1 /* 2 * The input core 3 * 4 * Copyright (c) 1999-2002 Vojtech Pavlik 5 */ 6 7 /* 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License version 2 as published by 10 * the Free Software Foundation. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt 14 15 #include <linux/init.h> 16 #include <linux/types.h> 17 #include <linux/input/mt.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/random.h> 21 #include <linux/major.h> 22 #include <linux/proc_fs.h> 23 #include <linux/sched.h> 24 #include <linux/seq_file.h> 25 #include <linux/poll.h> 26 #include <linux/device.h> 27 #include <linux/mutex.h> 28 #include <linux/rcupdate.h> 29 #include "input-compat.h" 30 31 MODULE_AUTHOR("Vojtech Pavlik <[email protected]>"); 32 MODULE_DESCRIPTION("Input core"); 33 MODULE_LICENSE("GPL"); 34 35 #define INPUT_DEVICES 256 36 37 static LIST_HEAD(input_dev_list); 38 static LIST_HEAD(input_handler_list); 39 40 /* 41 * input_mutex protects access to both input_dev_list and input_handler_list. 42 * This also causes input_[un]register_device and input_[un]register_handler 43 * be mutually exclusive which simplifies locking in drivers implementing 44 * input handlers. 45 */ 46 static DEFINE_MUTEX(input_mutex); 47 48 static struct input_handler *input_table[8]; 49 50 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 }; 51 52 static inline int is_event_supported(unsigned int code, 53 unsigned long *bm, unsigned int max) 54 { 55 return code <= max && test_bit(code, bm); 56 } 57 58 static int input_defuzz_abs_event(int value, int old_val, int fuzz) 59 { 60 if (fuzz) { 61 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2) 62 return old_val; 63 64 if (value > old_val - fuzz && value < old_val + fuzz) 65 return (old_val * 3 + value) / 4; 66 67 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2) 68 return (old_val + value) / 2; 69 } 70 71 return value; 72 } 73 74 static void input_start_autorepeat(struct input_dev *dev, int code) 75 { 76 if (test_bit(EV_REP, dev->evbit) && 77 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] && 78 dev->timer.data) { 79 dev->repeat_key = code; 80 mod_timer(&dev->timer, 81 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY])); 82 } 83 } 84 85 static void input_stop_autorepeat(struct input_dev *dev) 86 { 87 del_timer(&dev->timer); 88 } 89 90 /* 91 * Pass event first through all filters and then, if event has not been 92 * filtered out, through all open handles. This function is called with 93 * dev->event_lock held and interrupts disabled. 94 */ 95 static unsigned int input_to_handler(struct input_handle *handle, 96 struct input_value *vals, unsigned int count) 97 { 98 struct input_handler *handler = handle->handler; 99 struct input_value *end = vals; 100 struct input_value *v; 101 102 for (v = vals; v != vals + count; v++) { 103 if (handler->filter && 104 handler->filter(handle, v->type, v->code, v->value)) 105 continue; 106 if (end != v) 107 *end = *v; 108 end++; 109 } 110 111 count = end - vals; 112 if (!count) 113 return 0; 114 115 if (handler->events) 116 handler->events(handle, vals, count); 117 else if (handler->event) 118 for (v = vals; v != end; v++) 119 handler->event(handle, v->type, v->code, v->value); 120 121 return count; 122 } 123 124 /* 125 * Pass values first through all filters and then, if event has not been 126 * filtered out, through all open handles. This function is called with 127 * dev->event_lock held and interrupts disabled. 128 */ 129 static void input_pass_values(struct input_dev *dev, 130 struct input_value *vals, unsigned int count) 131 { 132 struct input_handle *handle; 133 struct input_value *v; 134 135 if (!count) 136 return; 137 138 rcu_read_lock(); 139 140 handle = rcu_dereference(dev->grab); 141 if (handle) { 142 count = input_to_handler(handle, vals, count); 143 } else { 144 list_for_each_entry_rcu(handle, &dev->h_list, d_node) 145 if (handle->open) 146 count = input_to_handler(handle, vals, count); 147 } 148 149 rcu_read_unlock(); 150 151 add_input_randomness(vals->type, vals->code, vals->value); 152 153 /* trigger auto repeat for key events */ 154 for (v = vals; v != vals + count; v++) { 155 if (v->type == EV_KEY && v->value != 2) { 156 if (v->value) 157 input_start_autorepeat(dev, v->code); 158 else 159 input_stop_autorepeat(dev); 160 } 161 } 162 } 163 164 static void input_pass_event(struct input_dev *dev, 165 unsigned int type, unsigned int code, int value) 166 { 167 struct input_value vals[] = { { type, code, value } }; 168 169 input_pass_values(dev, vals, ARRAY_SIZE(vals)); 170 } 171 172 /* 173 * Generate software autorepeat event. Note that we take 174 * dev->event_lock here to avoid racing with input_event 175 * which may cause keys get "stuck". 176 */ 177 static void input_repeat_key(unsigned long data) 178 { 179 struct input_dev *dev = (void *) data; 180 unsigned long flags; 181 182 spin_lock_irqsave(&dev->event_lock, flags); 183 184 if (test_bit(dev->repeat_key, dev->key) && 185 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) { 186 struct input_value vals[] = { 187 { EV_KEY, dev->repeat_key, 2 }, 188 input_value_sync 189 }; 190 191 input_pass_values(dev, vals, ARRAY_SIZE(vals)); 192 193 if (dev->rep[REP_PERIOD]) 194 mod_timer(&dev->timer, jiffies + 195 msecs_to_jiffies(dev->rep[REP_PERIOD])); 196 } 197 198 spin_unlock_irqrestore(&dev->event_lock, flags); 199 } 200 201 #define INPUT_IGNORE_EVENT 0 202 #define INPUT_PASS_TO_HANDLERS 1 203 #define INPUT_PASS_TO_DEVICE 2 204 #define INPUT_SLOT 4 205 #define INPUT_FLUSH 8 206 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE) 207 208 static int input_handle_abs_event(struct input_dev *dev, 209 unsigned int code, int *pval) 210 { 211 struct input_mt *mt = dev->mt; 212 bool is_mt_event; 213 int *pold; 214 215 if (code == ABS_MT_SLOT) { 216 /* 217 * "Stage" the event; we'll flush it later, when we 218 * get actual touch data. 219 */ 220 if (mt && *pval >= 0 && *pval < mt->num_slots) 221 mt->slot = *pval; 222 223 return INPUT_IGNORE_EVENT; 224 } 225 226 is_mt_event = input_is_mt_value(code); 227 228 if (!is_mt_event) { 229 pold = &dev->absinfo[code].value; 230 } else if (mt) { 231 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST]; 232 } else { 233 /* 234 * Bypass filtering for multi-touch events when 235 * not employing slots. 236 */ 237 pold = NULL; 238 } 239 240 if (pold) { 241 *pval = input_defuzz_abs_event(*pval, *pold, 242 dev->absinfo[code].fuzz); 243 if (*pold == *pval) 244 return INPUT_IGNORE_EVENT; 245 246 *pold = *pval; 247 } 248 249 /* Flush pending "slot" event */ 250 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) { 251 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot); 252 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT; 253 } 254 255 return INPUT_PASS_TO_HANDLERS; 256 } 257 258 static int input_get_disposition(struct input_dev *dev, 259 unsigned int type, unsigned int code, int value) 260 { 261 int disposition = INPUT_IGNORE_EVENT; 262 263 switch (type) { 264 265 case EV_SYN: 266 switch (code) { 267 case SYN_CONFIG: 268 disposition = INPUT_PASS_TO_ALL; 269 break; 270 271 case SYN_REPORT: 272 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH; 273 break; 274 case SYN_MT_REPORT: 275 disposition = INPUT_PASS_TO_HANDLERS; 276 break; 277 } 278 break; 279 280 case EV_KEY: 281 if (is_event_supported(code, dev->keybit, KEY_MAX)) { 282 283 /* auto-repeat bypasses state updates */ 284 if (value == 2) { 285 disposition = INPUT_PASS_TO_HANDLERS; 286 break; 287 } 288 289 if (!!test_bit(code, dev->key) != !!value) { 290 291 __change_bit(code, dev->key); 292 disposition = INPUT_PASS_TO_HANDLERS; 293 } 294 } 295 break; 296 297 case EV_SW: 298 if (is_event_supported(code, dev->swbit, SW_MAX) && 299 !!test_bit(code, dev->sw) != !!value) { 300 301 __change_bit(code, dev->sw); 302 disposition = INPUT_PASS_TO_HANDLERS; 303 } 304 break; 305 306 case EV_ABS: 307 if (is_event_supported(code, dev->absbit, ABS_MAX)) 308 disposition = input_handle_abs_event(dev, code, &value); 309 310 break; 311 312 case EV_REL: 313 if (is_event_supported(code, dev->relbit, REL_MAX) && value) 314 disposition = INPUT_PASS_TO_HANDLERS; 315 316 break; 317 318 case EV_MSC: 319 if (is_event_supported(code, dev->mscbit, MSC_MAX)) 320 disposition = INPUT_PASS_TO_ALL; 321 322 break; 323 324 case EV_LED: 325 if (is_event_supported(code, dev->ledbit, LED_MAX) && 326 !!test_bit(code, dev->led) != !!value) { 327 328 __change_bit(code, dev->led); 329 disposition = INPUT_PASS_TO_ALL; 330 } 331 break; 332 333 case EV_SND: 334 if (is_event_supported(code, dev->sndbit, SND_MAX)) { 335 336 if (!!test_bit(code, dev->snd) != !!value) 337 __change_bit(code, dev->snd); 338 disposition = INPUT_PASS_TO_ALL; 339 } 340 break; 341 342 case EV_REP: 343 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) { 344 dev->rep[code] = value; 345 disposition = INPUT_PASS_TO_ALL; 346 } 347 break; 348 349 case EV_FF: 350 if (value >= 0) 351 disposition = INPUT_PASS_TO_ALL; 352 break; 353 354 case EV_PWR: 355 disposition = INPUT_PASS_TO_ALL; 356 break; 357 } 358 359 return disposition; 360 } 361 362 static void input_handle_event(struct input_dev *dev, 363 unsigned int type, unsigned int code, int value) 364 { 365 int disposition; 366 367 disposition = input_get_disposition(dev, type, code, value); 368 369 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event) 370 dev->event(dev, type, code, value); 371 372 if (!dev->vals) 373 return; 374 375 if (disposition & INPUT_PASS_TO_HANDLERS) { 376 struct input_value *v; 377 378 if (disposition & INPUT_SLOT) { 379 v = &dev->vals[dev->num_vals++]; 380 v->type = EV_ABS; 381 v->code = ABS_MT_SLOT; 382 v->value = dev->mt->slot; 383 } 384 385 v = &dev->vals[dev->num_vals++]; 386 v->type = type; 387 v->code = code; 388 v->value = value; 389 } 390 391 if (disposition & INPUT_FLUSH) { 392 if (dev->num_vals >= 2) 393 input_pass_values(dev, dev->vals, dev->num_vals); 394 dev->num_vals = 0; 395 } else if (dev->num_vals >= dev->max_vals - 2) { 396 dev->vals[dev->num_vals++] = input_value_sync; 397 input_pass_values(dev, dev->vals, dev->num_vals); 398 dev->num_vals = 0; 399 } 400 401 } 402 403 /** 404 * input_event() - report new input event 405 * @dev: device that generated the event 406 * @type: type of the event 407 * @code: event code 408 * @value: value of the event 409 * 410 * This function should be used by drivers implementing various input 411 * devices to report input events. See also input_inject_event(). 412 * 413 * NOTE: input_event() may be safely used right after input device was 414 * allocated with input_allocate_device(), even before it is registered 415 * with input_register_device(), but the event will not reach any of the 416 * input handlers. Such early invocation of input_event() may be used 417 * to 'seed' initial state of a switch or initial position of absolute 418 * axis, etc. 419 */ 420 void input_event(struct input_dev *dev, 421 unsigned int type, unsigned int code, int value) 422 { 423 unsigned long flags; 424 425 if (is_event_supported(type, dev->evbit, EV_MAX)) { 426 427 spin_lock_irqsave(&dev->event_lock, flags); 428 input_handle_event(dev, type, code, value); 429 spin_unlock_irqrestore(&dev->event_lock, flags); 430 } 431 } 432 EXPORT_SYMBOL(input_event); 433 434 /** 435 * input_inject_event() - send input event from input handler 436 * @handle: input handle to send event through 437 * @type: type of the event 438 * @code: event code 439 * @value: value of the event 440 * 441 * Similar to input_event() but will ignore event if device is 442 * "grabbed" and handle injecting event is not the one that owns 443 * the device. 444 */ 445 void input_inject_event(struct input_handle *handle, 446 unsigned int type, unsigned int code, int value) 447 { 448 struct input_dev *dev = handle->dev; 449 struct input_handle *grab; 450 unsigned long flags; 451 452 if (is_event_supported(type, dev->evbit, EV_MAX)) { 453 spin_lock_irqsave(&dev->event_lock, flags); 454 455 rcu_read_lock(); 456 grab = rcu_dereference(dev->grab); 457 if (!grab || grab == handle) 458 input_handle_event(dev, type, code, value); 459 rcu_read_unlock(); 460 461 spin_unlock_irqrestore(&dev->event_lock, flags); 462 } 463 } 464 EXPORT_SYMBOL(input_inject_event); 465 466 /** 467 * input_alloc_absinfo - allocates array of input_absinfo structs 468 * @dev: the input device emitting absolute events 469 * 470 * If the absinfo struct the caller asked for is already allocated, this 471 * functions will not do anything. 472 */ 473 void input_alloc_absinfo(struct input_dev *dev) 474 { 475 if (!dev->absinfo) 476 dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo), 477 GFP_KERNEL); 478 479 WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__); 480 } 481 EXPORT_SYMBOL(input_alloc_absinfo); 482 483 void input_set_abs_params(struct input_dev *dev, unsigned int axis, 484 int min, int max, int fuzz, int flat) 485 { 486 struct input_absinfo *absinfo; 487 488 input_alloc_absinfo(dev); 489 if (!dev->absinfo) 490 return; 491 492 absinfo = &dev->absinfo[axis]; 493 absinfo->minimum = min; 494 absinfo->maximum = max; 495 absinfo->fuzz = fuzz; 496 absinfo->flat = flat; 497 498 dev->absbit[BIT_WORD(axis)] |= BIT_MASK(axis); 499 } 500 EXPORT_SYMBOL(input_set_abs_params); 501 502 503 /** 504 * input_grab_device - grabs device for exclusive use 505 * @handle: input handle that wants to own the device 506 * 507 * When a device is grabbed by an input handle all events generated by 508 * the device are delivered only to this handle. Also events injected 509 * by other input handles are ignored while device is grabbed. 510 */ 511 int input_grab_device(struct input_handle *handle) 512 { 513 struct input_dev *dev = handle->dev; 514 int retval; 515 516 retval = mutex_lock_interruptible(&dev->mutex); 517 if (retval) 518 return retval; 519 520 if (dev->grab) { 521 retval = -EBUSY; 522 goto out; 523 } 524 525 rcu_assign_pointer(dev->grab, handle); 526 527 out: 528 mutex_unlock(&dev->mutex); 529 return retval; 530 } 531 EXPORT_SYMBOL(input_grab_device); 532 533 static void __input_release_device(struct input_handle *handle) 534 { 535 struct input_dev *dev = handle->dev; 536 537 if (dev->grab == handle) { 538 rcu_assign_pointer(dev->grab, NULL); 539 /* Make sure input_pass_event() notices that grab is gone */ 540 synchronize_rcu(); 541 542 list_for_each_entry(handle, &dev->h_list, d_node) 543 if (handle->open && handle->handler->start) 544 handle->handler->start(handle); 545 } 546 } 547 548 /** 549 * input_release_device - release previously grabbed device 550 * @handle: input handle that owns the device 551 * 552 * Releases previously grabbed device so that other input handles can 553 * start receiving input events. Upon release all handlers attached 554 * to the device have their start() method called so they have a change 555 * to synchronize device state with the rest of the system. 556 */ 557 void input_release_device(struct input_handle *handle) 558 { 559 struct input_dev *dev = handle->dev; 560 561 mutex_lock(&dev->mutex); 562 __input_release_device(handle); 563 mutex_unlock(&dev->mutex); 564 } 565 EXPORT_SYMBOL(input_release_device); 566 567 /** 568 * input_open_device - open input device 569 * @handle: handle through which device is being accessed 570 * 571 * This function should be called by input handlers when they 572 * want to start receive events from given input device. 573 */ 574 int input_open_device(struct input_handle *handle) 575 { 576 struct input_dev *dev = handle->dev; 577 int retval; 578 579 retval = mutex_lock_interruptible(&dev->mutex); 580 if (retval) 581 return retval; 582 583 if (dev->going_away) { 584 retval = -ENODEV; 585 goto out; 586 } 587 588 handle->open++; 589 590 if (!dev->users++ && dev->open) 591 retval = dev->open(dev); 592 593 if (retval) { 594 dev->users--; 595 if (!--handle->open) { 596 /* 597 * Make sure we are not delivering any more events 598 * through this handle 599 */ 600 synchronize_rcu(); 601 } 602 } 603 604 out: 605 mutex_unlock(&dev->mutex); 606 return retval; 607 } 608 EXPORT_SYMBOL(input_open_device); 609 610 int input_flush_device(struct input_handle *handle, struct file *file) 611 { 612 struct input_dev *dev = handle->dev; 613 int retval; 614 615 retval = mutex_lock_interruptible(&dev->mutex); 616 if (retval) 617 return retval; 618 619 if (dev->flush) 620 retval = dev->flush(dev, file); 621 622 mutex_unlock(&dev->mutex); 623 return retval; 624 } 625 EXPORT_SYMBOL(input_flush_device); 626 627 /** 628 * input_close_device - close input device 629 * @handle: handle through which device is being accessed 630 * 631 * This function should be called by input handlers when they 632 * want to stop receive events from given input device. 633 */ 634 void input_close_device(struct input_handle *handle) 635 { 636 struct input_dev *dev = handle->dev; 637 638 mutex_lock(&dev->mutex); 639 640 __input_release_device(handle); 641 642 if (!--dev->users && dev->close) 643 dev->close(dev); 644 645 if (!--handle->open) { 646 /* 647 * synchronize_rcu() makes sure that input_pass_event() 648 * completed and that no more input events are delivered 649 * through this handle 650 */ 651 synchronize_rcu(); 652 } 653 654 mutex_unlock(&dev->mutex); 655 } 656 EXPORT_SYMBOL(input_close_device); 657 658 /* 659 * Simulate keyup events for all keys that are marked as pressed. 660 * The function must be called with dev->event_lock held. 661 */ 662 static void input_dev_release_keys(struct input_dev *dev) 663 { 664 int code; 665 666 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) { 667 for (code = 0; code <= KEY_MAX; code++) { 668 if (is_event_supported(code, dev->keybit, KEY_MAX) && 669 __test_and_clear_bit(code, dev->key)) { 670 input_pass_event(dev, EV_KEY, code, 0); 671 } 672 } 673 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 674 } 675 } 676 677 /* 678 * Prepare device for unregistering 679 */ 680 static void input_disconnect_device(struct input_dev *dev) 681 { 682 struct input_handle *handle; 683 684 /* 685 * Mark device as going away. Note that we take dev->mutex here 686 * not to protect access to dev->going_away but rather to ensure 687 * that there are no threads in the middle of input_open_device() 688 */ 689 mutex_lock(&dev->mutex); 690 dev->going_away = true; 691 mutex_unlock(&dev->mutex); 692 693 spin_lock_irq(&dev->event_lock); 694 695 /* 696 * Simulate keyup events for all pressed keys so that handlers 697 * are not left with "stuck" keys. The driver may continue 698 * generate events even after we done here but they will not 699 * reach any handlers. 700 */ 701 input_dev_release_keys(dev); 702 703 list_for_each_entry(handle, &dev->h_list, d_node) 704 handle->open = 0; 705 706 spin_unlock_irq(&dev->event_lock); 707 } 708 709 /** 710 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry 711 * @ke: keymap entry containing scancode to be converted. 712 * @scancode: pointer to the location where converted scancode should 713 * be stored. 714 * 715 * This function is used to convert scancode stored in &struct keymap_entry 716 * into scalar form understood by legacy keymap handling methods. These 717 * methods expect scancodes to be represented as 'unsigned int'. 718 */ 719 int input_scancode_to_scalar(const struct input_keymap_entry *ke, 720 unsigned int *scancode) 721 { 722 switch (ke->len) { 723 case 1: 724 *scancode = *((u8 *)ke->scancode); 725 break; 726 727 case 2: 728 *scancode = *((u16 *)ke->scancode); 729 break; 730 731 case 4: 732 *scancode = *((u32 *)ke->scancode); 733 break; 734 735 default: 736 return -EINVAL; 737 } 738 739 return 0; 740 } 741 EXPORT_SYMBOL(input_scancode_to_scalar); 742 743 /* 744 * Those routines handle the default case where no [gs]etkeycode() is 745 * defined. In this case, an array indexed by the scancode is used. 746 */ 747 748 static unsigned int input_fetch_keycode(struct input_dev *dev, 749 unsigned int index) 750 { 751 switch (dev->keycodesize) { 752 case 1: 753 return ((u8 *)dev->keycode)[index]; 754 755 case 2: 756 return ((u16 *)dev->keycode)[index]; 757 758 default: 759 return ((u32 *)dev->keycode)[index]; 760 } 761 } 762 763 static int input_default_getkeycode(struct input_dev *dev, 764 struct input_keymap_entry *ke) 765 { 766 unsigned int index; 767 int error; 768 769 if (!dev->keycodesize) 770 return -EINVAL; 771 772 if (ke->flags & INPUT_KEYMAP_BY_INDEX) 773 index = ke->index; 774 else { 775 error = input_scancode_to_scalar(ke, &index); 776 if (error) 777 return error; 778 } 779 780 if (index >= dev->keycodemax) 781 return -EINVAL; 782 783 ke->keycode = input_fetch_keycode(dev, index); 784 ke->index = index; 785 ke->len = sizeof(index); 786 memcpy(ke->scancode, &index, sizeof(index)); 787 788 return 0; 789 } 790 791 static int input_default_setkeycode(struct input_dev *dev, 792 const struct input_keymap_entry *ke, 793 unsigned int *old_keycode) 794 { 795 unsigned int index; 796 int error; 797 int i; 798 799 if (!dev->keycodesize) 800 return -EINVAL; 801 802 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 803 index = ke->index; 804 } else { 805 error = input_scancode_to_scalar(ke, &index); 806 if (error) 807 return error; 808 } 809 810 if (index >= dev->keycodemax) 811 return -EINVAL; 812 813 if (dev->keycodesize < sizeof(ke->keycode) && 814 (ke->keycode >> (dev->keycodesize * 8))) 815 return -EINVAL; 816 817 switch (dev->keycodesize) { 818 case 1: { 819 u8 *k = (u8 *)dev->keycode; 820 *old_keycode = k[index]; 821 k[index] = ke->keycode; 822 break; 823 } 824 case 2: { 825 u16 *k = (u16 *)dev->keycode; 826 *old_keycode = k[index]; 827 k[index] = ke->keycode; 828 break; 829 } 830 default: { 831 u32 *k = (u32 *)dev->keycode; 832 *old_keycode = k[index]; 833 k[index] = ke->keycode; 834 break; 835 } 836 } 837 838 __clear_bit(*old_keycode, dev->keybit); 839 __set_bit(ke->keycode, dev->keybit); 840 841 for (i = 0; i < dev->keycodemax; i++) { 842 if (input_fetch_keycode(dev, i) == *old_keycode) { 843 __set_bit(*old_keycode, dev->keybit); 844 break; /* Setting the bit twice is useless, so break */ 845 } 846 } 847 848 return 0; 849 } 850 851 /** 852 * input_get_keycode - retrieve keycode currently mapped to a given scancode 853 * @dev: input device which keymap is being queried 854 * @ke: keymap entry 855 * 856 * This function should be called by anyone interested in retrieving current 857 * keymap. Presently evdev handlers use it. 858 */ 859 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke) 860 { 861 unsigned long flags; 862 int retval; 863 864 spin_lock_irqsave(&dev->event_lock, flags); 865 retval = dev->getkeycode(dev, ke); 866 spin_unlock_irqrestore(&dev->event_lock, flags); 867 868 return retval; 869 } 870 EXPORT_SYMBOL(input_get_keycode); 871 872 /** 873 * input_set_keycode - attribute a keycode to a given scancode 874 * @dev: input device which keymap is being updated 875 * @ke: new keymap entry 876 * 877 * This function should be called by anyone needing to update current 878 * keymap. Presently keyboard and evdev handlers use it. 879 */ 880 int input_set_keycode(struct input_dev *dev, 881 const struct input_keymap_entry *ke) 882 { 883 unsigned long flags; 884 unsigned int old_keycode; 885 int retval; 886 887 if (ke->keycode > KEY_MAX) 888 return -EINVAL; 889 890 spin_lock_irqsave(&dev->event_lock, flags); 891 892 retval = dev->setkeycode(dev, ke, &old_keycode); 893 if (retval) 894 goto out; 895 896 /* Make sure KEY_RESERVED did not get enabled. */ 897 __clear_bit(KEY_RESERVED, dev->keybit); 898 899 /* 900 * Simulate keyup event if keycode is not present 901 * in the keymap anymore 902 */ 903 if (test_bit(EV_KEY, dev->evbit) && 904 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) && 905 __test_and_clear_bit(old_keycode, dev->key)) { 906 struct input_value vals[] = { 907 { EV_KEY, old_keycode, 0 }, 908 input_value_sync 909 }; 910 911 input_pass_values(dev, vals, ARRAY_SIZE(vals)); 912 } 913 914 out: 915 spin_unlock_irqrestore(&dev->event_lock, flags); 916 917 return retval; 918 } 919 EXPORT_SYMBOL(input_set_keycode); 920 921 static const struct input_device_id *input_match_device(struct input_handler *handler, 922 struct input_dev *dev) 923 { 924 const struct input_device_id *id; 925 926 for (id = handler->id_table; id->flags || id->driver_info; id++) { 927 928 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS) 929 if (id->bustype != dev->id.bustype) 930 continue; 931 932 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR) 933 if (id->vendor != dev->id.vendor) 934 continue; 935 936 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT) 937 if (id->product != dev->id.product) 938 continue; 939 940 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION) 941 if (id->version != dev->id.version) 942 continue; 943 944 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX)) 945 continue; 946 947 if (!bitmap_subset(id->keybit, dev->keybit, KEY_MAX)) 948 continue; 949 950 if (!bitmap_subset(id->relbit, dev->relbit, REL_MAX)) 951 continue; 952 953 if (!bitmap_subset(id->absbit, dev->absbit, ABS_MAX)) 954 continue; 955 956 if (!bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX)) 957 continue; 958 959 if (!bitmap_subset(id->ledbit, dev->ledbit, LED_MAX)) 960 continue; 961 962 if (!bitmap_subset(id->sndbit, dev->sndbit, SND_MAX)) 963 continue; 964 965 if (!bitmap_subset(id->ffbit, dev->ffbit, FF_MAX)) 966 continue; 967 968 if (!bitmap_subset(id->swbit, dev->swbit, SW_MAX)) 969 continue; 970 971 if (!handler->match || handler->match(handler, dev)) 972 return id; 973 } 974 975 return NULL; 976 } 977 978 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler) 979 { 980 const struct input_device_id *id; 981 int error; 982 983 id = input_match_device(handler, dev); 984 if (!id) 985 return -ENODEV; 986 987 error = handler->connect(handler, dev, id); 988 if (error && error != -ENODEV) 989 pr_err("failed to attach handler %s to device %s, error: %d\n", 990 handler->name, kobject_name(&dev->dev.kobj), error); 991 992 return error; 993 } 994 995 #ifdef CONFIG_COMPAT 996 997 static int input_bits_to_string(char *buf, int buf_size, 998 unsigned long bits, bool skip_empty) 999 { 1000 int len = 0; 1001 1002 if (INPUT_COMPAT_TEST) { 1003 u32 dword = bits >> 32; 1004 if (dword || !skip_empty) 1005 len += snprintf(buf, buf_size, "%x ", dword); 1006 1007 dword = bits & 0xffffffffUL; 1008 if (dword || !skip_empty || len) 1009 len += snprintf(buf + len, max(buf_size - len, 0), 1010 "%x", dword); 1011 } else { 1012 if (bits || !skip_empty) 1013 len += snprintf(buf, buf_size, "%lx", bits); 1014 } 1015 1016 return len; 1017 } 1018 1019 #else /* !CONFIG_COMPAT */ 1020 1021 static int input_bits_to_string(char *buf, int buf_size, 1022 unsigned long bits, bool skip_empty) 1023 { 1024 return bits || !skip_empty ? 1025 snprintf(buf, buf_size, "%lx", bits) : 0; 1026 } 1027 1028 #endif 1029 1030 #ifdef CONFIG_PROC_FS 1031 1032 static struct proc_dir_entry *proc_bus_input_dir; 1033 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait); 1034 static int input_devices_state; 1035 1036 static inline void input_wakeup_procfs_readers(void) 1037 { 1038 input_devices_state++; 1039 wake_up(&input_devices_poll_wait); 1040 } 1041 1042 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait) 1043 { 1044 poll_wait(file, &input_devices_poll_wait, wait); 1045 if (file->f_version != input_devices_state) { 1046 file->f_version = input_devices_state; 1047 return POLLIN | POLLRDNORM; 1048 } 1049 1050 return 0; 1051 } 1052 1053 union input_seq_state { 1054 struct { 1055 unsigned short pos; 1056 bool mutex_acquired; 1057 }; 1058 void *p; 1059 }; 1060 1061 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos) 1062 { 1063 union input_seq_state *state = (union input_seq_state *)&seq->private; 1064 int error; 1065 1066 /* We need to fit into seq->private pointer */ 1067 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 1068 1069 error = mutex_lock_interruptible(&input_mutex); 1070 if (error) { 1071 state->mutex_acquired = false; 1072 return ERR_PTR(error); 1073 } 1074 1075 state->mutex_acquired = true; 1076 1077 return seq_list_start(&input_dev_list, *pos); 1078 } 1079 1080 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1081 { 1082 return seq_list_next(v, &input_dev_list, pos); 1083 } 1084 1085 static void input_seq_stop(struct seq_file *seq, void *v) 1086 { 1087 union input_seq_state *state = (union input_seq_state *)&seq->private; 1088 1089 if (state->mutex_acquired) 1090 mutex_unlock(&input_mutex); 1091 } 1092 1093 static void input_seq_print_bitmap(struct seq_file *seq, const char *name, 1094 unsigned long *bitmap, int max) 1095 { 1096 int i; 1097 bool skip_empty = true; 1098 char buf[18]; 1099 1100 seq_printf(seq, "B: %s=", name); 1101 1102 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1103 if (input_bits_to_string(buf, sizeof(buf), 1104 bitmap[i], skip_empty)) { 1105 skip_empty = false; 1106 seq_printf(seq, "%s%s", buf, i > 0 ? " " : ""); 1107 } 1108 } 1109 1110 /* 1111 * If no output was produced print a single 0. 1112 */ 1113 if (skip_empty) 1114 seq_puts(seq, "0"); 1115 1116 seq_putc(seq, '\n'); 1117 } 1118 1119 static int input_devices_seq_show(struct seq_file *seq, void *v) 1120 { 1121 struct input_dev *dev = container_of(v, struct input_dev, node); 1122 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1123 struct input_handle *handle; 1124 1125 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n", 1126 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version); 1127 1128 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : ""); 1129 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : ""); 1130 seq_printf(seq, "S: Sysfs=%s\n", path ? path : ""); 1131 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : ""); 1132 seq_printf(seq, "H: Handlers="); 1133 1134 list_for_each_entry(handle, &dev->h_list, d_node) 1135 seq_printf(seq, "%s ", handle->name); 1136 seq_putc(seq, '\n'); 1137 1138 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX); 1139 1140 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX); 1141 if (test_bit(EV_KEY, dev->evbit)) 1142 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX); 1143 if (test_bit(EV_REL, dev->evbit)) 1144 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX); 1145 if (test_bit(EV_ABS, dev->evbit)) 1146 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX); 1147 if (test_bit(EV_MSC, dev->evbit)) 1148 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX); 1149 if (test_bit(EV_LED, dev->evbit)) 1150 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX); 1151 if (test_bit(EV_SND, dev->evbit)) 1152 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX); 1153 if (test_bit(EV_FF, dev->evbit)) 1154 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX); 1155 if (test_bit(EV_SW, dev->evbit)) 1156 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX); 1157 1158 seq_putc(seq, '\n'); 1159 1160 kfree(path); 1161 return 0; 1162 } 1163 1164 static const struct seq_operations input_devices_seq_ops = { 1165 .start = input_devices_seq_start, 1166 .next = input_devices_seq_next, 1167 .stop = input_seq_stop, 1168 .show = input_devices_seq_show, 1169 }; 1170 1171 static int input_proc_devices_open(struct inode *inode, struct file *file) 1172 { 1173 return seq_open(file, &input_devices_seq_ops); 1174 } 1175 1176 static const struct file_operations input_devices_fileops = { 1177 .owner = THIS_MODULE, 1178 .open = input_proc_devices_open, 1179 .poll = input_proc_devices_poll, 1180 .read = seq_read, 1181 .llseek = seq_lseek, 1182 .release = seq_release, 1183 }; 1184 1185 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos) 1186 { 1187 union input_seq_state *state = (union input_seq_state *)&seq->private; 1188 int error; 1189 1190 /* We need to fit into seq->private pointer */ 1191 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 1192 1193 error = mutex_lock_interruptible(&input_mutex); 1194 if (error) { 1195 state->mutex_acquired = false; 1196 return ERR_PTR(error); 1197 } 1198 1199 state->mutex_acquired = true; 1200 state->pos = *pos; 1201 1202 return seq_list_start(&input_handler_list, *pos); 1203 } 1204 1205 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1206 { 1207 union input_seq_state *state = (union input_seq_state *)&seq->private; 1208 1209 state->pos = *pos + 1; 1210 return seq_list_next(v, &input_handler_list, pos); 1211 } 1212 1213 static int input_handlers_seq_show(struct seq_file *seq, void *v) 1214 { 1215 struct input_handler *handler = container_of(v, struct input_handler, node); 1216 union input_seq_state *state = (union input_seq_state *)&seq->private; 1217 1218 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name); 1219 if (handler->filter) 1220 seq_puts(seq, " (filter)"); 1221 if (handler->fops) 1222 seq_printf(seq, " Minor=%d", handler->minor); 1223 seq_putc(seq, '\n'); 1224 1225 return 0; 1226 } 1227 1228 static const struct seq_operations input_handlers_seq_ops = { 1229 .start = input_handlers_seq_start, 1230 .next = input_handlers_seq_next, 1231 .stop = input_seq_stop, 1232 .show = input_handlers_seq_show, 1233 }; 1234 1235 static int input_proc_handlers_open(struct inode *inode, struct file *file) 1236 { 1237 return seq_open(file, &input_handlers_seq_ops); 1238 } 1239 1240 static const struct file_operations input_handlers_fileops = { 1241 .owner = THIS_MODULE, 1242 .open = input_proc_handlers_open, 1243 .read = seq_read, 1244 .llseek = seq_lseek, 1245 .release = seq_release, 1246 }; 1247 1248 static int __init input_proc_init(void) 1249 { 1250 struct proc_dir_entry *entry; 1251 1252 proc_bus_input_dir = proc_mkdir("bus/input", NULL); 1253 if (!proc_bus_input_dir) 1254 return -ENOMEM; 1255 1256 entry = proc_create("devices", 0, proc_bus_input_dir, 1257 &input_devices_fileops); 1258 if (!entry) 1259 goto fail1; 1260 1261 entry = proc_create("handlers", 0, proc_bus_input_dir, 1262 &input_handlers_fileops); 1263 if (!entry) 1264 goto fail2; 1265 1266 return 0; 1267 1268 fail2: remove_proc_entry("devices", proc_bus_input_dir); 1269 fail1: remove_proc_entry("bus/input", NULL); 1270 return -ENOMEM; 1271 } 1272 1273 static void input_proc_exit(void) 1274 { 1275 remove_proc_entry("devices", proc_bus_input_dir); 1276 remove_proc_entry("handlers", proc_bus_input_dir); 1277 remove_proc_entry("bus/input", NULL); 1278 } 1279 1280 #else /* !CONFIG_PROC_FS */ 1281 static inline void input_wakeup_procfs_readers(void) { } 1282 static inline int input_proc_init(void) { return 0; } 1283 static inline void input_proc_exit(void) { } 1284 #endif 1285 1286 #define INPUT_DEV_STRING_ATTR_SHOW(name) \ 1287 static ssize_t input_dev_show_##name(struct device *dev, \ 1288 struct device_attribute *attr, \ 1289 char *buf) \ 1290 { \ 1291 struct input_dev *input_dev = to_input_dev(dev); \ 1292 \ 1293 return scnprintf(buf, PAGE_SIZE, "%s\n", \ 1294 input_dev->name ? input_dev->name : ""); \ 1295 } \ 1296 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL) 1297 1298 INPUT_DEV_STRING_ATTR_SHOW(name); 1299 INPUT_DEV_STRING_ATTR_SHOW(phys); 1300 INPUT_DEV_STRING_ATTR_SHOW(uniq); 1301 1302 static int input_print_modalias_bits(char *buf, int size, 1303 char name, unsigned long *bm, 1304 unsigned int min_bit, unsigned int max_bit) 1305 { 1306 int len = 0, i; 1307 1308 len += snprintf(buf, max(size, 0), "%c", name); 1309 for (i = min_bit; i < max_bit; i++) 1310 if (bm[BIT_WORD(i)] & BIT_MASK(i)) 1311 len += snprintf(buf + len, max(size - len, 0), "%X,", i); 1312 return len; 1313 } 1314 1315 static int input_print_modalias(char *buf, int size, struct input_dev *id, 1316 int add_cr) 1317 { 1318 int len; 1319 1320 len = snprintf(buf, max(size, 0), 1321 "input:b%04Xv%04Xp%04Xe%04X-", 1322 id->id.bustype, id->id.vendor, 1323 id->id.product, id->id.version); 1324 1325 len += input_print_modalias_bits(buf + len, size - len, 1326 'e', id->evbit, 0, EV_MAX); 1327 len += input_print_modalias_bits(buf + len, size - len, 1328 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX); 1329 len += input_print_modalias_bits(buf + len, size - len, 1330 'r', id->relbit, 0, REL_MAX); 1331 len += input_print_modalias_bits(buf + len, size - len, 1332 'a', id->absbit, 0, ABS_MAX); 1333 len += input_print_modalias_bits(buf + len, size - len, 1334 'm', id->mscbit, 0, MSC_MAX); 1335 len += input_print_modalias_bits(buf + len, size - len, 1336 'l', id->ledbit, 0, LED_MAX); 1337 len += input_print_modalias_bits(buf + len, size - len, 1338 's', id->sndbit, 0, SND_MAX); 1339 len += input_print_modalias_bits(buf + len, size - len, 1340 'f', id->ffbit, 0, FF_MAX); 1341 len += input_print_modalias_bits(buf + len, size - len, 1342 'w', id->swbit, 0, SW_MAX); 1343 1344 if (add_cr) 1345 len += snprintf(buf + len, max(size - len, 0), "\n"); 1346 1347 return len; 1348 } 1349 1350 static ssize_t input_dev_show_modalias(struct device *dev, 1351 struct device_attribute *attr, 1352 char *buf) 1353 { 1354 struct input_dev *id = to_input_dev(dev); 1355 ssize_t len; 1356 1357 len = input_print_modalias(buf, PAGE_SIZE, id, 1); 1358 1359 return min_t(int, len, PAGE_SIZE); 1360 } 1361 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL); 1362 1363 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, 1364 int max, int add_cr); 1365 1366 static ssize_t input_dev_show_properties(struct device *dev, 1367 struct device_attribute *attr, 1368 char *buf) 1369 { 1370 struct input_dev *input_dev = to_input_dev(dev); 1371 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit, 1372 INPUT_PROP_MAX, true); 1373 return min_t(int, len, PAGE_SIZE); 1374 } 1375 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL); 1376 1377 static struct attribute *input_dev_attrs[] = { 1378 &dev_attr_name.attr, 1379 &dev_attr_phys.attr, 1380 &dev_attr_uniq.attr, 1381 &dev_attr_modalias.attr, 1382 &dev_attr_properties.attr, 1383 NULL 1384 }; 1385 1386 static struct attribute_group input_dev_attr_group = { 1387 .attrs = input_dev_attrs, 1388 }; 1389 1390 #define INPUT_DEV_ID_ATTR(name) \ 1391 static ssize_t input_dev_show_id_##name(struct device *dev, \ 1392 struct device_attribute *attr, \ 1393 char *buf) \ 1394 { \ 1395 struct input_dev *input_dev = to_input_dev(dev); \ 1396 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \ 1397 } \ 1398 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL) 1399 1400 INPUT_DEV_ID_ATTR(bustype); 1401 INPUT_DEV_ID_ATTR(vendor); 1402 INPUT_DEV_ID_ATTR(product); 1403 INPUT_DEV_ID_ATTR(version); 1404 1405 static struct attribute *input_dev_id_attrs[] = { 1406 &dev_attr_bustype.attr, 1407 &dev_attr_vendor.attr, 1408 &dev_attr_product.attr, 1409 &dev_attr_version.attr, 1410 NULL 1411 }; 1412 1413 static struct attribute_group input_dev_id_attr_group = { 1414 .name = "id", 1415 .attrs = input_dev_id_attrs, 1416 }; 1417 1418 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, 1419 int max, int add_cr) 1420 { 1421 int i; 1422 int len = 0; 1423 bool skip_empty = true; 1424 1425 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1426 len += input_bits_to_string(buf + len, max(buf_size - len, 0), 1427 bitmap[i], skip_empty); 1428 if (len) { 1429 skip_empty = false; 1430 if (i > 0) 1431 len += snprintf(buf + len, max(buf_size - len, 0), " "); 1432 } 1433 } 1434 1435 /* 1436 * If no output was produced print a single 0. 1437 */ 1438 if (len == 0) 1439 len = snprintf(buf, buf_size, "%d", 0); 1440 1441 if (add_cr) 1442 len += snprintf(buf + len, max(buf_size - len, 0), "\n"); 1443 1444 return len; 1445 } 1446 1447 #define INPUT_DEV_CAP_ATTR(ev, bm) \ 1448 static ssize_t input_dev_show_cap_##bm(struct device *dev, \ 1449 struct device_attribute *attr, \ 1450 char *buf) \ 1451 { \ 1452 struct input_dev *input_dev = to_input_dev(dev); \ 1453 int len = input_print_bitmap(buf, PAGE_SIZE, \ 1454 input_dev->bm##bit, ev##_MAX, \ 1455 true); \ 1456 return min_t(int, len, PAGE_SIZE); \ 1457 } \ 1458 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL) 1459 1460 INPUT_DEV_CAP_ATTR(EV, ev); 1461 INPUT_DEV_CAP_ATTR(KEY, key); 1462 INPUT_DEV_CAP_ATTR(REL, rel); 1463 INPUT_DEV_CAP_ATTR(ABS, abs); 1464 INPUT_DEV_CAP_ATTR(MSC, msc); 1465 INPUT_DEV_CAP_ATTR(LED, led); 1466 INPUT_DEV_CAP_ATTR(SND, snd); 1467 INPUT_DEV_CAP_ATTR(FF, ff); 1468 INPUT_DEV_CAP_ATTR(SW, sw); 1469 1470 static struct attribute *input_dev_caps_attrs[] = { 1471 &dev_attr_ev.attr, 1472 &dev_attr_key.attr, 1473 &dev_attr_rel.attr, 1474 &dev_attr_abs.attr, 1475 &dev_attr_msc.attr, 1476 &dev_attr_led.attr, 1477 &dev_attr_snd.attr, 1478 &dev_attr_ff.attr, 1479 &dev_attr_sw.attr, 1480 NULL 1481 }; 1482 1483 static struct attribute_group input_dev_caps_attr_group = { 1484 .name = "capabilities", 1485 .attrs = input_dev_caps_attrs, 1486 }; 1487 1488 static const struct attribute_group *input_dev_attr_groups[] = { 1489 &input_dev_attr_group, 1490 &input_dev_id_attr_group, 1491 &input_dev_caps_attr_group, 1492 NULL 1493 }; 1494 1495 static void input_dev_release(struct device *device) 1496 { 1497 struct input_dev *dev = to_input_dev(device); 1498 1499 input_ff_destroy(dev); 1500 input_mt_destroy_slots(dev); 1501 kfree(dev->absinfo); 1502 kfree(dev->vals); 1503 kfree(dev); 1504 1505 module_put(THIS_MODULE); 1506 } 1507 1508 /* 1509 * Input uevent interface - loading event handlers based on 1510 * device bitfields. 1511 */ 1512 static int input_add_uevent_bm_var(struct kobj_uevent_env *env, 1513 const char *name, unsigned long *bitmap, int max) 1514 { 1515 int len; 1516 1517 if (add_uevent_var(env, "%s", name)) 1518 return -ENOMEM; 1519 1520 len = input_print_bitmap(&env->buf[env->buflen - 1], 1521 sizeof(env->buf) - env->buflen, 1522 bitmap, max, false); 1523 if (len >= (sizeof(env->buf) - env->buflen)) 1524 return -ENOMEM; 1525 1526 env->buflen += len; 1527 return 0; 1528 } 1529 1530 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env, 1531 struct input_dev *dev) 1532 { 1533 int len; 1534 1535 if (add_uevent_var(env, "MODALIAS=")) 1536 return -ENOMEM; 1537 1538 len = input_print_modalias(&env->buf[env->buflen - 1], 1539 sizeof(env->buf) - env->buflen, 1540 dev, 0); 1541 if (len >= (sizeof(env->buf) - env->buflen)) 1542 return -ENOMEM; 1543 1544 env->buflen += len; 1545 return 0; 1546 } 1547 1548 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \ 1549 do { \ 1550 int err = add_uevent_var(env, fmt, val); \ 1551 if (err) \ 1552 return err; \ 1553 } while (0) 1554 1555 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \ 1556 do { \ 1557 int err = input_add_uevent_bm_var(env, name, bm, max); \ 1558 if (err) \ 1559 return err; \ 1560 } while (0) 1561 1562 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \ 1563 do { \ 1564 int err = input_add_uevent_modalias_var(env, dev); \ 1565 if (err) \ 1566 return err; \ 1567 } while (0) 1568 1569 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env) 1570 { 1571 struct input_dev *dev = to_input_dev(device); 1572 1573 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x", 1574 dev->id.bustype, dev->id.vendor, 1575 dev->id.product, dev->id.version); 1576 if (dev->name) 1577 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name); 1578 if (dev->phys) 1579 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys); 1580 if (dev->uniq) 1581 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq); 1582 1583 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX); 1584 1585 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX); 1586 if (test_bit(EV_KEY, dev->evbit)) 1587 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX); 1588 if (test_bit(EV_REL, dev->evbit)) 1589 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX); 1590 if (test_bit(EV_ABS, dev->evbit)) 1591 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX); 1592 if (test_bit(EV_MSC, dev->evbit)) 1593 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX); 1594 if (test_bit(EV_LED, dev->evbit)) 1595 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX); 1596 if (test_bit(EV_SND, dev->evbit)) 1597 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX); 1598 if (test_bit(EV_FF, dev->evbit)) 1599 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX); 1600 if (test_bit(EV_SW, dev->evbit)) 1601 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX); 1602 1603 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev); 1604 1605 return 0; 1606 } 1607 1608 #define INPUT_DO_TOGGLE(dev, type, bits, on) \ 1609 do { \ 1610 int i; \ 1611 bool active; \ 1612 \ 1613 if (!test_bit(EV_##type, dev->evbit)) \ 1614 break; \ 1615 \ 1616 for (i = 0; i < type##_MAX; i++) { \ 1617 if (!test_bit(i, dev->bits##bit)) \ 1618 continue; \ 1619 \ 1620 active = test_bit(i, dev->bits); \ 1621 if (!active && !on) \ 1622 continue; \ 1623 \ 1624 dev->event(dev, EV_##type, i, on ? active : 0); \ 1625 } \ 1626 } while (0) 1627 1628 static void input_dev_toggle(struct input_dev *dev, bool activate) 1629 { 1630 if (!dev->event) 1631 return; 1632 1633 INPUT_DO_TOGGLE(dev, LED, led, activate); 1634 INPUT_DO_TOGGLE(dev, SND, snd, activate); 1635 1636 if (activate && test_bit(EV_REP, dev->evbit)) { 1637 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]); 1638 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]); 1639 } 1640 } 1641 1642 /** 1643 * input_reset_device() - reset/restore the state of input device 1644 * @dev: input device whose state needs to be reset 1645 * 1646 * This function tries to reset the state of an opened input device and 1647 * bring internal state and state if the hardware in sync with each other. 1648 * We mark all keys as released, restore LED state, repeat rate, etc. 1649 */ 1650 void input_reset_device(struct input_dev *dev) 1651 { 1652 mutex_lock(&dev->mutex); 1653 1654 if (dev->users) { 1655 input_dev_toggle(dev, true); 1656 1657 /* 1658 * Keys that have been pressed at suspend time are unlikely 1659 * to be still pressed when we resume. 1660 */ 1661 spin_lock_irq(&dev->event_lock); 1662 input_dev_release_keys(dev); 1663 spin_unlock_irq(&dev->event_lock); 1664 } 1665 1666 mutex_unlock(&dev->mutex); 1667 } 1668 EXPORT_SYMBOL(input_reset_device); 1669 1670 #ifdef CONFIG_PM 1671 static int input_dev_suspend(struct device *dev) 1672 { 1673 struct input_dev *input_dev = to_input_dev(dev); 1674 1675 mutex_lock(&input_dev->mutex); 1676 1677 if (input_dev->users) 1678 input_dev_toggle(input_dev, false); 1679 1680 mutex_unlock(&input_dev->mutex); 1681 1682 return 0; 1683 } 1684 1685 static int input_dev_resume(struct device *dev) 1686 { 1687 struct input_dev *input_dev = to_input_dev(dev); 1688 1689 input_reset_device(input_dev); 1690 1691 return 0; 1692 } 1693 1694 static const struct dev_pm_ops input_dev_pm_ops = { 1695 .suspend = input_dev_suspend, 1696 .resume = input_dev_resume, 1697 .poweroff = input_dev_suspend, 1698 .restore = input_dev_resume, 1699 }; 1700 #endif /* CONFIG_PM */ 1701 1702 static struct device_type input_dev_type = { 1703 .groups = input_dev_attr_groups, 1704 .release = input_dev_release, 1705 .uevent = input_dev_uevent, 1706 #ifdef CONFIG_PM 1707 .pm = &input_dev_pm_ops, 1708 #endif 1709 }; 1710 1711 static char *input_devnode(struct device *dev, umode_t *mode) 1712 { 1713 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev)); 1714 } 1715 1716 struct class input_class = { 1717 .name = "input", 1718 .devnode = input_devnode, 1719 }; 1720 EXPORT_SYMBOL_GPL(input_class); 1721 1722 /** 1723 * input_allocate_device - allocate memory for new input device 1724 * 1725 * Returns prepared struct input_dev or NULL. 1726 * 1727 * NOTE: Use input_free_device() to free devices that have not been 1728 * registered; input_unregister_device() should be used for already 1729 * registered devices. 1730 */ 1731 struct input_dev *input_allocate_device(void) 1732 { 1733 struct input_dev *dev; 1734 1735 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL); 1736 if (dev) { 1737 dev->dev.type = &input_dev_type; 1738 dev->dev.class = &input_class; 1739 device_initialize(&dev->dev); 1740 mutex_init(&dev->mutex); 1741 spin_lock_init(&dev->event_lock); 1742 INIT_LIST_HEAD(&dev->h_list); 1743 INIT_LIST_HEAD(&dev->node); 1744 1745 __module_get(THIS_MODULE); 1746 } 1747 1748 return dev; 1749 } 1750 EXPORT_SYMBOL(input_allocate_device); 1751 1752 /** 1753 * input_free_device - free memory occupied by input_dev structure 1754 * @dev: input device to free 1755 * 1756 * This function should only be used if input_register_device() 1757 * was not called yet or if it failed. Once device was registered 1758 * use input_unregister_device() and memory will be freed once last 1759 * reference to the device is dropped. 1760 * 1761 * Device should be allocated by input_allocate_device(). 1762 * 1763 * NOTE: If there are references to the input device then memory 1764 * will not be freed until last reference is dropped. 1765 */ 1766 void input_free_device(struct input_dev *dev) 1767 { 1768 if (dev) 1769 input_put_device(dev); 1770 } 1771 EXPORT_SYMBOL(input_free_device); 1772 1773 /** 1774 * input_set_capability - mark device as capable of a certain event 1775 * @dev: device that is capable of emitting or accepting event 1776 * @type: type of the event (EV_KEY, EV_REL, etc...) 1777 * @code: event code 1778 * 1779 * In addition to setting up corresponding bit in appropriate capability 1780 * bitmap the function also adjusts dev->evbit. 1781 */ 1782 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code) 1783 { 1784 switch (type) { 1785 case EV_KEY: 1786 __set_bit(code, dev->keybit); 1787 break; 1788 1789 case EV_REL: 1790 __set_bit(code, dev->relbit); 1791 break; 1792 1793 case EV_ABS: 1794 __set_bit(code, dev->absbit); 1795 break; 1796 1797 case EV_MSC: 1798 __set_bit(code, dev->mscbit); 1799 break; 1800 1801 case EV_SW: 1802 __set_bit(code, dev->swbit); 1803 break; 1804 1805 case EV_LED: 1806 __set_bit(code, dev->ledbit); 1807 break; 1808 1809 case EV_SND: 1810 __set_bit(code, dev->sndbit); 1811 break; 1812 1813 case EV_FF: 1814 __set_bit(code, dev->ffbit); 1815 break; 1816 1817 case EV_PWR: 1818 /* do nothing */ 1819 break; 1820 1821 default: 1822 pr_err("input_set_capability: unknown type %u (code %u)\n", 1823 type, code); 1824 dump_stack(); 1825 return; 1826 } 1827 1828 __set_bit(type, dev->evbit); 1829 } 1830 EXPORT_SYMBOL(input_set_capability); 1831 1832 static unsigned int input_estimate_events_per_packet(struct input_dev *dev) 1833 { 1834 int mt_slots; 1835 int i; 1836 unsigned int events; 1837 1838 if (dev->mt) { 1839 mt_slots = dev->mt->num_slots; 1840 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) { 1841 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum - 1842 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1, 1843 mt_slots = clamp(mt_slots, 2, 32); 1844 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) { 1845 mt_slots = 2; 1846 } else { 1847 mt_slots = 0; 1848 } 1849 1850 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */ 1851 1852 for (i = 0; i < ABS_CNT; i++) { 1853 if (test_bit(i, dev->absbit)) { 1854 if (input_is_mt_axis(i)) 1855 events += mt_slots; 1856 else 1857 events++; 1858 } 1859 } 1860 1861 for (i = 0; i < REL_CNT; i++) 1862 if (test_bit(i, dev->relbit)) 1863 events++; 1864 1865 /* Make room for KEY and MSC events */ 1866 events += 7; 1867 1868 return events; 1869 } 1870 1871 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \ 1872 do { \ 1873 if (!test_bit(EV_##type, dev->evbit)) \ 1874 memset(dev->bits##bit, 0, \ 1875 sizeof(dev->bits##bit)); \ 1876 } while (0) 1877 1878 static void input_cleanse_bitmasks(struct input_dev *dev) 1879 { 1880 INPUT_CLEANSE_BITMASK(dev, KEY, key); 1881 INPUT_CLEANSE_BITMASK(dev, REL, rel); 1882 INPUT_CLEANSE_BITMASK(dev, ABS, abs); 1883 INPUT_CLEANSE_BITMASK(dev, MSC, msc); 1884 INPUT_CLEANSE_BITMASK(dev, LED, led); 1885 INPUT_CLEANSE_BITMASK(dev, SND, snd); 1886 INPUT_CLEANSE_BITMASK(dev, FF, ff); 1887 INPUT_CLEANSE_BITMASK(dev, SW, sw); 1888 } 1889 1890 /** 1891 * input_register_device - register device with input core 1892 * @dev: device to be registered 1893 * 1894 * This function registers device with input core. The device must be 1895 * allocated with input_allocate_device() and all it's capabilities 1896 * set up before registering. 1897 * If function fails the device must be freed with input_free_device(). 1898 * Once device has been successfully registered it can be unregistered 1899 * with input_unregister_device(); input_free_device() should not be 1900 * called in this case. 1901 */ 1902 int input_register_device(struct input_dev *dev) 1903 { 1904 static atomic_t input_no = ATOMIC_INIT(0); 1905 struct input_handler *handler; 1906 unsigned int packet_size; 1907 const char *path; 1908 int error; 1909 1910 /* Every input device generates EV_SYN/SYN_REPORT events. */ 1911 __set_bit(EV_SYN, dev->evbit); 1912 1913 /* KEY_RESERVED is not supposed to be transmitted to userspace. */ 1914 __clear_bit(KEY_RESERVED, dev->keybit); 1915 1916 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */ 1917 input_cleanse_bitmasks(dev); 1918 1919 packet_size = input_estimate_events_per_packet(dev); 1920 if (dev->hint_events_per_packet < packet_size) 1921 dev->hint_events_per_packet = packet_size; 1922 1923 dev->max_vals = max(dev->hint_events_per_packet, packet_size) + 2; 1924 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL); 1925 if (!dev->vals) 1926 return -ENOMEM; 1927 1928 /* 1929 * If delay and period are pre-set by the driver, then autorepeating 1930 * is handled by the driver itself and we don't do it in input.c. 1931 */ 1932 init_timer(&dev->timer); 1933 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) { 1934 dev->timer.data = (long) dev; 1935 dev->timer.function = input_repeat_key; 1936 dev->rep[REP_DELAY] = 250; 1937 dev->rep[REP_PERIOD] = 33; 1938 } 1939 1940 if (!dev->getkeycode) 1941 dev->getkeycode = input_default_getkeycode; 1942 1943 if (!dev->setkeycode) 1944 dev->setkeycode = input_default_setkeycode; 1945 1946 dev_set_name(&dev->dev, "input%ld", 1947 (unsigned long) atomic_inc_return(&input_no) - 1); 1948 1949 error = device_add(&dev->dev); 1950 if (error) 1951 return error; 1952 1953 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1954 pr_info("%s as %s\n", 1955 dev->name ? dev->name : "Unspecified device", 1956 path ? path : "N/A"); 1957 kfree(path); 1958 1959 error = mutex_lock_interruptible(&input_mutex); 1960 if (error) { 1961 device_del(&dev->dev); 1962 return error; 1963 } 1964 1965 list_add_tail(&dev->node, &input_dev_list); 1966 1967 list_for_each_entry(handler, &input_handler_list, node) 1968 input_attach_handler(dev, handler); 1969 1970 input_wakeup_procfs_readers(); 1971 1972 mutex_unlock(&input_mutex); 1973 1974 return 0; 1975 } 1976 EXPORT_SYMBOL(input_register_device); 1977 1978 /** 1979 * input_unregister_device - unregister previously registered device 1980 * @dev: device to be unregistered 1981 * 1982 * This function unregisters an input device. Once device is unregistered 1983 * the caller should not try to access it as it may get freed at any moment. 1984 */ 1985 void input_unregister_device(struct input_dev *dev) 1986 { 1987 struct input_handle *handle, *next; 1988 1989 input_disconnect_device(dev); 1990 1991 mutex_lock(&input_mutex); 1992 1993 list_for_each_entry_safe(handle, next, &dev->h_list, d_node) 1994 handle->handler->disconnect(handle); 1995 WARN_ON(!list_empty(&dev->h_list)); 1996 1997 del_timer_sync(&dev->timer); 1998 list_del_init(&dev->node); 1999 2000 input_wakeup_procfs_readers(); 2001 2002 mutex_unlock(&input_mutex); 2003 2004 device_unregister(&dev->dev); 2005 } 2006 EXPORT_SYMBOL(input_unregister_device); 2007 2008 /** 2009 * input_register_handler - register a new input handler 2010 * @handler: handler to be registered 2011 * 2012 * This function registers a new input handler (interface) for input 2013 * devices in the system and attaches it to all input devices that 2014 * are compatible with the handler. 2015 */ 2016 int input_register_handler(struct input_handler *handler) 2017 { 2018 struct input_dev *dev; 2019 int retval; 2020 2021 retval = mutex_lock_interruptible(&input_mutex); 2022 if (retval) 2023 return retval; 2024 2025 INIT_LIST_HEAD(&handler->h_list); 2026 2027 if (handler->fops != NULL) { 2028 if (input_table[handler->minor >> 5]) { 2029 retval = -EBUSY; 2030 goto out; 2031 } 2032 input_table[handler->minor >> 5] = handler; 2033 } 2034 2035 list_add_tail(&handler->node, &input_handler_list); 2036 2037 list_for_each_entry(dev, &input_dev_list, node) 2038 input_attach_handler(dev, handler); 2039 2040 input_wakeup_procfs_readers(); 2041 2042 out: 2043 mutex_unlock(&input_mutex); 2044 return retval; 2045 } 2046 EXPORT_SYMBOL(input_register_handler); 2047 2048 /** 2049 * input_unregister_handler - unregisters an input handler 2050 * @handler: handler to be unregistered 2051 * 2052 * This function disconnects a handler from its input devices and 2053 * removes it from lists of known handlers. 2054 */ 2055 void input_unregister_handler(struct input_handler *handler) 2056 { 2057 struct input_handle *handle, *next; 2058 2059 mutex_lock(&input_mutex); 2060 2061 list_for_each_entry_safe(handle, next, &handler->h_list, h_node) 2062 handler->disconnect(handle); 2063 WARN_ON(!list_empty(&handler->h_list)); 2064 2065 list_del_init(&handler->node); 2066 2067 if (handler->fops != NULL) 2068 input_table[handler->minor >> 5] = NULL; 2069 2070 input_wakeup_procfs_readers(); 2071 2072 mutex_unlock(&input_mutex); 2073 } 2074 EXPORT_SYMBOL(input_unregister_handler); 2075 2076 /** 2077 * input_handler_for_each_handle - handle iterator 2078 * @handler: input handler to iterate 2079 * @data: data for the callback 2080 * @fn: function to be called for each handle 2081 * 2082 * Iterate over @bus's list of devices, and call @fn for each, passing 2083 * it @data and stop when @fn returns a non-zero value. The function is 2084 * using RCU to traverse the list and therefore may be usind in atonic 2085 * contexts. The @fn callback is invoked from RCU critical section and 2086 * thus must not sleep. 2087 */ 2088 int input_handler_for_each_handle(struct input_handler *handler, void *data, 2089 int (*fn)(struct input_handle *, void *)) 2090 { 2091 struct input_handle *handle; 2092 int retval = 0; 2093 2094 rcu_read_lock(); 2095 2096 list_for_each_entry_rcu(handle, &handler->h_list, h_node) { 2097 retval = fn(handle, data); 2098 if (retval) 2099 break; 2100 } 2101 2102 rcu_read_unlock(); 2103 2104 return retval; 2105 } 2106 EXPORT_SYMBOL(input_handler_for_each_handle); 2107 2108 /** 2109 * input_register_handle - register a new input handle 2110 * @handle: handle to register 2111 * 2112 * This function puts a new input handle onto device's 2113 * and handler's lists so that events can flow through 2114 * it once it is opened using input_open_device(). 2115 * 2116 * This function is supposed to be called from handler's 2117 * connect() method. 2118 */ 2119 int input_register_handle(struct input_handle *handle) 2120 { 2121 struct input_handler *handler = handle->handler; 2122 struct input_dev *dev = handle->dev; 2123 int error; 2124 2125 /* 2126 * We take dev->mutex here to prevent race with 2127 * input_release_device(). 2128 */ 2129 error = mutex_lock_interruptible(&dev->mutex); 2130 if (error) 2131 return error; 2132 2133 /* 2134 * Filters go to the head of the list, normal handlers 2135 * to the tail. 2136 */ 2137 if (handler->filter) 2138 list_add_rcu(&handle->d_node, &dev->h_list); 2139 else 2140 list_add_tail_rcu(&handle->d_node, &dev->h_list); 2141 2142 mutex_unlock(&dev->mutex); 2143 2144 /* 2145 * Since we are supposed to be called from ->connect() 2146 * which is mutually exclusive with ->disconnect() 2147 * we can't be racing with input_unregister_handle() 2148 * and so separate lock is not needed here. 2149 */ 2150 list_add_tail_rcu(&handle->h_node, &handler->h_list); 2151 2152 if (handler->start) 2153 handler->start(handle); 2154 2155 return 0; 2156 } 2157 EXPORT_SYMBOL(input_register_handle); 2158 2159 /** 2160 * input_unregister_handle - unregister an input handle 2161 * @handle: handle to unregister 2162 * 2163 * This function removes input handle from device's 2164 * and handler's lists. 2165 * 2166 * This function is supposed to be called from handler's 2167 * disconnect() method. 2168 */ 2169 void input_unregister_handle(struct input_handle *handle) 2170 { 2171 struct input_dev *dev = handle->dev; 2172 2173 list_del_rcu(&handle->h_node); 2174 2175 /* 2176 * Take dev->mutex to prevent race with input_release_device(). 2177 */ 2178 mutex_lock(&dev->mutex); 2179 list_del_rcu(&handle->d_node); 2180 mutex_unlock(&dev->mutex); 2181 2182 synchronize_rcu(); 2183 } 2184 EXPORT_SYMBOL(input_unregister_handle); 2185 2186 static int input_open_file(struct inode *inode, struct file *file) 2187 { 2188 struct input_handler *handler; 2189 const struct file_operations *old_fops, *new_fops = NULL; 2190 int err; 2191 2192 err = mutex_lock_interruptible(&input_mutex); 2193 if (err) 2194 return err; 2195 2196 /* No load-on-demand here? */ 2197 handler = input_table[iminor(inode) >> 5]; 2198 if (handler) 2199 new_fops = fops_get(handler->fops); 2200 2201 mutex_unlock(&input_mutex); 2202 2203 /* 2204 * That's _really_ odd. Usually NULL ->open means "nothing special", 2205 * not "no device". Oh, well... 2206 */ 2207 if (!new_fops || !new_fops->open) { 2208 fops_put(new_fops); 2209 err = -ENODEV; 2210 goto out; 2211 } 2212 2213 old_fops = file->f_op; 2214 file->f_op = new_fops; 2215 2216 err = new_fops->open(inode, file); 2217 if (err) { 2218 fops_put(file->f_op); 2219 file->f_op = fops_get(old_fops); 2220 } 2221 fops_put(old_fops); 2222 out: 2223 return err; 2224 } 2225 2226 static const struct file_operations input_fops = { 2227 .owner = THIS_MODULE, 2228 .open = input_open_file, 2229 .llseek = noop_llseek, 2230 }; 2231 2232 static int __init input_init(void) 2233 { 2234 int err; 2235 2236 err = class_register(&input_class); 2237 if (err) { 2238 pr_err("unable to register input_dev class\n"); 2239 return err; 2240 } 2241 2242 err = input_proc_init(); 2243 if (err) 2244 goto fail1; 2245 2246 err = register_chrdev(INPUT_MAJOR, "input", &input_fops); 2247 if (err) { 2248 pr_err("unable to register char major %d", INPUT_MAJOR); 2249 goto fail2; 2250 } 2251 2252 return 0; 2253 2254 fail2: input_proc_exit(); 2255 fail1: class_unregister(&input_class); 2256 return err; 2257 } 2258 2259 static void __exit input_exit(void) 2260 { 2261 input_proc_exit(); 2262 unregister_chrdev(INPUT_MAJOR, "input"); 2263 class_unregister(&input_class); 2264 } 2265 2266 subsys_initcall(input_init); 2267 module_exit(input_exit); 2268