xref: /linux-6.15/drivers/input/input.c (revision 4dc7ccf7)
1 /*
2  * The input core
3  *
4  * Copyright (c) 1999-2002 Vojtech Pavlik
5  */
6 
7 /*
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published by
10  * the Free Software Foundation.
11  */
12 
13 #include <linux/init.h>
14 #include <linux/types.h>
15 #include <linux/input.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/random.h>
19 #include <linux/major.h>
20 #include <linux/proc_fs.h>
21 #include <linux/sched.h>
22 #include <linux/seq_file.h>
23 #include <linux/poll.h>
24 #include <linux/device.h>
25 #include <linux/mutex.h>
26 #include <linux/rcupdate.h>
27 #include <linux/smp_lock.h>
28 #include "input-compat.h"
29 
30 MODULE_AUTHOR("Vojtech Pavlik <[email protected]>");
31 MODULE_DESCRIPTION("Input core");
32 MODULE_LICENSE("GPL");
33 
34 #define INPUT_DEVICES	256
35 
36 /*
37  * EV_ABS events which should not be cached are listed here.
38  */
39 static unsigned int input_abs_bypass_init_data[] __initdata = {
40 	ABS_MT_TOUCH_MAJOR,
41 	ABS_MT_TOUCH_MINOR,
42 	ABS_MT_WIDTH_MAJOR,
43 	ABS_MT_WIDTH_MINOR,
44 	ABS_MT_ORIENTATION,
45 	ABS_MT_POSITION_X,
46 	ABS_MT_POSITION_Y,
47 	ABS_MT_TOOL_TYPE,
48 	ABS_MT_BLOB_ID,
49 	ABS_MT_TRACKING_ID,
50 	ABS_MT_PRESSURE,
51 	0
52 };
53 static unsigned long input_abs_bypass[BITS_TO_LONGS(ABS_CNT)];
54 
55 static LIST_HEAD(input_dev_list);
56 static LIST_HEAD(input_handler_list);
57 
58 /*
59  * input_mutex protects access to both input_dev_list and input_handler_list.
60  * This also causes input_[un]register_device and input_[un]register_handler
61  * be mutually exclusive which simplifies locking in drivers implementing
62  * input handlers.
63  */
64 static DEFINE_MUTEX(input_mutex);
65 
66 static struct input_handler *input_table[8];
67 
68 static inline int is_event_supported(unsigned int code,
69 				     unsigned long *bm, unsigned int max)
70 {
71 	return code <= max && test_bit(code, bm);
72 }
73 
74 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
75 {
76 	if (fuzz) {
77 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
78 			return old_val;
79 
80 		if (value > old_val - fuzz && value < old_val + fuzz)
81 			return (old_val * 3 + value) / 4;
82 
83 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
84 			return (old_val + value) / 2;
85 	}
86 
87 	return value;
88 }
89 
90 /*
91  * Pass event first through all filters and then, if event has not been
92  * filtered out, through all open handles. This function is called with
93  * dev->event_lock held and interrupts disabled.
94  */
95 static void input_pass_event(struct input_dev *dev,
96 			     unsigned int type, unsigned int code, int value)
97 {
98 	struct input_handler *handler;
99 	struct input_handle *handle;
100 
101 	rcu_read_lock();
102 
103 	handle = rcu_dereference(dev->grab);
104 	if (handle)
105 		handle->handler->event(handle, type, code, value);
106 	else {
107 		bool filtered = false;
108 
109 		list_for_each_entry_rcu(handle, &dev->h_list, d_node) {
110 			if (!handle->open)
111 				continue;
112 
113 			handler = handle->handler;
114 			if (!handler->filter) {
115 				if (filtered)
116 					break;
117 
118 				handler->event(handle, type, code, value);
119 
120 			} else if (handler->filter(handle, type, code, value))
121 				filtered = true;
122 		}
123 	}
124 
125 	rcu_read_unlock();
126 }
127 
128 /*
129  * Generate software autorepeat event. Note that we take
130  * dev->event_lock here to avoid racing with input_event
131  * which may cause keys get "stuck".
132  */
133 static void input_repeat_key(unsigned long data)
134 {
135 	struct input_dev *dev = (void *) data;
136 	unsigned long flags;
137 
138 	spin_lock_irqsave(&dev->event_lock, flags);
139 
140 	if (test_bit(dev->repeat_key, dev->key) &&
141 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
142 
143 		input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
144 
145 		if (dev->sync) {
146 			/*
147 			 * Only send SYN_REPORT if we are not in a middle
148 			 * of driver parsing a new hardware packet.
149 			 * Otherwise assume that the driver will send
150 			 * SYN_REPORT once it's done.
151 			 */
152 			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
153 		}
154 
155 		if (dev->rep[REP_PERIOD])
156 			mod_timer(&dev->timer, jiffies +
157 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
158 	}
159 
160 	spin_unlock_irqrestore(&dev->event_lock, flags);
161 }
162 
163 static void input_start_autorepeat(struct input_dev *dev, int code)
164 {
165 	if (test_bit(EV_REP, dev->evbit) &&
166 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
167 	    dev->timer.data) {
168 		dev->repeat_key = code;
169 		mod_timer(&dev->timer,
170 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
171 	}
172 }
173 
174 static void input_stop_autorepeat(struct input_dev *dev)
175 {
176 	del_timer(&dev->timer);
177 }
178 
179 #define INPUT_IGNORE_EVENT	0
180 #define INPUT_PASS_TO_HANDLERS	1
181 #define INPUT_PASS_TO_DEVICE	2
182 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
183 
184 static void input_handle_event(struct input_dev *dev,
185 			       unsigned int type, unsigned int code, int value)
186 {
187 	int disposition = INPUT_IGNORE_EVENT;
188 
189 	switch (type) {
190 
191 	case EV_SYN:
192 		switch (code) {
193 		case SYN_CONFIG:
194 			disposition = INPUT_PASS_TO_ALL;
195 			break;
196 
197 		case SYN_REPORT:
198 			if (!dev->sync) {
199 				dev->sync = 1;
200 				disposition = INPUT_PASS_TO_HANDLERS;
201 			}
202 			break;
203 		case SYN_MT_REPORT:
204 			dev->sync = 0;
205 			disposition = INPUT_PASS_TO_HANDLERS;
206 			break;
207 		}
208 		break;
209 
210 	case EV_KEY:
211 		if (is_event_supported(code, dev->keybit, KEY_MAX) &&
212 		    !!test_bit(code, dev->key) != value) {
213 
214 			if (value != 2) {
215 				__change_bit(code, dev->key);
216 				if (value)
217 					input_start_autorepeat(dev, code);
218 				else
219 					input_stop_autorepeat(dev);
220 			}
221 
222 			disposition = INPUT_PASS_TO_HANDLERS;
223 		}
224 		break;
225 
226 	case EV_SW:
227 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
228 		    !!test_bit(code, dev->sw) != value) {
229 
230 			__change_bit(code, dev->sw);
231 			disposition = INPUT_PASS_TO_HANDLERS;
232 		}
233 		break;
234 
235 	case EV_ABS:
236 		if (is_event_supported(code, dev->absbit, ABS_MAX)) {
237 
238 			if (test_bit(code, input_abs_bypass)) {
239 				disposition = INPUT_PASS_TO_HANDLERS;
240 				break;
241 			}
242 
243 			value = input_defuzz_abs_event(value,
244 					dev->abs[code], dev->absfuzz[code]);
245 
246 			if (dev->abs[code] != value) {
247 				dev->abs[code] = value;
248 				disposition = INPUT_PASS_TO_HANDLERS;
249 			}
250 		}
251 		break;
252 
253 	case EV_REL:
254 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
255 			disposition = INPUT_PASS_TO_HANDLERS;
256 
257 		break;
258 
259 	case EV_MSC:
260 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
261 			disposition = INPUT_PASS_TO_ALL;
262 
263 		break;
264 
265 	case EV_LED:
266 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
267 		    !!test_bit(code, dev->led) != value) {
268 
269 			__change_bit(code, dev->led);
270 			disposition = INPUT_PASS_TO_ALL;
271 		}
272 		break;
273 
274 	case EV_SND:
275 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
276 
277 			if (!!test_bit(code, dev->snd) != !!value)
278 				__change_bit(code, dev->snd);
279 			disposition = INPUT_PASS_TO_ALL;
280 		}
281 		break;
282 
283 	case EV_REP:
284 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
285 			dev->rep[code] = value;
286 			disposition = INPUT_PASS_TO_ALL;
287 		}
288 		break;
289 
290 	case EV_FF:
291 		if (value >= 0)
292 			disposition = INPUT_PASS_TO_ALL;
293 		break;
294 
295 	case EV_PWR:
296 		disposition = INPUT_PASS_TO_ALL;
297 		break;
298 	}
299 
300 	if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
301 		dev->sync = 0;
302 
303 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
304 		dev->event(dev, type, code, value);
305 
306 	if (disposition & INPUT_PASS_TO_HANDLERS)
307 		input_pass_event(dev, type, code, value);
308 }
309 
310 /**
311  * input_event() - report new input event
312  * @dev: device that generated the event
313  * @type: type of the event
314  * @code: event code
315  * @value: value of the event
316  *
317  * This function should be used by drivers implementing various input
318  * devices to report input events. See also input_inject_event().
319  *
320  * NOTE: input_event() may be safely used right after input device was
321  * allocated with input_allocate_device(), even before it is registered
322  * with input_register_device(), but the event will not reach any of the
323  * input handlers. Such early invocation of input_event() may be used
324  * to 'seed' initial state of a switch or initial position of absolute
325  * axis, etc.
326  */
327 void input_event(struct input_dev *dev,
328 		 unsigned int type, unsigned int code, int value)
329 {
330 	unsigned long flags;
331 
332 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
333 
334 		spin_lock_irqsave(&dev->event_lock, flags);
335 		add_input_randomness(type, code, value);
336 		input_handle_event(dev, type, code, value);
337 		spin_unlock_irqrestore(&dev->event_lock, flags);
338 	}
339 }
340 EXPORT_SYMBOL(input_event);
341 
342 /**
343  * input_inject_event() - send input event from input handler
344  * @handle: input handle to send event through
345  * @type: type of the event
346  * @code: event code
347  * @value: value of the event
348  *
349  * Similar to input_event() but will ignore event if device is
350  * "grabbed" and handle injecting event is not the one that owns
351  * the device.
352  */
353 void input_inject_event(struct input_handle *handle,
354 			unsigned int type, unsigned int code, int value)
355 {
356 	struct input_dev *dev = handle->dev;
357 	struct input_handle *grab;
358 	unsigned long flags;
359 
360 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
361 		spin_lock_irqsave(&dev->event_lock, flags);
362 
363 		rcu_read_lock();
364 		grab = rcu_dereference(dev->grab);
365 		if (!grab || grab == handle)
366 			input_handle_event(dev, type, code, value);
367 		rcu_read_unlock();
368 
369 		spin_unlock_irqrestore(&dev->event_lock, flags);
370 	}
371 }
372 EXPORT_SYMBOL(input_inject_event);
373 
374 /**
375  * input_grab_device - grabs device for exclusive use
376  * @handle: input handle that wants to own the device
377  *
378  * When a device is grabbed by an input handle all events generated by
379  * the device are delivered only to this handle. Also events injected
380  * by other input handles are ignored while device is grabbed.
381  */
382 int input_grab_device(struct input_handle *handle)
383 {
384 	struct input_dev *dev = handle->dev;
385 	int retval;
386 
387 	retval = mutex_lock_interruptible(&dev->mutex);
388 	if (retval)
389 		return retval;
390 
391 	if (dev->grab) {
392 		retval = -EBUSY;
393 		goto out;
394 	}
395 
396 	rcu_assign_pointer(dev->grab, handle);
397 	synchronize_rcu();
398 
399  out:
400 	mutex_unlock(&dev->mutex);
401 	return retval;
402 }
403 EXPORT_SYMBOL(input_grab_device);
404 
405 static void __input_release_device(struct input_handle *handle)
406 {
407 	struct input_dev *dev = handle->dev;
408 
409 	if (dev->grab == handle) {
410 		rcu_assign_pointer(dev->grab, NULL);
411 		/* Make sure input_pass_event() notices that grab is gone */
412 		synchronize_rcu();
413 
414 		list_for_each_entry(handle, &dev->h_list, d_node)
415 			if (handle->open && handle->handler->start)
416 				handle->handler->start(handle);
417 	}
418 }
419 
420 /**
421  * input_release_device - release previously grabbed device
422  * @handle: input handle that owns the device
423  *
424  * Releases previously grabbed device so that other input handles can
425  * start receiving input events. Upon release all handlers attached
426  * to the device have their start() method called so they have a change
427  * to synchronize device state with the rest of the system.
428  */
429 void input_release_device(struct input_handle *handle)
430 {
431 	struct input_dev *dev = handle->dev;
432 
433 	mutex_lock(&dev->mutex);
434 	__input_release_device(handle);
435 	mutex_unlock(&dev->mutex);
436 }
437 EXPORT_SYMBOL(input_release_device);
438 
439 /**
440  * input_open_device - open input device
441  * @handle: handle through which device is being accessed
442  *
443  * This function should be called by input handlers when they
444  * want to start receive events from given input device.
445  */
446 int input_open_device(struct input_handle *handle)
447 {
448 	struct input_dev *dev = handle->dev;
449 	int retval;
450 
451 	retval = mutex_lock_interruptible(&dev->mutex);
452 	if (retval)
453 		return retval;
454 
455 	if (dev->going_away) {
456 		retval = -ENODEV;
457 		goto out;
458 	}
459 
460 	handle->open++;
461 
462 	if (!dev->users++ && dev->open)
463 		retval = dev->open(dev);
464 
465 	if (retval) {
466 		dev->users--;
467 		if (!--handle->open) {
468 			/*
469 			 * Make sure we are not delivering any more events
470 			 * through this handle
471 			 */
472 			synchronize_rcu();
473 		}
474 	}
475 
476  out:
477 	mutex_unlock(&dev->mutex);
478 	return retval;
479 }
480 EXPORT_SYMBOL(input_open_device);
481 
482 int input_flush_device(struct input_handle *handle, struct file *file)
483 {
484 	struct input_dev *dev = handle->dev;
485 	int retval;
486 
487 	retval = mutex_lock_interruptible(&dev->mutex);
488 	if (retval)
489 		return retval;
490 
491 	if (dev->flush)
492 		retval = dev->flush(dev, file);
493 
494 	mutex_unlock(&dev->mutex);
495 	return retval;
496 }
497 EXPORT_SYMBOL(input_flush_device);
498 
499 /**
500  * input_close_device - close input device
501  * @handle: handle through which device is being accessed
502  *
503  * This function should be called by input handlers when they
504  * want to stop receive events from given input device.
505  */
506 void input_close_device(struct input_handle *handle)
507 {
508 	struct input_dev *dev = handle->dev;
509 
510 	mutex_lock(&dev->mutex);
511 
512 	__input_release_device(handle);
513 
514 	if (!--dev->users && dev->close)
515 		dev->close(dev);
516 
517 	if (!--handle->open) {
518 		/*
519 		 * synchronize_rcu() makes sure that input_pass_event()
520 		 * completed and that no more input events are delivered
521 		 * through this handle
522 		 */
523 		synchronize_rcu();
524 	}
525 
526 	mutex_unlock(&dev->mutex);
527 }
528 EXPORT_SYMBOL(input_close_device);
529 
530 /*
531  * Prepare device for unregistering
532  */
533 static void input_disconnect_device(struct input_dev *dev)
534 {
535 	struct input_handle *handle;
536 	int code;
537 
538 	/*
539 	 * Mark device as going away. Note that we take dev->mutex here
540 	 * not to protect access to dev->going_away but rather to ensure
541 	 * that there are no threads in the middle of input_open_device()
542 	 */
543 	mutex_lock(&dev->mutex);
544 	dev->going_away = true;
545 	mutex_unlock(&dev->mutex);
546 
547 	spin_lock_irq(&dev->event_lock);
548 
549 	/*
550 	 * Simulate keyup events for all pressed keys so that handlers
551 	 * are not left with "stuck" keys. The driver may continue
552 	 * generate events even after we done here but they will not
553 	 * reach any handlers.
554 	 */
555 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
556 		for (code = 0; code <= KEY_MAX; code++) {
557 			if (is_event_supported(code, dev->keybit, KEY_MAX) &&
558 			    __test_and_clear_bit(code, dev->key)) {
559 				input_pass_event(dev, EV_KEY, code, 0);
560 			}
561 		}
562 		input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
563 	}
564 
565 	list_for_each_entry(handle, &dev->h_list, d_node)
566 		handle->open = 0;
567 
568 	spin_unlock_irq(&dev->event_lock);
569 }
570 
571 static int input_fetch_keycode(struct input_dev *dev, int scancode)
572 {
573 	switch (dev->keycodesize) {
574 		case 1:
575 			return ((u8 *)dev->keycode)[scancode];
576 
577 		case 2:
578 			return ((u16 *)dev->keycode)[scancode];
579 
580 		default:
581 			return ((u32 *)dev->keycode)[scancode];
582 	}
583 }
584 
585 static int input_default_getkeycode(struct input_dev *dev,
586 				    unsigned int scancode,
587 				    unsigned int *keycode)
588 {
589 	if (!dev->keycodesize)
590 		return -EINVAL;
591 
592 	if (scancode >= dev->keycodemax)
593 		return -EINVAL;
594 
595 	*keycode = input_fetch_keycode(dev, scancode);
596 
597 	return 0;
598 }
599 
600 static int input_default_setkeycode(struct input_dev *dev,
601 				    unsigned int scancode,
602 				    unsigned int keycode)
603 {
604 	int old_keycode;
605 	int i;
606 
607 	if (scancode >= dev->keycodemax)
608 		return -EINVAL;
609 
610 	if (!dev->keycodesize)
611 		return -EINVAL;
612 
613 	if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
614 		return -EINVAL;
615 
616 	switch (dev->keycodesize) {
617 		case 1: {
618 			u8 *k = (u8 *)dev->keycode;
619 			old_keycode = k[scancode];
620 			k[scancode] = keycode;
621 			break;
622 		}
623 		case 2: {
624 			u16 *k = (u16 *)dev->keycode;
625 			old_keycode = k[scancode];
626 			k[scancode] = keycode;
627 			break;
628 		}
629 		default: {
630 			u32 *k = (u32 *)dev->keycode;
631 			old_keycode = k[scancode];
632 			k[scancode] = keycode;
633 			break;
634 		}
635 	}
636 
637 	__clear_bit(old_keycode, dev->keybit);
638 	__set_bit(keycode, dev->keybit);
639 
640 	for (i = 0; i < dev->keycodemax; i++) {
641 		if (input_fetch_keycode(dev, i) == old_keycode) {
642 			__set_bit(old_keycode, dev->keybit);
643 			break; /* Setting the bit twice is useless, so break */
644 		}
645 	}
646 
647 	return 0;
648 }
649 
650 /**
651  * input_get_keycode - retrieve keycode currently mapped to a given scancode
652  * @dev: input device which keymap is being queried
653  * @scancode: scancode (or its equivalent for device in question) for which
654  *	keycode is needed
655  * @keycode: result
656  *
657  * This function should be called by anyone interested in retrieving current
658  * keymap. Presently keyboard and evdev handlers use it.
659  */
660 int input_get_keycode(struct input_dev *dev,
661 		      unsigned int scancode, unsigned int *keycode)
662 {
663 	return dev->getkeycode(dev, scancode, keycode);
664 }
665 EXPORT_SYMBOL(input_get_keycode);
666 
667 /**
668  * input_get_keycode - assign new keycode to a given scancode
669  * @dev: input device which keymap is being updated
670  * @scancode: scancode (or its equivalent for device in question)
671  * @keycode: new keycode to be assigned to the scancode
672  *
673  * This function should be called by anyone needing to update current
674  * keymap. Presently keyboard and evdev handlers use it.
675  */
676 int input_set_keycode(struct input_dev *dev,
677 		      unsigned int scancode, unsigned int keycode)
678 {
679 	unsigned long flags;
680 	int old_keycode;
681 	int retval;
682 
683 	if (keycode > KEY_MAX)
684 		return -EINVAL;
685 
686 	spin_lock_irqsave(&dev->event_lock, flags);
687 
688 	retval = dev->getkeycode(dev, scancode, &old_keycode);
689 	if (retval)
690 		goto out;
691 
692 	retval = dev->setkeycode(dev, scancode, keycode);
693 	if (retval)
694 		goto out;
695 
696 	/* Make sure KEY_RESERVED did not get enabled. */
697 	__clear_bit(KEY_RESERVED, dev->keybit);
698 
699 	/*
700 	 * Simulate keyup event if keycode is not present
701 	 * in the keymap anymore
702 	 */
703 	if (test_bit(EV_KEY, dev->evbit) &&
704 	    !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
705 	    __test_and_clear_bit(old_keycode, dev->key)) {
706 
707 		input_pass_event(dev, EV_KEY, old_keycode, 0);
708 		if (dev->sync)
709 			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
710 	}
711 
712  out:
713 	spin_unlock_irqrestore(&dev->event_lock, flags);
714 
715 	return retval;
716 }
717 EXPORT_SYMBOL(input_set_keycode);
718 
719 #define MATCH_BIT(bit, max) \
720 		for (i = 0; i < BITS_TO_LONGS(max); i++) \
721 			if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
722 				break; \
723 		if (i != BITS_TO_LONGS(max)) \
724 			continue;
725 
726 static const struct input_device_id *input_match_device(struct input_handler *handler,
727 							struct input_dev *dev)
728 {
729 	const struct input_device_id *id;
730 	int i;
731 
732 	for (id = handler->id_table; id->flags || id->driver_info; id++) {
733 
734 		if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
735 			if (id->bustype != dev->id.bustype)
736 				continue;
737 
738 		if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
739 			if (id->vendor != dev->id.vendor)
740 				continue;
741 
742 		if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
743 			if (id->product != dev->id.product)
744 				continue;
745 
746 		if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
747 			if (id->version != dev->id.version)
748 				continue;
749 
750 		MATCH_BIT(evbit,  EV_MAX);
751 		MATCH_BIT(keybit, KEY_MAX);
752 		MATCH_BIT(relbit, REL_MAX);
753 		MATCH_BIT(absbit, ABS_MAX);
754 		MATCH_BIT(mscbit, MSC_MAX);
755 		MATCH_BIT(ledbit, LED_MAX);
756 		MATCH_BIT(sndbit, SND_MAX);
757 		MATCH_BIT(ffbit,  FF_MAX);
758 		MATCH_BIT(swbit,  SW_MAX);
759 
760 		if (!handler->match || handler->match(handler, dev))
761 			return id;
762 	}
763 
764 	return NULL;
765 }
766 
767 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
768 {
769 	const struct input_device_id *id;
770 	int error;
771 
772 	id = input_match_device(handler, dev);
773 	if (!id)
774 		return -ENODEV;
775 
776 	error = handler->connect(handler, dev, id);
777 	if (error && error != -ENODEV)
778 		printk(KERN_ERR
779 			"input: failed to attach handler %s to device %s, "
780 			"error: %d\n",
781 			handler->name, kobject_name(&dev->dev.kobj), error);
782 
783 	return error;
784 }
785 
786 #ifdef CONFIG_COMPAT
787 
788 static int input_bits_to_string(char *buf, int buf_size,
789 				unsigned long bits, bool skip_empty)
790 {
791 	int len = 0;
792 
793 	if (INPUT_COMPAT_TEST) {
794 		u32 dword = bits >> 32;
795 		if (dword || !skip_empty)
796 			len += snprintf(buf, buf_size, "%x ", dword);
797 
798 		dword = bits & 0xffffffffUL;
799 		if (dword || !skip_empty || len)
800 			len += snprintf(buf + len, max(buf_size - len, 0),
801 					"%x", dword);
802 	} else {
803 		if (bits || !skip_empty)
804 			len += snprintf(buf, buf_size, "%lx", bits);
805 	}
806 
807 	return len;
808 }
809 
810 #else /* !CONFIG_COMPAT */
811 
812 static int input_bits_to_string(char *buf, int buf_size,
813 				unsigned long bits, bool skip_empty)
814 {
815 	return bits || !skip_empty ?
816 		snprintf(buf, buf_size, "%lx", bits) : 0;
817 }
818 
819 #endif
820 
821 #ifdef CONFIG_PROC_FS
822 
823 static struct proc_dir_entry *proc_bus_input_dir;
824 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
825 static int input_devices_state;
826 
827 static inline void input_wakeup_procfs_readers(void)
828 {
829 	input_devices_state++;
830 	wake_up(&input_devices_poll_wait);
831 }
832 
833 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
834 {
835 	poll_wait(file, &input_devices_poll_wait, wait);
836 	if (file->f_version != input_devices_state) {
837 		file->f_version = input_devices_state;
838 		return POLLIN | POLLRDNORM;
839 	}
840 
841 	return 0;
842 }
843 
844 union input_seq_state {
845 	struct {
846 		unsigned short pos;
847 		bool mutex_acquired;
848 	};
849 	void *p;
850 };
851 
852 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
853 {
854 	union input_seq_state *state = (union input_seq_state *)&seq->private;
855 	int error;
856 
857 	/* We need to fit into seq->private pointer */
858 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
859 
860 	error = mutex_lock_interruptible(&input_mutex);
861 	if (error) {
862 		state->mutex_acquired = false;
863 		return ERR_PTR(error);
864 	}
865 
866 	state->mutex_acquired = true;
867 
868 	return seq_list_start(&input_dev_list, *pos);
869 }
870 
871 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
872 {
873 	return seq_list_next(v, &input_dev_list, pos);
874 }
875 
876 static void input_seq_stop(struct seq_file *seq, void *v)
877 {
878 	union input_seq_state *state = (union input_seq_state *)&seq->private;
879 
880 	if (state->mutex_acquired)
881 		mutex_unlock(&input_mutex);
882 }
883 
884 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
885 				   unsigned long *bitmap, int max)
886 {
887 	int i;
888 	bool skip_empty = true;
889 	char buf[18];
890 
891 	seq_printf(seq, "B: %s=", name);
892 
893 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
894 		if (input_bits_to_string(buf, sizeof(buf),
895 					 bitmap[i], skip_empty)) {
896 			skip_empty = false;
897 			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
898 		}
899 	}
900 
901 	/*
902 	 * If no output was produced print a single 0.
903 	 */
904 	if (skip_empty)
905 		seq_puts(seq, "0");
906 
907 	seq_putc(seq, '\n');
908 }
909 
910 static int input_devices_seq_show(struct seq_file *seq, void *v)
911 {
912 	struct input_dev *dev = container_of(v, struct input_dev, node);
913 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
914 	struct input_handle *handle;
915 
916 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
917 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
918 
919 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
920 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
921 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
922 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
923 	seq_printf(seq, "H: Handlers=");
924 
925 	list_for_each_entry(handle, &dev->h_list, d_node)
926 		seq_printf(seq, "%s ", handle->name);
927 	seq_putc(seq, '\n');
928 
929 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
930 	if (test_bit(EV_KEY, dev->evbit))
931 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
932 	if (test_bit(EV_REL, dev->evbit))
933 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
934 	if (test_bit(EV_ABS, dev->evbit))
935 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
936 	if (test_bit(EV_MSC, dev->evbit))
937 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
938 	if (test_bit(EV_LED, dev->evbit))
939 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
940 	if (test_bit(EV_SND, dev->evbit))
941 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
942 	if (test_bit(EV_FF, dev->evbit))
943 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
944 	if (test_bit(EV_SW, dev->evbit))
945 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
946 
947 	seq_putc(seq, '\n');
948 
949 	kfree(path);
950 	return 0;
951 }
952 
953 static const struct seq_operations input_devices_seq_ops = {
954 	.start	= input_devices_seq_start,
955 	.next	= input_devices_seq_next,
956 	.stop	= input_seq_stop,
957 	.show	= input_devices_seq_show,
958 };
959 
960 static int input_proc_devices_open(struct inode *inode, struct file *file)
961 {
962 	return seq_open(file, &input_devices_seq_ops);
963 }
964 
965 static const struct file_operations input_devices_fileops = {
966 	.owner		= THIS_MODULE,
967 	.open		= input_proc_devices_open,
968 	.poll		= input_proc_devices_poll,
969 	.read		= seq_read,
970 	.llseek		= seq_lseek,
971 	.release	= seq_release,
972 };
973 
974 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
975 {
976 	union input_seq_state *state = (union input_seq_state *)&seq->private;
977 	int error;
978 
979 	/* We need to fit into seq->private pointer */
980 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
981 
982 	error = mutex_lock_interruptible(&input_mutex);
983 	if (error) {
984 		state->mutex_acquired = false;
985 		return ERR_PTR(error);
986 	}
987 
988 	state->mutex_acquired = true;
989 	state->pos = *pos;
990 
991 	return seq_list_start(&input_handler_list, *pos);
992 }
993 
994 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
995 {
996 	union input_seq_state *state = (union input_seq_state *)&seq->private;
997 
998 	state->pos = *pos + 1;
999 	return seq_list_next(v, &input_handler_list, pos);
1000 }
1001 
1002 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1003 {
1004 	struct input_handler *handler = container_of(v, struct input_handler, node);
1005 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1006 
1007 	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1008 	if (handler->filter)
1009 		seq_puts(seq, " (filter)");
1010 	if (handler->fops)
1011 		seq_printf(seq, " Minor=%d", handler->minor);
1012 	seq_putc(seq, '\n');
1013 
1014 	return 0;
1015 }
1016 
1017 static const struct seq_operations input_handlers_seq_ops = {
1018 	.start	= input_handlers_seq_start,
1019 	.next	= input_handlers_seq_next,
1020 	.stop	= input_seq_stop,
1021 	.show	= input_handlers_seq_show,
1022 };
1023 
1024 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1025 {
1026 	return seq_open(file, &input_handlers_seq_ops);
1027 }
1028 
1029 static const struct file_operations input_handlers_fileops = {
1030 	.owner		= THIS_MODULE,
1031 	.open		= input_proc_handlers_open,
1032 	.read		= seq_read,
1033 	.llseek		= seq_lseek,
1034 	.release	= seq_release,
1035 };
1036 
1037 static int __init input_proc_init(void)
1038 {
1039 	struct proc_dir_entry *entry;
1040 
1041 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1042 	if (!proc_bus_input_dir)
1043 		return -ENOMEM;
1044 
1045 	entry = proc_create("devices", 0, proc_bus_input_dir,
1046 			    &input_devices_fileops);
1047 	if (!entry)
1048 		goto fail1;
1049 
1050 	entry = proc_create("handlers", 0, proc_bus_input_dir,
1051 			    &input_handlers_fileops);
1052 	if (!entry)
1053 		goto fail2;
1054 
1055 	return 0;
1056 
1057  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1058  fail1: remove_proc_entry("bus/input", NULL);
1059 	return -ENOMEM;
1060 }
1061 
1062 static void input_proc_exit(void)
1063 {
1064 	remove_proc_entry("devices", proc_bus_input_dir);
1065 	remove_proc_entry("handlers", proc_bus_input_dir);
1066 	remove_proc_entry("bus/input", NULL);
1067 }
1068 
1069 #else /* !CONFIG_PROC_FS */
1070 static inline void input_wakeup_procfs_readers(void) { }
1071 static inline int input_proc_init(void) { return 0; }
1072 static inline void input_proc_exit(void) { }
1073 #endif
1074 
1075 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1076 static ssize_t input_dev_show_##name(struct device *dev,		\
1077 				     struct device_attribute *attr,	\
1078 				     char *buf)				\
1079 {									\
1080 	struct input_dev *input_dev = to_input_dev(dev);		\
1081 									\
1082 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1083 			 input_dev->name ? input_dev->name : "");	\
1084 }									\
1085 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1086 
1087 INPUT_DEV_STRING_ATTR_SHOW(name);
1088 INPUT_DEV_STRING_ATTR_SHOW(phys);
1089 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1090 
1091 static int input_print_modalias_bits(char *buf, int size,
1092 				     char name, unsigned long *bm,
1093 				     unsigned int min_bit, unsigned int max_bit)
1094 {
1095 	int len = 0, i;
1096 
1097 	len += snprintf(buf, max(size, 0), "%c", name);
1098 	for (i = min_bit; i < max_bit; i++)
1099 		if (bm[BIT_WORD(i)] & BIT_MASK(i))
1100 			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1101 	return len;
1102 }
1103 
1104 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1105 				int add_cr)
1106 {
1107 	int len;
1108 
1109 	len = snprintf(buf, max(size, 0),
1110 		       "input:b%04Xv%04Xp%04Xe%04X-",
1111 		       id->id.bustype, id->id.vendor,
1112 		       id->id.product, id->id.version);
1113 
1114 	len += input_print_modalias_bits(buf + len, size - len,
1115 				'e', id->evbit, 0, EV_MAX);
1116 	len += input_print_modalias_bits(buf + len, size - len,
1117 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1118 	len += input_print_modalias_bits(buf + len, size - len,
1119 				'r', id->relbit, 0, REL_MAX);
1120 	len += input_print_modalias_bits(buf + len, size - len,
1121 				'a', id->absbit, 0, ABS_MAX);
1122 	len += input_print_modalias_bits(buf + len, size - len,
1123 				'm', id->mscbit, 0, MSC_MAX);
1124 	len += input_print_modalias_bits(buf + len, size - len,
1125 				'l', id->ledbit, 0, LED_MAX);
1126 	len += input_print_modalias_bits(buf + len, size - len,
1127 				's', id->sndbit, 0, SND_MAX);
1128 	len += input_print_modalias_bits(buf + len, size - len,
1129 				'f', id->ffbit, 0, FF_MAX);
1130 	len += input_print_modalias_bits(buf + len, size - len,
1131 				'w', id->swbit, 0, SW_MAX);
1132 
1133 	if (add_cr)
1134 		len += snprintf(buf + len, max(size - len, 0), "\n");
1135 
1136 	return len;
1137 }
1138 
1139 static ssize_t input_dev_show_modalias(struct device *dev,
1140 				       struct device_attribute *attr,
1141 				       char *buf)
1142 {
1143 	struct input_dev *id = to_input_dev(dev);
1144 	ssize_t len;
1145 
1146 	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1147 
1148 	return min_t(int, len, PAGE_SIZE);
1149 }
1150 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1151 
1152 static struct attribute *input_dev_attrs[] = {
1153 	&dev_attr_name.attr,
1154 	&dev_attr_phys.attr,
1155 	&dev_attr_uniq.attr,
1156 	&dev_attr_modalias.attr,
1157 	NULL
1158 };
1159 
1160 static struct attribute_group input_dev_attr_group = {
1161 	.attrs	= input_dev_attrs,
1162 };
1163 
1164 #define INPUT_DEV_ID_ATTR(name)						\
1165 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1166 					struct device_attribute *attr,	\
1167 					char *buf)			\
1168 {									\
1169 	struct input_dev *input_dev = to_input_dev(dev);		\
1170 	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
1171 }									\
1172 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1173 
1174 INPUT_DEV_ID_ATTR(bustype);
1175 INPUT_DEV_ID_ATTR(vendor);
1176 INPUT_DEV_ID_ATTR(product);
1177 INPUT_DEV_ID_ATTR(version);
1178 
1179 static struct attribute *input_dev_id_attrs[] = {
1180 	&dev_attr_bustype.attr,
1181 	&dev_attr_vendor.attr,
1182 	&dev_attr_product.attr,
1183 	&dev_attr_version.attr,
1184 	NULL
1185 };
1186 
1187 static struct attribute_group input_dev_id_attr_group = {
1188 	.name	= "id",
1189 	.attrs	= input_dev_id_attrs,
1190 };
1191 
1192 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1193 			      int max, int add_cr)
1194 {
1195 	int i;
1196 	int len = 0;
1197 	bool skip_empty = true;
1198 
1199 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1200 		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1201 					    bitmap[i], skip_empty);
1202 		if (len) {
1203 			skip_empty = false;
1204 			if (i > 0)
1205 				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1206 		}
1207 	}
1208 
1209 	/*
1210 	 * If no output was produced print a single 0.
1211 	 */
1212 	if (len == 0)
1213 		len = snprintf(buf, buf_size, "%d", 0);
1214 
1215 	if (add_cr)
1216 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1217 
1218 	return len;
1219 }
1220 
1221 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1222 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1223 				       struct device_attribute *attr,	\
1224 				       char *buf)			\
1225 {									\
1226 	struct input_dev *input_dev = to_input_dev(dev);		\
1227 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1228 				     input_dev->bm##bit, ev##_MAX,	\
1229 				     true);				\
1230 	return min_t(int, len, PAGE_SIZE);				\
1231 }									\
1232 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1233 
1234 INPUT_DEV_CAP_ATTR(EV, ev);
1235 INPUT_DEV_CAP_ATTR(KEY, key);
1236 INPUT_DEV_CAP_ATTR(REL, rel);
1237 INPUT_DEV_CAP_ATTR(ABS, abs);
1238 INPUT_DEV_CAP_ATTR(MSC, msc);
1239 INPUT_DEV_CAP_ATTR(LED, led);
1240 INPUT_DEV_CAP_ATTR(SND, snd);
1241 INPUT_DEV_CAP_ATTR(FF, ff);
1242 INPUT_DEV_CAP_ATTR(SW, sw);
1243 
1244 static struct attribute *input_dev_caps_attrs[] = {
1245 	&dev_attr_ev.attr,
1246 	&dev_attr_key.attr,
1247 	&dev_attr_rel.attr,
1248 	&dev_attr_abs.attr,
1249 	&dev_attr_msc.attr,
1250 	&dev_attr_led.attr,
1251 	&dev_attr_snd.attr,
1252 	&dev_attr_ff.attr,
1253 	&dev_attr_sw.attr,
1254 	NULL
1255 };
1256 
1257 static struct attribute_group input_dev_caps_attr_group = {
1258 	.name	= "capabilities",
1259 	.attrs	= input_dev_caps_attrs,
1260 };
1261 
1262 static const struct attribute_group *input_dev_attr_groups[] = {
1263 	&input_dev_attr_group,
1264 	&input_dev_id_attr_group,
1265 	&input_dev_caps_attr_group,
1266 	NULL
1267 };
1268 
1269 static void input_dev_release(struct device *device)
1270 {
1271 	struct input_dev *dev = to_input_dev(device);
1272 
1273 	input_ff_destroy(dev);
1274 	kfree(dev);
1275 
1276 	module_put(THIS_MODULE);
1277 }
1278 
1279 /*
1280  * Input uevent interface - loading event handlers based on
1281  * device bitfields.
1282  */
1283 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1284 				   const char *name, unsigned long *bitmap, int max)
1285 {
1286 	int len;
1287 
1288 	if (add_uevent_var(env, "%s=", name))
1289 		return -ENOMEM;
1290 
1291 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1292 				 sizeof(env->buf) - env->buflen,
1293 				 bitmap, max, false);
1294 	if (len >= (sizeof(env->buf) - env->buflen))
1295 		return -ENOMEM;
1296 
1297 	env->buflen += len;
1298 	return 0;
1299 }
1300 
1301 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1302 					 struct input_dev *dev)
1303 {
1304 	int len;
1305 
1306 	if (add_uevent_var(env, "MODALIAS="))
1307 		return -ENOMEM;
1308 
1309 	len = input_print_modalias(&env->buf[env->buflen - 1],
1310 				   sizeof(env->buf) - env->buflen,
1311 				   dev, 0);
1312 	if (len >= (sizeof(env->buf) - env->buflen))
1313 		return -ENOMEM;
1314 
1315 	env->buflen += len;
1316 	return 0;
1317 }
1318 
1319 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1320 	do {								\
1321 		int err = add_uevent_var(env, fmt, val);		\
1322 		if (err)						\
1323 			return err;					\
1324 	} while (0)
1325 
1326 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1327 	do {								\
1328 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1329 		if (err)						\
1330 			return err;					\
1331 	} while (0)
1332 
1333 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1334 	do {								\
1335 		int err = input_add_uevent_modalias_var(env, dev);	\
1336 		if (err)						\
1337 			return err;					\
1338 	} while (0)
1339 
1340 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1341 {
1342 	struct input_dev *dev = to_input_dev(device);
1343 
1344 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1345 				dev->id.bustype, dev->id.vendor,
1346 				dev->id.product, dev->id.version);
1347 	if (dev->name)
1348 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1349 	if (dev->phys)
1350 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1351 	if (dev->uniq)
1352 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1353 
1354 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1355 	if (test_bit(EV_KEY, dev->evbit))
1356 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1357 	if (test_bit(EV_REL, dev->evbit))
1358 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1359 	if (test_bit(EV_ABS, dev->evbit))
1360 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1361 	if (test_bit(EV_MSC, dev->evbit))
1362 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1363 	if (test_bit(EV_LED, dev->evbit))
1364 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1365 	if (test_bit(EV_SND, dev->evbit))
1366 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1367 	if (test_bit(EV_FF, dev->evbit))
1368 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1369 	if (test_bit(EV_SW, dev->evbit))
1370 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1371 
1372 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1373 
1374 	return 0;
1375 }
1376 
1377 #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1378 	do {								\
1379 		int i;							\
1380 		bool active;						\
1381 									\
1382 		if (!test_bit(EV_##type, dev->evbit))			\
1383 			break;						\
1384 									\
1385 		for (i = 0; i < type##_MAX; i++) {			\
1386 			if (!test_bit(i, dev->bits##bit))		\
1387 				continue;				\
1388 									\
1389 			active = test_bit(i, dev->bits);		\
1390 			if (!active && !on)				\
1391 				continue;				\
1392 									\
1393 			dev->event(dev, EV_##type, i, on ? active : 0);	\
1394 		}							\
1395 	} while (0)
1396 
1397 #ifdef CONFIG_PM
1398 static void input_dev_reset(struct input_dev *dev, bool activate)
1399 {
1400 	if (!dev->event)
1401 		return;
1402 
1403 	INPUT_DO_TOGGLE(dev, LED, led, activate);
1404 	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1405 
1406 	if (activate && test_bit(EV_REP, dev->evbit)) {
1407 		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1408 		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1409 	}
1410 }
1411 
1412 static int input_dev_suspend(struct device *dev)
1413 {
1414 	struct input_dev *input_dev = to_input_dev(dev);
1415 
1416 	mutex_lock(&input_dev->mutex);
1417 	input_dev_reset(input_dev, false);
1418 	mutex_unlock(&input_dev->mutex);
1419 
1420 	return 0;
1421 }
1422 
1423 static int input_dev_resume(struct device *dev)
1424 {
1425 	struct input_dev *input_dev = to_input_dev(dev);
1426 
1427 	mutex_lock(&input_dev->mutex);
1428 	input_dev_reset(input_dev, true);
1429 	mutex_unlock(&input_dev->mutex);
1430 
1431 	return 0;
1432 }
1433 
1434 static const struct dev_pm_ops input_dev_pm_ops = {
1435 	.suspend	= input_dev_suspend,
1436 	.resume		= input_dev_resume,
1437 	.poweroff	= input_dev_suspend,
1438 	.restore	= input_dev_resume,
1439 };
1440 #endif /* CONFIG_PM */
1441 
1442 static struct device_type input_dev_type = {
1443 	.groups		= input_dev_attr_groups,
1444 	.release	= input_dev_release,
1445 	.uevent		= input_dev_uevent,
1446 #ifdef CONFIG_PM
1447 	.pm		= &input_dev_pm_ops,
1448 #endif
1449 };
1450 
1451 static char *input_devnode(struct device *dev, mode_t *mode)
1452 {
1453 	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1454 }
1455 
1456 struct class input_class = {
1457 	.name		= "input",
1458 	.devnode	= input_devnode,
1459 };
1460 EXPORT_SYMBOL_GPL(input_class);
1461 
1462 /**
1463  * input_allocate_device - allocate memory for new input device
1464  *
1465  * Returns prepared struct input_dev or NULL.
1466  *
1467  * NOTE: Use input_free_device() to free devices that have not been
1468  * registered; input_unregister_device() should be used for already
1469  * registered devices.
1470  */
1471 struct input_dev *input_allocate_device(void)
1472 {
1473 	struct input_dev *dev;
1474 
1475 	dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1476 	if (dev) {
1477 		dev->dev.type = &input_dev_type;
1478 		dev->dev.class = &input_class;
1479 		device_initialize(&dev->dev);
1480 		mutex_init(&dev->mutex);
1481 		spin_lock_init(&dev->event_lock);
1482 		INIT_LIST_HEAD(&dev->h_list);
1483 		INIT_LIST_HEAD(&dev->node);
1484 
1485 		__module_get(THIS_MODULE);
1486 	}
1487 
1488 	return dev;
1489 }
1490 EXPORT_SYMBOL(input_allocate_device);
1491 
1492 /**
1493  * input_free_device - free memory occupied by input_dev structure
1494  * @dev: input device to free
1495  *
1496  * This function should only be used if input_register_device()
1497  * was not called yet or if it failed. Once device was registered
1498  * use input_unregister_device() and memory will be freed once last
1499  * reference to the device is dropped.
1500  *
1501  * Device should be allocated by input_allocate_device().
1502  *
1503  * NOTE: If there are references to the input device then memory
1504  * will not be freed until last reference is dropped.
1505  */
1506 void input_free_device(struct input_dev *dev)
1507 {
1508 	if (dev)
1509 		input_put_device(dev);
1510 }
1511 EXPORT_SYMBOL(input_free_device);
1512 
1513 /**
1514  * input_set_capability - mark device as capable of a certain event
1515  * @dev: device that is capable of emitting or accepting event
1516  * @type: type of the event (EV_KEY, EV_REL, etc...)
1517  * @code: event code
1518  *
1519  * In addition to setting up corresponding bit in appropriate capability
1520  * bitmap the function also adjusts dev->evbit.
1521  */
1522 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1523 {
1524 	switch (type) {
1525 	case EV_KEY:
1526 		__set_bit(code, dev->keybit);
1527 		break;
1528 
1529 	case EV_REL:
1530 		__set_bit(code, dev->relbit);
1531 		break;
1532 
1533 	case EV_ABS:
1534 		__set_bit(code, dev->absbit);
1535 		break;
1536 
1537 	case EV_MSC:
1538 		__set_bit(code, dev->mscbit);
1539 		break;
1540 
1541 	case EV_SW:
1542 		__set_bit(code, dev->swbit);
1543 		break;
1544 
1545 	case EV_LED:
1546 		__set_bit(code, dev->ledbit);
1547 		break;
1548 
1549 	case EV_SND:
1550 		__set_bit(code, dev->sndbit);
1551 		break;
1552 
1553 	case EV_FF:
1554 		__set_bit(code, dev->ffbit);
1555 		break;
1556 
1557 	case EV_PWR:
1558 		/* do nothing */
1559 		break;
1560 
1561 	default:
1562 		printk(KERN_ERR
1563 			"input_set_capability: unknown type %u (code %u)\n",
1564 			type, code);
1565 		dump_stack();
1566 		return;
1567 	}
1568 
1569 	__set_bit(type, dev->evbit);
1570 }
1571 EXPORT_SYMBOL(input_set_capability);
1572 
1573 #define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
1574 	do {								\
1575 		if (!test_bit(EV_##type, dev->evbit))			\
1576 			memset(dev->bits##bit, 0,			\
1577 				sizeof(dev->bits##bit));		\
1578 	} while (0)
1579 
1580 static void input_cleanse_bitmasks(struct input_dev *dev)
1581 {
1582 	INPUT_CLEANSE_BITMASK(dev, KEY, key);
1583 	INPUT_CLEANSE_BITMASK(dev, REL, rel);
1584 	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
1585 	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
1586 	INPUT_CLEANSE_BITMASK(dev, LED, led);
1587 	INPUT_CLEANSE_BITMASK(dev, SND, snd);
1588 	INPUT_CLEANSE_BITMASK(dev, FF, ff);
1589 	INPUT_CLEANSE_BITMASK(dev, SW, sw);
1590 }
1591 
1592 /**
1593  * input_register_device - register device with input core
1594  * @dev: device to be registered
1595  *
1596  * This function registers device with input core. The device must be
1597  * allocated with input_allocate_device() and all it's capabilities
1598  * set up before registering.
1599  * If function fails the device must be freed with input_free_device().
1600  * Once device has been successfully registered it can be unregistered
1601  * with input_unregister_device(); input_free_device() should not be
1602  * called in this case.
1603  */
1604 int input_register_device(struct input_dev *dev)
1605 {
1606 	static atomic_t input_no = ATOMIC_INIT(0);
1607 	struct input_handler *handler;
1608 	const char *path;
1609 	int error;
1610 
1611 	/* Every input device generates EV_SYN/SYN_REPORT events. */
1612 	__set_bit(EV_SYN, dev->evbit);
1613 
1614 	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
1615 	__clear_bit(KEY_RESERVED, dev->keybit);
1616 
1617 	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
1618 	input_cleanse_bitmasks(dev);
1619 
1620 	/*
1621 	 * If delay and period are pre-set by the driver, then autorepeating
1622 	 * is handled by the driver itself and we don't do it in input.c.
1623 	 */
1624 	init_timer(&dev->timer);
1625 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1626 		dev->timer.data = (long) dev;
1627 		dev->timer.function = input_repeat_key;
1628 		dev->rep[REP_DELAY] = 250;
1629 		dev->rep[REP_PERIOD] = 33;
1630 	}
1631 
1632 	if (!dev->getkeycode)
1633 		dev->getkeycode = input_default_getkeycode;
1634 
1635 	if (!dev->setkeycode)
1636 		dev->setkeycode = input_default_setkeycode;
1637 
1638 	dev_set_name(&dev->dev, "input%ld",
1639 		     (unsigned long) atomic_inc_return(&input_no) - 1);
1640 
1641 	error = device_add(&dev->dev);
1642 	if (error)
1643 		return error;
1644 
1645 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1646 	printk(KERN_INFO "input: %s as %s\n",
1647 		dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
1648 	kfree(path);
1649 
1650 	error = mutex_lock_interruptible(&input_mutex);
1651 	if (error) {
1652 		device_del(&dev->dev);
1653 		return error;
1654 	}
1655 
1656 	list_add_tail(&dev->node, &input_dev_list);
1657 
1658 	list_for_each_entry(handler, &input_handler_list, node)
1659 		input_attach_handler(dev, handler);
1660 
1661 	input_wakeup_procfs_readers();
1662 
1663 	mutex_unlock(&input_mutex);
1664 
1665 	return 0;
1666 }
1667 EXPORT_SYMBOL(input_register_device);
1668 
1669 /**
1670  * input_unregister_device - unregister previously registered device
1671  * @dev: device to be unregistered
1672  *
1673  * This function unregisters an input device. Once device is unregistered
1674  * the caller should not try to access it as it may get freed at any moment.
1675  */
1676 void input_unregister_device(struct input_dev *dev)
1677 {
1678 	struct input_handle *handle, *next;
1679 
1680 	input_disconnect_device(dev);
1681 
1682 	mutex_lock(&input_mutex);
1683 
1684 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1685 		handle->handler->disconnect(handle);
1686 	WARN_ON(!list_empty(&dev->h_list));
1687 
1688 	del_timer_sync(&dev->timer);
1689 	list_del_init(&dev->node);
1690 
1691 	input_wakeup_procfs_readers();
1692 
1693 	mutex_unlock(&input_mutex);
1694 
1695 	device_unregister(&dev->dev);
1696 }
1697 EXPORT_SYMBOL(input_unregister_device);
1698 
1699 /**
1700  * input_register_handler - register a new input handler
1701  * @handler: handler to be registered
1702  *
1703  * This function registers a new input handler (interface) for input
1704  * devices in the system and attaches it to all input devices that
1705  * are compatible with the handler.
1706  */
1707 int input_register_handler(struct input_handler *handler)
1708 {
1709 	struct input_dev *dev;
1710 	int retval;
1711 
1712 	retval = mutex_lock_interruptible(&input_mutex);
1713 	if (retval)
1714 		return retval;
1715 
1716 	INIT_LIST_HEAD(&handler->h_list);
1717 
1718 	if (handler->fops != NULL) {
1719 		if (input_table[handler->minor >> 5]) {
1720 			retval = -EBUSY;
1721 			goto out;
1722 		}
1723 		input_table[handler->minor >> 5] = handler;
1724 	}
1725 
1726 	list_add_tail(&handler->node, &input_handler_list);
1727 
1728 	list_for_each_entry(dev, &input_dev_list, node)
1729 		input_attach_handler(dev, handler);
1730 
1731 	input_wakeup_procfs_readers();
1732 
1733  out:
1734 	mutex_unlock(&input_mutex);
1735 	return retval;
1736 }
1737 EXPORT_SYMBOL(input_register_handler);
1738 
1739 /**
1740  * input_unregister_handler - unregisters an input handler
1741  * @handler: handler to be unregistered
1742  *
1743  * This function disconnects a handler from its input devices and
1744  * removes it from lists of known handlers.
1745  */
1746 void input_unregister_handler(struct input_handler *handler)
1747 {
1748 	struct input_handle *handle, *next;
1749 
1750 	mutex_lock(&input_mutex);
1751 
1752 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1753 		handler->disconnect(handle);
1754 	WARN_ON(!list_empty(&handler->h_list));
1755 
1756 	list_del_init(&handler->node);
1757 
1758 	if (handler->fops != NULL)
1759 		input_table[handler->minor >> 5] = NULL;
1760 
1761 	input_wakeup_procfs_readers();
1762 
1763 	mutex_unlock(&input_mutex);
1764 }
1765 EXPORT_SYMBOL(input_unregister_handler);
1766 
1767 /**
1768  * input_handler_for_each_handle - handle iterator
1769  * @handler: input handler to iterate
1770  * @data: data for the callback
1771  * @fn: function to be called for each handle
1772  *
1773  * Iterate over @bus's list of devices, and call @fn for each, passing
1774  * it @data and stop when @fn returns a non-zero value. The function is
1775  * using RCU to traverse the list and therefore may be usind in atonic
1776  * contexts. The @fn callback is invoked from RCU critical section and
1777  * thus must not sleep.
1778  */
1779 int input_handler_for_each_handle(struct input_handler *handler, void *data,
1780 				  int (*fn)(struct input_handle *, void *))
1781 {
1782 	struct input_handle *handle;
1783 	int retval = 0;
1784 
1785 	rcu_read_lock();
1786 
1787 	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
1788 		retval = fn(handle, data);
1789 		if (retval)
1790 			break;
1791 	}
1792 
1793 	rcu_read_unlock();
1794 
1795 	return retval;
1796 }
1797 EXPORT_SYMBOL(input_handler_for_each_handle);
1798 
1799 /**
1800  * input_register_handle - register a new input handle
1801  * @handle: handle to register
1802  *
1803  * This function puts a new input handle onto device's
1804  * and handler's lists so that events can flow through
1805  * it once it is opened using input_open_device().
1806  *
1807  * This function is supposed to be called from handler's
1808  * connect() method.
1809  */
1810 int input_register_handle(struct input_handle *handle)
1811 {
1812 	struct input_handler *handler = handle->handler;
1813 	struct input_dev *dev = handle->dev;
1814 	int error;
1815 
1816 	/*
1817 	 * We take dev->mutex here to prevent race with
1818 	 * input_release_device().
1819 	 */
1820 	error = mutex_lock_interruptible(&dev->mutex);
1821 	if (error)
1822 		return error;
1823 
1824 	/*
1825 	 * Filters go to the head of the list, normal handlers
1826 	 * to the tail.
1827 	 */
1828 	if (handler->filter)
1829 		list_add_rcu(&handle->d_node, &dev->h_list);
1830 	else
1831 		list_add_tail_rcu(&handle->d_node, &dev->h_list);
1832 
1833 	mutex_unlock(&dev->mutex);
1834 
1835 	/*
1836 	 * Since we are supposed to be called from ->connect()
1837 	 * which is mutually exclusive with ->disconnect()
1838 	 * we can't be racing with input_unregister_handle()
1839 	 * and so separate lock is not needed here.
1840 	 */
1841 	list_add_tail_rcu(&handle->h_node, &handler->h_list);
1842 
1843 	if (handler->start)
1844 		handler->start(handle);
1845 
1846 	return 0;
1847 }
1848 EXPORT_SYMBOL(input_register_handle);
1849 
1850 /**
1851  * input_unregister_handle - unregister an input handle
1852  * @handle: handle to unregister
1853  *
1854  * This function removes input handle from device's
1855  * and handler's lists.
1856  *
1857  * This function is supposed to be called from handler's
1858  * disconnect() method.
1859  */
1860 void input_unregister_handle(struct input_handle *handle)
1861 {
1862 	struct input_dev *dev = handle->dev;
1863 
1864 	list_del_rcu(&handle->h_node);
1865 
1866 	/*
1867 	 * Take dev->mutex to prevent race with input_release_device().
1868 	 */
1869 	mutex_lock(&dev->mutex);
1870 	list_del_rcu(&handle->d_node);
1871 	mutex_unlock(&dev->mutex);
1872 
1873 	synchronize_rcu();
1874 }
1875 EXPORT_SYMBOL(input_unregister_handle);
1876 
1877 static int input_open_file(struct inode *inode, struct file *file)
1878 {
1879 	struct input_handler *handler;
1880 	const struct file_operations *old_fops, *new_fops = NULL;
1881 	int err;
1882 
1883 	err = mutex_lock_interruptible(&input_mutex);
1884 	if (err)
1885 		return err;
1886 
1887 	/* No load-on-demand here? */
1888 	handler = input_table[iminor(inode) >> 5];
1889 	if (handler)
1890 		new_fops = fops_get(handler->fops);
1891 
1892 	mutex_unlock(&input_mutex);
1893 
1894 	/*
1895 	 * That's _really_ odd. Usually NULL ->open means "nothing special",
1896 	 * not "no device". Oh, well...
1897 	 */
1898 	if (!new_fops || !new_fops->open) {
1899 		fops_put(new_fops);
1900 		err = -ENODEV;
1901 		goto out;
1902 	}
1903 
1904 	old_fops = file->f_op;
1905 	file->f_op = new_fops;
1906 
1907 	err = new_fops->open(inode, file);
1908 	if (err) {
1909 		fops_put(file->f_op);
1910 		file->f_op = fops_get(old_fops);
1911 	}
1912 	fops_put(old_fops);
1913 out:
1914 	return err;
1915 }
1916 
1917 static const struct file_operations input_fops = {
1918 	.owner = THIS_MODULE,
1919 	.open = input_open_file,
1920 };
1921 
1922 static void __init input_init_abs_bypass(void)
1923 {
1924 	const unsigned int *p;
1925 
1926 	for (p = input_abs_bypass_init_data; *p; p++)
1927 		input_abs_bypass[BIT_WORD(*p)] |= BIT_MASK(*p);
1928 }
1929 
1930 static int __init input_init(void)
1931 {
1932 	int err;
1933 
1934 	input_init_abs_bypass();
1935 
1936 	err = class_register(&input_class);
1937 	if (err) {
1938 		printk(KERN_ERR "input: unable to register input_dev class\n");
1939 		return err;
1940 	}
1941 
1942 	err = input_proc_init();
1943 	if (err)
1944 		goto fail1;
1945 
1946 	err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
1947 	if (err) {
1948 		printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
1949 		goto fail2;
1950 	}
1951 
1952 	return 0;
1953 
1954  fail2:	input_proc_exit();
1955  fail1:	class_unregister(&input_class);
1956 	return err;
1957 }
1958 
1959 static void __exit input_exit(void)
1960 {
1961 	input_proc_exit();
1962 	unregister_chrdev(INPUT_MAJOR, "input");
1963 	class_unregister(&input_class);
1964 }
1965 
1966 subsys_initcall(input_init);
1967 module_exit(input_exit);
1968