xref: /linux-6.15/drivers/input/input.c (revision a115bc07)
1 /*
2  * The input core
3  *
4  * Copyright (c) 1999-2002 Vojtech Pavlik
5  */
6 
7 /*
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published by
10  * the Free Software Foundation.
11  */
12 
13 #include <linux/init.h>
14 #include <linux/types.h>
15 #include <linux/input.h>
16 #include <linux/module.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/poll.h>
23 #include <linux/device.h>
24 #include <linux/mutex.h>
25 #include <linux/rcupdate.h>
26 #include <linux/smp_lock.h>
27 #include "input-compat.h"
28 
29 MODULE_AUTHOR("Vojtech Pavlik <[email protected]>");
30 MODULE_DESCRIPTION("Input core");
31 MODULE_LICENSE("GPL");
32 
33 #define INPUT_DEVICES	256
34 
35 /*
36  * EV_ABS events which should not be cached are listed here.
37  */
38 static unsigned int input_abs_bypass_init_data[] __initdata = {
39 	ABS_MT_TOUCH_MAJOR,
40 	ABS_MT_TOUCH_MINOR,
41 	ABS_MT_WIDTH_MAJOR,
42 	ABS_MT_WIDTH_MINOR,
43 	ABS_MT_ORIENTATION,
44 	ABS_MT_POSITION_X,
45 	ABS_MT_POSITION_Y,
46 	ABS_MT_TOOL_TYPE,
47 	ABS_MT_BLOB_ID,
48 	ABS_MT_TRACKING_ID,
49 	ABS_MT_PRESSURE,
50 	0
51 };
52 static unsigned long input_abs_bypass[BITS_TO_LONGS(ABS_CNT)];
53 
54 static LIST_HEAD(input_dev_list);
55 static LIST_HEAD(input_handler_list);
56 
57 /*
58  * input_mutex protects access to both input_dev_list and input_handler_list.
59  * This also causes input_[un]register_device and input_[un]register_handler
60  * be mutually exclusive which simplifies locking in drivers implementing
61  * input handlers.
62  */
63 static DEFINE_MUTEX(input_mutex);
64 
65 static struct input_handler *input_table[8];
66 
67 static inline int is_event_supported(unsigned int code,
68 				     unsigned long *bm, unsigned int max)
69 {
70 	return code <= max && test_bit(code, bm);
71 }
72 
73 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
74 {
75 	if (fuzz) {
76 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
77 			return old_val;
78 
79 		if (value > old_val - fuzz && value < old_val + fuzz)
80 			return (old_val * 3 + value) / 4;
81 
82 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
83 			return (old_val + value) / 2;
84 	}
85 
86 	return value;
87 }
88 
89 /*
90  * Pass event first through all filters and then, if event has not been
91  * filtered out, through all open handles. This function is called with
92  * dev->event_lock held and interrupts disabled.
93  */
94 static void input_pass_event(struct input_dev *dev,
95 			     unsigned int type, unsigned int code, int value)
96 {
97 	struct input_handler *handler;
98 	struct input_handle *handle;
99 
100 	rcu_read_lock();
101 
102 	handle = rcu_dereference(dev->grab);
103 	if (handle)
104 		handle->handler->event(handle, type, code, value);
105 	else {
106 		bool filtered = false;
107 
108 		list_for_each_entry_rcu(handle, &dev->h_list, d_node) {
109 			if (!handle->open)
110 				continue;
111 
112 			handler = handle->handler;
113 			if (!handler->filter) {
114 				if (filtered)
115 					break;
116 
117 				handler->event(handle, type, code, value);
118 
119 			} else if (handler->filter(handle, type, code, value))
120 				filtered = true;
121 		}
122 	}
123 
124 	rcu_read_unlock();
125 }
126 
127 /*
128  * Generate software autorepeat event. Note that we take
129  * dev->event_lock here to avoid racing with input_event
130  * which may cause keys get "stuck".
131  */
132 static void input_repeat_key(unsigned long data)
133 {
134 	struct input_dev *dev = (void *) data;
135 	unsigned long flags;
136 
137 	spin_lock_irqsave(&dev->event_lock, flags);
138 
139 	if (test_bit(dev->repeat_key, dev->key) &&
140 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
141 
142 		input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
143 
144 		if (dev->sync) {
145 			/*
146 			 * Only send SYN_REPORT if we are not in a middle
147 			 * of driver parsing a new hardware packet.
148 			 * Otherwise assume that the driver will send
149 			 * SYN_REPORT once it's done.
150 			 */
151 			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
152 		}
153 
154 		if (dev->rep[REP_PERIOD])
155 			mod_timer(&dev->timer, jiffies +
156 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
157 	}
158 
159 	spin_unlock_irqrestore(&dev->event_lock, flags);
160 }
161 
162 static void input_start_autorepeat(struct input_dev *dev, int code)
163 {
164 	if (test_bit(EV_REP, dev->evbit) &&
165 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
166 	    dev->timer.data) {
167 		dev->repeat_key = code;
168 		mod_timer(&dev->timer,
169 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
170 	}
171 }
172 
173 static void input_stop_autorepeat(struct input_dev *dev)
174 {
175 	del_timer(&dev->timer);
176 }
177 
178 #define INPUT_IGNORE_EVENT	0
179 #define INPUT_PASS_TO_HANDLERS	1
180 #define INPUT_PASS_TO_DEVICE	2
181 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
182 
183 static void input_handle_event(struct input_dev *dev,
184 			       unsigned int type, unsigned int code, int value)
185 {
186 	int disposition = INPUT_IGNORE_EVENT;
187 
188 	switch (type) {
189 
190 	case EV_SYN:
191 		switch (code) {
192 		case SYN_CONFIG:
193 			disposition = INPUT_PASS_TO_ALL;
194 			break;
195 
196 		case SYN_REPORT:
197 			if (!dev->sync) {
198 				dev->sync = 1;
199 				disposition = INPUT_PASS_TO_HANDLERS;
200 			}
201 			break;
202 		case SYN_MT_REPORT:
203 			dev->sync = 0;
204 			disposition = INPUT_PASS_TO_HANDLERS;
205 			break;
206 		}
207 		break;
208 
209 	case EV_KEY:
210 		if (is_event_supported(code, dev->keybit, KEY_MAX) &&
211 		    !!test_bit(code, dev->key) != value) {
212 
213 			if (value != 2) {
214 				__change_bit(code, dev->key);
215 				if (value)
216 					input_start_autorepeat(dev, code);
217 				else
218 					input_stop_autorepeat(dev);
219 			}
220 
221 			disposition = INPUT_PASS_TO_HANDLERS;
222 		}
223 		break;
224 
225 	case EV_SW:
226 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
227 		    !!test_bit(code, dev->sw) != value) {
228 
229 			__change_bit(code, dev->sw);
230 			disposition = INPUT_PASS_TO_HANDLERS;
231 		}
232 		break;
233 
234 	case EV_ABS:
235 		if (is_event_supported(code, dev->absbit, ABS_MAX)) {
236 
237 			if (test_bit(code, input_abs_bypass)) {
238 				disposition = INPUT_PASS_TO_HANDLERS;
239 				break;
240 			}
241 
242 			value = input_defuzz_abs_event(value,
243 					dev->abs[code], dev->absfuzz[code]);
244 
245 			if (dev->abs[code] != value) {
246 				dev->abs[code] = value;
247 				disposition = INPUT_PASS_TO_HANDLERS;
248 			}
249 		}
250 		break;
251 
252 	case EV_REL:
253 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
254 			disposition = INPUT_PASS_TO_HANDLERS;
255 
256 		break;
257 
258 	case EV_MSC:
259 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
260 			disposition = INPUT_PASS_TO_ALL;
261 
262 		break;
263 
264 	case EV_LED:
265 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
266 		    !!test_bit(code, dev->led) != value) {
267 
268 			__change_bit(code, dev->led);
269 			disposition = INPUT_PASS_TO_ALL;
270 		}
271 		break;
272 
273 	case EV_SND:
274 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
275 
276 			if (!!test_bit(code, dev->snd) != !!value)
277 				__change_bit(code, dev->snd);
278 			disposition = INPUT_PASS_TO_ALL;
279 		}
280 		break;
281 
282 	case EV_REP:
283 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
284 			dev->rep[code] = value;
285 			disposition = INPUT_PASS_TO_ALL;
286 		}
287 		break;
288 
289 	case EV_FF:
290 		if (value >= 0)
291 			disposition = INPUT_PASS_TO_ALL;
292 		break;
293 
294 	case EV_PWR:
295 		disposition = INPUT_PASS_TO_ALL;
296 		break;
297 	}
298 
299 	if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
300 		dev->sync = 0;
301 
302 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
303 		dev->event(dev, type, code, value);
304 
305 	if (disposition & INPUT_PASS_TO_HANDLERS)
306 		input_pass_event(dev, type, code, value);
307 }
308 
309 /**
310  * input_event() - report new input event
311  * @dev: device that generated the event
312  * @type: type of the event
313  * @code: event code
314  * @value: value of the event
315  *
316  * This function should be used by drivers implementing various input
317  * devices to report input events. See also input_inject_event().
318  *
319  * NOTE: input_event() may be safely used right after input device was
320  * allocated with input_allocate_device(), even before it is registered
321  * with input_register_device(), but the event will not reach any of the
322  * input handlers. Such early invocation of input_event() may be used
323  * to 'seed' initial state of a switch or initial position of absolute
324  * axis, etc.
325  */
326 void input_event(struct input_dev *dev,
327 		 unsigned int type, unsigned int code, int value)
328 {
329 	unsigned long flags;
330 
331 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
332 
333 		spin_lock_irqsave(&dev->event_lock, flags);
334 		add_input_randomness(type, code, value);
335 		input_handle_event(dev, type, code, value);
336 		spin_unlock_irqrestore(&dev->event_lock, flags);
337 	}
338 }
339 EXPORT_SYMBOL(input_event);
340 
341 /**
342  * input_inject_event() - send input event from input handler
343  * @handle: input handle to send event through
344  * @type: type of the event
345  * @code: event code
346  * @value: value of the event
347  *
348  * Similar to input_event() but will ignore event if device is
349  * "grabbed" and handle injecting event is not the one that owns
350  * the device.
351  */
352 void input_inject_event(struct input_handle *handle,
353 			unsigned int type, unsigned int code, int value)
354 {
355 	struct input_dev *dev = handle->dev;
356 	struct input_handle *grab;
357 	unsigned long flags;
358 
359 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
360 		spin_lock_irqsave(&dev->event_lock, flags);
361 
362 		rcu_read_lock();
363 		grab = rcu_dereference(dev->grab);
364 		if (!grab || grab == handle)
365 			input_handle_event(dev, type, code, value);
366 		rcu_read_unlock();
367 
368 		spin_unlock_irqrestore(&dev->event_lock, flags);
369 	}
370 }
371 EXPORT_SYMBOL(input_inject_event);
372 
373 /**
374  * input_grab_device - grabs device for exclusive use
375  * @handle: input handle that wants to own the device
376  *
377  * When a device is grabbed by an input handle all events generated by
378  * the device are delivered only to this handle. Also events injected
379  * by other input handles are ignored while device is grabbed.
380  */
381 int input_grab_device(struct input_handle *handle)
382 {
383 	struct input_dev *dev = handle->dev;
384 	int retval;
385 
386 	retval = mutex_lock_interruptible(&dev->mutex);
387 	if (retval)
388 		return retval;
389 
390 	if (dev->grab) {
391 		retval = -EBUSY;
392 		goto out;
393 	}
394 
395 	rcu_assign_pointer(dev->grab, handle);
396 	synchronize_rcu();
397 
398  out:
399 	mutex_unlock(&dev->mutex);
400 	return retval;
401 }
402 EXPORT_SYMBOL(input_grab_device);
403 
404 static void __input_release_device(struct input_handle *handle)
405 {
406 	struct input_dev *dev = handle->dev;
407 
408 	if (dev->grab == handle) {
409 		rcu_assign_pointer(dev->grab, NULL);
410 		/* Make sure input_pass_event() notices that grab is gone */
411 		synchronize_rcu();
412 
413 		list_for_each_entry(handle, &dev->h_list, d_node)
414 			if (handle->open && handle->handler->start)
415 				handle->handler->start(handle);
416 	}
417 }
418 
419 /**
420  * input_release_device - release previously grabbed device
421  * @handle: input handle that owns the device
422  *
423  * Releases previously grabbed device so that other input handles can
424  * start receiving input events. Upon release all handlers attached
425  * to the device have their start() method called so they have a change
426  * to synchronize device state with the rest of the system.
427  */
428 void input_release_device(struct input_handle *handle)
429 {
430 	struct input_dev *dev = handle->dev;
431 
432 	mutex_lock(&dev->mutex);
433 	__input_release_device(handle);
434 	mutex_unlock(&dev->mutex);
435 }
436 EXPORT_SYMBOL(input_release_device);
437 
438 /**
439  * input_open_device - open input device
440  * @handle: handle through which device is being accessed
441  *
442  * This function should be called by input handlers when they
443  * want to start receive events from given input device.
444  */
445 int input_open_device(struct input_handle *handle)
446 {
447 	struct input_dev *dev = handle->dev;
448 	int retval;
449 
450 	retval = mutex_lock_interruptible(&dev->mutex);
451 	if (retval)
452 		return retval;
453 
454 	if (dev->going_away) {
455 		retval = -ENODEV;
456 		goto out;
457 	}
458 
459 	handle->open++;
460 
461 	if (!dev->users++ && dev->open)
462 		retval = dev->open(dev);
463 
464 	if (retval) {
465 		dev->users--;
466 		if (!--handle->open) {
467 			/*
468 			 * Make sure we are not delivering any more events
469 			 * through this handle
470 			 */
471 			synchronize_rcu();
472 		}
473 	}
474 
475  out:
476 	mutex_unlock(&dev->mutex);
477 	return retval;
478 }
479 EXPORT_SYMBOL(input_open_device);
480 
481 int input_flush_device(struct input_handle *handle, struct file *file)
482 {
483 	struct input_dev *dev = handle->dev;
484 	int retval;
485 
486 	retval = mutex_lock_interruptible(&dev->mutex);
487 	if (retval)
488 		return retval;
489 
490 	if (dev->flush)
491 		retval = dev->flush(dev, file);
492 
493 	mutex_unlock(&dev->mutex);
494 	return retval;
495 }
496 EXPORT_SYMBOL(input_flush_device);
497 
498 /**
499  * input_close_device - close input device
500  * @handle: handle through which device is being accessed
501  *
502  * This function should be called by input handlers when they
503  * want to stop receive events from given input device.
504  */
505 void input_close_device(struct input_handle *handle)
506 {
507 	struct input_dev *dev = handle->dev;
508 
509 	mutex_lock(&dev->mutex);
510 
511 	__input_release_device(handle);
512 
513 	if (!--dev->users && dev->close)
514 		dev->close(dev);
515 
516 	if (!--handle->open) {
517 		/*
518 		 * synchronize_rcu() makes sure that input_pass_event()
519 		 * completed and that no more input events are delivered
520 		 * through this handle
521 		 */
522 		synchronize_rcu();
523 	}
524 
525 	mutex_unlock(&dev->mutex);
526 }
527 EXPORT_SYMBOL(input_close_device);
528 
529 /*
530  * Prepare device for unregistering
531  */
532 static void input_disconnect_device(struct input_dev *dev)
533 {
534 	struct input_handle *handle;
535 	int code;
536 
537 	/*
538 	 * Mark device as going away. Note that we take dev->mutex here
539 	 * not to protect access to dev->going_away but rather to ensure
540 	 * that there are no threads in the middle of input_open_device()
541 	 */
542 	mutex_lock(&dev->mutex);
543 	dev->going_away = true;
544 	mutex_unlock(&dev->mutex);
545 
546 	spin_lock_irq(&dev->event_lock);
547 
548 	/*
549 	 * Simulate keyup events for all pressed keys so that handlers
550 	 * are not left with "stuck" keys. The driver may continue
551 	 * generate events even after we done here but they will not
552 	 * reach any handlers.
553 	 */
554 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
555 		for (code = 0; code <= KEY_MAX; code++) {
556 			if (is_event_supported(code, dev->keybit, KEY_MAX) &&
557 			    __test_and_clear_bit(code, dev->key)) {
558 				input_pass_event(dev, EV_KEY, code, 0);
559 			}
560 		}
561 		input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
562 	}
563 
564 	list_for_each_entry(handle, &dev->h_list, d_node)
565 		handle->open = 0;
566 
567 	spin_unlock_irq(&dev->event_lock);
568 }
569 
570 static int input_fetch_keycode(struct input_dev *dev, int scancode)
571 {
572 	switch (dev->keycodesize) {
573 		case 1:
574 			return ((u8 *)dev->keycode)[scancode];
575 
576 		case 2:
577 			return ((u16 *)dev->keycode)[scancode];
578 
579 		default:
580 			return ((u32 *)dev->keycode)[scancode];
581 	}
582 }
583 
584 static int input_default_getkeycode(struct input_dev *dev,
585 				    int scancode, int *keycode)
586 {
587 	if (!dev->keycodesize)
588 		return -EINVAL;
589 
590 	if (scancode >= dev->keycodemax)
591 		return -EINVAL;
592 
593 	*keycode = input_fetch_keycode(dev, scancode);
594 
595 	return 0;
596 }
597 
598 static int input_default_setkeycode(struct input_dev *dev,
599 				    int scancode, int keycode)
600 {
601 	int old_keycode;
602 	int i;
603 
604 	if (scancode >= dev->keycodemax)
605 		return -EINVAL;
606 
607 	if (!dev->keycodesize)
608 		return -EINVAL;
609 
610 	if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
611 		return -EINVAL;
612 
613 	switch (dev->keycodesize) {
614 		case 1: {
615 			u8 *k = (u8 *)dev->keycode;
616 			old_keycode = k[scancode];
617 			k[scancode] = keycode;
618 			break;
619 		}
620 		case 2: {
621 			u16 *k = (u16 *)dev->keycode;
622 			old_keycode = k[scancode];
623 			k[scancode] = keycode;
624 			break;
625 		}
626 		default: {
627 			u32 *k = (u32 *)dev->keycode;
628 			old_keycode = k[scancode];
629 			k[scancode] = keycode;
630 			break;
631 		}
632 	}
633 
634 	__clear_bit(old_keycode, dev->keybit);
635 	__set_bit(keycode, dev->keybit);
636 
637 	for (i = 0; i < dev->keycodemax; i++) {
638 		if (input_fetch_keycode(dev, i) == old_keycode) {
639 			__set_bit(old_keycode, dev->keybit);
640 			break; /* Setting the bit twice is useless, so break */
641 		}
642 	}
643 
644 	return 0;
645 }
646 
647 /**
648  * input_get_keycode - retrieve keycode currently mapped to a given scancode
649  * @dev: input device which keymap is being queried
650  * @scancode: scancode (or its equivalent for device in question) for which
651  *	keycode is needed
652  * @keycode: result
653  *
654  * This function should be called by anyone interested in retrieving current
655  * keymap. Presently keyboard and evdev handlers use it.
656  */
657 int input_get_keycode(struct input_dev *dev, int scancode, int *keycode)
658 {
659 	if (scancode < 0)
660 		return -EINVAL;
661 
662 	return dev->getkeycode(dev, scancode, keycode);
663 }
664 EXPORT_SYMBOL(input_get_keycode);
665 
666 /**
667  * input_get_keycode - assign new keycode to a given scancode
668  * @dev: input device which keymap is being updated
669  * @scancode: scancode (or its equivalent for device in question)
670  * @keycode: new keycode to be assigned to the scancode
671  *
672  * This function should be called by anyone needing to update current
673  * keymap. Presently keyboard and evdev handlers use it.
674  */
675 int input_set_keycode(struct input_dev *dev, int scancode, int keycode)
676 {
677 	unsigned long flags;
678 	int old_keycode;
679 	int retval;
680 
681 	if (scancode < 0)
682 		return -EINVAL;
683 
684 	if (keycode < 0 || keycode > KEY_MAX)
685 		return -EINVAL;
686 
687 	spin_lock_irqsave(&dev->event_lock, flags);
688 
689 	retval = dev->getkeycode(dev, scancode, &old_keycode);
690 	if (retval)
691 		goto out;
692 
693 	retval = dev->setkeycode(dev, scancode, keycode);
694 	if (retval)
695 		goto out;
696 
697 	/* Make sure KEY_RESERVED did not get enabled. */
698 	__clear_bit(KEY_RESERVED, dev->keybit);
699 
700 	/*
701 	 * Simulate keyup event if keycode is not present
702 	 * in the keymap anymore
703 	 */
704 	if (test_bit(EV_KEY, dev->evbit) &&
705 	    !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
706 	    __test_and_clear_bit(old_keycode, dev->key)) {
707 
708 		input_pass_event(dev, EV_KEY, old_keycode, 0);
709 		if (dev->sync)
710 			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
711 	}
712 
713  out:
714 	spin_unlock_irqrestore(&dev->event_lock, flags);
715 
716 	return retval;
717 }
718 EXPORT_SYMBOL(input_set_keycode);
719 
720 #define MATCH_BIT(bit, max) \
721 		for (i = 0; i < BITS_TO_LONGS(max); i++) \
722 			if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
723 				break; \
724 		if (i != BITS_TO_LONGS(max)) \
725 			continue;
726 
727 static const struct input_device_id *input_match_device(struct input_handler *handler,
728 							struct input_dev *dev)
729 {
730 	const struct input_device_id *id;
731 	int i;
732 
733 	for (id = handler->id_table; id->flags || id->driver_info; id++) {
734 
735 		if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
736 			if (id->bustype != dev->id.bustype)
737 				continue;
738 
739 		if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
740 			if (id->vendor != dev->id.vendor)
741 				continue;
742 
743 		if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
744 			if (id->product != dev->id.product)
745 				continue;
746 
747 		if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
748 			if (id->version != dev->id.version)
749 				continue;
750 
751 		MATCH_BIT(evbit,  EV_MAX);
752 		MATCH_BIT(keybit, KEY_MAX);
753 		MATCH_BIT(relbit, REL_MAX);
754 		MATCH_BIT(absbit, ABS_MAX);
755 		MATCH_BIT(mscbit, MSC_MAX);
756 		MATCH_BIT(ledbit, LED_MAX);
757 		MATCH_BIT(sndbit, SND_MAX);
758 		MATCH_BIT(ffbit,  FF_MAX);
759 		MATCH_BIT(swbit,  SW_MAX);
760 
761 		if (!handler->match || handler->match(handler, dev))
762 			return id;
763 	}
764 
765 	return NULL;
766 }
767 
768 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
769 {
770 	const struct input_device_id *id;
771 	int error;
772 
773 	id = input_match_device(handler, dev);
774 	if (!id)
775 		return -ENODEV;
776 
777 	error = handler->connect(handler, dev, id);
778 	if (error && error != -ENODEV)
779 		printk(KERN_ERR
780 			"input: failed to attach handler %s to device %s, "
781 			"error: %d\n",
782 			handler->name, kobject_name(&dev->dev.kobj), error);
783 
784 	return error;
785 }
786 
787 #ifdef CONFIG_COMPAT
788 
789 static int input_bits_to_string(char *buf, int buf_size,
790 				unsigned long bits, bool skip_empty)
791 {
792 	int len = 0;
793 
794 	if (INPUT_COMPAT_TEST) {
795 		u32 dword = bits >> 32;
796 		if (dword || !skip_empty)
797 			len += snprintf(buf, buf_size, "%x ", dword);
798 
799 		dword = bits & 0xffffffffUL;
800 		if (dword || !skip_empty || len)
801 			len += snprintf(buf + len, max(buf_size - len, 0),
802 					"%x", dword);
803 	} else {
804 		if (bits || !skip_empty)
805 			len += snprintf(buf, buf_size, "%lx", bits);
806 	}
807 
808 	return len;
809 }
810 
811 #else /* !CONFIG_COMPAT */
812 
813 static int input_bits_to_string(char *buf, int buf_size,
814 				unsigned long bits, bool skip_empty)
815 {
816 	return bits || !skip_empty ?
817 		snprintf(buf, buf_size, "%lx", bits) : 0;
818 }
819 
820 #endif
821 
822 #ifdef CONFIG_PROC_FS
823 
824 static struct proc_dir_entry *proc_bus_input_dir;
825 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
826 static int input_devices_state;
827 
828 static inline void input_wakeup_procfs_readers(void)
829 {
830 	input_devices_state++;
831 	wake_up(&input_devices_poll_wait);
832 }
833 
834 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
835 {
836 	poll_wait(file, &input_devices_poll_wait, wait);
837 	if (file->f_version != input_devices_state) {
838 		file->f_version = input_devices_state;
839 		return POLLIN | POLLRDNORM;
840 	}
841 
842 	return 0;
843 }
844 
845 union input_seq_state {
846 	struct {
847 		unsigned short pos;
848 		bool mutex_acquired;
849 	};
850 	void *p;
851 };
852 
853 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
854 {
855 	union input_seq_state *state = (union input_seq_state *)&seq->private;
856 	int error;
857 
858 	/* We need to fit into seq->private pointer */
859 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
860 
861 	error = mutex_lock_interruptible(&input_mutex);
862 	if (error) {
863 		state->mutex_acquired = false;
864 		return ERR_PTR(error);
865 	}
866 
867 	state->mutex_acquired = true;
868 
869 	return seq_list_start(&input_dev_list, *pos);
870 }
871 
872 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
873 {
874 	return seq_list_next(v, &input_dev_list, pos);
875 }
876 
877 static void input_seq_stop(struct seq_file *seq, void *v)
878 {
879 	union input_seq_state *state = (union input_seq_state *)&seq->private;
880 
881 	if (state->mutex_acquired)
882 		mutex_unlock(&input_mutex);
883 }
884 
885 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
886 				   unsigned long *bitmap, int max)
887 {
888 	int i;
889 	bool skip_empty = true;
890 	char buf[18];
891 
892 	seq_printf(seq, "B: %s=", name);
893 
894 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
895 		if (input_bits_to_string(buf, sizeof(buf),
896 					 bitmap[i], skip_empty)) {
897 			skip_empty = false;
898 			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
899 		}
900 	}
901 
902 	/*
903 	 * If no output was produced print a single 0.
904 	 */
905 	if (skip_empty)
906 		seq_puts(seq, "0");
907 
908 	seq_putc(seq, '\n');
909 }
910 
911 static int input_devices_seq_show(struct seq_file *seq, void *v)
912 {
913 	struct input_dev *dev = container_of(v, struct input_dev, node);
914 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
915 	struct input_handle *handle;
916 
917 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
918 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
919 
920 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
921 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
922 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
923 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
924 	seq_printf(seq, "H: Handlers=");
925 
926 	list_for_each_entry(handle, &dev->h_list, d_node)
927 		seq_printf(seq, "%s ", handle->name);
928 	seq_putc(seq, '\n');
929 
930 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
931 	if (test_bit(EV_KEY, dev->evbit))
932 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
933 	if (test_bit(EV_REL, dev->evbit))
934 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
935 	if (test_bit(EV_ABS, dev->evbit))
936 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
937 	if (test_bit(EV_MSC, dev->evbit))
938 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
939 	if (test_bit(EV_LED, dev->evbit))
940 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
941 	if (test_bit(EV_SND, dev->evbit))
942 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
943 	if (test_bit(EV_FF, dev->evbit))
944 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
945 	if (test_bit(EV_SW, dev->evbit))
946 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
947 
948 	seq_putc(seq, '\n');
949 
950 	kfree(path);
951 	return 0;
952 }
953 
954 static const struct seq_operations input_devices_seq_ops = {
955 	.start	= input_devices_seq_start,
956 	.next	= input_devices_seq_next,
957 	.stop	= input_seq_stop,
958 	.show	= input_devices_seq_show,
959 };
960 
961 static int input_proc_devices_open(struct inode *inode, struct file *file)
962 {
963 	return seq_open(file, &input_devices_seq_ops);
964 }
965 
966 static const struct file_operations input_devices_fileops = {
967 	.owner		= THIS_MODULE,
968 	.open		= input_proc_devices_open,
969 	.poll		= input_proc_devices_poll,
970 	.read		= seq_read,
971 	.llseek		= seq_lseek,
972 	.release	= seq_release,
973 };
974 
975 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
976 {
977 	union input_seq_state *state = (union input_seq_state *)&seq->private;
978 	int error;
979 
980 	/* We need to fit into seq->private pointer */
981 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
982 
983 	error = mutex_lock_interruptible(&input_mutex);
984 	if (error) {
985 		state->mutex_acquired = false;
986 		return ERR_PTR(error);
987 	}
988 
989 	state->mutex_acquired = true;
990 	state->pos = *pos;
991 
992 	return seq_list_start(&input_handler_list, *pos);
993 }
994 
995 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
996 {
997 	union input_seq_state *state = (union input_seq_state *)&seq->private;
998 
999 	state->pos = *pos + 1;
1000 	return seq_list_next(v, &input_handler_list, pos);
1001 }
1002 
1003 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1004 {
1005 	struct input_handler *handler = container_of(v, struct input_handler, node);
1006 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1007 
1008 	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1009 	if (handler->filter)
1010 		seq_puts(seq, " (filter)");
1011 	if (handler->fops)
1012 		seq_printf(seq, " Minor=%d", handler->minor);
1013 	seq_putc(seq, '\n');
1014 
1015 	return 0;
1016 }
1017 
1018 static const struct seq_operations input_handlers_seq_ops = {
1019 	.start	= input_handlers_seq_start,
1020 	.next	= input_handlers_seq_next,
1021 	.stop	= input_seq_stop,
1022 	.show	= input_handlers_seq_show,
1023 };
1024 
1025 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1026 {
1027 	return seq_open(file, &input_handlers_seq_ops);
1028 }
1029 
1030 static const struct file_operations input_handlers_fileops = {
1031 	.owner		= THIS_MODULE,
1032 	.open		= input_proc_handlers_open,
1033 	.read		= seq_read,
1034 	.llseek		= seq_lseek,
1035 	.release	= seq_release,
1036 };
1037 
1038 static int __init input_proc_init(void)
1039 {
1040 	struct proc_dir_entry *entry;
1041 
1042 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1043 	if (!proc_bus_input_dir)
1044 		return -ENOMEM;
1045 
1046 	entry = proc_create("devices", 0, proc_bus_input_dir,
1047 			    &input_devices_fileops);
1048 	if (!entry)
1049 		goto fail1;
1050 
1051 	entry = proc_create("handlers", 0, proc_bus_input_dir,
1052 			    &input_handlers_fileops);
1053 	if (!entry)
1054 		goto fail2;
1055 
1056 	return 0;
1057 
1058  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1059  fail1: remove_proc_entry("bus/input", NULL);
1060 	return -ENOMEM;
1061 }
1062 
1063 static void input_proc_exit(void)
1064 {
1065 	remove_proc_entry("devices", proc_bus_input_dir);
1066 	remove_proc_entry("handlers", proc_bus_input_dir);
1067 	remove_proc_entry("bus/input", NULL);
1068 }
1069 
1070 #else /* !CONFIG_PROC_FS */
1071 static inline void input_wakeup_procfs_readers(void) { }
1072 static inline int input_proc_init(void) { return 0; }
1073 static inline void input_proc_exit(void) { }
1074 #endif
1075 
1076 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1077 static ssize_t input_dev_show_##name(struct device *dev,		\
1078 				     struct device_attribute *attr,	\
1079 				     char *buf)				\
1080 {									\
1081 	struct input_dev *input_dev = to_input_dev(dev);		\
1082 									\
1083 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1084 			 input_dev->name ? input_dev->name : "");	\
1085 }									\
1086 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1087 
1088 INPUT_DEV_STRING_ATTR_SHOW(name);
1089 INPUT_DEV_STRING_ATTR_SHOW(phys);
1090 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1091 
1092 static int input_print_modalias_bits(char *buf, int size,
1093 				     char name, unsigned long *bm,
1094 				     unsigned int min_bit, unsigned int max_bit)
1095 {
1096 	int len = 0, i;
1097 
1098 	len += snprintf(buf, max(size, 0), "%c", name);
1099 	for (i = min_bit; i < max_bit; i++)
1100 		if (bm[BIT_WORD(i)] & BIT_MASK(i))
1101 			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1102 	return len;
1103 }
1104 
1105 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1106 				int add_cr)
1107 {
1108 	int len;
1109 
1110 	len = snprintf(buf, max(size, 0),
1111 		       "input:b%04Xv%04Xp%04Xe%04X-",
1112 		       id->id.bustype, id->id.vendor,
1113 		       id->id.product, id->id.version);
1114 
1115 	len += input_print_modalias_bits(buf + len, size - len,
1116 				'e', id->evbit, 0, EV_MAX);
1117 	len += input_print_modalias_bits(buf + len, size - len,
1118 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1119 	len += input_print_modalias_bits(buf + len, size - len,
1120 				'r', id->relbit, 0, REL_MAX);
1121 	len += input_print_modalias_bits(buf + len, size - len,
1122 				'a', id->absbit, 0, ABS_MAX);
1123 	len += input_print_modalias_bits(buf + len, size - len,
1124 				'm', id->mscbit, 0, MSC_MAX);
1125 	len += input_print_modalias_bits(buf + len, size - len,
1126 				'l', id->ledbit, 0, LED_MAX);
1127 	len += input_print_modalias_bits(buf + len, size - len,
1128 				's', id->sndbit, 0, SND_MAX);
1129 	len += input_print_modalias_bits(buf + len, size - len,
1130 				'f', id->ffbit, 0, FF_MAX);
1131 	len += input_print_modalias_bits(buf + len, size - len,
1132 				'w', id->swbit, 0, SW_MAX);
1133 
1134 	if (add_cr)
1135 		len += snprintf(buf + len, max(size - len, 0), "\n");
1136 
1137 	return len;
1138 }
1139 
1140 static ssize_t input_dev_show_modalias(struct device *dev,
1141 				       struct device_attribute *attr,
1142 				       char *buf)
1143 {
1144 	struct input_dev *id = to_input_dev(dev);
1145 	ssize_t len;
1146 
1147 	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1148 
1149 	return min_t(int, len, PAGE_SIZE);
1150 }
1151 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1152 
1153 static struct attribute *input_dev_attrs[] = {
1154 	&dev_attr_name.attr,
1155 	&dev_attr_phys.attr,
1156 	&dev_attr_uniq.attr,
1157 	&dev_attr_modalias.attr,
1158 	NULL
1159 };
1160 
1161 static struct attribute_group input_dev_attr_group = {
1162 	.attrs	= input_dev_attrs,
1163 };
1164 
1165 #define INPUT_DEV_ID_ATTR(name)						\
1166 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1167 					struct device_attribute *attr,	\
1168 					char *buf)			\
1169 {									\
1170 	struct input_dev *input_dev = to_input_dev(dev);		\
1171 	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
1172 }									\
1173 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1174 
1175 INPUT_DEV_ID_ATTR(bustype);
1176 INPUT_DEV_ID_ATTR(vendor);
1177 INPUT_DEV_ID_ATTR(product);
1178 INPUT_DEV_ID_ATTR(version);
1179 
1180 static struct attribute *input_dev_id_attrs[] = {
1181 	&dev_attr_bustype.attr,
1182 	&dev_attr_vendor.attr,
1183 	&dev_attr_product.attr,
1184 	&dev_attr_version.attr,
1185 	NULL
1186 };
1187 
1188 static struct attribute_group input_dev_id_attr_group = {
1189 	.name	= "id",
1190 	.attrs	= input_dev_id_attrs,
1191 };
1192 
1193 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1194 			      int max, int add_cr)
1195 {
1196 	int i;
1197 	int len = 0;
1198 	bool skip_empty = true;
1199 
1200 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1201 		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1202 					    bitmap[i], skip_empty);
1203 		if (len) {
1204 			skip_empty = false;
1205 			if (i > 0)
1206 				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1207 		}
1208 	}
1209 
1210 	/*
1211 	 * If no output was produced print a single 0.
1212 	 */
1213 	if (len == 0)
1214 		len = snprintf(buf, buf_size, "%d", 0);
1215 
1216 	if (add_cr)
1217 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1218 
1219 	return len;
1220 }
1221 
1222 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1223 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1224 				       struct device_attribute *attr,	\
1225 				       char *buf)			\
1226 {									\
1227 	struct input_dev *input_dev = to_input_dev(dev);		\
1228 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1229 				     input_dev->bm##bit, ev##_MAX,	\
1230 				     true);				\
1231 	return min_t(int, len, PAGE_SIZE);				\
1232 }									\
1233 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1234 
1235 INPUT_DEV_CAP_ATTR(EV, ev);
1236 INPUT_DEV_CAP_ATTR(KEY, key);
1237 INPUT_DEV_CAP_ATTR(REL, rel);
1238 INPUT_DEV_CAP_ATTR(ABS, abs);
1239 INPUT_DEV_CAP_ATTR(MSC, msc);
1240 INPUT_DEV_CAP_ATTR(LED, led);
1241 INPUT_DEV_CAP_ATTR(SND, snd);
1242 INPUT_DEV_CAP_ATTR(FF, ff);
1243 INPUT_DEV_CAP_ATTR(SW, sw);
1244 
1245 static struct attribute *input_dev_caps_attrs[] = {
1246 	&dev_attr_ev.attr,
1247 	&dev_attr_key.attr,
1248 	&dev_attr_rel.attr,
1249 	&dev_attr_abs.attr,
1250 	&dev_attr_msc.attr,
1251 	&dev_attr_led.attr,
1252 	&dev_attr_snd.attr,
1253 	&dev_attr_ff.attr,
1254 	&dev_attr_sw.attr,
1255 	NULL
1256 };
1257 
1258 static struct attribute_group input_dev_caps_attr_group = {
1259 	.name	= "capabilities",
1260 	.attrs	= input_dev_caps_attrs,
1261 };
1262 
1263 static const struct attribute_group *input_dev_attr_groups[] = {
1264 	&input_dev_attr_group,
1265 	&input_dev_id_attr_group,
1266 	&input_dev_caps_attr_group,
1267 	NULL
1268 };
1269 
1270 static void input_dev_release(struct device *device)
1271 {
1272 	struct input_dev *dev = to_input_dev(device);
1273 
1274 	input_ff_destroy(dev);
1275 	kfree(dev);
1276 
1277 	module_put(THIS_MODULE);
1278 }
1279 
1280 /*
1281  * Input uevent interface - loading event handlers based on
1282  * device bitfields.
1283  */
1284 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1285 				   const char *name, unsigned long *bitmap, int max)
1286 {
1287 	int len;
1288 
1289 	if (add_uevent_var(env, "%s=", name))
1290 		return -ENOMEM;
1291 
1292 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1293 				 sizeof(env->buf) - env->buflen,
1294 				 bitmap, max, false);
1295 	if (len >= (sizeof(env->buf) - env->buflen))
1296 		return -ENOMEM;
1297 
1298 	env->buflen += len;
1299 	return 0;
1300 }
1301 
1302 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1303 					 struct input_dev *dev)
1304 {
1305 	int len;
1306 
1307 	if (add_uevent_var(env, "MODALIAS="))
1308 		return -ENOMEM;
1309 
1310 	len = input_print_modalias(&env->buf[env->buflen - 1],
1311 				   sizeof(env->buf) - env->buflen,
1312 				   dev, 0);
1313 	if (len >= (sizeof(env->buf) - env->buflen))
1314 		return -ENOMEM;
1315 
1316 	env->buflen += len;
1317 	return 0;
1318 }
1319 
1320 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1321 	do {								\
1322 		int err = add_uevent_var(env, fmt, val);		\
1323 		if (err)						\
1324 			return err;					\
1325 	} while (0)
1326 
1327 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1328 	do {								\
1329 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1330 		if (err)						\
1331 			return err;					\
1332 	} while (0)
1333 
1334 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1335 	do {								\
1336 		int err = input_add_uevent_modalias_var(env, dev);	\
1337 		if (err)						\
1338 			return err;					\
1339 	} while (0)
1340 
1341 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1342 {
1343 	struct input_dev *dev = to_input_dev(device);
1344 
1345 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1346 				dev->id.bustype, dev->id.vendor,
1347 				dev->id.product, dev->id.version);
1348 	if (dev->name)
1349 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1350 	if (dev->phys)
1351 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1352 	if (dev->uniq)
1353 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1354 
1355 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1356 	if (test_bit(EV_KEY, dev->evbit))
1357 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1358 	if (test_bit(EV_REL, dev->evbit))
1359 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1360 	if (test_bit(EV_ABS, dev->evbit))
1361 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1362 	if (test_bit(EV_MSC, dev->evbit))
1363 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1364 	if (test_bit(EV_LED, dev->evbit))
1365 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1366 	if (test_bit(EV_SND, dev->evbit))
1367 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1368 	if (test_bit(EV_FF, dev->evbit))
1369 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1370 	if (test_bit(EV_SW, dev->evbit))
1371 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1372 
1373 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1374 
1375 	return 0;
1376 }
1377 
1378 #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1379 	do {								\
1380 		int i;							\
1381 		bool active;						\
1382 									\
1383 		if (!test_bit(EV_##type, dev->evbit))			\
1384 			break;						\
1385 									\
1386 		for (i = 0; i < type##_MAX; i++) {			\
1387 			if (!test_bit(i, dev->bits##bit))		\
1388 				continue;				\
1389 									\
1390 			active = test_bit(i, dev->bits);		\
1391 			if (!active && !on)				\
1392 				continue;				\
1393 									\
1394 			dev->event(dev, EV_##type, i, on ? active : 0);	\
1395 		}							\
1396 	} while (0)
1397 
1398 #ifdef CONFIG_PM
1399 static void input_dev_reset(struct input_dev *dev, bool activate)
1400 {
1401 	if (!dev->event)
1402 		return;
1403 
1404 	INPUT_DO_TOGGLE(dev, LED, led, activate);
1405 	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1406 
1407 	if (activate && test_bit(EV_REP, dev->evbit)) {
1408 		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1409 		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1410 	}
1411 }
1412 
1413 static int input_dev_suspend(struct device *dev)
1414 {
1415 	struct input_dev *input_dev = to_input_dev(dev);
1416 
1417 	mutex_lock(&input_dev->mutex);
1418 	input_dev_reset(input_dev, false);
1419 	mutex_unlock(&input_dev->mutex);
1420 
1421 	return 0;
1422 }
1423 
1424 static int input_dev_resume(struct device *dev)
1425 {
1426 	struct input_dev *input_dev = to_input_dev(dev);
1427 
1428 	mutex_lock(&input_dev->mutex);
1429 	input_dev_reset(input_dev, true);
1430 	mutex_unlock(&input_dev->mutex);
1431 
1432 	return 0;
1433 }
1434 
1435 static const struct dev_pm_ops input_dev_pm_ops = {
1436 	.suspend	= input_dev_suspend,
1437 	.resume		= input_dev_resume,
1438 	.poweroff	= input_dev_suspend,
1439 	.restore	= input_dev_resume,
1440 };
1441 #endif /* CONFIG_PM */
1442 
1443 static struct device_type input_dev_type = {
1444 	.groups		= input_dev_attr_groups,
1445 	.release	= input_dev_release,
1446 	.uevent		= input_dev_uevent,
1447 #ifdef CONFIG_PM
1448 	.pm		= &input_dev_pm_ops,
1449 #endif
1450 };
1451 
1452 static char *input_devnode(struct device *dev, mode_t *mode)
1453 {
1454 	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1455 }
1456 
1457 struct class input_class = {
1458 	.name		= "input",
1459 	.devnode	= input_devnode,
1460 };
1461 EXPORT_SYMBOL_GPL(input_class);
1462 
1463 /**
1464  * input_allocate_device - allocate memory for new input device
1465  *
1466  * Returns prepared struct input_dev or NULL.
1467  *
1468  * NOTE: Use input_free_device() to free devices that have not been
1469  * registered; input_unregister_device() should be used for already
1470  * registered devices.
1471  */
1472 struct input_dev *input_allocate_device(void)
1473 {
1474 	struct input_dev *dev;
1475 
1476 	dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1477 	if (dev) {
1478 		dev->dev.type = &input_dev_type;
1479 		dev->dev.class = &input_class;
1480 		device_initialize(&dev->dev);
1481 		mutex_init(&dev->mutex);
1482 		spin_lock_init(&dev->event_lock);
1483 		INIT_LIST_HEAD(&dev->h_list);
1484 		INIT_LIST_HEAD(&dev->node);
1485 
1486 		__module_get(THIS_MODULE);
1487 	}
1488 
1489 	return dev;
1490 }
1491 EXPORT_SYMBOL(input_allocate_device);
1492 
1493 /**
1494  * input_free_device - free memory occupied by input_dev structure
1495  * @dev: input device to free
1496  *
1497  * This function should only be used if input_register_device()
1498  * was not called yet or if it failed. Once device was registered
1499  * use input_unregister_device() and memory will be freed once last
1500  * reference to the device is dropped.
1501  *
1502  * Device should be allocated by input_allocate_device().
1503  *
1504  * NOTE: If there are references to the input device then memory
1505  * will not be freed until last reference is dropped.
1506  */
1507 void input_free_device(struct input_dev *dev)
1508 {
1509 	if (dev)
1510 		input_put_device(dev);
1511 }
1512 EXPORT_SYMBOL(input_free_device);
1513 
1514 /**
1515  * input_set_capability - mark device as capable of a certain event
1516  * @dev: device that is capable of emitting or accepting event
1517  * @type: type of the event (EV_KEY, EV_REL, etc...)
1518  * @code: event code
1519  *
1520  * In addition to setting up corresponding bit in appropriate capability
1521  * bitmap the function also adjusts dev->evbit.
1522  */
1523 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1524 {
1525 	switch (type) {
1526 	case EV_KEY:
1527 		__set_bit(code, dev->keybit);
1528 		break;
1529 
1530 	case EV_REL:
1531 		__set_bit(code, dev->relbit);
1532 		break;
1533 
1534 	case EV_ABS:
1535 		__set_bit(code, dev->absbit);
1536 		break;
1537 
1538 	case EV_MSC:
1539 		__set_bit(code, dev->mscbit);
1540 		break;
1541 
1542 	case EV_SW:
1543 		__set_bit(code, dev->swbit);
1544 		break;
1545 
1546 	case EV_LED:
1547 		__set_bit(code, dev->ledbit);
1548 		break;
1549 
1550 	case EV_SND:
1551 		__set_bit(code, dev->sndbit);
1552 		break;
1553 
1554 	case EV_FF:
1555 		__set_bit(code, dev->ffbit);
1556 		break;
1557 
1558 	case EV_PWR:
1559 		/* do nothing */
1560 		break;
1561 
1562 	default:
1563 		printk(KERN_ERR
1564 			"input_set_capability: unknown type %u (code %u)\n",
1565 			type, code);
1566 		dump_stack();
1567 		return;
1568 	}
1569 
1570 	__set_bit(type, dev->evbit);
1571 }
1572 EXPORT_SYMBOL(input_set_capability);
1573 
1574 #define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
1575 	do {								\
1576 		if (!test_bit(EV_##type, dev->evbit))			\
1577 			memset(dev->bits##bit, 0,			\
1578 				sizeof(dev->bits##bit));		\
1579 	} while (0)
1580 
1581 static void input_cleanse_bitmasks(struct input_dev *dev)
1582 {
1583 	INPUT_CLEANSE_BITMASK(dev, KEY, key);
1584 	INPUT_CLEANSE_BITMASK(dev, REL, rel);
1585 	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
1586 	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
1587 	INPUT_CLEANSE_BITMASK(dev, LED, led);
1588 	INPUT_CLEANSE_BITMASK(dev, SND, snd);
1589 	INPUT_CLEANSE_BITMASK(dev, FF, ff);
1590 	INPUT_CLEANSE_BITMASK(dev, SW, sw);
1591 }
1592 
1593 /**
1594  * input_register_device - register device with input core
1595  * @dev: device to be registered
1596  *
1597  * This function registers device with input core. The device must be
1598  * allocated with input_allocate_device() and all it's capabilities
1599  * set up before registering.
1600  * If function fails the device must be freed with input_free_device().
1601  * Once device has been successfully registered it can be unregistered
1602  * with input_unregister_device(); input_free_device() should not be
1603  * called in this case.
1604  */
1605 int input_register_device(struct input_dev *dev)
1606 {
1607 	static atomic_t input_no = ATOMIC_INIT(0);
1608 	struct input_handler *handler;
1609 	const char *path;
1610 	int error;
1611 
1612 	/* Every input device generates EV_SYN/SYN_REPORT events. */
1613 	__set_bit(EV_SYN, dev->evbit);
1614 
1615 	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
1616 	__clear_bit(KEY_RESERVED, dev->keybit);
1617 
1618 	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
1619 	input_cleanse_bitmasks(dev);
1620 
1621 	/*
1622 	 * If delay and period are pre-set by the driver, then autorepeating
1623 	 * is handled by the driver itself and we don't do it in input.c.
1624 	 */
1625 	init_timer(&dev->timer);
1626 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1627 		dev->timer.data = (long) dev;
1628 		dev->timer.function = input_repeat_key;
1629 		dev->rep[REP_DELAY] = 250;
1630 		dev->rep[REP_PERIOD] = 33;
1631 	}
1632 
1633 	if (!dev->getkeycode)
1634 		dev->getkeycode = input_default_getkeycode;
1635 
1636 	if (!dev->setkeycode)
1637 		dev->setkeycode = input_default_setkeycode;
1638 
1639 	dev_set_name(&dev->dev, "input%ld",
1640 		     (unsigned long) atomic_inc_return(&input_no) - 1);
1641 
1642 	error = device_add(&dev->dev);
1643 	if (error)
1644 		return error;
1645 
1646 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1647 	printk(KERN_INFO "input: %s as %s\n",
1648 		dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
1649 	kfree(path);
1650 
1651 	error = mutex_lock_interruptible(&input_mutex);
1652 	if (error) {
1653 		device_del(&dev->dev);
1654 		return error;
1655 	}
1656 
1657 	list_add_tail(&dev->node, &input_dev_list);
1658 
1659 	list_for_each_entry(handler, &input_handler_list, node)
1660 		input_attach_handler(dev, handler);
1661 
1662 	input_wakeup_procfs_readers();
1663 
1664 	mutex_unlock(&input_mutex);
1665 
1666 	return 0;
1667 }
1668 EXPORT_SYMBOL(input_register_device);
1669 
1670 /**
1671  * input_unregister_device - unregister previously registered device
1672  * @dev: device to be unregistered
1673  *
1674  * This function unregisters an input device. Once device is unregistered
1675  * the caller should not try to access it as it may get freed at any moment.
1676  */
1677 void input_unregister_device(struct input_dev *dev)
1678 {
1679 	struct input_handle *handle, *next;
1680 
1681 	input_disconnect_device(dev);
1682 
1683 	mutex_lock(&input_mutex);
1684 
1685 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1686 		handle->handler->disconnect(handle);
1687 	WARN_ON(!list_empty(&dev->h_list));
1688 
1689 	del_timer_sync(&dev->timer);
1690 	list_del_init(&dev->node);
1691 
1692 	input_wakeup_procfs_readers();
1693 
1694 	mutex_unlock(&input_mutex);
1695 
1696 	device_unregister(&dev->dev);
1697 }
1698 EXPORT_SYMBOL(input_unregister_device);
1699 
1700 /**
1701  * input_register_handler - register a new input handler
1702  * @handler: handler to be registered
1703  *
1704  * This function registers a new input handler (interface) for input
1705  * devices in the system and attaches it to all input devices that
1706  * are compatible with the handler.
1707  */
1708 int input_register_handler(struct input_handler *handler)
1709 {
1710 	struct input_dev *dev;
1711 	int retval;
1712 
1713 	retval = mutex_lock_interruptible(&input_mutex);
1714 	if (retval)
1715 		return retval;
1716 
1717 	INIT_LIST_HEAD(&handler->h_list);
1718 
1719 	if (handler->fops != NULL) {
1720 		if (input_table[handler->minor >> 5]) {
1721 			retval = -EBUSY;
1722 			goto out;
1723 		}
1724 		input_table[handler->minor >> 5] = handler;
1725 	}
1726 
1727 	list_add_tail(&handler->node, &input_handler_list);
1728 
1729 	list_for_each_entry(dev, &input_dev_list, node)
1730 		input_attach_handler(dev, handler);
1731 
1732 	input_wakeup_procfs_readers();
1733 
1734  out:
1735 	mutex_unlock(&input_mutex);
1736 	return retval;
1737 }
1738 EXPORT_SYMBOL(input_register_handler);
1739 
1740 /**
1741  * input_unregister_handler - unregisters an input handler
1742  * @handler: handler to be unregistered
1743  *
1744  * This function disconnects a handler from its input devices and
1745  * removes it from lists of known handlers.
1746  */
1747 void input_unregister_handler(struct input_handler *handler)
1748 {
1749 	struct input_handle *handle, *next;
1750 
1751 	mutex_lock(&input_mutex);
1752 
1753 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1754 		handler->disconnect(handle);
1755 	WARN_ON(!list_empty(&handler->h_list));
1756 
1757 	list_del_init(&handler->node);
1758 
1759 	if (handler->fops != NULL)
1760 		input_table[handler->minor >> 5] = NULL;
1761 
1762 	input_wakeup_procfs_readers();
1763 
1764 	mutex_unlock(&input_mutex);
1765 }
1766 EXPORT_SYMBOL(input_unregister_handler);
1767 
1768 /**
1769  * input_handler_for_each_handle - handle iterator
1770  * @handler: input handler to iterate
1771  * @data: data for the callback
1772  * @fn: function to be called for each handle
1773  *
1774  * Iterate over @bus's list of devices, and call @fn for each, passing
1775  * it @data and stop when @fn returns a non-zero value. The function is
1776  * using RCU to traverse the list and therefore may be usind in atonic
1777  * contexts. The @fn callback is invoked from RCU critical section and
1778  * thus must not sleep.
1779  */
1780 int input_handler_for_each_handle(struct input_handler *handler, void *data,
1781 				  int (*fn)(struct input_handle *, void *))
1782 {
1783 	struct input_handle *handle;
1784 	int retval = 0;
1785 
1786 	rcu_read_lock();
1787 
1788 	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
1789 		retval = fn(handle, data);
1790 		if (retval)
1791 			break;
1792 	}
1793 
1794 	rcu_read_unlock();
1795 
1796 	return retval;
1797 }
1798 EXPORT_SYMBOL(input_handler_for_each_handle);
1799 
1800 /**
1801  * input_register_handle - register a new input handle
1802  * @handle: handle to register
1803  *
1804  * This function puts a new input handle onto device's
1805  * and handler's lists so that events can flow through
1806  * it once it is opened using input_open_device().
1807  *
1808  * This function is supposed to be called from handler's
1809  * connect() method.
1810  */
1811 int input_register_handle(struct input_handle *handle)
1812 {
1813 	struct input_handler *handler = handle->handler;
1814 	struct input_dev *dev = handle->dev;
1815 	int error;
1816 
1817 	/*
1818 	 * We take dev->mutex here to prevent race with
1819 	 * input_release_device().
1820 	 */
1821 	error = mutex_lock_interruptible(&dev->mutex);
1822 	if (error)
1823 		return error;
1824 
1825 	/*
1826 	 * Filters go to the head of the list, normal handlers
1827 	 * to the tail.
1828 	 */
1829 	if (handler->filter)
1830 		list_add_rcu(&handle->d_node, &dev->h_list);
1831 	else
1832 		list_add_tail_rcu(&handle->d_node, &dev->h_list);
1833 
1834 	mutex_unlock(&dev->mutex);
1835 
1836 	/*
1837 	 * Since we are supposed to be called from ->connect()
1838 	 * which is mutually exclusive with ->disconnect()
1839 	 * we can't be racing with input_unregister_handle()
1840 	 * and so separate lock is not needed here.
1841 	 */
1842 	list_add_tail_rcu(&handle->h_node, &handler->h_list);
1843 
1844 	if (handler->start)
1845 		handler->start(handle);
1846 
1847 	return 0;
1848 }
1849 EXPORT_SYMBOL(input_register_handle);
1850 
1851 /**
1852  * input_unregister_handle - unregister an input handle
1853  * @handle: handle to unregister
1854  *
1855  * This function removes input handle from device's
1856  * and handler's lists.
1857  *
1858  * This function is supposed to be called from handler's
1859  * disconnect() method.
1860  */
1861 void input_unregister_handle(struct input_handle *handle)
1862 {
1863 	struct input_dev *dev = handle->dev;
1864 
1865 	list_del_rcu(&handle->h_node);
1866 
1867 	/*
1868 	 * Take dev->mutex to prevent race with input_release_device().
1869 	 */
1870 	mutex_lock(&dev->mutex);
1871 	list_del_rcu(&handle->d_node);
1872 	mutex_unlock(&dev->mutex);
1873 
1874 	synchronize_rcu();
1875 }
1876 EXPORT_SYMBOL(input_unregister_handle);
1877 
1878 static int input_open_file(struct inode *inode, struct file *file)
1879 {
1880 	struct input_handler *handler;
1881 	const struct file_operations *old_fops, *new_fops = NULL;
1882 	int err;
1883 
1884 	lock_kernel();
1885 	/* No load-on-demand here? */
1886 	handler = input_table[iminor(inode) >> 5];
1887 	if (!handler || !(new_fops = fops_get(handler->fops))) {
1888 		err = -ENODEV;
1889 		goto out;
1890 	}
1891 
1892 	/*
1893 	 * That's _really_ odd. Usually NULL ->open means "nothing special",
1894 	 * not "no device". Oh, well...
1895 	 */
1896 	if (!new_fops->open) {
1897 		fops_put(new_fops);
1898 		err = -ENODEV;
1899 		goto out;
1900 	}
1901 	old_fops = file->f_op;
1902 	file->f_op = new_fops;
1903 
1904 	err = new_fops->open(inode, file);
1905 
1906 	if (err) {
1907 		fops_put(file->f_op);
1908 		file->f_op = fops_get(old_fops);
1909 	}
1910 	fops_put(old_fops);
1911 out:
1912 	unlock_kernel();
1913 	return err;
1914 }
1915 
1916 static const struct file_operations input_fops = {
1917 	.owner = THIS_MODULE,
1918 	.open = input_open_file,
1919 };
1920 
1921 static void __init input_init_abs_bypass(void)
1922 {
1923 	const unsigned int *p;
1924 
1925 	for (p = input_abs_bypass_init_data; *p; p++)
1926 		input_abs_bypass[BIT_WORD(*p)] |= BIT_MASK(*p);
1927 }
1928 
1929 static int __init input_init(void)
1930 {
1931 	int err;
1932 
1933 	input_init_abs_bypass();
1934 
1935 	err = class_register(&input_class);
1936 	if (err) {
1937 		printk(KERN_ERR "input: unable to register input_dev class\n");
1938 		return err;
1939 	}
1940 
1941 	err = input_proc_init();
1942 	if (err)
1943 		goto fail1;
1944 
1945 	err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
1946 	if (err) {
1947 		printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
1948 		goto fail2;
1949 	}
1950 
1951 	return 0;
1952 
1953  fail2:	input_proc_exit();
1954  fail1:	class_unregister(&input_class);
1955 	return err;
1956 }
1957 
1958 static void __exit input_exit(void)
1959 {
1960 	input_proc_exit();
1961 	unregister_chrdev(INPUT_MAJOR, "input");
1962 	class_unregister(&input_class);
1963 }
1964 
1965 subsys_initcall(input_init);
1966 module_exit(input_exit);
1967