1 /* 2 * The input core 3 * 4 * Copyright (c) 1999-2002 Vojtech Pavlik 5 */ 6 7 /* 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License version 2 as published by 10 * the Free Software Foundation. 11 */ 12 13 #include <linux/init.h> 14 #include <linux/types.h> 15 #include <linux/input.h> 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 #include <linux/random.h> 19 #include <linux/major.h> 20 #include <linux/proc_fs.h> 21 #include <linux/sched.h> 22 #include <linux/seq_file.h> 23 #include <linux/poll.h> 24 #include <linux/device.h> 25 #include <linux/mutex.h> 26 #include <linux/rcupdate.h> 27 #include <linux/smp_lock.h> 28 #include "input-compat.h" 29 30 MODULE_AUTHOR("Vojtech Pavlik <[email protected]>"); 31 MODULE_DESCRIPTION("Input core"); 32 MODULE_LICENSE("GPL"); 33 34 #define INPUT_DEVICES 256 35 36 /* 37 * EV_ABS events which should not be cached are listed here. 38 */ 39 static unsigned int input_abs_bypass_init_data[] __initdata = { 40 ABS_MT_TOUCH_MAJOR, 41 ABS_MT_TOUCH_MINOR, 42 ABS_MT_WIDTH_MAJOR, 43 ABS_MT_WIDTH_MINOR, 44 ABS_MT_ORIENTATION, 45 ABS_MT_POSITION_X, 46 ABS_MT_POSITION_Y, 47 ABS_MT_TOOL_TYPE, 48 ABS_MT_BLOB_ID, 49 ABS_MT_TRACKING_ID, 50 ABS_MT_PRESSURE, 51 0 52 }; 53 static unsigned long input_abs_bypass[BITS_TO_LONGS(ABS_CNT)]; 54 55 static LIST_HEAD(input_dev_list); 56 static LIST_HEAD(input_handler_list); 57 58 /* 59 * input_mutex protects access to both input_dev_list and input_handler_list. 60 * This also causes input_[un]register_device and input_[un]register_handler 61 * be mutually exclusive which simplifies locking in drivers implementing 62 * input handlers. 63 */ 64 static DEFINE_MUTEX(input_mutex); 65 66 static struct input_handler *input_table[8]; 67 68 static inline int is_event_supported(unsigned int code, 69 unsigned long *bm, unsigned int max) 70 { 71 return code <= max && test_bit(code, bm); 72 } 73 74 static int input_defuzz_abs_event(int value, int old_val, int fuzz) 75 { 76 if (fuzz) { 77 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2) 78 return old_val; 79 80 if (value > old_val - fuzz && value < old_val + fuzz) 81 return (old_val * 3 + value) / 4; 82 83 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2) 84 return (old_val + value) / 2; 85 } 86 87 return value; 88 } 89 90 /* 91 * Pass event first through all filters and then, if event has not been 92 * filtered out, through all open handles. This function is called with 93 * dev->event_lock held and interrupts disabled. 94 */ 95 static void input_pass_event(struct input_dev *dev, 96 unsigned int type, unsigned int code, int value) 97 { 98 struct input_handler *handler; 99 struct input_handle *handle; 100 101 rcu_read_lock(); 102 103 handle = rcu_dereference(dev->grab); 104 if (handle) 105 handle->handler->event(handle, type, code, value); 106 else { 107 bool filtered = false; 108 109 list_for_each_entry_rcu(handle, &dev->h_list, d_node) { 110 if (!handle->open) 111 continue; 112 113 handler = handle->handler; 114 if (!handler->filter) { 115 if (filtered) 116 break; 117 118 handler->event(handle, type, code, value); 119 120 } else if (handler->filter(handle, type, code, value)) 121 filtered = true; 122 } 123 } 124 125 rcu_read_unlock(); 126 } 127 128 /* 129 * Generate software autorepeat event. Note that we take 130 * dev->event_lock here to avoid racing with input_event 131 * which may cause keys get "stuck". 132 */ 133 static void input_repeat_key(unsigned long data) 134 { 135 struct input_dev *dev = (void *) data; 136 unsigned long flags; 137 138 spin_lock_irqsave(&dev->event_lock, flags); 139 140 if (test_bit(dev->repeat_key, dev->key) && 141 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) { 142 143 input_pass_event(dev, EV_KEY, dev->repeat_key, 2); 144 145 if (dev->sync) { 146 /* 147 * Only send SYN_REPORT if we are not in a middle 148 * of driver parsing a new hardware packet. 149 * Otherwise assume that the driver will send 150 * SYN_REPORT once it's done. 151 */ 152 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 153 } 154 155 if (dev->rep[REP_PERIOD]) 156 mod_timer(&dev->timer, jiffies + 157 msecs_to_jiffies(dev->rep[REP_PERIOD])); 158 } 159 160 spin_unlock_irqrestore(&dev->event_lock, flags); 161 } 162 163 static void input_start_autorepeat(struct input_dev *dev, int code) 164 { 165 if (test_bit(EV_REP, dev->evbit) && 166 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] && 167 dev->timer.data) { 168 dev->repeat_key = code; 169 mod_timer(&dev->timer, 170 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY])); 171 } 172 } 173 174 static void input_stop_autorepeat(struct input_dev *dev) 175 { 176 del_timer(&dev->timer); 177 } 178 179 #define INPUT_IGNORE_EVENT 0 180 #define INPUT_PASS_TO_HANDLERS 1 181 #define INPUT_PASS_TO_DEVICE 2 182 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE) 183 184 static void input_handle_event(struct input_dev *dev, 185 unsigned int type, unsigned int code, int value) 186 { 187 int disposition = INPUT_IGNORE_EVENT; 188 189 switch (type) { 190 191 case EV_SYN: 192 switch (code) { 193 case SYN_CONFIG: 194 disposition = INPUT_PASS_TO_ALL; 195 break; 196 197 case SYN_REPORT: 198 if (!dev->sync) { 199 dev->sync = 1; 200 disposition = INPUT_PASS_TO_HANDLERS; 201 } 202 break; 203 case SYN_MT_REPORT: 204 dev->sync = 0; 205 disposition = INPUT_PASS_TO_HANDLERS; 206 break; 207 } 208 break; 209 210 case EV_KEY: 211 if (is_event_supported(code, dev->keybit, KEY_MAX) && 212 !!test_bit(code, dev->key) != value) { 213 214 if (value != 2) { 215 __change_bit(code, dev->key); 216 if (value) 217 input_start_autorepeat(dev, code); 218 else 219 input_stop_autorepeat(dev); 220 } 221 222 disposition = INPUT_PASS_TO_HANDLERS; 223 } 224 break; 225 226 case EV_SW: 227 if (is_event_supported(code, dev->swbit, SW_MAX) && 228 !!test_bit(code, dev->sw) != value) { 229 230 __change_bit(code, dev->sw); 231 disposition = INPUT_PASS_TO_HANDLERS; 232 } 233 break; 234 235 case EV_ABS: 236 if (is_event_supported(code, dev->absbit, ABS_MAX)) { 237 238 if (test_bit(code, input_abs_bypass)) { 239 disposition = INPUT_PASS_TO_HANDLERS; 240 break; 241 } 242 243 value = input_defuzz_abs_event(value, 244 dev->abs[code], dev->absfuzz[code]); 245 246 if (dev->abs[code] != value) { 247 dev->abs[code] = value; 248 disposition = INPUT_PASS_TO_HANDLERS; 249 } 250 } 251 break; 252 253 case EV_REL: 254 if (is_event_supported(code, dev->relbit, REL_MAX) && value) 255 disposition = INPUT_PASS_TO_HANDLERS; 256 257 break; 258 259 case EV_MSC: 260 if (is_event_supported(code, dev->mscbit, MSC_MAX)) 261 disposition = INPUT_PASS_TO_ALL; 262 263 break; 264 265 case EV_LED: 266 if (is_event_supported(code, dev->ledbit, LED_MAX) && 267 !!test_bit(code, dev->led) != value) { 268 269 __change_bit(code, dev->led); 270 disposition = INPUT_PASS_TO_ALL; 271 } 272 break; 273 274 case EV_SND: 275 if (is_event_supported(code, dev->sndbit, SND_MAX)) { 276 277 if (!!test_bit(code, dev->snd) != !!value) 278 __change_bit(code, dev->snd); 279 disposition = INPUT_PASS_TO_ALL; 280 } 281 break; 282 283 case EV_REP: 284 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) { 285 dev->rep[code] = value; 286 disposition = INPUT_PASS_TO_ALL; 287 } 288 break; 289 290 case EV_FF: 291 if (value >= 0) 292 disposition = INPUT_PASS_TO_ALL; 293 break; 294 295 case EV_PWR: 296 disposition = INPUT_PASS_TO_ALL; 297 break; 298 } 299 300 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN) 301 dev->sync = 0; 302 303 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event) 304 dev->event(dev, type, code, value); 305 306 if (disposition & INPUT_PASS_TO_HANDLERS) 307 input_pass_event(dev, type, code, value); 308 } 309 310 /** 311 * input_event() - report new input event 312 * @dev: device that generated the event 313 * @type: type of the event 314 * @code: event code 315 * @value: value of the event 316 * 317 * This function should be used by drivers implementing various input 318 * devices to report input events. See also input_inject_event(). 319 * 320 * NOTE: input_event() may be safely used right after input device was 321 * allocated with input_allocate_device(), even before it is registered 322 * with input_register_device(), but the event will not reach any of the 323 * input handlers. Such early invocation of input_event() may be used 324 * to 'seed' initial state of a switch or initial position of absolute 325 * axis, etc. 326 */ 327 void input_event(struct input_dev *dev, 328 unsigned int type, unsigned int code, int value) 329 { 330 unsigned long flags; 331 332 if (is_event_supported(type, dev->evbit, EV_MAX)) { 333 334 spin_lock_irqsave(&dev->event_lock, flags); 335 add_input_randomness(type, code, value); 336 input_handle_event(dev, type, code, value); 337 spin_unlock_irqrestore(&dev->event_lock, flags); 338 } 339 } 340 EXPORT_SYMBOL(input_event); 341 342 /** 343 * input_inject_event() - send input event from input handler 344 * @handle: input handle to send event through 345 * @type: type of the event 346 * @code: event code 347 * @value: value of the event 348 * 349 * Similar to input_event() but will ignore event if device is 350 * "grabbed" and handle injecting event is not the one that owns 351 * the device. 352 */ 353 void input_inject_event(struct input_handle *handle, 354 unsigned int type, unsigned int code, int value) 355 { 356 struct input_dev *dev = handle->dev; 357 struct input_handle *grab; 358 unsigned long flags; 359 360 if (is_event_supported(type, dev->evbit, EV_MAX)) { 361 spin_lock_irqsave(&dev->event_lock, flags); 362 363 rcu_read_lock(); 364 grab = rcu_dereference(dev->grab); 365 if (!grab || grab == handle) 366 input_handle_event(dev, type, code, value); 367 rcu_read_unlock(); 368 369 spin_unlock_irqrestore(&dev->event_lock, flags); 370 } 371 } 372 EXPORT_SYMBOL(input_inject_event); 373 374 /** 375 * input_grab_device - grabs device for exclusive use 376 * @handle: input handle that wants to own the device 377 * 378 * When a device is grabbed by an input handle all events generated by 379 * the device are delivered only to this handle. Also events injected 380 * by other input handles are ignored while device is grabbed. 381 */ 382 int input_grab_device(struct input_handle *handle) 383 { 384 struct input_dev *dev = handle->dev; 385 int retval; 386 387 retval = mutex_lock_interruptible(&dev->mutex); 388 if (retval) 389 return retval; 390 391 if (dev->grab) { 392 retval = -EBUSY; 393 goto out; 394 } 395 396 rcu_assign_pointer(dev->grab, handle); 397 synchronize_rcu(); 398 399 out: 400 mutex_unlock(&dev->mutex); 401 return retval; 402 } 403 EXPORT_SYMBOL(input_grab_device); 404 405 static void __input_release_device(struct input_handle *handle) 406 { 407 struct input_dev *dev = handle->dev; 408 409 if (dev->grab == handle) { 410 rcu_assign_pointer(dev->grab, NULL); 411 /* Make sure input_pass_event() notices that grab is gone */ 412 synchronize_rcu(); 413 414 list_for_each_entry(handle, &dev->h_list, d_node) 415 if (handle->open && handle->handler->start) 416 handle->handler->start(handle); 417 } 418 } 419 420 /** 421 * input_release_device - release previously grabbed device 422 * @handle: input handle that owns the device 423 * 424 * Releases previously grabbed device so that other input handles can 425 * start receiving input events. Upon release all handlers attached 426 * to the device have their start() method called so they have a change 427 * to synchronize device state with the rest of the system. 428 */ 429 void input_release_device(struct input_handle *handle) 430 { 431 struct input_dev *dev = handle->dev; 432 433 mutex_lock(&dev->mutex); 434 __input_release_device(handle); 435 mutex_unlock(&dev->mutex); 436 } 437 EXPORT_SYMBOL(input_release_device); 438 439 /** 440 * input_open_device - open input device 441 * @handle: handle through which device is being accessed 442 * 443 * This function should be called by input handlers when they 444 * want to start receive events from given input device. 445 */ 446 int input_open_device(struct input_handle *handle) 447 { 448 struct input_dev *dev = handle->dev; 449 int retval; 450 451 retval = mutex_lock_interruptible(&dev->mutex); 452 if (retval) 453 return retval; 454 455 if (dev->going_away) { 456 retval = -ENODEV; 457 goto out; 458 } 459 460 handle->open++; 461 462 if (!dev->users++ && dev->open) 463 retval = dev->open(dev); 464 465 if (retval) { 466 dev->users--; 467 if (!--handle->open) { 468 /* 469 * Make sure we are not delivering any more events 470 * through this handle 471 */ 472 synchronize_rcu(); 473 } 474 } 475 476 out: 477 mutex_unlock(&dev->mutex); 478 return retval; 479 } 480 EXPORT_SYMBOL(input_open_device); 481 482 int input_flush_device(struct input_handle *handle, struct file *file) 483 { 484 struct input_dev *dev = handle->dev; 485 int retval; 486 487 retval = mutex_lock_interruptible(&dev->mutex); 488 if (retval) 489 return retval; 490 491 if (dev->flush) 492 retval = dev->flush(dev, file); 493 494 mutex_unlock(&dev->mutex); 495 return retval; 496 } 497 EXPORT_SYMBOL(input_flush_device); 498 499 /** 500 * input_close_device - close input device 501 * @handle: handle through which device is being accessed 502 * 503 * This function should be called by input handlers when they 504 * want to stop receive events from given input device. 505 */ 506 void input_close_device(struct input_handle *handle) 507 { 508 struct input_dev *dev = handle->dev; 509 510 mutex_lock(&dev->mutex); 511 512 __input_release_device(handle); 513 514 if (!--dev->users && dev->close) 515 dev->close(dev); 516 517 if (!--handle->open) { 518 /* 519 * synchronize_rcu() makes sure that input_pass_event() 520 * completed and that no more input events are delivered 521 * through this handle 522 */ 523 synchronize_rcu(); 524 } 525 526 mutex_unlock(&dev->mutex); 527 } 528 EXPORT_SYMBOL(input_close_device); 529 530 /* 531 * Prepare device for unregistering 532 */ 533 static void input_disconnect_device(struct input_dev *dev) 534 { 535 struct input_handle *handle; 536 int code; 537 538 /* 539 * Mark device as going away. Note that we take dev->mutex here 540 * not to protect access to dev->going_away but rather to ensure 541 * that there are no threads in the middle of input_open_device() 542 */ 543 mutex_lock(&dev->mutex); 544 dev->going_away = true; 545 mutex_unlock(&dev->mutex); 546 547 spin_lock_irq(&dev->event_lock); 548 549 /* 550 * Simulate keyup events for all pressed keys so that handlers 551 * are not left with "stuck" keys. The driver may continue 552 * generate events even after we done here but they will not 553 * reach any handlers. 554 */ 555 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) { 556 for (code = 0; code <= KEY_MAX; code++) { 557 if (is_event_supported(code, dev->keybit, KEY_MAX) && 558 __test_and_clear_bit(code, dev->key)) { 559 input_pass_event(dev, EV_KEY, code, 0); 560 } 561 } 562 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 563 } 564 565 list_for_each_entry(handle, &dev->h_list, d_node) 566 handle->open = 0; 567 568 spin_unlock_irq(&dev->event_lock); 569 } 570 571 static int input_fetch_keycode(struct input_dev *dev, int scancode) 572 { 573 switch (dev->keycodesize) { 574 case 1: 575 return ((u8 *)dev->keycode)[scancode]; 576 577 case 2: 578 return ((u16 *)dev->keycode)[scancode]; 579 580 default: 581 return ((u32 *)dev->keycode)[scancode]; 582 } 583 } 584 585 static int input_default_getkeycode(struct input_dev *dev, 586 unsigned int scancode, 587 unsigned int *keycode) 588 { 589 if (!dev->keycodesize) 590 return -EINVAL; 591 592 if (scancode >= dev->keycodemax) 593 return -EINVAL; 594 595 *keycode = input_fetch_keycode(dev, scancode); 596 597 return 0; 598 } 599 600 static int input_default_setkeycode(struct input_dev *dev, 601 unsigned int scancode, 602 unsigned int keycode) 603 { 604 int old_keycode; 605 int i; 606 607 if (scancode >= dev->keycodemax) 608 return -EINVAL; 609 610 if (!dev->keycodesize) 611 return -EINVAL; 612 613 if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8))) 614 return -EINVAL; 615 616 switch (dev->keycodesize) { 617 case 1: { 618 u8 *k = (u8 *)dev->keycode; 619 old_keycode = k[scancode]; 620 k[scancode] = keycode; 621 break; 622 } 623 case 2: { 624 u16 *k = (u16 *)dev->keycode; 625 old_keycode = k[scancode]; 626 k[scancode] = keycode; 627 break; 628 } 629 default: { 630 u32 *k = (u32 *)dev->keycode; 631 old_keycode = k[scancode]; 632 k[scancode] = keycode; 633 break; 634 } 635 } 636 637 __clear_bit(old_keycode, dev->keybit); 638 __set_bit(keycode, dev->keybit); 639 640 for (i = 0; i < dev->keycodemax; i++) { 641 if (input_fetch_keycode(dev, i) == old_keycode) { 642 __set_bit(old_keycode, dev->keybit); 643 break; /* Setting the bit twice is useless, so break */ 644 } 645 } 646 647 return 0; 648 } 649 650 /** 651 * input_get_keycode - retrieve keycode currently mapped to a given scancode 652 * @dev: input device which keymap is being queried 653 * @scancode: scancode (or its equivalent for device in question) for which 654 * keycode is needed 655 * @keycode: result 656 * 657 * This function should be called by anyone interested in retrieving current 658 * keymap. Presently keyboard and evdev handlers use it. 659 */ 660 int input_get_keycode(struct input_dev *dev, 661 unsigned int scancode, unsigned int *keycode) 662 { 663 return dev->getkeycode(dev, scancode, keycode); 664 } 665 EXPORT_SYMBOL(input_get_keycode); 666 667 /** 668 * input_get_keycode - assign new keycode to a given scancode 669 * @dev: input device which keymap is being updated 670 * @scancode: scancode (or its equivalent for device in question) 671 * @keycode: new keycode to be assigned to the scancode 672 * 673 * This function should be called by anyone needing to update current 674 * keymap. Presently keyboard and evdev handlers use it. 675 */ 676 int input_set_keycode(struct input_dev *dev, 677 unsigned int scancode, unsigned int keycode) 678 { 679 unsigned long flags; 680 int old_keycode; 681 int retval; 682 683 if (keycode > KEY_MAX) 684 return -EINVAL; 685 686 spin_lock_irqsave(&dev->event_lock, flags); 687 688 retval = dev->getkeycode(dev, scancode, &old_keycode); 689 if (retval) 690 goto out; 691 692 retval = dev->setkeycode(dev, scancode, keycode); 693 if (retval) 694 goto out; 695 696 /* Make sure KEY_RESERVED did not get enabled. */ 697 __clear_bit(KEY_RESERVED, dev->keybit); 698 699 /* 700 * Simulate keyup event if keycode is not present 701 * in the keymap anymore 702 */ 703 if (test_bit(EV_KEY, dev->evbit) && 704 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) && 705 __test_and_clear_bit(old_keycode, dev->key)) { 706 707 input_pass_event(dev, EV_KEY, old_keycode, 0); 708 if (dev->sync) 709 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 710 } 711 712 out: 713 spin_unlock_irqrestore(&dev->event_lock, flags); 714 715 return retval; 716 } 717 EXPORT_SYMBOL(input_set_keycode); 718 719 #define MATCH_BIT(bit, max) \ 720 for (i = 0; i < BITS_TO_LONGS(max); i++) \ 721 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \ 722 break; \ 723 if (i != BITS_TO_LONGS(max)) \ 724 continue; 725 726 static const struct input_device_id *input_match_device(struct input_handler *handler, 727 struct input_dev *dev) 728 { 729 const struct input_device_id *id; 730 int i; 731 732 for (id = handler->id_table; id->flags || id->driver_info; id++) { 733 734 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS) 735 if (id->bustype != dev->id.bustype) 736 continue; 737 738 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR) 739 if (id->vendor != dev->id.vendor) 740 continue; 741 742 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT) 743 if (id->product != dev->id.product) 744 continue; 745 746 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION) 747 if (id->version != dev->id.version) 748 continue; 749 750 MATCH_BIT(evbit, EV_MAX); 751 MATCH_BIT(keybit, KEY_MAX); 752 MATCH_BIT(relbit, REL_MAX); 753 MATCH_BIT(absbit, ABS_MAX); 754 MATCH_BIT(mscbit, MSC_MAX); 755 MATCH_BIT(ledbit, LED_MAX); 756 MATCH_BIT(sndbit, SND_MAX); 757 MATCH_BIT(ffbit, FF_MAX); 758 MATCH_BIT(swbit, SW_MAX); 759 760 if (!handler->match || handler->match(handler, dev)) 761 return id; 762 } 763 764 return NULL; 765 } 766 767 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler) 768 { 769 const struct input_device_id *id; 770 int error; 771 772 id = input_match_device(handler, dev); 773 if (!id) 774 return -ENODEV; 775 776 error = handler->connect(handler, dev, id); 777 if (error && error != -ENODEV) 778 printk(KERN_ERR 779 "input: failed to attach handler %s to device %s, " 780 "error: %d\n", 781 handler->name, kobject_name(&dev->dev.kobj), error); 782 783 return error; 784 } 785 786 #ifdef CONFIG_COMPAT 787 788 static int input_bits_to_string(char *buf, int buf_size, 789 unsigned long bits, bool skip_empty) 790 { 791 int len = 0; 792 793 if (INPUT_COMPAT_TEST) { 794 u32 dword = bits >> 32; 795 if (dword || !skip_empty) 796 len += snprintf(buf, buf_size, "%x ", dword); 797 798 dword = bits & 0xffffffffUL; 799 if (dword || !skip_empty || len) 800 len += snprintf(buf + len, max(buf_size - len, 0), 801 "%x", dword); 802 } else { 803 if (bits || !skip_empty) 804 len += snprintf(buf, buf_size, "%lx", bits); 805 } 806 807 return len; 808 } 809 810 #else /* !CONFIG_COMPAT */ 811 812 static int input_bits_to_string(char *buf, int buf_size, 813 unsigned long bits, bool skip_empty) 814 { 815 return bits || !skip_empty ? 816 snprintf(buf, buf_size, "%lx", bits) : 0; 817 } 818 819 #endif 820 821 #ifdef CONFIG_PROC_FS 822 823 static struct proc_dir_entry *proc_bus_input_dir; 824 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait); 825 static int input_devices_state; 826 827 static inline void input_wakeup_procfs_readers(void) 828 { 829 input_devices_state++; 830 wake_up(&input_devices_poll_wait); 831 } 832 833 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait) 834 { 835 poll_wait(file, &input_devices_poll_wait, wait); 836 if (file->f_version != input_devices_state) { 837 file->f_version = input_devices_state; 838 return POLLIN | POLLRDNORM; 839 } 840 841 return 0; 842 } 843 844 union input_seq_state { 845 struct { 846 unsigned short pos; 847 bool mutex_acquired; 848 }; 849 void *p; 850 }; 851 852 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos) 853 { 854 union input_seq_state *state = (union input_seq_state *)&seq->private; 855 int error; 856 857 /* We need to fit into seq->private pointer */ 858 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 859 860 error = mutex_lock_interruptible(&input_mutex); 861 if (error) { 862 state->mutex_acquired = false; 863 return ERR_PTR(error); 864 } 865 866 state->mutex_acquired = true; 867 868 return seq_list_start(&input_dev_list, *pos); 869 } 870 871 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos) 872 { 873 return seq_list_next(v, &input_dev_list, pos); 874 } 875 876 static void input_seq_stop(struct seq_file *seq, void *v) 877 { 878 union input_seq_state *state = (union input_seq_state *)&seq->private; 879 880 if (state->mutex_acquired) 881 mutex_unlock(&input_mutex); 882 } 883 884 static void input_seq_print_bitmap(struct seq_file *seq, const char *name, 885 unsigned long *bitmap, int max) 886 { 887 int i; 888 bool skip_empty = true; 889 char buf[18]; 890 891 seq_printf(seq, "B: %s=", name); 892 893 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 894 if (input_bits_to_string(buf, sizeof(buf), 895 bitmap[i], skip_empty)) { 896 skip_empty = false; 897 seq_printf(seq, "%s%s", buf, i > 0 ? " " : ""); 898 } 899 } 900 901 /* 902 * If no output was produced print a single 0. 903 */ 904 if (skip_empty) 905 seq_puts(seq, "0"); 906 907 seq_putc(seq, '\n'); 908 } 909 910 static int input_devices_seq_show(struct seq_file *seq, void *v) 911 { 912 struct input_dev *dev = container_of(v, struct input_dev, node); 913 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 914 struct input_handle *handle; 915 916 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n", 917 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version); 918 919 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : ""); 920 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : ""); 921 seq_printf(seq, "S: Sysfs=%s\n", path ? path : ""); 922 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : ""); 923 seq_printf(seq, "H: Handlers="); 924 925 list_for_each_entry(handle, &dev->h_list, d_node) 926 seq_printf(seq, "%s ", handle->name); 927 seq_putc(seq, '\n'); 928 929 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX); 930 if (test_bit(EV_KEY, dev->evbit)) 931 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX); 932 if (test_bit(EV_REL, dev->evbit)) 933 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX); 934 if (test_bit(EV_ABS, dev->evbit)) 935 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX); 936 if (test_bit(EV_MSC, dev->evbit)) 937 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX); 938 if (test_bit(EV_LED, dev->evbit)) 939 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX); 940 if (test_bit(EV_SND, dev->evbit)) 941 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX); 942 if (test_bit(EV_FF, dev->evbit)) 943 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX); 944 if (test_bit(EV_SW, dev->evbit)) 945 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX); 946 947 seq_putc(seq, '\n'); 948 949 kfree(path); 950 return 0; 951 } 952 953 static const struct seq_operations input_devices_seq_ops = { 954 .start = input_devices_seq_start, 955 .next = input_devices_seq_next, 956 .stop = input_seq_stop, 957 .show = input_devices_seq_show, 958 }; 959 960 static int input_proc_devices_open(struct inode *inode, struct file *file) 961 { 962 return seq_open(file, &input_devices_seq_ops); 963 } 964 965 static const struct file_operations input_devices_fileops = { 966 .owner = THIS_MODULE, 967 .open = input_proc_devices_open, 968 .poll = input_proc_devices_poll, 969 .read = seq_read, 970 .llseek = seq_lseek, 971 .release = seq_release, 972 }; 973 974 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos) 975 { 976 union input_seq_state *state = (union input_seq_state *)&seq->private; 977 int error; 978 979 /* We need to fit into seq->private pointer */ 980 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 981 982 error = mutex_lock_interruptible(&input_mutex); 983 if (error) { 984 state->mutex_acquired = false; 985 return ERR_PTR(error); 986 } 987 988 state->mutex_acquired = true; 989 state->pos = *pos; 990 991 return seq_list_start(&input_handler_list, *pos); 992 } 993 994 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos) 995 { 996 union input_seq_state *state = (union input_seq_state *)&seq->private; 997 998 state->pos = *pos + 1; 999 return seq_list_next(v, &input_handler_list, pos); 1000 } 1001 1002 static int input_handlers_seq_show(struct seq_file *seq, void *v) 1003 { 1004 struct input_handler *handler = container_of(v, struct input_handler, node); 1005 union input_seq_state *state = (union input_seq_state *)&seq->private; 1006 1007 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name); 1008 if (handler->filter) 1009 seq_puts(seq, " (filter)"); 1010 if (handler->fops) 1011 seq_printf(seq, " Minor=%d", handler->minor); 1012 seq_putc(seq, '\n'); 1013 1014 return 0; 1015 } 1016 1017 static const struct seq_operations input_handlers_seq_ops = { 1018 .start = input_handlers_seq_start, 1019 .next = input_handlers_seq_next, 1020 .stop = input_seq_stop, 1021 .show = input_handlers_seq_show, 1022 }; 1023 1024 static int input_proc_handlers_open(struct inode *inode, struct file *file) 1025 { 1026 return seq_open(file, &input_handlers_seq_ops); 1027 } 1028 1029 static const struct file_operations input_handlers_fileops = { 1030 .owner = THIS_MODULE, 1031 .open = input_proc_handlers_open, 1032 .read = seq_read, 1033 .llseek = seq_lseek, 1034 .release = seq_release, 1035 }; 1036 1037 static int __init input_proc_init(void) 1038 { 1039 struct proc_dir_entry *entry; 1040 1041 proc_bus_input_dir = proc_mkdir("bus/input", NULL); 1042 if (!proc_bus_input_dir) 1043 return -ENOMEM; 1044 1045 entry = proc_create("devices", 0, proc_bus_input_dir, 1046 &input_devices_fileops); 1047 if (!entry) 1048 goto fail1; 1049 1050 entry = proc_create("handlers", 0, proc_bus_input_dir, 1051 &input_handlers_fileops); 1052 if (!entry) 1053 goto fail2; 1054 1055 return 0; 1056 1057 fail2: remove_proc_entry("devices", proc_bus_input_dir); 1058 fail1: remove_proc_entry("bus/input", NULL); 1059 return -ENOMEM; 1060 } 1061 1062 static void input_proc_exit(void) 1063 { 1064 remove_proc_entry("devices", proc_bus_input_dir); 1065 remove_proc_entry("handlers", proc_bus_input_dir); 1066 remove_proc_entry("bus/input", NULL); 1067 } 1068 1069 #else /* !CONFIG_PROC_FS */ 1070 static inline void input_wakeup_procfs_readers(void) { } 1071 static inline int input_proc_init(void) { return 0; } 1072 static inline void input_proc_exit(void) { } 1073 #endif 1074 1075 #define INPUT_DEV_STRING_ATTR_SHOW(name) \ 1076 static ssize_t input_dev_show_##name(struct device *dev, \ 1077 struct device_attribute *attr, \ 1078 char *buf) \ 1079 { \ 1080 struct input_dev *input_dev = to_input_dev(dev); \ 1081 \ 1082 return scnprintf(buf, PAGE_SIZE, "%s\n", \ 1083 input_dev->name ? input_dev->name : ""); \ 1084 } \ 1085 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL) 1086 1087 INPUT_DEV_STRING_ATTR_SHOW(name); 1088 INPUT_DEV_STRING_ATTR_SHOW(phys); 1089 INPUT_DEV_STRING_ATTR_SHOW(uniq); 1090 1091 static int input_print_modalias_bits(char *buf, int size, 1092 char name, unsigned long *bm, 1093 unsigned int min_bit, unsigned int max_bit) 1094 { 1095 int len = 0, i; 1096 1097 len += snprintf(buf, max(size, 0), "%c", name); 1098 for (i = min_bit; i < max_bit; i++) 1099 if (bm[BIT_WORD(i)] & BIT_MASK(i)) 1100 len += snprintf(buf + len, max(size - len, 0), "%X,", i); 1101 return len; 1102 } 1103 1104 static int input_print_modalias(char *buf, int size, struct input_dev *id, 1105 int add_cr) 1106 { 1107 int len; 1108 1109 len = snprintf(buf, max(size, 0), 1110 "input:b%04Xv%04Xp%04Xe%04X-", 1111 id->id.bustype, id->id.vendor, 1112 id->id.product, id->id.version); 1113 1114 len += input_print_modalias_bits(buf + len, size - len, 1115 'e', id->evbit, 0, EV_MAX); 1116 len += input_print_modalias_bits(buf + len, size - len, 1117 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX); 1118 len += input_print_modalias_bits(buf + len, size - len, 1119 'r', id->relbit, 0, REL_MAX); 1120 len += input_print_modalias_bits(buf + len, size - len, 1121 'a', id->absbit, 0, ABS_MAX); 1122 len += input_print_modalias_bits(buf + len, size - len, 1123 'm', id->mscbit, 0, MSC_MAX); 1124 len += input_print_modalias_bits(buf + len, size - len, 1125 'l', id->ledbit, 0, LED_MAX); 1126 len += input_print_modalias_bits(buf + len, size - len, 1127 's', id->sndbit, 0, SND_MAX); 1128 len += input_print_modalias_bits(buf + len, size - len, 1129 'f', id->ffbit, 0, FF_MAX); 1130 len += input_print_modalias_bits(buf + len, size - len, 1131 'w', id->swbit, 0, SW_MAX); 1132 1133 if (add_cr) 1134 len += snprintf(buf + len, max(size - len, 0), "\n"); 1135 1136 return len; 1137 } 1138 1139 static ssize_t input_dev_show_modalias(struct device *dev, 1140 struct device_attribute *attr, 1141 char *buf) 1142 { 1143 struct input_dev *id = to_input_dev(dev); 1144 ssize_t len; 1145 1146 len = input_print_modalias(buf, PAGE_SIZE, id, 1); 1147 1148 return min_t(int, len, PAGE_SIZE); 1149 } 1150 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL); 1151 1152 static struct attribute *input_dev_attrs[] = { 1153 &dev_attr_name.attr, 1154 &dev_attr_phys.attr, 1155 &dev_attr_uniq.attr, 1156 &dev_attr_modalias.attr, 1157 NULL 1158 }; 1159 1160 static struct attribute_group input_dev_attr_group = { 1161 .attrs = input_dev_attrs, 1162 }; 1163 1164 #define INPUT_DEV_ID_ATTR(name) \ 1165 static ssize_t input_dev_show_id_##name(struct device *dev, \ 1166 struct device_attribute *attr, \ 1167 char *buf) \ 1168 { \ 1169 struct input_dev *input_dev = to_input_dev(dev); \ 1170 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \ 1171 } \ 1172 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL) 1173 1174 INPUT_DEV_ID_ATTR(bustype); 1175 INPUT_DEV_ID_ATTR(vendor); 1176 INPUT_DEV_ID_ATTR(product); 1177 INPUT_DEV_ID_ATTR(version); 1178 1179 static struct attribute *input_dev_id_attrs[] = { 1180 &dev_attr_bustype.attr, 1181 &dev_attr_vendor.attr, 1182 &dev_attr_product.attr, 1183 &dev_attr_version.attr, 1184 NULL 1185 }; 1186 1187 static struct attribute_group input_dev_id_attr_group = { 1188 .name = "id", 1189 .attrs = input_dev_id_attrs, 1190 }; 1191 1192 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, 1193 int max, int add_cr) 1194 { 1195 int i; 1196 int len = 0; 1197 bool skip_empty = true; 1198 1199 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1200 len += input_bits_to_string(buf + len, max(buf_size - len, 0), 1201 bitmap[i], skip_empty); 1202 if (len) { 1203 skip_empty = false; 1204 if (i > 0) 1205 len += snprintf(buf + len, max(buf_size - len, 0), " "); 1206 } 1207 } 1208 1209 /* 1210 * If no output was produced print a single 0. 1211 */ 1212 if (len == 0) 1213 len = snprintf(buf, buf_size, "%d", 0); 1214 1215 if (add_cr) 1216 len += snprintf(buf + len, max(buf_size - len, 0), "\n"); 1217 1218 return len; 1219 } 1220 1221 #define INPUT_DEV_CAP_ATTR(ev, bm) \ 1222 static ssize_t input_dev_show_cap_##bm(struct device *dev, \ 1223 struct device_attribute *attr, \ 1224 char *buf) \ 1225 { \ 1226 struct input_dev *input_dev = to_input_dev(dev); \ 1227 int len = input_print_bitmap(buf, PAGE_SIZE, \ 1228 input_dev->bm##bit, ev##_MAX, \ 1229 true); \ 1230 return min_t(int, len, PAGE_SIZE); \ 1231 } \ 1232 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL) 1233 1234 INPUT_DEV_CAP_ATTR(EV, ev); 1235 INPUT_DEV_CAP_ATTR(KEY, key); 1236 INPUT_DEV_CAP_ATTR(REL, rel); 1237 INPUT_DEV_CAP_ATTR(ABS, abs); 1238 INPUT_DEV_CAP_ATTR(MSC, msc); 1239 INPUT_DEV_CAP_ATTR(LED, led); 1240 INPUT_DEV_CAP_ATTR(SND, snd); 1241 INPUT_DEV_CAP_ATTR(FF, ff); 1242 INPUT_DEV_CAP_ATTR(SW, sw); 1243 1244 static struct attribute *input_dev_caps_attrs[] = { 1245 &dev_attr_ev.attr, 1246 &dev_attr_key.attr, 1247 &dev_attr_rel.attr, 1248 &dev_attr_abs.attr, 1249 &dev_attr_msc.attr, 1250 &dev_attr_led.attr, 1251 &dev_attr_snd.attr, 1252 &dev_attr_ff.attr, 1253 &dev_attr_sw.attr, 1254 NULL 1255 }; 1256 1257 static struct attribute_group input_dev_caps_attr_group = { 1258 .name = "capabilities", 1259 .attrs = input_dev_caps_attrs, 1260 }; 1261 1262 static const struct attribute_group *input_dev_attr_groups[] = { 1263 &input_dev_attr_group, 1264 &input_dev_id_attr_group, 1265 &input_dev_caps_attr_group, 1266 NULL 1267 }; 1268 1269 static void input_dev_release(struct device *device) 1270 { 1271 struct input_dev *dev = to_input_dev(device); 1272 1273 input_ff_destroy(dev); 1274 kfree(dev); 1275 1276 module_put(THIS_MODULE); 1277 } 1278 1279 /* 1280 * Input uevent interface - loading event handlers based on 1281 * device bitfields. 1282 */ 1283 static int input_add_uevent_bm_var(struct kobj_uevent_env *env, 1284 const char *name, unsigned long *bitmap, int max) 1285 { 1286 int len; 1287 1288 if (add_uevent_var(env, "%s=", name)) 1289 return -ENOMEM; 1290 1291 len = input_print_bitmap(&env->buf[env->buflen - 1], 1292 sizeof(env->buf) - env->buflen, 1293 bitmap, max, false); 1294 if (len >= (sizeof(env->buf) - env->buflen)) 1295 return -ENOMEM; 1296 1297 env->buflen += len; 1298 return 0; 1299 } 1300 1301 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env, 1302 struct input_dev *dev) 1303 { 1304 int len; 1305 1306 if (add_uevent_var(env, "MODALIAS=")) 1307 return -ENOMEM; 1308 1309 len = input_print_modalias(&env->buf[env->buflen - 1], 1310 sizeof(env->buf) - env->buflen, 1311 dev, 0); 1312 if (len >= (sizeof(env->buf) - env->buflen)) 1313 return -ENOMEM; 1314 1315 env->buflen += len; 1316 return 0; 1317 } 1318 1319 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \ 1320 do { \ 1321 int err = add_uevent_var(env, fmt, val); \ 1322 if (err) \ 1323 return err; \ 1324 } while (0) 1325 1326 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \ 1327 do { \ 1328 int err = input_add_uevent_bm_var(env, name, bm, max); \ 1329 if (err) \ 1330 return err; \ 1331 } while (0) 1332 1333 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \ 1334 do { \ 1335 int err = input_add_uevent_modalias_var(env, dev); \ 1336 if (err) \ 1337 return err; \ 1338 } while (0) 1339 1340 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env) 1341 { 1342 struct input_dev *dev = to_input_dev(device); 1343 1344 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x", 1345 dev->id.bustype, dev->id.vendor, 1346 dev->id.product, dev->id.version); 1347 if (dev->name) 1348 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name); 1349 if (dev->phys) 1350 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys); 1351 if (dev->uniq) 1352 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq); 1353 1354 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX); 1355 if (test_bit(EV_KEY, dev->evbit)) 1356 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX); 1357 if (test_bit(EV_REL, dev->evbit)) 1358 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX); 1359 if (test_bit(EV_ABS, dev->evbit)) 1360 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX); 1361 if (test_bit(EV_MSC, dev->evbit)) 1362 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX); 1363 if (test_bit(EV_LED, dev->evbit)) 1364 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX); 1365 if (test_bit(EV_SND, dev->evbit)) 1366 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX); 1367 if (test_bit(EV_FF, dev->evbit)) 1368 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX); 1369 if (test_bit(EV_SW, dev->evbit)) 1370 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX); 1371 1372 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev); 1373 1374 return 0; 1375 } 1376 1377 #define INPUT_DO_TOGGLE(dev, type, bits, on) \ 1378 do { \ 1379 int i; \ 1380 bool active; \ 1381 \ 1382 if (!test_bit(EV_##type, dev->evbit)) \ 1383 break; \ 1384 \ 1385 for (i = 0; i < type##_MAX; i++) { \ 1386 if (!test_bit(i, dev->bits##bit)) \ 1387 continue; \ 1388 \ 1389 active = test_bit(i, dev->bits); \ 1390 if (!active && !on) \ 1391 continue; \ 1392 \ 1393 dev->event(dev, EV_##type, i, on ? active : 0); \ 1394 } \ 1395 } while (0) 1396 1397 #ifdef CONFIG_PM 1398 static void input_dev_reset(struct input_dev *dev, bool activate) 1399 { 1400 if (!dev->event) 1401 return; 1402 1403 INPUT_DO_TOGGLE(dev, LED, led, activate); 1404 INPUT_DO_TOGGLE(dev, SND, snd, activate); 1405 1406 if (activate && test_bit(EV_REP, dev->evbit)) { 1407 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]); 1408 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]); 1409 } 1410 } 1411 1412 static int input_dev_suspend(struct device *dev) 1413 { 1414 struct input_dev *input_dev = to_input_dev(dev); 1415 1416 mutex_lock(&input_dev->mutex); 1417 input_dev_reset(input_dev, false); 1418 mutex_unlock(&input_dev->mutex); 1419 1420 return 0; 1421 } 1422 1423 static int input_dev_resume(struct device *dev) 1424 { 1425 struct input_dev *input_dev = to_input_dev(dev); 1426 1427 mutex_lock(&input_dev->mutex); 1428 input_dev_reset(input_dev, true); 1429 mutex_unlock(&input_dev->mutex); 1430 1431 return 0; 1432 } 1433 1434 static const struct dev_pm_ops input_dev_pm_ops = { 1435 .suspend = input_dev_suspend, 1436 .resume = input_dev_resume, 1437 .poweroff = input_dev_suspend, 1438 .restore = input_dev_resume, 1439 }; 1440 #endif /* CONFIG_PM */ 1441 1442 static struct device_type input_dev_type = { 1443 .groups = input_dev_attr_groups, 1444 .release = input_dev_release, 1445 .uevent = input_dev_uevent, 1446 #ifdef CONFIG_PM 1447 .pm = &input_dev_pm_ops, 1448 #endif 1449 }; 1450 1451 static char *input_devnode(struct device *dev, mode_t *mode) 1452 { 1453 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev)); 1454 } 1455 1456 struct class input_class = { 1457 .name = "input", 1458 .devnode = input_devnode, 1459 }; 1460 EXPORT_SYMBOL_GPL(input_class); 1461 1462 /** 1463 * input_allocate_device - allocate memory for new input device 1464 * 1465 * Returns prepared struct input_dev or NULL. 1466 * 1467 * NOTE: Use input_free_device() to free devices that have not been 1468 * registered; input_unregister_device() should be used for already 1469 * registered devices. 1470 */ 1471 struct input_dev *input_allocate_device(void) 1472 { 1473 struct input_dev *dev; 1474 1475 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL); 1476 if (dev) { 1477 dev->dev.type = &input_dev_type; 1478 dev->dev.class = &input_class; 1479 device_initialize(&dev->dev); 1480 mutex_init(&dev->mutex); 1481 spin_lock_init(&dev->event_lock); 1482 INIT_LIST_HEAD(&dev->h_list); 1483 INIT_LIST_HEAD(&dev->node); 1484 1485 __module_get(THIS_MODULE); 1486 } 1487 1488 return dev; 1489 } 1490 EXPORT_SYMBOL(input_allocate_device); 1491 1492 /** 1493 * input_free_device - free memory occupied by input_dev structure 1494 * @dev: input device to free 1495 * 1496 * This function should only be used if input_register_device() 1497 * was not called yet or if it failed. Once device was registered 1498 * use input_unregister_device() and memory will be freed once last 1499 * reference to the device is dropped. 1500 * 1501 * Device should be allocated by input_allocate_device(). 1502 * 1503 * NOTE: If there are references to the input device then memory 1504 * will not be freed until last reference is dropped. 1505 */ 1506 void input_free_device(struct input_dev *dev) 1507 { 1508 if (dev) 1509 input_put_device(dev); 1510 } 1511 EXPORT_SYMBOL(input_free_device); 1512 1513 /** 1514 * input_set_capability - mark device as capable of a certain event 1515 * @dev: device that is capable of emitting or accepting event 1516 * @type: type of the event (EV_KEY, EV_REL, etc...) 1517 * @code: event code 1518 * 1519 * In addition to setting up corresponding bit in appropriate capability 1520 * bitmap the function also adjusts dev->evbit. 1521 */ 1522 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code) 1523 { 1524 switch (type) { 1525 case EV_KEY: 1526 __set_bit(code, dev->keybit); 1527 break; 1528 1529 case EV_REL: 1530 __set_bit(code, dev->relbit); 1531 break; 1532 1533 case EV_ABS: 1534 __set_bit(code, dev->absbit); 1535 break; 1536 1537 case EV_MSC: 1538 __set_bit(code, dev->mscbit); 1539 break; 1540 1541 case EV_SW: 1542 __set_bit(code, dev->swbit); 1543 break; 1544 1545 case EV_LED: 1546 __set_bit(code, dev->ledbit); 1547 break; 1548 1549 case EV_SND: 1550 __set_bit(code, dev->sndbit); 1551 break; 1552 1553 case EV_FF: 1554 __set_bit(code, dev->ffbit); 1555 break; 1556 1557 case EV_PWR: 1558 /* do nothing */ 1559 break; 1560 1561 default: 1562 printk(KERN_ERR 1563 "input_set_capability: unknown type %u (code %u)\n", 1564 type, code); 1565 dump_stack(); 1566 return; 1567 } 1568 1569 __set_bit(type, dev->evbit); 1570 } 1571 EXPORT_SYMBOL(input_set_capability); 1572 1573 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \ 1574 do { \ 1575 if (!test_bit(EV_##type, dev->evbit)) \ 1576 memset(dev->bits##bit, 0, \ 1577 sizeof(dev->bits##bit)); \ 1578 } while (0) 1579 1580 static void input_cleanse_bitmasks(struct input_dev *dev) 1581 { 1582 INPUT_CLEANSE_BITMASK(dev, KEY, key); 1583 INPUT_CLEANSE_BITMASK(dev, REL, rel); 1584 INPUT_CLEANSE_BITMASK(dev, ABS, abs); 1585 INPUT_CLEANSE_BITMASK(dev, MSC, msc); 1586 INPUT_CLEANSE_BITMASK(dev, LED, led); 1587 INPUT_CLEANSE_BITMASK(dev, SND, snd); 1588 INPUT_CLEANSE_BITMASK(dev, FF, ff); 1589 INPUT_CLEANSE_BITMASK(dev, SW, sw); 1590 } 1591 1592 /** 1593 * input_register_device - register device with input core 1594 * @dev: device to be registered 1595 * 1596 * This function registers device with input core. The device must be 1597 * allocated with input_allocate_device() and all it's capabilities 1598 * set up before registering. 1599 * If function fails the device must be freed with input_free_device(). 1600 * Once device has been successfully registered it can be unregistered 1601 * with input_unregister_device(); input_free_device() should not be 1602 * called in this case. 1603 */ 1604 int input_register_device(struct input_dev *dev) 1605 { 1606 static atomic_t input_no = ATOMIC_INIT(0); 1607 struct input_handler *handler; 1608 const char *path; 1609 int error; 1610 1611 /* Every input device generates EV_SYN/SYN_REPORT events. */ 1612 __set_bit(EV_SYN, dev->evbit); 1613 1614 /* KEY_RESERVED is not supposed to be transmitted to userspace. */ 1615 __clear_bit(KEY_RESERVED, dev->keybit); 1616 1617 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */ 1618 input_cleanse_bitmasks(dev); 1619 1620 /* 1621 * If delay and period are pre-set by the driver, then autorepeating 1622 * is handled by the driver itself and we don't do it in input.c. 1623 */ 1624 init_timer(&dev->timer); 1625 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) { 1626 dev->timer.data = (long) dev; 1627 dev->timer.function = input_repeat_key; 1628 dev->rep[REP_DELAY] = 250; 1629 dev->rep[REP_PERIOD] = 33; 1630 } 1631 1632 if (!dev->getkeycode) 1633 dev->getkeycode = input_default_getkeycode; 1634 1635 if (!dev->setkeycode) 1636 dev->setkeycode = input_default_setkeycode; 1637 1638 dev_set_name(&dev->dev, "input%ld", 1639 (unsigned long) atomic_inc_return(&input_no) - 1); 1640 1641 error = device_add(&dev->dev); 1642 if (error) 1643 return error; 1644 1645 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1646 printk(KERN_INFO "input: %s as %s\n", 1647 dev->name ? dev->name : "Unspecified device", path ? path : "N/A"); 1648 kfree(path); 1649 1650 error = mutex_lock_interruptible(&input_mutex); 1651 if (error) { 1652 device_del(&dev->dev); 1653 return error; 1654 } 1655 1656 list_add_tail(&dev->node, &input_dev_list); 1657 1658 list_for_each_entry(handler, &input_handler_list, node) 1659 input_attach_handler(dev, handler); 1660 1661 input_wakeup_procfs_readers(); 1662 1663 mutex_unlock(&input_mutex); 1664 1665 return 0; 1666 } 1667 EXPORT_SYMBOL(input_register_device); 1668 1669 /** 1670 * input_unregister_device - unregister previously registered device 1671 * @dev: device to be unregistered 1672 * 1673 * This function unregisters an input device. Once device is unregistered 1674 * the caller should not try to access it as it may get freed at any moment. 1675 */ 1676 void input_unregister_device(struct input_dev *dev) 1677 { 1678 struct input_handle *handle, *next; 1679 1680 input_disconnect_device(dev); 1681 1682 mutex_lock(&input_mutex); 1683 1684 list_for_each_entry_safe(handle, next, &dev->h_list, d_node) 1685 handle->handler->disconnect(handle); 1686 WARN_ON(!list_empty(&dev->h_list)); 1687 1688 del_timer_sync(&dev->timer); 1689 list_del_init(&dev->node); 1690 1691 input_wakeup_procfs_readers(); 1692 1693 mutex_unlock(&input_mutex); 1694 1695 device_unregister(&dev->dev); 1696 } 1697 EXPORT_SYMBOL(input_unregister_device); 1698 1699 /** 1700 * input_register_handler - register a new input handler 1701 * @handler: handler to be registered 1702 * 1703 * This function registers a new input handler (interface) for input 1704 * devices in the system and attaches it to all input devices that 1705 * are compatible with the handler. 1706 */ 1707 int input_register_handler(struct input_handler *handler) 1708 { 1709 struct input_dev *dev; 1710 int retval; 1711 1712 retval = mutex_lock_interruptible(&input_mutex); 1713 if (retval) 1714 return retval; 1715 1716 INIT_LIST_HEAD(&handler->h_list); 1717 1718 if (handler->fops != NULL) { 1719 if (input_table[handler->minor >> 5]) { 1720 retval = -EBUSY; 1721 goto out; 1722 } 1723 input_table[handler->minor >> 5] = handler; 1724 } 1725 1726 list_add_tail(&handler->node, &input_handler_list); 1727 1728 list_for_each_entry(dev, &input_dev_list, node) 1729 input_attach_handler(dev, handler); 1730 1731 input_wakeup_procfs_readers(); 1732 1733 out: 1734 mutex_unlock(&input_mutex); 1735 return retval; 1736 } 1737 EXPORT_SYMBOL(input_register_handler); 1738 1739 /** 1740 * input_unregister_handler - unregisters an input handler 1741 * @handler: handler to be unregistered 1742 * 1743 * This function disconnects a handler from its input devices and 1744 * removes it from lists of known handlers. 1745 */ 1746 void input_unregister_handler(struct input_handler *handler) 1747 { 1748 struct input_handle *handle, *next; 1749 1750 mutex_lock(&input_mutex); 1751 1752 list_for_each_entry_safe(handle, next, &handler->h_list, h_node) 1753 handler->disconnect(handle); 1754 WARN_ON(!list_empty(&handler->h_list)); 1755 1756 list_del_init(&handler->node); 1757 1758 if (handler->fops != NULL) 1759 input_table[handler->minor >> 5] = NULL; 1760 1761 input_wakeup_procfs_readers(); 1762 1763 mutex_unlock(&input_mutex); 1764 } 1765 EXPORT_SYMBOL(input_unregister_handler); 1766 1767 /** 1768 * input_handler_for_each_handle - handle iterator 1769 * @handler: input handler to iterate 1770 * @data: data for the callback 1771 * @fn: function to be called for each handle 1772 * 1773 * Iterate over @bus's list of devices, and call @fn for each, passing 1774 * it @data and stop when @fn returns a non-zero value. The function is 1775 * using RCU to traverse the list and therefore may be usind in atonic 1776 * contexts. The @fn callback is invoked from RCU critical section and 1777 * thus must not sleep. 1778 */ 1779 int input_handler_for_each_handle(struct input_handler *handler, void *data, 1780 int (*fn)(struct input_handle *, void *)) 1781 { 1782 struct input_handle *handle; 1783 int retval = 0; 1784 1785 rcu_read_lock(); 1786 1787 list_for_each_entry_rcu(handle, &handler->h_list, h_node) { 1788 retval = fn(handle, data); 1789 if (retval) 1790 break; 1791 } 1792 1793 rcu_read_unlock(); 1794 1795 return retval; 1796 } 1797 EXPORT_SYMBOL(input_handler_for_each_handle); 1798 1799 /** 1800 * input_register_handle - register a new input handle 1801 * @handle: handle to register 1802 * 1803 * This function puts a new input handle onto device's 1804 * and handler's lists so that events can flow through 1805 * it once it is opened using input_open_device(). 1806 * 1807 * This function is supposed to be called from handler's 1808 * connect() method. 1809 */ 1810 int input_register_handle(struct input_handle *handle) 1811 { 1812 struct input_handler *handler = handle->handler; 1813 struct input_dev *dev = handle->dev; 1814 int error; 1815 1816 /* 1817 * We take dev->mutex here to prevent race with 1818 * input_release_device(). 1819 */ 1820 error = mutex_lock_interruptible(&dev->mutex); 1821 if (error) 1822 return error; 1823 1824 /* 1825 * Filters go to the head of the list, normal handlers 1826 * to the tail. 1827 */ 1828 if (handler->filter) 1829 list_add_rcu(&handle->d_node, &dev->h_list); 1830 else 1831 list_add_tail_rcu(&handle->d_node, &dev->h_list); 1832 1833 mutex_unlock(&dev->mutex); 1834 1835 /* 1836 * Since we are supposed to be called from ->connect() 1837 * which is mutually exclusive with ->disconnect() 1838 * we can't be racing with input_unregister_handle() 1839 * and so separate lock is not needed here. 1840 */ 1841 list_add_tail_rcu(&handle->h_node, &handler->h_list); 1842 1843 if (handler->start) 1844 handler->start(handle); 1845 1846 return 0; 1847 } 1848 EXPORT_SYMBOL(input_register_handle); 1849 1850 /** 1851 * input_unregister_handle - unregister an input handle 1852 * @handle: handle to unregister 1853 * 1854 * This function removes input handle from device's 1855 * and handler's lists. 1856 * 1857 * This function is supposed to be called from handler's 1858 * disconnect() method. 1859 */ 1860 void input_unregister_handle(struct input_handle *handle) 1861 { 1862 struct input_dev *dev = handle->dev; 1863 1864 list_del_rcu(&handle->h_node); 1865 1866 /* 1867 * Take dev->mutex to prevent race with input_release_device(). 1868 */ 1869 mutex_lock(&dev->mutex); 1870 list_del_rcu(&handle->d_node); 1871 mutex_unlock(&dev->mutex); 1872 1873 synchronize_rcu(); 1874 } 1875 EXPORT_SYMBOL(input_unregister_handle); 1876 1877 static int input_open_file(struct inode *inode, struct file *file) 1878 { 1879 struct input_handler *handler; 1880 const struct file_operations *old_fops, *new_fops = NULL; 1881 int err; 1882 1883 err = mutex_lock_interruptible(&input_mutex); 1884 if (err) 1885 return err; 1886 1887 /* No load-on-demand here? */ 1888 handler = input_table[iminor(inode) >> 5]; 1889 if (handler) 1890 new_fops = fops_get(handler->fops); 1891 1892 mutex_unlock(&input_mutex); 1893 1894 /* 1895 * That's _really_ odd. Usually NULL ->open means "nothing special", 1896 * not "no device". Oh, well... 1897 */ 1898 if (!new_fops || !new_fops->open) { 1899 fops_put(new_fops); 1900 err = -ENODEV; 1901 goto out; 1902 } 1903 1904 old_fops = file->f_op; 1905 file->f_op = new_fops; 1906 1907 err = new_fops->open(inode, file); 1908 if (err) { 1909 fops_put(file->f_op); 1910 file->f_op = fops_get(old_fops); 1911 } 1912 fops_put(old_fops); 1913 out: 1914 return err; 1915 } 1916 1917 static const struct file_operations input_fops = { 1918 .owner = THIS_MODULE, 1919 .open = input_open_file, 1920 }; 1921 1922 static void __init input_init_abs_bypass(void) 1923 { 1924 const unsigned int *p; 1925 1926 for (p = input_abs_bypass_init_data; *p; p++) 1927 input_abs_bypass[BIT_WORD(*p)] |= BIT_MASK(*p); 1928 } 1929 1930 static int __init input_init(void) 1931 { 1932 int err; 1933 1934 input_init_abs_bypass(); 1935 1936 err = class_register(&input_class); 1937 if (err) { 1938 printk(KERN_ERR "input: unable to register input_dev class\n"); 1939 return err; 1940 } 1941 1942 err = input_proc_init(); 1943 if (err) 1944 goto fail1; 1945 1946 err = register_chrdev(INPUT_MAJOR, "input", &input_fops); 1947 if (err) { 1948 printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR); 1949 goto fail2; 1950 } 1951 1952 return 0; 1953 1954 fail2: input_proc_exit(); 1955 fail1: class_unregister(&input_class); 1956 return err; 1957 } 1958 1959 static void __exit input_exit(void) 1960 { 1961 input_proc_exit(); 1962 unregister_chrdev(INPUT_MAJOR, "input"); 1963 class_unregister(&input_class); 1964 } 1965 1966 subsys_initcall(input_init); 1967 module_exit(input_exit); 1968