xref: /linux-6.15/drivers/input/input.c (revision 4a8e43fe)
1 /*
2  * The input core
3  *
4  * Copyright (c) 1999-2002 Vojtech Pavlik
5  */
6 
7 /*
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published by
10  * the Free Software Foundation.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
14 
15 #include <linux/init.h>
16 #include <linux/types.h>
17 #include <linux/input/mt.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/random.h>
21 #include <linux/major.h>
22 #include <linux/proc_fs.h>
23 #include <linux/sched.h>
24 #include <linux/seq_file.h>
25 #include <linux/poll.h>
26 #include <linux/device.h>
27 #include <linux/mutex.h>
28 #include <linux/rcupdate.h>
29 #include "input-compat.h"
30 
31 MODULE_AUTHOR("Vojtech Pavlik <[email protected]>");
32 MODULE_DESCRIPTION("Input core");
33 MODULE_LICENSE("GPL");
34 
35 #define INPUT_DEVICES	256
36 
37 static LIST_HEAD(input_dev_list);
38 static LIST_HEAD(input_handler_list);
39 
40 /*
41  * input_mutex protects access to both input_dev_list and input_handler_list.
42  * This also causes input_[un]register_device and input_[un]register_handler
43  * be mutually exclusive which simplifies locking in drivers implementing
44  * input handlers.
45  */
46 static DEFINE_MUTEX(input_mutex);
47 
48 static struct input_handler *input_table[8];
49 
50 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
51 
52 static inline int is_event_supported(unsigned int code,
53 				     unsigned long *bm, unsigned int max)
54 {
55 	return code <= max && test_bit(code, bm);
56 }
57 
58 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
59 {
60 	if (fuzz) {
61 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
62 			return old_val;
63 
64 		if (value > old_val - fuzz && value < old_val + fuzz)
65 			return (old_val * 3 + value) / 4;
66 
67 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
68 			return (old_val + value) / 2;
69 	}
70 
71 	return value;
72 }
73 
74 static void input_start_autorepeat(struct input_dev *dev, int code)
75 {
76 	if (test_bit(EV_REP, dev->evbit) &&
77 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
78 	    dev->timer.data) {
79 		dev->repeat_key = code;
80 		mod_timer(&dev->timer,
81 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
82 	}
83 }
84 
85 static void input_stop_autorepeat(struct input_dev *dev)
86 {
87 	del_timer(&dev->timer);
88 }
89 
90 /*
91  * Pass event first through all filters and then, if event has not been
92  * filtered out, through all open handles. This function is called with
93  * dev->event_lock held and interrupts disabled.
94  */
95 static unsigned int input_to_handler(struct input_handle *handle,
96 			struct input_value *vals, unsigned int count)
97 {
98 	struct input_handler *handler = handle->handler;
99 	struct input_value *end = vals;
100 	struct input_value *v;
101 
102 	for (v = vals; v != vals + count; v++) {
103 		if (handler->filter &&
104 		    handler->filter(handle, v->type, v->code, v->value))
105 			continue;
106 		if (end != v)
107 			*end = *v;
108 		end++;
109 	}
110 
111 	count = end - vals;
112 	if (!count)
113 		return 0;
114 
115 	if (handler->events)
116 		handler->events(handle, vals, count);
117 	else if (handler->event)
118 		for (v = vals; v != end; v++)
119 			handler->event(handle, v->type, v->code, v->value);
120 
121 	return count;
122 }
123 
124 /*
125  * Pass values first through all filters and then, if event has not been
126  * filtered out, through all open handles. This function is called with
127  * dev->event_lock held and interrupts disabled.
128  */
129 static void input_pass_values(struct input_dev *dev,
130 			      struct input_value *vals, unsigned int count)
131 {
132 	struct input_handle *handle;
133 	struct input_value *v;
134 
135 	if (!count)
136 		return;
137 
138 	rcu_read_lock();
139 
140 	handle = rcu_dereference(dev->grab);
141 	if (handle) {
142 		count = input_to_handler(handle, vals, count);
143 	} else {
144 		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
145 			if (handle->open)
146 				count = input_to_handler(handle, vals, count);
147 	}
148 
149 	rcu_read_unlock();
150 
151 	add_input_randomness(vals->type, vals->code, vals->value);
152 
153 	/* trigger auto repeat for key events */
154 	for (v = vals; v != vals + count; v++) {
155 		if (v->type == EV_KEY && v->value != 2) {
156 			if (v->value)
157 				input_start_autorepeat(dev, v->code);
158 			else
159 				input_stop_autorepeat(dev);
160 		}
161 	}
162 }
163 
164 static void input_pass_event(struct input_dev *dev,
165 			     unsigned int type, unsigned int code, int value)
166 {
167 	struct input_value vals[] = { { type, code, value } };
168 
169 	input_pass_values(dev, vals, ARRAY_SIZE(vals));
170 }
171 
172 /*
173  * Generate software autorepeat event. Note that we take
174  * dev->event_lock here to avoid racing with input_event
175  * which may cause keys get "stuck".
176  */
177 static void input_repeat_key(unsigned long data)
178 {
179 	struct input_dev *dev = (void *) data;
180 	unsigned long flags;
181 
182 	spin_lock_irqsave(&dev->event_lock, flags);
183 
184 	if (test_bit(dev->repeat_key, dev->key) &&
185 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
186 		struct input_value vals[] =  {
187 			{ EV_KEY, dev->repeat_key, 2 },
188 			input_value_sync
189 		};
190 
191 		input_pass_values(dev, vals, ARRAY_SIZE(vals));
192 
193 		if (dev->rep[REP_PERIOD])
194 			mod_timer(&dev->timer, jiffies +
195 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
196 	}
197 
198 	spin_unlock_irqrestore(&dev->event_lock, flags);
199 }
200 
201 #define INPUT_IGNORE_EVENT	0
202 #define INPUT_PASS_TO_HANDLERS	1
203 #define INPUT_PASS_TO_DEVICE	2
204 #define INPUT_SLOT		4
205 #define INPUT_FLUSH		8
206 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
207 
208 static int input_handle_abs_event(struct input_dev *dev,
209 				  unsigned int code, int *pval)
210 {
211 	struct input_mt *mt = dev->mt;
212 	bool is_mt_event;
213 	int *pold;
214 
215 	if (code == ABS_MT_SLOT) {
216 		/*
217 		 * "Stage" the event; we'll flush it later, when we
218 		 * get actual touch data.
219 		 */
220 		if (mt && *pval >= 0 && *pval < mt->num_slots)
221 			mt->slot = *pval;
222 
223 		return INPUT_IGNORE_EVENT;
224 	}
225 
226 	is_mt_event = input_is_mt_value(code);
227 
228 	if (!is_mt_event) {
229 		pold = &dev->absinfo[code].value;
230 	} else if (mt) {
231 		pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
232 	} else {
233 		/*
234 		 * Bypass filtering for multi-touch events when
235 		 * not employing slots.
236 		 */
237 		pold = NULL;
238 	}
239 
240 	if (pold) {
241 		*pval = input_defuzz_abs_event(*pval, *pold,
242 						dev->absinfo[code].fuzz);
243 		if (*pold == *pval)
244 			return INPUT_IGNORE_EVENT;
245 
246 		*pold = *pval;
247 	}
248 
249 	/* Flush pending "slot" event */
250 	if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
251 		input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
252 		return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
253 	}
254 
255 	return INPUT_PASS_TO_HANDLERS;
256 }
257 
258 static int input_get_disposition(struct input_dev *dev,
259 			  unsigned int type, unsigned int code, int value)
260 {
261 	int disposition = INPUT_IGNORE_EVENT;
262 
263 	switch (type) {
264 
265 	case EV_SYN:
266 		switch (code) {
267 		case SYN_CONFIG:
268 			disposition = INPUT_PASS_TO_ALL;
269 			break;
270 
271 		case SYN_REPORT:
272 			disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
273 			break;
274 		case SYN_MT_REPORT:
275 			disposition = INPUT_PASS_TO_HANDLERS;
276 			break;
277 		}
278 		break;
279 
280 	case EV_KEY:
281 		if (is_event_supported(code, dev->keybit, KEY_MAX)) {
282 
283 			/* auto-repeat bypasses state updates */
284 			if (value == 2) {
285 				disposition = INPUT_PASS_TO_HANDLERS;
286 				break;
287 			}
288 
289 			if (!!test_bit(code, dev->key) != !!value) {
290 
291 				__change_bit(code, dev->key);
292 				disposition = INPUT_PASS_TO_HANDLERS;
293 			}
294 		}
295 		break;
296 
297 	case EV_SW:
298 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
299 		    !!test_bit(code, dev->sw) != !!value) {
300 
301 			__change_bit(code, dev->sw);
302 			disposition = INPUT_PASS_TO_HANDLERS;
303 		}
304 		break;
305 
306 	case EV_ABS:
307 		if (is_event_supported(code, dev->absbit, ABS_MAX))
308 			disposition = input_handle_abs_event(dev, code, &value);
309 
310 		break;
311 
312 	case EV_REL:
313 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
314 			disposition = INPUT_PASS_TO_HANDLERS;
315 
316 		break;
317 
318 	case EV_MSC:
319 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
320 			disposition = INPUT_PASS_TO_ALL;
321 
322 		break;
323 
324 	case EV_LED:
325 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
326 		    !!test_bit(code, dev->led) != !!value) {
327 
328 			__change_bit(code, dev->led);
329 			disposition = INPUT_PASS_TO_ALL;
330 		}
331 		break;
332 
333 	case EV_SND:
334 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
335 
336 			if (!!test_bit(code, dev->snd) != !!value)
337 				__change_bit(code, dev->snd);
338 			disposition = INPUT_PASS_TO_ALL;
339 		}
340 		break;
341 
342 	case EV_REP:
343 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
344 			dev->rep[code] = value;
345 			disposition = INPUT_PASS_TO_ALL;
346 		}
347 		break;
348 
349 	case EV_FF:
350 		if (value >= 0)
351 			disposition = INPUT_PASS_TO_ALL;
352 		break;
353 
354 	case EV_PWR:
355 		disposition = INPUT_PASS_TO_ALL;
356 		break;
357 	}
358 
359 	return disposition;
360 }
361 
362 static void input_handle_event(struct input_dev *dev,
363 			       unsigned int type, unsigned int code, int value)
364 {
365 	int disposition;
366 
367 	disposition = input_get_disposition(dev, type, code, value);
368 
369 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
370 		dev->event(dev, type, code, value);
371 
372 	if (!dev->vals)
373 		return;
374 
375 	if (disposition & INPUT_PASS_TO_HANDLERS) {
376 		struct input_value *v;
377 
378 		if (disposition & INPUT_SLOT) {
379 			v = &dev->vals[dev->num_vals++];
380 			v->type = EV_ABS;
381 			v->code = ABS_MT_SLOT;
382 			v->value = dev->mt->slot;
383 		}
384 
385 		v = &dev->vals[dev->num_vals++];
386 		v->type = type;
387 		v->code = code;
388 		v->value = value;
389 	}
390 
391 	if (disposition & INPUT_FLUSH) {
392 		if (dev->num_vals >= 2)
393 			input_pass_values(dev, dev->vals, dev->num_vals);
394 		dev->num_vals = 0;
395 	} else if (dev->num_vals >= dev->max_vals - 2) {
396 		dev->vals[dev->num_vals++] = input_value_sync;
397 		input_pass_values(dev, dev->vals, dev->num_vals);
398 		dev->num_vals = 0;
399 	}
400 
401 }
402 
403 /**
404  * input_event() - report new input event
405  * @dev: device that generated the event
406  * @type: type of the event
407  * @code: event code
408  * @value: value of the event
409  *
410  * This function should be used by drivers implementing various input
411  * devices to report input events. See also input_inject_event().
412  *
413  * NOTE: input_event() may be safely used right after input device was
414  * allocated with input_allocate_device(), even before it is registered
415  * with input_register_device(), but the event will not reach any of the
416  * input handlers. Such early invocation of input_event() may be used
417  * to 'seed' initial state of a switch or initial position of absolute
418  * axis, etc.
419  */
420 void input_event(struct input_dev *dev,
421 		 unsigned int type, unsigned int code, int value)
422 {
423 	unsigned long flags;
424 
425 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
426 
427 		spin_lock_irqsave(&dev->event_lock, flags);
428 		input_handle_event(dev, type, code, value);
429 		spin_unlock_irqrestore(&dev->event_lock, flags);
430 	}
431 }
432 EXPORT_SYMBOL(input_event);
433 
434 /**
435  * input_inject_event() - send input event from input handler
436  * @handle: input handle to send event through
437  * @type: type of the event
438  * @code: event code
439  * @value: value of the event
440  *
441  * Similar to input_event() but will ignore event if device is
442  * "grabbed" and handle injecting event is not the one that owns
443  * the device.
444  */
445 void input_inject_event(struct input_handle *handle,
446 			unsigned int type, unsigned int code, int value)
447 {
448 	struct input_dev *dev = handle->dev;
449 	struct input_handle *grab;
450 	unsigned long flags;
451 
452 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
453 		spin_lock_irqsave(&dev->event_lock, flags);
454 
455 		rcu_read_lock();
456 		grab = rcu_dereference(dev->grab);
457 		if (!grab || grab == handle)
458 			input_handle_event(dev, type, code, value);
459 		rcu_read_unlock();
460 
461 		spin_unlock_irqrestore(&dev->event_lock, flags);
462 	}
463 }
464 EXPORT_SYMBOL(input_inject_event);
465 
466 /**
467  * input_alloc_absinfo - allocates array of input_absinfo structs
468  * @dev: the input device emitting absolute events
469  *
470  * If the absinfo struct the caller asked for is already allocated, this
471  * functions will not do anything.
472  */
473 void input_alloc_absinfo(struct input_dev *dev)
474 {
475 	if (!dev->absinfo)
476 		dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
477 					GFP_KERNEL);
478 
479 	WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
480 }
481 EXPORT_SYMBOL(input_alloc_absinfo);
482 
483 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
484 			  int min, int max, int fuzz, int flat)
485 {
486 	struct input_absinfo *absinfo;
487 
488 	input_alloc_absinfo(dev);
489 	if (!dev->absinfo)
490 		return;
491 
492 	absinfo = &dev->absinfo[axis];
493 	absinfo->minimum = min;
494 	absinfo->maximum = max;
495 	absinfo->fuzz = fuzz;
496 	absinfo->flat = flat;
497 
498 	dev->absbit[BIT_WORD(axis)] |= BIT_MASK(axis);
499 }
500 EXPORT_SYMBOL(input_set_abs_params);
501 
502 
503 /**
504  * input_grab_device - grabs device for exclusive use
505  * @handle: input handle that wants to own the device
506  *
507  * When a device is grabbed by an input handle all events generated by
508  * the device are delivered only to this handle. Also events injected
509  * by other input handles are ignored while device is grabbed.
510  */
511 int input_grab_device(struct input_handle *handle)
512 {
513 	struct input_dev *dev = handle->dev;
514 	int retval;
515 
516 	retval = mutex_lock_interruptible(&dev->mutex);
517 	if (retval)
518 		return retval;
519 
520 	if (dev->grab) {
521 		retval = -EBUSY;
522 		goto out;
523 	}
524 
525 	rcu_assign_pointer(dev->grab, handle);
526 
527  out:
528 	mutex_unlock(&dev->mutex);
529 	return retval;
530 }
531 EXPORT_SYMBOL(input_grab_device);
532 
533 static void __input_release_device(struct input_handle *handle)
534 {
535 	struct input_dev *dev = handle->dev;
536 
537 	if (dev->grab == handle) {
538 		rcu_assign_pointer(dev->grab, NULL);
539 		/* Make sure input_pass_event() notices that grab is gone */
540 		synchronize_rcu();
541 
542 		list_for_each_entry(handle, &dev->h_list, d_node)
543 			if (handle->open && handle->handler->start)
544 				handle->handler->start(handle);
545 	}
546 }
547 
548 /**
549  * input_release_device - release previously grabbed device
550  * @handle: input handle that owns the device
551  *
552  * Releases previously grabbed device so that other input handles can
553  * start receiving input events. Upon release all handlers attached
554  * to the device have their start() method called so they have a change
555  * to synchronize device state with the rest of the system.
556  */
557 void input_release_device(struct input_handle *handle)
558 {
559 	struct input_dev *dev = handle->dev;
560 
561 	mutex_lock(&dev->mutex);
562 	__input_release_device(handle);
563 	mutex_unlock(&dev->mutex);
564 }
565 EXPORT_SYMBOL(input_release_device);
566 
567 /**
568  * input_open_device - open input device
569  * @handle: handle through which device is being accessed
570  *
571  * This function should be called by input handlers when they
572  * want to start receive events from given input device.
573  */
574 int input_open_device(struct input_handle *handle)
575 {
576 	struct input_dev *dev = handle->dev;
577 	int retval;
578 
579 	retval = mutex_lock_interruptible(&dev->mutex);
580 	if (retval)
581 		return retval;
582 
583 	if (dev->going_away) {
584 		retval = -ENODEV;
585 		goto out;
586 	}
587 
588 	handle->open++;
589 
590 	if (!dev->users++ && dev->open)
591 		retval = dev->open(dev);
592 
593 	if (retval) {
594 		dev->users--;
595 		if (!--handle->open) {
596 			/*
597 			 * Make sure we are not delivering any more events
598 			 * through this handle
599 			 */
600 			synchronize_rcu();
601 		}
602 	}
603 
604  out:
605 	mutex_unlock(&dev->mutex);
606 	return retval;
607 }
608 EXPORT_SYMBOL(input_open_device);
609 
610 int input_flush_device(struct input_handle *handle, struct file *file)
611 {
612 	struct input_dev *dev = handle->dev;
613 	int retval;
614 
615 	retval = mutex_lock_interruptible(&dev->mutex);
616 	if (retval)
617 		return retval;
618 
619 	if (dev->flush)
620 		retval = dev->flush(dev, file);
621 
622 	mutex_unlock(&dev->mutex);
623 	return retval;
624 }
625 EXPORT_SYMBOL(input_flush_device);
626 
627 /**
628  * input_close_device - close input device
629  * @handle: handle through which device is being accessed
630  *
631  * This function should be called by input handlers when they
632  * want to stop receive events from given input device.
633  */
634 void input_close_device(struct input_handle *handle)
635 {
636 	struct input_dev *dev = handle->dev;
637 
638 	mutex_lock(&dev->mutex);
639 
640 	__input_release_device(handle);
641 
642 	if (!--dev->users && dev->close)
643 		dev->close(dev);
644 
645 	if (!--handle->open) {
646 		/*
647 		 * synchronize_rcu() makes sure that input_pass_event()
648 		 * completed and that no more input events are delivered
649 		 * through this handle
650 		 */
651 		synchronize_rcu();
652 	}
653 
654 	mutex_unlock(&dev->mutex);
655 }
656 EXPORT_SYMBOL(input_close_device);
657 
658 /*
659  * Simulate keyup events for all keys that are marked as pressed.
660  * The function must be called with dev->event_lock held.
661  */
662 static void input_dev_release_keys(struct input_dev *dev)
663 {
664 	int code;
665 
666 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
667 		for (code = 0; code <= KEY_MAX; code++) {
668 			if (is_event_supported(code, dev->keybit, KEY_MAX) &&
669 			    __test_and_clear_bit(code, dev->key)) {
670 				input_pass_event(dev, EV_KEY, code, 0);
671 			}
672 		}
673 		input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
674 	}
675 }
676 
677 /*
678  * Prepare device for unregistering
679  */
680 static void input_disconnect_device(struct input_dev *dev)
681 {
682 	struct input_handle *handle;
683 
684 	/*
685 	 * Mark device as going away. Note that we take dev->mutex here
686 	 * not to protect access to dev->going_away but rather to ensure
687 	 * that there are no threads in the middle of input_open_device()
688 	 */
689 	mutex_lock(&dev->mutex);
690 	dev->going_away = true;
691 	mutex_unlock(&dev->mutex);
692 
693 	spin_lock_irq(&dev->event_lock);
694 
695 	/*
696 	 * Simulate keyup events for all pressed keys so that handlers
697 	 * are not left with "stuck" keys. The driver may continue
698 	 * generate events even after we done here but they will not
699 	 * reach any handlers.
700 	 */
701 	input_dev_release_keys(dev);
702 
703 	list_for_each_entry(handle, &dev->h_list, d_node)
704 		handle->open = 0;
705 
706 	spin_unlock_irq(&dev->event_lock);
707 }
708 
709 /**
710  * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
711  * @ke: keymap entry containing scancode to be converted.
712  * @scancode: pointer to the location where converted scancode should
713  *	be stored.
714  *
715  * This function is used to convert scancode stored in &struct keymap_entry
716  * into scalar form understood by legacy keymap handling methods. These
717  * methods expect scancodes to be represented as 'unsigned int'.
718  */
719 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
720 			     unsigned int *scancode)
721 {
722 	switch (ke->len) {
723 	case 1:
724 		*scancode = *((u8 *)ke->scancode);
725 		break;
726 
727 	case 2:
728 		*scancode = *((u16 *)ke->scancode);
729 		break;
730 
731 	case 4:
732 		*scancode = *((u32 *)ke->scancode);
733 		break;
734 
735 	default:
736 		return -EINVAL;
737 	}
738 
739 	return 0;
740 }
741 EXPORT_SYMBOL(input_scancode_to_scalar);
742 
743 /*
744  * Those routines handle the default case where no [gs]etkeycode() is
745  * defined. In this case, an array indexed by the scancode is used.
746  */
747 
748 static unsigned int input_fetch_keycode(struct input_dev *dev,
749 					unsigned int index)
750 {
751 	switch (dev->keycodesize) {
752 	case 1:
753 		return ((u8 *)dev->keycode)[index];
754 
755 	case 2:
756 		return ((u16 *)dev->keycode)[index];
757 
758 	default:
759 		return ((u32 *)dev->keycode)[index];
760 	}
761 }
762 
763 static int input_default_getkeycode(struct input_dev *dev,
764 				    struct input_keymap_entry *ke)
765 {
766 	unsigned int index;
767 	int error;
768 
769 	if (!dev->keycodesize)
770 		return -EINVAL;
771 
772 	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
773 		index = ke->index;
774 	else {
775 		error = input_scancode_to_scalar(ke, &index);
776 		if (error)
777 			return error;
778 	}
779 
780 	if (index >= dev->keycodemax)
781 		return -EINVAL;
782 
783 	ke->keycode = input_fetch_keycode(dev, index);
784 	ke->index = index;
785 	ke->len = sizeof(index);
786 	memcpy(ke->scancode, &index, sizeof(index));
787 
788 	return 0;
789 }
790 
791 static int input_default_setkeycode(struct input_dev *dev,
792 				    const struct input_keymap_entry *ke,
793 				    unsigned int *old_keycode)
794 {
795 	unsigned int index;
796 	int error;
797 	int i;
798 
799 	if (!dev->keycodesize)
800 		return -EINVAL;
801 
802 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
803 		index = ke->index;
804 	} else {
805 		error = input_scancode_to_scalar(ke, &index);
806 		if (error)
807 			return error;
808 	}
809 
810 	if (index >= dev->keycodemax)
811 		return -EINVAL;
812 
813 	if (dev->keycodesize < sizeof(ke->keycode) &&
814 			(ke->keycode >> (dev->keycodesize * 8)))
815 		return -EINVAL;
816 
817 	switch (dev->keycodesize) {
818 		case 1: {
819 			u8 *k = (u8 *)dev->keycode;
820 			*old_keycode = k[index];
821 			k[index] = ke->keycode;
822 			break;
823 		}
824 		case 2: {
825 			u16 *k = (u16 *)dev->keycode;
826 			*old_keycode = k[index];
827 			k[index] = ke->keycode;
828 			break;
829 		}
830 		default: {
831 			u32 *k = (u32 *)dev->keycode;
832 			*old_keycode = k[index];
833 			k[index] = ke->keycode;
834 			break;
835 		}
836 	}
837 
838 	__clear_bit(*old_keycode, dev->keybit);
839 	__set_bit(ke->keycode, dev->keybit);
840 
841 	for (i = 0; i < dev->keycodemax; i++) {
842 		if (input_fetch_keycode(dev, i) == *old_keycode) {
843 			__set_bit(*old_keycode, dev->keybit);
844 			break; /* Setting the bit twice is useless, so break */
845 		}
846 	}
847 
848 	return 0;
849 }
850 
851 /**
852  * input_get_keycode - retrieve keycode currently mapped to a given scancode
853  * @dev: input device which keymap is being queried
854  * @ke: keymap entry
855  *
856  * This function should be called by anyone interested in retrieving current
857  * keymap. Presently evdev handlers use it.
858  */
859 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
860 {
861 	unsigned long flags;
862 	int retval;
863 
864 	spin_lock_irqsave(&dev->event_lock, flags);
865 	retval = dev->getkeycode(dev, ke);
866 	spin_unlock_irqrestore(&dev->event_lock, flags);
867 
868 	return retval;
869 }
870 EXPORT_SYMBOL(input_get_keycode);
871 
872 /**
873  * input_set_keycode - attribute a keycode to a given scancode
874  * @dev: input device which keymap is being updated
875  * @ke: new keymap entry
876  *
877  * This function should be called by anyone needing to update current
878  * keymap. Presently keyboard and evdev handlers use it.
879  */
880 int input_set_keycode(struct input_dev *dev,
881 		      const struct input_keymap_entry *ke)
882 {
883 	unsigned long flags;
884 	unsigned int old_keycode;
885 	int retval;
886 
887 	if (ke->keycode > KEY_MAX)
888 		return -EINVAL;
889 
890 	spin_lock_irqsave(&dev->event_lock, flags);
891 
892 	retval = dev->setkeycode(dev, ke, &old_keycode);
893 	if (retval)
894 		goto out;
895 
896 	/* Make sure KEY_RESERVED did not get enabled. */
897 	__clear_bit(KEY_RESERVED, dev->keybit);
898 
899 	/*
900 	 * Simulate keyup event if keycode is not present
901 	 * in the keymap anymore
902 	 */
903 	if (test_bit(EV_KEY, dev->evbit) &&
904 	    !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
905 	    __test_and_clear_bit(old_keycode, dev->key)) {
906 		struct input_value vals[] =  {
907 			{ EV_KEY, old_keycode, 0 },
908 			input_value_sync
909 		};
910 
911 		input_pass_values(dev, vals, ARRAY_SIZE(vals));
912 	}
913 
914  out:
915 	spin_unlock_irqrestore(&dev->event_lock, flags);
916 
917 	return retval;
918 }
919 EXPORT_SYMBOL(input_set_keycode);
920 
921 static const struct input_device_id *input_match_device(struct input_handler *handler,
922 							struct input_dev *dev)
923 {
924 	const struct input_device_id *id;
925 
926 	for (id = handler->id_table; id->flags || id->driver_info; id++) {
927 
928 		if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
929 			if (id->bustype != dev->id.bustype)
930 				continue;
931 
932 		if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
933 			if (id->vendor != dev->id.vendor)
934 				continue;
935 
936 		if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
937 			if (id->product != dev->id.product)
938 				continue;
939 
940 		if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
941 			if (id->version != dev->id.version)
942 				continue;
943 
944 		if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX))
945 			continue;
946 
947 		if (!bitmap_subset(id->keybit, dev->keybit, KEY_MAX))
948 			continue;
949 
950 		if (!bitmap_subset(id->relbit, dev->relbit, REL_MAX))
951 			continue;
952 
953 		if (!bitmap_subset(id->absbit, dev->absbit, ABS_MAX))
954 			continue;
955 
956 		if (!bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX))
957 			continue;
958 
959 		if (!bitmap_subset(id->ledbit, dev->ledbit, LED_MAX))
960 			continue;
961 
962 		if (!bitmap_subset(id->sndbit, dev->sndbit, SND_MAX))
963 			continue;
964 
965 		if (!bitmap_subset(id->ffbit, dev->ffbit, FF_MAX))
966 			continue;
967 
968 		if (!bitmap_subset(id->swbit, dev->swbit, SW_MAX))
969 			continue;
970 
971 		if (!handler->match || handler->match(handler, dev))
972 			return id;
973 	}
974 
975 	return NULL;
976 }
977 
978 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
979 {
980 	const struct input_device_id *id;
981 	int error;
982 
983 	id = input_match_device(handler, dev);
984 	if (!id)
985 		return -ENODEV;
986 
987 	error = handler->connect(handler, dev, id);
988 	if (error && error != -ENODEV)
989 		pr_err("failed to attach handler %s to device %s, error: %d\n",
990 		       handler->name, kobject_name(&dev->dev.kobj), error);
991 
992 	return error;
993 }
994 
995 #ifdef CONFIG_COMPAT
996 
997 static int input_bits_to_string(char *buf, int buf_size,
998 				unsigned long bits, bool skip_empty)
999 {
1000 	int len = 0;
1001 
1002 	if (INPUT_COMPAT_TEST) {
1003 		u32 dword = bits >> 32;
1004 		if (dword || !skip_empty)
1005 			len += snprintf(buf, buf_size, "%x ", dword);
1006 
1007 		dword = bits & 0xffffffffUL;
1008 		if (dword || !skip_empty || len)
1009 			len += snprintf(buf + len, max(buf_size - len, 0),
1010 					"%x", dword);
1011 	} else {
1012 		if (bits || !skip_empty)
1013 			len += snprintf(buf, buf_size, "%lx", bits);
1014 	}
1015 
1016 	return len;
1017 }
1018 
1019 #else /* !CONFIG_COMPAT */
1020 
1021 static int input_bits_to_string(char *buf, int buf_size,
1022 				unsigned long bits, bool skip_empty)
1023 {
1024 	return bits || !skip_empty ?
1025 		snprintf(buf, buf_size, "%lx", bits) : 0;
1026 }
1027 
1028 #endif
1029 
1030 #ifdef CONFIG_PROC_FS
1031 
1032 static struct proc_dir_entry *proc_bus_input_dir;
1033 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1034 static int input_devices_state;
1035 
1036 static inline void input_wakeup_procfs_readers(void)
1037 {
1038 	input_devices_state++;
1039 	wake_up(&input_devices_poll_wait);
1040 }
1041 
1042 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
1043 {
1044 	poll_wait(file, &input_devices_poll_wait, wait);
1045 	if (file->f_version != input_devices_state) {
1046 		file->f_version = input_devices_state;
1047 		return POLLIN | POLLRDNORM;
1048 	}
1049 
1050 	return 0;
1051 }
1052 
1053 union input_seq_state {
1054 	struct {
1055 		unsigned short pos;
1056 		bool mutex_acquired;
1057 	};
1058 	void *p;
1059 };
1060 
1061 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1062 {
1063 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1064 	int error;
1065 
1066 	/* We need to fit into seq->private pointer */
1067 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1068 
1069 	error = mutex_lock_interruptible(&input_mutex);
1070 	if (error) {
1071 		state->mutex_acquired = false;
1072 		return ERR_PTR(error);
1073 	}
1074 
1075 	state->mutex_acquired = true;
1076 
1077 	return seq_list_start(&input_dev_list, *pos);
1078 }
1079 
1080 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1081 {
1082 	return seq_list_next(v, &input_dev_list, pos);
1083 }
1084 
1085 static void input_seq_stop(struct seq_file *seq, void *v)
1086 {
1087 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1088 
1089 	if (state->mutex_acquired)
1090 		mutex_unlock(&input_mutex);
1091 }
1092 
1093 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1094 				   unsigned long *bitmap, int max)
1095 {
1096 	int i;
1097 	bool skip_empty = true;
1098 	char buf[18];
1099 
1100 	seq_printf(seq, "B: %s=", name);
1101 
1102 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1103 		if (input_bits_to_string(buf, sizeof(buf),
1104 					 bitmap[i], skip_empty)) {
1105 			skip_empty = false;
1106 			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1107 		}
1108 	}
1109 
1110 	/*
1111 	 * If no output was produced print a single 0.
1112 	 */
1113 	if (skip_empty)
1114 		seq_puts(seq, "0");
1115 
1116 	seq_putc(seq, '\n');
1117 }
1118 
1119 static int input_devices_seq_show(struct seq_file *seq, void *v)
1120 {
1121 	struct input_dev *dev = container_of(v, struct input_dev, node);
1122 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1123 	struct input_handle *handle;
1124 
1125 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1126 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1127 
1128 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1129 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1130 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1131 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1132 	seq_printf(seq, "H: Handlers=");
1133 
1134 	list_for_each_entry(handle, &dev->h_list, d_node)
1135 		seq_printf(seq, "%s ", handle->name);
1136 	seq_putc(seq, '\n');
1137 
1138 	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1139 
1140 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1141 	if (test_bit(EV_KEY, dev->evbit))
1142 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1143 	if (test_bit(EV_REL, dev->evbit))
1144 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1145 	if (test_bit(EV_ABS, dev->evbit))
1146 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1147 	if (test_bit(EV_MSC, dev->evbit))
1148 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1149 	if (test_bit(EV_LED, dev->evbit))
1150 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1151 	if (test_bit(EV_SND, dev->evbit))
1152 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1153 	if (test_bit(EV_FF, dev->evbit))
1154 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1155 	if (test_bit(EV_SW, dev->evbit))
1156 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1157 
1158 	seq_putc(seq, '\n');
1159 
1160 	kfree(path);
1161 	return 0;
1162 }
1163 
1164 static const struct seq_operations input_devices_seq_ops = {
1165 	.start	= input_devices_seq_start,
1166 	.next	= input_devices_seq_next,
1167 	.stop	= input_seq_stop,
1168 	.show	= input_devices_seq_show,
1169 };
1170 
1171 static int input_proc_devices_open(struct inode *inode, struct file *file)
1172 {
1173 	return seq_open(file, &input_devices_seq_ops);
1174 }
1175 
1176 static const struct file_operations input_devices_fileops = {
1177 	.owner		= THIS_MODULE,
1178 	.open		= input_proc_devices_open,
1179 	.poll		= input_proc_devices_poll,
1180 	.read		= seq_read,
1181 	.llseek		= seq_lseek,
1182 	.release	= seq_release,
1183 };
1184 
1185 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1186 {
1187 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1188 	int error;
1189 
1190 	/* We need to fit into seq->private pointer */
1191 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1192 
1193 	error = mutex_lock_interruptible(&input_mutex);
1194 	if (error) {
1195 		state->mutex_acquired = false;
1196 		return ERR_PTR(error);
1197 	}
1198 
1199 	state->mutex_acquired = true;
1200 	state->pos = *pos;
1201 
1202 	return seq_list_start(&input_handler_list, *pos);
1203 }
1204 
1205 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1206 {
1207 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1208 
1209 	state->pos = *pos + 1;
1210 	return seq_list_next(v, &input_handler_list, pos);
1211 }
1212 
1213 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1214 {
1215 	struct input_handler *handler = container_of(v, struct input_handler, node);
1216 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1217 
1218 	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1219 	if (handler->filter)
1220 		seq_puts(seq, " (filter)");
1221 	if (handler->fops)
1222 		seq_printf(seq, " Minor=%d", handler->minor);
1223 	seq_putc(seq, '\n');
1224 
1225 	return 0;
1226 }
1227 
1228 static const struct seq_operations input_handlers_seq_ops = {
1229 	.start	= input_handlers_seq_start,
1230 	.next	= input_handlers_seq_next,
1231 	.stop	= input_seq_stop,
1232 	.show	= input_handlers_seq_show,
1233 };
1234 
1235 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1236 {
1237 	return seq_open(file, &input_handlers_seq_ops);
1238 }
1239 
1240 static const struct file_operations input_handlers_fileops = {
1241 	.owner		= THIS_MODULE,
1242 	.open		= input_proc_handlers_open,
1243 	.read		= seq_read,
1244 	.llseek		= seq_lseek,
1245 	.release	= seq_release,
1246 };
1247 
1248 static int __init input_proc_init(void)
1249 {
1250 	struct proc_dir_entry *entry;
1251 
1252 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1253 	if (!proc_bus_input_dir)
1254 		return -ENOMEM;
1255 
1256 	entry = proc_create("devices", 0, proc_bus_input_dir,
1257 			    &input_devices_fileops);
1258 	if (!entry)
1259 		goto fail1;
1260 
1261 	entry = proc_create("handlers", 0, proc_bus_input_dir,
1262 			    &input_handlers_fileops);
1263 	if (!entry)
1264 		goto fail2;
1265 
1266 	return 0;
1267 
1268  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1269  fail1: remove_proc_entry("bus/input", NULL);
1270 	return -ENOMEM;
1271 }
1272 
1273 static void input_proc_exit(void)
1274 {
1275 	remove_proc_entry("devices", proc_bus_input_dir);
1276 	remove_proc_entry("handlers", proc_bus_input_dir);
1277 	remove_proc_entry("bus/input", NULL);
1278 }
1279 
1280 #else /* !CONFIG_PROC_FS */
1281 static inline void input_wakeup_procfs_readers(void) { }
1282 static inline int input_proc_init(void) { return 0; }
1283 static inline void input_proc_exit(void) { }
1284 #endif
1285 
1286 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1287 static ssize_t input_dev_show_##name(struct device *dev,		\
1288 				     struct device_attribute *attr,	\
1289 				     char *buf)				\
1290 {									\
1291 	struct input_dev *input_dev = to_input_dev(dev);		\
1292 									\
1293 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1294 			 input_dev->name ? input_dev->name : "");	\
1295 }									\
1296 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1297 
1298 INPUT_DEV_STRING_ATTR_SHOW(name);
1299 INPUT_DEV_STRING_ATTR_SHOW(phys);
1300 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1301 
1302 static int input_print_modalias_bits(char *buf, int size,
1303 				     char name, unsigned long *bm,
1304 				     unsigned int min_bit, unsigned int max_bit)
1305 {
1306 	int len = 0, i;
1307 
1308 	len += snprintf(buf, max(size, 0), "%c", name);
1309 	for (i = min_bit; i < max_bit; i++)
1310 		if (bm[BIT_WORD(i)] & BIT_MASK(i))
1311 			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1312 	return len;
1313 }
1314 
1315 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1316 				int add_cr)
1317 {
1318 	int len;
1319 
1320 	len = snprintf(buf, max(size, 0),
1321 		       "input:b%04Xv%04Xp%04Xe%04X-",
1322 		       id->id.bustype, id->id.vendor,
1323 		       id->id.product, id->id.version);
1324 
1325 	len += input_print_modalias_bits(buf + len, size - len,
1326 				'e', id->evbit, 0, EV_MAX);
1327 	len += input_print_modalias_bits(buf + len, size - len,
1328 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1329 	len += input_print_modalias_bits(buf + len, size - len,
1330 				'r', id->relbit, 0, REL_MAX);
1331 	len += input_print_modalias_bits(buf + len, size - len,
1332 				'a', id->absbit, 0, ABS_MAX);
1333 	len += input_print_modalias_bits(buf + len, size - len,
1334 				'm', id->mscbit, 0, MSC_MAX);
1335 	len += input_print_modalias_bits(buf + len, size - len,
1336 				'l', id->ledbit, 0, LED_MAX);
1337 	len += input_print_modalias_bits(buf + len, size - len,
1338 				's', id->sndbit, 0, SND_MAX);
1339 	len += input_print_modalias_bits(buf + len, size - len,
1340 				'f', id->ffbit, 0, FF_MAX);
1341 	len += input_print_modalias_bits(buf + len, size - len,
1342 				'w', id->swbit, 0, SW_MAX);
1343 
1344 	if (add_cr)
1345 		len += snprintf(buf + len, max(size - len, 0), "\n");
1346 
1347 	return len;
1348 }
1349 
1350 static ssize_t input_dev_show_modalias(struct device *dev,
1351 				       struct device_attribute *attr,
1352 				       char *buf)
1353 {
1354 	struct input_dev *id = to_input_dev(dev);
1355 	ssize_t len;
1356 
1357 	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1358 
1359 	return min_t(int, len, PAGE_SIZE);
1360 }
1361 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1362 
1363 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1364 			      int max, int add_cr);
1365 
1366 static ssize_t input_dev_show_properties(struct device *dev,
1367 					 struct device_attribute *attr,
1368 					 char *buf)
1369 {
1370 	struct input_dev *input_dev = to_input_dev(dev);
1371 	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1372 				     INPUT_PROP_MAX, true);
1373 	return min_t(int, len, PAGE_SIZE);
1374 }
1375 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1376 
1377 static struct attribute *input_dev_attrs[] = {
1378 	&dev_attr_name.attr,
1379 	&dev_attr_phys.attr,
1380 	&dev_attr_uniq.attr,
1381 	&dev_attr_modalias.attr,
1382 	&dev_attr_properties.attr,
1383 	NULL
1384 };
1385 
1386 static struct attribute_group input_dev_attr_group = {
1387 	.attrs	= input_dev_attrs,
1388 };
1389 
1390 #define INPUT_DEV_ID_ATTR(name)						\
1391 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1392 					struct device_attribute *attr,	\
1393 					char *buf)			\
1394 {									\
1395 	struct input_dev *input_dev = to_input_dev(dev);		\
1396 	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
1397 }									\
1398 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1399 
1400 INPUT_DEV_ID_ATTR(bustype);
1401 INPUT_DEV_ID_ATTR(vendor);
1402 INPUT_DEV_ID_ATTR(product);
1403 INPUT_DEV_ID_ATTR(version);
1404 
1405 static struct attribute *input_dev_id_attrs[] = {
1406 	&dev_attr_bustype.attr,
1407 	&dev_attr_vendor.attr,
1408 	&dev_attr_product.attr,
1409 	&dev_attr_version.attr,
1410 	NULL
1411 };
1412 
1413 static struct attribute_group input_dev_id_attr_group = {
1414 	.name	= "id",
1415 	.attrs	= input_dev_id_attrs,
1416 };
1417 
1418 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1419 			      int max, int add_cr)
1420 {
1421 	int i;
1422 	int len = 0;
1423 	bool skip_empty = true;
1424 
1425 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1426 		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1427 					    bitmap[i], skip_empty);
1428 		if (len) {
1429 			skip_empty = false;
1430 			if (i > 0)
1431 				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1432 		}
1433 	}
1434 
1435 	/*
1436 	 * If no output was produced print a single 0.
1437 	 */
1438 	if (len == 0)
1439 		len = snprintf(buf, buf_size, "%d", 0);
1440 
1441 	if (add_cr)
1442 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1443 
1444 	return len;
1445 }
1446 
1447 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1448 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1449 				       struct device_attribute *attr,	\
1450 				       char *buf)			\
1451 {									\
1452 	struct input_dev *input_dev = to_input_dev(dev);		\
1453 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1454 				     input_dev->bm##bit, ev##_MAX,	\
1455 				     true);				\
1456 	return min_t(int, len, PAGE_SIZE);				\
1457 }									\
1458 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1459 
1460 INPUT_DEV_CAP_ATTR(EV, ev);
1461 INPUT_DEV_CAP_ATTR(KEY, key);
1462 INPUT_DEV_CAP_ATTR(REL, rel);
1463 INPUT_DEV_CAP_ATTR(ABS, abs);
1464 INPUT_DEV_CAP_ATTR(MSC, msc);
1465 INPUT_DEV_CAP_ATTR(LED, led);
1466 INPUT_DEV_CAP_ATTR(SND, snd);
1467 INPUT_DEV_CAP_ATTR(FF, ff);
1468 INPUT_DEV_CAP_ATTR(SW, sw);
1469 
1470 static struct attribute *input_dev_caps_attrs[] = {
1471 	&dev_attr_ev.attr,
1472 	&dev_attr_key.attr,
1473 	&dev_attr_rel.attr,
1474 	&dev_attr_abs.attr,
1475 	&dev_attr_msc.attr,
1476 	&dev_attr_led.attr,
1477 	&dev_attr_snd.attr,
1478 	&dev_attr_ff.attr,
1479 	&dev_attr_sw.attr,
1480 	NULL
1481 };
1482 
1483 static struct attribute_group input_dev_caps_attr_group = {
1484 	.name	= "capabilities",
1485 	.attrs	= input_dev_caps_attrs,
1486 };
1487 
1488 static const struct attribute_group *input_dev_attr_groups[] = {
1489 	&input_dev_attr_group,
1490 	&input_dev_id_attr_group,
1491 	&input_dev_caps_attr_group,
1492 	NULL
1493 };
1494 
1495 static void input_dev_release(struct device *device)
1496 {
1497 	struct input_dev *dev = to_input_dev(device);
1498 
1499 	input_ff_destroy(dev);
1500 	input_mt_destroy_slots(dev);
1501 	kfree(dev->absinfo);
1502 	kfree(dev->vals);
1503 	kfree(dev);
1504 
1505 	module_put(THIS_MODULE);
1506 }
1507 
1508 /*
1509  * Input uevent interface - loading event handlers based on
1510  * device bitfields.
1511  */
1512 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1513 				   const char *name, unsigned long *bitmap, int max)
1514 {
1515 	int len;
1516 
1517 	if (add_uevent_var(env, "%s", name))
1518 		return -ENOMEM;
1519 
1520 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1521 				 sizeof(env->buf) - env->buflen,
1522 				 bitmap, max, false);
1523 	if (len >= (sizeof(env->buf) - env->buflen))
1524 		return -ENOMEM;
1525 
1526 	env->buflen += len;
1527 	return 0;
1528 }
1529 
1530 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1531 					 struct input_dev *dev)
1532 {
1533 	int len;
1534 
1535 	if (add_uevent_var(env, "MODALIAS="))
1536 		return -ENOMEM;
1537 
1538 	len = input_print_modalias(&env->buf[env->buflen - 1],
1539 				   sizeof(env->buf) - env->buflen,
1540 				   dev, 0);
1541 	if (len >= (sizeof(env->buf) - env->buflen))
1542 		return -ENOMEM;
1543 
1544 	env->buflen += len;
1545 	return 0;
1546 }
1547 
1548 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1549 	do {								\
1550 		int err = add_uevent_var(env, fmt, val);		\
1551 		if (err)						\
1552 			return err;					\
1553 	} while (0)
1554 
1555 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1556 	do {								\
1557 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1558 		if (err)						\
1559 			return err;					\
1560 	} while (0)
1561 
1562 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1563 	do {								\
1564 		int err = input_add_uevent_modalias_var(env, dev);	\
1565 		if (err)						\
1566 			return err;					\
1567 	} while (0)
1568 
1569 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1570 {
1571 	struct input_dev *dev = to_input_dev(device);
1572 
1573 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1574 				dev->id.bustype, dev->id.vendor,
1575 				dev->id.product, dev->id.version);
1576 	if (dev->name)
1577 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1578 	if (dev->phys)
1579 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1580 	if (dev->uniq)
1581 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1582 
1583 	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1584 
1585 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1586 	if (test_bit(EV_KEY, dev->evbit))
1587 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1588 	if (test_bit(EV_REL, dev->evbit))
1589 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1590 	if (test_bit(EV_ABS, dev->evbit))
1591 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1592 	if (test_bit(EV_MSC, dev->evbit))
1593 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1594 	if (test_bit(EV_LED, dev->evbit))
1595 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1596 	if (test_bit(EV_SND, dev->evbit))
1597 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1598 	if (test_bit(EV_FF, dev->evbit))
1599 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1600 	if (test_bit(EV_SW, dev->evbit))
1601 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1602 
1603 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1604 
1605 	return 0;
1606 }
1607 
1608 #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1609 	do {								\
1610 		int i;							\
1611 		bool active;						\
1612 									\
1613 		if (!test_bit(EV_##type, dev->evbit))			\
1614 			break;						\
1615 									\
1616 		for (i = 0; i < type##_MAX; i++) {			\
1617 			if (!test_bit(i, dev->bits##bit))		\
1618 				continue;				\
1619 									\
1620 			active = test_bit(i, dev->bits);		\
1621 			if (!active && !on)				\
1622 				continue;				\
1623 									\
1624 			dev->event(dev, EV_##type, i, on ? active : 0);	\
1625 		}							\
1626 	} while (0)
1627 
1628 static void input_dev_toggle(struct input_dev *dev, bool activate)
1629 {
1630 	if (!dev->event)
1631 		return;
1632 
1633 	INPUT_DO_TOGGLE(dev, LED, led, activate);
1634 	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1635 
1636 	if (activate && test_bit(EV_REP, dev->evbit)) {
1637 		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1638 		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1639 	}
1640 }
1641 
1642 /**
1643  * input_reset_device() - reset/restore the state of input device
1644  * @dev: input device whose state needs to be reset
1645  *
1646  * This function tries to reset the state of an opened input device and
1647  * bring internal state and state if the hardware in sync with each other.
1648  * We mark all keys as released, restore LED state, repeat rate, etc.
1649  */
1650 void input_reset_device(struct input_dev *dev)
1651 {
1652 	mutex_lock(&dev->mutex);
1653 
1654 	if (dev->users) {
1655 		input_dev_toggle(dev, true);
1656 
1657 		/*
1658 		 * Keys that have been pressed at suspend time are unlikely
1659 		 * to be still pressed when we resume.
1660 		 */
1661 		spin_lock_irq(&dev->event_lock);
1662 		input_dev_release_keys(dev);
1663 		spin_unlock_irq(&dev->event_lock);
1664 	}
1665 
1666 	mutex_unlock(&dev->mutex);
1667 }
1668 EXPORT_SYMBOL(input_reset_device);
1669 
1670 #ifdef CONFIG_PM
1671 static int input_dev_suspend(struct device *dev)
1672 {
1673 	struct input_dev *input_dev = to_input_dev(dev);
1674 
1675 	mutex_lock(&input_dev->mutex);
1676 
1677 	if (input_dev->users)
1678 		input_dev_toggle(input_dev, false);
1679 
1680 	mutex_unlock(&input_dev->mutex);
1681 
1682 	return 0;
1683 }
1684 
1685 static int input_dev_resume(struct device *dev)
1686 {
1687 	struct input_dev *input_dev = to_input_dev(dev);
1688 
1689 	input_reset_device(input_dev);
1690 
1691 	return 0;
1692 }
1693 
1694 static const struct dev_pm_ops input_dev_pm_ops = {
1695 	.suspend	= input_dev_suspend,
1696 	.resume		= input_dev_resume,
1697 	.poweroff	= input_dev_suspend,
1698 	.restore	= input_dev_resume,
1699 };
1700 #endif /* CONFIG_PM */
1701 
1702 static struct device_type input_dev_type = {
1703 	.groups		= input_dev_attr_groups,
1704 	.release	= input_dev_release,
1705 	.uevent		= input_dev_uevent,
1706 #ifdef CONFIG_PM
1707 	.pm		= &input_dev_pm_ops,
1708 #endif
1709 };
1710 
1711 static char *input_devnode(struct device *dev, umode_t *mode)
1712 {
1713 	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1714 }
1715 
1716 struct class input_class = {
1717 	.name		= "input",
1718 	.devnode	= input_devnode,
1719 };
1720 EXPORT_SYMBOL_GPL(input_class);
1721 
1722 /**
1723  * input_allocate_device - allocate memory for new input device
1724  *
1725  * Returns prepared struct input_dev or NULL.
1726  *
1727  * NOTE: Use input_free_device() to free devices that have not been
1728  * registered; input_unregister_device() should be used for already
1729  * registered devices.
1730  */
1731 struct input_dev *input_allocate_device(void)
1732 {
1733 	struct input_dev *dev;
1734 
1735 	dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1736 	if (dev) {
1737 		dev->dev.type = &input_dev_type;
1738 		dev->dev.class = &input_class;
1739 		device_initialize(&dev->dev);
1740 		mutex_init(&dev->mutex);
1741 		spin_lock_init(&dev->event_lock);
1742 		INIT_LIST_HEAD(&dev->h_list);
1743 		INIT_LIST_HEAD(&dev->node);
1744 
1745 		__module_get(THIS_MODULE);
1746 	}
1747 
1748 	return dev;
1749 }
1750 EXPORT_SYMBOL(input_allocate_device);
1751 
1752 /**
1753  * input_free_device - free memory occupied by input_dev structure
1754  * @dev: input device to free
1755  *
1756  * This function should only be used if input_register_device()
1757  * was not called yet or if it failed. Once device was registered
1758  * use input_unregister_device() and memory will be freed once last
1759  * reference to the device is dropped.
1760  *
1761  * Device should be allocated by input_allocate_device().
1762  *
1763  * NOTE: If there are references to the input device then memory
1764  * will not be freed until last reference is dropped.
1765  */
1766 void input_free_device(struct input_dev *dev)
1767 {
1768 	if (dev)
1769 		input_put_device(dev);
1770 }
1771 EXPORT_SYMBOL(input_free_device);
1772 
1773 /**
1774  * input_set_capability - mark device as capable of a certain event
1775  * @dev: device that is capable of emitting or accepting event
1776  * @type: type of the event (EV_KEY, EV_REL, etc...)
1777  * @code: event code
1778  *
1779  * In addition to setting up corresponding bit in appropriate capability
1780  * bitmap the function also adjusts dev->evbit.
1781  */
1782 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1783 {
1784 	switch (type) {
1785 	case EV_KEY:
1786 		__set_bit(code, dev->keybit);
1787 		break;
1788 
1789 	case EV_REL:
1790 		__set_bit(code, dev->relbit);
1791 		break;
1792 
1793 	case EV_ABS:
1794 		__set_bit(code, dev->absbit);
1795 		break;
1796 
1797 	case EV_MSC:
1798 		__set_bit(code, dev->mscbit);
1799 		break;
1800 
1801 	case EV_SW:
1802 		__set_bit(code, dev->swbit);
1803 		break;
1804 
1805 	case EV_LED:
1806 		__set_bit(code, dev->ledbit);
1807 		break;
1808 
1809 	case EV_SND:
1810 		__set_bit(code, dev->sndbit);
1811 		break;
1812 
1813 	case EV_FF:
1814 		__set_bit(code, dev->ffbit);
1815 		break;
1816 
1817 	case EV_PWR:
1818 		/* do nothing */
1819 		break;
1820 
1821 	default:
1822 		pr_err("input_set_capability: unknown type %u (code %u)\n",
1823 		       type, code);
1824 		dump_stack();
1825 		return;
1826 	}
1827 
1828 	__set_bit(type, dev->evbit);
1829 }
1830 EXPORT_SYMBOL(input_set_capability);
1831 
1832 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
1833 {
1834 	int mt_slots;
1835 	int i;
1836 	unsigned int events;
1837 
1838 	if (dev->mt) {
1839 		mt_slots = dev->mt->num_slots;
1840 	} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
1841 		mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
1842 			   dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
1843 		mt_slots = clamp(mt_slots, 2, 32);
1844 	} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
1845 		mt_slots = 2;
1846 	} else {
1847 		mt_slots = 0;
1848 	}
1849 
1850 	events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
1851 
1852 	for (i = 0; i < ABS_CNT; i++) {
1853 		if (test_bit(i, dev->absbit)) {
1854 			if (input_is_mt_axis(i))
1855 				events += mt_slots;
1856 			else
1857 				events++;
1858 		}
1859 	}
1860 
1861 	for (i = 0; i < REL_CNT; i++)
1862 		if (test_bit(i, dev->relbit))
1863 			events++;
1864 
1865 	/* Make room for KEY and MSC events */
1866 	events += 7;
1867 
1868 	return events;
1869 }
1870 
1871 #define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
1872 	do {								\
1873 		if (!test_bit(EV_##type, dev->evbit))			\
1874 			memset(dev->bits##bit, 0,			\
1875 				sizeof(dev->bits##bit));		\
1876 	} while (0)
1877 
1878 static void input_cleanse_bitmasks(struct input_dev *dev)
1879 {
1880 	INPUT_CLEANSE_BITMASK(dev, KEY, key);
1881 	INPUT_CLEANSE_BITMASK(dev, REL, rel);
1882 	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
1883 	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
1884 	INPUT_CLEANSE_BITMASK(dev, LED, led);
1885 	INPUT_CLEANSE_BITMASK(dev, SND, snd);
1886 	INPUT_CLEANSE_BITMASK(dev, FF, ff);
1887 	INPUT_CLEANSE_BITMASK(dev, SW, sw);
1888 }
1889 
1890 /**
1891  * input_register_device - register device with input core
1892  * @dev: device to be registered
1893  *
1894  * This function registers device with input core. The device must be
1895  * allocated with input_allocate_device() and all it's capabilities
1896  * set up before registering.
1897  * If function fails the device must be freed with input_free_device().
1898  * Once device has been successfully registered it can be unregistered
1899  * with input_unregister_device(); input_free_device() should not be
1900  * called in this case.
1901  */
1902 int input_register_device(struct input_dev *dev)
1903 {
1904 	static atomic_t input_no = ATOMIC_INIT(0);
1905 	struct input_handler *handler;
1906 	unsigned int packet_size;
1907 	const char *path;
1908 	int error;
1909 
1910 	/* Every input device generates EV_SYN/SYN_REPORT events. */
1911 	__set_bit(EV_SYN, dev->evbit);
1912 
1913 	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
1914 	__clear_bit(KEY_RESERVED, dev->keybit);
1915 
1916 	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
1917 	input_cleanse_bitmasks(dev);
1918 
1919 	packet_size = input_estimate_events_per_packet(dev);
1920 	if (dev->hint_events_per_packet < packet_size)
1921 		dev->hint_events_per_packet = packet_size;
1922 
1923 	dev->max_vals = max(dev->hint_events_per_packet, packet_size) + 2;
1924 	dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
1925 	if (!dev->vals)
1926 		return -ENOMEM;
1927 
1928 	/*
1929 	 * If delay and period are pre-set by the driver, then autorepeating
1930 	 * is handled by the driver itself and we don't do it in input.c.
1931 	 */
1932 	init_timer(&dev->timer);
1933 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1934 		dev->timer.data = (long) dev;
1935 		dev->timer.function = input_repeat_key;
1936 		dev->rep[REP_DELAY] = 250;
1937 		dev->rep[REP_PERIOD] = 33;
1938 	}
1939 
1940 	if (!dev->getkeycode)
1941 		dev->getkeycode = input_default_getkeycode;
1942 
1943 	if (!dev->setkeycode)
1944 		dev->setkeycode = input_default_setkeycode;
1945 
1946 	dev_set_name(&dev->dev, "input%ld",
1947 		     (unsigned long) atomic_inc_return(&input_no) - 1);
1948 
1949 	error = device_add(&dev->dev);
1950 	if (error)
1951 		return error;
1952 
1953 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1954 	pr_info("%s as %s\n",
1955 		dev->name ? dev->name : "Unspecified device",
1956 		path ? path : "N/A");
1957 	kfree(path);
1958 
1959 	error = mutex_lock_interruptible(&input_mutex);
1960 	if (error) {
1961 		device_del(&dev->dev);
1962 		return error;
1963 	}
1964 
1965 	list_add_tail(&dev->node, &input_dev_list);
1966 
1967 	list_for_each_entry(handler, &input_handler_list, node)
1968 		input_attach_handler(dev, handler);
1969 
1970 	input_wakeup_procfs_readers();
1971 
1972 	mutex_unlock(&input_mutex);
1973 
1974 	return 0;
1975 }
1976 EXPORT_SYMBOL(input_register_device);
1977 
1978 /**
1979  * input_unregister_device - unregister previously registered device
1980  * @dev: device to be unregistered
1981  *
1982  * This function unregisters an input device. Once device is unregistered
1983  * the caller should not try to access it as it may get freed at any moment.
1984  */
1985 void input_unregister_device(struct input_dev *dev)
1986 {
1987 	struct input_handle *handle, *next;
1988 
1989 	input_disconnect_device(dev);
1990 
1991 	mutex_lock(&input_mutex);
1992 
1993 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1994 		handle->handler->disconnect(handle);
1995 	WARN_ON(!list_empty(&dev->h_list));
1996 
1997 	del_timer_sync(&dev->timer);
1998 	list_del_init(&dev->node);
1999 
2000 	input_wakeup_procfs_readers();
2001 
2002 	mutex_unlock(&input_mutex);
2003 
2004 	device_unregister(&dev->dev);
2005 }
2006 EXPORT_SYMBOL(input_unregister_device);
2007 
2008 /**
2009  * input_register_handler - register a new input handler
2010  * @handler: handler to be registered
2011  *
2012  * This function registers a new input handler (interface) for input
2013  * devices in the system and attaches it to all input devices that
2014  * are compatible with the handler.
2015  */
2016 int input_register_handler(struct input_handler *handler)
2017 {
2018 	struct input_dev *dev;
2019 	int retval;
2020 
2021 	retval = mutex_lock_interruptible(&input_mutex);
2022 	if (retval)
2023 		return retval;
2024 
2025 	INIT_LIST_HEAD(&handler->h_list);
2026 
2027 	if (handler->fops != NULL) {
2028 		if (input_table[handler->minor >> 5]) {
2029 			retval = -EBUSY;
2030 			goto out;
2031 		}
2032 		input_table[handler->minor >> 5] = handler;
2033 	}
2034 
2035 	list_add_tail(&handler->node, &input_handler_list);
2036 
2037 	list_for_each_entry(dev, &input_dev_list, node)
2038 		input_attach_handler(dev, handler);
2039 
2040 	input_wakeup_procfs_readers();
2041 
2042  out:
2043 	mutex_unlock(&input_mutex);
2044 	return retval;
2045 }
2046 EXPORT_SYMBOL(input_register_handler);
2047 
2048 /**
2049  * input_unregister_handler - unregisters an input handler
2050  * @handler: handler to be unregistered
2051  *
2052  * This function disconnects a handler from its input devices and
2053  * removes it from lists of known handlers.
2054  */
2055 void input_unregister_handler(struct input_handler *handler)
2056 {
2057 	struct input_handle *handle, *next;
2058 
2059 	mutex_lock(&input_mutex);
2060 
2061 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2062 		handler->disconnect(handle);
2063 	WARN_ON(!list_empty(&handler->h_list));
2064 
2065 	list_del_init(&handler->node);
2066 
2067 	if (handler->fops != NULL)
2068 		input_table[handler->minor >> 5] = NULL;
2069 
2070 	input_wakeup_procfs_readers();
2071 
2072 	mutex_unlock(&input_mutex);
2073 }
2074 EXPORT_SYMBOL(input_unregister_handler);
2075 
2076 /**
2077  * input_handler_for_each_handle - handle iterator
2078  * @handler: input handler to iterate
2079  * @data: data for the callback
2080  * @fn: function to be called for each handle
2081  *
2082  * Iterate over @bus's list of devices, and call @fn for each, passing
2083  * it @data and stop when @fn returns a non-zero value. The function is
2084  * using RCU to traverse the list and therefore may be usind in atonic
2085  * contexts. The @fn callback is invoked from RCU critical section and
2086  * thus must not sleep.
2087  */
2088 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2089 				  int (*fn)(struct input_handle *, void *))
2090 {
2091 	struct input_handle *handle;
2092 	int retval = 0;
2093 
2094 	rcu_read_lock();
2095 
2096 	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2097 		retval = fn(handle, data);
2098 		if (retval)
2099 			break;
2100 	}
2101 
2102 	rcu_read_unlock();
2103 
2104 	return retval;
2105 }
2106 EXPORT_SYMBOL(input_handler_for_each_handle);
2107 
2108 /**
2109  * input_register_handle - register a new input handle
2110  * @handle: handle to register
2111  *
2112  * This function puts a new input handle onto device's
2113  * and handler's lists so that events can flow through
2114  * it once it is opened using input_open_device().
2115  *
2116  * This function is supposed to be called from handler's
2117  * connect() method.
2118  */
2119 int input_register_handle(struct input_handle *handle)
2120 {
2121 	struct input_handler *handler = handle->handler;
2122 	struct input_dev *dev = handle->dev;
2123 	int error;
2124 
2125 	/*
2126 	 * We take dev->mutex here to prevent race with
2127 	 * input_release_device().
2128 	 */
2129 	error = mutex_lock_interruptible(&dev->mutex);
2130 	if (error)
2131 		return error;
2132 
2133 	/*
2134 	 * Filters go to the head of the list, normal handlers
2135 	 * to the tail.
2136 	 */
2137 	if (handler->filter)
2138 		list_add_rcu(&handle->d_node, &dev->h_list);
2139 	else
2140 		list_add_tail_rcu(&handle->d_node, &dev->h_list);
2141 
2142 	mutex_unlock(&dev->mutex);
2143 
2144 	/*
2145 	 * Since we are supposed to be called from ->connect()
2146 	 * which is mutually exclusive with ->disconnect()
2147 	 * we can't be racing with input_unregister_handle()
2148 	 * and so separate lock is not needed here.
2149 	 */
2150 	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2151 
2152 	if (handler->start)
2153 		handler->start(handle);
2154 
2155 	return 0;
2156 }
2157 EXPORT_SYMBOL(input_register_handle);
2158 
2159 /**
2160  * input_unregister_handle - unregister an input handle
2161  * @handle: handle to unregister
2162  *
2163  * This function removes input handle from device's
2164  * and handler's lists.
2165  *
2166  * This function is supposed to be called from handler's
2167  * disconnect() method.
2168  */
2169 void input_unregister_handle(struct input_handle *handle)
2170 {
2171 	struct input_dev *dev = handle->dev;
2172 
2173 	list_del_rcu(&handle->h_node);
2174 
2175 	/*
2176 	 * Take dev->mutex to prevent race with input_release_device().
2177 	 */
2178 	mutex_lock(&dev->mutex);
2179 	list_del_rcu(&handle->d_node);
2180 	mutex_unlock(&dev->mutex);
2181 
2182 	synchronize_rcu();
2183 }
2184 EXPORT_SYMBOL(input_unregister_handle);
2185 
2186 static int input_open_file(struct inode *inode, struct file *file)
2187 {
2188 	struct input_handler *handler;
2189 	const struct file_operations *old_fops, *new_fops = NULL;
2190 	int err;
2191 
2192 	err = mutex_lock_interruptible(&input_mutex);
2193 	if (err)
2194 		return err;
2195 
2196 	/* No load-on-demand here? */
2197 	handler = input_table[iminor(inode) >> 5];
2198 	if (handler)
2199 		new_fops = fops_get(handler->fops);
2200 
2201 	mutex_unlock(&input_mutex);
2202 
2203 	/*
2204 	 * That's _really_ odd. Usually NULL ->open means "nothing special",
2205 	 * not "no device". Oh, well...
2206 	 */
2207 	if (!new_fops || !new_fops->open) {
2208 		fops_put(new_fops);
2209 		err = -ENODEV;
2210 		goto out;
2211 	}
2212 
2213 	old_fops = file->f_op;
2214 	file->f_op = new_fops;
2215 
2216 	err = new_fops->open(inode, file);
2217 	if (err) {
2218 		fops_put(file->f_op);
2219 		file->f_op = fops_get(old_fops);
2220 	}
2221 	fops_put(old_fops);
2222 out:
2223 	return err;
2224 }
2225 
2226 static const struct file_operations input_fops = {
2227 	.owner = THIS_MODULE,
2228 	.open = input_open_file,
2229 	.llseek = noop_llseek,
2230 };
2231 
2232 static int __init input_init(void)
2233 {
2234 	int err;
2235 
2236 	err = class_register(&input_class);
2237 	if (err) {
2238 		pr_err("unable to register input_dev class\n");
2239 		return err;
2240 	}
2241 
2242 	err = input_proc_init();
2243 	if (err)
2244 		goto fail1;
2245 
2246 	err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
2247 	if (err) {
2248 		pr_err("unable to register char major %d", INPUT_MAJOR);
2249 		goto fail2;
2250 	}
2251 
2252 	return 0;
2253 
2254  fail2:	input_proc_exit();
2255  fail1:	class_unregister(&input_class);
2256 	return err;
2257 }
2258 
2259 static void __exit input_exit(void)
2260 {
2261 	input_proc_exit();
2262 	unregister_chrdev(INPUT_MAJOR, "input");
2263 	class_unregister(&input_class);
2264 }
2265 
2266 subsys_initcall(input_init);
2267 module_exit(input_exit);
2268