **list, struct property *prop) 1536 { 1537 struct property **next; 1538 1539 for (next = list; *next; next = &(*next)->next) { 1540 if (*next == prop) { 1541 *next = prop->next; 1542 prop->next = NULL; 1543 return prop; 1544 } 1545 } 1546 return NULL; 1547 } 1548 1549 /** 1550 * __of_add_property - Add a property to a node without lock operations 1551 * @np: Caller's Device Node 1552 * @prop: Property to add 1553 */ 1554 int __of_add_property(struct device_node *np, struct property *prop) 1555 { 1556 int rc = 0; 1557 unsigned long flags; 1558 struct property **next; 1559 1560 raw_spin_lock_irqsave(&devtree_lock, flags); 1561 1562 __of_remove_property_from_list(&np->deadprops, prop); 1563 1564 prop->next = NULL; 1565 next = &np->properties; 1566 while (*next) { 1567 if (strcmp(prop->name, (*next)->name) == 0) { 1568 /* duplicate ! don't insert it */ 1569 rc = -EEXIST; 1570 goto out_unlock; 1571 } 1572 next = &(*next)->next; 1573 } 1574 *next = prop; 1575 1576 out_unlock: 1577 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1578 if (rc) 1579 return rc; 1580 1581 __of_add_property_sysfs(np, prop); 1582 return 0; 1583 } 1584 1585 /** 1586 * of_add_property - Add a property to a node 1587 * @np: Caller's Device Node 1588 * @prop: Property to add 1589 */ 1590 int of_add_property(struct device_node *np, struct property *prop) 1591 { 1592 int rc; 1593 1594 mutex_lock(&of_mutex); 1595 rc = __of_add_property(np, prop); 1596 mutex_unlock(&of_mutex); 1597 1598 if (!rc) 1599 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); 1600 1601 return rc; 1602 } 1603 EXPORT_SYMBOL_GPL(of_add_property); 1604 1605 int __of_remove_property(struct device_node *np, struct property *prop) 1606 { 1607 unsigned long flags; 1608 int rc = -ENODEV; 1609 1610 raw_spin_lock_irqsave(&devtree_lock, flags); 1611 1612 if (__of_remove_property_from_list(&np->properties, prop)) { 1613 /* Found the property, add it to deadprops list */ 1614 prop->next = np->deadprops; 1615 np->deadprops = prop; 1616 rc = 0; 1617 } 1618 1619 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1620 if (rc) 1621 return rc; 1622 1623 __of_remove_property_sysfs(np, prop); 1624 return 0; 1625 } 1626 1627 /** 1628 * of_remove_property - Remove a property from a node. 1629 * @np: Caller's Device Node 1630 * @prop: Property to remove 1631 * 1632 * Note that we don't actually remove it, since we have given out 1633 * who-knows-how-many pointers to the data using get-property. 1634 * Instead we just move the property to the "dead properties" 1635 * list, so it won't be found any more. 1636 */ 1637 int of_remove_property(struct device_node *np, struct property *prop) 1638 { 1639 int rc; 1640 1641 if (!prop) 1642 return -ENODEV; 1643 1644 mutex_lock(&of_mutex); 1645 rc = __of_remove_property(np, prop); 1646 mutex_unlock(&of_mutex); 1647 1648 if (!rc) 1649 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); 1650 1651 return rc; 1652 } 1653 EXPORT_SYMBOL_GPL(of_remove_property); 1654 1655 int __of_update_property(struct device_node *np, struct property *newprop, 1656 struct property **oldpropp) 1657 { 1658 struct property **next, *oldprop; 1659 unsigned long flags; 1660 1661 raw_spin_lock_irqsave(&devtree_lock, flags); 1662 1663 __of_remove_property_from_list(&np->deadprops, newprop); 1664 1665 for (next = &np->properties; *next; next = &(*next)->next) { 1666 if (of_prop_cmp((*next)->name, newprop->name) == 0) 1667 break; 1668 } 1669 *oldpropp = oldprop = *next; 1670 1671 if (oldprop) { 1672 /* replace the node */ 1673 newprop->next = oldprop->next; 1674 *next = newprop; 1675 oldprop->next = np->deadprops; 1676 np->deadprops = oldprop; 1677 } else { 1678 /* new node */ 1679 newprop->next = NULL; 1680 *next = newprop; 1681 } 1682 1683 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1684 1685 __of_update_property_sysfs(np, newprop, oldprop); 1686 1687 return 0; 1688 } 1689 1690 /* 1691 * of_update_property - Update a property in a node, if the property does 1692 * not exist, add it. 1693 * 1694 * Note that we don't actually remove it, since we have given out 1695 * who-knows-how-many pointers to the data using get-property. 1696 * Instead we just move the property to the "dead properties" list, 1697 * and add the new property to the property list 1698 */ 1699 int of_update_property(struct device_node *np, struct property *newprop) 1700 { 1701 struct property *oldprop; 1702 int rc; 1703 1704 if (!newprop->name) 1705 return -EINVAL; 1706 1707 mutex_lock(&of_mutex); 1708 rc = __of_update_property(np, newprop, &oldprop); 1709 mutex_unlock(&of_mutex); 1710 1711 if (!rc) 1712 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); 1713 1714 return rc; 1715 } 1716 1717 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 1718 int id, const char *stem, int stem_len) 1719 { 1720 ap->np = np; 1721 ap->id = id; 1722 strscpy(ap->stem, stem, stem_len + 1); 1723 list_add_tail(&ap->link, &aliases_lookup); 1724 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n", 1725 ap->alias, ap->stem, ap->id, np); 1726 } 1727 1728 /** 1729 * of_alias_scan - Scan all properties of the 'aliases' node 1730 * @dt_alloc: An allocator that provides a virtual address to memory 1731 * for storing the resulting tree 1732 * 1733 * The function scans all the properties of the 'aliases' node and populates 1734 * the global lookup table with the properties. It returns the 1735 * number of alias properties found, or an error code in case of failure. 1736 */ 1737 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 1738 { 1739 struct property *pp; 1740 1741 of_aliases = of_find_node_by_path("/aliases"); 1742 of_chosen = of_find_node_by_path("/chosen"); 1743 if (of_chosen == NULL) 1744 of_chosen = of_find_node_by_path("/chosen@0"); 1745 1746 if (of_chosen) { 1747 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ 1748 const char *name = NULL; 1749 1750 if (of_property_read_string(of_chosen, "stdout-path", &name)) 1751 of_property_read_string(of_chosen, "linux,stdout-path", 1752 &name); 1753 if (IS_ENABLED(CONFIG_PPC) && !name) 1754 of_property_read_string(of_aliases, "stdout", &name); 1755 if (name) 1756 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); 1757 if (of_stdout) 1758 of_stdout->fwnode.flags |= FWNODE_FLAG_BEST_EFFORT; 1759 } 1760 1761 if (!of_aliases) 1762 return; 1763 1764 for_each_property_of_node(of_aliases, pp) { 1765 const char *start = pp->name; 1766 const char *end = start + strlen(start); 1767 struct device_node *np; 1768 struct alias_prop *ap; 1769 int id, len; 1770 1771 /* Skip those we do not want to proceed */ 1772 if (!strcmp(pp->name, "name") || 1773 !strcmp(pp->name, "phandle") || 1774 !strcmp(pp->name, "linux,phandle")) 1775 continue; 1776 1777 np = of_find_node_by_path(pp->value); 1778 if (!np) 1779 continue; 1780 1781 /* walk the alias backwards to extract the id and work out 1782 * the 'stem' string */ 1783 while (isdigit(*(end-1)) && end > start) 1784 end--; 1785 len = end - start; 1786 1787 if (kstrtoint(end, 10, &id) < 0) 1788 continue; 1789 1790 /* Allocate an alias_prop with enough space for the stem */ 1791 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap)); 1792 if (!ap) 1793 continue; 1794 memset(ap, 0, sizeof(*ap) + len + 1); 1795 ap->alias = start; 1796 of_alias_add(ap, np, id, start, len); 1797 } 1798 } 1799 1800 /** 1801 * of_alias_get_id - Get alias id for the given device_node 1802 * @np: Pointer to the given device_node 1803 * @stem: Alias stem of the given device_node 1804 * 1805 * The function travels the lookup table to get the alias id for the given 1806 * device_node and alias stem. 1807 * 1808 * Return: The alias id if found. 1809 */ 1810 int of_alias_get_id(struct device_node *np, const char *stem) 1811 { 1812 struct alias_prop *app; 1813 int id = -ENODEV; 1814 1815 mutex_lock(&of_mutex); 1816 list_for_each_entry(app, &aliases_lookup, link) { 1817 if (strcmp(app->stem, stem) != 0) 1818 continue; 1819 1820 if (np == app->np) { 1821 id = app->id; 1822 break; 1823 } 1824 } 1825 mutex_unlock(&of_mutex); 1826 1827 return id; 1828 } 1829 EXPORT_SYMBOL_GPL(of_alias_get_id); 1830 1831 /** 1832 * of_alias_get_highest_id - Get highest alias id for the given stem 1833 * @stem: Alias stem to be examined 1834 * 1835 * The function travels the lookup table to get the highest alias id for the 1836 * given alias stem. It returns the alias id if found. 1837 */ 1838 int of_alias_get_highest_id(const char *stem) 1839 { 1840 struct alias_prop *app; 1841 int id = -ENODEV; 1842 1843 mutex_lock(&of_mutex); 1844 list_for_each_entry(app, &aliases_lookup, link) { 1845 if (strcmp(app->stem, stem) != 0) 1846 continue; 1847 1848 if (app->id > id) 1849 id = app->id; 1850 } 1851 mutex_unlock(&of_mutex); 1852 1853 return id; 1854 } 1855 EXPORT_SYMBOL_GPL(of_alias_get_highest_id); 1856 1857 /** 1858 * of_console_check() - Test and setup console for DT setup 1859 * @dn: Pointer to device node 1860 * @name: Name to use for preferred console without index. ex. "ttyS" 1861 * @index: Index to use for preferred console. 1862 * 1863 * Check if the given device node matches the stdout-path property in the 1864 * /chosen node. If it does then register it as the preferred console. 1865 * 1866 * Return: TRUE if console successfully setup. Otherwise return FALSE. 1867 */ 1868 bool of_console_check(struct device_node *dn, char *name, int index) 1869 { 1870 if (!dn || dn != of_stdout || console_set_on_cmdline) 1871 return false; 1872 1873 /* 1874 * XXX: cast `options' to char pointer to suppress complication 1875 * warnings: printk, UART and console drivers expect char pointer. 1876 */ 1877 return !add_preferred_console(name, index, (char *)of_stdout_options); 1878 } 1879 EXPORT_SYMBOL_GPL(of_console_check); 1880 1881 /** 1882 * of_find_next_cache_node - Find a node's subsidiary cache 1883 * @np: node of type "cpu" or "cache" 1884 * 1885 * Return: A node pointer with refcount incremented, use 1886 * of_node_put() on it when done. Caller should hold a reference 1887 * to np. 1888 */ 1889 struct device_node *of_find_next_cache_node(const struct device_node *np) 1890 { 1891 struct device_node *child, *cache_node; 1892 1893 cache_node = of_parse_phandle(np, "l2-cache", 0); 1894 if (!cache_node) 1895 cache_node = of_parse_phandle(np, "next-level-cache", 0); 1896 1897 if (cache_node) 1898 return cache_node; 1899 1900 /* OF on pmac has nodes instead of properties named "l2-cache" 1901 * beneath CPU nodes. 1902 */ 1903 if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu")) 1904 for_each_child_of_node(np, child) 1905 if (of_node_is_type(child, "cache")) 1906 return child; 1907 1908 return NULL; 1909 } 1910 1911 /** 1912 * of_find_last_cache_level - Find the level at which the last cache is 1913 * present for the given logical cpu 1914 * 1915 * @cpu: cpu number(logical index) for which the last cache level is needed 1916 * 1917 * Return: The level at which the last cache is present. It is exactly 1918 * same as the total number of cache levels for the given logical cpu. 1919 */ 1920 int of_find_last_cache_level(unsigned int cpu) 1921 { 1922 u32 cache_level = 0; 1923 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu); 1924 1925 while (np) { 1926 of_node_put(prev); 1927 prev = np; 1928 np = of_find_next_cache_node(np); 1929 } 1930 1931 of_property_read_u32(prev, "cache-level", &cache_level); 1932 of_node_put(prev); 1933 1934 return cache_level; 1935 } 1936 1937 /** 1938 * of_map_id - Translate an ID through a downstream mapping. 1939 * @np: root complex device node. 1940 * @id: device ID to map. 1941 * @map_name: property name of the map to use. 1942 * @map_mask_name: optional property name of the mask to use. 1943 * @target: optional pointer to a target device node. 1944 * @id_out: optional pointer to receive the translated ID. 1945 * 1946 * Given a device ID, look up the appropriate implementation-defined 1947 * platform ID and/or the target device which receives transactions on that 1948 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or 1949 * @id_out may be NULL if only the other is required. If @target points to 1950 * a non-NULL device node pointer, only entries targeting that node will be 1951 * matched; if it points to a NULL value, it will receive the device node of 1952 * the first matching target phandle, with a reference held. 1953 * 1954 * Return: 0 on success or a standard error code on failure. 1955 */ 1956 int of_map_id(struct device_node *np, u32 id, 1957 const char *map_name, const char *map_mask_name, 1958 struct device_node **target, u32 *id_out) 1959 { 1960 u32 map_mask, masked_id; 1961 int map_len; 1962 const __be32 *map = NULL; 1963 1964 if (!np || !map_name || (!target && !id_out)) 1965 return -EINVAL; 1966 1967 map = of_get_property(np, map_name, &map_len); 1968 if (!map) { 1969 if (target) 1970 return -ENODEV; 1971 /* Otherwise, no map implies no translation */ 1972 *id_out = id; 1973 return 0; 1974 } 1975 1976 if (!map_len || map_len % (4 * sizeof(*map))) { 1977 pr_err("%pOF: Error: Bad %s length: %d\n", np, 1978 map_name, map_len); 1979 return -EINVAL; 1980 } 1981 1982 /* The default is to select all bits. */ 1983 map_mask = 0xffffffff; 1984 1985 /* 1986 * Can be overridden by "{iommu,msi}-map-mask" property. 1987 * If of_property_read_u32() fails, the default is used. 1988 */ 1989 if (map_mask_name) 1990 of_property_read_u32(np, map_mask_name, &map_mask); 1991 1992 masked_id = map_mask & id; 1993 for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) { 1994 struct device_node *phandle_node; 1995 u32 id_base = be32_to_cpup(map + 0); 1996 u32 phandle = be32_to_cpup(map + 1); 1997 u32 out_base = be32_to_cpup(map + 2); 1998 u32 id_len = be32_to_cpup(map + 3); 1999 2000 if (id_base & ~map_mask) { 2001 pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n", 2002 np, map_name, map_name, 2003 map_mask, id_base); 2004 return -EFAULT; 2005 } 2006 2007 if (masked_id < id_base || masked_id >= id_base + id_len) 2008 continue; 2009 2010 phandle_node = of_find_node_by_phandle(phandle); 2011 if (!phandle_node) 2012 return -ENODEV; 2013 2014 if (target) { 2015 if (*target) 2016 of_node_put(phandle_node); 2017 else 2018 *target = phandle_node; 2019 2020 if (*target != phandle_node) 2021 continue; 2022 } 2023 2024 if (id_out) 2025 *id_out = masked_id - id_base + out_base; 2026 2027 pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n", 2028 np, map_name, map_mask, id_base, out_base, 2029 id_len, id, masked_id - id_base + out_base); 2030 return 0; 2031 } 2032 2033 pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name, 2034 id, target && *target ? *target : NULL); 2035 2036 /* Bypasses translation */ 2037 if (id_out) 2038 *id_out = id; 2039 return 0; 2040 } 2041 EXPORT_SYMBOL_GPL(of_map_id); 2042