1 /* 2 * The input core 3 * 4 * Copyright (c) 1999-2002 Vojtech Pavlik 5 */ 6 7 /* 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License version 2 as published by 10 * the Free Software Foundation. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt 14 15 #include <linux/init.h> 16 #include <linux/types.h> 17 #include <linux/input/mt.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/random.h> 21 #include <linux/major.h> 22 #include <linux/proc_fs.h> 23 #include <linux/sched.h> 24 #include <linux/seq_file.h> 25 #include <linux/poll.h> 26 #include <linux/device.h> 27 #include <linux/mutex.h> 28 #include <linux/rcupdate.h> 29 #include "input-compat.h" 30 31 MODULE_AUTHOR("Vojtech Pavlik <[email protected]>"); 32 MODULE_DESCRIPTION("Input core"); 33 MODULE_LICENSE("GPL"); 34 35 #define INPUT_DEVICES 256 36 37 static LIST_HEAD(input_dev_list); 38 static LIST_HEAD(input_handler_list); 39 40 /* 41 * input_mutex protects access to both input_dev_list and input_handler_list. 42 * This also causes input_[un]register_device and input_[un]register_handler 43 * be mutually exclusive which simplifies locking in drivers implementing 44 * input handlers. 45 */ 46 static DEFINE_MUTEX(input_mutex); 47 48 static struct input_handler *input_table[8]; 49 50 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 }; 51 52 static inline int is_event_supported(unsigned int code, 53 unsigned long *bm, unsigned int max) 54 { 55 return code <= max && test_bit(code, bm); 56 } 57 58 static int input_defuzz_abs_event(int value, int old_val, int fuzz) 59 { 60 if (fuzz) { 61 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2) 62 return old_val; 63 64 if (value > old_val - fuzz && value < old_val + fuzz) 65 return (old_val * 3 + value) / 4; 66 67 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2) 68 return (old_val + value) / 2; 69 } 70 71 return value; 72 } 73 74 static void input_start_autorepeat(struct input_dev *dev, int code) 75 { 76 if (test_bit(EV_REP, dev->evbit) && 77 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] && 78 dev->timer.data) { 79 dev->repeat_key = code; 80 mod_timer(&dev->timer, 81 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY])); 82 } 83 } 84 85 static void input_stop_autorepeat(struct input_dev *dev) 86 { 87 del_timer(&dev->timer); 88 } 89 90 /* 91 * Pass event first through all filters and then, if event has not been 92 * filtered out, through all open handles. This function is called with 93 * dev->event_lock held and interrupts disabled. 94 */ 95 static unsigned int input_to_handler(struct input_handle *handle, 96 struct input_value *vals, unsigned int count) 97 { 98 struct input_handler *handler = handle->handler; 99 struct input_value *end = vals; 100 struct input_value *v; 101 102 for (v = vals; v != vals + count; v++) { 103 if (handler->filter && 104 handler->filter(handle, v->type, v->code, v->value)) 105 continue; 106 if (end != v) 107 *end = *v; 108 end++; 109 } 110 111 count = end - vals; 112 if (!count) 113 return 0; 114 115 if (handler->events) 116 handler->events(handle, vals, count); 117 else if (handler->event) 118 for (v = vals; v != end; v++) 119 handler->event(handle, v->type, v->code, v->value); 120 121 return count; 122 } 123 124 /* 125 * Pass values first through all filters and then, if event has not been 126 * filtered out, through all open handles. This function is called with 127 * dev->event_lock held and interrupts disabled. 128 */ 129 static void input_pass_values(struct input_dev *dev, 130 struct input_value *vals, unsigned int count) 131 { 132 struct input_handle *handle; 133 struct input_value *v; 134 135 if (!count) 136 return; 137 138 rcu_read_lock(); 139 140 handle = rcu_dereference(dev->grab); 141 if (handle) { 142 count = input_to_handler(handle, vals, count); 143 } else { 144 list_for_each_entry_rcu(handle, &dev->h_list, d_node) 145 if (handle->open) 146 count = input_to_handler(handle, vals, count); 147 } 148 149 rcu_read_unlock(); 150 151 add_input_randomness(vals->type, vals->code, vals->value); 152 153 /* trigger auto repeat for key events */ 154 for (v = vals; v != vals + count; v++) { 155 if (v->type == EV_KEY && v->value != 2) { 156 if (v->value) 157 input_start_autorepeat(dev, v->code); 158 else 159 input_stop_autorepeat(dev); 160 } 161 } 162 } 163 164 static void input_pass_event(struct input_dev *dev, 165 unsigned int type, unsigned int code, int value) 166 { 167 struct input_value vals[] = { { type, code, value } }; 168 169 input_pass_values(dev, vals, ARRAY_SIZE(vals)); 170 } 171 172 /* 173 * Generate software autorepeat event. Note that we take 174 * dev->event_lock here to avoid racing with input_event 175 * which may cause keys get "stuck". 176 */ 177 static void input_repeat_key(unsigned long data) 178 { 179 struct input_dev *dev = (void *) data; 180 unsigned long flags; 181 182 spin_lock_irqsave(&dev->event_lock, flags); 183 184 if (test_bit(dev->repeat_key, dev->key) && 185 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) { 186 struct input_value vals[] = { 187 { EV_KEY, dev->repeat_key, 2 }, 188 input_value_sync 189 }; 190 191 input_pass_values(dev, vals, ARRAY_SIZE(vals)); 192 193 if (dev->rep[REP_PERIOD]) 194 mod_timer(&dev->timer, jiffies + 195 msecs_to_jiffies(dev->rep[REP_PERIOD])); 196 } 197 198 spin_unlock_irqrestore(&dev->event_lock, flags); 199 } 200 201 #define INPUT_IGNORE_EVENT 0 202 #define INPUT_PASS_TO_HANDLERS 1 203 #define INPUT_PASS_TO_DEVICE 2 204 #define INPUT_SLOT 4 205 #define INPUT_FLUSH 8 206 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE) 207 208 static int input_handle_abs_event(struct input_dev *dev, 209 unsigned int code, int *pval) 210 { 211 struct input_mt *mt = dev->mt; 212 bool is_mt_event; 213 int *pold; 214 215 if (code == ABS_MT_SLOT) { 216 /* 217 * "Stage" the event; we'll flush it later, when we 218 * get actual touch data. 219 */ 220 if (mt && *pval >= 0 && *pval < mt->num_slots) 221 mt->slot = *pval; 222 223 return INPUT_IGNORE_EVENT; 224 } 225 226 is_mt_event = input_is_mt_value(code); 227 228 if (!is_mt_event) { 229 pold = &dev->absinfo[code].value; 230 } else if (mt) { 231 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST]; 232 } else { 233 /* 234 * Bypass filtering for multi-touch events when 235 * not employing slots. 236 */ 237 pold = NULL; 238 } 239 240 if (pold) { 241 *pval = input_defuzz_abs_event(*pval, *pold, 242 dev->absinfo[code].fuzz); 243 if (*pold == *pval) 244 return INPUT_IGNORE_EVENT; 245 246 *pold = *pval; 247 } 248 249 /* Flush pending "slot" event */ 250 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) { 251 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot); 252 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT; 253 } 254 255 return INPUT_PASS_TO_HANDLERS; 256 } 257 258 static int input_get_disposition(struct input_dev *dev, 259 unsigned int type, unsigned int code, int value) 260 { 261 int disposition = INPUT_IGNORE_EVENT; 262 263 switch (type) { 264 265 case EV_SYN: 266 switch (code) { 267 case SYN_CONFIG: 268 disposition = INPUT_PASS_TO_ALL; 269 break; 270 271 case SYN_REPORT: 272 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH; 273 break; 274 case SYN_MT_REPORT: 275 disposition = INPUT_PASS_TO_HANDLERS; 276 break; 277 } 278 break; 279 280 case EV_KEY: 281 if (is_event_supported(code, dev->keybit, KEY_MAX)) { 282 283 /* auto-repeat bypasses state updates */ 284 if (value == 2) { 285 disposition = INPUT_PASS_TO_HANDLERS; 286 break; 287 } 288 289 if (!!test_bit(code, dev->key) != !!value) { 290 291 __change_bit(code, dev->key); 292 disposition = INPUT_PASS_TO_HANDLERS; 293 } 294 } 295 break; 296 297 case EV_SW: 298 if (is_event_supported(code, dev->swbit, SW_MAX) && 299 !!test_bit(code, dev->sw) != !!value) { 300 301 __change_bit(code, dev->sw); 302 disposition = INPUT_PASS_TO_HANDLERS; 303 } 304 break; 305 306 case EV_ABS: 307 if (is_event_supported(code, dev->absbit, ABS_MAX)) 308 disposition = input_handle_abs_event(dev, code, &value); 309 310 break; 311 312 case EV_REL: 313 if (is_event_supported(code, dev->relbit, REL_MAX) && value) 314 disposition = INPUT_PASS_TO_HANDLERS; 315 316 break; 317 318 case EV_MSC: 319 if (is_event_supported(code, dev->mscbit, MSC_MAX)) 320 disposition = INPUT_PASS_TO_ALL; 321 322 break; 323 324 case EV_LED: 325 if (is_event_supported(code, dev->ledbit, LED_MAX) && 326 !!test_bit(code, dev->led) != !!value) { 327 328 __change_bit(code, dev->led); 329 disposition = INPUT_PASS_TO_ALL; 330 } 331 break; 332 333 case EV_SND: 334 if (is_event_supported(code, dev->sndbit, SND_MAX)) { 335 336 if (!!test_bit(code, dev->snd) != !!value) 337 __change_bit(code, dev->snd); 338 disposition = INPUT_PASS_TO_ALL; 339 } 340 break; 341 342 case EV_REP: 343 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) { 344 dev->rep[code] = value; 345 disposition = INPUT_PASS_TO_ALL; 346 } 347 break; 348 349 case EV_FF: 350 if (value >= 0) 351 disposition = INPUT_PASS_TO_ALL; 352 break; 353 354 case EV_PWR: 355 disposition = INPUT_PASS_TO_ALL; 356 break; 357 } 358 359 return disposition; 360 } 361 362 static void input_handle_event(struct input_dev *dev, 363 unsigned int type, unsigned int code, int value) 364 { 365 int disposition; 366 367 disposition = input_get_disposition(dev, type, code, value); 368 369 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event) 370 dev->event(dev, type, code, value); 371 372 if (!dev->vals) 373 return; 374 375 if (disposition & INPUT_PASS_TO_HANDLERS) { 376 struct input_value *v; 377 378 if (disposition & INPUT_SLOT) { 379 v = &dev->vals[dev->num_vals++]; 380 v->type = EV_ABS; 381 v->code = ABS_MT_SLOT; 382 v->value = dev->mt->slot; 383 } 384 385 v = &dev->vals[dev->num_vals++]; 386 v->type = type; 387 v->code = code; 388 v->value = value; 389 } 390 391 if (disposition & INPUT_FLUSH) { 392 if (dev->num_vals >= 2) 393 input_pass_values(dev, dev->vals, dev->num_vals); 394 dev->num_vals = 0; 395 } else if (dev->num_vals >= dev->max_vals - 2) { 396 dev->vals[dev->num_vals++] = input_value_sync; 397 input_pass_values(dev, dev->vals, dev->num_vals); 398 dev->num_vals = 0; 399 } 400 401 } 402 403 /** 404 * input_event() - report new input event 405 * @dev: device that generated the event 406 * @type: type of the event 407 * @code: event code 408 * @value: value of the event 409 * 410 * This function should be used by drivers implementing various input 411 * devices to report input events. See also input_inject_event(). 412 * 413 * NOTE: input_event() may be safely used right after input device was 414 * allocated with input_allocate_device(), even before it is registered 415 * with input_register_device(), but the event will not reach any of the 416 * input handlers. Such early invocation of input_event() may be used 417 * to 'seed' initial state of a switch or initial position of absolute 418 * axis, etc. 419 */ 420 void input_event(struct input_dev *dev, 421 unsigned int type, unsigned int code, int value) 422 { 423 unsigned long flags; 424 425 if (is_event_supported(type, dev->evbit, EV_MAX)) { 426 427 spin_lock_irqsave(&dev->event_lock, flags); 428 input_handle_event(dev, type, code, value); 429 spin_unlock_irqrestore(&dev->event_lock, flags); 430 } 431 } 432 EXPORT_SYMBOL(input_event); 433 434 /** 435 * input_inject_event() - send input event from input handler 436 * @handle: input handle to send event through 437 * @type: type of the event 438 * @code: event code 439 * @value: value of the event 440 * 441 * Similar to input_event() but will ignore event if device is 442 * "grabbed" and handle injecting event is not the one that owns 443 * the device. 444 */ 445 void input_inject_event(struct input_handle *handle, 446 unsigned int type, unsigned int code, int value) 447 { 448 struct input_dev *dev = handle->dev; 449 struct input_handle *grab; 450 unsigned long flags; 451 452 if (is_event_supported(type, dev->evbit, EV_MAX)) { 453 spin_lock_irqsave(&dev->event_lock, flags); 454 455 rcu_read_lock(); 456 grab = rcu_dereference(dev->grab); 457 if (!grab || grab == handle) 458 input_handle_event(dev, type, code, value); 459 rcu_read_unlock(); 460 461 spin_unlock_irqrestore(&dev->event_lock, flags); 462 } 463 } 464 EXPORT_SYMBOL(input_inject_event); 465 466 /** 467 * input_alloc_absinfo - allocates array of input_absinfo structs 468 * @dev: the input device emitting absolute events 469 * 470 * If the absinfo struct the caller asked for is already allocated, this 471 * functions will not do anything. 472 */ 473 void input_alloc_absinfo(struct input_dev *dev) 474 { 475 if (!dev->absinfo) 476 dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo), 477 GFP_KERNEL); 478 479 WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__); 480 } 481 EXPORT_SYMBOL(input_alloc_absinfo); 482 483 void input_set_abs_params(struct input_dev *dev, unsigned int axis, 484 int min, int max, int fuzz, int flat) 485 { 486 struct input_absinfo *absinfo; 487 488 input_alloc_absinfo(dev); 489 if (!dev->absinfo) 490 return; 491 492 absinfo = &dev->absinfo[axis]; 493 absinfo->minimum = min; 494 absinfo->maximum = max; 495 absinfo->fuzz = fuzz; 496 absinfo->flat = flat; 497 498 dev->absbit[BIT_WORD(axis)] |= BIT_MASK(axis); 499 } 500 EXPORT_SYMBOL(input_set_abs_params); 501 502 503 /** 504 * input_grab_device - grabs device for exclusive use 505 * @handle: input handle that wants to own the device 506 * 507 * When a device is grabbed by an input handle all events generated by 508 * the device are delivered only to this handle. Also events injected 509 * by other input handles are ignored while device is grabbed. 510 */ 511 int input_grab_device(struct input_handle *handle) 512 { 513 struct input_dev *dev = handle->dev; 514 int retval; 515 516 retval = mutex_lock_interruptible(&dev->mutex); 517 if (retval) 518 return retval; 519 520 if (dev->grab) { 521 retval = -EBUSY; 522 goto out; 523 } 524 525 rcu_assign_pointer(dev->grab, handle); 526 527 out: 528 mutex_unlock(&dev->mutex); 529 return retval; 530 } 531 EXPORT_SYMBOL(input_grab_device); 532 533 static void __input_release_device(struct input_handle *handle) 534 { 535 struct input_dev *dev = handle->dev; 536 537 if (dev->grab == handle) { 538 rcu_assign_pointer(dev->grab, NULL); 539 /* Make sure input_pass_event() notices that grab is gone */ 540 synchronize_rcu(); 541 542 list_for_each_entry(handle, &dev->h_list, d_node) 543 if (handle->open && handle->handler->start) 544 handle->handler->start(handle); 545 } 546 } 547 548 /** 549 * input_release_device - release previously grabbed device 550 * @handle: input handle that owns the device 551 * 552 * Releases previously grabbed device so that other input handles can 553 * start receiving input events. Upon release all handlers attached 554 * to the device have their start() method called so they have a change 555 * to synchronize device state with the rest of the system. 556 */ 557 void input_release_device(struct input_handle *handle) 558 { 559 struct input_dev *dev = handle->dev; 560 561 mutex_lock(&dev->mutex); 562 __input_release_device(handle); 563 mutex_unlock(&dev->mutex); 564 } 565 EXPORT_SYMBOL(input_release_device); 566 567 /** 568 * input_open_device - open input device 569 * @handle: handle through which device is being accessed 570 * 571 * This function should be called by input handlers when they 572 * want to start receive events from given input device. 573 */ 574 int input_open_device(struct input_handle *handle) 575 { 576 struct input_dev *dev = handle->dev; 577 int retval; 578 579 retval = mutex_lock_interruptible(&dev->mutex); 580 if (retval) 581 return retval; 582 583 if (dev->going_away) { 584 retval = -ENODEV; 585 goto out; 586 } 587 588 handle->open++; 589 590 if (!dev->users++ && dev->open) 591 retval = dev->open(dev); 592 593 if (retval) { 594 dev->users--; 595 if (!--handle->open) { 596 /* 597 * Make sure we are not delivering any more events 598 * through this handle 599 */ 600 synchronize_rcu(); 601 } 602 } 603 604 out: 605 mutex_unlock(&dev->mutex); 606 return retval; 607 } 608 EXPORT_SYMBOL(input_open_device); 609 610 int input_flush_device(struct input_handle *handle, struct file *file) 611 { 612 struct input_dev *dev = handle->dev; 613 int retval; 614 615 retval = mutex_lock_interruptible(&dev->mutex); 616 if (retval) 617 return retval; 618 619 if (dev->flush) 620 retval = dev->flush(dev, file); 621 622 mutex_unlock(&dev->mutex); 623 return retval; 624 } 625 EXPORT_SYMBOL(input_flush_device); 626 627 /** 628 * input_close_device - close input device 629 * @handle: handle through which device is being accessed 630 * 631 * This function should be called by input handlers when they 632 * want to stop receive events from given input device. 633 */ 634 void input_close_device(struct input_handle *handle) 635 { 636 struct input_dev *dev = handle->dev; 637 638 mutex_lock(&dev->mutex); 639 640 __input_release_device(handle); 641 642 if (!--dev->users && dev->close) 643 dev->close(dev); 644 645 if (!--handle->open) { 646 /* 647 * synchronize_rcu() makes sure that input_pass_event() 648 * completed and that no more input events are delivered 649 * through this handle 650 */ 651 synchronize_rcu(); 652 } 653 654 mutex_unlock(&dev->mutex); 655 } 656 EXPORT_SYMBOL(input_close_device); 657 658 /* 659 * Simulate keyup events for all keys that are marked as pressed. 660 * The function must be called with dev->event_lock held. 661 */ 662 static void input_dev_release_keys(struct input_dev *dev) 663 { 664 int code; 665 666 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) { 667 for (code = 0; code <= KEY_MAX; code++) { 668 if (is_event_supported(code, dev->keybit, KEY_MAX) && 669 __test_and_clear_bit(code, dev->key)) { 670 input_pass_event(dev, EV_KEY, code, 0); 671 } 672 } 673 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 674 } 675 } 676 677 /* 678 * Prepare device for unregistering 679 */ 680 static void input_disconnect_device(struct input_dev *dev) 681 { 682 struct input_handle *handle; 683 684 /* 685 * Mark device as going away. Note that we take dev->mutex here 686 * not to protect access to dev->going_away but rather to ensure 687 * that there are no threads in the middle of input_open_device() 688 */ 689 mutex_lock(&dev->mutex); 690 dev->going_away = true; 691 mutex_unlock(&dev->mutex); 692 693 spin_lock_irq(&dev->event_lock); 694 695 /* 696 * Simulate keyup events for all pressed keys so that handlers 697 * are not left with "stuck" keys. The driver may continue 698 * generate events even after we done here but they will not 699 * reach any handlers. 700 */ 701 input_dev_release_keys(dev); 702 703 list_for_each_entry(handle, &dev->h_list, d_node) 704 handle->open = 0; 705 706 spin_unlock_irq(&dev->event_lock); 707 } 708 709 /** 710 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry 711 * @ke: keymap entry containing scancode to be converted. 712 * @scancode: pointer to the location where converted scancode should 713 * be stored. 714 * 715 * This function is used to convert scancode stored in &struct keymap_entry 716 * into scalar form understood by legacy keymap handling methods. These 717 * methods expect scancodes to be represented as 'unsigned int'. 718 */ 719 int input_scancode_to_scalar(const struct input_keymap_entry *ke, 720 unsigned int *scancode) 721 { 722 switch (ke->len) { 723 case 1: 724 *scancode = *((u8 *)ke->scancode); 725 break; 726 727 case 2: 728 *scancode = *((u16 *)ke->scancode); 729 break; 730 731 case 4: 732 *scancode = *((u32 *)ke->scancode); 733 break; 734 735 default: 736 return -EINVAL; 737 } 738 739 return 0; 740 } 741 EXPORT_SYMBOL(input_scancode_to_scalar); 742 743 /* 744 * Those routines handle the default case where no [gs]etkeycode() is 745 * defined. In this case, an array indexed by the scancode is used. 746 */ 747 748 static unsigned int input_fetch_keycode(struct input_dev *dev, 749 unsigned int index) 750 { 751 switch (dev->keycodesize) { 752 case 1: 753 return ((u8 *)dev->keycode)[index]; 754 755 case 2: 756 return ((u16 *)dev->keycode)[index]; 757 758 default: 759 return ((u32 *)dev->keycode)[index]; 760 } 761 } 762 763 static int input_default_getkeycode(struct input_dev *dev, 764 struct input_keymap_entry *ke) 765 { 766 unsigned int index; 767 int error; 768 769 if (!dev->keycodesize) 770 return -EINVAL; 771 772 if (ke->flags & INPUT_KEYMAP_BY_INDEX) 773 index = ke->index; 774 else { 775 error = input_scancode_to_scalar(ke, &index); 776 if (error) 777 return error; 778 } 779 780 if (index >= dev->keycodemax) 781 return -EINVAL; 782 783 ke->keycode = input_fetch_keycode(dev, index); 784 ke->index = index; 785 ke->len = sizeof(index); 786 memcpy(ke->scancode, &index, sizeof(index)); 787 788 return 0; 789 } 790 791 static int input_default_setkeycode(struct input_dev *dev, 792 const struct input_keymap_entry *ke, 793 unsigned int *old_keycode) 794 { 795 unsigned int index; 796 int error; 797 int i; 798 799 if (!dev->keycodesize) 800 return -EINVAL; 801 802 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 803 index = ke->index; 804 } else { 805 error = input_scancode_to_scalar(ke, &index); 806 if (error) 807 return error; 808 } 809 810 if (index >= dev->keycodemax) 811 return -EINVAL; 812 813 if (dev->keycodesize < sizeof(ke->keycode) && 814 (ke->keycode >> (dev->keycodesize * 8))) 815 return -EINVAL; 816 817 switch (dev->keycodesize) { 818 case 1: { 819 u8 *k = (u8 *)dev->keycode; 820 *old_keycode = k[index]; 821 k[index] = ke->keycode; 822 break; 823 } 824 case 2: { 825 u16 *k = (u16 *)dev->keycode; 826 *old_keycode = k[index]; 827 k[index] = ke->keycode; 828 break; 829 } 830 default: { 831 u32 *k = (u32 *)dev->keycode; 832 *old_keycode = k[index]; 833 k[index] = ke->keycode; 834 break; 835 } 836 } 837 838 __clear_bit(*old_keycode, dev->keybit); 839 __set_bit(ke->keycode, dev->keybit); 840 841 for (i = 0; i < dev->keycodemax; i++) { 842 if (input_fetch_keycode(dev, i) == *old_keycode) { 843 __set_bit(*old_keycode, dev->keybit); 844 break; /* Setting the bit twice is useless, so break */ 845 } 846 } 847 848 return 0; 849 } 850 851 /** 852 * input_get_keycode - retrieve keycode currently mapped to a given scancode 853 * @dev: input device which keymap is being queried 854 * @ke: keymap entry 855 * 856 * This function should be called by anyone interested in retrieving current 857 * keymap. Presently evdev handlers use it. 858 */ 859 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke) 860 { 861 unsigned long flags; 862 int retval; 863 864 spin_lock_irqsave(&dev->event_lock, flags); 865 retval = dev->getkeycode(dev, ke); 866 spin_unlock_irqrestore(&dev->event_lock, flags); 867 868 return retval; 869 } 870 EXPORT_SYMBOL(input_get_keycode); 871 872 /** 873 * input_set_keycode - attribute a keycode to a given scancode 874 * @dev: input device which keymap is being updated 875 * @ke: new keymap entry 876 * 877 * This function should be called by anyone needing to update current 878 * keymap. Presently keyboard and evdev handlers use it. 879 */ 880 int input_set_keycode(struct input_dev *dev, 881 const struct input_keymap_entry *ke) 882 { 883 unsigned long flags; 884 unsigned int old_keycode; 885 int retval; 886 887 if (ke->keycode > KEY_MAX) 888 return -EINVAL; 889 890 spin_lock_irqsave(&dev->event_lock, flags); 891 892 retval = dev->setkeycode(dev, ke, &old_keycode); 893 if (retval) 894 goto out; 895 896 /* Make sure KEY_RESERVED did not get enabled. */ 897 __clear_bit(KEY_RESERVED, dev->keybit); 898 899 /* 900 * Simulate keyup event if keycode is not present 901 * in the keymap anymore 902 */ 903 if (test_bit(EV_KEY, dev->evbit) && 904 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) && 905 __test_and_clear_bit(old_keycode, dev->key)) { 906 struct input_value vals[] = { 907 { EV_KEY, old_keycode, 0 }, 908 input_value_sync 909 }; 910 911 input_pass_values(dev, vals, ARRAY_SIZE(vals)); 912 } 913 914 out: 915 spin_unlock_irqrestore(&dev->event_lock, flags); 916 917 return retval; 918 } 919 EXPORT_SYMBOL(input_set_keycode); 920 921 #define MATCH_BIT(bit, max) \ 922 for (i = 0; i < BITS_TO_LONGS(max); i++) \ 923 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \ 924 break; \ 925 if (i != BITS_TO_LONGS(max)) \ 926 continue; 927 928 static const struct input_device_id *input_match_device(struct input_handler *handler, 929 struct input_dev *dev) 930 { 931 const struct input_device_id *id; 932 int i; 933 934 for (id = handler->id_table; id->flags || id->driver_info; id++) { 935 936 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS) 937 if (id->bustype != dev->id.bustype) 938 continue; 939 940 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR) 941 if (id->vendor != dev->id.vendor) 942 continue; 943 944 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT) 945 if (id->product != dev->id.product) 946 continue; 947 948 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION) 949 if (id->version != dev->id.version) 950 continue; 951 952 MATCH_BIT(evbit, EV_MAX); 953 MATCH_BIT(keybit, KEY_MAX); 954 MATCH_BIT(relbit, REL_MAX); 955 MATCH_BIT(absbit, ABS_MAX); 956 MATCH_BIT(mscbit, MSC_MAX); 957 MATCH_BIT(ledbit, LED_MAX); 958 MATCH_BIT(sndbit, SND_MAX); 959 MATCH_BIT(ffbit, FF_MAX); 960 MATCH_BIT(swbit, SW_MAX); 961 962 if (!handler->match || handler->match(handler, dev)) 963 return id; 964 } 965 966 return NULL; 967 } 968 969 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler) 970 { 971 const struct input_device_id *id; 972 int error; 973 974 id = input_match_device(handler, dev); 975 if (!id) 976 return -ENODEV; 977 978 error = handler->connect(handler, dev, id); 979 if (error && error != -ENODEV) 980 pr_err("failed to attach handler %s to device %s, error: %d\n", 981 handler->name, kobject_name(&dev->dev.kobj), error); 982 983 return error; 984 } 985 986 #ifdef CONFIG_COMPAT 987 988 static int input_bits_to_string(char *buf, int buf_size, 989 unsigned long bits, bool skip_empty) 990 { 991 int len = 0; 992 993 if (INPUT_COMPAT_TEST) { 994 u32 dword = bits >> 32; 995 if (dword || !skip_empty) 996 len += snprintf(buf, buf_size, "%x ", dword); 997 998 dword = bits & 0xffffffffUL; 999 if (dword || !skip_empty || len) 1000 len += snprintf(buf + len, max(buf_size - len, 0), 1001 "%x", dword); 1002 } else { 1003 if (bits || !skip_empty) 1004 len += snprintf(buf, buf_size, "%lx", bits); 1005 } 1006 1007 return len; 1008 } 1009 1010 #else /* !CONFIG_COMPAT */ 1011 1012 static int input_bits_to_string(char *buf, int buf_size, 1013 unsigned long bits, bool skip_empty) 1014 { 1015 return bits || !skip_empty ? 1016 snprintf(buf, buf_size, "%lx", bits) : 0; 1017 } 1018 1019 #endif 1020 1021 #ifdef CONFIG_PROC_FS 1022 1023 static struct proc_dir_entry *proc_bus_input_dir; 1024 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait); 1025 static int input_devices_state; 1026 1027 static inline void input_wakeup_procfs_readers(void) 1028 { 1029 input_devices_state++; 1030 wake_up(&input_devices_poll_wait); 1031 } 1032 1033 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait) 1034 { 1035 poll_wait(file, &input_devices_poll_wait, wait); 1036 if (file->f_version != input_devices_state) { 1037 file->f_version = input_devices_state; 1038 return POLLIN | POLLRDNORM; 1039 } 1040 1041 return 0; 1042 } 1043 1044 union input_seq_state { 1045 struct { 1046 unsigned short pos; 1047 bool mutex_acquired; 1048 }; 1049 void *p; 1050 }; 1051 1052 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos) 1053 { 1054 union input_seq_state *state = (union input_seq_state *)&seq->private; 1055 int error; 1056 1057 /* We need to fit into seq->private pointer */ 1058 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 1059 1060 error = mutex_lock_interruptible(&input_mutex); 1061 if (error) { 1062 state->mutex_acquired = false; 1063 return ERR_PTR(error); 1064 } 1065 1066 state->mutex_acquired = true; 1067 1068 return seq_list_start(&input_dev_list, *pos); 1069 } 1070 1071 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1072 { 1073 return seq_list_next(v, &input_dev_list, pos); 1074 } 1075 1076 static void input_seq_stop(struct seq_file *seq, void *v) 1077 { 1078 union input_seq_state *state = (union input_seq_state *)&seq->private; 1079 1080 if (state->mutex_acquired) 1081 mutex_unlock(&input_mutex); 1082 } 1083 1084 static void input_seq_print_bitmap(struct seq_file *seq, const char *name, 1085 unsigned long *bitmap, int max) 1086 { 1087 int i; 1088 bool skip_empty = true; 1089 char buf[18]; 1090 1091 seq_printf(seq, "B: %s=", name); 1092 1093 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1094 if (input_bits_to_string(buf, sizeof(buf), 1095 bitmap[i], skip_empty)) { 1096 skip_empty = false; 1097 seq_printf(seq, "%s%s", buf, i > 0 ? " " : ""); 1098 } 1099 } 1100 1101 /* 1102 * If no output was produced print a single 0. 1103 */ 1104 if (skip_empty) 1105 seq_puts(seq, "0"); 1106 1107 seq_putc(seq, '\n'); 1108 } 1109 1110 static int input_devices_seq_show(struct seq_file *seq, void *v) 1111 { 1112 struct input_dev *dev = container_of(v, struct input_dev, node); 1113 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1114 struct input_handle *handle; 1115 1116 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n", 1117 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version); 1118 1119 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : ""); 1120 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : ""); 1121 seq_printf(seq, "S: Sysfs=%s\n", path ? path : ""); 1122 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : ""); 1123 seq_printf(seq, "H: Handlers="); 1124 1125 list_for_each_entry(handle, &dev->h_list, d_node) 1126 seq_printf(seq, "%s ", handle->name); 1127 seq_putc(seq, '\n'); 1128 1129 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX); 1130 1131 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX); 1132 if (test_bit(EV_KEY, dev->evbit)) 1133 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX); 1134 if (test_bit(EV_REL, dev->evbit)) 1135 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX); 1136 if (test_bit(EV_ABS, dev->evbit)) 1137 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX); 1138 if (test_bit(EV_MSC, dev->evbit)) 1139 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX); 1140 if (test_bit(EV_LED, dev->evbit)) 1141 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX); 1142 if (test_bit(EV_SND, dev->evbit)) 1143 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX); 1144 if (test_bit(EV_FF, dev->evbit)) 1145 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX); 1146 if (test_bit(EV_SW, dev->evbit)) 1147 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX); 1148 1149 seq_putc(seq, '\n'); 1150 1151 kfree(path); 1152 return 0; 1153 } 1154 1155 static const struct seq_operations input_devices_seq_ops = { 1156 .start = input_devices_seq_start, 1157 .next = input_devices_seq_next, 1158 .stop = input_seq_stop, 1159 .show = input_devices_seq_show, 1160 }; 1161 1162 static int input_proc_devices_open(struct inode *inode, struct file *file) 1163 { 1164 return seq_open(file, &input_devices_seq_ops); 1165 } 1166 1167 static const struct file_operations input_devices_fileops = { 1168 .owner = THIS_MODULE, 1169 .open = input_proc_devices_open, 1170 .poll = input_proc_devices_poll, 1171 .read = seq_read, 1172 .llseek = seq_lseek, 1173 .release = seq_release, 1174 }; 1175 1176 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos) 1177 { 1178 union input_seq_state *state = (union input_seq_state *)&seq->private; 1179 int error; 1180 1181 /* We need to fit into seq->private pointer */ 1182 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 1183 1184 error = mutex_lock_interruptible(&input_mutex); 1185 if (error) { 1186 state->mutex_acquired = false; 1187 return ERR_PTR(error); 1188 } 1189 1190 state->mutex_acquired = true; 1191 state->pos = *pos; 1192 1193 return seq_list_start(&input_handler_list, *pos); 1194 } 1195 1196 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1197 { 1198 union input_seq_state *state = (union input_seq_state *)&seq->private; 1199 1200 state->pos = *pos + 1; 1201 return seq_list_next(v, &input_handler_list, pos); 1202 } 1203 1204 static int input_handlers_seq_show(struct seq_file *seq, void *v) 1205 { 1206 struct input_handler *handler = container_of(v, struct input_handler, node); 1207 union input_seq_state *state = (union input_seq_state *)&seq->private; 1208 1209 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name); 1210 if (handler->filter) 1211 seq_puts(seq, " (filter)"); 1212 if (handler->fops) 1213 seq_printf(seq, " Minor=%d", handler->minor); 1214 seq_putc(seq, '\n'); 1215 1216 return 0; 1217 } 1218 1219 static const struct seq_operations input_handlers_seq_ops = { 1220 .start = input_handlers_seq_start, 1221 .next = input_handlers_seq_next, 1222 .stop = input_seq_stop, 1223 .show = input_handlers_seq_show, 1224 }; 1225 1226 static int input_proc_handlers_open(struct inode *inode, struct file *file) 1227 { 1228 return seq_open(file, &input_handlers_seq_ops); 1229 } 1230 1231 static const struct file_operations input_handlers_fileops = { 1232 .owner = THIS_MODULE, 1233 .open = input_proc_handlers_open, 1234 .read = seq_read, 1235 .llseek = seq_lseek, 1236 .release = seq_release, 1237 }; 1238 1239 static int __init input_proc_init(void) 1240 { 1241 struct proc_dir_entry *entry; 1242 1243 proc_bus_input_dir = proc_mkdir("bus/input", NULL); 1244 if (!proc_bus_input_dir) 1245 return -ENOMEM; 1246 1247 entry = proc_create("devices", 0, proc_bus_input_dir, 1248 &input_devices_fileops); 1249 if (!entry) 1250 goto fail1; 1251 1252 entry = proc_create("handlers", 0, proc_bus_input_dir, 1253 &input_handlers_fileops); 1254 if (!entry) 1255 goto fail2; 1256 1257 return 0; 1258 1259 fail2: remove_proc_entry("devices", proc_bus_input_dir); 1260 fail1: remove_proc_entry("bus/input", NULL); 1261 return -ENOMEM; 1262 } 1263 1264 static void input_proc_exit(void) 1265 { 1266 remove_proc_entry("devices", proc_bus_input_dir); 1267 remove_proc_entry("handlers", proc_bus_input_dir); 1268 remove_proc_entry("bus/input", NULL); 1269 } 1270 1271 #else /* !CONFIG_PROC_FS */ 1272 static inline void input_wakeup_procfs_readers(void) { } 1273 static inline int input_proc_init(void) { return 0; } 1274 static inline void input_proc_exit(void) { } 1275 #endif 1276 1277 #define INPUT_DEV_STRING_ATTR_SHOW(name) \ 1278 static ssize_t input_dev_show_##name(struct device *dev, \ 1279 struct device_attribute *attr, \ 1280 char *buf) \ 1281 { \ 1282 struct input_dev *input_dev = to_input_dev(dev); \ 1283 \ 1284 return scnprintf(buf, PAGE_SIZE, "%s\n", \ 1285 input_dev->name ? input_dev->name : ""); \ 1286 } \ 1287 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL) 1288 1289 INPUT_DEV_STRING_ATTR_SHOW(name); 1290 INPUT_DEV_STRING_ATTR_SHOW(phys); 1291 INPUT_DEV_STRING_ATTR_SHOW(uniq); 1292 1293 static int input_print_modalias_bits(char *buf, int size, 1294 char name, unsigned long *bm, 1295 unsigned int min_bit, unsigned int max_bit) 1296 { 1297 int len = 0, i; 1298 1299 len += snprintf(buf, max(size, 0), "%c", name); 1300 for (i = min_bit; i < max_bit; i++) 1301 if (bm[BIT_WORD(i)] & BIT_MASK(i)) 1302 len += snprintf(buf + len, max(size - len, 0), "%X,", i); 1303 return len; 1304 } 1305 1306 static int input_print_modalias(char *buf, int size, struct input_dev *id, 1307 int add_cr) 1308 { 1309 int len; 1310 1311 len = snprintf(buf, max(size, 0), 1312 "input:b%04Xv%04Xp%04Xe%04X-", 1313 id->id.bustype, id->id.vendor, 1314 id->id.product, id->id.version); 1315 1316 len += input_print_modalias_bits(buf + len, size - len, 1317 'e', id->evbit, 0, EV_MAX); 1318 len += input_print_modalias_bits(buf + len, size - len, 1319 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX); 1320 len += input_print_modalias_bits(buf + len, size - len, 1321 'r', id->relbit, 0, REL_MAX); 1322 len += input_print_modalias_bits(buf + len, size - len, 1323 'a', id->absbit, 0, ABS_MAX); 1324 len += input_print_modalias_bits(buf + len, size - len, 1325 'm', id->mscbit, 0, MSC_MAX); 1326 len += input_print_modalias_bits(buf + len, size - len, 1327 'l', id->ledbit, 0, LED_MAX); 1328 len += input_print_modalias_bits(buf + len, size - len, 1329 's', id->sndbit, 0, SND_MAX); 1330 len += input_print_modalias_bits(buf + len, size - len, 1331 'f', id->ffbit, 0, FF_MAX); 1332 len += input_print_modalias_bits(buf + len, size - len, 1333 'w', id->swbit, 0, SW_MAX); 1334 1335 if (add_cr) 1336 len += snprintf(buf + len, max(size - len, 0), "\n"); 1337 1338 return len; 1339 } 1340 1341 static ssize_t input_dev_show_modalias(struct device *dev, 1342 struct device_attribute *attr, 1343 char *buf) 1344 { 1345 struct input_dev *id = to_input_dev(dev); 1346 ssize_t len; 1347 1348 len = input_print_modalias(buf, PAGE_SIZE, id, 1); 1349 1350 return min_t(int, len, PAGE_SIZE); 1351 } 1352 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL); 1353 1354 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, 1355 int max, int add_cr); 1356 1357 static ssize_t input_dev_show_properties(struct device *dev, 1358 struct device_attribute *attr, 1359 char *buf) 1360 { 1361 struct input_dev *input_dev = to_input_dev(dev); 1362 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit, 1363 INPUT_PROP_MAX, true); 1364 return min_t(int, len, PAGE_SIZE); 1365 } 1366 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL); 1367 1368 static struct attribute *input_dev_attrs[] = { 1369 &dev_attr_name.attr, 1370 &dev_attr_phys.attr, 1371 &dev_attr_uniq.attr, 1372 &dev_attr_modalias.attr, 1373 &dev_attr_properties.attr, 1374 NULL 1375 }; 1376 1377 static struct attribute_group input_dev_attr_group = { 1378 .attrs = input_dev_attrs, 1379 }; 1380 1381 #define INPUT_DEV_ID_ATTR(name) \ 1382 static ssize_t input_dev_show_id_##name(struct device *dev, \ 1383 struct device_attribute *attr, \ 1384 char *buf) \ 1385 { \ 1386 struct input_dev *input_dev = to_input_dev(dev); \ 1387 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \ 1388 } \ 1389 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL) 1390 1391 INPUT_DEV_ID_ATTR(bustype); 1392 INPUT_DEV_ID_ATTR(vendor); 1393 INPUT_DEV_ID_ATTR(product); 1394 INPUT_DEV_ID_ATTR(version); 1395 1396 static struct attribute *input_dev_id_attrs[] = { 1397 &dev_attr_bustype.attr, 1398 &dev_attr_vendor.attr, 1399 &dev_attr_product.attr, 1400 &dev_attr_version.attr, 1401 NULL 1402 }; 1403 1404 static struct attribute_group input_dev_id_attr_group = { 1405 .name = "id", 1406 .attrs = input_dev_id_attrs, 1407 }; 1408 1409 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, 1410 int max, int add_cr) 1411 { 1412 int i; 1413 int len = 0; 1414 bool skip_empty = true; 1415 1416 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1417 len += input_bits_to_string(buf + len, max(buf_size - len, 0), 1418 bitmap[i], skip_empty); 1419 if (len) { 1420 skip_empty = false; 1421 if (i > 0) 1422 len += snprintf(buf + len, max(buf_size - len, 0), " "); 1423 } 1424 } 1425 1426 /* 1427 * If no output was produced print a single 0. 1428 */ 1429 if (len == 0) 1430 len = snprintf(buf, buf_size, "%d", 0); 1431 1432 if (add_cr) 1433 len += snprintf(buf + len, max(buf_size - len, 0), "\n"); 1434 1435 return len; 1436 } 1437 1438 #define INPUT_DEV_CAP_ATTR(ev, bm) \ 1439 static ssize_t input_dev_show_cap_##bm(struct device *dev, \ 1440 struct device_attribute *attr, \ 1441 char *buf) \ 1442 { \ 1443 struct input_dev *input_dev = to_input_dev(dev); \ 1444 int len = input_print_bitmap(buf, PAGE_SIZE, \ 1445 input_dev->bm##bit, ev##_MAX, \ 1446 true); \ 1447 return min_t(int, len, PAGE_SIZE); \ 1448 } \ 1449 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL) 1450 1451 INPUT_DEV_CAP_ATTR(EV, ev); 1452 INPUT_DEV_CAP_ATTR(KEY, key); 1453 INPUT_DEV_CAP_ATTR(REL, rel); 1454 INPUT_DEV_CAP_ATTR(ABS, abs); 1455 INPUT_DEV_CAP_ATTR(MSC, msc); 1456 INPUT_DEV_CAP_ATTR(LED, led); 1457 INPUT_DEV_CAP_ATTR(SND, snd); 1458 INPUT_DEV_CAP_ATTR(FF, ff); 1459 INPUT_DEV_CAP_ATTR(SW, sw); 1460 1461 static struct attribute *input_dev_caps_attrs[] = { 1462 &dev_attr_ev.attr, 1463 &dev_attr_key.attr, 1464 &dev_attr_rel.attr, 1465 &dev_attr_abs.attr, 1466 &dev_attr_msc.attr, 1467 &dev_attr_led.attr, 1468 &dev_attr_snd.attr, 1469 &dev_attr_ff.attr, 1470 &dev_attr_sw.attr, 1471 NULL 1472 }; 1473 1474 static struct attribute_group input_dev_caps_attr_group = { 1475 .name = "capabilities", 1476 .attrs = input_dev_caps_attrs, 1477 }; 1478 1479 static const struct attribute_group *input_dev_attr_groups[] = { 1480 &input_dev_attr_group, 1481 &input_dev_id_attr_group, 1482 &input_dev_caps_attr_group, 1483 NULL 1484 }; 1485 1486 static void input_dev_release(struct device *device) 1487 { 1488 struct input_dev *dev = to_input_dev(device); 1489 1490 input_ff_destroy(dev); 1491 input_mt_destroy_slots(dev); 1492 kfree(dev->absinfo); 1493 kfree(dev->vals); 1494 kfree(dev); 1495 1496 module_put(THIS_MODULE); 1497 } 1498 1499 /* 1500 * Input uevent interface - loading event handlers based on 1501 * device bitfields. 1502 */ 1503 static int input_add_uevent_bm_var(struct kobj_uevent_env *env, 1504 const char *name, unsigned long *bitmap, int max) 1505 { 1506 int len; 1507 1508 if (add_uevent_var(env, "%s", name)) 1509 return -ENOMEM; 1510 1511 len = input_print_bitmap(&env->buf[env->buflen - 1], 1512 sizeof(env->buf) - env->buflen, 1513 bitmap, max, false); 1514 if (len >= (sizeof(env->buf) - env->buflen)) 1515 return -ENOMEM; 1516 1517 env->buflen += len; 1518 return 0; 1519 } 1520 1521 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env, 1522 struct input_dev *dev) 1523 { 1524 int len; 1525 1526 if (add_uevent_var(env, "MODALIAS=")) 1527 return -ENOMEM; 1528 1529 len = input_print_modalias(&env->buf[env->buflen - 1], 1530 sizeof(env->buf) - env->buflen, 1531 dev, 0); 1532 if (len >= (sizeof(env->buf) - env->buflen)) 1533 return -ENOMEM; 1534 1535 env->buflen += len; 1536 return 0; 1537 } 1538 1539 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \ 1540 do { \ 1541 int err = add_uevent_var(env, fmt, val); \ 1542 if (err) \ 1543 return err; \ 1544 } while (0) 1545 1546 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \ 1547 do { \ 1548 int err = input_add_uevent_bm_var(env, name, bm, max); \ 1549 if (err) \ 1550 return err; \ 1551 } while (0) 1552 1553 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \ 1554 do { \ 1555 int err = input_add_uevent_modalias_var(env, dev); \ 1556 if (err) \ 1557 return err; \ 1558 } while (0) 1559 1560 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env) 1561 { 1562 struct input_dev *dev = to_input_dev(device); 1563 1564 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x", 1565 dev->id.bustype, dev->id.vendor, 1566 dev->id.product, dev->id.version); 1567 if (dev->name) 1568 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name); 1569 if (dev->phys) 1570 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys); 1571 if (dev->uniq) 1572 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq); 1573 1574 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX); 1575 1576 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX); 1577 if (test_bit(EV_KEY, dev->evbit)) 1578 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX); 1579 if (test_bit(EV_REL, dev->evbit)) 1580 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX); 1581 if (test_bit(EV_ABS, dev->evbit)) 1582 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX); 1583 if (test_bit(EV_MSC, dev->evbit)) 1584 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX); 1585 if (test_bit(EV_LED, dev->evbit)) 1586 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX); 1587 if (test_bit(EV_SND, dev->evbit)) 1588 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX); 1589 if (test_bit(EV_FF, dev->evbit)) 1590 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX); 1591 if (test_bit(EV_SW, dev->evbit)) 1592 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX); 1593 1594 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev); 1595 1596 return 0; 1597 } 1598 1599 #define INPUT_DO_TOGGLE(dev, type, bits, on) \ 1600 do { \ 1601 int i; \ 1602 bool active; \ 1603 \ 1604 if (!test_bit(EV_##type, dev->evbit)) \ 1605 break; \ 1606 \ 1607 for (i = 0; i < type##_MAX; i++) { \ 1608 if (!test_bit(i, dev->bits##bit)) \ 1609 continue; \ 1610 \ 1611 active = test_bit(i, dev->bits); \ 1612 if (!active && !on) \ 1613 continue; \ 1614 \ 1615 dev->event(dev, EV_##type, i, on ? active : 0); \ 1616 } \ 1617 } while (0) 1618 1619 static void input_dev_toggle(struct input_dev *dev, bool activate) 1620 { 1621 if (!dev->event) 1622 return; 1623 1624 INPUT_DO_TOGGLE(dev, LED, led, activate); 1625 INPUT_DO_TOGGLE(dev, SND, snd, activate); 1626 1627 if (activate && test_bit(EV_REP, dev->evbit)) { 1628 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]); 1629 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]); 1630 } 1631 } 1632 1633 /** 1634 * input_reset_device() - reset/restore the state of input device 1635 * @dev: input device whose state needs to be reset 1636 * 1637 * This function tries to reset the state of an opened input device and 1638 * bring internal state and state if the hardware in sync with each other. 1639 * We mark all keys as released, restore LED state, repeat rate, etc. 1640 */ 1641 void input_reset_device(struct input_dev *dev) 1642 { 1643 mutex_lock(&dev->mutex); 1644 1645 if (dev->users) { 1646 input_dev_toggle(dev, true); 1647 1648 /* 1649 * Keys that have been pressed at suspend time are unlikely 1650 * to be still pressed when we resume. 1651 */ 1652 spin_lock_irq(&dev->event_lock); 1653 input_dev_release_keys(dev); 1654 spin_unlock_irq(&dev->event_lock); 1655 } 1656 1657 mutex_unlock(&dev->mutex); 1658 } 1659 EXPORT_SYMBOL(input_reset_device); 1660 1661 #ifdef CONFIG_PM 1662 static int input_dev_suspend(struct device *dev) 1663 { 1664 struct input_dev *input_dev = to_input_dev(dev); 1665 1666 mutex_lock(&input_dev->mutex); 1667 1668 if (input_dev->users) 1669 input_dev_toggle(input_dev, false); 1670 1671 mutex_unlock(&input_dev->mutex); 1672 1673 return 0; 1674 } 1675 1676 static int input_dev_resume(struct device *dev) 1677 { 1678 struct input_dev *input_dev = to_input_dev(dev); 1679 1680 input_reset_device(input_dev); 1681 1682 return 0; 1683 } 1684 1685 static const struct dev_pm_ops input_dev_pm_ops = { 1686 .suspend = input_dev_suspend, 1687 .resume = input_dev_resume, 1688 .poweroff = input_dev_suspend, 1689 .restore = input_dev_resume, 1690 }; 1691 #endif /* CONFIG_PM */ 1692 1693 static struct device_type input_dev_type = { 1694 .groups = input_dev_attr_groups, 1695 .release = input_dev_release, 1696 .uevent = input_dev_uevent, 1697 #ifdef CONFIG_PM 1698 .pm = &input_dev_pm_ops, 1699 #endif 1700 }; 1701 1702 static char *input_devnode(struct device *dev, umode_t *mode) 1703 { 1704 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev)); 1705 } 1706 1707 struct class input_class = { 1708 .name = "input", 1709 .devnode = input_devnode, 1710 }; 1711 EXPORT_SYMBOL_GPL(input_class); 1712 1713 /** 1714 * input_allocate_device - allocate memory for new input device 1715 * 1716 * Returns prepared struct input_dev or NULL. 1717 * 1718 * NOTE: Use input_free_device() to free devices that have not been 1719 * registered; input_unregister_device() should be used for already 1720 * registered devices. 1721 */ 1722 struct input_dev *input_allocate_device(void) 1723 { 1724 struct input_dev *dev; 1725 1726 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL); 1727 if (dev) { 1728 dev->dev.type = &input_dev_type; 1729 dev->dev.class = &input_class; 1730 device_initialize(&dev->dev); 1731 mutex_init(&dev->mutex); 1732 spin_lock_init(&dev->event_lock); 1733 INIT_LIST_HEAD(&dev->h_list); 1734 INIT_LIST_HEAD(&dev->node); 1735 1736 __module_get(THIS_MODULE); 1737 } 1738 1739 return dev; 1740 } 1741 EXPORT_SYMBOL(input_allocate_device); 1742 1743 /** 1744 * input_free_device - free memory occupied by input_dev structure 1745 * @dev: input device to free 1746 * 1747 * This function should only be used if input_register_device() 1748 * was not called yet or if it failed. Once device was registered 1749 * use input_unregister_device() and memory will be freed once last 1750 * reference to the device is dropped. 1751 * 1752 * Device should be allocated by input_allocate_device(). 1753 * 1754 * NOTE: If there are references to the input device then memory 1755 * will not be freed until last reference is dropped. 1756 */ 1757 void input_free_device(struct input_dev *dev) 1758 { 1759 if (dev) 1760 input_put_device(dev); 1761 } 1762 EXPORT_SYMBOL(input_free_device); 1763 1764 /** 1765 * input_set_capability - mark device as capable of a certain event 1766 * @dev: device that is capable of emitting or accepting event 1767 * @type: type of the event (EV_KEY, EV_REL, etc...) 1768 * @code: event code 1769 * 1770 * In addition to setting up corresponding bit in appropriate capability 1771 * bitmap the function also adjusts dev->evbit. 1772 */ 1773 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code) 1774 { 1775 switch (type) { 1776 case EV_KEY: 1777 __set_bit(code, dev->keybit); 1778 break; 1779 1780 case EV_REL: 1781 __set_bit(code, dev->relbit); 1782 break; 1783 1784 case EV_ABS: 1785 __set_bit(code, dev->absbit); 1786 break; 1787 1788 case EV_MSC: 1789 __set_bit(code, dev->mscbit); 1790 break; 1791 1792 case EV_SW: 1793 __set_bit(code, dev->swbit); 1794 break; 1795 1796 case EV_LED: 1797 __set_bit(code, dev->ledbit); 1798 break; 1799 1800 case EV_SND: 1801 __set_bit(code, dev->sndbit); 1802 break; 1803 1804 case EV_FF: 1805 __set_bit(code, dev->ffbit); 1806 break; 1807 1808 case EV_PWR: 1809 /* do nothing */ 1810 break; 1811 1812 default: 1813 pr_err("input_set_capability: unknown type %u (code %u)\n", 1814 type, code); 1815 dump_stack(); 1816 return; 1817 } 1818 1819 __set_bit(type, dev->evbit); 1820 } 1821 EXPORT_SYMBOL(input_set_capability); 1822 1823 static unsigned int input_estimate_events_per_packet(struct input_dev *dev) 1824 { 1825 int mt_slots; 1826 int i; 1827 unsigned int events; 1828 1829 if (dev->mt) { 1830 mt_slots = dev->mt->num_slots; 1831 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) { 1832 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum - 1833 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1, 1834 mt_slots = clamp(mt_slots, 2, 32); 1835 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) { 1836 mt_slots = 2; 1837 } else { 1838 mt_slots = 0; 1839 } 1840 1841 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */ 1842 1843 for (i = 0; i < ABS_CNT; i++) { 1844 if (test_bit(i, dev->absbit)) { 1845 if (input_is_mt_axis(i)) 1846 events += mt_slots; 1847 else 1848 events++; 1849 } 1850 } 1851 1852 for (i = 0; i < REL_CNT; i++) 1853 if (test_bit(i, dev->relbit)) 1854 events++; 1855 1856 /* Make room for KEY and MSC events */ 1857 events += 7; 1858 1859 return events; 1860 } 1861 1862 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \ 1863 do { \ 1864 if (!test_bit(EV_##type, dev->evbit)) \ 1865 memset(dev->bits##bit, 0, \ 1866 sizeof(dev->bits##bit)); \ 1867 } while (0) 1868 1869 static void input_cleanse_bitmasks(struct input_dev *dev) 1870 { 1871 INPUT_CLEANSE_BITMASK(dev, KEY, key); 1872 INPUT_CLEANSE_BITMASK(dev, REL, rel); 1873 INPUT_CLEANSE_BITMASK(dev, ABS, abs); 1874 INPUT_CLEANSE_BITMASK(dev, MSC, msc); 1875 INPUT_CLEANSE_BITMASK(dev, LED, led); 1876 INPUT_CLEANSE_BITMASK(dev, SND, snd); 1877 INPUT_CLEANSE_BITMASK(dev, FF, ff); 1878 INPUT_CLEANSE_BITMASK(dev, SW, sw); 1879 } 1880 1881 /** 1882 * input_register_device - register device with input core 1883 * @dev: device to be registered 1884 * 1885 * This function registers device with input core. The device must be 1886 * allocated with input_allocate_device() and all it's capabilities 1887 * set up before registering. 1888 * If function fails the device must be freed with input_free_device(). 1889 * Once device has been successfully registered it can be unregistered 1890 * with input_unregister_device(); input_free_device() should not be 1891 * called in this case. 1892 */ 1893 int input_register_device(struct input_dev *dev) 1894 { 1895 static atomic_t input_no = ATOMIC_INIT(0); 1896 struct input_handler *handler; 1897 unsigned int packet_size; 1898 const char *path; 1899 int error; 1900 1901 /* Every input device generates EV_SYN/SYN_REPORT events. */ 1902 __set_bit(EV_SYN, dev->evbit); 1903 1904 /* KEY_RESERVED is not supposed to be transmitted to userspace. */ 1905 __clear_bit(KEY_RESERVED, dev->keybit); 1906 1907 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */ 1908 input_cleanse_bitmasks(dev); 1909 1910 packet_size = input_estimate_events_per_packet(dev); 1911 if (dev->hint_events_per_packet < packet_size) 1912 dev->hint_events_per_packet = packet_size; 1913 1914 dev->max_vals = max(dev->hint_events_per_packet, packet_size) + 2; 1915 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL); 1916 if (!dev->vals) 1917 return -ENOMEM; 1918 1919 /* 1920 * If delay and period are pre-set by the driver, then autorepeating 1921 * is handled by the driver itself and we don't do it in input.c. 1922 */ 1923 init_timer(&dev->timer); 1924 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) { 1925 dev->timer.data = (long) dev; 1926 dev->timer.function = input_repeat_key; 1927 dev->rep[REP_DELAY] = 250; 1928 dev->rep[REP_PERIOD] = 33; 1929 } 1930 1931 if (!dev->getkeycode) 1932 dev->getkeycode = input_default_getkeycode; 1933 1934 if (!dev->setkeycode) 1935 dev->setkeycode = input_default_setkeycode; 1936 1937 dev_set_name(&dev->dev, "input%ld", 1938 (unsigned long) atomic_inc_return(&input_no) - 1); 1939 1940 error = device_add(&dev->dev); 1941 if (error) 1942 return error; 1943 1944 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1945 pr_info("%s as %s\n", 1946 dev->name ? dev->name : "Unspecified device", 1947 path ? path : "N/A"); 1948 kfree(path); 1949 1950 error = mutex_lock_interruptible(&input_mutex); 1951 if (error) { 1952 device_del(&dev->dev); 1953 return error; 1954 } 1955 1956 list_add_tail(&dev->node, &input_dev_list); 1957 1958 list_for_each_entry(handler, &input_handler_list, node) 1959 input_attach_handler(dev, handler); 1960 1961 input_wakeup_procfs_readers(); 1962 1963 mutex_unlock(&input_mutex); 1964 1965 return 0; 1966 } 1967 EXPORT_SYMBOL(input_register_device); 1968 1969 /** 1970 * input_unregister_device - unregister previously registered device 1971 * @dev: device to be unregistered 1972 * 1973 * This function unregisters an input device. Once device is unregistered 1974 * the caller should not try to access it as it may get freed at any moment. 1975 */ 1976 void input_unregister_device(struct input_dev *dev) 1977 { 1978 struct input_handle *handle, *next; 1979 1980 input_disconnect_device(dev); 1981 1982 mutex_lock(&input_mutex); 1983 1984 list_for_each_entry_safe(handle, next, &dev->h_list, d_node) 1985 handle->handler->disconnect(handle); 1986 WARN_ON(!list_empty(&dev->h_list)); 1987 1988 del_timer_sync(&dev->timer); 1989 list_del_init(&dev->node); 1990 1991 input_wakeup_procfs_readers(); 1992 1993 mutex_unlock(&input_mutex); 1994 1995 device_unregister(&dev->dev); 1996 } 1997 EXPORT_SYMBOL(input_unregister_device); 1998 1999 /** 2000 * input_register_handler - register a new input handler 2001 * @handler: handler to be registered 2002 * 2003 * This function registers a new input handler (interface) for input 2004 * devices in the system and attaches it to all input devices that 2005 * are compatible with the handler. 2006 */ 2007 int input_register_handler(struct input_handler *handler) 2008 { 2009 struct input_dev *dev; 2010 int retval; 2011 2012 retval = mutex_lock_interruptible(&input_mutex); 2013 if (retval) 2014 return retval; 2015 2016 INIT_LIST_HEAD(&handler->h_list); 2017 2018 if (handler->fops != NULL) { 2019 if (input_table[handler->minor >> 5]) { 2020 retval = -EBUSY; 2021 goto out; 2022 } 2023 input_table[handler->minor >> 5] = handler; 2024 } 2025 2026 list_add_tail(&handler->node, &input_handler_list); 2027 2028 list_for_each_entry(dev, &input_dev_list, node) 2029 input_attach_handler(dev, handler); 2030 2031 input_wakeup_procfs_readers(); 2032 2033 out: 2034 mutex_unlock(&input_mutex); 2035 return retval; 2036 } 2037 EXPORT_SYMBOL(input_register_handler); 2038 2039 /** 2040 * input_unregister_handler - unregisters an input handler 2041 * @handler: handler to be unregistered 2042 * 2043 * This function disconnects a handler from its input devices and 2044 * removes it from lists of known handlers. 2045 */ 2046 void input_unregister_handler(struct input_handler *handler) 2047 { 2048 struct input_handle *handle, *next; 2049 2050 mutex_lock(&input_mutex); 2051 2052 list_for_each_entry_safe(handle, next, &handler->h_list, h_node) 2053 handler->disconnect(handle); 2054 WARN_ON(!list_empty(&handler->h_list)); 2055 2056 list_del_init(&handler->node); 2057 2058 if (handler->fops != NULL) 2059 input_table[handler->minor >> 5] = NULL; 2060 2061 input_wakeup_procfs_readers(); 2062 2063 mutex_unlock(&input_mutex); 2064 } 2065 EXPORT_SYMBOL(input_unregister_handler); 2066 2067 /** 2068 * input_handler_for_each_handle - handle iterator 2069 * @handler: input handler to iterate 2070 * @data: data for the callback 2071 * @fn: function to be called for each handle 2072 * 2073 * Iterate over @bus's list of devices, and call @fn for each, passing 2074 * it @data and stop when @fn returns a non-zero value. The function is 2075 * using RCU to traverse the list and therefore may be usind in atonic 2076 * contexts. The @fn callback is invoked from RCU critical section and 2077 * thus must not sleep. 2078 */ 2079 int input_handler_for_each_handle(struct input_handler *handler, void *data, 2080 int (*fn)(struct input_handle *, void *)) 2081 { 2082 struct input_handle *handle; 2083 int retval = 0; 2084 2085 rcu_read_lock(); 2086 2087 list_for_each_entry_rcu(handle, &handler->h_list, h_node) { 2088 retval = fn(handle, data); 2089 if (retval) 2090 break; 2091 } 2092 2093 rcu_read_unlock(); 2094 2095 return retval; 2096 } 2097 EXPORT_SYMBOL(input_handler_for_each_handle); 2098 2099 /** 2100 * input_register_handle - register a new input handle 2101 * @handle: handle to register 2102 * 2103 * This function puts a new input handle onto device's 2104 * and handler's lists so that events can flow through 2105 * it once it is opened using input_open_device(). 2106 * 2107 * This function is supposed to be called from handler's 2108 * connect() method. 2109 */ 2110 int input_register_handle(struct input_handle *handle) 2111 { 2112 struct input_handler *handler = handle->handler; 2113 struct input_dev *dev = handle->dev; 2114 int error; 2115 2116 /* 2117 * We take dev->mutex here to prevent race with 2118 * input_release_device(). 2119 */ 2120 error = mutex_lock_interruptible(&dev->mutex); 2121 if (error) 2122 return error; 2123 2124 /* 2125 * Filters go to the head of the list, normal handlers 2126 * to the tail. 2127 */ 2128 if (handler->filter) 2129 list_add_rcu(&handle->d_node, &dev->h_list); 2130 else 2131 list_add_tail_rcu(&handle->d_node, &dev->h_list); 2132 2133 mutex_unlock(&dev->mutex); 2134 2135 /* 2136 * Since we are supposed to be called from ->connect() 2137 * which is mutually exclusive with ->disconnect() 2138 * we can't be racing with input_unregister_handle() 2139 * and so separate lock is not needed here. 2140 */ 2141 list_add_tail_rcu(&handle->h_node, &handler->h_list); 2142 2143 if (handler->start) 2144 handler->start(handle); 2145 2146 return 0; 2147 } 2148 EXPORT_SYMBOL(input_register_handle); 2149 2150 /** 2151 * input_unregister_handle - unregister an input handle 2152 * @handle: handle to unregister 2153 * 2154 * This function removes input handle from device's 2155 * and handler's lists. 2156 * 2157 * This function is supposed to be called from handler's 2158 * disconnect() method. 2159 */ 2160 void input_unregister_handle(struct input_handle *handle) 2161 { 2162 struct input_dev *dev = handle->dev; 2163 2164 list_del_rcu(&handle->h_node); 2165 2166 /* 2167 * Take dev->mutex to prevent race with input_release_device(). 2168 */ 2169 mutex_lock(&dev->mutex); 2170 list_del_rcu(&handle->d_node); 2171 mutex_unlock(&dev->mutex); 2172 2173 synchronize_rcu(); 2174 } 2175 EXPORT_SYMBOL(input_unregister_handle); 2176 2177 static int input_open_file(struct inode *inode, struct file *file) 2178 { 2179 struct input_handler *handler; 2180 const struct file_operations *old_fops, *new_fops = NULL; 2181 int err; 2182 2183 err = mutex_lock_interruptible(&input_mutex); 2184 if (err) 2185 return err; 2186 2187 /* No load-on-demand here? */ 2188 handler = input_table[iminor(inode) >> 5]; 2189 if (handler) 2190 new_fops = fops_get(handler->fops); 2191 2192 mutex_unlock(&input_mutex); 2193 2194 /* 2195 * That's _really_ odd. Usually NULL ->open means "nothing special", 2196 * not "no device". Oh, well... 2197 */ 2198 if (!new_fops || !new_fops->open) { 2199 fops_put(new_fops); 2200 err = -ENODEV; 2201 goto out; 2202 } 2203 2204 old_fops = file->f_op; 2205 file->f_op = new_fops; 2206 2207 err = new_fops->open(inode, file); 2208 if (err) { 2209 fops_put(file->f_op); 2210 file->f_op = fops_get(old_fops); 2211 } 2212 fops_put(old_fops); 2213 out: 2214 return err; 2215 } 2216 2217 static const struct file_operations input_fops = { 2218 .owner = THIS_MODULE, 2219 .open = input_open_file, 2220 .llseek = noop_llseek, 2221 }; 2222 2223 static int __init input_init(void) 2224 { 2225 int err; 2226 2227 err = class_register(&input_class); 2228 if (err) { 2229 pr_err("unable to register input_dev class\n"); 2230 return err; 2231 } 2232 2233 err = input_proc_init(); 2234 if (err) 2235 goto fail1; 2236 2237 err = register_chrdev(INPUT_MAJOR, "input", &input_fops); 2238 if (err) { 2239 pr_err("unable to register char major %d", INPUT_MAJOR); 2240 goto fail2; 2241 } 2242 2243 return 0; 2244 2245 fail2: input_proc_exit(); 2246 fail1: class_unregister(&input_class); 2247 return err; 2248 } 2249 2250 static void __exit input_exit(void) 2251 { 2252 input_proc_exit(); 2253 unregister_chrdev(INPUT_MAJOR, "input"); 2254 class_unregister(&input_class); 2255 } 2256 2257 subsys_initcall(input_init); 2258 module_exit(input_exit); 2259