xref: /linux-6.15/drivers/input/input.c (revision 4413e16d)
1 /*
2  * The input core
3  *
4  * Copyright (c) 1999-2002 Vojtech Pavlik
5  */
6 
7 /*
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published by
10  * the Free Software Foundation.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
14 
15 #include <linux/init.h>
16 #include <linux/types.h>
17 #include <linux/input/mt.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/random.h>
21 #include <linux/major.h>
22 #include <linux/proc_fs.h>
23 #include <linux/sched.h>
24 #include <linux/seq_file.h>
25 #include <linux/poll.h>
26 #include <linux/device.h>
27 #include <linux/mutex.h>
28 #include <linux/rcupdate.h>
29 #include "input-compat.h"
30 
31 MODULE_AUTHOR("Vojtech Pavlik <[email protected]>");
32 MODULE_DESCRIPTION("Input core");
33 MODULE_LICENSE("GPL");
34 
35 #define INPUT_DEVICES	256
36 
37 static LIST_HEAD(input_dev_list);
38 static LIST_HEAD(input_handler_list);
39 
40 /*
41  * input_mutex protects access to both input_dev_list and input_handler_list.
42  * This also causes input_[un]register_device and input_[un]register_handler
43  * be mutually exclusive which simplifies locking in drivers implementing
44  * input handlers.
45  */
46 static DEFINE_MUTEX(input_mutex);
47 
48 static struct input_handler *input_table[8];
49 
50 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
51 
52 static inline int is_event_supported(unsigned int code,
53 				     unsigned long *bm, unsigned int max)
54 {
55 	return code <= max && test_bit(code, bm);
56 }
57 
58 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
59 {
60 	if (fuzz) {
61 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
62 			return old_val;
63 
64 		if (value > old_val - fuzz && value < old_val + fuzz)
65 			return (old_val * 3 + value) / 4;
66 
67 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
68 			return (old_val + value) / 2;
69 	}
70 
71 	return value;
72 }
73 
74 static void input_start_autorepeat(struct input_dev *dev, int code)
75 {
76 	if (test_bit(EV_REP, dev->evbit) &&
77 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
78 	    dev->timer.data) {
79 		dev->repeat_key = code;
80 		mod_timer(&dev->timer,
81 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
82 	}
83 }
84 
85 static void input_stop_autorepeat(struct input_dev *dev)
86 {
87 	del_timer(&dev->timer);
88 }
89 
90 /*
91  * Pass event first through all filters and then, if event has not been
92  * filtered out, through all open handles. This function is called with
93  * dev->event_lock held and interrupts disabled.
94  */
95 static unsigned int input_to_handler(struct input_handle *handle,
96 			struct input_value *vals, unsigned int count)
97 {
98 	struct input_handler *handler = handle->handler;
99 	struct input_value *end = vals;
100 	struct input_value *v;
101 
102 	for (v = vals; v != vals + count; v++) {
103 		if (handler->filter &&
104 		    handler->filter(handle, v->type, v->code, v->value))
105 			continue;
106 		if (end != v)
107 			*end = *v;
108 		end++;
109 	}
110 
111 	count = end - vals;
112 	if (!count)
113 		return 0;
114 
115 	if (handler->events)
116 		handler->events(handle, vals, count);
117 	else if (handler->event)
118 		for (v = vals; v != end; v++)
119 			handler->event(handle, v->type, v->code, v->value);
120 
121 	return count;
122 }
123 
124 /*
125  * Pass values first through all filters and then, if event has not been
126  * filtered out, through all open handles. This function is called with
127  * dev->event_lock held and interrupts disabled.
128  */
129 static void input_pass_values(struct input_dev *dev,
130 			      struct input_value *vals, unsigned int count)
131 {
132 	struct input_handle *handle;
133 	struct input_value *v;
134 
135 	if (!count)
136 		return;
137 
138 	rcu_read_lock();
139 
140 	handle = rcu_dereference(dev->grab);
141 	if (handle) {
142 		count = input_to_handler(handle, vals, count);
143 	} else {
144 		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
145 			if (handle->open)
146 				count = input_to_handler(handle, vals, count);
147 	}
148 
149 	rcu_read_unlock();
150 
151 	add_input_randomness(vals->type, vals->code, vals->value);
152 
153 	/* trigger auto repeat for key events */
154 	for (v = vals; v != vals + count; v++) {
155 		if (v->type == EV_KEY && v->value != 2) {
156 			if (v->value)
157 				input_start_autorepeat(dev, v->code);
158 			else
159 				input_stop_autorepeat(dev);
160 		}
161 	}
162 }
163 
164 static void input_pass_event(struct input_dev *dev,
165 			     unsigned int type, unsigned int code, int value)
166 {
167 	struct input_value vals[] = { { type, code, value } };
168 
169 	input_pass_values(dev, vals, ARRAY_SIZE(vals));
170 }
171 
172 /*
173  * Generate software autorepeat event. Note that we take
174  * dev->event_lock here to avoid racing with input_event
175  * which may cause keys get "stuck".
176  */
177 static void input_repeat_key(unsigned long data)
178 {
179 	struct input_dev *dev = (void *) data;
180 	unsigned long flags;
181 
182 	spin_lock_irqsave(&dev->event_lock, flags);
183 
184 	if (test_bit(dev->repeat_key, dev->key) &&
185 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
186 		struct input_value vals[] =  {
187 			{ EV_KEY, dev->repeat_key, 2 },
188 			input_value_sync
189 		};
190 
191 		input_pass_values(dev, vals, ARRAY_SIZE(vals));
192 
193 		if (dev->rep[REP_PERIOD])
194 			mod_timer(&dev->timer, jiffies +
195 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
196 	}
197 
198 	spin_unlock_irqrestore(&dev->event_lock, flags);
199 }
200 
201 #define INPUT_IGNORE_EVENT	0
202 #define INPUT_PASS_TO_HANDLERS	1
203 #define INPUT_PASS_TO_DEVICE	2
204 #define INPUT_SLOT		4
205 #define INPUT_FLUSH		8
206 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
207 
208 static int input_handle_abs_event(struct input_dev *dev,
209 				  unsigned int code, int *pval)
210 {
211 	struct input_mt *mt = dev->mt;
212 	bool is_mt_event;
213 	int *pold;
214 
215 	if (code == ABS_MT_SLOT) {
216 		/*
217 		 * "Stage" the event; we'll flush it later, when we
218 		 * get actual touch data.
219 		 */
220 		if (mt && *pval >= 0 && *pval < mt->num_slots)
221 			mt->slot = *pval;
222 
223 		return INPUT_IGNORE_EVENT;
224 	}
225 
226 	is_mt_event = input_is_mt_value(code);
227 
228 	if (!is_mt_event) {
229 		pold = &dev->absinfo[code].value;
230 	} else if (mt) {
231 		pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
232 	} else {
233 		/*
234 		 * Bypass filtering for multi-touch events when
235 		 * not employing slots.
236 		 */
237 		pold = NULL;
238 	}
239 
240 	if (pold) {
241 		*pval = input_defuzz_abs_event(*pval, *pold,
242 						dev->absinfo[code].fuzz);
243 		if (*pold == *pval)
244 			return INPUT_IGNORE_EVENT;
245 
246 		*pold = *pval;
247 	}
248 
249 	/* Flush pending "slot" event */
250 	if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
251 		input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
252 		return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
253 	}
254 
255 	return INPUT_PASS_TO_HANDLERS;
256 }
257 
258 static int input_get_disposition(struct input_dev *dev,
259 			  unsigned int type, unsigned int code, int value)
260 {
261 	int disposition = INPUT_IGNORE_EVENT;
262 
263 	switch (type) {
264 
265 	case EV_SYN:
266 		switch (code) {
267 		case SYN_CONFIG:
268 			disposition = INPUT_PASS_TO_ALL;
269 			break;
270 
271 		case SYN_REPORT:
272 			disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
273 			break;
274 		case SYN_MT_REPORT:
275 			disposition = INPUT_PASS_TO_HANDLERS;
276 			break;
277 		}
278 		break;
279 
280 	case EV_KEY:
281 		if (is_event_supported(code, dev->keybit, KEY_MAX)) {
282 
283 			/* auto-repeat bypasses state updates */
284 			if (value == 2) {
285 				disposition = INPUT_PASS_TO_HANDLERS;
286 				break;
287 			}
288 
289 			if (!!test_bit(code, dev->key) != !!value) {
290 
291 				__change_bit(code, dev->key);
292 				disposition = INPUT_PASS_TO_HANDLERS;
293 			}
294 		}
295 		break;
296 
297 	case EV_SW:
298 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
299 		    !!test_bit(code, dev->sw) != !!value) {
300 
301 			__change_bit(code, dev->sw);
302 			disposition = INPUT_PASS_TO_HANDLERS;
303 		}
304 		break;
305 
306 	case EV_ABS:
307 		if (is_event_supported(code, dev->absbit, ABS_MAX))
308 			disposition = input_handle_abs_event(dev, code, &value);
309 
310 		break;
311 
312 	case EV_REL:
313 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
314 			disposition = INPUT_PASS_TO_HANDLERS;
315 
316 		break;
317 
318 	case EV_MSC:
319 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
320 			disposition = INPUT_PASS_TO_ALL;
321 
322 		break;
323 
324 	case EV_LED:
325 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
326 		    !!test_bit(code, dev->led) != !!value) {
327 
328 			__change_bit(code, dev->led);
329 			disposition = INPUT_PASS_TO_ALL;
330 		}
331 		break;
332 
333 	case EV_SND:
334 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
335 
336 			if (!!test_bit(code, dev->snd) != !!value)
337 				__change_bit(code, dev->snd);
338 			disposition = INPUT_PASS_TO_ALL;
339 		}
340 		break;
341 
342 	case EV_REP:
343 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
344 			dev->rep[code] = value;
345 			disposition = INPUT_PASS_TO_ALL;
346 		}
347 		break;
348 
349 	case EV_FF:
350 		if (value >= 0)
351 			disposition = INPUT_PASS_TO_ALL;
352 		break;
353 
354 	case EV_PWR:
355 		disposition = INPUT_PASS_TO_ALL;
356 		break;
357 	}
358 
359 	return disposition;
360 }
361 
362 static void input_handle_event(struct input_dev *dev,
363 			       unsigned int type, unsigned int code, int value)
364 {
365 	int disposition;
366 
367 	disposition = input_get_disposition(dev, type, code, value);
368 
369 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
370 		dev->event(dev, type, code, value);
371 
372 	if (!dev->vals)
373 		return;
374 
375 	if (disposition & INPUT_PASS_TO_HANDLERS) {
376 		struct input_value *v;
377 
378 		if (disposition & INPUT_SLOT) {
379 			v = &dev->vals[dev->num_vals++];
380 			v->type = EV_ABS;
381 			v->code = ABS_MT_SLOT;
382 			v->value = dev->mt->slot;
383 		}
384 
385 		v = &dev->vals[dev->num_vals++];
386 		v->type = type;
387 		v->code = code;
388 		v->value = value;
389 	}
390 
391 	if (disposition & INPUT_FLUSH) {
392 		if (dev->num_vals >= 2)
393 			input_pass_values(dev, dev->vals, dev->num_vals);
394 		dev->num_vals = 0;
395 	} else if (dev->num_vals >= dev->max_vals - 2) {
396 		dev->vals[dev->num_vals++] = input_value_sync;
397 		input_pass_values(dev, dev->vals, dev->num_vals);
398 		dev->num_vals = 0;
399 	}
400 
401 }
402 
403 /**
404  * input_event() - report new input event
405  * @dev: device that generated the event
406  * @type: type of the event
407  * @code: event code
408  * @value: value of the event
409  *
410  * This function should be used by drivers implementing various input
411  * devices to report input events. See also input_inject_event().
412  *
413  * NOTE: input_event() may be safely used right after input device was
414  * allocated with input_allocate_device(), even before it is registered
415  * with input_register_device(), but the event will not reach any of the
416  * input handlers. Such early invocation of input_event() may be used
417  * to 'seed' initial state of a switch or initial position of absolute
418  * axis, etc.
419  */
420 void input_event(struct input_dev *dev,
421 		 unsigned int type, unsigned int code, int value)
422 {
423 	unsigned long flags;
424 
425 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
426 
427 		spin_lock_irqsave(&dev->event_lock, flags);
428 		input_handle_event(dev, type, code, value);
429 		spin_unlock_irqrestore(&dev->event_lock, flags);
430 	}
431 }
432 EXPORT_SYMBOL(input_event);
433 
434 /**
435  * input_inject_event() - send input event from input handler
436  * @handle: input handle to send event through
437  * @type: type of the event
438  * @code: event code
439  * @value: value of the event
440  *
441  * Similar to input_event() but will ignore event if device is
442  * "grabbed" and handle injecting event is not the one that owns
443  * the device.
444  */
445 void input_inject_event(struct input_handle *handle,
446 			unsigned int type, unsigned int code, int value)
447 {
448 	struct input_dev *dev = handle->dev;
449 	struct input_handle *grab;
450 	unsigned long flags;
451 
452 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
453 		spin_lock_irqsave(&dev->event_lock, flags);
454 
455 		rcu_read_lock();
456 		grab = rcu_dereference(dev->grab);
457 		if (!grab || grab == handle)
458 			input_handle_event(dev, type, code, value);
459 		rcu_read_unlock();
460 
461 		spin_unlock_irqrestore(&dev->event_lock, flags);
462 	}
463 }
464 EXPORT_SYMBOL(input_inject_event);
465 
466 /**
467  * input_alloc_absinfo - allocates array of input_absinfo structs
468  * @dev: the input device emitting absolute events
469  *
470  * If the absinfo struct the caller asked for is already allocated, this
471  * functions will not do anything.
472  */
473 void input_alloc_absinfo(struct input_dev *dev)
474 {
475 	if (!dev->absinfo)
476 		dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
477 					GFP_KERNEL);
478 
479 	WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
480 }
481 EXPORT_SYMBOL(input_alloc_absinfo);
482 
483 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
484 			  int min, int max, int fuzz, int flat)
485 {
486 	struct input_absinfo *absinfo;
487 
488 	input_alloc_absinfo(dev);
489 	if (!dev->absinfo)
490 		return;
491 
492 	absinfo = &dev->absinfo[axis];
493 	absinfo->minimum = min;
494 	absinfo->maximum = max;
495 	absinfo->fuzz = fuzz;
496 	absinfo->flat = flat;
497 
498 	dev->absbit[BIT_WORD(axis)] |= BIT_MASK(axis);
499 }
500 EXPORT_SYMBOL(input_set_abs_params);
501 
502 
503 /**
504  * input_grab_device - grabs device for exclusive use
505  * @handle: input handle that wants to own the device
506  *
507  * When a device is grabbed by an input handle all events generated by
508  * the device are delivered only to this handle. Also events injected
509  * by other input handles are ignored while device is grabbed.
510  */
511 int input_grab_device(struct input_handle *handle)
512 {
513 	struct input_dev *dev = handle->dev;
514 	int retval;
515 
516 	retval = mutex_lock_interruptible(&dev->mutex);
517 	if (retval)
518 		return retval;
519 
520 	if (dev->grab) {
521 		retval = -EBUSY;
522 		goto out;
523 	}
524 
525 	rcu_assign_pointer(dev->grab, handle);
526 
527  out:
528 	mutex_unlock(&dev->mutex);
529 	return retval;
530 }
531 EXPORT_SYMBOL(input_grab_device);
532 
533 static void __input_release_device(struct input_handle *handle)
534 {
535 	struct input_dev *dev = handle->dev;
536 
537 	if (dev->grab == handle) {
538 		rcu_assign_pointer(dev->grab, NULL);
539 		/* Make sure input_pass_event() notices that grab is gone */
540 		synchronize_rcu();
541 
542 		list_for_each_entry(handle, &dev->h_list, d_node)
543 			if (handle->open && handle->handler->start)
544 				handle->handler->start(handle);
545 	}
546 }
547 
548 /**
549  * input_release_device - release previously grabbed device
550  * @handle: input handle that owns the device
551  *
552  * Releases previously grabbed device so that other input handles can
553  * start receiving input events. Upon release all handlers attached
554  * to the device have their start() method called so they have a change
555  * to synchronize device state with the rest of the system.
556  */
557 void input_release_device(struct input_handle *handle)
558 {
559 	struct input_dev *dev = handle->dev;
560 
561 	mutex_lock(&dev->mutex);
562 	__input_release_device(handle);
563 	mutex_unlock(&dev->mutex);
564 }
565 EXPORT_SYMBOL(input_release_device);
566 
567 /**
568  * input_open_device - open input device
569  * @handle: handle through which device is being accessed
570  *
571  * This function should be called by input handlers when they
572  * want to start receive events from given input device.
573  */
574 int input_open_device(struct input_handle *handle)
575 {
576 	struct input_dev *dev = handle->dev;
577 	int retval;
578 
579 	retval = mutex_lock_interruptible(&dev->mutex);
580 	if (retval)
581 		return retval;
582 
583 	if (dev->going_away) {
584 		retval = -ENODEV;
585 		goto out;
586 	}
587 
588 	handle->open++;
589 
590 	if (!dev->users++ && dev->open)
591 		retval = dev->open(dev);
592 
593 	if (retval) {
594 		dev->users--;
595 		if (!--handle->open) {
596 			/*
597 			 * Make sure we are not delivering any more events
598 			 * through this handle
599 			 */
600 			synchronize_rcu();
601 		}
602 	}
603 
604  out:
605 	mutex_unlock(&dev->mutex);
606 	return retval;
607 }
608 EXPORT_SYMBOL(input_open_device);
609 
610 int input_flush_device(struct input_handle *handle, struct file *file)
611 {
612 	struct input_dev *dev = handle->dev;
613 	int retval;
614 
615 	retval = mutex_lock_interruptible(&dev->mutex);
616 	if (retval)
617 		return retval;
618 
619 	if (dev->flush)
620 		retval = dev->flush(dev, file);
621 
622 	mutex_unlock(&dev->mutex);
623 	return retval;
624 }
625 EXPORT_SYMBOL(input_flush_device);
626 
627 /**
628  * input_close_device - close input device
629  * @handle: handle through which device is being accessed
630  *
631  * This function should be called by input handlers when they
632  * want to stop receive events from given input device.
633  */
634 void input_close_device(struct input_handle *handle)
635 {
636 	struct input_dev *dev = handle->dev;
637 
638 	mutex_lock(&dev->mutex);
639 
640 	__input_release_device(handle);
641 
642 	if (!--dev->users && dev->close)
643 		dev->close(dev);
644 
645 	if (!--handle->open) {
646 		/*
647 		 * synchronize_rcu() makes sure that input_pass_event()
648 		 * completed and that no more input events are delivered
649 		 * through this handle
650 		 */
651 		synchronize_rcu();
652 	}
653 
654 	mutex_unlock(&dev->mutex);
655 }
656 EXPORT_SYMBOL(input_close_device);
657 
658 /*
659  * Simulate keyup events for all keys that are marked as pressed.
660  * The function must be called with dev->event_lock held.
661  */
662 static void input_dev_release_keys(struct input_dev *dev)
663 {
664 	int code;
665 
666 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
667 		for (code = 0; code <= KEY_MAX; code++) {
668 			if (is_event_supported(code, dev->keybit, KEY_MAX) &&
669 			    __test_and_clear_bit(code, dev->key)) {
670 				input_pass_event(dev, EV_KEY, code, 0);
671 			}
672 		}
673 		input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
674 	}
675 }
676 
677 /*
678  * Prepare device for unregistering
679  */
680 static void input_disconnect_device(struct input_dev *dev)
681 {
682 	struct input_handle *handle;
683 
684 	/*
685 	 * Mark device as going away. Note that we take dev->mutex here
686 	 * not to protect access to dev->going_away but rather to ensure
687 	 * that there are no threads in the middle of input_open_device()
688 	 */
689 	mutex_lock(&dev->mutex);
690 	dev->going_away = true;
691 	mutex_unlock(&dev->mutex);
692 
693 	spin_lock_irq(&dev->event_lock);
694 
695 	/*
696 	 * Simulate keyup events for all pressed keys so that handlers
697 	 * are not left with "stuck" keys. The driver may continue
698 	 * generate events even after we done here but they will not
699 	 * reach any handlers.
700 	 */
701 	input_dev_release_keys(dev);
702 
703 	list_for_each_entry(handle, &dev->h_list, d_node)
704 		handle->open = 0;
705 
706 	spin_unlock_irq(&dev->event_lock);
707 }
708 
709 /**
710  * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
711  * @ke: keymap entry containing scancode to be converted.
712  * @scancode: pointer to the location where converted scancode should
713  *	be stored.
714  *
715  * This function is used to convert scancode stored in &struct keymap_entry
716  * into scalar form understood by legacy keymap handling methods. These
717  * methods expect scancodes to be represented as 'unsigned int'.
718  */
719 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
720 			     unsigned int *scancode)
721 {
722 	switch (ke->len) {
723 	case 1:
724 		*scancode = *((u8 *)ke->scancode);
725 		break;
726 
727 	case 2:
728 		*scancode = *((u16 *)ke->scancode);
729 		break;
730 
731 	case 4:
732 		*scancode = *((u32 *)ke->scancode);
733 		break;
734 
735 	default:
736 		return -EINVAL;
737 	}
738 
739 	return 0;
740 }
741 EXPORT_SYMBOL(input_scancode_to_scalar);
742 
743 /*
744  * Those routines handle the default case where no [gs]etkeycode() is
745  * defined. In this case, an array indexed by the scancode is used.
746  */
747 
748 static unsigned int input_fetch_keycode(struct input_dev *dev,
749 					unsigned int index)
750 {
751 	switch (dev->keycodesize) {
752 	case 1:
753 		return ((u8 *)dev->keycode)[index];
754 
755 	case 2:
756 		return ((u16 *)dev->keycode)[index];
757 
758 	default:
759 		return ((u32 *)dev->keycode)[index];
760 	}
761 }
762 
763 static int input_default_getkeycode(struct input_dev *dev,
764 				    struct input_keymap_entry *ke)
765 {
766 	unsigned int index;
767 	int error;
768 
769 	if (!dev->keycodesize)
770 		return -EINVAL;
771 
772 	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
773 		index = ke->index;
774 	else {
775 		error = input_scancode_to_scalar(ke, &index);
776 		if (error)
777 			return error;
778 	}
779 
780 	if (index >= dev->keycodemax)
781 		return -EINVAL;
782 
783 	ke->keycode = input_fetch_keycode(dev, index);
784 	ke->index = index;
785 	ke->len = sizeof(index);
786 	memcpy(ke->scancode, &index, sizeof(index));
787 
788 	return 0;
789 }
790 
791 static int input_default_setkeycode(struct input_dev *dev,
792 				    const struct input_keymap_entry *ke,
793 				    unsigned int *old_keycode)
794 {
795 	unsigned int index;
796 	int error;
797 	int i;
798 
799 	if (!dev->keycodesize)
800 		return -EINVAL;
801 
802 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
803 		index = ke->index;
804 	} else {
805 		error = input_scancode_to_scalar(ke, &index);
806 		if (error)
807 			return error;
808 	}
809 
810 	if (index >= dev->keycodemax)
811 		return -EINVAL;
812 
813 	if (dev->keycodesize < sizeof(ke->keycode) &&
814 			(ke->keycode >> (dev->keycodesize * 8)))
815 		return -EINVAL;
816 
817 	switch (dev->keycodesize) {
818 		case 1: {
819 			u8 *k = (u8 *)dev->keycode;
820 			*old_keycode = k[index];
821 			k[index] = ke->keycode;
822 			break;
823 		}
824 		case 2: {
825 			u16 *k = (u16 *)dev->keycode;
826 			*old_keycode = k[index];
827 			k[index] = ke->keycode;
828 			break;
829 		}
830 		default: {
831 			u32 *k = (u32 *)dev->keycode;
832 			*old_keycode = k[index];
833 			k[index] = ke->keycode;
834 			break;
835 		}
836 	}
837 
838 	__clear_bit(*old_keycode, dev->keybit);
839 	__set_bit(ke->keycode, dev->keybit);
840 
841 	for (i = 0; i < dev->keycodemax; i++) {
842 		if (input_fetch_keycode(dev, i) == *old_keycode) {
843 			__set_bit(*old_keycode, dev->keybit);
844 			break; /* Setting the bit twice is useless, so break */
845 		}
846 	}
847 
848 	return 0;
849 }
850 
851 /**
852  * input_get_keycode - retrieve keycode currently mapped to a given scancode
853  * @dev: input device which keymap is being queried
854  * @ke: keymap entry
855  *
856  * This function should be called by anyone interested in retrieving current
857  * keymap. Presently evdev handlers use it.
858  */
859 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
860 {
861 	unsigned long flags;
862 	int retval;
863 
864 	spin_lock_irqsave(&dev->event_lock, flags);
865 	retval = dev->getkeycode(dev, ke);
866 	spin_unlock_irqrestore(&dev->event_lock, flags);
867 
868 	return retval;
869 }
870 EXPORT_SYMBOL(input_get_keycode);
871 
872 /**
873  * input_set_keycode - attribute a keycode to a given scancode
874  * @dev: input device which keymap is being updated
875  * @ke: new keymap entry
876  *
877  * This function should be called by anyone needing to update current
878  * keymap. Presently keyboard and evdev handlers use it.
879  */
880 int input_set_keycode(struct input_dev *dev,
881 		      const struct input_keymap_entry *ke)
882 {
883 	unsigned long flags;
884 	unsigned int old_keycode;
885 	int retval;
886 
887 	if (ke->keycode > KEY_MAX)
888 		return -EINVAL;
889 
890 	spin_lock_irqsave(&dev->event_lock, flags);
891 
892 	retval = dev->setkeycode(dev, ke, &old_keycode);
893 	if (retval)
894 		goto out;
895 
896 	/* Make sure KEY_RESERVED did not get enabled. */
897 	__clear_bit(KEY_RESERVED, dev->keybit);
898 
899 	/*
900 	 * Simulate keyup event if keycode is not present
901 	 * in the keymap anymore
902 	 */
903 	if (test_bit(EV_KEY, dev->evbit) &&
904 	    !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
905 	    __test_and_clear_bit(old_keycode, dev->key)) {
906 		struct input_value vals[] =  {
907 			{ EV_KEY, old_keycode, 0 },
908 			input_value_sync
909 		};
910 
911 		input_pass_values(dev, vals, ARRAY_SIZE(vals));
912 	}
913 
914  out:
915 	spin_unlock_irqrestore(&dev->event_lock, flags);
916 
917 	return retval;
918 }
919 EXPORT_SYMBOL(input_set_keycode);
920 
921 #define MATCH_BIT(bit, max) \
922 		for (i = 0; i < BITS_TO_LONGS(max); i++) \
923 			if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
924 				break; \
925 		if (i != BITS_TO_LONGS(max)) \
926 			continue;
927 
928 static const struct input_device_id *input_match_device(struct input_handler *handler,
929 							struct input_dev *dev)
930 {
931 	const struct input_device_id *id;
932 	int i;
933 
934 	for (id = handler->id_table; id->flags || id->driver_info; id++) {
935 
936 		if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
937 			if (id->bustype != dev->id.bustype)
938 				continue;
939 
940 		if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
941 			if (id->vendor != dev->id.vendor)
942 				continue;
943 
944 		if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
945 			if (id->product != dev->id.product)
946 				continue;
947 
948 		if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
949 			if (id->version != dev->id.version)
950 				continue;
951 
952 		MATCH_BIT(evbit,  EV_MAX);
953 		MATCH_BIT(keybit, KEY_MAX);
954 		MATCH_BIT(relbit, REL_MAX);
955 		MATCH_BIT(absbit, ABS_MAX);
956 		MATCH_BIT(mscbit, MSC_MAX);
957 		MATCH_BIT(ledbit, LED_MAX);
958 		MATCH_BIT(sndbit, SND_MAX);
959 		MATCH_BIT(ffbit,  FF_MAX);
960 		MATCH_BIT(swbit,  SW_MAX);
961 
962 		if (!handler->match || handler->match(handler, dev))
963 			return id;
964 	}
965 
966 	return NULL;
967 }
968 
969 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
970 {
971 	const struct input_device_id *id;
972 	int error;
973 
974 	id = input_match_device(handler, dev);
975 	if (!id)
976 		return -ENODEV;
977 
978 	error = handler->connect(handler, dev, id);
979 	if (error && error != -ENODEV)
980 		pr_err("failed to attach handler %s to device %s, error: %d\n",
981 		       handler->name, kobject_name(&dev->dev.kobj), error);
982 
983 	return error;
984 }
985 
986 #ifdef CONFIG_COMPAT
987 
988 static int input_bits_to_string(char *buf, int buf_size,
989 				unsigned long bits, bool skip_empty)
990 {
991 	int len = 0;
992 
993 	if (INPUT_COMPAT_TEST) {
994 		u32 dword = bits >> 32;
995 		if (dword || !skip_empty)
996 			len += snprintf(buf, buf_size, "%x ", dword);
997 
998 		dword = bits & 0xffffffffUL;
999 		if (dword || !skip_empty || len)
1000 			len += snprintf(buf + len, max(buf_size - len, 0),
1001 					"%x", dword);
1002 	} else {
1003 		if (bits || !skip_empty)
1004 			len += snprintf(buf, buf_size, "%lx", bits);
1005 	}
1006 
1007 	return len;
1008 }
1009 
1010 #else /* !CONFIG_COMPAT */
1011 
1012 static int input_bits_to_string(char *buf, int buf_size,
1013 				unsigned long bits, bool skip_empty)
1014 {
1015 	return bits || !skip_empty ?
1016 		snprintf(buf, buf_size, "%lx", bits) : 0;
1017 }
1018 
1019 #endif
1020 
1021 #ifdef CONFIG_PROC_FS
1022 
1023 static struct proc_dir_entry *proc_bus_input_dir;
1024 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1025 static int input_devices_state;
1026 
1027 static inline void input_wakeup_procfs_readers(void)
1028 {
1029 	input_devices_state++;
1030 	wake_up(&input_devices_poll_wait);
1031 }
1032 
1033 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
1034 {
1035 	poll_wait(file, &input_devices_poll_wait, wait);
1036 	if (file->f_version != input_devices_state) {
1037 		file->f_version = input_devices_state;
1038 		return POLLIN | POLLRDNORM;
1039 	}
1040 
1041 	return 0;
1042 }
1043 
1044 union input_seq_state {
1045 	struct {
1046 		unsigned short pos;
1047 		bool mutex_acquired;
1048 	};
1049 	void *p;
1050 };
1051 
1052 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1053 {
1054 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1055 	int error;
1056 
1057 	/* We need to fit into seq->private pointer */
1058 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1059 
1060 	error = mutex_lock_interruptible(&input_mutex);
1061 	if (error) {
1062 		state->mutex_acquired = false;
1063 		return ERR_PTR(error);
1064 	}
1065 
1066 	state->mutex_acquired = true;
1067 
1068 	return seq_list_start(&input_dev_list, *pos);
1069 }
1070 
1071 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1072 {
1073 	return seq_list_next(v, &input_dev_list, pos);
1074 }
1075 
1076 static void input_seq_stop(struct seq_file *seq, void *v)
1077 {
1078 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1079 
1080 	if (state->mutex_acquired)
1081 		mutex_unlock(&input_mutex);
1082 }
1083 
1084 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1085 				   unsigned long *bitmap, int max)
1086 {
1087 	int i;
1088 	bool skip_empty = true;
1089 	char buf[18];
1090 
1091 	seq_printf(seq, "B: %s=", name);
1092 
1093 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1094 		if (input_bits_to_string(buf, sizeof(buf),
1095 					 bitmap[i], skip_empty)) {
1096 			skip_empty = false;
1097 			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1098 		}
1099 	}
1100 
1101 	/*
1102 	 * If no output was produced print a single 0.
1103 	 */
1104 	if (skip_empty)
1105 		seq_puts(seq, "0");
1106 
1107 	seq_putc(seq, '\n');
1108 }
1109 
1110 static int input_devices_seq_show(struct seq_file *seq, void *v)
1111 {
1112 	struct input_dev *dev = container_of(v, struct input_dev, node);
1113 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1114 	struct input_handle *handle;
1115 
1116 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1117 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1118 
1119 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1120 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1121 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1122 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1123 	seq_printf(seq, "H: Handlers=");
1124 
1125 	list_for_each_entry(handle, &dev->h_list, d_node)
1126 		seq_printf(seq, "%s ", handle->name);
1127 	seq_putc(seq, '\n');
1128 
1129 	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1130 
1131 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1132 	if (test_bit(EV_KEY, dev->evbit))
1133 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1134 	if (test_bit(EV_REL, dev->evbit))
1135 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1136 	if (test_bit(EV_ABS, dev->evbit))
1137 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1138 	if (test_bit(EV_MSC, dev->evbit))
1139 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1140 	if (test_bit(EV_LED, dev->evbit))
1141 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1142 	if (test_bit(EV_SND, dev->evbit))
1143 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1144 	if (test_bit(EV_FF, dev->evbit))
1145 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1146 	if (test_bit(EV_SW, dev->evbit))
1147 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1148 
1149 	seq_putc(seq, '\n');
1150 
1151 	kfree(path);
1152 	return 0;
1153 }
1154 
1155 static const struct seq_operations input_devices_seq_ops = {
1156 	.start	= input_devices_seq_start,
1157 	.next	= input_devices_seq_next,
1158 	.stop	= input_seq_stop,
1159 	.show	= input_devices_seq_show,
1160 };
1161 
1162 static int input_proc_devices_open(struct inode *inode, struct file *file)
1163 {
1164 	return seq_open(file, &input_devices_seq_ops);
1165 }
1166 
1167 static const struct file_operations input_devices_fileops = {
1168 	.owner		= THIS_MODULE,
1169 	.open		= input_proc_devices_open,
1170 	.poll		= input_proc_devices_poll,
1171 	.read		= seq_read,
1172 	.llseek		= seq_lseek,
1173 	.release	= seq_release,
1174 };
1175 
1176 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1177 {
1178 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1179 	int error;
1180 
1181 	/* We need to fit into seq->private pointer */
1182 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1183 
1184 	error = mutex_lock_interruptible(&input_mutex);
1185 	if (error) {
1186 		state->mutex_acquired = false;
1187 		return ERR_PTR(error);
1188 	}
1189 
1190 	state->mutex_acquired = true;
1191 	state->pos = *pos;
1192 
1193 	return seq_list_start(&input_handler_list, *pos);
1194 }
1195 
1196 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1197 {
1198 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1199 
1200 	state->pos = *pos + 1;
1201 	return seq_list_next(v, &input_handler_list, pos);
1202 }
1203 
1204 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1205 {
1206 	struct input_handler *handler = container_of(v, struct input_handler, node);
1207 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1208 
1209 	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1210 	if (handler->filter)
1211 		seq_puts(seq, " (filter)");
1212 	if (handler->fops)
1213 		seq_printf(seq, " Minor=%d", handler->minor);
1214 	seq_putc(seq, '\n');
1215 
1216 	return 0;
1217 }
1218 
1219 static const struct seq_operations input_handlers_seq_ops = {
1220 	.start	= input_handlers_seq_start,
1221 	.next	= input_handlers_seq_next,
1222 	.stop	= input_seq_stop,
1223 	.show	= input_handlers_seq_show,
1224 };
1225 
1226 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1227 {
1228 	return seq_open(file, &input_handlers_seq_ops);
1229 }
1230 
1231 static const struct file_operations input_handlers_fileops = {
1232 	.owner		= THIS_MODULE,
1233 	.open		= input_proc_handlers_open,
1234 	.read		= seq_read,
1235 	.llseek		= seq_lseek,
1236 	.release	= seq_release,
1237 };
1238 
1239 static int __init input_proc_init(void)
1240 {
1241 	struct proc_dir_entry *entry;
1242 
1243 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1244 	if (!proc_bus_input_dir)
1245 		return -ENOMEM;
1246 
1247 	entry = proc_create("devices", 0, proc_bus_input_dir,
1248 			    &input_devices_fileops);
1249 	if (!entry)
1250 		goto fail1;
1251 
1252 	entry = proc_create("handlers", 0, proc_bus_input_dir,
1253 			    &input_handlers_fileops);
1254 	if (!entry)
1255 		goto fail2;
1256 
1257 	return 0;
1258 
1259  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1260  fail1: remove_proc_entry("bus/input", NULL);
1261 	return -ENOMEM;
1262 }
1263 
1264 static void input_proc_exit(void)
1265 {
1266 	remove_proc_entry("devices", proc_bus_input_dir);
1267 	remove_proc_entry("handlers", proc_bus_input_dir);
1268 	remove_proc_entry("bus/input", NULL);
1269 }
1270 
1271 #else /* !CONFIG_PROC_FS */
1272 static inline void input_wakeup_procfs_readers(void) { }
1273 static inline int input_proc_init(void) { return 0; }
1274 static inline void input_proc_exit(void) { }
1275 #endif
1276 
1277 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1278 static ssize_t input_dev_show_##name(struct device *dev,		\
1279 				     struct device_attribute *attr,	\
1280 				     char *buf)				\
1281 {									\
1282 	struct input_dev *input_dev = to_input_dev(dev);		\
1283 									\
1284 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1285 			 input_dev->name ? input_dev->name : "");	\
1286 }									\
1287 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1288 
1289 INPUT_DEV_STRING_ATTR_SHOW(name);
1290 INPUT_DEV_STRING_ATTR_SHOW(phys);
1291 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1292 
1293 static int input_print_modalias_bits(char *buf, int size,
1294 				     char name, unsigned long *bm,
1295 				     unsigned int min_bit, unsigned int max_bit)
1296 {
1297 	int len = 0, i;
1298 
1299 	len += snprintf(buf, max(size, 0), "%c", name);
1300 	for (i = min_bit; i < max_bit; i++)
1301 		if (bm[BIT_WORD(i)] & BIT_MASK(i))
1302 			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1303 	return len;
1304 }
1305 
1306 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1307 				int add_cr)
1308 {
1309 	int len;
1310 
1311 	len = snprintf(buf, max(size, 0),
1312 		       "input:b%04Xv%04Xp%04Xe%04X-",
1313 		       id->id.bustype, id->id.vendor,
1314 		       id->id.product, id->id.version);
1315 
1316 	len += input_print_modalias_bits(buf + len, size - len,
1317 				'e', id->evbit, 0, EV_MAX);
1318 	len += input_print_modalias_bits(buf + len, size - len,
1319 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1320 	len += input_print_modalias_bits(buf + len, size - len,
1321 				'r', id->relbit, 0, REL_MAX);
1322 	len += input_print_modalias_bits(buf + len, size - len,
1323 				'a', id->absbit, 0, ABS_MAX);
1324 	len += input_print_modalias_bits(buf + len, size - len,
1325 				'm', id->mscbit, 0, MSC_MAX);
1326 	len += input_print_modalias_bits(buf + len, size - len,
1327 				'l', id->ledbit, 0, LED_MAX);
1328 	len += input_print_modalias_bits(buf + len, size - len,
1329 				's', id->sndbit, 0, SND_MAX);
1330 	len += input_print_modalias_bits(buf + len, size - len,
1331 				'f', id->ffbit, 0, FF_MAX);
1332 	len += input_print_modalias_bits(buf + len, size - len,
1333 				'w', id->swbit, 0, SW_MAX);
1334 
1335 	if (add_cr)
1336 		len += snprintf(buf + len, max(size - len, 0), "\n");
1337 
1338 	return len;
1339 }
1340 
1341 static ssize_t input_dev_show_modalias(struct device *dev,
1342 				       struct device_attribute *attr,
1343 				       char *buf)
1344 {
1345 	struct input_dev *id = to_input_dev(dev);
1346 	ssize_t len;
1347 
1348 	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1349 
1350 	return min_t(int, len, PAGE_SIZE);
1351 }
1352 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1353 
1354 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1355 			      int max, int add_cr);
1356 
1357 static ssize_t input_dev_show_properties(struct device *dev,
1358 					 struct device_attribute *attr,
1359 					 char *buf)
1360 {
1361 	struct input_dev *input_dev = to_input_dev(dev);
1362 	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1363 				     INPUT_PROP_MAX, true);
1364 	return min_t(int, len, PAGE_SIZE);
1365 }
1366 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1367 
1368 static struct attribute *input_dev_attrs[] = {
1369 	&dev_attr_name.attr,
1370 	&dev_attr_phys.attr,
1371 	&dev_attr_uniq.attr,
1372 	&dev_attr_modalias.attr,
1373 	&dev_attr_properties.attr,
1374 	NULL
1375 };
1376 
1377 static struct attribute_group input_dev_attr_group = {
1378 	.attrs	= input_dev_attrs,
1379 };
1380 
1381 #define INPUT_DEV_ID_ATTR(name)						\
1382 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1383 					struct device_attribute *attr,	\
1384 					char *buf)			\
1385 {									\
1386 	struct input_dev *input_dev = to_input_dev(dev);		\
1387 	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
1388 }									\
1389 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1390 
1391 INPUT_DEV_ID_ATTR(bustype);
1392 INPUT_DEV_ID_ATTR(vendor);
1393 INPUT_DEV_ID_ATTR(product);
1394 INPUT_DEV_ID_ATTR(version);
1395 
1396 static struct attribute *input_dev_id_attrs[] = {
1397 	&dev_attr_bustype.attr,
1398 	&dev_attr_vendor.attr,
1399 	&dev_attr_product.attr,
1400 	&dev_attr_version.attr,
1401 	NULL
1402 };
1403 
1404 static struct attribute_group input_dev_id_attr_group = {
1405 	.name	= "id",
1406 	.attrs	= input_dev_id_attrs,
1407 };
1408 
1409 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1410 			      int max, int add_cr)
1411 {
1412 	int i;
1413 	int len = 0;
1414 	bool skip_empty = true;
1415 
1416 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1417 		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1418 					    bitmap[i], skip_empty);
1419 		if (len) {
1420 			skip_empty = false;
1421 			if (i > 0)
1422 				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1423 		}
1424 	}
1425 
1426 	/*
1427 	 * If no output was produced print a single 0.
1428 	 */
1429 	if (len == 0)
1430 		len = snprintf(buf, buf_size, "%d", 0);
1431 
1432 	if (add_cr)
1433 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1434 
1435 	return len;
1436 }
1437 
1438 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1439 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1440 				       struct device_attribute *attr,	\
1441 				       char *buf)			\
1442 {									\
1443 	struct input_dev *input_dev = to_input_dev(dev);		\
1444 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1445 				     input_dev->bm##bit, ev##_MAX,	\
1446 				     true);				\
1447 	return min_t(int, len, PAGE_SIZE);				\
1448 }									\
1449 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1450 
1451 INPUT_DEV_CAP_ATTR(EV, ev);
1452 INPUT_DEV_CAP_ATTR(KEY, key);
1453 INPUT_DEV_CAP_ATTR(REL, rel);
1454 INPUT_DEV_CAP_ATTR(ABS, abs);
1455 INPUT_DEV_CAP_ATTR(MSC, msc);
1456 INPUT_DEV_CAP_ATTR(LED, led);
1457 INPUT_DEV_CAP_ATTR(SND, snd);
1458 INPUT_DEV_CAP_ATTR(FF, ff);
1459 INPUT_DEV_CAP_ATTR(SW, sw);
1460 
1461 static struct attribute *input_dev_caps_attrs[] = {
1462 	&dev_attr_ev.attr,
1463 	&dev_attr_key.attr,
1464 	&dev_attr_rel.attr,
1465 	&dev_attr_abs.attr,
1466 	&dev_attr_msc.attr,
1467 	&dev_attr_led.attr,
1468 	&dev_attr_snd.attr,
1469 	&dev_attr_ff.attr,
1470 	&dev_attr_sw.attr,
1471 	NULL
1472 };
1473 
1474 static struct attribute_group input_dev_caps_attr_group = {
1475 	.name	= "capabilities",
1476 	.attrs	= input_dev_caps_attrs,
1477 };
1478 
1479 static const struct attribute_group *input_dev_attr_groups[] = {
1480 	&input_dev_attr_group,
1481 	&input_dev_id_attr_group,
1482 	&input_dev_caps_attr_group,
1483 	NULL
1484 };
1485 
1486 static void input_dev_release(struct device *device)
1487 {
1488 	struct input_dev *dev = to_input_dev(device);
1489 
1490 	input_ff_destroy(dev);
1491 	input_mt_destroy_slots(dev);
1492 	kfree(dev->absinfo);
1493 	kfree(dev->vals);
1494 	kfree(dev);
1495 
1496 	module_put(THIS_MODULE);
1497 }
1498 
1499 /*
1500  * Input uevent interface - loading event handlers based on
1501  * device bitfields.
1502  */
1503 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1504 				   const char *name, unsigned long *bitmap, int max)
1505 {
1506 	int len;
1507 
1508 	if (add_uevent_var(env, "%s", name))
1509 		return -ENOMEM;
1510 
1511 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1512 				 sizeof(env->buf) - env->buflen,
1513 				 bitmap, max, false);
1514 	if (len >= (sizeof(env->buf) - env->buflen))
1515 		return -ENOMEM;
1516 
1517 	env->buflen += len;
1518 	return 0;
1519 }
1520 
1521 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1522 					 struct input_dev *dev)
1523 {
1524 	int len;
1525 
1526 	if (add_uevent_var(env, "MODALIAS="))
1527 		return -ENOMEM;
1528 
1529 	len = input_print_modalias(&env->buf[env->buflen - 1],
1530 				   sizeof(env->buf) - env->buflen,
1531 				   dev, 0);
1532 	if (len >= (sizeof(env->buf) - env->buflen))
1533 		return -ENOMEM;
1534 
1535 	env->buflen += len;
1536 	return 0;
1537 }
1538 
1539 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1540 	do {								\
1541 		int err = add_uevent_var(env, fmt, val);		\
1542 		if (err)						\
1543 			return err;					\
1544 	} while (0)
1545 
1546 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1547 	do {								\
1548 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1549 		if (err)						\
1550 			return err;					\
1551 	} while (0)
1552 
1553 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1554 	do {								\
1555 		int err = input_add_uevent_modalias_var(env, dev);	\
1556 		if (err)						\
1557 			return err;					\
1558 	} while (0)
1559 
1560 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1561 {
1562 	struct input_dev *dev = to_input_dev(device);
1563 
1564 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1565 				dev->id.bustype, dev->id.vendor,
1566 				dev->id.product, dev->id.version);
1567 	if (dev->name)
1568 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1569 	if (dev->phys)
1570 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1571 	if (dev->uniq)
1572 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1573 
1574 	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1575 
1576 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1577 	if (test_bit(EV_KEY, dev->evbit))
1578 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1579 	if (test_bit(EV_REL, dev->evbit))
1580 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1581 	if (test_bit(EV_ABS, dev->evbit))
1582 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1583 	if (test_bit(EV_MSC, dev->evbit))
1584 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1585 	if (test_bit(EV_LED, dev->evbit))
1586 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1587 	if (test_bit(EV_SND, dev->evbit))
1588 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1589 	if (test_bit(EV_FF, dev->evbit))
1590 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1591 	if (test_bit(EV_SW, dev->evbit))
1592 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1593 
1594 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1595 
1596 	return 0;
1597 }
1598 
1599 #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1600 	do {								\
1601 		int i;							\
1602 		bool active;						\
1603 									\
1604 		if (!test_bit(EV_##type, dev->evbit))			\
1605 			break;						\
1606 									\
1607 		for (i = 0; i < type##_MAX; i++) {			\
1608 			if (!test_bit(i, dev->bits##bit))		\
1609 				continue;				\
1610 									\
1611 			active = test_bit(i, dev->bits);		\
1612 			if (!active && !on)				\
1613 				continue;				\
1614 									\
1615 			dev->event(dev, EV_##type, i, on ? active : 0);	\
1616 		}							\
1617 	} while (0)
1618 
1619 static void input_dev_toggle(struct input_dev *dev, bool activate)
1620 {
1621 	if (!dev->event)
1622 		return;
1623 
1624 	INPUT_DO_TOGGLE(dev, LED, led, activate);
1625 	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1626 
1627 	if (activate && test_bit(EV_REP, dev->evbit)) {
1628 		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1629 		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1630 	}
1631 }
1632 
1633 /**
1634  * input_reset_device() - reset/restore the state of input device
1635  * @dev: input device whose state needs to be reset
1636  *
1637  * This function tries to reset the state of an opened input device and
1638  * bring internal state and state if the hardware in sync with each other.
1639  * We mark all keys as released, restore LED state, repeat rate, etc.
1640  */
1641 void input_reset_device(struct input_dev *dev)
1642 {
1643 	mutex_lock(&dev->mutex);
1644 
1645 	if (dev->users) {
1646 		input_dev_toggle(dev, true);
1647 
1648 		/*
1649 		 * Keys that have been pressed at suspend time are unlikely
1650 		 * to be still pressed when we resume.
1651 		 */
1652 		spin_lock_irq(&dev->event_lock);
1653 		input_dev_release_keys(dev);
1654 		spin_unlock_irq(&dev->event_lock);
1655 	}
1656 
1657 	mutex_unlock(&dev->mutex);
1658 }
1659 EXPORT_SYMBOL(input_reset_device);
1660 
1661 #ifdef CONFIG_PM
1662 static int input_dev_suspend(struct device *dev)
1663 {
1664 	struct input_dev *input_dev = to_input_dev(dev);
1665 
1666 	mutex_lock(&input_dev->mutex);
1667 
1668 	if (input_dev->users)
1669 		input_dev_toggle(input_dev, false);
1670 
1671 	mutex_unlock(&input_dev->mutex);
1672 
1673 	return 0;
1674 }
1675 
1676 static int input_dev_resume(struct device *dev)
1677 {
1678 	struct input_dev *input_dev = to_input_dev(dev);
1679 
1680 	input_reset_device(input_dev);
1681 
1682 	return 0;
1683 }
1684 
1685 static const struct dev_pm_ops input_dev_pm_ops = {
1686 	.suspend	= input_dev_suspend,
1687 	.resume		= input_dev_resume,
1688 	.poweroff	= input_dev_suspend,
1689 	.restore	= input_dev_resume,
1690 };
1691 #endif /* CONFIG_PM */
1692 
1693 static struct device_type input_dev_type = {
1694 	.groups		= input_dev_attr_groups,
1695 	.release	= input_dev_release,
1696 	.uevent		= input_dev_uevent,
1697 #ifdef CONFIG_PM
1698 	.pm		= &input_dev_pm_ops,
1699 #endif
1700 };
1701 
1702 static char *input_devnode(struct device *dev, umode_t *mode)
1703 {
1704 	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1705 }
1706 
1707 struct class input_class = {
1708 	.name		= "input",
1709 	.devnode	= input_devnode,
1710 };
1711 EXPORT_SYMBOL_GPL(input_class);
1712 
1713 /**
1714  * input_allocate_device - allocate memory for new input device
1715  *
1716  * Returns prepared struct input_dev or NULL.
1717  *
1718  * NOTE: Use input_free_device() to free devices that have not been
1719  * registered; input_unregister_device() should be used for already
1720  * registered devices.
1721  */
1722 struct input_dev *input_allocate_device(void)
1723 {
1724 	struct input_dev *dev;
1725 
1726 	dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1727 	if (dev) {
1728 		dev->dev.type = &input_dev_type;
1729 		dev->dev.class = &input_class;
1730 		device_initialize(&dev->dev);
1731 		mutex_init(&dev->mutex);
1732 		spin_lock_init(&dev->event_lock);
1733 		INIT_LIST_HEAD(&dev->h_list);
1734 		INIT_LIST_HEAD(&dev->node);
1735 
1736 		__module_get(THIS_MODULE);
1737 	}
1738 
1739 	return dev;
1740 }
1741 EXPORT_SYMBOL(input_allocate_device);
1742 
1743 /**
1744  * input_free_device - free memory occupied by input_dev structure
1745  * @dev: input device to free
1746  *
1747  * This function should only be used if input_register_device()
1748  * was not called yet or if it failed. Once device was registered
1749  * use input_unregister_device() and memory will be freed once last
1750  * reference to the device is dropped.
1751  *
1752  * Device should be allocated by input_allocate_device().
1753  *
1754  * NOTE: If there are references to the input device then memory
1755  * will not be freed until last reference is dropped.
1756  */
1757 void input_free_device(struct input_dev *dev)
1758 {
1759 	if (dev)
1760 		input_put_device(dev);
1761 }
1762 EXPORT_SYMBOL(input_free_device);
1763 
1764 /**
1765  * input_set_capability - mark device as capable of a certain event
1766  * @dev: device that is capable of emitting or accepting event
1767  * @type: type of the event (EV_KEY, EV_REL, etc...)
1768  * @code: event code
1769  *
1770  * In addition to setting up corresponding bit in appropriate capability
1771  * bitmap the function also adjusts dev->evbit.
1772  */
1773 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1774 {
1775 	switch (type) {
1776 	case EV_KEY:
1777 		__set_bit(code, dev->keybit);
1778 		break;
1779 
1780 	case EV_REL:
1781 		__set_bit(code, dev->relbit);
1782 		break;
1783 
1784 	case EV_ABS:
1785 		__set_bit(code, dev->absbit);
1786 		break;
1787 
1788 	case EV_MSC:
1789 		__set_bit(code, dev->mscbit);
1790 		break;
1791 
1792 	case EV_SW:
1793 		__set_bit(code, dev->swbit);
1794 		break;
1795 
1796 	case EV_LED:
1797 		__set_bit(code, dev->ledbit);
1798 		break;
1799 
1800 	case EV_SND:
1801 		__set_bit(code, dev->sndbit);
1802 		break;
1803 
1804 	case EV_FF:
1805 		__set_bit(code, dev->ffbit);
1806 		break;
1807 
1808 	case EV_PWR:
1809 		/* do nothing */
1810 		break;
1811 
1812 	default:
1813 		pr_err("input_set_capability: unknown type %u (code %u)\n",
1814 		       type, code);
1815 		dump_stack();
1816 		return;
1817 	}
1818 
1819 	__set_bit(type, dev->evbit);
1820 }
1821 EXPORT_SYMBOL(input_set_capability);
1822 
1823 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
1824 {
1825 	int mt_slots;
1826 	int i;
1827 	unsigned int events;
1828 
1829 	if (dev->mt) {
1830 		mt_slots = dev->mt->num_slots;
1831 	} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
1832 		mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
1833 			   dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
1834 		mt_slots = clamp(mt_slots, 2, 32);
1835 	} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
1836 		mt_slots = 2;
1837 	} else {
1838 		mt_slots = 0;
1839 	}
1840 
1841 	events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
1842 
1843 	for (i = 0; i < ABS_CNT; i++) {
1844 		if (test_bit(i, dev->absbit)) {
1845 			if (input_is_mt_axis(i))
1846 				events += mt_slots;
1847 			else
1848 				events++;
1849 		}
1850 	}
1851 
1852 	for (i = 0; i < REL_CNT; i++)
1853 		if (test_bit(i, dev->relbit))
1854 			events++;
1855 
1856 	/* Make room for KEY and MSC events */
1857 	events += 7;
1858 
1859 	return events;
1860 }
1861 
1862 #define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
1863 	do {								\
1864 		if (!test_bit(EV_##type, dev->evbit))			\
1865 			memset(dev->bits##bit, 0,			\
1866 				sizeof(dev->bits##bit));		\
1867 	} while (0)
1868 
1869 static void input_cleanse_bitmasks(struct input_dev *dev)
1870 {
1871 	INPUT_CLEANSE_BITMASK(dev, KEY, key);
1872 	INPUT_CLEANSE_BITMASK(dev, REL, rel);
1873 	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
1874 	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
1875 	INPUT_CLEANSE_BITMASK(dev, LED, led);
1876 	INPUT_CLEANSE_BITMASK(dev, SND, snd);
1877 	INPUT_CLEANSE_BITMASK(dev, FF, ff);
1878 	INPUT_CLEANSE_BITMASK(dev, SW, sw);
1879 }
1880 
1881 /**
1882  * input_register_device - register device with input core
1883  * @dev: device to be registered
1884  *
1885  * This function registers device with input core. The device must be
1886  * allocated with input_allocate_device() and all it's capabilities
1887  * set up before registering.
1888  * If function fails the device must be freed with input_free_device().
1889  * Once device has been successfully registered it can be unregistered
1890  * with input_unregister_device(); input_free_device() should not be
1891  * called in this case.
1892  */
1893 int input_register_device(struct input_dev *dev)
1894 {
1895 	static atomic_t input_no = ATOMIC_INIT(0);
1896 	struct input_handler *handler;
1897 	unsigned int packet_size;
1898 	const char *path;
1899 	int error;
1900 
1901 	/* Every input device generates EV_SYN/SYN_REPORT events. */
1902 	__set_bit(EV_SYN, dev->evbit);
1903 
1904 	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
1905 	__clear_bit(KEY_RESERVED, dev->keybit);
1906 
1907 	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
1908 	input_cleanse_bitmasks(dev);
1909 
1910 	packet_size = input_estimate_events_per_packet(dev);
1911 	if (dev->hint_events_per_packet < packet_size)
1912 		dev->hint_events_per_packet = packet_size;
1913 
1914 	dev->max_vals = max(dev->hint_events_per_packet, packet_size) + 2;
1915 	dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
1916 	if (!dev->vals)
1917 		return -ENOMEM;
1918 
1919 	/*
1920 	 * If delay and period are pre-set by the driver, then autorepeating
1921 	 * is handled by the driver itself and we don't do it in input.c.
1922 	 */
1923 	init_timer(&dev->timer);
1924 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1925 		dev->timer.data = (long) dev;
1926 		dev->timer.function = input_repeat_key;
1927 		dev->rep[REP_DELAY] = 250;
1928 		dev->rep[REP_PERIOD] = 33;
1929 	}
1930 
1931 	if (!dev->getkeycode)
1932 		dev->getkeycode = input_default_getkeycode;
1933 
1934 	if (!dev->setkeycode)
1935 		dev->setkeycode = input_default_setkeycode;
1936 
1937 	dev_set_name(&dev->dev, "input%ld",
1938 		     (unsigned long) atomic_inc_return(&input_no) - 1);
1939 
1940 	error = device_add(&dev->dev);
1941 	if (error)
1942 		return error;
1943 
1944 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1945 	pr_info("%s as %s\n",
1946 		dev->name ? dev->name : "Unspecified device",
1947 		path ? path : "N/A");
1948 	kfree(path);
1949 
1950 	error = mutex_lock_interruptible(&input_mutex);
1951 	if (error) {
1952 		device_del(&dev->dev);
1953 		return error;
1954 	}
1955 
1956 	list_add_tail(&dev->node, &input_dev_list);
1957 
1958 	list_for_each_entry(handler, &input_handler_list, node)
1959 		input_attach_handler(dev, handler);
1960 
1961 	input_wakeup_procfs_readers();
1962 
1963 	mutex_unlock(&input_mutex);
1964 
1965 	return 0;
1966 }
1967 EXPORT_SYMBOL(input_register_device);
1968 
1969 /**
1970  * input_unregister_device - unregister previously registered device
1971  * @dev: device to be unregistered
1972  *
1973  * This function unregisters an input device. Once device is unregistered
1974  * the caller should not try to access it as it may get freed at any moment.
1975  */
1976 void input_unregister_device(struct input_dev *dev)
1977 {
1978 	struct input_handle *handle, *next;
1979 
1980 	input_disconnect_device(dev);
1981 
1982 	mutex_lock(&input_mutex);
1983 
1984 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1985 		handle->handler->disconnect(handle);
1986 	WARN_ON(!list_empty(&dev->h_list));
1987 
1988 	del_timer_sync(&dev->timer);
1989 	list_del_init(&dev->node);
1990 
1991 	input_wakeup_procfs_readers();
1992 
1993 	mutex_unlock(&input_mutex);
1994 
1995 	device_unregister(&dev->dev);
1996 }
1997 EXPORT_SYMBOL(input_unregister_device);
1998 
1999 /**
2000  * input_register_handler - register a new input handler
2001  * @handler: handler to be registered
2002  *
2003  * This function registers a new input handler (interface) for input
2004  * devices in the system and attaches it to all input devices that
2005  * are compatible with the handler.
2006  */
2007 int input_register_handler(struct input_handler *handler)
2008 {
2009 	struct input_dev *dev;
2010 	int retval;
2011 
2012 	retval = mutex_lock_interruptible(&input_mutex);
2013 	if (retval)
2014 		return retval;
2015 
2016 	INIT_LIST_HEAD(&handler->h_list);
2017 
2018 	if (handler->fops != NULL) {
2019 		if (input_table[handler->minor >> 5]) {
2020 			retval = -EBUSY;
2021 			goto out;
2022 		}
2023 		input_table[handler->minor >> 5] = handler;
2024 	}
2025 
2026 	list_add_tail(&handler->node, &input_handler_list);
2027 
2028 	list_for_each_entry(dev, &input_dev_list, node)
2029 		input_attach_handler(dev, handler);
2030 
2031 	input_wakeup_procfs_readers();
2032 
2033  out:
2034 	mutex_unlock(&input_mutex);
2035 	return retval;
2036 }
2037 EXPORT_SYMBOL(input_register_handler);
2038 
2039 /**
2040  * input_unregister_handler - unregisters an input handler
2041  * @handler: handler to be unregistered
2042  *
2043  * This function disconnects a handler from its input devices and
2044  * removes it from lists of known handlers.
2045  */
2046 void input_unregister_handler(struct input_handler *handler)
2047 {
2048 	struct input_handle *handle, *next;
2049 
2050 	mutex_lock(&input_mutex);
2051 
2052 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2053 		handler->disconnect(handle);
2054 	WARN_ON(!list_empty(&handler->h_list));
2055 
2056 	list_del_init(&handler->node);
2057 
2058 	if (handler->fops != NULL)
2059 		input_table[handler->minor >> 5] = NULL;
2060 
2061 	input_wakeup_procfs_readers();
2062 
2063 	mutex_unlock(&input_mutex);
2064 }
2065 EXPORT_SYMBOL(input_unregister_handler);
2066 
2067 /**
2068  * input_handler_for_each_handle - handle iterator
2069  * @handler: input handler to iterate
2070  * @data: data for the callback
2071  * @fn: function to be called for each handle
2072  *
2073  * Iterate over @bus's list of devices, and call @fn for each, passing
2074  * it @data and stop when @fn returns a non-zero value. The function is
2075  * using RCU to traverse the list and therefore may be usind in atonic
2076  * contexts. The @fn callback is invoked from RCU critical section and
2077  * thus must not sleep.
2078  */
2079 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2080 				  int (*fn)(struct input_handle *, void *))
2081 {
2082 	struct input_handle *handle;
2083 	int retval = 0;
2084 
2085 	rcu_read_lock();
2086 
2087 	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2088 		retval = fn(handle, data);
2089 		if (retval)
2090 			break;
2091 	}
2092 
2093 	rcu_read_unlock();
2094 
2095 	return retval;
2096 }
2097 EXPORT_SYMBOL(input_handler_for_each_handle);
2098 
2099 /**
2100  * input_register_handle - register a new input handle
2101  * @handle: handle to register
2102  *
2103  * This function puts a new input handle onto device's
2104  * and handler's lists so that events can flow through
2105  * it once it is opened using input_open_device().
2106  *
2107  * This function is supposed to be called from handler's
2108  * connect() method.
2109  */
2110 int input_register_handle(struct input_handle *handle)
2111 {
2112 	struct input_handler *handler = handle->handler;
2113 	struct input_dev *dev = handle->dev;
2114 	int error;
2115 
2116 	/*
2117 	 * We take dev->mutex here to prevent race with
2118 	 * input_release_device().
2119 	 */
2120 	error = mutex_lock_interruptible(&dev->mutex);
2121 	if (error)
2122 		return error;
2123 
2124 	/*
2125 	 * Filters go to the head of the list, normal handlers
2126 	 * to the tail.
2127 	 */
2128 	if (handler->filter)
2129 		list_add_rcu(&handle->d_node, &dev->h_list);
2130 	else
2131 		list_add_tail_rcu(&handle->d_node, &dev->h_list);
2132 
2133 	mutex_unlock(&dev->mutex);
2134 
2135 	/*
2136 	 * Since we are supposed to be called from ->connect()
2137 	 * which is mutually exclusive with ->disconnect()
2138 	 * we can't be racing with input_unregister_handle()
2139 	 * and so separate lock is not needed here.
2140 	 */
2141 	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2142 
2143 	if (handler->start)
2144 		handler->start(handle);
2145 
2146 	return 0;
2147 }
2148 EXPORT_SYMBOL(input_register_handle);
2149 
2150 /**
2151  * input_unregister_handle - unregister an input handle
2152  * @handle: handle to unregister
2153  *
2154  * This function removes input handle from device's
2155  * and handler's lists.
2156  *
2157  * This function is supposed to be called from handler's
2158  * disconnect() method.
2159  */
2160 void input_unregister_handle(struct input_handle *handle)
2161 {
2162 	struct input_dev *dev = handle->dev;
2163 
2164 	list_del_rcu(&handle->h_node);
2165 
2166 	/*
2167 	 * Take dev->mutex to prevent race with input_release_device().
2168 	 */
2169 	mutex_lock(&dev->mutex);
2170 	list_del_rcu(&handle->d_node);
2171 	mutex_unlock(&dev->mutex);
2172 
2173 	synchronize_rcu();
2174 }
2175 EXPORT_SYMBOL(input_unregister_handle);
2176 
2177 static int input_open_file(struct inode *inode, struct file *file)
2178 {
2179 	struct input_handler *handler;
2180 	const struct file_operations *old_fops, *new_fops = NULL;
2181 	int err;
2182 
2183 	err = mutex_lock_interruptible(&input_mutex);
2184 	if (err)
2185 		return err;
2186 
2187 	/* No load-on-demand here? */
2188 	handler = input_table[iminor(inode) >> 5];
2189 	if (handler)
2190 		new_fops = fops_get(handler->fops);
2191 
2192 	mutex_unlock(&input_mutex);
2193 
2194 	/*
2195 	 * That's _really_ odd. Usually NULL ->open means "nothing special",
2196 	 * not "no device". Oh, well...
2197 	 */
2198 	if (!new_fops || !new_fops->open) {
2199 		fops_put(new_fops);
2200 		err = -ENODEV;
2201 		goto out;
2202 	}
2203 
2204 	old_fops = file->f_op;
2205 	file->f_op = new_fops;
2206 
2207 	err = new_fops->open(inode, file);
2208 	if (err) {
2209 		fops_put(file->f_op);
2210 		file->f_op = fops_get(old_fops);
2211 	}
2212 	fops_put(old_fops);
2213 out:
2214 	return err;
2215 }
2216 
2217 static const struct file_operations input_fops = {
2218 	.owner = THIS_MODULE,
2219 	.open = input_open_file,
2220 	.llseek = noop_llseek,
2221 };
2222 
2223 static int __init input_init(void)
2224 {
2225 	int err;
2226 
2227 	err = class_register(&input_class);
2228 	if (err) {
2229 		pr_err("unable to register input_dev class\n");
2230 		return err;
2231 	}
2232 
2233 	err = input_proc_init();
2234 	if (err)
2235 		goto fail1;
2236 
2237 	err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
2238 	if (err) {
2239 		pr_err("unable to register char major %d", INPUT_MAJOR);
2240 		goto fail2;
2241 	}
2242 
2243 	return 0;
2244 
2245  fail2:	input_proc_exit();
2246  fail1:	class_unregister(&input_class);
2247 	return err;
2248 }
2249 
2250 static void __exit input_exit(void)
2251 {
2252 	input_proc_exit();
2253 	unregister_chrdev(INPUT_MAJOR, "input");
2254 	class_unregister(&input_class);
2255 }
2256 
2257 subsys_initcall(input_init);
2258 module_exit(input_exit);
2259