1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 Red Hat, Inc. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-array.h" 9 #include "dm-space-map.h" 10 #include "dm-transaction-manager.h" 11 12 #include <linux/export.h> 13 #include <linux/device-mapper.h> 14 15 #define DM_MSG_PREFIX "array" 16 17 /*----------------------------------------------------------------*/ 18 19 /* 20 * The array is implemented as a fully populated btree, which points to 21 * blocks that contain the packed values. This is more space efficient 22 * than just using a btree since we don't store 1 key per value. 23 */ 24 struct array_block { 25 __le32 csum; 26 __le32 max_entries; 27 __le32 nr_entries; 28 __le32 value_size; 29 __le64 blocknr; /* Block this node is supposed to live in. */ 30 } __packed; 31 32 /*----------------------------------------------------------------*/ 33 34 /* 35 * Validator methods. As usual we calculate a checksum, and also write the 36 * block location into the header (paranoia about ssds remapping areas by 37 * mistake). 38 */ 39 #define CSUM_XOR 595846735 40 41 static void array_block_prepare_for_write(struct dm_block_validator *v, 42 struct dm_block *b, 43 size_t size_of_block) 44 { 45 struct array_block *bh_le = dm_block_data(b); 46 47 bh_le->blocknr = cpu_to_le64(dm_block_location(b)); 48 bh_le->csum = cpu_to_le32(dm_bm_checksum(&bh_le->max_entries, 49 size_of_block - sizeof(__le32), 50 CSUM_XOR)); 51 } 52 53 static int array_block_check(struct dm_block_validator *v, 54 struct dm_block *b, 55 size_t size_of_block) 56 { 57 struct array_block *bh_le = dm_block_data(b); 58 __le32 csum_disk; 59 60 if (dm_block_location(b) != le64_to_cpu(bh_le->blocknr)) { 61 DMERR_LIMIT("array_block_check failed: blocknr %llu != wanted %llu", 62 (unsigned long long) le64_to_cpu(bh_le->blocknr), 63 (unsigned long long) dm_block_location(b)); 64 return -ENOTBLK; 65 } 66 67 csum_disk = cpu_to_le32(dm_bm_checksum(&bh_le->max_entries, 68 size_of_block - sizeof(__le32), 69 CSUM_XOR)); 70 if (csum_disk != bh_le->csum) { 71 DMERR_LIMIT("array_block_check failed: csum %u != wanted %u", 72 (unsigned) le32_to_cpu(csum_disk), 73 (unsigned) le32_to_cpu(bh_le->csum)); 74 return -EILSEQ; 75 } 76 77 return 0; 78 } 79 80 static struct dm_block_validator array_validator = { 81 .name = "array", 82 .prepare_for_write = array_block_prepare_for_write, 83 .check = array_block_check 84 }; 85 86 /*----------------------------------------------------------------*/ 87 88 /* 89 * Functions for manipulating the array blocks. 90 */ 91 92 /* 93 * Returns a pointer to a value within an array block. 94 * 95 * index - The index into _this_ specific block. 96 */ 97 static void *element_at(struct dm_array_info *info, struct array_block *ab, 98 unsigned index) 99 { 100 unsigned char *entry = (unsigned char *) (ab + 1); 101 102 entry += index * info->value_type.size; 103 104 return entry; 105 } 106 107 /* 108 * Utility function that calls one of the value_type methods on every value 109 * in an array block. 110 */ 111 static void on_entries(struct dm_array_info *info, struct array_block *ab, 112 void (*fn)(void *, const void *, unsigned)) 113 { 114 unsigned nr_entries = le32_to_cpu(ab->nr_entries); 115 fn(info->value_type.context, element_at(info, ab, 0), nr_entries); 116 } 117 118 /* 119 * Increment every value in an array block. 120 */ 121 static void inc_ablock_entries(struct dm_array_info *info, struct array_block *ab) 122 { 123 struct dm_btree_value_type *vt = &info->value_type; 124 125 if (vt->inc) 126 on_entries(info, ab, vt->inc); 127 } 128 129 /* 130 * Decrement every value in an array block. 131 */ 132 static void dec_ablock_entries(struct dm_array_info *info, struct array_block *ab) 133 { 134 struct dm_btree_value_type *vt = &info->value_type; 135 136 if (vt->dec) 137 on_entries(info, ab, vt->dec); 138 } 139 140 /* 141 * Each array block can hold this many values. 142 */ 143 static uint32_t calc_max_entries(size_t value_size, size_t size_of_block) 144 { 145 return (size_of_block - sizeof(struct array_block)) / value_size; 146 } 147 148 /* 149 * Allocate a new array block. The caller will need to unlock block. 150 */ 151 static int alloc_ablock(struct dm_array_info *info, size_t size_of_block, 152 uint32_t max_entries, 153 struct dm_block **block, struct array_block **ab) 154 { 155 int r; 156 157 r = dm_tm_new_block(info->btree_info.tm, &array_validator, block); 158 if (r) 159 return r; 160 161 (*ab) = dm_block_data(*block); 162 (*ab)->max_entries = cpu_to_le32(max_entries); 163 (*ab)->nr_entries = cpu_to_le32(0); 164 (*ab)->value_size = cpu_to_le32(info->value_type.size); 165 166 return 0; 167 } 168 169 /* 170 * Pad an array block out with a particular value. Every instance will 171 * cause an increment of the value_type. new_nr must always be more than 172 * the current number of entries. 173 */ 174 static void fill_ablock(struct dm_array_info *info, struct array_block *ab, 175 const void *value, unsigned new_nr) 176 { 177 uint32_t nr_entries, delta, i; 178 struct dm_btree_value_type *vt = &info->value_type; 179 180 BUG_ON(new_nr > le32_to_cpu(ab->max_entries)); 181 BUG_ON(new_nr < le32_to_cpu(ab->nr_entries)); 182 183 nr_entries = le32_to_cpu(ab->nr_entries); 184 delta = new_nr - nr_entries; 185 if (vt->inc) 186 vt->inc(vt->context, value, delta); 187 for (i = nr_entries; i < new_nr; i++) 188 memcpy(element_at(info, ab, i), value, vt->size); 189 ab->nr_entries = cpu_to_le32(new_nr); 190 } 191 192 /* 193 * Remove some entries from the back of an array block. Every value 194 * removed will be decremented. new_nr must be <= the current number of 195 * entries. 196 */ 197 static void trim_ablock(struct dm_array_info *info, struct array_block *ab, 198 unsigned new_nr) 199 { 200 uint32_t nr_entries, delta; 201 struct dm_btree_value_type *vt = &info->value_type; 202 203 BUG_ON(new_nr > le32_to_cpu(ab->max_entries)); 204 BUG_ON(new_nr > le32_to_cpu(ab->nr_entries)); 205 206 nr_entries = le32_to_cpu(ab->nr_entries); 207 delta = nr_entries - new_nr; 208 if (vt->dec) 209 vt->dec(vt->context, element_at(info, ab, new_nr - 1), delta); 210 ab->nr_entries = cpu_to_le32(new_nr); 211 } 212 213 /* 214 * Read locks a block, and coerces it to an array block. The caller must 215 * unlock 'block' when finished. 216 */ 217 static int get_ablock(struct dm_array_info *info, dm_block_t b, 218 struct dm_block **block, struct array_block **ab) 219 { 220 int r; 221 222 r = dm_tm_read_lock(info->btree_info.tm, b, &array_validator, block); 223 if (r) 224 return r; 225 226 *ab = dm_block_data(*block); 227 return 0; 228 } 229 230 /* 231 * Unlocks an array block. 232 */ 233 static void unlock_ablock(struct dm_array_info *info, struct dm_block *block) 234 { 235 dm_tm_unlock(info->btree_info.tm, block); 236 } 237 238 /*----------------------------------------------------------------*/ 239 240 /* 241 * Btree manipulation. 242 */ 243 244 /* 245 * Looks up an array block in the btree, and then read locks it. 246 * 247 * index is the index of the index of the array_block, (ie. the array index 248 * / max_entries). 249 */ 250 static int lookup_ablock(struct dm_array_info *info, dm_block_t root, 251 unsigned index, struct dm_block **block, 252 struct array_block **ab) 253 { 254 int r; 255 uint64_t key = index; 256 __le64 block_le; 257 258 r = dm_btree_lookup(&info->btree_info, root, &key, &block_le); 259 if (r) 260 return r; 261 262 return get_ablock(info, le64_to_cpu(block_le), block, ab); 263 } 264 265 /* 266 * Insert an array block into the btree. The block is _not_ unlocked. 267 */ 268 static int insert_ablock(struct dm_array_info *info, uint64_t index, 269 struct dm_block *block, dm_block_t *root) 270 { 271 __le64 block_le = cpu_to_le64(dm_block_location(block)); 272 273 __dm_bless_for_disk(block_le); 274 return dm_btree_insert(&info->btree_info, *root, &index, &block_le, root); 275 } 276 277 /*----------------------------------------------------------------*/ 278 279 static int __shadow_ablock(struct dm_array_info *info, dm_block_t b, 280 struct dm_block **block, struct array_block **ab) 281 { 282 int inc; 283 int r = dm_tm_shadow_block(info->btree_info.tm, b, 284 &array_validator, block, &inc); 285 if (r) 286 return r; 287 288 *ab = dm_block_data(*block); 289 if (inc) 290 inc_ablock_entries(info, *ab); 291 292 return 0; 293 } 294 295 /* 296 * The shadow op will often be a noop. Only insert if it really 297 * copied data. 298 */ 299 static int __reinsert_ablock(struct dm_array_info *info, unsigned index, 300 struct dm_block *block, dm_block_t b, 301 dm_block_t *root) 302 { 303 int r = 0; 304 305 if (dm_block_location(block) != b) { 306 /* 307 * dm_tm_shadow_block will have already decremented the old 308 * block, but it is still referenced by the btree. We 309 * increment to stop the insert decrementing it below zero 310 * when overwriting the old value. 311 */ 312 dm_tm_inc(info->btree_info.tm, b); 313 r = insert_ablock(info, index, block, root); 314 } 315 316 return r; 317 } 318 319 /* 320 * Looks up an array block in the btree. Then shadows it, and updates the 321 * btree to point to this new shadow. 'root' is an input/output parameter 322 * for both the current root block, and the new one. 323 */ 324 static int shadow_ablock(struct dm_array_info *info, dm_block_t *root, 325 unsigned index, struct dm_block **block, 326 struct array_block **ab) 327 { 328 int r; 329 uint64_t key = index; 330 dm_block_t b; 331 __le64 block_le; 332 333 r = dm_btree_lookup(&info->btree_info, *root, &key, &block_le); 334 if (r) 335 return r; 336 b = le64_to_cpu(block_le); 337 338 r = __shadow_ablock(info, b, block, ab); 339 if (r) 340 return r; 341 342 return __reinsert_ablock(info, index, *block, b, root); 343 } 344 345 /* 346 * Allocate an new array block, and fill it with some values. 347 */ 348 static int insert_new_ablock(struct dm_array_info *info, size_t size_of_block, 349 uint32_t max_entries, 350 unsigned block_index, uint32_t nr, 351 const void *value, dm_block_t *root) 352 { 353 int r; 354 struct dm_block *block; 355 struct array_block *ab; 356 357 r = alloc_ablock(info, size_of_block, max_entries, &block, &ab); 358 if (r) 359 return r; 360 361 fill_ablock(info, ab, value, nr); 362 r = insert_ablock(info, block_index, block, root); 363 unlock_ablock(info, block); 364 365 return r; 366 } 367 368 static int insert_full_ablocks(struct dm_array_info *info, size_t size_of_block, 369 unsigned begin_block, unsigned end_block, 370 unsigned max_entries, const void *value, 371 dm_block_t *root) 372 { 373 int r = 0; 374 375 for (; !r && begin_block != end_block; begin_block++) 376 r = insert_new_ablock(info, size_of_block, max_entries, begin_block, max_entries, value, root); 377 378 return r; 379 } 380 381 /* 382 * There are a bunch of functions involved with resizing an array. This 383 * structure holds information that commonly needed by them. Purely here 384 * to reduce parameter count. 385 */ 386 struct resize { 387 /* 388 * Describes the array. 389 */ 390 struct dm_array_info *info; 391 392 /* 393 * The current root of the array. This gets updated. 394 */ 395 dm_block_t root; 396 397 /* 398 * Metadata block size. Used to calculate the nr entries in an 399 * array block. 400 */ 401 size_t size_of_block; 402 403 /* 404 * Maximum nr entries in an array block. 405 */ 406 unsigned max_entries; 407 408 /* 409 * nr of completely full blocks in the array. 410 * 411 * 'old' refers to before the resize, 'new' after. 412 */ 413 unsigned old_nr_full_blocks, new_nr_full_blocks; 414 415 /* 416 * Number of entries in the final block. 0 iff only full blocks in 417 * the array. 418 */ 419 unsigned old_nr_entries_in_last_block, new_nr_entries_in_last_block; 420 421 /* 422 * The default value used when growing the array. 423 */ 424 const void *value; 425 }; 426 427 /* 428 * Removes a consecutive set of array blocks from the btree. The values 429 * in block are decremented as a side effect of the btree remove. 430 * 431 * begin_index - the index of the first array block to remove. 432 * end_index - the one-past-the-end value. ie. this block is not removed. 433 */ 434 static int drop_blocks(struct resize *resize, unsigned begin_index, 435 unsigned end_index) 436 { 437 int r; 438 439 while (begin_index != end_index) { 440 uint64_t key = begin_index++; 441 r = dm_btree_remove(&resize->info->btree_info, resize->root, 442 &key, &resize->root); 443 if (r) 444 return r; 445 } 446 447 return 0; 448 } 449 450 /* 451 * Calculates how many blocks are needed for the array. 452 */ 453 static unsigned total_nr_blocks_needed(unsigned nr_full_blocks, 454 unsigned nr_entries_in_last_block) 455 { 456 return nr_full_blocks + (nr_entries_in_last_block ? 1 : 0); 457 } 458 459 /* 460 * Shrink an array. 461 */ 462 static int shrink(struct resize *resize) 463 { 464 int r; 465 unsigned begin, end; 466 struct dm_block *block; 467 struct array_block *ab; 468 469 /* 470 * Lose some blocks from the back? 471 */ 472 if (resize->new_nr_full_blocks < resize->old_nr_full_blocks) { 473 begin = total_nr_blocks_needed(resize->new_nr_full_blocks, 474 resize->new_nr_entries_in_last_block); 475 end = total_nr_blocks_needed(resize->old_nr_full_blocks, 476 resize->old_nr_entries_in_last_block); 477 478 r = drop_blocks(resize, begin, end); 479 if (r) 480 return r; 481 } 482 483 /* 484 * Trim the new tail block 485 */ 486 if (resize->new_nr_entries_in_last_block) { 487 r = shadow_ablock(resize->info, &resize->root, 488 resize->new_nr_full_blocks, &block, &ab); 489 if (r) 490 return r; 491 492 trim_ablock(resize->info, ab, resize->new_nr_entries_in_last_block); 493 unlock_ablock(resize->info, block); 494 } 495 496 return 0; 497 } 498 499 /* 500 * Grow an array. 501 */ 502 static int grow_extend_tail_block(struct resize *resize, uint32_t new_nr_entries) 503 { 504 int r; 505 struct dm_block *block; 506 struct array_block *ab; 507 508 r = shadow_ablock(resize->info, &resize->root, 509 resize->old_nr_full_blocks, &block, &ab); 510 if (r) 511 return r; 512 513 fill_ablock(resize->info, ab, resize->value, new_nr_entries); 514 unlock_ablock(resize->info, block); 515 516 return r; 517 } 518 519 static int grow_add_tail_block(struct resize *resize) 520 { 521 return insert_new_ablock(resize->info, resize->size_of_block, 522 resize->max_entries, 523 resize->new_nr_full_blocks, 524 resize->new_nr_entries_in_last_block, 525 resize->value, &resize->root); 526 } 527 528 static int grow_needs_more_blocks(struct resize *resize) 529 { 530 int r; 531 unsigned old_nr_blocks = resize->old_nr_full_blocks; 532 533 if (resize->old_nr_entries_in_last_block > 0) { 534 old_nr_blocks++; 535 536 r = grow_extend_tail_block(resize, resize->max_entries); 537 if (r) 538 return r; 539 } 540 541 r = insert_full_ablocks(resize->info, resize->size_of_block, 542 old_nr_blocks, 543 resize->new_nr_full_blocks, 544 resize->max_entries, resize->value, 545 &resize->root); 546 if (r) 547 return r; 548 549 if (resize->new_nr_entries_in_last_block) 550 r = grow_add_tail_block(resize); 551 552 return r; 553 } 554 555 static int grow(struct resize *resize) 556 { 557 if (resize->new_nr_full_blocks > resize->old_nr_full_blocks) 558 return grow_needs_more_blocks(resize); 559 560 else if (resize->old_nr_entries_in_last_block) 561 return grow_extend_tail_block(resize, resize->new_nr_entries_in_last_block); 562 563 else 564 return grow_add_tail_block(resize); 565 } 566 567 /*----------------------------------------------------------------*/ 568 569 /* 570 * These are the value_type functions for the btree elements, which point 571 * to array blocks. 572 */ 573 static void block_inc(void *context, const void *value, unsigned count) 574 { 575 const __le64 *block_le = value; 576 struct dm_array_info *info = context; 577 unsigned i; 578 579 for (i = 0; i < count; i++, block_le++) 580 dm_tm_inc(info->btree_info.tm, le64_to_cpu(*block_le)); 581 } 582 583 static void __block_dec(void *context, const void *value) 584 { 585 int r; 586 uint64_t b; 587 __le64 block_le; 588 uint32_t ref_count; 589 struct dm_block *block; 590 struct array_block *ab; 591 struct dm_array_info *info = context; 592 593 memcpy(&block_le, value, sizeof(block_le)); 594 b = le64_to_cpu(block_le); 595 596 r = dm_tm_ref(info->btree_info.tm, b, &ref_count); 597 if (r) { 598 DMERR_LIMIT("couldn't get reference count for block %llu", 599 (unsigned long long) b); 600 return; 601 } 602 603 if (ref_count == 1) { 604 /* 605 * We're about to drop the last reference to this ablock. 606 * So we need to decrement the ref count of the contents. 607 */ 608 r = get_ablock(info, b, &block, &ab); 609 if (r) { 610 DMERR_LIMIT("couldn't get array block %llu", 611 (unsigned long long) b); 612 return; 613 } 614 615 dec_ablock_entries(info, ab); 616 unlock_ablock(info, block); 617 } 618 619 dm_tm_dec(info->btree_info.tm, b); 620 } 621 622 static void block_dec(void *context, const void *value, unsigned count) 623 { 624 unsigned i; 625 for (i = 0; i < count; i++, value += sizeof(__le64)) 626 __block_dec(context, value); 627 } 628 629 static int block_equal(void *context, const void *value1, const void *value2) 630 { 631 return !memcmp(value1, value2, sizeof(__le64)); 632 } 633 634 /*----------------------------------------------------------------*/ 635 636 void dm_array_info_init(struct dm_array_info *info, 637 struct dm_transaction_manager *tm, 638 struct dm_btree_value_type *vt) 639 { 640 struct dm_btree_value_type *bvt = &info->btree_info.value_type; 641 642 memcpy(&info->value_type, vt, sizeof(info->value_type)); 643 info->btree_info.tm = tm; 644 info->btree_info.levels = 1; 645 646 bvt->context = info; 647 bvt->size = sizeof(__le64); 648 bvt->inc = block_inc; 649 bvt->dec = block_dec; 650 bvt->equal = block_equal; 651 } 652 EXPORT_SYMBOL_GPL(dm_array_info_init); 653 654 int dm_array_empty(struct dm_array_info *info, dm_block_t *root) 655 { 656 return dm_btree_empty(&info->btree_info, root); 657 } 658 EXPORT_SYMBOL_GPL(dm_array_empty); 659 660 static int array_resize(struct dm_array_info *info, dm_block_t root, 661 uint32_t old_size, uint32_t new_size, 662 const void *value, dm_block_t *new_root) 663 { 664 int r; 665 struct resize resize; 666 667 if (old_size == new_size) { 668 *new_root = root; 669 return 0; 670 } 671 672 resize.info = info; 673 resize.root = root; 674 resize.size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm)); 675 resize.max_entries = calc_max_entries(info->value_type.size, 676 resize.size_of_block); 677 678 resize.old_nr_full_blocks = old_size / resize.max_entries; 679 resize.old_nr_entries_in_last_block = old_size % resize.max_entries; 680 resize.new_nr_full_blocks = new_size / resize.max_entries; 681 resize.new_nr_entries_in_last_block = new_size % resize.max_entries; 682 resize.value = value; 683 684 r = ((new_size > old_size) ? grow : shrink)(&resize); 685 if (r) 686 return r; 687 688 *new_root = resize.root; 689 return 0; 690 } 691 692 int dm_array_resize(struct dm_array_info *info, dm_block_t root, 693 uint32_t old_size, uint32_t new_size, 694 const void *value, dm_block_t *new_root) 695 __dm_written_to_disk(value) 696 { 697 int r = array_resize(info, root, old_size, new_size, value, new_root); 698 __dm_unbless_for_disk(value); 699 return r; 700 } 701 EXPORT_SYMBOL_GPL(dm_array_resize); 702 703 static int populate_ablock_with_values(struct dm_array_info *info, struct array_block *ab, 704 value_fn fn, void *context, unsigned base, unsigned new_nr) 705 { 706 int r; 707 unsigned i; 708 struct dm_btree_value_type *vt = &info->value_type; 709 710 BUG_ON(le32_to_cpu(ab->nr_entries)); 711 BUG_ON(new_nr > le32_to_cpu(ab->max_entries)); 712 713 for (i = 0; i < new_nr; i++) { 714 r = fn(base + i, element_at(info, ab, i), context); 715 if (r) 716 return r; 717 718 if (vt->inc) 719 vt->inc(vt->context, element_at(info, ab, i), 1); 720 } 721 722 ab->nr_entries = cpu_to_le32(new_nr); 723 return 0; 724 } 725 726 int dm_array_new(struct dm_array_info *info, dm_block_t *root, 727 uint32_t size, value_fn fn, void *context) 728 { 729 int r; 730 struct dm_block *block; 731 struct array_block *ab; 732 unsigned block_index, end_block, size_of_block, max_entries; 733 734 r = dm_array_empty(info, root); 735 if (r) 736 return r; 737 738 size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm)); 739 max_entries = calc_max_entries(info->value_type.size, size_of_block); 740 end_block = dm_div_up(size, max_entries); 741 742 for (block_index = 0; block_index != end_block; block_index++) { 743 r = alloc_ablock(info, size_of_block, max_entries, &block, &ab); 744 if (r) 745 break; 746 747 r = populate_ablock_with_values(info, ab, fn, context, 748 block_index * max_entries, 749 min(max_entries, size)); 750 if (r) { 751 unlock_ablock(info, block); 752 break; 753 } 754 755 r = insert_ablock(info, block_index, block, root); 756 unlock_ablock(info, block); 757 if (r) 758 break; 759 760 size -= max_entries; 761 } 762 763 return r; 764 } 765 EXPORT_SYMBOL_GPL(dm_array_new); 766 767 int dm_array_del(struct dm_array_info *info, dm_block_t root) 768 { 769 return dm_btree_del(&info->btree_info, root); 770 } 771 EXPORT_SYMBOL_GPL(dm_array_del); 772 773 int dm_array_get_value(struct dm_array_info *info, dm_block_t root, 774 uint32_t index, void *value_le) 775 { 776 int r; 777 struct dm_block *block; 778 struct array_block *ab; 779 size_t size_of_block; 780 unsigned entry, max_entries; 781 782 size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm)); 783 max_entries = calc_max_entries(info->value_type.size, size_of_block); 784 785 r = lookup_ablock(info, root, index / max_entries, &block, &ab); 786 if (r) 787 return r; 788 789 entry = index % max_entries; 790 if (entry >= le32_to_cpu(ab->nr_entries)) 791 r = -ENODATA; 792 else 793 memcpy(value_le, element_at(info, ab, entry), 794 info->value_type.size); 795 796 unlock_ablock(info, block); 797 return r; 798 } 799 EXPORT_SYMBOL_GPL(dm_array_get_value); 800 801 static int array_set_value(struct dm_array_info *info, dm_block_t root, 802 uint32_t index, const void *value, dm_block_t *new_root) 803 { 804 int r; 805 struct dm_block *block; 806 struct array_block *ab; 807 size_t size_of_block; 808 unsigned max_entries; 809 unsigned entry; 810 void *old_value; 811 struct dm_btree_value_type *vt = &info->value_type; 812 813 size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm)); 814 max_entries = calc_max_entries(info->value_type.size, size_of_block); 815 816 r = shadow_ablock(info, &root, index / max_entries, &block, &ab); 817 if (r) 818 return r; 819 *new_root = root; 820 821 entry = index % max_entries; 822 if (entry >= le32_to_cpu(ab->nr_entries)) { 823 r = -ENODATA; 824 goto out; 825 } 826 827 old_value = element_at(info, ab, entry); 828 if (vt->dec && 829 (!vt->equal || !vt->equal(vt->context, old_value, value))) { 830 vt->dec(vt->context, old_value, 1); 831 if (vt->inc) 832 vt->inc(vt->context, value, 1); 833 } 834 835 memcpy(old_value, value, info->value_type.size); 836 837 out: 838 unlock_ablock(info, block); 839 return r; 840 } 841 842 int dm_array_set_value(struct dm_array_info *info, dm_block_t root, 843 uint32_t index, const void *value, dm_block_t *new_root) 844 __dm_written_to_disk(value) 845 { 846 int r; 847 848 r = array_set_value(info, root, index, value, new_root); 849 __dm_unbless_for_disk(value); 850 return r; 851 } 852 EXPORT_SYMBOL_GPL(dm_array_set_value); 853 854 struct walk_info { 855 struct dm_array_info *info; 856 int (*fn)(void *context, uint64_t key, void *leaf); 857 void *context; 858 }; 859 860 static int walk_ablock(void *context, uint64_t *keys, void *leaf) 861 { 862 struct walk_info *wi = context; 863 864 int r; 865 unsigned i; 866 __le64 block_le; 867 unsigned nr_entries, max_entries; 868 struct dm_block *block; 869 struct array_block *ab; 870 871 memcpy(&block_le, leaf, sizeof(block_le)); 872 r = get_ablock(wi->info, le64_to_cpu(block_le), &block, &ab); 873 if (r) 874 return r; 875 876 max_entries = le32_to_cpu(ab->max_entries); 877 nr_entries = le32_to_cpu(ab->nr_entries); 878 for (i = 0; i < nr_entries; i++) { 879 r = wi->fn(wi->context, keys[0] * max_entries + i, 880 element_at(wi->info, ab, i)); 881 882 if (r) 883 break; 884 } 885 886 unlock_ablock(wi->info, block); 887 return r; 888 } 889 890 int dm_array_walk(struct dm_array_info *info, dm_block_t root, 891 int (*fn)(void *, uint64_t key, void *leaf), 892 void *context) 893 { 894 struct walk_info wi; 895 896 wi.info = info; 897 wi.fn = fn; 898 wi.context = context; 899 900 return dm_btree_walk(&info->btree_info, root, walk_ablock, &wi); 901 } 902 EXPORT_SYMBOL_GPL(dm_array_walk); 903 904 /*----------------------------------------------------------------*/ 905 906 static int load_ablock(struct dm_array_cursor *c) 907 { 908 int r; 909 __le64 value_le; 910 uint64_t key; 911 912 if (c->block) 913 unlock_ablock(c->info, c->block); 914 915 c->block = NULL; 916 c->ab = NULL; 917 c->index = 0; 918 919 r = dm_btree_cursor_get_value(&c->cursor, &key, &value_le); 920 if (r) { 921 DMERR("dm_btree_cursor_get_value failed"); 922 dm_btree_cursor_end(&c->cursor); 923 924 } else { 925 r = get_ablock(c->info, le64_to_cpu(value_le), &c->block, &c->ab); 926 if (r) { 927 DMERR("get_ablock failed"); 928 dm_btree_cursor_end(&c->cursor); 929 } 930 } 931 932 return r; 933 } 934 935 int dm_array_cursor_begin(struct dm_array_info *info, dm_block_t root, 936 struct dm_array_cursor *c) 937 { 938 int r; 939 940 memset(c, 0, sizeof(*c)); 941 c->info = info; 942 r = dm_btree_cursor_begin(&info->btree_info, root, true, &c->cursor); 943 if (r) { 944 DMERR("couldn't create btree cursor"); 945 return r; 946 } 947 948 return load_ablock(c); 949 } 950 EXPORT_SYMBOL_GPL(dm_array_cursor_begin); 951 952 void dm_array_cursor_end(struct dm_array_cursor *c) 953 { 954 if (c->block) { 955 unlock_ablock(c->info, c->block); 956 dm_btree_cursor_end(&c->cursor); 957 } 958 } 959 EXPORT_SYMBOL_GPL(dm_array_cursor_end); 960 961 int dm_array_cursor_next(struct dm_array_cursor *c) 962 { 963 int r; 964 965 if (!c->block) 966 return -ENODATA; 967 968 c->index++; 969 970 if (c->index >= le32_to_cpu(c->ab->nr_entries)) { 971 r = dm_btree_cursor_next(&c->cursor); 972 if (r) 973 return r; 974 975 r = load_ablock(c); 976 if (r) 977 return r; 978 } 979 980 return 0; 981 } 982 EXPORT_SYMBOL_GPL(dm_array_cursor_next); 983 984 int dm_array_cursor_skip(struct dm_array_cursor *c, uint32_t count) 985 { 986 int r; 987 988 do { 989 uint32_t remaining = le32_to_cpu(c->ab->nr_entries) - c->index; 990 991 if (count < remaining) { 992 c->index += count; 993 return 0; 994 } 995 996 count -= remaining; 997 r = dm_array_cursor_next(c); 998 999 } while (!r); 1000 1001 return r; 1002 } 1003 EXPORT_SYMBOL_GPL(dm_array_cursor_skip); 1004 1005 void dm_array_cursor_get_value(struct dm_array_cursor *c, void **value_le) 1006 { 1007 *value_le = element_at(c->info, c->ab, c->index); 1008 } 1009 EXPORT_SYMBOL_GPL(dm_array_cursor_get_value); 1010 1011 /*----------------------------------------------------------------*/ 1012