xref: /linux-6.15/drivers/input/input.c (revision 57a06363)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * The input core
4  *
5  * Copyright (c) 1999-2002 Vojtech Pavlik
6  */
7 
8 
9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
10 
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/idr.h>
14 #include <linux/input/mt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/pm.h>
23 #include <linux/poll.h>
24 #include <linux/device.h>
25 #include <linux/kstrtox.h>
26 #include <linux/mutex.h>
27 #include <linux/rcupdate.h>
28 #include "input-compat.h"
29 #include "input-core-private.h"
30 #include "input-poller.h"
31 
32 MODULE_AUTHOR("Vojtech Pavlik <[email protected]>");
33 MODULE_DESCRIPTION("Input core");
34 MODULE_LICENSE("GPL");
35 
36 #define INPUT_MAX_CHAR_DEVICES		1024
37 #define INPUT_FIRST_DYNAMIC_DEV		256
38 static DEFINE_IDA(input_ida);
39 
40 static LIST_HEAD(input_dev_list);
41 static LIST_HEAD(input_handler_list);
42 
43 /*
44  * input_mutex protects access to both input_dev_list and input_handler_list.
45  * This also causes input_[un]register_device and input_[un]register_handler
46  * be mutually exclusive which simplifies locking in drivers implementing
47  * input handlers.
48  */
49 static DEFINE_MUTEX(input_mutex);
50 
51 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
52 
53 static const unsigned int input_max_code[EV_CNT] = {
54 	[EV_KEY] = KEY_MAX,
55 	[EV_REL] = REL_MAX,
56 	[EV_ABS] = ABS_MAX,
57 	[EV_MSC] = MSC_MAX,
58 	[EV_SW] = SW_MAX,
59 	[EV_LED] = LED_MAX,
60 	[EV_SND] = SND_MAX,
61 	[EV_FF] = FF_MAX,
62 };
63 
64 static inline int is_event_supported(unsigned int code,
65 				     unsigned long *bm, unsigned int max)
66 {
67 	return code <= max && test_bit(code, bm);
68 }
69 
70 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
71 {
72 	if (fuzz) {
73 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
74 			return old_val;
75 
76 		if (value > old_val - fuzz && value < old_val + fuzz)
77 			return (old_val * 3 + value) / 4;
78 
79 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
80 			return (old_val + value) / 2;
81 	}
82 
83 	return value;
84 }
85 
86 static void input_start_autorepeat(struct input_dev *dev, int code)
87 {
88 	if (test_bit(EV_REP, dev->evbit) &&
89 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
90 	    dev->timer.function) {
91 		dev->repeat_key = code;
92 		mod_timer(&dev->timer,
93 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
94 	}
95 }
96 
97 static void input_stop_autorepeat(struct input_dev *dev)
98 {
99 	del_timer(&dev->timer);
100 }
101 
102 /*
103  * Pass values first through all filters and then, if event has not been
104  * filtered out, through all open handles. This order is achieved by placing
105  * filters at the head of the list of handles attached to the device, and
106  * placing regular handles at the tail of the list.
107  *
108  * This function is called with dev->event_lock held and interrupts disabled.
109  */
110 static void input_pass_values(struct input_dev *dev,
111 			      struct input_value *vals, unsigned int count)
112 {
113 	struct input_handle *handle;
114 	struct input_value *v;
115 
116 	lockdep_assert_held(&dev->event_lock);
117 
118 	rcu_read_lock();
119 
120 	handle = rcu_dereference(dev->grab);
121 	if (handle) {
122 		count = handle->handler->events(handle, vals, count);
123 	} else {
124 		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
125 			if (handle->open) {
126 				count = handle->handler->events(handle, vals,
127 								count);
128 				if (!count)
129 					break;
130 			}
131 	}
132 
133 	rcu_read_unlock();
134 
135 	/* trigger auto repeat for key events */
136 	if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
137 		for (v = vals; v != vals + count; v++) {
138 			if (v->type == EV_KEY && v->value != 2) {
139 				if (v->value)
140 					input_start_autorepeat(dev, v->code);
141 				else
142 					input_stop_autorepeat(dev);
143 			}
144 		}
145 	}
146 }
147 
148 #define INPUT_IGNORE_EVENT	0
149 #define INPUT_PASS_TO_HANDLERS	1
150 #define INPUT_PASS_TO_DEVICE	2
151 #define INPUT_SLOT		4
152 #define INPUT_FLUSH		8
153 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
154 
155 static int input_handle_abs_event(struct input_dev *dev,
156 				  unsigned int code, int *pval)
157 {
158 	struct input_mt *mt = dev->mt;
159 	bool is_new_slot = false;
160 	bool is_mt_event;
161 	int *pold;
162 
163 	if (code == ABS_MT_SLOT) {
164 		/*
165 		 * "Stage" the event; we'll flush it later, when we
166 		 * get actual touch data.
167 		 */
168 		if (mt && *pval >= 0 && *pval < mt->num_slots)
169 			mt->slot = *pval;
170 
171 		return INPUT_IGNORE_EVENT;
172 	}
173 
174 	is_mt_event = input_is_mt_value(code);
175 
176 	if (!is_mt_event) {
177 		pold = &dev->absinfo[code].value;
178 	} else if (mt) {
179 		pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
180 		is_new_slot = mt->slot != dev->absinfo[ABS_MT_SLOT].value;
181 	} else {
182 		/*
183 		 * Bypass filtering for multi-touch events when
184 		 * not employing slots.
185 		 */
186 		pold = NULL;
187 	}
188 
189 	if (pold) {
190 		*pval = input_defuzz_abs_event(*pval, *pold,
191 						dev->absinfo[code].fuzz);
192 		if (*pold == *pval)
193 			return INPUT_IGNORE_EVENT;
194 
195 		*pold = *pval;
196 	}
197 
198 	/* Flush pending "slot" event */
199 	if (is_new_slot) {
200 		dev->absinfo[ABS_MT_SLOT].value = mt->slot;
201 		return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
202 	}
203 
204 	return INPUT_PASS_TO_HANDLERS;
205 }
206 
207 static int input_get_disposition(struct input_dev *dev,
208 			  unsigned int type, unsigned int code, int *pval)
209 {
210 	int disposition = INPUT_IGNORE_EVENT;
211 	int value = *pval;
212 
213 	/* filter-out events from inhibited devices */
214 	if (dev->inhibited)
215 		return INPUT_IGNORE_EVENT;
216 
217 	switch (type) {
218 
219 	case EV_SYN:
220 		switch (code) {
221 		case SYN_CONFIG:
222 			disposition = INPUT_PASS_TO_ALL;
223 			break;
224 
225 		case SYN_REPORT:
226 			disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
227 			break;
228 		case SYN_MT_REPORT:
229 			disposition = INPUT_PASS_TO_HANDLERS;
230 			break;
231 		}
232 		break;
233 
234 	case EV_KEY:
235 		if (is_event_supported(code, dev->keybit, KEY_MAX)) {
236 
237 			/* auto-repeat bypasses state updates */
238 			if (value == 2) {
239 				disposition = INPUT_PASS_TO_HANDLERS;
240 				break;
241 			}
242 
243 			if (!!test_bit(code, dev->key) != !!value) {
244 
245 				__change_bit(code, dev->key);
246 				disposition = INPUT_PASS_TO_HANDLERS;
247 			}
248 		}
249 		break;
250 
251 	case EV_SW:
252 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
253 		    !!test_bit(code, dev->sw) != !!value) {
254 
255 			__change_bit(code, dev->sw);
256 			disposition = INPUT_PASS_TO_HANDLERS;
257 		}
258 		break;
259 
260 	case EV_ABS:
261 		if (is_event_supported(code, dev->absbit, ABS_MAX))
262 			disposition = input_handle_abs_event(dev, code, &value);
263 
264 		break;
265 
266 	case EV_REL:
267 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
268 			disposition = INPUT_PASS_TO_HANDLERS;
269 
270 		break;
271 
272 	case EV_MSC:
273 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
274 			disposition = INPUT_PASS_TO_ALL;
275 
276 		break;
277 
278 	case EV_LED:
279 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
280 		    !!test_bit(code, dev->led) != !!value) {
281 
282 			__change_bit(code, dev->led);
283 			disposition = INPUT_PASS_TO_ALL;
284 		}
285 		break;
286 
287 	case EV_SND:
288 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
289 
290 			if (!!test_bit(code, dev->snd) != !!value)
291 				__change_bit(code, dev->snd);
292 			disposition = INPUT_PASS_TO_ALL;
293 		}
294 		break;
295 
296 	case EV_REP:
297 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
298 			dev->rep[code] = value;
299 			disposition = INPUT_PASS_TO_ALL;
300 		}
301 		break;
302 
303 	case EV_FF:
304 		if (value >= 0)
305 			disposition = INPUT_PASS_TO_ALL;
306 		break;
307 
308 	case EV_PWR:
309 		disposition = INPUT_PASS_TO_ALL;
310 		break;
311 	}
312 
313 	*pval = value;
314 	return disposition;
315 }
316 
317 static void input_event_dispose(struct input_dev *dev, int disposition,
318 				unsigned int type, unsigned int code, int value)
319 {
320 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
321 		dev->event(dev, type, code, value);
322 
323 	if (disposition & INPUT_PASS_TO_HANDLERS) {
324 		struct input_value *v;
325 
326 		if (disposition & INPUT_SLOT) {
327 			v = &dev->vals[dev->num_vals++];
328 			v->type = EV_ABS;
329 			v->code = ABS_MT_SLOT;
330 			v->value = dev->mt->slot;
331 		}
332 
333 		v = &dev->vals[dev->num_vals++];
334 		v->type = type;
335 		v->code = code;
336 		v->value = value;
337 	}
338 
339 	if (disposition & INPUT_FLUSH) {
340 		if (dev->num_vals >= 2)
341 			input_pass_values(dev, dev->vals, dev->num_vals);
342 		dev->num_vals = 0;
343 		/*
344 		 * Reset the timestamp on flush so we won't end up
345 		 * with a stale one. Note we only need to reset the
346 		 * monolithic one as we use its presence when deciding
347 		 * whether to generate a synthetic timestamp.
348 		 */
349 		dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
350 	} else if (dev->num_vals >= dev->max_vals - 2) {
351 		dev->vals[dev->num_vals++] = input_value_sync;
352 		input_pass_values(dev, dev->vals, dev->num_vals);
353 		dev->num_vals = 0;
354 	}
355 }
356 
357 void input_handle_event(struct input_dev *dev,
358 			unsigned int type, unsigned int code, int value)
359 {
360 	int disposition;
361 
362 	lockdep_assert_held(&dev->event_lock);
363 
364 	disposition = input_get_disposition(dev, type, code, &value);
365 	if (disposition != INPUT_IGNORE_EVENT) {
366 		if (type != EV_SYN)
367 			add_input_randomness(type, code, value);
368 
369 		input_event_dispose(dev, disposition, type, code, value);
370 	}
371 }
372 
373 /**
374  * input_event() - report new input event
375  * @dev: device that generated the event
376  * @type: type of the event
377  * @code: event code
378  * @value: value of the event
379  *
380  * This function should be used by drivers implementing various input
381  * devices to report input events. See also input_inject_event().
382  *
383  * NOTE: input_event() may be safely used right after input device was
384  * allocated with input_allocate_device(), even before it is registered
385  * with input_register_device(), but the event will not reach any of the
386  * input handlers. Such early invocation of input_event() may be used
387  * to 'seed' initial state of a switch or initial position of absolute
388  * axis, etc.
389  */
390 void input_event(struct input_dev *dev,
391 		 unsigned int type, unsigned int code, int value)
392 {
393 	unsigned long flags;
394 
395 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
396 
397 		spin_lock_irqsave(&dev->event_lock, flags);
398 		input_handle_event(dev, type, code, value);
399 		spin_unlock_irqrestore(&dev->event_lock, flags);
400 	}
401 }
402 EXPORT_SYMBOL(input_event);
403 
404 /**
405  * input_inject_event() - send input event from input handler
406  * @handle: input handle to send event through
407  * @type: type of the event
408  * @code: event code
409  * @value: value of the event
410  *
411  * Similar to input_event() but will ignore event if device is
412  * "grabbed" and handle injecting event is not the one that owns
413  * the device.
414  */
415 void input_inject_event(struct input_handle *handle,
416 			unsigned int type, unsigned int code, int value)
417 {
418 	struct input_dev *dev = handle->dev;
419 	struct input_handle *grab;
420 	unsigned long flags;
421 
422 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
423 		spin_lock_irqsave(&dev->event_lock, flags);
424 
425 		rcu_read_lock();
426 		grab = rcu_dereference(dev->grab);
427 		if (!grab || grab == handle)
428 			input_handle_event(dev, type, code, value);
429 		rcu_read_unlock();
430 
431 		spin_unlock_irqrestore(&dev->event_lock, flags);
432 	}
433 }
434 EXPORT_SYMBOL(input_inject_event);
435 
436 /**
437  * input_alloc_absinfo - allocates array of input_absinfo structs
438  * @dev: the input device emitting absolute events
439  *
440  * If the absinfo struct the caller asked for is already allocated, this
441  * functions will not do anything.
442  */
443 void input_alloc_absinfo(struct input_dev *dev)
444 {
445 	if (dev->absinfo)
446 		return;
447 
448 	dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
449 	if (!dev->absinfo) {
450 		dev_err(dev->dev.parent ?: &dev->dev,
451 			"%s: unable to allocate memory\n", __func__);
452 		/*
453 		 * We will handle this allocation failure in
454 		 * input_register_device() when we refuse to register input
455 		 * device with ABS bits but without absinfo.
456 		 */
457 	}
458 }
459 EXPORT_SYMBOL(input_alloc_absinfo);
460 
461 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
462 			  int min, int max, int fuzz, int flat)
463 {
464 	struct input_absinfo *absinfo;
465 
466 	__set_bit(EV_ABS, dev->evbit);
467 	__set_bit(axis, dev->absbit);
468 
469 	input_alloc_absinfo(dev);
470 	if (!dev->absinfo)
471 		return;
472 
473 	absinfo = &dev->absinfo[axis];
474 	absinfo->minimum = min;
475 	absinfo->maximum = max;
476 	absinfo->fuzz = fuzz;
477 	absinfo->flat = flat;
478 }
479 EXPORT_SYMBOL(input_set_abs_params);
480 
481 /**
482  * input_copy_abs - Copy absinfo from one input_dev to another
483  * @dst: Destination input device to copy the abs settings to
484  * @dst_axis: ABS_* value selecting the destination axis
485  * @src: Source input device to copy the abs settings from
486  * @src_axis: ABS_* value selecting the source axis
487  *
488  * Set absinfo for the selected destination axis by copying it from
489  * the specified source input device's source axis.
490  * This is useful to e.g. setup a pen/stylus input-device for combined
491  * touchscreen/pen hardware where the pen uses the same coordinates as
492  * the touchscreen.
493  */
494 void input_copy_abs(struct input_dev *dst, unsigned int dst_axis,
495 		    const struct input_dev *src, unsigned int src_axis)
496 {
497 	/* src must have EV_ABS and src_axis set */
498 	if (WARN_ON(!(test_bit(EV_ABS, src->evbit) &&
499 		      test_bit(src_axis, src->absbit))))
500 		return;
501 
502 	/*
503 	 * input_alloc_absinfo() may have failed for the source. Our caller is
504 	 * expected to catch this when registering the input devices, which may
505 	 * happen after the input_copy_abs() call.
506 	 */
507 	if (!src->absinfo)
508 		return;
509 
510 	input_set_capability(dst, EV_ABS, dst_axis);
511 	if (!dst->absinfo)
512 		return;
513 
514 	dst->absinfo[dst_axis] = src->absinfo[src_axis];
515 }
516 EXPORT_SYMBOL(input_copy_abs);
517 
518 /**
519  * input_grab_device - grabs device for exclusive use
520  * @handle: input handle that wants to own the device
521  *
522  * When a device is grabbed by an input handle all events generated by
523  * the device are delivered only to this handle. Also events injected
524  * by other input handles are ignored while device is grabbed.
525  */
526 int input_grab_device(struct input_handle *handle)
527 {
528 	struct input_dev *dev = handle->dev;
529 	int retval;
530 
531 	retval = mutex_lock_interruptible(&dev->mutex);
532 	if (retval)
533 		return retval;
534 
535 	if (dev->grab) {
536 		retval = -EBUSY;
537 		goto out;
538 	}
539 
540 	rcu_assign_pointer(dev->grab, handle);
541 
542  out:
543 	mutex_unlock(&dev->mutex);
544 	return retval;
545 }
546 EXPORT_SYMBOL(input_grab_device);
547 
548 static void __input_release_device(struct input_handle *handle)
549 {
550 	struct input_dev *dev = handle->dev;
551 	struct input_handle *grabber;
552 
553 	grabber = rcu_dereference_protected(dev->grab,
554 					    lockdep_is_held(&dev->mutex));
555 	if (grabber == handle) {
556 		rcu_assign_pointer(dev->grab, NULL);
557 		/* Make sure input_pass_values() notices that grab is gone */
558 		synchronize_rcu();
559 
560 		list_for_each_entry(handle, &dev->h_list, d_node)
561 			if (handle->open && handle->handler->start)
562 				handle->handler->start(handle);
563 	}
564 }
565 
566 /**
567  * input_release_device - release previously grabbed device
568  * @handle: input handle that owns the device
569  *
570  * Releases previously grabbed device so that other input handles can
571  * start receiving input events. Upon release all handlers attached
572  * to the device have their start() method called so they have a change
573  * to synchronize device state with the rest of the system.
574  */
575 void input_release_device(struct input_handle *handle)
576 {
577 	struct input_dev *dev = handle->dev;
578 
579 	mutex_lock(&dev->mutex);
580 	__input_release_device(handle);
581 	mutex_unlock(&dev->mutex);
582 }
583 EXPORT_SYMBOL(input_release_device);
584 
585 /**
586  * input_open_device - open input device
587  * @handle: handle through which device is being accessed
588  *
589  * This function should be called by input handlers when they
590  * want to start receive events from given input device.
591  */
592 int input_open_device(struct input_handle *handle)
593 {
594 	struct input_dev *dev = handle->dev;
595 	int retval;
596 
597 	retval = mutex_lock_interruptible(&dev->mutex);
598 	if (retval)
599 		return retval;
600 
601 	if (dev->going_away) {
602 		retval = -ENODEV;
603 		goto out;
604 	}
605 
606 	handle->open++;
607 
608 	if (handle->handler->passive_observer)
609 		goto out;
610 
611 	if (dev->users++ || dev->inhibited) {
612 		/*
613 		 * Device is already opened and/or inhibited,
614 		 * so we can exit immediately and report success.
615 		 */
616 		goto out;
617 	}
618 
619 	if (dev->open) {
620 		retval = dev->open(dev);
621 		if (retval) {
622 			dev->users--;
623 			handle->open--;
624 			/*
625 			 * Make sure we are not delivering any more events
626 			 * through this handle
627 			 */
628 			synchronize_rcu();
629 			goto out;
630 		}
631 	}
632 
633 	if (dev->poller)
634 		input_dev_poller_start(dev->poller);
635 
636  out:
637 	mutex_unlock(&dev->mutex);
638 	return retval;
639 }
640 EXPORT_SYMBOL(input_open_device);
641 
642 int input_flush_device(struct input_handle *handle, struct file *file)
643 {
644 	struct input_dev *dev = handle->dev;
645 	int retval;
646 
647 	retval = mutex_lock_interruptible(&dev->mutex);
648 	if (retval)
649 		return retval;
650 
651 	if (dev->flush)
652 		retval = dev->flush(dev, file);
653 
654 	mutex_unlock(&dev->mutex);
655 	return retval;
656 }
657 EXPORT_SYMBOL(input_flush_device);
658 
659 /**
660  * input_close_device - close input device
661  * @handle: handle through which device is being accessed
662  *
663  * This function should be called by input handlers when they
664  * want to stop receive events from given input device.
665  */
666 void input_close_device(struct input_handle *handle)
667 {
668 	struct input_dev *dev = handle->dev;
669 
670 	mutex_lock(&dev->mutex);
671 
672 	__input_release_device(handle);
673 
674 	if (!handle->handler->passive_observer) {
675 		if (!--dev->users && !dev->inhibited) {
676 			if (dev->poller)
677 				input_dev_poller_stop(dev->poller);
678 			if (dev->close)
679 				dev->close(dev);
680 		}
681 	}
682 
683 	if (!--handle->open) {
684 		/*
685 		 * synchronize_rcu() makes sure that input_pass_values()
686 		 * completed and that no more input events are delivered
687 		 * through this handle
688 		 */
689 		synchronize_rcu();
690 	}
691 
692 	mutex_unlock(&dev->mutex);
693 }
694 EXPORT_SYMBOL(input_close_device);
695 
696 /*
697  * Simulate keyup events for all keys that are marked as pressed.
698  * The function must be called with dev->event_lock held.
699  */
700 static bool input_dev_release_keys(struct input_dev *dev)
701 {
702 	bool need_sync = false;
703 	int code;
704 
705 	lockdep_assert_held(&dev->event_lock);
706 
707 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
708 		for_each_set_bit(code, dev->key, KEY_CNT) {
709 			input_handle_event(dev, EV_KEY, code, 0);
710 			need_sync = true;
711 		}
712 	}
713 
714 	return need_sync;
715 }
716 
717 /*
718  * Prepare device for unregistering
719  */
720 static void input_disconnect_device(struct input_dev *dev)
721 {
722 	struct input_handle *handle;
723 
724 	/*
725 	 * Mark device as going away. Note that we take dev->mutex here
726 	 * not to protect access to dev->going_away but rather to ensure
727 	 * that there are no threads in the middle of input_open_device()
728 	 */
729 	mutex_lock(&dev->mutex);
730 	dev->going_away = true;
731 	mutex_unlock(&dev->mutex);
732 
733 	spin_lock_irq(&dev->event_lock);
734 
735 	/*
736 	 * Simulate keyup events for all pressed keys so that handlers
737 	 * are not left with "stuck" keys. The driver may continue
738 	 * generate events even after we done here but they will not
739 	 * reach any handlers.
740 	 */
741 	if (input_dev_release_keys(dev))
742 		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
743 
744 	list_for_each_entry(handle, &dev->h_list, d_node)
745 		handle->open = 0;
746 
747 	spin_unlock_irq(&dev->event_lock);
748 }
749 
750 /**
751  * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
752  * @ke: keymap entry containing scancode to be converted.
753  * @scancode: pointer to the location where converted scancode should
754  *	be stored.
755  *
756  * This function is used to convert scancode stored in &struct keymap_entry
757  * into scalar form understood by legacy keymap handling methods. These
758  * methods expect scancodes to be represented as 'unsigned int'.
759  */
760 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
761 			     unsigned int *scancode)
762 {
763 	switch (ke->len) {
764 	case 1:
765 		*scancode = *((u8 *)ke->scancode);
766 		break;
767 
768 	case 2:
769 		*scancode = *((u16 *)ke->scancode);
770 		break;
771 
772 	case 4:
773 		*scancode = *((u32 *)ke->scancode);
774 		break;
775 
776 	default:
777 		return -EINVAL;
778 	}
779 
780 	return 0;
781 }
782 EXPORT_SYMBOL(input_scancode_to_scalar);
783 
784 /*
785  * Those routines handle the default case where no [gs]etkeycode() is
786  * defined. In this case, an array indexed by the scancode is used.
787  */
788 
789 static unsigned int input_fetch_keycode(struct input_dev *dev,
790 					unsigned int index)
791 {
792 	switch (dev->keycodesize) {
793 	case 1:
794 		return ((u8 *)dev->keycode)[index];
795 
796 	case 2:
797 		return ((u16 *)dev->keycode)[index];
798 
799 	default:
800 		return ((u32 *)dev->keycode)[index];
801 	}
802 }
803 
804 static int input_default_getkeycode(struct input_dev *dev,
805 				    struct input_keymap_entry *ke)
806 {
807 	unsigned int index;
808 	int error;
809 
810 	if (!dev->keycodesize)
811 		return -EINVAL;
812 
813 	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
814 		index = ke->index;
815 	else {
816 		error = input_scancode_to_scalar(ke, &index);
817 		if (error)
818 			return error;
819 	}
820 
821 	if (index >= dev->keycodemax)
822 		return -EINVAL;
823 
824 	ke->keycode = input_fetch_keycode(dev, index);
825 	ke->index = index;
826 	ke->len = sizeof(index);
827 	memcpy(ke->scancode, &index, sizeof(index));
828 
829 	return 0;
830 }
831 
832 static int input_default_setkeycode(struct input_dev *dev,
833 				    const struct input_keymap_entry *ke,
834 				    unsigned int *old_keycode)
835 {
836 	unsigned int index;
837 	int error;
838 	int i;
839 
840 	if (!dev->keycodesize)
841 		return -EINVAL;
842 
843 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
844 		index = ke->index;
845 	} else {
846 		error = input_scancode_to_scalar(ke, &index);
847 		if (error)
848 			return error;
849 	}
850 
851 	if (index >= dev->keycodemax)
852 		return -EINVAL;
853 
854 	if (dev->keycodesize < sizeof(ke->keycode) &&
855 			(ke->keycode >> (dev->keycodesize * 8)))
856 		return -EINVAL;
857 
858 	switch (dev->keycodesize) {
859 		case 1: {
860 			u8 *k = (u8 *)dev->keycode;
861 			*old_keycode = k[index];
862 			k[index] = ke->keycode;
863 			break;
864 		}
865 		case 2: {
866 			u16 *k = (u16 *)dev->keycode;
867 			*old_keycode = k[index];
868 			k[index] = ke->keycode;
869 			break;
870 		}
871 		default: {
872 			u32 *k = (u32 *)dev->keycode;
873 			*old_keycode = k[index];
874 			k[index] = ke->keycode;
875 			break;
876 		}
877 	}
878 
879 	if (*old_keycode <= KEY_MAX) {
880 		__clear_bit(*old_keycode, dev->keybit);
881 		for (i = 0; i < dev->keycodemax; i++) {
882 			if (input_fetch_keycode(dev, i) == *old_keycode) {
883 				__set_bit(*old_keycode, dev->keybit);
884 				/* Setting the bit twice is useless, so break */
885 				break;
886 			}
887 		}
888 	}
889 
890 	__set_bit(ke->keycode, dev->keybit);
891 	return 0;
892 }
893 
894 /**
895  * input_get_keycode - retrieve keycode currently mapped to a given scancode
896  * @dev: input device which keymap is being queried
897  * @ke: keymap entry
898  *
899  * This function should be called by anyone interested in retrieving current
900  * keymap. Presently evdev handlers use it.
901  */
902 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
903 {
904 	unsigned long flags;
905 	int retval;
906 
907 	spin_lock_irqsave(&dev->event_lock, flags);
908 	retval = dev->getkeycode(dev, ke);
909 	spin_unlock_irqrestore(&dev->event_lock, flags);
910 
911 	return retval;
912 }
913 EXPORT_SYMBOL(input_get_keycode);
914 
915 /**
916  * input_set_keycode - attribute a keycode to a given scancode
917  * @dev: input device which keymap is being updated
918  * @ke: new keymap entry
919  *
920  * This function should be called by anyone needing to update current
921  * keymap. Presently keyboard and evdev handlers use it.
922  */
923 int input_set_keycode(struct input_dev *dev,
924 		      const struct input_keymap_entry *ke)
925 {
926 	unsigned long flags;
927 	unsigned int old_keycode;
928 	int retval;
929 
930 	if (ke->keycode > KEY_MAX)
931 		return -EINVAL;
932 
933 	spin_lock_irqsave(&dev->event_lock, flags);
934 
935 	retval = dev->setkeycode(dev, ke, &old_keycode);
936 	if (retval)
937 		goto out;
938 
939 	/* Make sure KEY_RESERVED did not get enabled. */
940 	__clear_bit(KEY_RESERVED, dev->keybit);
941 
942 	/*
943 	 * Simulate keyup event if keycode is not present
944 	 * in the keymap anymore
945 	 */
946 	if (old_keycode > KEY_MAX) {
947 		dev_warn(dev->dev.parent ?: &dev->dev,
948 			 "%s: got too big old keycode %#x\n",
949 			 __func__, old_keycode);
950 	} else if (test_bit(EV_KEY, dev->evbit) &&
951 		   !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
952 		   __test_and_clear_bit(old_keycode, dev->key)) {
953 		/*
954 		 * We have to use input_event_dispose() here directly instead
955 		 * of input_handle_event() because the key we want to release
956 		 * here is considered no longer supported by the device and
957 		 * input_handle_event() will ignore it.
958 		 */
959 		input_event_dispose(dev, INPUT_PASS_TO_HANDLERS,
960 				    EV_KEY, old_keycode, 0);
961 		input_event_dispose(dev, INPUT_PASS_TO_HANDLERS | INPUT_FLUSH,
962 				    EV_SYN, SYN_REPORT, 1);
963 	}
964 
965  out:
966 	spin_unlock_irqrestore(&dev->event_lock, flags);
967 
968 	return retval;
969 }
970 EXPORT_SYMBOL(input_set_keycode);
971 
972 bool input_match_device_id(const struct input_dev *dev,
973 			   const struct input_device_id *id)
974 {
975 	if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
976 		if (id->bustype != dev->id.bustype)
977 			return false;
978 
979 	if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
980 		if (id->vendor != dev->id.vendor)
981 			return false;
982 
983 	if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
984 		if (id->product != dev->id.product)
985 			return false;
986 
987 	if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
988 		if (id->version != dev->id.version)
989 			return false;
990 
991 	if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
992 	    !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
993 	    !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
994 	    !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
995 	    !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
996 	    !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
997 	    !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
998 	    !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
999 	    !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
1000 	    !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
1001 		return false;
1002 	}
1003 
1004 	return true;
1005 }
1006 EXPORT_SYMBOL(input_match_device_id);
1007 
1008 static const struct input_device_id *input_match_device(struct input_handler *handler,
1009 							struct input_dev *dev)
1010 {
1011 	const struct input_device_id *id;
1012 
1013 	for (id = handler->id_table; id->flags || id->driver_info; id++) {
1014 		if (input_match_device_id(dev, id) &&
1015 		    (!handler->match || handler->match(handler, dev))) {
1016 			return id;
1017 		}
1018 	}
1019 
1020 	return NULL;
1021 }
1022 
1023 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1024 {
1025 	const struct input_device_id *id;
1026 	int error;
1027 
1028 	id = input_match_device(handler, dev);
1029 	if (!id)
1030 		return -ENODEV;
1031 
1032 	error = handler->connect(handler, dev, id);
1033 	if (error && error != -ENODEV)
1034 		pr_err("failed to attach handler %s to device %s, error: %d\n",
1035 		       handler->name, kobject_name(&dev->dev.kobj), error);
1036 
1037 	return error;
1038 }
1039 
1040 #ifdef CONFIG_COMPAT
1041 
1042 static int input_bits_to_string(char *buf, int buf_size,
1043 				unsigned long bits, bool skip_empty)
1044 {
1045 	int len = 0;
1046 
1047 	if (in_compat_syscall()) {
1048 		u32 dword = bits >> 32;
1049 		if (dword || !skip_empty)
1050 			len += snprintf(buf, buf_size, "%x ", dword);
1051 
1052 		dword = bits & 0xffffffffUL;
1053 		if (dword || !skip_empty || len)
1054 			len += snprintf(buf + len, max(buf_size - len, 0),
1055 					"%x", dword);
1056 	} else {
1057 		if (bits || !skip_empty)
1058 			len += snprintf(buf, buf_size, "%lx", bits);
1059 	}
1060 
1061 	return len;
1062 }
1063 
1064 #else /* !CONFIG_COMPAT */
1065 
1066 static int input_bits_to_string(char *buf, int buf_size,
1067 				unsigned long bits, bool skip_empty)
1068 {
1069 	return bits || !skip_empty ?
1070 		snprintf(buf, buf_size, "%lx", bits) : 0;
1071 }
1072 
1073 #endif
1074 
1075 #ifdef CONFIG_PROC_FS
1076 
1077 static struct proc_dir_entry *proc_bus_input_dir;
1078 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1079 static int input_devices_state;
1080 
1081 static inline void input_wakeup_procfs_readers(void)
1082 {
1083 	input_devices_state++;
1084 	wake_up(&input_devices_poll_wait);
1085 }
1086 
1087 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1088 {
1089 	poll_wait(file, &input_devices_poll_wait, wait);
1090 	if (file->f_version != input_devices_state) {
1091 		file->f_version = input_devices_state;
1092 		return EPOLLIN | EPOLLRDNORM;
1093 	}
1094 
1095 	return 0;
1096 }
1097 
1098 union input_seq_state {
1099 	struct {
1100 		unsigned short pos;
1101 		bool mutex_acquired;
1102 	};
1103 	void *p;
1104 };
1105 
1106 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1107 {
1108 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1109 	int error;
1110 
1111 	/* We need to fit into seq->private pointer */
1112 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1113 
1114 	error = mutex_lock_interruptible(&input_mutex);
1115 	if (error) {
1116 		state->mutex_acquired = false;
1117 		return ERR_PTR(error);
1118 	}
1119 
1120 	state->mutex_acquired = true;
1121 
1122 	return seq_list_start(&input_dev_list, *pos);
1123 }
1124 
1125 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1126 {
1127 	return seq_list_next(v, &input_dev_list, pos);
1128 }
1129 
1130 static void input_seq_stop(struct seq_file *seq, void *v)
1131 {
1132 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1133 
1134 	if (state->mutex_acquired)
1135 		mutex_unlock(&input_mutex);
1136 }
1137 
1138 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1139 				   unsigned long *bitmap, int max)
1140 {
1141 	int i;
1142 	bool skip_empty = true;
1143 	char buf[18];
1144 
1145 	seq_printf(seq, "B: %s=", name);
1146 
1147 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1148 		if (input_bits_to_string(buf, sizeof(buf),
1149 					 bitmap[i], skip_empty)) {
1150 			skip_empty = false;
1151 			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1152 		}
1153 	}
1154 
1155 	/*
1156 	 * If no output was produced print a single 0.
1157 	 */
1158 	if (skip_empty)
1159 		seq_putc(seq, '0');
1160 
1161 	seq_putc(seq, '\n');
1162 }
1163 
1164 static int input_devices_seq_show(struct seq_file *seq, void *v)
1165 {
1166 	struct input_dev *dev = container_of(v, struct input_dev, node);
1167 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1168 	struct input_handle *handle;
1169 
1170 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1171 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1172 
1173 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1174 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1175 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1176 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1177 	seq_puts(seq, "H: Handlers=");
1178 
1179 	list_for_each_entry(handle, &dev->h_list, d_node)
1180 		seq_printf(seq, "%s ", handle->name);
1181 	seq_putc(seq, '\n');
1182 
1183 	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1184 
1185 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1186 	if (test_bit(EV_KEY, dev->evbit))
1187 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1188 	if (test_bit(EV_REL, dev->evbit))
1189 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1190 	if (test_bit(EV_ABS, dev->evbit))
1191 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1192 	if (test_bit(EV_MSC, dev->evbit))
1193 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1194 	if (test_bit(EV_LED, dev->evbit))
1195 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1196 	if (test_bit(EV_SND, dev->evbit))
1197 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1198 	if (test_bit(EV_FF, dev->evbit))
1199 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1200 	if (test_bit(EV_SW, dev->evbit))
1201 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1202 
1203 	seq_putc(seq, '\n');
1204 
1205 	kfree(path);
1206 	return 0;
1207 }
1208 
1209 static const struct seq_operations input_devices_seq_ops = {
1210 	.start	= input_devices_seq_start,
1211 	.next	= input_devices_seq_next,
1212 	.stop	= input_seq_stop,
1213 	.show	= input_devices_seq_show,
1214 };
1215 
1216 static int input_proc_devices_open(struct inode *inode, struct file *file)
1217 {
1218 	return seq_open(file, &input_devices_seq_ops);
1219 }
1220 
1221 static const struct proc_ops input_devices_proc_ops = {
1222 	.proc_open	= input_proc_devices_open,
1223 	.proc_poll	= input_proc_devices_poll,
1224 	.proc_read	= seq_read,
1225 	.proc_lseek	= seq_lseek,
1226 	.proc_release	= seq_release,
1227 };
1228 
1229 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1230 {
1231 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1232 	int error;
1233 
1234 	/* We need to fit into seq->private pointer */
1235 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1236 
1237 	error = mutex_lock_interruptible(&input_mutex);
1238 	if (error) {
1239 		state->mutex_acquired = false;
1240 		return ERR_PTR(error);
1241 	}
1242 
1243 	state->mutex_acquired = true;
1244 	state->pos = *pos;
1245 
1246 	return seq_list_start(&input_handler_list, *pos);
1247 }
1248 
1249 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1250 {
1251 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1252 
1253 	state->pos = *pos + 1;
1254 	return seq_list_next(v, &input_handler_list, pos);
1255 }
1256 
1257 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1258 {
1259 	struct input_handler *handler = container_of(v, struct input_handler, node);
1260 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1261 
1262 	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1263 	if (handler->filter)
1264 		seq_puts(seq, " (filter)");
1265 	if (handler->legacy_minors)
1266 		seq_printf(seq, " Minor=%d", handler->minor);
1267 	seq_putc(seq, '\n');
1268 
1269 	return 0;
1270 }
1271 
1272 static const struct seq_operations input_handlers_seq_ops = {
1273 	.start	= input_handlers_seq_start,
1274 	.next	= input_handlers_seq_next,
1275 	.stop	= input_seq_stop,
1276 	.show	= input_handlers_seq_show,
1277 };
1278 
1279 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1280 {
1281 	return seq_open(file, &input_handlers_seq_ops);
1282 }
1283 
1284 static const struct proc_ops input_handlers_proc_ops = {
1285 	.proc_open	= input_proc_handlers_open,
1286 	.proc_read	= seq_read,
1287 	.proc_lseek	= seq_lseek,
1288 	.proc_release	= seq_release,
1289 };
1290 
1291 static int __init input_proc_init(void)
1292 {
1293 	struct proc_dir_entry *entry;
1294 
1295 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1296 	if (!proc_bus_input_dir)
1297 		return -ENOMEM;
1298 
1299 	entry = proc_create("devices", 0, proc_bus_input_dir,
1300 			    &input_devices_proc_ops);
1301 	if (!entry)
1302 		goto fail1;
1303 
1304 	entry = proc_create("handlers", 0, proc_bus_input_dir,
1305 			    &input_handlers_proc_ops);
1306 	if (!entry)
1307 		goto fail2;
1308 
1309 	return 0;
1310 
1311  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1312  fail1: remove_proc_entry("bus/input", NULL);
1313 	return -ENOMEM;
1314 }
1315 
1316 static void input_proc_exit(void)
1317 {
1318 	remove_proc_entry("devices", proc_bus_input_dir);
1319 	remove_proc_entry("handlers", proc_bus_input_dir);
1320 	remove_proc_entry("bus/input", NULL);
1321 }
1322 
1323 #else /* !CONFIG_PROC_FS */
1324 static inline void input_wakeup_procfs_readers(void) { }
1325 static inline int input_proc_init(void) { return 0; }
1326 static inline void input_proc_exit(void) { }
1327 #endif
1328 
1329 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1330 static ssize_t input_dev_show_##name(struct device *dev,		\
1331 				     struct device_attribute *attr,	\
1332 				     char *buf)				\
1333 {									\
1334 	struct input_dev *input_dev = to_input_dev(dev);		\
1335 									\
1336 	return sysfs_emit(buf, "%s\n",					\
1337 			  input_dev->name ? input_dev->name : "");	\
1338 }									\
1339 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1340 
1341 INPUT_DEV_STRING_ATTR_SHOW(name);
1342 INPUT_DEV_STRING_ATTR_SHOW(phys);
1343 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1344 
1345 static int input_print_modalias_bits(char *buf, int size,
1346 				     char name, const unsigned long *bm,
1347 				     unsigned int min_bit, unsigned int max_bit)
1348 {
1349 	int bit = min_bit;
1350 	int len = 0;
1351 
1352 	len += snprintf(buf, max(size, 0), "%c", name);
1353 	for_each_set_bit_from(bit, bm, max_bit)
1354 		len += snprintf(buf + len, max(size - len, 0), "%X,", bit);
1355 	return len;
1356 }
1357 
1358 static int input_print_modalias_parts(char *buf, int size, int full_len,
1359 				      const struct input_dev *id)
1360 {
1361 	int len, klen, remainder, space;
1362 
1363 	len = snprintf(buf, max(size, 0),
1364 		       "input:b%04Xv%04Xp%04Xe%04X-",
1365 		       id->id.bustype, id->id.vendor,
1366 		       id->id.product, id->id.version);
1367 
1368 	len += input_print_modalias_bits(buf + len, size - len,
1369 				'e', id->evbit, 0, EV_MAX);
1370 
1371 	/*
1372 	 * Calculate the remaining space in the buffer making sure we
1373 	 * have place for the terminating 0.
1374 	 */
1375 	space = max(size - (len + 1), 0);
1376 
1377 	klen = input_print_modalias_bits(buf + len, size - len,
1378 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1379 	len += klen;
1380 
1381 	/*
1382 	 * If we have more data than we can fit in the buffer, check
1383 	 * if we can trim key data to fit in the rest. We will indicate
1384 	 * that key data is incomplete by adding "+" sign at the end, like
1385 	 * this: * "k1,2,3,45,+,".
1386 	 *
1387 	 * Note that we shortest key info (if present) is "k+," so we
1388 	 * can only try to trim if key data is longer than that.
1389 	 */
1390 	if (full_len && size < full_len + 1 && klen > 3) {
1391 		remainder = full_len - len;
1392 		/*
1393 		 * We can only trim if we have space for the remainder
1394 		 * and also for at least "k+," which is 3 more characters.
1395 		 */
1396 		if (remainder <= space - 3) {
1397 			/*
1398 			 * We are guaranteed to have 'k' in the buffer, so
1399 			 * we need at least 3 additional bytes for storing
1400 			 * "+," in addition to the remainder.
1401 			 */
1402 			for (int i = size - 1 - remainder - 3; i >= 0; i--) {
1403 				if (buf[i] == 'k' || buf[i] == ',') {
1404 					strcpy(buf + i + 1, "+,");
1405 					len = i + 3; /* Not counting '\0' */
1406 					break;
1407 				}
1408 			}
1409 		}
1410 	}
1411 
1412 	len += input_print_modalias_bits(buf + len, size - len,
1413 				'r', id->relbit, 0, REL_MAX);
1414 	len += input_print_modalias_bits(buf + len, size - len,
1415 				'a', id->absbit, 0, ABS_MAX);
1416 	len += input_print_modalias_bits(buf + len, size - len,
1417 				'm', id->mscbit, 0, MSC_MAX);
1418 	len += input_print_modalias_bits(buf + len, size - len,
1419 				'l', id->ledbit, 0, LED_MAX);
1420 	len += input_print_modalias_bits(buf + len, size - len,
1421 				's', id->sndbit, 0, SND_MAX);
1422 	len += input_print_modalias_bits(buf + len, size - len,
1423 				'f', id->ffbit, 0, FF_MAX);
1424 	len += input_print_modalias_bits(buf + len, size - len,
1425 				'w', id->swbit, 0, SW_MAX);
1426 
1427 	return len;
1428 }
1429 
1430 static int input_print_modalias(char *buf, int size, const struct input_dev *id)
1431 {
1432 	int full_len;
1433 
1434 	/*
1435 	 * Printing is done in 2 passes: first one figures out total length
1436 	 * needed for the modalias string, second one will try to trim key
1437 	 * data in case when buffer is too small for the entire modalias.
1438 	 * If the buffer is too small regardless, it will fill as much as it
1439 	 * can (without trimming key data) into the buffer and leave it to
1440 	 * the caller to figure out what to do with the result.
1441 	 */
1442 	full_len = input_print_modalias_parts(NULL, 0, 0, id);
1443 	return input_print_modalias_parts(buf, size, full_len, id);
1444 }
1445 
1446 static ssize_t input_dev_show_modalias(struct device *dev,
1447 				       struct device_attribute *attr,
1448 				       char *buf)
1449 {
1450 	struct input_dev *id = to_input_dev(dev);
1451 	ssize_t len;
1452 
1453 	len = input_print_modalias(buf, PAGE_SIZE, id);
1454 	if (len < PAGE_SIZE - 2)
1455 		len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1456 
1457 	return min_t(int, len, PAGE_SIZE);
1458 }
1459 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1460 
1461 static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
1462 			      int max, int add_cr);
1463 
1464 static ssize_t input_dev_show_properties(struct device *dev,
1465 					 struct device_attribute *attr,
1466 					 char *buf)
1467 {
1468 	struct input_dev *input_dev = to_input_dev(dev);
1469 	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1470 				     INPUT_PROP_MAX, true);
1471 	return min_t(int, len, PAGE_SIZE);
1472 }
1473 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1474 
1475 static int input_inhibit_device(struct input_dev *dev);
1476 static int input_uninhibit_device(struct input_dev *dev);
1477 
1478 static ssize_t inhibited_show(struct device *dev,
1479 			      struct device_attribute *attr,
1480 			      char *buf)
1481 {
1482 	struct input_dev *input_dev = to_input_dev(dev);
1483 
1484 	return sysfs_emit(buf, "%d\n", input_dev->inhibited);
1485 }
1486 
1487 static ssize_t inhibited_store(struct device *dev,
1488 			       struct device_attribute *attr, const char *buf,
1489 			       size_t len)
1490 {
1491 	struct input_dev *input_dev = to_input_dev(dev);
1492 	ssize_t rv;
1493 	bool inhibited;
1494 
1495 	if (kstrtobool(buf, &inhibited))
1496 		return -EINVAL;
1497 
1498 	if (inhibited)
1499 		rv = input_inhibit_device(input_dev);
1500 	else
1501 		rv = input_uninhibit_device(input_dev);
1502 
1503 	if (rv != 0)
1504 		return rv;
1505 
1506 	return len;
1507 }
1508 
1509 static DEVICE_ATTR_RW(inhibited);
1510 
1511 static struct attribute *input_dev_attrs[] = {
1512 	&dev_attr_name.attr,
1513 	&dev_attr_phys.attr,
1514 	&dev_attr_uniq.attr,
1515 	&dev_attr_modalias.attr,
1516 	&dev_attr_properties.attr,
1517 	&dev_attr_inhibited.attr,
1518 	NULL
1519 };
1520 
1521 static const struct attribute_group input_dev_attr_group = {
1522 	.attrs	= input_dev_attrs,
1523 };
1524 
1525 #define INPUT_DEV_ID_ATTR(name)						\
1526 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1527 					struct device_attribute *attr,	\
1528 					char *buf)			\
1529 {									\
1530 	struct input_dev *input_dev = to_input_dev(dev);		\
1531 	return sysfs_emit(buf, "%04x\n", input_dev->id.name);		\
1532 }									\
1533 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1534 
1535 INPUT_DEV_ID_ATTR(bustype);
1536 INPUT_DEV_ID_ATTR(vendor);
1537 INPUT_DEV_ID_ATTR(product);
1538 INPUT_DEV_ID_ATTR(version);
1539 
1540 static struct attribute *input_dev_id_attrs[] = {
1541 	&dev_attr_bustype.attr,
1542 	&dev_attr_vendor.attr,
1543 	&dev_attr_product.attr,
1544 	&dev_attr_version.attr,
1545 	NULL
1546 };
1547 
1548 static const struct attribute_group input_dev_id_attr_group = {
1549 	.name	= "id",
1550 	.attrs	= input_dev_id_attrs,
1551 };
1552 
1553 static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
1554 			      int max, int add_cr)
1555 {
1556 	int i;
1557 	int len = 0;
1558 	bool skip_empty = true;
1559 
1560 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1561 		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1562 					    bitmap[i], skip_empty);
1563 		if (len) {
1564 			skip_empty = false;
1565 			if (i > 0)
1566 				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1567 		}
1568 	}
1569 
1570 	/*
1571 	 * If no output was produced print a single 0.
1572 	 */
1573 	if (len == 0)
1574 		len = snprintf(buf, buf_size, "%d", 0);
1575 
1576 	if (add_cr)
1577 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1578 
1579 	return len;
1580 }
1581 
1582 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1583 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1584 				       struct device_attribute *attr,	\
1585 				       char *buf)			\
1586 {									\
1587 	struct input_dev *input_dev = to_input_dev(dev);		\
1588 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1589 				     input_dev->bm##bit, ev##_MAX,	\
1590 				     true);				\
1591 	return min_t(int, len, PAGE_SIZE);				\
1592 }									\
1593 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1594 
1595 INPUT_DEV_CAP_ATTR(EV, ev);
1596 INPUT_DEV_CAP_ATTR(KEY, key);
1597 INPUT_DEV_CAP_ATTR(REL, rel);
1598 INPUT_DEV_CAP_ATTR(ABS, abs);
1599 INPUT_DEV_CAP_ATTR(MSC, msc);
1600 INPUT_DEV_CAP_ATTR(LED, led);
1601 INPUT_DEV_CAP_ATTR(SND, snd);
1602 INPUT_DEV_CAP_ATTR(FF, ff);
1603 INPUT_DEV_CAP_ATTR(SW, sw);
1604 
1605 static struct attribute *input_dev_caps_attrs[] = {
1606 	&dev_attr_ev.attr,
1607 	&dev_attr_key.attr,
1608 	&dev_attr_rel.attr,
1609 	&dev_attr_abs.attr,
1610 	&dev_attr_msc.attr,
1611 	&dev_attr_led.attr,
1612 	&dev_attr_snd.attr,
1613 	&dev_attr_ff.attr,
1614 	&dev_attr_sw.attr,
1615 	NULL
1616 };
1617 
1618 static const struct attribute_group input_dev_caps_attr_group = {
1619 	.name	= "capabilities",
1620 	.attrs	= input_dev_caps_attrs,
1621 };
1622 
1623 static const struct attribute_group *input_dev_attr_groups[] = {
1624 	&input_dev_attr_group,
1625 	&input_dev_id_attr_group,
1626 	&input_dev_caps_attr_group,
1627 	&input_poller_attribute_group,
1628 	NULL
1629 };
1630 
1631 static void input_dev_release(struct device *device)
1632 {
1633 	struct input_dev *dev = to_input_dev(device);
1634 
1635 	input_ff_destroy(dev);
1636 	input_mt_destroy_slots(dev);
1637 	kfree(dev->poller);
1638 	kfree(dev->absinfo);
1639 	kfree(dev->vals);
1640 	kfree(dev);
1641 
1642 	module_put(THIS_MODULE);
1643 }
1644 
1645 /*
1646  * Input uevent interface - loading event handlers based on
1647  * device bitfields.
1648  */
1649 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1650 				   const char *name, const unsigned long *bitmap, int max)
1651 {
1652 	int len;
1653 
1654 	if (add_uevent_var(env, "%s", name))
1655 		return -ENOMEM;
1656 
1657 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1658 				 sizeof(env->buf) - env->buflen,
1659 				 bitmap, max, false);
1660 	if (len >= (sizeof(env->buf) - env->buflen))
1661 		return -ENOMEM;
1662 
1663 	env->buflen += len;
1664 	return 0;
1665 }
1666 
1667 /*
1668  * This is a pretty gross hack. When building uevent data the driver core
1669  * may try adding more environment variables to kobj_uevent_env without
1670  * telling us, so we have no idea how much of the buffer we can use to
1671  * avoid overflows/-ENOMEM elsewhere. To work around this let's artificially
1672  * reduce amount of memory we will use for the modalias environment variable.
1673  *
1674  * The potential additions are:
1675  *
1676  * SEQNUM=18446744073709551615 - (%llu - 28 bytes)
1677  * HOME=/ (6 bytes)
1678  * PATH=/sbin:/bin:/usr/sbin:/usr/bin (34 bytes)
1679  *
1680  * 68 bytes total. Allow extra buffer - 96 bytes
1681  */
1682 #define UEVENT_ENV_EXTRA_LEN	96
1683 
1684 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1685 					 const struct input_dev *dev)
1686 {
1687 	int len;
1688 
1689 	if (add_uevent_var(env, "MODALIAS="))
1690 		return -ENOMEM;
1691 
1692 	len = input_print_modalias(&env->buf[env->buflen - 1],
1693 				   (int)sizeof(env->buf) - env->buflen -
1694 					UEVENT_ENV_EXTRA_LEN,
1695 				   dev);
1696 	if (len >= ((int)sizeof(env->buf) - env->buflen -
1697 					UEVENT_ENV_EXTRA_LEN))
1698 		return -ENOMEM;
1699 
1700 	env->buflen += len;
1701 	return 0;
1702 }
1703 
1704 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1705 	do {								\
1706 		int err = add_uevent_var(env, fmt, val);		\
1707 		if (err)						\
1708 			return err;					\
1709 	} while (0)
1710 
1711 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1712 	do {								\
1713 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1714 		if (err)						\
1715 			return err;					\
1716 	} while (0)
1717 
1718 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1719 	do {								\
1720 		int err = input_add_uevent_modalias_var(env, dev);	\
1721 		if (err)						\
1722 			return err;					\
1723 	} while (0)
1724 
1725 static int input_dev_uevent(const struct device *device, struct kobj_uevent_env *env)
1726 {
1727 	const struct input_dev *dev = to_input_dev(device);
1728 
1729 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1730 				dev->id.bustype, dev->id.vendor,
1731 				dev->id.product, dev->id.version);
1732 	if (dev->name)
1733 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1734 	if (dev->phys)
1735 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1736 	if (dev->uniq)
1737 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1738 
1739 	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1740 
1741 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1742 	if (test_bit(EV_KEY, dev->evbit))
1743 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1744 	if (test_bit(EV_REL, dev->evbit))
1745 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1746 	if (test_bit(EV_ABS, dev->evbit))
1747 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1748 	if (test_bit(EV_MSC, dev->evbit))
1749 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1750 	if (test_bit(EV_LED, dev->evbit))
1751 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1752 	if (test_bit(EV_SND, dev->evbit))
1753 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1754 	if (test_bit(EV_FF, dev->evbit))
1755 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1756 	if (test_bit(EV_SW, dev->evbit))
1757 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1758 
1759 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1760 
1761 	return 0;
1762 }
1763 
1764 #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1765 	do {								\
1766 		int i;							\
1767 		bool active;						\
1768 									\
1769 		if (!test_bit(EV_##type, dev->evbit))			\
1770 			break;						\
1771 									\
1772 		for_each_set_bit(i, dev->bits##bit, type##_CNT) {	\
1773 			active = test_bit(i, dev->bits);		\
1774 			if (!active && !on)				\
1775 				continue;				\
1776 									\
1777 			dev->event(dev, EV_##type, i, on ? active : 0);	\
1778 		}							\
1779 	} while (0)
1780 
1781 static void input_dev_toggle(struct input_dev *dev, bool activate)
1782 {
1783 	if (!dev->event)
1784 		return;
1785 
1786 	INPUT_DO_TOGGLE(dev, LED, led, activate);
1787 	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1788 
1789 	if (activate && test_bit(EV_REP, dev->evbit)) {
1790 		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1791 		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1792 	}
1793 }
1794 
1795 /**
1796  * input_reset_device() - reset/restore the state of input device
1797  * @dev: input device whose state needs to be reset
1798  *
1799  * This function tries to reset the state of an opened input device and
1800  * bring internal state and state if the hardware in sync with each other.
1801  * We mark all keys as released, restore LED state, repeat rate, etc.
1802  */
1803 void input_reset_device(struct input_dev *dev)
1804 {
1805 	unsigned long flags;
1806 
1807 	mutex_lock(&dev->mutex);
1808 	spin_lock_irqsave(&dev->event_lock, flags);
1809 
1810 	input_dev_toggle(dev, true);
1811 	if (input_dev_release_keys(dev))
1812 		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1813 
1814 	spin_unlock_irqrestore(&dev->event_lock, flags);
1815 	mutex_unlock(&dev->mutex);
1816 }
1817 EXPORT_SYMBOL(input_reset_device);
1818 
1819 static int input_inhibit_device(struct input_dev *dev)
1820 {
1821 	mutex_lock(&dev->mutex);
1822 
1823 	if (dev->inhibited)
1824 		goto out;
1825 
1826 	if (dev->users) {
1827 		if (dev->close)
1828 			dev->close(dev);
1829 		if (dev->poller)
1830 			input_dev_poller_stop(dev->poller);
1831 	}
1832 
1833 	spin_lock_irq(&dev->event_lock);
1834 	input_mt_release_slots(dev);
1835 	input_dev_release_keys(dev);
1836 	input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1837 	input_dev_toggle(dev, false);
1838 	spin_unlock_irq(&dev->event_lock);
1839 
1840 	dev->inhibited = true;
1841 
1842 out:
1843 	mutex_unlock(&dev->mutex);
1844 	return 0;
1845 }
1846 
1847 static int input_uninhibit_device(struct input_dev *dev)
1848 {
1849 	int ret = 0;
1850 
1851 	mutex_lock(&dev->mutex);
1852 
1853 	if (!dev->inhibited)
1854 		goto out;
1855 
1856 	if (dev->users) {
1857 		if (dev->open) {
1858 			ret = dev->open(dev);
1859 			if (ret)
1860 				goto out;
1861 		}
1862 		if (dev->poller)
1863 			input_dev_poller_start(dev->poller);
1864 	}
1865 
1866 	dev->inhibited = false;
1867 	spin_lock_irq(&dev->event_lock);
1868 	input_dev_toggle(dev, true);
1869 	spin_unlock_irq(&dev->event_lock);
1870 
1871 out:
1872 	mutex_unlock(&dev->mutex);
1873 	return ret;
1874 }
1875 
1876 static int input_dev_suspend(struct device *dev)
1877 {
1878 	struct input_dev *input_dev = to_input_dev(dev);
1879 
1880 	spin_lock_irq(&input_dev->event_lock);
1881 
1882 	/*
1883 	 * Keys that are pressed now are unlikely to be
1884 	 * still pressed when we resume.
1885 	 */
1886 	if (input_dev_release_keys(input_dev))
1887 		input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1888 
1889 	/* Turn off LEDs and sounds, if any are active. */
1890 	input_dev_toggle(input_dev, false);
1891 
1892 	spin_unlock_irq(&input_dev->event_lock);
1893 
1894 	return 0;
1895 }
1896 
1897 static int input_dev_resume(struct device *dev)
1898 {
1899 	struct input_dev *input_dev = to_input_dev(dev);
1900 
1901 	spin_lock_irq(&input_dev->event_lock);
1902 
1903 	/* Restore state of LEDs and sounds, if any were active. */
1904 	input_dev_toggle(input_dev, true);
1905 
1906 	spin_unlock_irq(&input_dev->event_lock);
1907 
1908 	return 0;
1909 }
1910 
1911 static int input_dev_freeze(struct device *dev)
1912 {
1913 	struct input_dev *input_dev = to_input_dev(dev);
1914 
1915 	spin_lock_irq(&input_dev->event_lock);
1916 
1917 	/*
1918 	 * Keys that are pressed now are unlikely to be
1919 	 * still pressed when we resume.
1920 	 */
1921 	if (input_dev_release_keys(input_dev))
1922 		input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1923 
1924 	spin_unlock_irq(&input_dev->event_lock);
1925 
1926 	return 0;
1927 }
1928 
1929 static int input_dev_poweroff(struct device *dev)
1930 {
1931 	struct input_dev *input_dev = to_input_dev(dev);
1932 
1933 	spin_lock_irq(&input_dev->event_lock);
1934 
1935 	/* Turn off LEDs and sounds, if any are active. */
1936 	input_dev_toggle(input_dev, false);
1937 
1938 	spin_unlock_irq(&input_dev->event_lock);
1939 
1940 	return 0;
1941 }
1942 
1943 static const struct dev_pm_ops input_dev_pm_ops = {
1944 	.suspend	= input_dev_suspend,
1945 	.resume		= input_dev_resume,
1946 	.freeze		= input_dev_freeze,
1947 	.poweroff	= input_dev_poweroff,
1948 	.restore	= input_dev_resume,
1949 };
1950 
1951 static const struct device_type input_dev_type = {
1952 	.groups		= input_dev_attr_groups,
1953 	.release	= input_dev_release,
1954 	.uevent		= input_dev_uevent,
1955 	.pm		= pm_sleep_ptr(&input_dev_pm_ops),
1956 };
1957 
1958 static char *input_devnode(const struct device *dev, umode_t *mode)
1959 {
1960 	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1961 }
1962 
1963 const struct class input_class = {
1964 	.name		= "input",
1965 	.devnode	= input_devnode,
1966 };
1967 EXPORT_SYMBOL_GPL(input_class);
1968 
1969 /**
1970  * input_allocate_device - allocate memory for new input device
1971  *
1972  * Returns prepared struct input_dev or %NULL.
1973  *
1974  * NOTE: Use input_free_device() to free devices that have not been
1975  * registered; input_unregister_device() should be used for already
1976  * registered devices.
1977  */
1978 struct input_dev *input_allocate_device(void)
1979 {
1980 	static atomic_t input_no = ATOMIC_INIT(-1);
1981 	struct input_dev *dev;
1982 
1983 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1984 	if (!dev)
1985 		return NULL;
1986 
1987 	/*
1988 	 * Start with space for SYN_REPORT + 7 EV_KEY/EV_MSC events + 2 spare,
1989 	 * see input_estimate_events_per_packet(). We will tune the number
1990 	 * when we register the device.
1991 	 */
1992 	dev->max_vals = 10;
1993 	dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
1994 	if (!dev->vals) {
1995 		kfree(dev);
1996 		return NULL;
1997 	}
1998 
1999 	mutex_init(&dev->mutex);
2000 	spin_lock_init(&dev->event_lock);
2001 	timer_setup(&dev->timer, NULL, 0);
2002 	INIT_LIST_HEAD(&dev->h_list);
2003 	INIT_LIST_HEAD(&dev->node);
2004 
2005 	dev->dev.type = &input_dev_type;
2006 	dev->dev.class = &input_class;
2007 	device_initialize(&dev->dev);
2008 	/*
2009 	 * From this point on we can no longer simply "kfree(dev)", we need
2010 	 * to use input_free_device() so that device core properly frees its
2011 	 * resources associated with the input device.
2012 	 */
2013 
2014 	dev_set_name(&dev->dev, "input%lu",
2015 		     (unsigned long)atomic_inc_return(&input_no));
2016 
2017 	__module_get(THIS_MODULE);
2018 
2019 	return dev;
2020 }
2021 EXPORT_SYMBOL(input_allocate_device);
2022 
2023 struct input_devres {
2024 	struct input_dev *input;
2025 };
2026 
2027 static int devm_input_device_match(struct device *dev, void *res, void *data)
2028 {
2029 	struct input_devres *devres = res;
2030 
2031 	return devres->input == data;
2032 }
2033 
2034 static void devm_input_device_release(struct device *dev, void *res)
2035 {
2036 	struct input_devres *devres = res;
2037 	struct input_dev *input = devres->input;
2038 
2039 	dev_dbg(dev, "%s: dropping reference to %s\n",
2040 		__func__, dev_name(&input->dev));
2041 	input_put_device(input);
2042 }
2043 
2044 /**
2045  * devm_input_allocate_device - allocate managed input device
2046  * @dev: device owning the input device being created
2047  *
2048  * Returns prepared struct input_dev or %NULL.
2049  *
2050  * Managed input devices do not need to be explicitly unregistered or
2051  * freed as it will be done automatically when owner device unbinds from
2052  * its driver (or binding fails). Once managed input device is allocated,
2053  * it is ready to be set up and registered in the same fashion as regular
2054  * input device. There are no special devm_input_device_[un]register()
2055  * variants, regular ones work with both managed and unmanaged devices,
2056  * should you need them. In most cases however, managed input device need
2057  * not be explicitly unregistered or freed.
2058  *
2059  * NOTE: the owner device is set up as parent of input device and users
2060  * should not override it.
2061  */
2062 struct input_dev *devm_input_allocate_device(struct device *dev)
2063 {
2064 	struct input_dev *input;
2065 	struct input_devres *devres;
2066 
2067 	devres = devres_alloc(devm_input_device_release,
2068 			      sizeof(*devres), GFP_KERNEL);
2069 	if (!devres)
2070 		return NULL;
2071 
2072 	input = input_allocate_device();
2073 	if (!input) {
2074 		devres_free(devres);
2075 		return NULL;
2076 	}
2077 
2078 	input->dev.parent = dev;
2079 	input->devres_managed = true;
2080 
2081 	devres->input = input;
2082 	devres_add(dev, devres);
2083 
2084 	return input;
2085 }
2086 EXPORT_SYMBOL(devm_input_allocate_device);
2087 
2088 /**
2089  * input_free_device - free memory occupied by input_dev structure
2090  * @dev: input device to free
2091  *
2092  * This function should only be used if input_register_device()
2093  * was not called yet or if it failed. Once device was registered
2094  * use input_unregister_device() and memory will be freed once last
2095  * reference to the device is dropped.
2096  *
2097  * Device should be allocated by input_allocate_device().
2098  *
2099  * NOTE: If there are references to the input device then memory
2100  * will not be freed until last reference is dropped.
2101  */
2102 void input_free_device(struct input_dev *dev)
2103 {
2104 	if (dev) {
2105 		if (dev->devres_managed)
2106 			WARN_ON(devres_destroy(dev->dev.parent,
2107 						devm_input_device_release,
2108 						devm_input_device_match,
2109 						dev));
2110 		input_put_device(dev);
2111 	}
2112 }
2113 EXPORT_SYMBOL(input_free_device);
2114 
2115 /**
2116  * input_set_timestamp - set timestamp for input events
2117  * @dev: input device to set timestamp for
2118  * @timestamp: the time at which the event has occurred
2119  *   in CLOCK_MONOTONIC
2120  *
2121  * This function is intended to provide to the input system a more
2122  * accurate time of when an event actually occurred. The driver should
2123  * call this function as soon as a timestamp is acquired ensuring
2124  * clock conversions in input_set_timestamp are done correctly.
2125  *
2126  * The system entering suspend state between timestamp acquisition and
2127  * calling input_set_timestamp can result in inaccurate conversions.
2128  */
2129 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
2130 {
2131 	dev->timestamp[INPUT_CLK_MONO] = timestamp;
2132 	dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
2133 	dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
2134 							   TK_OFFS_BOOT);
2135 }
2136 EXPORT_SYMBOL(input_set_timestamp);
2137 
2138 /**
2139  * input_get_timestamp - get timestamp for input events
2140  * @dev: input device to get timestamp from
2141  *
2142  * A valid timestamp is a timestamp of non-zero value.
2143  */
2144 ktime_t *input_get_timestamp(struct input_dev *dev)
2145 {
2146 	const ktime_t invalid_timestamp = ktime_set(0, 0);
2147 
2148 	if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
2149 		input_set_timestamp(dev, ktime_get());
2150 
2151 	return dev->timestamp;
2152 }
2153 EXPORT_SYMBOL(input_get_timestamp);
2154 
2155 /**
2156  * input_set_capability - mark device as capable of a certain event
2157  * @dev: device that is capable of emitting or accepting event
2158  * @type: type of the event (EV_KEY, EV_REL, etc...)
2159  * @code: event code
2160  *
2161  * In addition to setting up corresponding bit in appropriate capability
2162  * bitmap the function also adjusts dev->evbit.
2163  */
2164 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
2165 {
2166 	if (type < EV_CNT && input_max_code[type] &&
2167 	    code > input_max_code[type]) {
2168 		pr_err("%s: invalid code %u for type %u\n", __func__, code,
2169 		       type);
2170 		dump_stack();
2171 		return;
2172 	}
2173 
2174 	switch (type) {
2175 	case EV_KEY:
2176 		__set_bit(code, dev->keybit);
2177 		break;
2178 
2179 	case EV_REL:
2180 		__set_bit(code, dev->relbit);
2181 		break;
2182 
2183 	case EV_ABS:
2184 		input_alloc_absinfo(dev);
2185 		__set_bit(code, dev->absbit);
2186 		break;
2187 
2188 	case EV_MSC:
2189 		__set_bit(code, dev->mscbit);
2190 		break;
2191 
2192 	case EV_SW:
2193 		__set_bit(code, dev->swbit);
2194 		break;
2195 
2196 	case EV_LED:
2197 		__set_bit(code, dev->ledbit);
2198 		break;
2199 
2200 	case EV_SND:
2201 		__set_bit(code, dev->sndbit);
2202 		break;
2203 
2204 	case EV_FF:
2205 		__set_bit(code, dev->ffbit);
2206 		break;
2207 
2208 	case EV_PWR:
2209 		/* do nothing */
2210 		break;
2211 
2212 	default:
2213 		pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2214 		dump_stack();
2215 		return;
2216 	}
2217 
2218 	__set_bit(type, dev->evbit);
2219 }
2220 EXPORT_SYMBOL(input_set_capability);
2221 
2222 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2223 {
2224 	int mt_slots;
2225 	int i;
2226 	unsigned int events;
2227 
2228 	if (dev->mt) {
2229 		mt_slots = dev->mt->num_slots;
2230 	} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2231 		mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2232 			   dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1;
2233 		mt_slots = clamp(mt_slots, 2, 32);
2234 	} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2235 		mt_slots = 2;
2236 	} else {
2237 		mt_slots = 0;
2238 	}
2239 
2240 	events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2241 
2242 	if (test_bit(EV_ABS, dev->evbit))
2243 		for_each_set_bit(i, dev->absbit, ABS_CNT)
2244 			events += input_is_mt_axis(i) ? mt_slots : 1;
2245 
2246 	if (test_bit(EV_REL, dev->evbit))
2247 		events += bitmap_weight(dev->relbit, REL_CNT);
2248 
2249 	/* Make room for KEY and MSC events */
2250 	events += 7;
2251 
2252 	return events;
2253 }
2254 
2255 #define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
2256 	do {								\
2257 		if (!test_bit(EV_##type, dev->evbit))			\
2258 			memset(dev->bits##bit, 0,			\
2259 				sizeof(dev->bits##bit));		\
2260 	} while (0)
2261 
2262 static void input_cleanse_bitmasks(struct input_dev *dev)
2263 {
2264 	INPUT_CLEANSE_BITMASK(dev, KEY, key);
2265 	INPUT_CLEANSE_BITMASK(dev, REL, rel);
2266 	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2267 	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2268 	INPUT_CLEANSE_BITMASK(dev, LED, led);
2269 	INPUT_CLEANSE_BITMASK(dev, SND, snd);
2270 	INPUT_CLEANSE_BITMASK(dev, FF, ff);
2271 	INPUT_CLEANSE_BITMASK(dev, SW, sw);
2272 }
2273 
2274 static void __input_unregister_device(struct input_dev *dev)
2275 {
2276 	struct input_handle *handle, *next;
2277 
2278 	input_disconnect_device(dev);
2279 
2280 	mutex_lock(&input_mutex);
2281 
2282 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2283 		handle->handler->disconnect(handle);
2284 	WARN_ON(!list_empty(&dev->h_list));
2285 
2286 	del_timer_sync(&dev->timer);
2287 	list_del_init(&dev->node);
2288 
2289 	input_wakeup_procfs_readers();
2290 
2291 	mutex_unlock(&input_mutex);
2292 
2293 	device_del(&dev->dev);
2294 }
2295 
2296 static void devm_input_device_unregister(struct device *dev, void *res)
2297 {
2298 	struct input_devres *devres = res;
2299 	struct input_dev *input = devres->input;
2300 
2301 	dev_dbg(dev, "%s: unregistering device %s\n",
2302 		__func__, dev_name(&input->dev));
2303 	__input_unregister_device(input);
2304 }
2305 
2306 /*
2307  * Generate software autorepeat event. Note that we take
2308  * dev->event_lock here to avoid racing with input_event
2309  * which may cause keys get "stuck".
2310  */
2311 static void input_repeat_key(struct timer_list *t)
2312 {
2313 	struct input_dev *dev = from_timer(dev, t, timer);
2314 	unsigned long flags;
2315 
2316 	spin_lock_irqsave(&dev->event_lock, flags);
2317 
2318 	if (!dev->inhibited &&
2319 	    test_bit(dev->repeat_key, dev->key) &&
2320 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
2321 
2322 		input_set_timestamp(dev, ktime_get());
2323 		input_handle_event(dev, EV_KEY, dev->repeat_key, 2);
2324 		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
2325 
2326 		if (dev->rep[REP_PERIOD])
2327 			mod_timer(&dev->timer, jiffies +
2328 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
2329 	}
2330 
2331 	spin_unlock_irqrestore(&dev->event_lock, flags);
2332 }
2333 
2334 /**
2335  * input_enable_softrepeat - enable software autorepeat
2336  * @dev: input device
2337  * @delay: repeat delay
2338  * @period: repeat period
2339  *
2340  * Enable software autorepeat on the input device.
2341  */
2342 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2343 {
2344 	dev->timer.function = input_repeat_key;
2345 	dev->rep[REP_DELAY] = delay;
2346 	dev->rep[REP_PERIOD] = period;
2347 }
2348 EXPORT_SYMBOL(input_enable_softrepeat);
2349 
2350 bool input_device_enabled(struct input_dev *dev)
2351 {
2352 	lockdep_assert_held(&dev->mutex);
2353 
2354 	return !dev->inhibited && dev->users > 0;
2355 }
2356 EXPORT_SYMBOL_GPL(input_device_enabled);
2357 
2358 static int input_device_tune_vals(struct input_dev *dev)
2359 {
2360 	struct input_value *vals;
2361 	unsigned int packet_size;
2362 	unsigned int max_vals;
2363 
2364 	packet_size = input_estimate_events_per_packet(dev);
2365 	if (dev->hint_events_per_packet < packet_size)
2366 		dev->hint_events_per_packet = packet_size;
2367 
2368 	max_vals = dev->hint_events_per_packet + 2;
2369 	if (dev->max_vals >= max_vals)
2370 		return 0;
2371 
2372 	vals = kcalloc(max_vals, sizeof(*vals), GFP_KERNEL);
2373 	if (!vals)
2374 		return -ENOMEM;
2375 
2376 	spin_lock_irq(&dev->event_lock);
2377 	dev->max_vals = max_vals;
2378 	swap(dev->vals, vals);
2379 	spin_unlock_irq(&dev->event_lock);
2380 
2381 	/* Because of swap() above, this frees the old vals memory */
2382 	kfree(vals);
2383 
2384 	return 0;
2385 }
2386 
2387 /**
2388  * input_register_device - register device with input core
2389  * @dev: device to be registered
2390  *
2391  * This function registers device with input core. The device must be
2392  * allocated with input_allocate_device() and all it's capabilities
2393  * set up before registering.
2394  * If function fails the device must be freed with input_free_device().
2395  * Once device has been successfully registered it can be unregistered
2396  * with input_unregister_device(); input_free_device() should not be
2397  * called in this case.
2398  *
2399  * Note that this function is also used to register managed input devices
2400  * (ones allocated with devm_input_allocate_device()). Such managed input
2401  * devices need not be explicitly unregistered or freed, their tear down
2402  * is controlled by the devres infrastructure. It is also worth noting
2403  * that tear down of managed input devices is internally a 2-step process:
2404  * registered managed input device is first unregistered, but stays in
2405  * memory and can still handle input_event() calls (although events will
2406  * not be delivered anywhere). The freeing of managed input device will
2407  * happen later, when devres stack is unwound to the point where device
2408  * allocation was made.
2409  */
2410 int input_register_device(struct input_dev *dev)
2411 {
2412 	struct input_devres *devres = NULL;
2413 	struct input_handler *handler;
2414 	const char *path;
2415 	int error;
2416 
2417 	if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2418 		dev_err(&dev->dev,
2419 			"Absolute device without dev->absinfo, refusing to register\n");
2420 		return -EINVAL;
2421 	}
2422 
2423 	if (dev->devres_managed) {
2424 		devres = devres_alloc(devm_input_device_unregister,
2425 				      sizeof(*devres), GFP_KERNEL);
2426 		if (!devres)
2427 			return -ENOMEM;
2428 
2429 		devres->input = dev;
2430 	}
2431 
2432 	/* Every input device generates EV_SYN/SYN_REPORT events. */
2433 	__set_bit(EV_SYN, dev->evbit);
2434 
2435 	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
2436 	__clear_bit(KEY_RESERVED, dev->keybit);
2437 
2438 	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2439 	input_cleanse_bitmasks(dev);
2440 
2441 	error = input_device_tune_vals(dev);
2442 	if (error)
2443 		goto err_devres_free;
2444 
2445 	/*
2446 	 * If delay and period are pre-set by the driver, then autorepeating
2447 	 * is handled by the driver itself and we don't do it in input.c.
2448 	 */
2449 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2450 		input_enable_softrepeat(dev, 250, 33);
2451 
2452 	if (!dev->getkeycode)
2453 		dev->getkeycode = input_default_getkeycode;
2454 
2455 	if (!dev->setkeycode)
2456 		dev->setkeycode = input_default_setkeycode;
2457 
2458 	if (dev->poller)
2459 		input_dev_poller_finalize(dev->poller);
2460 
2461 	error = device_add(&dev->dev);
2462 	if (error)
2463 		goto err_devres_free;
2464 
2465 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2466 	pr_info("%s as %s\n",
2467 		dev->name ? dev->name : "Unspecified device",
2468 		path ? path : "N/A");
2469 	kfree(path);
2470 
2471 	error = mutex_lock_interruptible(&input_mutex);
2472 	if (error)
2473 		goto err_device_del;
2474 
2475 	list_add_tail(&dev->node, &input_dev_list);
2476 
2477 	list_for_each_entry(handler, &input_handler_list, node)
2478 		input_attach_handler(dev, handler);
2479 
2480 	input_wakeup_procfs_readers();
2481 
2482 	mutex_unlock(&input_mutex);
2483 
2484 	if (dev->devres_managed) {
2485 		dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2486 			__func__, dev_name(&dev->dev));
2487 		devres_add(dev->dev.parent, devres);
2488 	}
2489 	return 0;
2490 
2491 err_device_del:
2492 	device_del(&dev->dev);
2493 err_devres_free:
2494 	devres_free(devres);
2495 	return error;
2496 }
2497 EXPORT_SYMBOL(input_register_device);
2498 
2499 /**
2500  * input_unregister_device - unregister previously registered device
2501  * @dev: device to be unregistered
2502  *
2503  * This function unregisters an input device. Once device is unregistered
2504  * the caller should not try to access it as it may get freed at any moment.
2505  */
2506 void input_unregister_device(struct input_dev *dev)
2507 {
2508 	if (dev->devres_managed) {
2509 		WARN_ON(devres_destroy(dev->dev.parent,
2510 					devm_input_device_unregister,
2511 					devm_input_device_match,
2512 					dev));
2513 		__input_unregister_device(dev);
2514 		/*
2515 		 * We do not do input_put_device() here because it will be done
2516 		 * when 2nd devres fires up.
2517 		 */
2518 	} else {
2519 		__input_unregister_device(dev);
2520 		input_put_device(dev);
2521 	}
2522 }
2523 EXPORT_SYMBOL(input_unregister_device);
2524 
2525 static int input_handler_check_methods(const struct input_handler *handler)
2526 {
2527 	int count = 0;
2528 
2529 	if (handler->filter)
2530 		count++;
2531 	if (handler->events)
2532 		count++;
2533 	if (handler->event)
2534 		count++;
2535 
2536 	if (count > 1) {
2537 		pr_err("%s: only one event processing method can be defined (%s)\n",
2538 		       __func__, handler->name);
2539 		return -EINVAL;
2540 	}
2541 
2542 	return 0;
2543 }
2544 
2545 /*
2546  * An implementation of input_handler's events() method that simply
2547  * invokes handler->event() method for each event one by one.
2548  */
2549 static unsigned int input_handler_events_default(struct input_handle *handle,
2550 						 struct input_value *vals,
2551 						 unsigned int count)
2552 {
2553 	struct input_handler *handler = handle->handler;
2554 	struct input_value *v;
2555 
2556 	for (v = vals; v != vals + count; v++)
2557 		handler->event(handle, v->type, v->code, v->value);
2558 
2559 	return count;
2560 }
2561 
2562 /*
2563  * An implementation of input_handler's events() method that invokes
2564  * handler->filter() method for each event one by one and removes events
2565  * that were filtered out from the "vals" array.
2566  */
2567 static unsigned int input_handler_events_filter(struct input_handle *handle,
2568 						struct input_value *vals,
2569 						unsigned int count)
2570 {
2571 	struct input_handler *handler = handle->handler;
2572 	struct input_value *end = vals;
2573 	struct input_value *v;
2574 
2575 	for (v = vals; v != vals + count; v++) {
2576 		if (handler->filter(handle, v->type, v->code, v->value))
2577 			continue;
2578 		if (end != v)
2579 			*end = *v;
2580 		end++;
2581 	}
2582 
2583 	return end - vals;
2584 }
2585 
2586 /*
2587  * An implementation of input_handler's events() method that does nothing.
2588  */
2589 static unsigned int input_handler_events_null(struct input_handle *handle,
2590 					      struct input_value *vals,
2591 					      unsigned int count)
2592 {
2593 	return count;
2594 }
2595 
2596 /**
2597  * input_register_handler - register a new input handler
2598  * @handler: handler to be registered
2599  *
2600  * This function registers a new input handler (interface) for input
2601  * devices in the system and attaches it to all input devices that
2602  * are compatible with the handler.
2603  */
2604 int input_register_handler(struct input_handler *handler)
2605 {
2606 	struct input_dev *dev;
2607 	int error;
2608 
2609 	error = input_handler_check_methods(handler);
2610 	if (error)
2611 		return error;
2612 
2613 	INIT_LIST_HEAD(&handler->h_list);
2614 
2615 	if (handler->filter)
2616 		handler->events = input_handler_events_filter;
2617 	else if (handler->event)
2618 		handler->events = input_handler_events_default;
2619 	else if (!handler->events)
2620 		handler->events = input_handler_events_null;
2621 
2622 	error = mutex_lock_interruptible(&input_mutex);
2623 	if (error)
2624 		return error;
2625 
2626 	list_add_tail(&handler->node, &input_handler_list);
2627 
2628 	list_for_each_entry(dev, &input_dev_list, node)
2629 		input_attach_handler(dev, handler);
2630 
2631 	input_wakeup_procfs_readers();
2632 
2633 	mutex_unlock(&input_mutex);
2634 	return 0;
2635 }
2636 EXPORT_SYMBOL(input_register_handler);
2637 
2638 /**
2639  * input_unregister_handler - unregisters an input handler
2640  * @handler: handler to be unregistered
2641  *
2642  * This function disconnects a handler from its input devices and
2643  * removes it from lists of known handlers.
2644  */
2645 void input_unregister_handler(struct input_handler *handler)
2646 {
2647 	struct input_handle *handle, *next;
2648 
2649 	mutex_lock(&input_mutex);
2650 
2651 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2652 		handler->disconnect(handle);
2653 	WARN_ON(!list_empty(&handler->h_list));
2654 
2655 	list_del_init(&handler->node);
2656 
2657 	input_wakeup_procfs_readers();
2658 
2659 	mutex_unlock(&input_mutex);
2660 }
2661 EXPORT_SYMBOL(input_unregister_handler);
2662 
2663 /**
2664  * input_handler_for_each_handle - handle iterator
2665  * @handler: input handler to iterate
2666  * @data: data for the callback
2667  * @fn: function to be called for each handle
2668  *
2669  * Iterate over @bus's list of devices, and call @fn for each, passing
2670  * it @data and stop when @fn returns a non-zero value. The function is
2671  * using RCU to traverse the list and therefore may be using in atomic
2672  * contexts. The @fn callback is invoked from RCU critical section and
2673  * thus must not sleep.
2674  */
2675 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2676 				  int (*fn)(struct input_handle *, void *))
2677 {
2678 	struct input_handle *handle;
2679 	int retval = 0;
2680 
2681 	rcu_read_lock();
2682 
2683 	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2684 		retval = fn(handle, data);
2685 		if (retval)
2686 			break;
2687 	}
2688 
2689 	rcu_read_unlock();
2690 
2691 	return retval;
2692 }
2693 EXPORT_SYMBOL(input_handler_for_each_handle);
2694 
2695 /**
2696  * input_register_handle - register a new input handle
2697  * @handle: handle to register
2698  *
2699  * This function puts a new input handle onto device's
2700  * and handler's lists so that events can flow through
2701  * it once it is opened using input_open_device().
2702  *
2703  * This function is supposed to be called from handler's
2704  * connect() method.
2705  */
2706 int input_register_handle(struct input_handle *handle)
2707 {
2708 	struct input_handler *handler = handle->handler;
2709 	struct input_dev *dev = handle->dev;
2710 	int error;
2711 
2712 	/*
2713 	 * We take dev->mutex here to prevent race with
2714 	 * input_release_device().
2715 	 */
2716 	error = mutex_lock_interruptible(&dev->mutex);
2717 	if (error)
2718 		return error;
2719 
2720 	/*
2721 	 * Filters go to the head of the list, normal handlers
2722 	 * to the tail.
2723 	 */
2724 	if (handler->filter)
2725 		list_add_rcu(&handle->d_node, &dev->h_list);
2726 	else
2727 		list_add_tail_rcu(&handle->d_node, &dev->h_list);
2728 
2729 	mutex_unlock(&dev->mutex);
2730 
2731 	/*
2732 	 * Since we are supposed to be called from ->connect()
2733 	 * which is mutually exclusive with ->disconnect()
2734 	 * we can't be racing with input_unregister_handle()
2735 	 * and so separate lock is not needed here.
2736 	 */
2737 	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2738 
2739 	if (handler->start)
2740 		handler->start(handle);
2741 
2742 	return 0;
2743 }
2744 EXPORT_SYMBOL(input_register_handle);
2745 
2746 /**
2747  * input_unregister_handle - unregister an input handle
2748  * @handle: handle to unregister
2749  *
2750  * This function removes input handle from device's
2751  * and handler's lists.
2752  *
2753  * This function is supposed to be called from handler's
2754  * disconnect() method.
2755  */
2756 void input_unregister_handle(struct input_handle *handle)
2757 {
2758 	struct input_dev *dev = handle->dev;
2759 
2760 	list_del_rcu(&handle->h_node);
2761 
2762 	/*
2763 	 * Take dev->mutex to prevent race with input_release_device().
2764 	 */
2765 	mutex_lock(&dev->mutex);
2766 	list_del_rcu(&handle->d_node);
2767 	mutex_unlock(&dev->mutex);
2768 
2769 	synchronize_rcu();
2770 }
2771 EXPORT_SYMBOL(input_unregister_handle);
2772 
2773 /**
2774  * input_get_new_minor - allocates a new input minor number
2775  * @legacy_base: beginning or the legacy range to be searched
2776  * @legacy_num: size of legacy range
2777  * @allow_dynamic: whether we can also take ID from the dynamic range
2778  *
2779  * This function allocates a new device minor for from input major namespace.
2780  * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2781  * parameters and whether ID can be allocated from dynamic range if there are
2782  * no free IDs in legacy range.
2783  */
2784 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2785 			bool allow_dynamic)
2786 {
2787 	/*
2788 	 * This function should be called from input handler's ->connect()
2789 	 * methods, which are serialized with input_mutex, so no additional
2790 	 * locking is needed here.
2791 	 */
2792 	if (legacy_base >= 0) {
2793 		int minor = ida_alloc_range(&input_ida, legacy_base,
2794 					    legacy_base + legacy_num - 1,
2795 					    GFP_KERNEL);
2796 		if (minor >= 0 || !allow_dynamic)
2797 			return minor;
2798 	}
2799 
2800 	return ida_alloc_range(&input_ida, INPUT_FIRST_DYNAMIC_DEV,
2801 			       INPUT_MAX_CHAR_DEVICES - 1, GFP_KERNEL);
2802 }
2803 EXPORT_SYMBOL(input_get_new_minor);
2804 
2805 /**
2806  * input_free_minor - release previously allocated minor
2807  * @minor: minor to be released
2808  *
2809  * This function releases previously allocated input minor so that it can be
2810  * reused later.
2811  */
2812 void input_free_minor(unsigned int minor)
2813 {
2814 	ida_free(&input_ida, minor);
2815 }
2816 EXPORT_SYMBOL(input_free_minor);
2817 
2818 static int __init input_init(void)
2819 {
2820 	int err;
2821 
2822 	err = class_register(&input_class);
2823 	if (err) {
2824 		pr_err("unable to register input_dev class\n");
2825 		return err;
2826 	}
2827 
2828 	err = input_proc_init();
2829 	if (err)
2830 		goto fail1;
2831 
2832 	err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2833 				     INPUT_MAX_CHAR_DEVICES, "input");
2834 	if (err) {
2835 		pr_err("unable to register char major %d", INPUT_MAJOR);
2836 		goto fail2;
2837 	}
2838 
2839 	return 0;
2840 
2841  fail2:	input_proc_exit();
2842  fail1:	class_unregister(&input_class);
2843 	return err;
2844 }
2845 
2846 static void __exit input_exit(void)
2847 {
2848 	input_proc_exit();
2849 	unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2850 				 INPUT_MAX_CHAR_DEVICES);
2851 	class_unregister(&input_class);
2852 }
2853 
2854 subsys_initcall(input_init);
2855 module_exit(input_exit);
2856