xref: /linux-6.15/drivers/input/input.c (revision 3544cf57)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * The input core
4  *
5  * Copyright (c) 1999-2002 Vojtech Pavlik
6  */
7 
8 
9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
10 
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/idr.h>
14 #include <linux/input/mt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/pm.h>
23 #include <linux/poll.h>
24 #include <linux/device.h>
25 #include <linux/kstrtox.h>
26 #include <linux/mutex.h>
27 #include <linux/rcupdate.h>
28 #include "input-compat.h"
29 #include "input-core-private.h"
30 #include "input-poller.h"
31 
32 MODULE_AUTHOR("Vojtech Pavlik <[email protected]>");
33 MODULE_DESCRIPTION("Input core");
34 MODULE_LICENSE("GPL");
35 
36 #define INPUT_MAX_CHAR_DEVICES		1024
37 #define INPUT_FIRST_DYNAMIC_DEV		256
38 static DEFINE_IDA(input_ida);
39 
40 static LIST_HEAD(input_dev_list);
41 static LIST_HEAD(input_handler_list);
42 
43 /*
44  * input_mutex protects access to both input_dev_list and input_handler_list.
45  * This also causes input_[un]register_device and input_[un]register_handler
46  * be mutually exclusive which simplifies locking in drivers implementing
47  * input handlers.
48  */
49 static DEFINE_MUTEX(input_mutex);
50 
51 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
52 
53 static const unsigned int input_max_code[EV_CNT] = {
54 	[EV_KEY] = KEY_MAX,
55 	[EV_REL] = REL_MAX,
56 	[EV_ABS] = ABS_MAX,
57 	[EV_MSC] = MSC_MAX,
58 	[EV_SW] = SW_MAX,
59 	[EV_LED] = LED_MAX,
60 	[EV_SND] = SND_MAX,
61 	[EV_FF] = FF_MAX,
62 };
63 
64 static inline int is_event_supported(unsigned int code,
65 				     unsigned long *bm, unsigned int max)
66 {
67 	return code <= max && test_bit(code, bm);
68 }
69 
70 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
71 {
72 	if (fuzz) {
73 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
74 			return old_val;
75 
76 		if (value > old_val - fuzz && value < old_val + fuzz)
77 			return (old_val * 3 + value) / 4;
78 
79 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
80 			return (old_val + value) / 2;
81 	}
82 
83 	return value;
84 }
85 
86 static void input_start_autorepeat(struct input_dev *dev, int code)
87 {
88 	if (test_bit(EV_REP, dev->evbit) &&
89 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
90 	    dev->timer.function) {
91 		dev->repeat_key = code;
92 		mod_timer(&dev->timer,
93 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
94 	}
95 }
96 
97 static void input_stop_autorepeat(struct input_dev *dev)
98 {
99 	del_timer(&dev->timer);
100 }
101 
102 /*
103  * Pass values first through all filters and then, if event has not been
104  * filtered out, through all open handles. This order is achieved by placing
105  * filters at the head of the list of handles attached to the device, and
106  * placing regular handles at the tail of the list.
107  *
108  * This function is called with dev->event_lock held and interrupts disabled.
109  */
110 static void input_pass_values(struct input_dev *dev,
111 			      struct input_value *vals, unsigned int count)
112 {
113 	struct input_handle *handle;
114 	struct input_value *v;
115 
116 	lockdep_assert_held(&dev->event_lock);
117 
118 	if (!count)
119 		return;
120 
121 	rcu_read_lock();
122 
123 	handle = rcu_dereference(dev->grab);
124 	if (handle) {
125 		count = handle->handler->events(handle, vals, count);
126 	} else {
127 		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
128 			if (handle->open) {
129 				count = handle->handler->events(handle, vals,
130 								count);
131 				if (!count)
132 					break;
133 			}
134 	}
135 
136 	rcu_read_unlock();
137 
138 	/* trigger auto repeat for key events */
139 	if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
140 		for (v = vals; v != vals + count; v++) {
141 			if (v->type == EV_KEY && v->value != 2) {
142 				if (v->value)
143 					input_start_autorepeat(dev, v->code);
144 				else
145 					input_stop_autorepeat(dev);
146 			}
147 		}
148 	}
149 }
150 
151 #define INPUT_IGNORE_EVENT	0
152 #define INPUT_PASS_TO_HANDLERS	1
153 #define INPUT_PASS_TO_DEVICE	2
154 #define INPUT_SLOT		4
155 #define INPUT_FLUSH		8
156 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
157 
158 static int input_handle_abs_event(struct input_dev *dev,
159 				  unsigned int code, int *pval)
160 {
161 	struct input_mt *mt = dev->mt;
162 	bool is_new_slot = false;
163 	bool is_mt_event;
164 	int *pold;
165 
166 	if (code == ABS_MT_SLOT) {
167 		/*
168 		 * "Stage" the event; we'll flush it later, when we
169 		 * get actual touch data.
170 		 */
171 		if (mt && *pval >= 0 && *pval < mt->num_slots)
172 			mt->slot = *pval;
173 
174 		return INPUT_IGNORE_EVENT;
175 	}
176 
177 	is_mt_event = input_is_mt_value(code);
178 
179 	if (!is_mt_event) {
180 		pold = &dev->absinfo[code].value;
181 	} else if (mt) {
182 		pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
183 		is_new_slot = mt->slot != dev->absinfo[ABS_MT_SLOT].value;
184 	} else {
185 		/*
186 		 * Bypass filtering for multi-touch events when
187 		 * not employing slots.
188 		 */
189 		pold = NULL;
190 	}
191 
192 	if (pold) {
193 		*pval = input_defuzz_abs_event(*pval, *pold,
194 						dev->absinfo[code].fuzz);
195 		if (*pold == *pval)
196 			return INPUT_IGNORE_EVENT;
197 
198 		*pold = *pval;
199 	}
200 
201 	/* Flush pending "slot" event */
202 	if (is_new_slot) {
203 		dev->absinfo[ABS_MT_SLOT].value = mt->slot;
204 		return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
205 	}
206 
207 	return INPUT_PASS_TO_HANDLERS;
208 }
209 
210 static int input_get_disposition(struct input_dev *dev,
211 			  unsigned int type, unsigned int code, int *pval)
212 {
213 	int disposition = INPUT_IGNORE_EVENT;
214 	int value = *pval;
215 
216 	/* filter-out events from inhibited devices */
217 	if (dev->inhibited)
218 		return INPUT_IGNORE_EVENT;
219 
220 	switch (type) {
221 
222 	case EV_SYN:
223 		switch (code) {
224 		case SYN_CONFIG:
225 			disposition = INPUT_PASS_TO_ALL;
226 			break;
227 
228 		case SYN_REPORT:
229 			disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
230 			break;
231 		case SYN_MT_REPORT:
232 			disposition = INPUT_PASS_TO_HANDLERS;
233 			break;
234 		}
235 		break;
236 
237 	case EV_KEY:
238 		if (is_event_supported(code, dev->keybit, KEY_MAX)) {
239 
240 			/* auto-repeat bypasses state updates */
241 			if (value == 2) {
242 				disposition = INPUT_PASS_TO_HANDLERS;
243 				break;
244 			}
245 
246 			if (!!test_bit(code, dev->key) != !!value) {
247 
248 				__change_bit(code, dev->key);
249 				disposition = INPUT_PASS_TO_HANDLERS;
250 			}
251 		}
252 		break;
253 
254 	case EV_SW:
255 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
256 		    !!test_bit(code, dev->sw) != !!value) {
257 
258 			__change_bit(code, dev->sw);
259 			disposition = INPUT_PASS_TO_HANDLERS;
260 		}
261 		break;
262 
263 	case EV_ABS:
264 		if (is_event_supported(code, dev->absbit, ABS_MAX))
265 			disposition = input_handle_abs_event(dev, code, &value);
266 
267 		break;
268 
269 	case EV_REL:
270 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
271 			disposition = INPUT_PASS_TO_HANDLERS;
272 
273 		break;
274 
275 	case EV_MSC:
276 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
277 			disposition = INPUT_PASS_TO_ALL;
278 
279 		break;
280 
281 	case EV_LED:
282 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
283 		    !!test_bit(code, dev->led) != !!value) {
284 
285 			__change_bit(code, dev->led);
286 			disposition = INPUT_PASS_TO_ALL;
287 		}
288 		break;
289 
290 	case EV_SND:
291 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
292 
293 			if (!!test_bit(code, dev->snd) != !!value)
294 				__change_bit(code, dev->snd);
295 			disposition = INPUT_PASS_TO_ALL;
296 		}
297 		break;
298 
299 	case EV_REP:
300 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
301 			dev->rep[code] = value;
302 			disposition = INPUT_PASS_TO_ALL;
303 		}
304 		break;
305 
306 	case EV_FF:
307 		if (value >= 0)
308 			disposition = INPUT_PASS_TO_ALL;
309 		break;
310 
311 	case EV_PWR:
312 		disposition = INPUT_PASS_TO_ALL;
313 		break;
314 	}
315 
316 	*pval = value;
317 	return disposition;
318 }
319 
320 static void input_event_dispose(struct input_dev *dev, int disposition,
321 				unsigned int type, unsigned int code, int value)
322 {
323 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
324 		dev->event(dev, type, code, value);
325 
326 	if (!dev->vals)
327 		return;
328 
329 	if (disposition & INPUT_PASS_TO_HANDLERS) {
330 		struct input_value *v;
331 
332 		if (disposition & INPUT_SLOT) {
333 			v = &dev->vals[dev->num_vals++];
334 			v->type = EV_ABS;
335 			v->code = ABS_MT_SLOT;
336 			v->value = dev->mt->slot;
337 		}
338 
339 		v = &dev->vals[dev->num_vals++];
340 		v->type = type;
341 		v->code = code;
342 		v->value = value;
343 	}
344 
345 	if (disposition & INPUT_FLUSH) {
346 		if (dev->num_vals >= 2)
347 			input_pass_values(dev, dev->vals, dev->num_vals);
348 		dev->num_vals = 0;
349 		/*
350 		 * Reset the timestamp on flush so we won't end up
351 		 * with a stale one. Note we only need to reset the
352 		 * monolithic one as we use its presence when deciding
353 		 * whether to generate a synthetic timestamp.
354 		 */
355 		dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
356 	} else if (dev->num_vals >= dev->max_vals - 2) {
357 		dev->vals[dev->num_vals++] = input_value_sync;
358 		input_pass_values(dev, dev->vals, dev->num_vals);
359 		dev->num_vals = 0;
360 	}
361 }
362 
363 void input_handle_event(struct input_dev *dev,
364 			unsigned int type, unsigned int code, int value)
365 {
366 	int disposition;
367 
368 	lockdep_assert_held(&dev->event_lock);
369 
370 	disposition = input_get_disposition(dev, type, code, &value);
371 	if (disposition != INPUT_IGNORE_EVENT) {
372 		if (type != EV_SYN)
373 			add_input_randomness(type, code, value);
374 
375 		input_event_dispose(dev, disposition, type, code, value);
376 	}
377 }
378 
379 /**
380  * input_event() - report new input event
381  * @dev: device that generated the event
382  * @type: type of the event
383  * @code: event code
384  * @value: value of the event
385  *
386  * This function should be used by drivers implementing various input
387  * devices to report input events. See also input_inject_event().
388  *
389  * NOTE: input_event() may be safely used right after input device was
390  * allocated with input_allocate_device(), even before it is registered
391  * with input_register_device(), but the event will not reach any of the
392  * input handlers. Such early invocation of input_event() may be used
393  * to 'seed' initial state of a switch or initial position of absolute
394  * axis, etc.
395  */
396 void input_event(struct input_dev *dev,
397 		 unsigned int type, unsigned int code, int value)
398 {
399 	unsigned long flags;
400 
401 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
402 
403 		spin_lock_irqsave(&dev->event_lock, flags);
404 		input_handle_event(dev, type, code, value);
405 		spin_unlock_irqrestore(&dev->event_lock, flags);
406 	}
407 }
408 EXPORT_SYMBOL(input_event);
409 
410 /**
411  * input_inject_event() - send input event from input handler
412  * @handle: input handle to send event through
413  * @type: type of the event
414  * @code: event code
415  * @value: value of the event
416  *
417  * Similar to input_event() but will ignore event if device is
418  * "grabbed" and handle injecting event is not the one that owns
419  * the device.
420  */
421 void input_inject_event(struct input_handle *handle,
422 			unsigned int type, unsigned int code, int value)
423 {
424 	struct input_dev *dev = handle->dev;
425 	struct input_handle *grab;
426 	unsigned long flags;
427 
428 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
429 		spin_lock_irqsave(&dev->event_lock, flags);
430 
431 		rcu_read_lock();
432 		grab = rcu_dereference(dev->grab);
433 		if (!grab || grab == handle)
434 			input_handle_event(dev, type, code, value);
435 		rcu_read_unlock();
436 
437 		spin_unlock_irqrestore(&dev->event_lock, flags);
438 	}
439 }
440 EXPORT_SYMBOL(input_inject_event);
441 
442 /**
443  * input_alloc_absinfo - allocates array of input_absinfo structs
444  * @dev: the input device emitting absolute events
445  *
446  * If the absinfo struct the caller asked for is already allocated, this
447  * functions will not do anything.
448  */
449 void input_alloc_absinfo(struct input_dev *dev)
450 {
451 	if (dev->absinfo)
452 		return;
453 
454 	dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
455 	if (!dev->absinfo) {
456 		dev_err(dev->dev.parent ?: &dev->dev,
457 			"%s: unable to allocate memory\n", __func__);
458 		/*
459 		 * We will handle this allocation failure in
460 		 * input_register_device() when we refuse to register input
461 		 * device with ABS bits but without absinfo.
462 		 */
463 	}
464 }
465 EXPORT_SYMBOL(input_alloc_absinfo);
466 
467 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
468 			  int min, int max, int fuzz, int flat)
469 {
470 	struct input_absinfo *absinfo;
471 
472 	__set_bit(EV_ABS, dev->evbit);
473 	__set_bit(axis, dev->absbit);
474 
475 	input_alloc_absinfo(dev);
476 	if (!dev->absinfo)
477 		return;
478 
479 	absinfo = &dev->absinfo[axis];
480 	absinfo->minimum = min;
481 	absinfo->maximum = max;
482 	absinfo->fuzz = fuzz;
483 	absinfo->flat = flat;
484 }
485 EXPORT_SYMBOL(input_set_abs_params);
486 
487 /**
488  * input_copy_abs - Copy absinfo from one input_dev to another
489  * @dst: Destination input device to copy the abs settings to
490  * @dst_axis: ABS_* value selecting the destination axis
491  * @src: Source input device to copy the abs settings from
492  * @src_axis: ABS_* value selecting the source axis
493  *
494  * Set absinfo for the selected destination axis by copying it from
495  * the specified source input device's source axis.
496  * This is useful to e.g. setup a pen/stylus input-device for combined
497  * touchscreen/pen hardware where the pen uses the same coordinates as
498  * the touchscreen.
499  */
500 void input_copy_abs(struct input_dev *dst, unsigned int dst_axis,
501 		    const struct input_dev *src, unsigned int src_axis)
502 {
503 	/* src must have EV_ABS and src_axis set */
504 	if (WARN_ON(!(test_bit(EV_ABS, src->evbit) &&
505 		      test_bit(src_axis, src->absbit))))
506 		return;
507 
508 	/*
509 	 * input_alloc_absinfo() may have failed for the source. Our caller is
510 	 * expected to catch this when registering the input devices, which may
511 	 * happen after the input_copy_abs() call.
512 	 */
513 	if (!src->absinfo)
514 		return;
515 
516 	input_set_capability(dst, EV_ABS, dst_axis);
517 	if (!dst->absinfo)
518 		return;
519 
520 	dst->absinfo[dst_axis] = src->absinfo[src_axis];
521 }
522 EXPORT_SYMBOL(input_copy_abs);
523 
524 /**
525  * input_grab_device - grabs device for exclusive use
526  * @handle: input handle that wants to own the device
527  *
528  * When a device is grabbed by an input handle all events generated by
529  * the device are delivered only to this handle. Also events injected
530  * by other input handles are ignored while device is grabbed.
531  */
532 int input_grab_device(struct input_handle *handle)
533 {
534 	struct input_dev *dev = handle->dev;
535 	int retval;
536 
537 	retval = mutex_lock_interruptible(&dev->mutex);
538 	if (retval)
539 		return retval;
540 
541 	if (dev->grab) {
542 		retval = -EBUSY;
543 		goto out;
544 	}
545 
546 	rcu_assign_pointer(dev->grab, handle);
547 
548  out:
549 	mutex_unlock(&dev->mutex);
550 	return retval;
551 }
552 EXPORT_SYMBOL(input_grab_device);
553 
554 static void __input_release_device(struct input_handle *handle)
555 {
556 	struct input_dev *dev = handle->dev;
557 	struct input_handle *grabber;
558 
559 	grabber = rcu_dereference_protected(dev->grab,
560 					    lockdep_is_held(&dev->mutex));
561 	if (grabber == handle) {
562 		rcu_assign_pointer(dev->grab, NULL);
563 		/* Make sure input_pass_values() notices that grab is gone */
564 		synchronize_rcu();
565 
566 		list_for_each_entry(handle, &dev->h_list, d_node)
567 			if (handle->open && handle->handler->start)
568 				handle->handler->start(handle);
569 	}
570 }
571 
572 /**
573  * input_release_device - release previously grabbed device
574  * @handle: input handle that owns the device
575  *
576  * Releases previously grabbed device so that other input handles can
577  * start receiving input events. Upon release all handlers attached
578  * to the device have their start() method called so they have a change
579  * to synchronize device state with the rest of the system.
580  */
581 void input_release_device(struct input_handle *handle)
582 {
583 	struct input_dev *dev = handle->dev;
584 
585 	mutex_lock(&dev->mutex);
586 	__input_release_device(handle);
587 	mutex_unlock(&dev->mutex);
588 }
589 EXPORT_SYMBOL(input_release_device);
590 
591 /**
592  * input_open_device - open input device
593  * @handle: handle through which device is being accessed
594  *
595  * This function should be called by input handlers when they
596  * want to start receive events from given input device.
597  */
598 int input_open_device(struct input_handle *handle)
599 {
600 	struct input_dev *dev = handle->dev;
601 	int retval;
602 
603 	retval = mutex_lock_interruptible(&dev->mutex);
604 	if (retval)
605 		return retval;
606 
607 	if (dev->going_away) {
608 		retval = -ENODEV;
609 		goto out;
610 	}
611 
612 	handle->open++;
613 
614 	if (dev->users++ || dev->inhibited) {
615 		/*
616 		 * Device is already opened and/or inhibited,
617 		 * so we can exit immediately and report success.
618 		 */
619 		goto out;
620 	}
621 
622 	if (dev->open) {
623 		retval = dev->open(dev);
624 		if (retval) {
625 			dev->users--;
626 			handle->open--;
627 			/*
628 			 * Make sure we are not delivering any more events
629 			 * through this handle
630 			 */
631 			synchronize_rcu();
632 			goto out;
633 		}
634 	}
635 
636 	if (dev->poller)
637 		input_dev_poller_start(dev->poller);
638 
639  out:
640 	mutex_unlock(&dev->mutex);
641 	return retval;
642 }
643 EXPORT_SYMBOL(input_open_device);
644 
645 int input_flush_device(struct input_handle *handle, struct file *file)
646 {
647 	struct input_dev *dev = handle->dev;
648 	int retval;
649 
650 	retval = mutex_lock_interruptible(&dev->mutex);
651 	if (retval)
652 		return retval;
653 
654 	if (dev->flush)
655 		retval = dev->flush(dev, file);
656 
657 	mutex_unlock(&dev->mutex);
658 	return retval;
659 }
660 EXPORT_SYMBOL(input_flush_device);
661 
662 /**
663  * input_close_device - close input device
664  * @handle: handle through which device is being accessed
665  *
666  * This function should be called by input handlers when they
667  * want to stop receive events from given input device.
668  */
669 void input_close_device(struct input_handle *handle)
670 {
671 	struct input_dev *dev = handle->dev;
672 
673 	mutex_lock(&dev->mutex);
674 
675 	__input_release_device(handle);
676 
677 	if (!--dev->users && !dev->inhibited) {
678 		if (dev->poller)
679 			input_dev_poller_stop(dev->poller);
680 		if (dev->close)
681 			dev->close(dev);
682 	}
683 
684 	if (!--handle->open) {
685 		/*
686 		 * synchronize_rcu() makes sure that input_pass_values()
687 		 * completed and that no more input events are delivered
688 		 * through this handle
689 		 */
690 		synchronize_rcu();
691 	}
692 
693 	mutex_unlock(&dev->mutex);
694 }
695 EXPORT_SYMBOL(input_close_device);
696 
697 /*
698  * Simulate keyup events for all keys that are marked as pressed.
699  * The function must be called with dev->event_lock held.
700  */
701 static bool input_dev_release_keys(struct input_dev *dev)
702 {
703 	bool need_sync = false;
704 	int code;
705 
706 	lockdep_assert_held(&dev->event_lock);
707 
708 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
709 		for_each_set_bit(code, dev->key, KEY_CNT) {
710 			input_handle_event(dev, EV_KEY, code, 0);
711 			need_sync = true;
712 		}
713 	}
714 
715 	return need_sync;
716 }
717 
718 /*
719  * Prepare device for unregistering
720  */
721 static void input_disconnect_device(struct input_dev *dev)
722 {
723 	struct input_handle *handle;
724 
725 	/*
726 	 * Mark device as going away. Note that we take dev->mutex here
727 	 * not to protect access to dev->going_away but rather to ensure
728 	 * that there are no threads in the middle of input_open_device()
729 	 */
730 	mutex_lock(&dev->mutex);
731 	dev->going_away = true;
732 	mutex_unlock(&dev->mutex);
733 
734 	spin_lock_irq(&dev->event_lock);
735 
736 	/*
737 	 * Simulate keyup events for all pressed keys so that handlers
738 	 * are not left with "stuck" keys. The driver may continue
739 	 * generate events even after we done here but they will not
740 	 * reach any handlers.
741 	 */
742 	if (input_dev_release_keys(dev))
743 		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
744 
745 	list_for_each_entry(handle, &dev->h_list, d_node)
746 		handle->open = 0;
747 
748 	spin_unlock_irq(&dev->event_lock);
749 }
750 
751 /**
752  * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
753  * @ke: keymap entry containing scancode to be converted.
754  * @scancode: pointer to the location where converted scancode should
755  *	be stored.
756  *
757  * This function is used to convert scancode stored in &struct keymap_entry
758  * into scalar form understood by legacy keymap handling methods. These
759  * methods expect scancodes to be represented as 'unsigned int'.
760  */
761 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
762 			     unsigned int *scancode)
763 {
764 	switch (ke->len) {
765 	case 1:
766 		*scancode = *((u8 *)ke->scancode);
767 		break;
768 
769 	case 2:
770 		*scancode = *((u16 *)ke->scancode);
771 		break;
772 
773 	case 4:
774 		*scancode = *((u32 *)ke->scancode);
775 		break;
776 
777 	default:
778 		return -EINVAL;
779 	}
780 
781 	return 0;
782 }
783 EXPORT_SYMBOL(input_scancode_to_scalar);
784 
785 /*
786  * Those routines handle the default case where no [gs]etkeycode() is
787  * defined. In this case, an array indexed by the scancode is used.
788  */
789 
790 static unsigned int input_fetch_keycode(struct input_dev *dev,
791 					unsigned int index)
792 {
793 	switch (dev->keycodesize) {
794 	case 1:
795 		return ((u8 *)dev->keycode)[index];
796 
797 	case 2:
798 		return ((u16 *)dev->keycode)[index];
799 
800 	default:
801 		return ((u32 *)dev->keycode)[index];
802 	}
803 }
804 
805 static int input_default_getkeycode(struct input_dev *dev,
806 				    struct input_keymap_entry *ke)
807 {
808 	unsigned int index;
809 	int error;
810 
811 	if (!dev->keycodesize)
812 		return -EINVAL;
813 
814 	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
815 		index = ke->index;
816 	else {
817 		error = input_scancode_to_scalar(ke, &index);
818 		if (error)
819 			return error;
820 	}
821 
822 	if (index >= dev->keycodemax)
823 		return -EINVAL;
824 
825 	ke->keycode = input_fetch_keycode(dev, index);
826 	ke->index = index;
827 	ke->len = sizeof(index);
828 	memcpy(ke->scancode, &index, sizeof(index));
829 
830 	return 0;
831 }
832 
833 static int input_default_setkeycode(struct input_dev *dev,
834 				    const struct input_keymap_entry *ke,
835 				    unsigned int *old_keycode)
836 {
837 	unsigned int index;
838 	int error;
839 	int i;
840 
841 	if (!dev->keycodesize)
842 		return -EINVAL;
843 
844 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
845 		index = ke->index;
846 	} else {
847 		error = input_scancode_to_scalar(ke, &index);
848 		if (error)
849 			return error;
850 	}
851 
852 	if (index >= dev->keycodemax)
853 		return -EINVAL;
854 
855 	if (dev->keycodesize < sizeof(ke->keycode) &&
856 			(ke->keycode >> (dev->keycodesize * 8)))
857 		return -EINVAL;
858 
859 	switch (dev->keycodesize) {
860 		case 1: {
861 			u8 *k = (u8 *)dev->keycode;
862 			*old_keycode = k[index];
863 			k[index] = ke->keycode;
864 			break;
865 		}
866 		case 2: {
867 			u16 *k = (u16 *)dev->keycode;
868 			*old_keycode = k[index];
869 			k[index] = ke->keycode;
870 			break;
871 		}
872 		default: {
873 			u32 *k = (u32 *)dev->keycode;
874 			*old_keycode = k[index];
875 			k[index] = ke->keycode;
876 			break;
877 		}
878 	}
879 
880 	if (*old_keycode <= KEY_MAX) {
881 		__clear_bit(*old_keycode, dev->keybit);
882 		for (i = 0; i < dev->keycodemax; i++) {
883 			if (input_fetch_keycode(dev, i) == *old_keycode) {
884 				__set_bit(*old_keycode, dev->keybit);
885 				/* Setting the bit twice is useless, so break */
886 				break;
887 			}
888 		}
889 	}
890 
891 	__set_bit(ke->keycode, dev->keybit);
892 	return 0;
893 }
894 
895 /**
896  * input_get_keycode - retrieve keycode currently mapped to a given scancode
897  * @dev: input device which keymap is being queried
898  * @ke: keymap entry
899  *
900  * This function should be called by anyone interested in retrieving current
901  * keymap. Presently evdev handlers use it.
902  */
903 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
904 {
905 	unsigned long flags;
906 	int retval;
907 
908 	spin_lock_irqsave(&dev->event_lock, flags);
909 	retval = dev->getkeycode(dev, ke);
910 	spin_unlock_irqrestore(&dev->event_lock, flags);
911 
912 	return retval;
913 }
914 EXPORT_SYMBOL(input_get_keycode);
915 
916 /**
917  * input_set_keycode - attribute a keycode to a given scancode
918  * @dev: input device which keymap is being updated
919  * @ke: new keymap entry
920  *
921  * This function should be called by anyone needing to update current
922  * keymap. Presently keyboard and evdev handlers use it.
923  */
924 int input_set_keycode(struct input_dev *dev,
925 		      const struct input_keymap_entry *ke)
926 {
927 	unsigned long flags;
928 	unsigned int old_keycode;
929 	int retval;
930 
931 	if (ke->keycode > KEY_MAX)
932 		return -EINVAL;
933 
934 	spin_lock_irqsave(&dev->event_lock, flags);
935 
936 	retval = dev->setkeycode(dev, ke, &old_keycode);
937 	if (retval)
938 		goto out;
939 
940 	/* Make sure KEY_RESERVED did not get enabled. */
941 	__clear_bit(KEY_RESERVED, dev->keybit);
942 
943 	/*
944 	 * Simulate keyup event if keycode is not present
945 	 * in the keymap anymore
946 	 */
947 	if (old_keycode > KEY_MAX) {
948 		dev_warn(dev->dev.parent ?: &dev->dev,
949 			 "%s: got too big old keycode %#x\n",
950 			 __func__, old_keycode);
951 	} else if (test_bit(EV_KEY, dev->evbit) &&
952 		   !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
953 		   __test_and_clear_bit(old_keycode, dev->key)) {
954 		/*
955 		 * We have to use input_event_dispose() here directly instead
956 		 * of input_handle_event() because the key we want to release
957 		 * here is considered no longer supported by the device and
958 		 * input_handle_event() will ignore it.
959 		 */
960 		input_event_dispose(dev, INPUT_PASS_TO_HANDLERS,
961 				    EV_KEY, old_keycode, 0);
962 		input_event_dispose(dev, INPUT_PASS_TO_HANDLERS | INPUT_FLUSH,
963 				    EV_SYN, SYN_REPORT, 1);
964 	}
965 
966  out:
967 	spin_unlock_irqrestore(&dev->event_lock, flags);
968 
969 	return retval;
970 }
971 EXPORT_SYMBOL(input_set_keycode);
972 
973 bool input_match_device_id(const struct input_dev *dev,
974 			   const struct input_device_id *id)
975 {
976 	if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
977 		if (id->bustype != dev->id.bustype)
978 			return false;
979 
980 	if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
981 		if (id->vendor != dev->id.vendor)
982 			return false;
983 
984 	if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
985 		if (id->product != dev->id.product)
986 			return false;
987 
988 	if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
989 		if (id->version != dev->id.version)
990 			return false;
991 
992 	if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
993 	    !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
994 	    !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
995 	    !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
996 	    !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
997 	    !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
998 	    !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
999 	    !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
1000 	    !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
1001 	    !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
1002 		return false;
1003 	}
1004 
1005 	return true;
1006 }
1007 EXPORT_SYMBOL(input_match_device_id);
1008 
1009 static const struct input_device_id *input_match_device(struct input_handler *handler,
1010 							struct input_dev *dev)
1011 {
1012 	const struct input_device_id *id;
1013 
1014 	for (id = handler->id_table; id->flags || id->driver_info; id++) {
1015 		if (input_match_device_id(dev, id) &&
1016 		    (!handler->match || handler->match(handler, dev))) {
1017 			return id;
1018 		}
1019 	}
1020 
1021 	return NULL;
1022 }
1023 
1024 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1025 {
1026 	const struct input_device_id *id;
1027 	int error;
1028 
1029 	id = input_match_device(handler, dev);
1030 	if (!id)
1031 		return -ENODEV;
1032 
1033 	error = handler->connect(handler, dev, id);
1034 	if (error && error != -ENODEV)
1035 		pr_err("failed to attach handler %s to device %s, error: %d\n",
1036 		       handler->name, kobject_name(&dev->dev.kobj), error);
1037 
1038 	return error;
1039 }
1040 
1041 #ifdef CONFIG_COMPAT
1042 
1043 static int input_bits_to_string(char *buf, int buf_size,
1044 				unsigned long bits, bool skip_empty)
1045 {
1046 	int len = 0;
1047 
1048 	if (in_compat_syscall()) {
1049 		u32 dword = bits >> 32;
1050 		if (dword || !skip_empty)
1051 			len += snprintf(buf, buf_size, "%x ", dword);
1052 
1053 		dword = bits & 0xffffffffUL;
1054 		if (dword || !skip_empty || len)
1055 			len += snprintf(buf + len, max(buf_size - len, 0),
1056 					"%x", dword);
1057 	} else {
1058 		if (bits || !skip_empty)
1059 			len += snprintf(buf, buf_size, "%lx", bits);
1060 	}
1061 
1062 	return len;
1063 }
1064 
1065 #else /* !CONFIG_COMPAT */
1066 
1067 static int input_bits_to_string(char *buf, int buf_size,
1068 				unsigned long bits, bool skip_empty)
1069 {
1070 	return bits || !skip_empty ?
1071 		snprintf(buf, buf_size, "%lx", bits) : 0;
1072 }
1073 
1074 #endif
1075 
1076 #ifdef CONFIG_PROC_FS
1077 
1078 static struct proc_dir_entry *proc_bus_input_dir;
1079 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1080 static int input_devices_state;
1081 
1082 static inline void input_wakeup_procfs_readers(void)
1083 {
1084 	input_devices_state++;
1085 	wake_up(&input_devices_poll_wait);
1086 }
1087 
1088 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1089 {
1090 	poll_wait(file, &input_devices_poll_wait, wait);
1091 	if (file->f_version != input_devices_state) {
1092 		file->f_version = input_devices_state;
1093 		return EPOLLIN | EPOLLRDNORM;
1094 	}
1095 
1096 	return 0;
1097 }
1098 
1099 union input_seq_state {
1100 	struct {
1101 		unsigned short pos;
1102 		bool mutex_acquired;
1103 	};
1104 	void *p;
1105 };
1106 
1107 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1108 {
1109 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1110 	int error;
1111 
1112 	/* We need to fit into seq->private pointer */
1113 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1114 
1115 	error = mutex_lock_interruptible(&input_mutex);
1116 	if (error) {
1117 		state->mutex_acquired = false;
1118 		return ERR_PTR(error);
1119 	}
1120 
1121 	state->mutex_acquired = true;
1122 
1123 	return seq_list_start(&input_dev_list, *pos);
1124 }
1125 
1126 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1127 {
1128 	return seq_list_next(v, &input_dev_list, pos);
1129 }
1130 
1131 static void input_seq_stop(struct seq_file *seq, void *v)
1132 {
1133 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1134 
1135 	if (state->mutex_acquired)
1136 		mutex_unlock(&input_mutex);
1137 }
1138 
1139 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1140 				   unsigned long *bitmap, int max)
1141 {
1142 	int i;
1143 	bool skip_empty = true;
1144 	char buf[18];
1145 
1146 	seq_printf(seq, "B: %s=", name);
1147 
1148 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1149 		if (input_bits_to_string(buf, sizeof(buf),
1150 					 bitmap[i], skip_empty)) {
1151 			skip_empty = false;
1152 			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1153 		}
1154 	}
1155 
1156 	/*
1157 	 * If no output was produced print a single 0.
1158 	 */
1159 	if (skip_empty)
1160 		seq_putc(seq, '0');
1161 
1162 	seq_putc(seq, '\n');
1163 }
1164 
1165 static int input_devices_seq_show(struct seq_file *seq, void *v)
1166 {
1167 	struct input_dev *dev = container_of(v, struct input_dev, node);
1168 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1169 	struct input_handle *handle;
1170 
1171 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1172 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1173 
1174 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1175 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1176 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1177 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1178 	seq_puts(seq, "H: Handlers=");
1179 
1180 	list_for_each_entry(handle, &dev->h_list, d_node)
1181 		seq_printf(seq, "%s ", handle->name);
1182 	seq_putc(seq, '\n');
1183 
1184 	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1185 
1186 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1187 	if (test_bit(EV_KEY, dev->evbit))
1188 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1189 	if (test_bit(EV_REL, dev->evbit))
1190 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1191 	if (test_bit(EV_ABS, dev->evbit))
1192 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1193 	if (test_bit(EV_MSC, dev->evbit))
1194 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1195 	if (test_bit(EV_LED, dev->evbit))
1196 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1197 	if (test_bit(EV_SND, dev->evbit))
1198 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1199 	if (test_bit(EV_FF, dev->evbit))
1200 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1201 	if (test_bit(EV_SW, dev->evbit))
1202 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1203 
1204 	seq_putc(seq, '\n');
1205 
1206 	kfree(path);
1207 	return 0;
1208 }
1209 
1210 static const struct seq_operations input_devices_seq_ops = {
1211 	.start	= input_devices_seq_start,
1212 	.next	= input_devices_seq_next,
1213 	.stop	= input_seq_stop,
1214 	.show	= input_devices_seq_show,
1215 };
1216 
1217 static int input_proc_devices_open(struct inode *inode, struct file *file)
1218 {
1219 	return seq_open(file, &input_devices_seq_ops);
1220 }
1221 
1222 static const struct proc_ops input_devices_proc_ops = {
1223 	.proc_open	= input_proc_devices_open,
1224 	.proc_poll	= input_proc_devices_poll,
1225 	.proc_read	= seq_read,
1226 	.proc_lseek	= seq_lseek,
1227 	.proc_release	= seq_release,
1228 };
1229 
1230 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1231 {
1232 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1233 	int error;
1234 
1235 	/* We need to fit into seq->private pointer */
1236 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1237 
1238 	error = mutex_lock_interruptible(&input_mutex);
1239 	if (error) {
1240 		state->mutex_acquired = false;
1241 		return ERR_PTR(error);
1242 	}
1243 
1244 	state->mutex_acquired = true;
1245 	state->pos = *pos;
1246 
1247 	return seq_list_start(&input_handler_list, *pos);
1248 }
1249 
1250 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1251 {
1252 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1253 
1254 	state->pos = *pos + 1;
1255 	return seq_list_next(v, &input_handler_list, pos);
1256 }
1257 
1258 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1259 {
1260 	struct input_handler *handler = container_of(v, struct input_handler, node);
1261 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1262 
1263 	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1264 	if (handler->filter)
1265 		seq_puts(seq, " (filter)");
1266 	if (handler->legacy_minors)
1267 		seq_printf(seq, " Minor=%d", handler->minor);
1268 	seq_putc(seq, '\n');
1269 
1270 	return 0;
1271 }
1272 
1273 static const struct seq_operations input_handlers_seq_ops = {
1274 	.start	= input_handlers_seq_start,
1275 	.next	= input_handlers_seq_next,
1276 	.stop	= input_seq_stop,
1277 	.show	= input_handlers_seq_show,
1278 };
1279 
1280 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1281 {
1282 	return seq_open(file, &input_handlers_seq_ops);
1283 }
1284 
1285 static const struct proc_ops input_handlers_proc_ops = {
1286 	.proc_open	= input_proc_handlers_open,
1287 	.proc_read	= seq_read,
1288 	.proc_lseek	= seq_lseek,
1289 	.proc_release	= seq_release,
1290 };
1291 
1292 static int __init input_proc_init(void)
1293 {
1294 	struct proc_dir_entry *entry;
1295 
1296 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1297 	if (!proc_bus_input_dir)
1298 		return -ENOMEM;
1299 
1300 	entry = proc_create("devices", 0, proc_bus_input_dir,
1301 			    &input_devices_proc_ops);
1302 	if (!entry)
1303 		goto fail1;
1304 
1305 	entry = proc_create("handlers", 0, proc_bus_input_dir,
1306 			    &input_handlers_proc_ops);
1307 	if (!entry)
1308 		goto fail2;
1309 
1310 	return 0;
1311 
1312  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1313  fail1: remove_proc_entry("bus/input", NULL);
1314 	return -ENOMEM;
1315 }
1316 
1317 static void input_proc_exit(void)
1318 {
1319 	remove_proc_entry("devices", proc_bus_input_dir);
1320 	remove_proc_entry("handlers", proc_bus_input_dir);
1321 	remove_proc_entry("bus/input", NULL);
1322 }
1323 
1324 #else /* !CONFIG_PROC_FS */
1325 static inline void input_wakeup_procfs_readers(void) { }
1326 static inline int input_proc_init(void) { return 0; }
1327 static inline void input_proc_exit(void) { }
1328 #endif
1329 
1330 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1331 static ssize_t input_dev_show_##name(struct device *dev,		\
1332 				     struct device_attribute *attr,	\
1333 				     char *buf)				\
1334 {									\
1335 	struct input_dev *input_dev = to_input_dev(dev);		\
1336 									\
1337 	return sysfs_emit(buf, "%s\n",					\
1338 			  input_dev->name ? input_dev->name : "");	\
1339 }									\
1340 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1341 
1342 INPUT_DEV_STRING_ATTR_SHOW(name);
1343 INPUT_DEV_STRING_ATTR_SHOW(phys);
1344 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1345 
1346 static int input_print_modalias_bits(char *buf, int size,
1347 				     char name, const unsigned long *bm,
1348 				     unsigned int min_bit, unsigned int max_bit)
1349 {
1350 	int bit = min_bit;
1351 	int len = 0;
1352 
1353 	len += snprintf(buf, max(size, 0), "%c", name);
1354 	for_each_set_bit_from(bit, bm, max_bit)
1355 		len += snprintf(buf + len, max(size - len, 0), "%X,", bit);
1356 	return len;
1357 }
1358 
1359 static int input_print_modalias_parts(char *buf, int size, int full_len,
1360 				      const struct input_dev *id)
1361 {
1362 	int len, klen, remainder, space;
1363 
1364 	len = snprintf(buf, max(size, 0),
1365 		       "input:b%04Xv%04Xp%04Xe%04X-",
1366 		       id->id.bustype, id->id.vendor,
1367 		       id->id.product, id->id.version);
1368 
1369 	len += input_print_modalias_bits(buf + len, size - len,
1370 				'e', id->evbit, 0, EV_MAX);
1371 
1372 	/*
1373 	 * Calculate the remaining space in the buffer making sure we
1374 	 * have place for the terminating 0.
1375 	 */
1376 	space = max(size - (len + 1), 0);
1377 
1378 	klen = input_print_modalias_bits(buf + len, size - len,
1379 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1380 	len += klen;
1381 
1382 	/*
1383 	 * If we have more data than we can fit in the buffer, check
1384 	 * if we can trim key data to fit in the rest. We will indicate
1385 	 * that key data is incomplete by adding "+" sign at the end, like
1386 	 * this: * "k1,2,3,45,+,".
1387 	 *
1388 	 * Note that we shortest key info (if present) is "k+," so we
1389 	 * can only try to trim if key data is longer than that.
1390 	 */
1391 	if (full_len && size < full_len + 1 && klen > 3) {
1392 		remainder = full_len - len;
1393 		/*
1394 		 * We can only trim if we have space for the remainder
1395 		 * and also for at least "k+," which is 3 more characters.
1396 		 */
1397 		if (remainder <= space - 3) {
1398 			/*
1399 			 * We are guaranteed to have 'k' in the buffer, so
1400 			 * we need at least 3 additional bytes for storing
1401 			 * "+," in addition to the remainder.
1402 			 */
1403 			for (int i = size - 1 - remainder - 3; i >= 0; i--) {
1404 				if (buf[i] == 'k' || buf[i] == ',') {
1405 					strcpy(buf + i + 1, "+,");
1406 					len = i + 3; /* Not counting '\0' */
1407 					break;
1408 				}
1409 			}
1410 		}
1411 	}
1412 
1413 	len += input_print_modalias_bits(buf + len, size - len,
1414 				'r', id->relbit, 0, REL_MAX);
1415 	len += input_print_modalias_bits(buf + len, size - len,
1416 				'a', id->absbit, 0, ABS_MAX);
1417 	len += input_print_modalias_bits(buf + len, size - len,
1418 				'm', id->mscbit, 0, MSC_MAX);
1419 	len += input_print_modalias_bits(buf + len, size - len,
1420 				'l', id->ledbit, 0, LED_MAX);
1421 	len += input_print_modalias_bits(buf + len, size - len,
1422 				's', id->sndbit, 0, SND_MAX);
1423 	len += input_print_modalias_bits(buf + len, size - len,
1424 				'f', id->ffbit, 0, FF_MAX);
1425 	len += input_print_modalias_bits(buf + len, size - len,
1426 				'w', id->swbit, 0, SW_MAX);
1427 
1428 	return len;
1429 }
1430 
1431 static int input_print_modalias(char *buf, int size, const struct input_dev *id)
1432 {
1433 	int full_len;
1434 
1435 	/*
1436 	 * Printing is done in 2 passes: first one figures out total length
1437 	 * needed for the modalias string, second one will try to trim key
1438 	 * data in case when buffer is too small for the entire modalias.
1439 	 * If the buffer is too small regardless, it will fill as much as it
1440 	 * can (without trimming key data) into the buffer and leave it to
1441 	 * the caller to figure out what to do with the result.
1442 	 */
1443 	full_len = input_print_modalias_parts(NULL, 0, 0, id);
1444 	return input_print_modalias_parts(buf, size, full_len, id);
1445 }
1446 
1447 static ssize_t input_dev_show_modalias(struct device *dev,
1448 				       struct device_attribute *attr,
1449 				       char *buf)
1450 {
1451 	struct input_dev *id = to_input_dev(dev);
1452 	ssize_t len;
1453 
1454 	len = input_print_modalias(buf, PAGE_SIZE, id);
1455 	if (len < PAGE_SIZE - 2)
1456 		len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1457 
1458 	return min_t(int, len, PAGE_SIZE);
1459 }
1460 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1461 
1462 static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
1463 			      int max, int add_cr);
1464 
1465 static ssize_t input_dev_show_properties(struct device *dev,
1466 					 struct device_attribute *attr,
1467 					 char *buf)
1468 {
1469 	struct input_dev *input_dev = to_input_dev(dev);
1470 	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1471 				     INPUT_PROP_MAX, true);
1472 	return min_t(int, len, PAGE_SIZE);
1473 }
1474 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1475 
1476 static int input_inhibit_device(struct input_dev *dev);
1477 static int input_uninhibit_device(struct input_dev *dev);
1478 
1479 static ssize_t inhibited_show(struct device *dev,
1480 			      struct device_attribute *attr,
1481 			      char *buf)
1482 {
1483 	struct input_dev *input_dev = to_input_dev(dev);
1484 
1485 	return sysfs_emit(buf, "%d\n", input_dev->inhibited);
1486 }
1487 
1488 static ssize_t inhibited_store(struct device *dev,
1489 			       struct device_attribute *attr, const char *buf,
1490 			       size_t len)
1491 {
1492 	struct input_dev *input_dev = to_input_dev(dev);
1493 	ssize_t rv;
1494 	bool inhibited;
1495 
1496 	if (kstrtobool(buf, &inhibited))
1497 		return -EINVAL;
1498 
1499 	if (inhibited)
1500 		rv = input_inhibit_device(input_dev);
1501 	else
1502 		rv = input_uninhibit_device(input_dev);
1503 
1504 	if (rv != 0)
1505 		return rv;
1506 
1507 	return len;
1508 }
1509 
1510 static DEVICE_ATTR_RW(inhibited);
1511 
1512 static struct attribute *input_dev_attrs[] = {
1513 	&dev_attr_name.attr,
1514 	&dev_attr_phys.attr,
1515 	&dev_attr_uniq.attr,
1516 	&dev_attr_modalias.attr,
1517 	&dev_attr_properties.attr,
1518 	&dev_attr_inhibited.attr,
1519 	NULL
1520 };
1521 
1522 static const struct attribute_group input_dev_attr_group = {
1523 	.attrs	= input_dev_attrs,
1524 };
1525 
1526 #define INPUT_DEV_ID_ATTR(name)						\
1527 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1528 					struct device_attribute *attr,	\
1529 					char *buf)			\
1530 {									\
1531 	struct input_dev *input_dev = to_input_dev(dev);		\
1532 	return sysfs_emit(buf, "%04x\n", input_dev->id.name);		\
1533 }									\
1534 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1535 
1536 INPUT_DEV_ID_ATTR(bustype);
1537 INPUT_DEV_ID_ATTR(vendor);
1538 INPUT_DEV_ID_ATTR(product);
1539 INPUT_DEV_ID_ATTR(version);
1540 
1541 static struct attribute *input_dev_id_attrs[] = {
1542 	&dev_attr_bustype.attr,
1543 	&dev_attr_vendor.attr,
1544 	&dev_attr_product.attr,
1545 	&dev_attr_version.attr,
1546 	NULL
1547 };
1548 
1549 static const struct attribute_group input_dev_id_attr_group = {
1550 	.name	= "id",
1551 	.attrs	= input_dev_id_attrs,
1552 };
1553 
1554 static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
1555 			      int max, int add_cr)
1556 {
1557 	int i;
1558 	int len = 0;
1559 	bool skip_empty = true;
1560 
1561 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1562 		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1563 					    bitmap[i], skip_empty);
1564 		if (len) {
1565 			skip_empty = false;
1566 			if (i > 0)
1567 				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1568 		}
1569 	}
1570 
1571 	/*
1572 	 * If no output was produced print a single 0.
1573 	 */
1574 	if (len == 0)
1575 		len = snprintf(buf, buf_size, "%d", 0);
1576 
1577 	if (add_cr)
1578 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1579 
1580 	return len;
1581 }
1582 
1583 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1584 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1585 				       struct device_attribute *attr,	\
1586 				       char *buf)			\
1587 {									\
1588 	struct input_dev *input_dev = to_input_dev(dev);		\
1589 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1590 				     input_dev->bm##bit, ev##_MAX,	\
1591 				     true);				\
1592 	return min_t(int, len, PAGE_SIZE);				\
1593 }									\
1594 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1595 
1596 INPUT_DEV_CAP_ATTR(EV, ev);
1597 INPUT_DEV_CAP_ATTR(KEY, key);
1598 INPUT_DEV_CAP_ATTR(REL, rel);
1599 INPUT_DEV_CAP_ATTR(ABS, abs);
1600 INPUT_DEV_CAP_ATTR(MSC, msc);
1601 INPUT_DEV_CAP_ATTR(LED, led);
1602 INPUT_DEV_CAP_ATTR(SND, snd);
1603 INPUT_DEV_CAP_ATTR(FF, ff);
1604 INPUT_DEV_CAP_ATTR(SW, sw);
1605 
1606 static struct attribute *input_dev_caps_attrs[] = {
1607 	&dev_attr_ev.attr,
1608 	&dev_attr_key.attr,
1609 	&dev_attr_rel.attr,
1610 	&dev_attr_abs.attr,
1611 	&dev_attr_msc.attr,
1612 	&dev_attr_led.attr,
1613 	&dev_attr_snd.attr,
1614 	&dev_attr_ff.attr,
1615 	&dev_attr_sw.attr,
1616 	NULL
1617 };
1618 
1619 static const struct attribute_group input_dev_caps_attr_group = {
1620 	.name	= "capabilities",
1621 	.attrs	= input_dev_caps_attrs,
1622 };
1623 
1624 static const struct attribute_group *input_dev_attr_groups[] = {
1625 	&input_dev_attr_group,
1626 	&input_dev_id_attr_group,
1627 	&input_dev_caps_attr_group,
1628 	&input_poller_attribute_group,
1629 	NULL
1630 };
1631 
1632 static void input_dev_release(struct device *device)
1633 {
1634 	struct input_dev *dev = to_input_dev(device);
1635 
1636 	input_ff_destroy(dev);
1637 	input_mt_destroy_slots(dev);
1638 	kfree(dev->poller);
1639 	kfree(dev->absinfo);
1640 	kfree(dev->vals);
1641 	kfree(dev);
1642 
1643 	module_put(THIS_MODULE);
1644 }
1645 
1646 /*
1647  * Input uevent interface - loading event handlers based on
1648  * device bitfields.
1649  */
1650 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1651 				   const char *name, const unsigned long *bitmap, int max)
1652 {
1653 	int len;
1654 
1655 	if (add_uevent_var(env, "%s", name))
1656 		return -ENOMEM;
1657 
1658 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1659 				 sizeof(env->buf) - env->buflen,
1660 				 bitmap, max, false);
1661 	if (len >= (sizeof(env->buf) - env->buflen))
1662 		return -ENOMEM;
1663 
1664 	env->buflen += len;
1665 	return 0;
1666 }
1667 
1668 /*
1669  * This is a pretty gross hack. When building uevent data the driver core
1670  * may try adding more environment variables to kobj_uevent_env without
1671  * telling us, so we have no idea how much of the buffer we can use to
1672  * avoid overflows/-ENOMEM elsewhere. To work around this let's artificially
1673  * reduce amount of memory we will use for the modalias environment variable.
1674  *
1675  * The potential additions are:
1676  *
1677  * SEQNUM=18446744073709551615 - (%llu - 28 bytes)
1678  * HOME=/ (6 bytes)
1679  * PATH=/sbin:/bin:/usr/sbin:/usr/bin (34 bytes)
1680  *
1681  * 68 bytes total. Allow extra buffer - 96 bytes
1682  */
1683 #define UEVENT_ENV_EXTRA_LEN	96
1684 
1685 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1686 					 const struct input_dev *dev)
1687 {
1688 	int len;
1689 
1690 	if (add_uevent_var(env, "MODALIAS="))
1691 		return -ENOMEM;
1692 
1693 	len = input_print_modalias(&env->buf[env->buflen - 1],
1694 				   (int)sizeof(env->buf) - env->buflen -
1695 					UEVENT_ENV_EXTRA_LEN,
1696 				   dev);
1697 	if (len >= ((int)sizeof(env->buf) - env->buflen -
1698 					UEVENT_ENV_EXTRA_LEN))
1699 		return -ENOMEM;
1700 
1701 	env->buflen += len;
1702 	return 0;
1703 }
1704 
1705 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1706 	do {								\
1707 		int err = add_uevent_var(env, fmt, val);		\
1708 		if (err)						\
1709 			return err;					\
1710 	} while (0)
1711 
1712 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1713 	do {								\
1714 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1715 		if (err)						\
1716 			return err;					\
1717 	} while (0)
1718 
1719 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1720 	do {								\
1721 		int err = input_add_uevent_modalias_var(env, dev);	\
1722 		if (err)						\
1723 			return err;					\
1724 	} while (0)
1725 
1726 static int input_dev_uevent(const struct device *device, struct kobj_uevent_env *env)
1727 {
1728 	const struct input_dev *dev = to_input_dev(device);
1729 
1730 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1731 				dev->id.bustype, dev->id.vendor,
1732 				dev->id.product, dev->id.version);
1733 	if (dev->name)
1734 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1735 	if (dev->phys)
1736 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1737 	if (dev->uniq)
1738 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1739 
1740 	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1741 
1742 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1743 	if (test_bit(EV_KEY, dev->evbit))
1744 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1745 	if (test_bit(EV_REL, dev->evbit))
1746 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1747 	if (test_bit(EV_ABS, dev->evbit))
1748 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1749 	if (test_bit(EV_MSC, dev->evbit))
1750 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1751 	if (test_bit(EV_LED, dev->evbit))
1752 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1753 	if (test_bit(EV_SND, dev->evbit))
1754 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1755 	if (test_bit(EV_FF, dev->evbit))
1756 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1757 	if (test_bit(EV_SW, dev->evbit))
1758 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1759 
1760 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1761 
1762 	return 0;
1763 }
1764 
1765 #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1766 	do {								\
1767 		int i;							\
1768 		bool active;						\
1769 									\
1770 		if (!test_bit(EV_##type, dev->evbit))			\
1771 			break;						\
1772 									\
1773 		for_each_set_bit(i, dev->bits##bit, type##_CNT) {	\
1774 			active = test_bit(i, dev->bits);		\
1775 			if (!active && !on)				\
1776 				continue;				\
1777 									\
1778 			dev->event(dev, EV_##type, i, on ? active : 0);	\
1779 		}							\
1780 	} while (0)
1781 
1782 static void input_dev_toggle(struct input_dev *dev, bool activate)
1783 {
1784 	if (!dev->event)
1785 		return;
1786 
1787 	INPUT_DO_TOGGLE(dev, LED, led, activate);
1788 	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1789 
1790 	if (activate && test_bit(EV_REP, dev->evbit)) {
1791 		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1792 		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1793 	}
1794 }
1795 
1796 /**
1797  * input_reset_device() - reset/restore the state of input device
1798  * @dev: input device whose state needs to be reset
1799  *
1800  * This function tries to reset the state of an opened input device and
1801  * bring internal state and state if the hardware in sync with each other.
1802  * We mark all keys as released, restore LED state, repeat rate, etc.
1803  */
1804 void input_reset_device(struct input_dev *dev)
1805 {
1806 	unsigned long flags;
1807 
1808 	mutex_lock(&dev->mutex);
1809 	spin_lock_irqsave(&dev->event_lock, flags);
1810 
1811 	input_dev_toggle(dev, true);
1812 	if (input_dev_release_keys(dev))
1813 		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1814 
1815 	spin_unlock_irqrestore(&dev->event_lock, flags);
1816 	mutex_unlock(&dev->mutex);
1817 }
1818 EXPORT_SYMBOL(input_reset_device);
1819 
1820 static int input_inhibit_device(struct input_dev *dev)
1821 {
1822 	mutex_lock(&dev->mutex);
1823 
1824 	if (dev->inhibited)
1825 		goto out;
1826 
1827 	if (dev->users) {
1828 		if (dev->close)
1829 			dev->close(dev);
1830 		if (dev->poller)
1831 			input_dev_poller_stop(dev->poller);
1832 	}
1833 
1834 	spin_lock_irq(&dev->event_lock);
1835 	input_mt_release_slots(dev);
1836 	input_dev_release_keys(dev);
1837 	input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1838 	input_dev_toggle(dev, false);
1839 	spin_unlock_irq(&dev->event_lock);
1840 
1841 	dev->inhibited = true;
1842 
1843 out:
1844 	mutex_unlock(&dev->mutex);
1845 	return 0;
1846 }
1847 
1848 static int input_uninhibit_device(struct input_dev *dev)
1849 {
1850 	int ret = 0;
1851 
1852 	mutex_lock(&dev->mutex);
1853 
1854 	if (!dev->inhibited)
1855 		goto out;
1856 
1857 	if (dev->users) {
1858 		if (dev->open) {
1859 			ret = dev->open(dev);
1860 			if (ret)
1861 				goto out;
1862 		}
1863 		if (dev->poller)
1864 			input_dev_poller_start(dev->poller);
1865 	}
1866 
1867 	dev->inhibited = false;
1868 	spin_lock_irq(&dev->event_lock);
1869 	input_dev_toggle(dev, true);
1870 	spin_unlock_irq(&dev->event_lock);
1871 
1872 out:
1873 	mutex_unlock(&dev->mutex);
1874 	return ret;
1875 }
1876 
1877 static int input_dev_suspend(struct device *dev)
1878 {
1879 	struct input_dev *input_dev = to_input_dev(dev);
1880 
1881 	spin_lock_irq(&input_dev->event_lock);
1882 
1883 	/*
1884 	 * Keys that are pressed now are unlikely to be
1885 	 * still pressed when we resume.
1886 	 */
1887 	if (input_dev_release_keys(input_dev))
1888 		input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1889 
1890 	/* Turn off LEDs and sounds, if any are active. */
1891 	input_dev_toggle(input_dev, false);
1892 
1893 	spin_unlock_irq(&input_dev->event_lock);
1894 
1895 	return 0;
1896 }
1897 
1898 static int input_dev_resume(struct device *dev)
1899 {
1900 	struct input_dev *input_dev = to_input_dev(dev);
1901 
1902 	spin_lock_irq(&input_dev->event_lock);
1903 
1904 	/* Restore state of LEDs and sounds, if any were active. */
1905 	input_dev_toggle(input_dev, true);
1906 
1907 	spin_unlock_irq(&input_dev->event_lock);
1908 
1909 	return 0;
1910 }
1911 
1912 static int input_dev_freeze(struct device *dev)
1913 {
1914 	struct input_dev *input_dev = to_input_dev(dev);
1915 
1916 	spin_lock_irq(&input_dev->event_lock);
1917 
1918 	/*
1919 	 * Keys that are pressed now are unlikely to be
1920 	 * still pressed when we resume.
1921 	 */
1922 	if (input_dev_release_keys(input_dev))
1923 		input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1924 
1925 	spin_unlock_irq(&input_dev->event_lock);
1926 
1927 	return 0;
1928 }
1929 
1930 static int input_dev_poweroff(struct device *dev)
1931 {
1932 	struct input_dev *input_dev = to_input_dev(dev);
1933 
1934 	spin_lock_irq(&input_dev->event_lock);
1935 
1936 	/* Turn off LEDs and sounds, if any are active. */
1937 	input_dev_toggle(input_dev, false);
1938 
1939 	spin_unlock_irq(&input_dev->event_lock);
1940 
1941 	return 0;
1942 }
1943 
1944 static const struct dev_pm_ops input_dev_pm_ops = {
1945 	.suspend	= input_dev_suspend,
1946 	.resume		= input_dev_resume,
1947 	.freeze		= input_dev_freeze,
1948 	.poweroff	= input_dev_poweroff,
1949 	.restore	= input_dev_resume,
1950 };
1951 
1952 static const struct device_type input_dev_type = {
1953 	.groups		= input_dev_attr_groups,
1954 	.release	= input_dev_release,
1955 	.uevent		= input_dev_uevent,
1956 	.pm		= pm_sleep_ptr(&input_dev_pm_ops),
1957 };
1958 
1959 static char *input_devnode(const struct device *dev, umode_t *mode)
1960 {
1961 	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1962 }
1963 
1964 const struct class input_class = {
1965 	.name		= "input",
1966 	.devnode	= input_devnode,
1967 };
1968 EXPORT_SYMBOL_GPL(input_class);
1969 
1970 /**
1971  * input_allocate_device - allocate memory for new input device
1972  *
1973  * Returns prepared struct input_dev or %NULL.
1974  *
1975  * NOTE: Use input_free_device() to free devices that have not been
1976  * registered; input_unregister_device() should be used for already
1977  * registered devices.
1978  */
1979 struct input_dev *input_allocate_device(void)
1980 {
1981 	static atomic_t input_no = ATOMIC_INIT(-1);
1982 	struct input_dev *dev;
1983 
1984 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1985 	if (!dev)
1986 		return NULL;
1987 
1988 	mutex_init(&dev->mutex);
1989 	spin_lock_init(&dev->event_lock);
1990 	timer_setup(&dev->timer, NULL, 0);
1991 	INIT_LIST_HEAD(&dev->h_list);
1992 	INIT_LIST_HEAD(&dev->node);
1993 
1994 	dev->dev.type = &input_dev_type;
1995 	dev->dev.class = &input_class;
1996 	device_initialize(&dev->dev);
1997 	/*
1998 	 * From this point on we can no longer simply "kfree(dev)", we need
1999 	 * to use input_free_device() so that device core properly frees its
2000 	 * resources associated with the input device.
2001 	 */
2002 
2003 	dev_set_name(&dev->dev, "input%lu",
2004 		     (unsigned long)atomic_inc_return(&input_no));
2005 
2006 	__module_get(THIS_MODULE);
2007 
2008 	return dev;
2009 }
2010 EXPORT_SYMBOL(input_allocate_device);
2011 
2012 struct input_devres {
2013 	struct input_dev *input;
2014 };
2015 
2016 static int devm_input_device_match(struct device *dev, void *res, void *data)
2017 {
2018 	struct input_devres *devres = res;
2019 
2020 	return devres->input == data;
2021 }
2022 
2023 static void devm_input_device_release(struct device *dev, void *res)
2024 {
2025 	struct input_devres *devres = res;
2026 	struct input_dev *input = devres->input;
2027 
2028 	dev_dbg(dev, "%s: dropping reference to %s\n",
2029 		__func__, dev_name(&input->dev));
2030 	input_put_device(input);
2031 }
2032 
2033 /**
2034  * devm_input_allocate_device - allocate managed input device
2035  * @dev: device owning the input device being created
2036  *
2037  * Returns prepared struct input_dev or %NULL.
2038  *
2039  * Managed input devices do not need to be explicitly unregistered or
2040  * freed as it will be done automatically when owner device unbinds from
2041  * its driver (or binding fails). Once managed input device is allocated,
2042  * it is ready to be set up and registered in the same fashion as regular
2043  * input device. There are no special devm_input_device_[un]register()
2044  * variants, regular ones work with both managed and unmanaged devices,
2045  * should you need them. In most cases however, managed input device need
2046  * not be explicitly unregistered or freed.
2047  *
2048  * NOTE: the owner device is set up as parent of input device and users
2049  * should not override it.
2050  */
2051 struct input_dev *devm_input_allocate_device(struct device *dev)
2052 {
2053 	struct input_dev *input;
2054 	struct input_devres *devres;
2055 
2056 	devres = devres_alloc(devm_input_device_release,
2057 			      sizeof(*devres), GFP_KERNEL);
2058 	if (!devres)
2059 		return NULL;
2060 
2061 	input = input_allocate_device();
2062 	if (!input) {
2063 		devres_free(devres);
2064 		return NULL;
2065 	}
2066 
2067 	input->dev.parent = dev;
2068 	input->devres_managed = true;
2069 
2070 	devres->input = input;
2071 	devres_add(dev, devres);
2072 
2073 	return input;
2074 }
2075 EXPORT_SYMBOL(devm_input_allocate_device);
2076 
2077 /**
2078  * input_free_device - free memory occupied by input_dev structure
2079  * @dev: input device to free
2080  *
2081  * This function should only be used if input_register_device()
2082  * was not called yet or if it failed. Once device was registered
2083  * use input_unregister_device() and memory will be freed once last
2084  * reference to the device is dropped.
2085  *
2086  * Device should be allocated by input_allocate_device().
2087  *
2088  * NOTE: If there are references to the input device then memory
2089  * will not be freed until last reference is dropped.
2090  */
2091 void input_free_device(struct input_dev *dev)
2092 {
2093 	if (dev) {
2094 		if (dev->devres_managed)
2095 			WARN_ON(devres_destroy(dev->dev.parent,
2096 						devm_input_device_release,
2097 						devm_input_device_match,
2098 						dev));
2099 		input_put_device(dev);
2100 	}
2101 }
2102 EXPORT_SYMBOL(input_free_device);
2103 
2104 /**
2105  * input_set_timestamp - set timestamp for input events
2106  * @dev: input device to set timestamp for
2107  * @timestamp: the time at which the event has occurred
2108  *   in CLOCK_MONOTONIC
2109  *
2110  * This function is intended to provide to the input system a more
2111  * accurate time of when an event actually occurred. The driver should
2112  * call this function as soon as a timestamp is acquired ensuring
2113  * clock conversions in input_set_timestamp are done correctly.
2114  *
2115  * The system entering suspend state between timestamp acquisition and
2116  * calling input_set_timestamp can result in inaccurate conversions.
2117  */
2118 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
2119 {
2120 	dev->timestamp[INPUT_CLK_MONO] = timestamp;
2121 	dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
2122 	dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
2123 							   TK_OFFS_BOOT);
2124 }
2125 EXPORT_SYMBOL(input_set_timestamp);
2126 
2127 /**
2128  * input_get_timestamp - get timestamp for input events
2129  * @dev: input device to get timestamp from
2130  *
2131  * A valid timestamp is a timestamp of non-zero value.
2132  */
2133 ktime_t *input_get_timestamp(struct input_dev *dev)
2134 {
2135 	const ktime_t invalid_timestamp = ktime_set(0, 0);
2136 
2137 	if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
2138 		input_set_timestamp(dev, ktime_get());
2139 
2140 	return dev->timestamp;
2141 }
2142 EXPORT_SYMBOL(input_get_timestamp);
2143 
2144 /**
2145  * input_set_capability - mark device as capable of a certain event
2146  * @dev: device that is capable of emitting or accepting event
2147  * @type: type of the event (EV_KEY, EV_REL, etc...)
2148  * @code: event code
2149  *
2150  * In addition to setting up corresponding bit in appropriate capability
2151  * bitmap the function also adjusts dev->evbit.
2152  */
2153 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
2154 {
2155 	if (type < EV_CNT && input_max_code[type] &&
2156 	    code > input_max_code[type]) {
2157 		pr_err("%s: invalid code %u for type %u\n", __func__, code,
2158 		       type);
2159 		dump_stack();
2160 		return;
2161 	}
2162 
2163 	switch (type) {
2164 	case EV_KEY:
2165 		__set_bit(code, dev->keybit);
2166 		break;
2167 
2168 	case EV_REL:
2169 		__set_bit(code, dev->relbit);
2170 		break;
2171 
2172 	case EV_ABS:
2173 		input_alloc_absinfo(dev);
2174 		__set_bit(code, dev->absbit);
2175 		break;
2176 
2177 	case EV_MSC:
2178 		__set_bit(code, dev->mscbit);
2179 		break;
2180 
2181 	case EV_SW:
2182 		__set_bit(code, dev->swbit);
2183 		break;
2184 
2185 	case EV_LED:
2186 		__set_bit(code, dev->ledbit);
2187 		break;
2188 
2189 	case EV_SND:
2190 		__set_bit(code, dev->sndbit);
2191 		break;
2192 
2193 	case EV_FF:
2194 		__set_bit(code, dev->ffbit);
2195 		break;
2196 
2197 	case EV_PWR:
2198 		/* do nothing */
2199 		break;
2200 
2201 	default:
2202 		pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2203 		dump_stack();
2204 		return;
2205 	}
2206 
2207 	__set_bit(type, dev->evbit);
2208 }
2209 EXPORT_SYMBOL(input_set_capability);
2210 
2211 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2212 {
2213 	int mt_slots;
2214 	int i;
2215 	unsigned int events;
2216 
2217 	if (dev->mt) {
2218 		mt_slots = dev->mt->num_slots;
2219 	} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2220 		mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2221 			   dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
2222 		mt_slots = clamp(mt_slots, 2, 32);
2223 	} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2224 		mt_slots = 2;
2225 	} else {
2226 		mt_slots = 0;
2227 	}
2228 
2229 	events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2230 
2231 	if (test_bit(EV_ABS, dev->evbit))
2232 		for_each_set_bit(i, dev->absbit, ABS_CNT)
2233 			events += input_is_mt_axis(i) ? mt_slots : 1;
2234 
2235 	if (test_bit(EV_REL, dev->evbit))
2236 		events += bitmap_weight(dev->relbit, REL_CNT);
2237 
2238 	/* Make room for KEY and MSC events */
2239 	events += 7;
2240 
2241 	return events;
2242 }
2243 
2244 #define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
2245 	do {								\
2246 		if (!test_bit(EV_##type, dev->evbit))			\
2247 			memset(dev->bits##bit, 0,			\
2248 				sizeof(dev->bits##bit));		\
2249 	} while (0)
2250 
2251 static void input_cleanse_bitmasks(struct input_dev *dev)
2252 {
2253 	INPUT_CLEANSE_BITMASK(dev, KEY, key);
2254 	INPUT_CLEANSE_BITMASK(dev, REL, rel);
2255 	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2256 	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2257 	INPUT_CLEANSE_BITMASK(dev, LED, led);
2258 	INPUT_CLEANSE_BITMASK(dev, SND, snd);
2259 	INPUT_CLEANSE_BITMASK(dev, FF, ff);
2260 	INPUT_CLEANSE_BITMASK(dev, SW, sw);
2261 }
2262 
2263 static void __input_unregister_device(struct input_dev *dev)
2264 {
2265 	struct input_handle *handle, *next;
2266 
2267 	input_disconnect_device(dev);
2268 
2269 	mutex_lock(&input_mutex);
2270 
2271 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2272 		handle->handler->disconnect(handle);
2273 	WARN_ON(!list_empty(&dev->h_list));
2274 
2275 	del_timer_sync(&dev->timer);
2276 	list_del_init(&dev->node);
2277 
2278 	input_wakeup_procfs_readers();
2279 
2280 	mutex_unlock(&input_mutex);
2281 
2282 	device_del(&dev->dev);
2283 }
2284 
2285 static void devm_input_device_unregister(struct device *dev, void *res)
2286 {
2287 	struct input_devres *devres = res;
2288 	struct input_dev *input = devres->input;
2289 
2290 	dev_dbg(dev, "%s: unregistering device %s\n",
2291 		__func__, dev_name(&input->dev));
2292 	__input_unregister_device(input);
2293 }
2294 
2295 /*
2296  * Generate software autorepeat event. Note that we take
2297  * dev->event_lock here to avoid racing with input_event
2298  * which may cause keys get "stuck".
2299  */
2300 static void input_repeat_key(struct timer_list *t)
2301 {
2302 	struct input_dev *dev = from_timer(dev, t, timer);
2303 	unsigned long flags;
2304 
2305 	spin_lock_irqsave(&dev->event_lock, flags);
2306 
2307 	if (!dev->inhibited &&
2308 	    test_bit(dev->repeat_key, dev->key) &&
2309 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
2310 
2311 		input_set_timestamp(dev, ktime_get());
2312 		input_handle_event(dev, EV_KEY, dev->repeat_key, 2);
2313 		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
2314 
2315 		if (dev->rep[REP_PERIOD])
2316 			mod_timer(&dev->timer, jiffies +
2317 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
2318 	}
2319 
2320 	spin_unlock_irqrestore(&dev->event_lock, flags);
2321 }
2322 
2323 /**
2324  * input_enable_softrepeat - enable software autorepeat
2325  * @dev: input device
2326  * @delay: repeat delay
2327  * @period: repeat period
2328  *
2329  * Enable software autorepeat on the input device.
2330  */
2331 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2332 {
2333 	dev->timer.function = input_repeat_key;
2334 	dev->rep[REP_DELAY] = delay;
2335 	dev->rep[REP_PERIOD] = period;
2336 }
2337 EXPORT_SYMBOL(input_enable_softrepeat);
2338 
2339 bool input_device_enabled(struct input_dev *dev)
2340 {
2341 	lockdep_assert_held(&dev->mutex);
2342 
2343 	return !dev->inhibited && dev->users > 0;
2344 }
2345 EXPORT_SYMBOL_GPL(input_device_enabled);
2346 
2347 /**
2348  * input_register_device - register device with input core
2349  * @dev: device to be registered
2350  *
2351  * This function registers device with input core. The device must be
2352  * allocated with input_allocate_device() and all it's capabilities
2353  * set up before registering.
2354  * If function fails the device must be freed with input_free_device().
2355  * Once device has been successfully registered it can be unregistered
2356  * with input_unregister_device(); input_free_device() should not be
2357  * called in this case.
2358  *
2359  * Note that this function is also used to register managed input devices
2360  * (ones allocated with devm_input_allocate_device()). Such managed input
2361  * devices need not be explicitly unregistered or freed, their tear down
2362  * is controlled by the devres infrastructure. It is also worth noting
2363  * that tear down of managed input devices is internally a 2-step process:
2364  * registered managed input device is first unregistered, but stays in
2365  * memory and can still handle input_event() calls (although events will
2366  * not be delivered anywhere). The freeing of managed input device will
2367  * happen later, when devres stack is unwound to the point where device
2368  * allocation was made.
2369  */
2370 int input_register_device(struct input_dev *dev)
2371 {
2372 	struct input_devres *devres = NULL;
2373 	struct input_handler *handler;
2374 	unsigned int packet_size;
2375 	const char *path;
2376 	int error;
2377 
2378 	if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2379 		dev_err(&dev->dev,
2380 			"Absolute device without dev->absinfo, refusing to register\n");
2381 		return -EINVAL;
2382 	}
2383 
2384 	if (dev->devres_managed) {
2385 		devres = devres_alloc(devm_input_device_unregister,
2386 				      sizeof(*devres), GFP_KERNEL);
2387 		if (!devres)
2388 			return -ENOMEM;
2389 
2390 		devres->input = dev;
2391 	}
2392 
2393 	/* Every input device generates EV_SYN/SYN_REPORT events. */
2394 	__set_bit(EV_SYN, dev->evbit);
2395 
2396 	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
2397 	__clear_bit(KEY_RESERVED, dev->keybit);
2398 
2399 	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2400 	input_cleanse_bitmasks(dev);
2401 
2402 	packet_size = input_estimate_events_per_packet(dev);
2403 	if (dev->hint_events_per_packet < packet_size)
2404 		dev->hint_events_per_packet = packet_size;
2405 
2406 	dev->max_vals = dev->hint_events_per_packet + 2;
2407 	dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2408 	if (!dev->vals) {
2409 		error = -ENOMEM;
2410 		goto err_devres_free;
2411 	}
2412 
2413 	/*
2414 	 * If delay and period are pre-set by the driver, then autorepeating
2415 	 * is handled by the driver itself and we don't do it in input.c.
2416 	 */
2417 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2418 		input_enable_softrepeat(dev, 250, 33);
2419 
2420 	if (!dev->getkeycode)
2421 		dev->getkeycode = input_default_getkeycode;
2422 
2423 	if (!dev->setkeycode)
2424 		dev->setkeycode = input_default_setkeycode;
2425 
2426 	if (dev->poller)
2427 		input_dev_poller_finalize(dev->poller);
2428 
2429 	error = device_add(&dev->dev);
2430 	if (error)
2431 		goto err_free_vals;
2432 
2433 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2434 	pr_info("%s as %s\n",
2435 		dev->name ? dev->name : "Unspecified device",
2436 		path ? path : "N/A");
2437 	kfree(path);
2438 
2439 	error = mutex_lock_interruptible(&input_mutex);
2440 	if (error)
2441 		goto err_device_del;
2442 
2443 	list_add_tail(&dev->node, &input_dev_list);
2444 
2445 	list_for_each_entry(handler, &input_handler_list, node)
2446 		input_attach_handler(dev, handler);
2447 
2448 	input_wakeup_procfs_readers();
2449 
2450 	mutex_unlock(&input_mutex);
2451 
2452 	if (dev->devres_managed) {
2453 		dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2454 			__func__, dev_name(&dev->dev));
2455 		devres_add(dev->dev.parent, devres);
2456 	}
2457 	return 0;
2458 
2459 err_device_del:
2460 	device_del(&dev->dev);
2461 err_free_vals:
2462 	kfree(dev->vals);
2463 	dev->vals = NULL;
2464 err_devres_free:
2465 	devres_free(devres);
2466 	return error;
2467 }
2468 EXPORT_SYMBOL(input_register_device);
2469 
2470 /**
2471  * input_unregister_device - unregister previously registered device
2472  * @dev: device to be unregistered
2473  *
2474  * This function unregisters an input device. Once device is unregistered
2475  * the caller should not try to access it as it may get freed at any moment.
2476  */
2477 void input_unregister_device(struct input_dev *dev)
2478 {
2479 	if (dev->devres_managed) {
2480 		WARN_ON(devres_destroy(dev->dev.parent,
2481 					devm_input_device_unregister,
2482 					devm_input_device_match,
2483 					dev));
2484 		__input_unregister_device(dev);
2485 		/*
2486 		 * We do not do input_put_device() here because it will be done
2487 		 * when 2nd devres fires up.
2488 		 */
2489 	} else {
2490 		__input_unregister_device(dev);
2491 		input_put_device(dev);
2492 	}
2493 }
2494 EXPORT_SYMBOL(input_unregister_device);
2495 
2496 static int input_handler_check_methods(const struct input_handler *handler)
2497 {
2498 	int count = 0;
2499 
2500 	if (handler->filter)
2501 		count++;
2502 	if (handler->events)
2503 		count++;
2504 	if (handler->event)
2505 		count++;
2506 
2507 	if (count > 1) {
2508 		pr_err("%s: only one event processing method can be defined (%s)\n",
2509 		       __func__, handler->name);
2510 		return -EINVAL;
2511 	}
2512 
2513 	return 0;
2514 }
2515 
2516 /*
2517  * An implementation of input_handler's events() method that simply
2518  * invokes handler->event() method for each event one by one.
2519  */
2520 static unsigned int input_handler_events_default(struct input_handle *handle,
2521 						 struct input_value *vals,
2522 						 unsigned int count)
2523 {
2524 	struct input_handler *handler = handle->handler;
2525 	struct input_value *v;
2526 
2527 	for (v = vals; v != vals + count; v++)
2528 		handler->event(handle, v->type, v->code, v->value);
2529 
2530 	return count;
2531 }
2532 
2533 /*
2534  * An implementation of input_handler's events() method that invokes
2535  * handler->filter() method for each event one by one and removes events
2536  * that were filtered out from the "vals" array.
2537  */
2538 static unsigned int input_handler_events_filter(struct input_handle *handle,
2539 						struct input_value *vals,
2540 						unsigned int count)
2541 {
2542 	struct input_handler *handler = handle->handler;
2543 	struct input_value *end = vals;
2544 	struct input_value *v;
2545 
2546 	for (v = vals; v != vals + count; v++) {
2547 		if (handler->filter(handle, v->type, v->code, v->value))
2548 			continue;
2549 		if (end != v)
2550 			*end = *v;
2551 		end++;
2552 	}
2553 
2554 	return end - vals;
2555 }
2556 
2557 /*
2558  * An implementation of input_handler's events() method that does nothing.
2559  */
2560 static unsigned int input_handler_events_null(struct input_handle *handle,
2561 					      struct input_value *vals,
2562 					      unsigned int count)
2563 {
2564 	return count;
2565 }
2566 
2567 /**
2568  * input_register_handler - register a new input handler
2569  * @handler: handler to be registered
2570  *
2571  * This function registers a new input handler (interface) for input
2572  * devices in the system and attaches it to all input devices that
2573  * are compatible with the handler.
2574  */
2575 int input_register_handler(struct input_handler *handler)
2576 {
2577 	struct input_dev *dev;
2578 	int error;
2579 
2580 	error = input_handler_check_methods(handler);
2581 	if (error)
2582 		return error;
2583 
2584 	INIT_LIST_HEAD(&handler->h_list);
2585 
2586 	if (handler->filter)
2587 		handler->events = input_handler_events_filter;
2588 	else if (handler->event)
2589 		handler->events = input_handler_events_default;
2590 	else if (!handler->events)
2591 		handler->events = input_handler_events_null;
2592 
2593 	error = mutex_lock_interruptible(&input_mutex);
2594 	if (error)
2595 		return error;
2596 
2597 	list_add_tail(&handler->node, &input_handler_list);
2598 
2599 	list_for_each_entry(dev, &input_dev_list, node)
2600 		input_attach_handler(dev, handler);
2601 
2602 	input_wakeup_procfs_readers();
2603 
2604 	mutex_unlock(&input_mutex);
2605 	return 0;
2606 }
2607 EXPORT_SYMBOL(input_register_handler);
2608 
2609 /**
2610  * input_unregister_handler - unregisters an input handler
2611  * @handler: handler to be unregistered
2612  *
2613  * This function disconnects a handler from its input devices and
2614  * removes it from lists of known handlers.
2615  */
2616 void input_unregister_handler(struct input_handler *handler)
2617 {
2618 	struct input_handle *handle, *next;
2619 
2620 	mutex_lock(&input_mutex);
2621 
2622 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2623 		handler->disconnect(handle);
2624 	WARN_ON(!list_empty(&handler->h_list));
2625 
2626 	list_del_init(&handler->node);
2627 
2628 	input_wakeup_procfs_readers();
2629 
2630 	mutex_unlock(&input_mutex);
2631 }
2632 EXPORT_SYMBOL(input_unregister_handler);
2633 
2634 /**
2635  * input_handler_for_each_handle - handle iterator
2636  * @handler: input handler to iterate
2637  * @data: data for the callback
2638  * @fn: function to be called for each handle
2639  *
2640  * Iterate over @bus's list of devices, and call @fn for each, passing
2641  * it @data and stop when @fn returns a non-zero value. The function is
2642  * using RCU to traverse the list and therefore may be using in atomic
2643  * contexts. The @fn callback is invoked from RCU critical section and
2644  * thus must not sleep.
2645  */
2646 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2647 				  int (*fn)(struct input_handle *, void *))
2648 {
2649 	struct input_handle *handle;
2650 	int retval = 0;
2651 
2652 	rcu_read_lock();
2653 
2654 	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2655 		retval = fn(handle, data);
2656 		if (retval)
2657 			break;
2658 	}
2659 
2660 	rcu_read_unlock();
2661 
2662 	return retval;
2663 }
2664 EXPORT_SYMBOL(input_handler_for_each_handle);
2665 
2666 /**
2667  * input_register_handle - register a new input handle
2668  * @handle: handle to register
2669  *
2670  * This function puts a new input handle onto device's
2671  * and handler's lists so that events can flow through
2672  * it once it is opened using input_open_device().
2673  *
2674  * This function is supposed to be called from handler's
2675  * connect() method.
2676  */
2677 int input_register_handle(struct input_handle *handle)
2678 {
2679 	struct input_handler *handler = handle->handler;
2680 	struct input_dev *dev = handle->dev;
2681 	int error;
2682 
2683 	/*
2684 	 * We take dev->mutex here to prevent race with
2685 	 * input_release_device().
2686 	 */
2687 	error = mutex_lock_interruptible(&dev->mutex);
2688 	if (error)
2689 		return error;
2690 
2691 	/*
2692 	 * Filters go to the head of the list, normal handlers
2693 	 * to the tail.
2694 	 */
2695 	if (handler->filter)
2696 		list_add_rcu(&handle->d_node, &dev->h_list);
2697 	else
2698 		list_add_tail_rcu(&handle->d_node, &dev->h_list);
2699 
2700 	mutex_unlock(&dev->mutex);
2701 
2702 	/*
2703 	 * Since we are supposed to be called from ->connect()
2704 	 * which is mutually exclusive with ->disconnect()
2705 	 * we can't be racing with input_unregister_handle()
2706 	 * and so separate lock is not needed here.
2707 	 */
2708 	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2709 
2710 	if (handler->start)
2711 		handler->start(handle);
2712 
2713 	return 0;
2714 }
2715 EXPORT_SYMBOL(input_register_handle);
2716 
2717 /**
2718  * input_unregister_handle - unregister an input handle
2719  * @handle: handle to unregister
2720  *
2721  * This function removes input handle from device's
2722  * and handler's lists.
2723  *
2724  * This function is supposed to be called from handler's
2725  * disconnect() method.
2726  */
2727 void input_unregister_handle(struct input_handle *handle)
2728 {
2729 	struct input_dev *dev = handle->dev;
2730 
2731 	list_del_rcu(&handle->h_node);
2732 
2733 	/*
2734 	 * Take dev->mutex to prevent race with input_release_device().
2735 	 */
2736 	mutex_lock(&dev->mutex);
2737 	list_del_rcu(&handle->d_node);
2738 	mutex_unlock(&dev->mutex);
2739 
2740 	synchronize_rcu();
2741 }
2742 EXPORT_SYMBOL(input_unregister_handle);
2743 
2744 /**
2745  * input_get_new_minor - allocates a new input minor number
2746  * @legacy_base: beginning or the legacy range to be searched
2747  * @legacy_num: size of legacy range
2748  * @allow_dynamic: whether we can also take ID from the dynamic range
2749  *
2750  * This function allocates a new device minor for from input major namespace.
2751  * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2752  * parameters and whether ID can be allocated from dynamic range if there are
2753  * no free IDs in legacy range.
2754  */
2755 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2756 			bool allow_dynamic)
2757 {
2758 	/*
2759 	 * This function should be called from input handler's ->connect()
2760 	 * methods, which are serialized with input_mutex, so no additional
2761 	 * locking is needed here.
2762 	 */
2763 	if (legacy_base >= 0) {
2764 		int minor = ida_alloc_range(&input_ida, legacy_base,
2765 					    legacy_base + legacy_num - 1,
2766 					    GFP_KERNEL);
2767 		if (minor >= 0 || !allow_dynamic)
2768 			return minor;
2769 	}
2770 
2771 	return ida_alloc_range(&input_ida, INPUT_FIRST_DYNAMIC_DEV,
2772 			       INPUT_MAX_CHAR_DEVICES - 1, GFP_KERNEL);
2773 }
2774 EXPORT_SYMBOL(input_get_new_minor);
2775 
2776 /**
2777  * input_free_minor - release previously allocated minor
2778  * @minor: minor to be released
2779  *
2780  * This function releases previously allocated input minor so that it can be
2781  * reused later.
2782  */
2783 void input_free_minor(unsigned int minor)
2784 {
2785 	ida_free(&input_ida, minor);
2786 }
2787 EXPORT_SYMBOL(input_free_minor);
2788 
2789 static int __init input_init(void)
2790 {
2791 	int err;
2792 
2793 	err = class_register(&input_class);
2794 	if (err) {
2795 		pr_err("unable to register input_dev class\n");
2796 		return err;
2797 	}
2798 
2799 	err = input_proc_init();
2800 	if (err)
2801 		goto fail1;
2802 
2803 	err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2804 				     INPUT_MAX_CHAR_DEVICES, "input");
2805 	if (err) {
2806 		pr_err("unable to register char major %d", INPUT_MAJOR);
2807 		goto fail2;
2808 	}
2809 
2810 	return 0;
2811 
2812  fail2:	input_proc_exit();
2813  fail1:	class_unregister(&input_class);
2814 	return err;
2815 }
2816 
2817 static void __exit input_exit(void)
2818 {
2819 	input_proc_exit();
2820 	unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2821 				 INPUT_MAX_CHAR_DEVICES);
2822 	class_unregister(&input_class);
2823 }
2824 
2825 subsys_initcall(input_init);
2826 module_exit(input_exit);
2827