xref: /linux-6.15/drivers/input/input.c (revision 0cd58773)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * The input core
4  *
5  * Copyright (c) 1999-2002 Vojtech Pavlik
6  */
7 
8 
9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
10 
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/idr.h>
14 #include <linux/input/mt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/pm.h>
23 #include <linux/poll.h>
24 #include <linux/device.h>
25 #include <linux/kstrtox.h>
26 #include <linux/mutex.h>
27 #include <linux/rcupdate.h>
28 #include "input-compat.h"
29 #include "input-core-private.h"
30 #include "input-poller.h"
31 
32 MODULE_AUTHOR("Vojtech Pavlik <[email protected]>");
33 MODULE_DESCRIPTION("Input core");
34 MODULE_LICENSE("GPL");
35 
36 #define INPUT_MAX_CHAR_DEVICES		1024
37 #define INPUT_FIRST_DYNAMIC_DEV		256
38 static DEFINE_IDA(input_ida);
39 
40 static LIST_HEAD(input_dev_list);
41 static LIST_HEAD(input_handler_list);
42 
43 /*
44  * input_mutex protects access to both input_dev_list and input_handler_list.
45  * This also causes input_[un]register_device and input_[un]register_handler
46  * be mutually exclusive which simplifies locking in drivers implementing
47  * input handlers.
48  */
49 static DEFINE_MUTEX(input_mutex);
50 
51 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
52 
53 static const unsigned int input_max_code[EV_CNT] = {
54 	[EV_KEY] = KEY_MAX,
55 	[EV_REL] = REL_MAX,
56 	[EV_ABS] = ABS_MAX,
57 	[EV_MSC] = MSC_MAX,
58 	[EV_SW] = SW_MAX,
59 	[EV_LED] = LED_MAX,
60 	[EV_SND] = SND_MAX,
61 	[EV_FF] = FF_MAX,
62 };
63 
64 static inline int is_event_supported(unsigned int code,
65 				     unsigned long *bm, unsigned int max)
66 {
67 	return code <= max && test_bit(code, bm);
68 }
69 
70 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
71 {
72 	if (fuzz) {
73 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
74 			return old_val;
75 
76 		if (value > old_val - fuzz && value < old_val + fuzz)
77 			return (old_val * 3 + value) / 4;
78 
79 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
80 			return (old_val + value) / 2;
81 	}
82 
83 	return value;
84 }
85 
86 static void input_start_autorepeat(struct input_dev *dev, int code)
87 {
88 	if (test_bit(EV_REP, dev->evbit) &&
89 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
90 	    dev->timer.function) {
91 		dev->repeat_key = code;
92 		mod_timer(&dev->timer,
93 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
94 	}
95 }
96 
97 static void input_stop_autorepeat(struct input_dev *dev)
98 {
99 	del_timer(&dev->timer);
100 }
101 
102 /*
103  * Pass values first through all filters and then, if event has not been
104  * filtered out, through all open handles. This order is achieved by placing
105  * filters at the head of the list of handles attached to the device, and
106  * placing regular handles at the tail of the list.
107  *
108  * This function is called with dev->event_lock held and interrupts disabled.
109  */
110 static void input_pass_values(struct input_dev *dev,
111 			      struct input_value *vals, unsigned int count)
112 {
113 	struct input_handle *handle;
114 	struct input_value *v;
115 
116 	lockdep_assert_held(&dev->event_lock);
117 
118 	if (!count)
119 		return;
120 
121 	rcu_read_lock();
122 
123 	handle = rcu_dereference(dev->grab);
124 	if (handle) {
125 		count = handle->handler->events(handle, vals, count);
126 	} else {
127 		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
128 			if (handle->open) {
129 				count = handle->handler->events(handle, vals,
130 								count);
131 				if (!count)
132 					break;
133 			}
134 	}
135 
136 	rcu_read_unlock();
137 
138 	/* trigger auto repeat for key events */
139 	if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
140 		for (v = vals; v != vals + count; v++) {
141 			if (v->type == EV_KEY && v->value != 2) {
142 				if (v->value)
143 					input_start_autorepeat(dev, v->code);
144 				else
145 					input_stop_autorepeat(dev);
146 			}
147 		}
148 	}
149 }
150 
151 #define INPUT_IGNORE_EVENT	0
152 #define INPUT_PASS_TO_HANDLERS	1
153 #define INPUT_PASS_TO_DEVICE	2
154 #define INPUT_SLOT		4
155 #define INPUT_FLUSH		8
156 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
157 
158 static int input_handle_abs_event(struct input_dev *dev,
159 				  unsigned int code, int *pval)
160 {
161 	struct input_mt *mt = dev->mt;
162 	bool is_new_slot = false;
163 	bool is_mt_event;
164 	int *pold;
165 
166 	if (code == ABS_MT_SLOT) {
167 		/*
168 		 * "Stage" the event; we'll flush it later, when we
169 		 * get actual touch data.
170 		 */
171 		if (mt && *pval >= 0 && *pval < mt->num_slots)
172 			mt->slot = *pval;
173 
174 		return INPUT_IGNORE_EVENT;
175 	}
176 
177 	is_mt_event = input_is_mt_value(code);
178 
179 	if (!is_mt_event) {
180 		pold = &dev->absinfo[code].value;
181 	} else if (mt) {
182 		pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
183 		is_new_slot = mt->slot != dev->absinfo[ABS_MT_SLOT].value;
184 	} else {
185 		/*
186 		 * Bypass filtering for multi-touch events when
187 		 * not employing slots.
188 		 */
189 		pold = NULL;
190 	}
191 
192 	if (pold) {
193 		*pval = input_defuzz_abs_event(*pval, *pold,
194 						dev->absinfo[code].fuzz);
195 		if (*pold == *pval)
196 			return INPUT_IGNORE_EVENT;
197 
198 		*pold = *pval;
199 	}
200 
201 	/* Flush pending "slot" event */
202 	if (is_new_slot) {
203 		dev->absinfo[ABS_MT_SLOT].value = mt->slot;
204 		return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
205 	}
206 
207 	return INPUT_PASS_TO_HANDLERS;
208 }
209 
210 static int input_get_disposition(struct input_dev *dev,
211 			  unsigned int type, unsigned int code, int *pval)
212 {
213 	int disposition = INPUT_IGNORE_EVENT;
214 	int value = *pval;
215 
216 	/* filter-out events from inhibited devices */
217 	if (dev->inhibited)
218 		return INPUT_IGNORE_EVENT;
219 
220 	switch (type) {
221 
222 	case EV_SYN:
223 		switch (code) {
224 		case SYN_CONFIG:
225 			disposition = INPUT_PASS_TO_ALL;
226 			break;
227 
228 		case SYN_REPORT:
229 			disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
230 			break;
231 		case SYN_MT_REPORT:
232 			disposition = INPUT_PASS_TO_HANDLERS;
233 			break;
234 		}
235 		break;
236 
237 	case EV_KEY:
238 		if (is_event_supported(code, dev->keybit, KEY_MAX)) {
239 
240 			/* auto-repeat bypasses state updates */
241 			if (value == 2) {
242 				disposition = INPUT_PASS_TO_HANDLERS;
243 				break;
244 			}
245 
246 			if (!!test_bit(code, dev->key) != !!value) {
247 
248 				__change_bit(code, dev->key);
249 				disposition = INPUT_PASS_TO_HANDLERS;
250 			}
251 		}
252 		break;
253 
254 	case EV_SW:
255 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
256 		    !!test_bit(code, dev->sw) != !!value) {
257 
258 			__change_bit(code, dev->sw);
259 			disposition = INPUT_PASS_TO_HANDLERS;
260 		}
261 		break;
262 
263 	case EV_ABS:
264 		if (is_event_supported(code, dev->absbit, ABS_MAX))
265 			disposition = input_handle_abs_event(dev, code, &value);
266 
267 		break;
268 
269 	case EV_REL:
270 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
271 			disposition = INPUT_PASS_TO_HANDLERS;
272 
273 		break;
274 
275 	case EV_MSC:
276 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
277 			disposition = INPUT_PASS_TO_ALL;
278 
279 		break;
280 
281 	case EV_LED:
282 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
283 		    !!test_bit(code, dev->led) != !!value) {
284 
285 			__change_bit(code, dev->led);
286 			disposition = INPUT_PASS_TO_ALL;
287 		}
288 		break;
289 
290 	case EV_SND:
291 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
292 
293 			if (!!test_bit(code, dev->snd) != !!value)
294 				__change_bit(code, dev->snd);
295 			disposition = INPUT_PASS_TO_ALL;
296 		}
297 		break;
298 
299 	case EV_REP:
300 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
301 			dev->rep[code] = value;
302 			disposition = INPUT_PASS_TO_ALL;
303 		}
304 		break;
305 
306 	case EV_FF:
307 		if (value >= 0)
308 			disposition = INPUT_PASS_TO_ALL;
309 		break;
310 
311 	case EV_PWR:
312 		disposition = INPUT_PASS_TO_ALL;
313 		break;
314 	}
315 
316 	*pval = value;
317 	return disposition;
318 }
319 
320 static void input_event_dispose(struct input_dev *dev, int disposition,
321 				unsigned int type, unsigned int code, int value)
322 {
323 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
324 		dev->event(dev, type, code, value);
325 
326 	if (disposition & INPUT_PASS_TO_HANDLERS) {
327 		struct input_value *v;
328 
329 		if (disposition & INPUT_SLOT) {
330 			v = &dev->vals[dev->num_vals++];
331 			v->type = EV_ABS;
332 			v->code = ABS_MT_SLOT;
333 			v->value = dev->mt->slot;
334 		}
335 
336 		v = &dev->vals[dev->num_vals++];
337 		v->type = type;
338 		v->code = code;
339 		v->value = value;
340 	}
341 
342 	if (disposition & INPUT_FLUSH) {
343 		if (dev->num_vals >= 2)
344 			input_pass_values(dev, dev->vals, dev->num_vals);
345 		dev->num_vals = 0;
346 		/*
347 		 * Reset the timestamp on flush so we won't end up
348 		 * with a stale one. Note we only need to reset the
349 		 * monolithic one as we use its presence when deciding
350 		 * whether to generate a synthetic timestamp.
351 		 */
352 		dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
353 	} else if (dev->num_vals >= dev->max_vals - 2) {
354 		dev->vals[dev->num_vals++] = input_value_sync;
355 		input_pass_values(dev, dev->vals, dev->num_vals);
356 		dev->num_vals = 0;
357 	}
358 }
359 
360 void input_handle_event(struct input_dev *dev,
361 			unsigned int type, unsigned int code, int value)
362 {
363 	int disposition;
364 
365 	lockdep_assert_held(&dev->event_lock);
366 
367 	disposition = input_get_disposition(dev, type, code, &value);
368 	if (disposition != INPUT_IGNORE_EVENT) {
369 		if (type != EV_SYN)
370 			add_input_randomness(type, code, value);
371 
372 		input_event_dispose(dev, disposition, type, code, value);
373 	}
374 }
375 
376 /**
377  * input_event() - report new input event
378  * @dev: device that generated the event
379  * @type: type of the event
380  * @code: event code
381  * @value: value of the event
382  *
383  * This function should be used by drivers implementing various input
384  * devices to report input events. See also input_inject_event().
385  *
386  * NOTE: input_event() may be safely used right after input device was
387  * allocated with input_allocate_device(), even before it is registered
388  * with input_register_device(), but the event will not reach any of the
389  * input handlers. Such early invocation of input_event() may be used
390  * to 'seed' initial state of a switch or initial position of absolute
391  * axis, etc.
392  */
393 void input_event(struct input_dev *dev,
394 		 unsigned int type, unsigned int code, int value)
395 {
396 	unsigned long flags;
397 
398 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
399 
400 		spin_lock_irqsave(&dev->event_lock, flags);
401 		input_handle_event(dev, type, code, value);
402 		spin_unlock_irqrestore(&dev->event_lock, flags);
403 	}
404 }
405 EXPORT_SYMBOL(input_event);
406 
407 /**
408  * input_inject_event() - send input event from input handler
409  * @handle: input handle to send event through
410  * @type: type of the event
411  * @code: event code
412  * @value: value of the event
413  *
414  * Similar to input_event() but will ignore event if device is
415  * "grabbed" and handle injecting event is not the one that owns
416  * the device.
417  */
418 void input_inject_event(struct input_handle *handle,
419 			unsigned int type, unsigned int code, int value)
420 {
421 	struct input_dev *dev = handle->dev;
422 	struct input_handle *grab;
423 	unsigned long flags;
424 
425 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
426 		spin_lock_irqsave(&dev->event_lock, flags);
427 
428 		rcu_read_lock();
429 		grab = rcu_dereference(dev->grab);
430 		if (!grab || grab == handle)
431 			input_handle_event(dev, type, code, value);
432 		rcu_read_unlock();
433 
434 		spin_unlock_irqrestore(&dev->event_lock, flags);
435 	}
436 }
437 EXPORT_SYMBOL(input_inject_event);
438 
439 /**
440  * input_alloc_absinfo - allocates array of input_absinfo structs
441  * @dev: the input device emitting absolute events
442  *
443  * If the absinfo struct the caller asked for is already allocated, this
444  * functions will not do anything.
445  */
446 void input_alloc_absinfo(struct input_dev *dev)
447 {
448 	if (dev->absinfo)
449 		return;
450 
451 	dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
452 	if (!dev->absinfo) {
453 		dev_err(dev->dev.parent ?: &dev->dev,
454 			"%s: unable to allocate memory\n", __func__);
455 		/*
456 		 * We will handle this allocation failure in
457 		 * input_register_device() when we refuse to register input
458 		 * device with ABS bits but without absinfo.
459 		 */
460 	}
461 }
462 EXPORT_SYMBOL(input_alloc_absinfo);
463 
464 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
465 			  int min, int max, int fuzz, int flat)
466 {
467 	struct input_absinfo *absinfo;
468 
469 	__set_bit(EV_ABS, dev->evbit);
470 	__set_bit(axis, dev->absbit);
471 
472 	input_alloc_absinfo(dev);
473 	if (!dev->absinfo)
474 		return;
475 
476 	absinfo = &dev->absinfo[axis];
477 	absinfo->minimum = min;
478 	absinfo->maximum = max;
479 	absinfo->fuzz = fuzz;
480 	absinfo->flat = flat;
481 }
482 EXPORT_SYMBOL(input_set_abs_params);
483 
484 /**
485  * input_copy_abs - Copy absinfo from one input_dev to another
486  * @dst: Destination input device to copy the abs settings to
487  * @dst_axis: ABS_* value selecting the destination axis
488  * @src: Source input device to copy the abs settings from
489  * @src_axis: ABS_* value selecting the source axis
490  *
491  * Set absinfo for the selected destination axis by copying it from
492  * the specified source input device's source axis.
493  * This is useful to e.g. setup a pen/stylus input-device for combined
494  * touchscreen/pen hardware where the pen uses the same coordinates as
495  * the touchscreen.
496  */
497 void input_copy_abs(struct input_dev *dst, unsigned int dst_axis,
498 		    const struct input_dev *src, unsigned int src_axis)
499 {
500 	/* src must have EV_ABS and src_axis set */
501 	if (WARN_ON(!(test_bit(EV_ABS, src->evbit) &&
502 		      test_bit(src_axis, src->absbit))))
503 		return;
504 
505 	/*
506 	 * input_alloc_absinfo() may have failed for the source. Our caller is
507 	 * expected to catch this when registering the input devices, which may
508 	 * happen after the input_copy_abs() call.
509 	 */
510 	if (!src->absinfo)
511 		return;
512 
513 	input_set_capability(dst, EV_ABS, dst_axis);
514 	if (!dst->absinfo)
515 		return;
516 
517 	dst->absinfo[dst_axis] = src->absinfo[src_axis];
518 }
519 EXPORT_SYMBOL(input_copy_abs);
520 
521 /**
522  * input_grab_device - grabs device for exclusive use
523  * @handle: input handle that wants to own the device
524  *
525  * When a device is grabbed by an input handle all events generated by
526  * the device are delivered only to this handle. Also events injected
527  * by other input handles are ignored while device is grabbed.
528  */
529 int input_grab_device(struct input_handle *handle)
530 {
531 	struct input_dev *dev = handle->dev;
532 	int retval;
533 
534 	retval = mutex_lock_interruptible(&dev->mutex);
535 	if (retval)
536 		return retval;
537 
538 	if (dev->grab) {
539 		retval = -EBUSY;
540 		goto out;
541 	}
542 
543 	rcu_assign_pointer(dev->grab, handle);
544 
545  out:
546 	mutex_unlock(&dev->mutex);
547 	return retval;
548 }
549 EXPORT_SYMBOL(input_grab_device);
550 
551 static void __input_release_device(struct input_handle *handle)
552 {
553 	struct input_dev *dev = handle->dev;
554 	struct input_handle *grabber;
555 
556 	grabber = rcu_dereference_protected(dev->grab,
557 					    lockdep_is_held(&dev->mutex));
558 	if (grabber == handle) {
559 		rcu_assign_pointer(dev->grab, NULL);
560 		/* Make sure input_pass_values() notices that grab is gone */
561 		synchronize_rcu();
562 
563 		list_for_each_entry(handle, &dev->h_list, d_node)
564 			if (handle->open && handle->handler->start)
565 				handle->handler->start(handle);
566 	}
567 }
568 
569 /**
570  * input_release_device - release previously grabbed device
571  * @handle: input handle that owns the device
572  *
573  * Releases previously grabbed device so that other input handles can
574  * start receiving input events. Upon release all handlers attached
575  * to the device have their start() method called so they have a change
576  * to synchronize device state with the rest of the system.
577  */
578 void input_release_device(struct input_handle *handle)
579 {
580 	struct input_dev *dev = handle->dev;
581 
582 	mutex_lock(&dev->mutex);
583 	__input_release_device(handle);
584 	mutex_unlock(&dev->mutex);
585 }
586 EXPORT_SYMBOL(input_release_device);
587 
588 /**
589  * input_open_device - open input device
590  * @handle: handle through which device is being accessed
591  *
592  * This function should be called by input handlers when they
593  * want to start receive events from given input device.
594  */
595 int input_open_device(struct input_handle *handle)
596 {
597 	struct input_dev *dev = handle->dev;
598 	int retval;
599 
600 	retval = mutex_lock_interruptible(&dev->mutex);
601 	if (retval)
602 		return retval;
603 
604 	if (dev->going_away) {
605 		retval = -ENODEV;
606 		goto out;
607 	}
608 
609 	handle->open++;
610 
611 	if (dev->users++ || dev->inhibited) {
612 		/*
613 		 * Device is already opened and/or inhibited,
614 		 * so we can exit immediately and report success.
615 		 */
616 		goto out;
617 	}
618 
619 	if (dev->open) {
620 		retval = dev->open(dev);
621 		if (retval) {
622 			dev->users--;
623 			handle->open--;
624 			/*
625 			 * Make sure we are not delivering any more events
626 			 * through this handle
627 			 */
628 			synchronize_rcu();
629 			goto out;
630 		}
631 	}
632 
633 	if (dev->poller)
634 		input_dev_poller_start(dev->poller);
635 
636  out:
637 	mutex_unlock(&dev->mutex);
638 	return retval;
639 }
640 EXPORT_SYMBOL(input_open_device);
641 
642 int input_flush_device(struct input_handle *handle, struct file *file)
643 {
644 	struct input_dev *dev = handle->dev;
645 	int retval;
646 
647 	retval = mutex_lock_interruptible(&dev->mutex);
648 	if (retval)
649 		return retval;
650 
651 	if (dev->flush)
652 		retval = dev->flush(dev, file);
653 
654 	mutex_unlock(&dev->mutex);
655 	return retval;
656 }
657 EXPORT_SYMBOL(input_flush_device);
658 
659 /**
660  * input_close_device - close input device
661  * @handle: handle through which device is being accessed
662  *
663  * This function should be called by input handlers when they
664  * want to stop receive events from given input device.
665  */
666 void input_close_device(struct input_handle *handle)
667 {
668 	struct input_dev *dev = handle->dev;
669 
670 	mutex_lock(&dev->mutex);
671 
672 	__input_release_device(handle);
673 
674 	if (!--dev->users && !dev->inhibited) {
675 		if (dev->poller)
676 			input_dev_poller_stop(dev->poller);
677 		if (dev->close)
678 			dev->close(dev);
679 	}
680 
681 	if (!--handle->open) {
682 		/*
683 		 * synchronize_rcu() makes sure that input_pass_values()
684 		 * completed and that no more input events are delivered
685 		 * through this handle
686 		 */
687 		synchronize_rcu();
688 	}
689 
690 	mutex_unlock(&dev->mutex);
691 }
692 EXPORT_SYMBOL(input_close_device);
693 
694 /*
695  * Simulate keyup events for all keys that are marked as pressed.
696  * The function must be called with dev->event_lock held.
697  */
698 static bool input_dev_release_keys(struct input_dev *dev)
699 {
700 	bool need_sync = false;
701 	int code;
702 
703 	lockdep_assert_held(&dev->event_lock);
704 
705 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
706 		for_each_set_bit(code, dev->key, KEY_CNT) {
707 			input_handle_event(dev, EV_KEY, code, 0);
708 			need_sync = true;
709 		}
710 	}
711 
712 	return need_sync;
713 }
714 
715 /*
716  * Prepare device for unregistering
717  */
718 static void input_disconnect_device(struct input_dev *dev)
719 {
720 	struct input_handle *handle;
721 
722 	/*
723 	 * Mark device as going away. Note that we take dev->mutex here
724 	 * not to protect access to dev->going_away but rather to ensure
725 	 * that there are no threads in the middle of input_open_device()
726 	 */
727 	mutex_lock(&dev->mutex);
728 	dev->going_away = true;
729 	mutex_unlock(&dev->mutex);
730 
731 	spin_lock_irq(&dev->event_lock);
732 
733 	/*
734 	 * Simulate keyup events for all pressed keys so that handlers
735 	 * are not left with "stuck" keys. The driver may continue
736 	 * generate events even after we done here but they will not
737 	 * reach any handlers.
738 	 */
739 	if (input_dev_release_keys(dev))
740 		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
741 
742 	list_for_each_entry(handle, &dev->h_list, d_node)
743 		handle->open = 0;
744 
745 	spin_unlock_irq(&dev->event_lock);
746 }
747 
748 /**
749  * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
750  * @ke: keymap entry containing scancode to be converted.
751  * @scancode: pointer to the location where converted scancode should
752  *	be stored.
753  *
754  * This function is used to convert scancode stored in &struct keymap_entry
755  * into scalar form understood by legacy keymap handling methods. These
756  * methods expect scancodes to be represented as 'unsigned int'.
757  */
758 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
759 			     unsigned int *scancode)
760 {
761 	switch (ke->len) {
762 	case 1:
763 		*scancode = *((u8 *)ke->scancode);
764 		break;
765 
766 	case 2:
767 		*scancode = *((u16 *)ke->scancode);
768 		break;
769 
770 	case 4:
771 		*scancode = *((u32 *)ke->scancode);
772 		break;
773 
774 	default:
775 		return -EINVAL;
776 	}
777 
778 	return 0;
779 }
780 EXPORT_SYMBOL(input_scancode_to_scalar);
781 
782 /*
783  * Those routines handle the default case where no [gs]etkeycode() is
784  * defined. In this case, an array indexed by the scancode is used.
785  */
786 
787 static unsigned int input_fetch_keycode(struct input_dev *dev,
788 					unsigned int index)
789 {
790 	switch (dev->keycodesize) {
791 	case 1:
792 		return ((u8 *)dev->keycode)[index];
793 
794 	case 2:
795 		return ((u16 *)dev->keycode)[index];
796 
797 	default:
798 		return ((u32 *)dev->keycode)[index];
799 	}
800 }
801 
802 static int input_default_getkeycode(struct input_dev *dev,
803 				    struct input_keymap_entry *ke)
804 {
805 	unsigned int index;
806 	int error;
807 
808 	if (!dev->keycodesize)
809 		return -EINVAL;
810 
811 	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
812 		index = ke->index;
813 	else {
814 		error = input_scancode_to_scalar(ke, &index);
815 		if (error)
816 			return error;
817 	}
818 
819 	if (index >= dev->keycodemax)
820 		return -EINVAL;
821 
822 	ke->keycode = input_fetch_keycode(dev, index);
823 	ke->index = index;
824 	ke->len = sizeof(index);
825 	memcpy(ke->scancode, &index, sizeof(index));
826 
827 	return 0;
828 }
829 
830 static int input_default_setkeycode(struct input_dev *dev,
831 				    const struct input_keymap_entry *ke,
832 				    unsigned int *old_keycode)
833 {
834 	unsigned int index;
835 	int error;
836 	int i;
837 
838 	if (!dev->keycodesize)
839 		return -EINVAL;
840 
841 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
842 		index = ke->index;
843 	} else {
844 		error = input_scancode_to_scalar(ke, &index);
845 		if (error)
846 			return error;
847 	}
848 
849 	if (index >= dev->keycodemax)
850 		return -EINVAL;
851 
852 	if (dev->keycodesize < sizeof(ke->keycode) &&
853 			(ke->keycode >> (dev->keycodesize * 8)))
854 		return -EINVAL;
855 
856 	switch (dev->keycodesize) {
857 		case 1: {
858 			u8 *k = (u8 *)dev->keycode;
859 			*old_keycode = k[index];
860 			k[index] = ke->keycode;
861 			break;
862 		}
863 		case 2: {
864 			u16 *k = (u16 *)dev->keycode;
865 			*old_keycode = k[index];
866 			k[index] = ke->keycode;
867 			break;
868 		}
869 		default: {
870 			u32 *k = (u32 *)dev->keycode;
871 			*old_keycode = k[index];
872 			k[index] = ke->keycode;
873 			break;
874 		}
875 	}
876 
877 	if (*old_keycode <= KEY_MAX) {
878 		__clear_bit(*old_keycode, dev->keybit);
879 		for (i = 0; i < dev->keycodemax; i++) {
880 			if (input_fetch_keycode(dev, i) == *old_keycode) {
881 				__set_bit(*old_keycode, dev->keybit);
882 				/* Setting the bit twice is useless, so break */
883 				break;
884 			}
885 		}
886 	}
887 
888 	__set_bit(ke->keycode, dev->keybit);
889 	return 0;
890 }
891 
892 /**
893  * input_get_keycode - retrieve keycode currently mapped to a given scancode
894  * @dev: input device which keymap is being queried
895  * @ke: keymap entry
896  *
897  * This function should be called by anyone interested in retrieving current
898  * keymap. Presently evdev handlers use it.
899  */
900 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
901 {
902 	unsigned long flags;
903 	int retval;
904 
905 	spin_lock_irqsave(&dev->event_lock, flags);
906 	retval = dev->getkeycode(dev, ke);
907 	spin_unlock_irqrestore(&dev->event_lock, flags);
908 
909 	return retval;
910 }
911 EXPORT_SYMBOL(input_get_keycode);
912 
913 /**
914  * input_set_keycode - attribute a keycode to a given scancode
915  * @dev: input device which keymap is being updated
916  * @ke: new keymap entry
917  *
918  * This function should be called by anyone needing to update current
919  * keymap. Presently keyboard and evdev handlers use it.
920  */
921 int input_set_keycode(struct input_dev *dev,
922 		      const struct input_keymap_entry *ke)
923 {
924 	unsigned long flags;
925 	unsigned int old_keycode;
926 	int retval;
927 
928 	if (ke->keycode > KEY_MAX)
929 		return -EINVAL;
930 
931 	spin_lock_irqsave(&dev->event_lock, flags);
932 
933 	retval = dev->setkeycode(dev, ke, &old_keycode);
934 	if (retval)
935 		goto out;
936 
937 	/* Make sure KEY_RESERVED did not get enabled. */
938 	__clear_bit(KEY_RESERVED, dev->keybit);
939 
940 	/*
941 	 * Simulate keyup event if keycode is not present
942 	 * in the keymap anymore
943 	 */
944 	if (old_keycode > KEY_MAX) {
945 		dev_warn(dev->dev.parent ?: &dev->dev,
946 			 "%s: got too big old keycode %#x\n",
947 			 __func__, old_keycode);
948 	} else if (test_bit(EV_KEY, dev->evbit) &&
949 		   !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
950 		   __test_and_clear_bit(old_keycode, dev->key)) {
951 		/*
952 		 * We have to use input_event_dispose() here directly instead
953 		 * of input_handle_event() because the key we want to release
954 		 * here is considered no longer supported by the device and
955 		 * input_handle_event() will ignore it.
956 		 */
957 		input_event_dispose(dev, INPUT_PASS_TO_HANDLERS,
958 				    EV_KEY, old_keycode, 0);
959 		input_event_dispose(dev, INPUT_PASS_TO_HANDLERS | INPUT_FLUSH,
960 				    EV_SYN, SYN_REPORT, 1);
961 	}
962 
963  out:
964 	spin_unlock_irqrestore(&dev->event_lock, flags);
965 
966 	return retval;
967 }
968 EXPORT_SYMBOL(input_set_keycode);
969 
970 bool input_match_device_id(const struct input_dev *dev,
971 			   const struct input_device_id *id)
972 {
973 	if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
974 		if (id->bustype != dev->id.bustype)
975 			return false;
976 
977 	if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
978 		if (id->vendor != dev->id.vendor)
979 			return false;
980 
981 	if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
982 		if (id->product != dev->id.product)
983 			return false;
984 
985 	if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
986 		if (id->version != dev->id.version)
987 			return false;
988 
989 	if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
990 	    !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
991 	    !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
992 	    !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
993 	    !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
994 	    !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
995 	    !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
996 	    !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
997 	    !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
998 	    !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
999 		return false;
1000 	}
1001 
1002 	return true;
1003 }
1004 EXPORT_SYMBOL(input_match_device_id);
1005 
1006 static const struct input_device_id *input_match_device(struct input_handler *handler,
1007 							struct input_dev *dev)
1008 {
1009 	const struct input_device_id *id;
1010 
1011 	for (id = handler->id_table; id->flags || id->driver_info; id++) {
1012 		if (input_match_device_id(dev, id) &&
1013 		    (!handler->match || handler->match(handler, dev))) {
1014 			return id;
1015 		}
1016 	}
1017 
1018 	return NULL;
1019 }
1020 
1021 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1022 {
1023 	const struct input_device_id *id;
1024 	int error;
1025 
1026 	id = input_match_device(handler, dev);
1027 	if (!id)
1028 		return -ENODEV;
1029 
1030 	error = handler->connect(handler, dev, id);
1031 	if (error && error != -ENODEV)
1032 		pr_err("failed to attach handler %s to device %s, error: %d\n",
1033 		       handler->name, kobject_name(&dev->dev.kobj), error);
1034 
1035 	return error;
1036 }
1037 
1038 #ifdef CONFIG_COMPAT
1039 
1040 static int input_bits_to_string(char *buf, int buf_size,
1041 				unsigned long bits, bool skip_empty)
1042 {
1043 	int len = 0;
1044 
1045 	if (in_compat_syscall()) {
1046 		u32 dword = bits >> 32;
1047 		if (dword || !skip_empty)
1048 			len += snprintf(buf, buf_size, "%x ", dword);
1049 
1050 		dword = bits & 0xffffffffUL;
1051 		if (dword || !skip_empty || len)
1052 			len += snprintf(buf + len, max(buf_size - len, 0),
1053 					"%x", dword);
1054 	} else {
1055 		if (bits || !skip_empty)
1056 			len += snprintf(buf, buf_size, "%lx", bits);
1057 	}
1058 
1059 	return len;
1060 }
1061 
1062 #else /* !CONFIG_COMPAT */
1063 
1064 static int input_bits_to_string(char *buf, int buf_size,
1065 				unsigned long bits, bool skip_empty)
1066 {
1067 	return bits || !skip_empty ?
1068 		snprintf(buf, buf_size, "%lx", bits) : 0;
1069 }
1070 
1071 #endif
1072 
1073 #ifdef CONFIG_PROC_FS
1074 
1075 static struct proc_dir_entry *proc_bus_input_dir;
1076 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1077 static int input_devices_state;
1078 
1079 static inline void input_wakeup_procfs_readers(void)
1080 {
1081 	input_devices_state++;
1082 	wake_up(&input_devices_poll_wait);
1083 }
1084 
1085 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1086 {
1087 	poll_wait(file, &input_devices_poll_wait, wait);
1088 	if (file->f_version != input_devices_state) {
1089 		file->f_version = input_devices_state;
1090 		return EPOLLIN | EPOLLRDNORM;
1091 	}
1092 
1093 	return 0;
1094 }
1095 
1096 union input_seq_state {
1097 	struct {
1098 		unsigned short pos;
1099 		bool mutex_acquired;
1100 	};
1101 	void *p;
1102 };
1103 
1104 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1105 {
1106 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1107 	int error;
1108 
1109 	/* We need to fit into seq->private pointer */
1110 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1111 
1112 	error = mutex_lock_interruptible(&input_mutex);
1113 	if (error) {
1114 		state->mutex_acquired = false;
1115 		return ERR_PTR(error);
1116 	}
1117 
1118 	state->mutex_acquired = true;
1119 
1120 	return seq_list_start(&input_dev_list, *pos);
1121 }
1122 
1123 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1124 {
1125 	return seq_list_next(v, &input_dev_list, pos);
1126 }
1127 
1128 static void input_seq_stop(struct seq_file *seq, void *v)
1129 {
1130 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1131 
1132 	if (state->mutex_acquired)
1133 		mutex_unlock(&input_mutex);
1134 }
1135 
1136 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1137 				   unsigned long *bitmap, int max)
1138 {
1139 	int i;
1140 	bool skip_empty = true;
1141 	char buf[18];
1142 
1143 	seq_printf(seq, "B: %s=", name);
1144 
1145 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1146 		if (input_bits_to_string(buf, sizeof(buf),
1147 					 bitmap[i], skip_empty)) {
1148 			skip_empty = false;
1149 			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1150 		}
1151 	}
1152 
1153 	/*
1154 	 * If no output was produced print a single 0.
1155 	 */
1156 	if (skip_empty)
1157 		seq_putc(seq, '0');
1158 
1159 	seq_putc(seq, '\n');
1160 }
1161 
1162 static int input_devices_seq_show(struct seq_file *seq, void *v)
1163 {
1164 	struct input_dev *dev = container_of(v, struct input_dev, node);
1165 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1166 	struct input_handle *handle;
1167 
1168 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1169 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1170 
1171 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1172 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1173 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1174 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1175 	seq_puts(seq, "H: Handlers=");
1176 
1177 	list_for_each_entry(handle, &dev->h_list, d_node)
1178 		seq_printf(seq, "%s ", handle->name);
1179 	seq_putc(seq, '\n');
1180 
1181 	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1182 
1183 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1184 	if (test_bit(EV_KEY, dev->evbit))
1185 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1186 	if (test_bit(EV_REL, dev->evbit))
1187 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1188 	if (test_bit(EV_ABS, dev->evbit))
1189 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1190 	if (test_bit(EV_MSC, dev->evbit))
1191 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1192 	if (test_bit(EV_LED, dev->evbit))
1193 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1194 	if (test_bit(EV_SND, dev->evbit))
1195 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1196 	if (test_bit(EV_FF, dev->evbit))
1197 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1198 	if (test_bit(EV_SW, dev->evbit))
1199 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1200 
1201 	seq_putc(seq, '\n');
1202 
1203 	kfree(path);
1204 	return 0;
1205 }
1206 
1207 static const struct seq_operations input_devices_seq_ops = {
1208 	.start	= input_devices_seq_start,
1209 	.next	= input_devices_seq_next,
1210 	.stop	= input_seq_stop,
1211 	.show	= input_devices_seq_show,
1212 };
1213 
1214 static int input_proc_devices_open(struct inode *inode, struct file *file)
1215 {
1216 	return seq_open(file, &input_devices_seq_ops);
1217 }
1218 
1219 static const struct proc_ops input_devices_proc_ops = {
1220 	.proc_open	= input_proc_devices_open,
1221 	.proc_poll	= input_proc_devices_poll,
1222 	.proc_read	= seq_read,
1223 	.proc_lseek	= seq_lseek,
1224 	.proc_release	= seq_release,
1225 };
1226 
1227 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1228 {
1229 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1230 	int error;
1231 
1232 	/* We need to fit into seq->private pointer */
1233 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1234 
1235 	error = mutex_lock_interruptible(&input_mutex);
1236 	if (error) {
1237 		state->mutex_acquired = false;
1238 		return ERR_PTR(error);
1239 	}
1240 
1241 	state->mutex_acquired = true;
1242 	state->pos = *pos;
1243 
1244 	return seq_list_start(&input_handler_list, *pos);
1245 }
1246 
1247 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1248 {
1249 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1250 
1251 	state->pos = *pos + 1;
1252 	return seq_list_next(v, &input_handler_list, pos);
1253 }
1254 
1255 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1256 {
1257 	struct input_handler *handler = container_of(v, struct input_handler, node);
1258 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1259 
1260 	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1261 	if (handler->filter)
1262 		seq_puts(seq, " (filter)");
1263 	if (handler->legacy_minors)
1264 		seq_printf(seq, " Minor=%d", handler->minor);
1265 	seq_putc(seq, '\n');
1266 
1267 	return 0;
1268 }
1269 
1270 static const struct seq_operations input_handlers_seq_ops = {
1271 	.start	= input_handlers_seq_start,
1272 	.next	= input_handlers_seq_next,
1273 	.stop	= input_seq_stop,
1274 	.show	= input_handlers_seq_show,
1275 };
1276 
1277 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1278 {
1279 	return seq_open(file, &input_handlers_seq_ops);
1280 }
1281 
1282 static const struct proc_ops input_handlers_proc_ops = {
1283 	.proc_open	= input_proc_handlers_open,
1284 	.proc_read	= seq_read,
1285 	.proc_lseek	= seq_lseek,
1286 	.proc_release	= seq_release,
1287 };
1288 
1289 static int __init input_proc_init(void)
1290 {
1291 	struct proc_dir_entry *entry;
1292 
1293 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1294 	if (!proc_bus_input_dir)
1295 		return -ENOMEM;
1296 
1297 	entry = proc_create("devices", 0, proc_bus_input_dir,
1298 			    &input_devices_proc_ops);
1299 	if (!entry)
1300 		goto fail1;
1301 
1302 	entry = proc_create("handlers", 0, proc_bus_input_dir,
1303 			    &input_handlers_proc_ops);
1304 	if (!entry)
1305 		goto fail2;
1306 
1307 	return 0;
1308 
1309  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1310  fail1: remove_proc_entry("bus/input", NULL);
1311 	return -ENOMEM;
1312 }
1313 
1314 static void input_proc_exit(void)
1315 {
1316 	remove_proc_entry("devices", proc_bus_input_dir);
1317 	remove_proc_entry("handlers", proc_bus_input_dir);
1318 	remove_proc_entry("bus/input", NULL);
1319 }
1320 
1321 #else /* !CONFIG_PROC_FS */
1322 static inline void input_wakeup_procfs_readers(void) { }
1323 static inline int input_proc_init(void) { return 0; }
1324 static inline void input_proc_exit(void) { }
1325 #endif
1326 
1327 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1328 static ssize_t input_dev_show_##name(struct device *dev,		\
1329 				     struct device_attribute *attr,	\
1330 				     char *buf)				\
1331 {									\
1332 	struct input_dev *input_dev = to_input_dev(dev);		\
1333 									\
1334 	return sysfs_emit(buf, "%s\n",					\
1335 			  input_dev->name ? input_dev->name : "");	\
1336 }									\
1337 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1338 
1339 INPUT_DEV_STRING_ATTR_SHOW(name);
1340 INPUT_DEV_STRING_ATTR_SHOW(phys);
1341 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1342 
1343 static int input_print_modalias_bits(char *buf, int size,
1344 				     char name, const unsigned long *bm,
1345 				     unsigned int min_bit, unsigned int max_bit)
1346 {
1347 	int bit = min_bit;
1348 	int len = 0;
1349 
1350 	len += snprintf(buf, max(size, 0), "%c", name);
1351 	for_each_set_bit_from(bit, bm, max_bit)
1352 		len += snprintf(buf + len, max(size - len, 0), "%X,", bit);
1353 	return len;
1354 }
1355 
1356 static int input_print_modalias_parts(char *buf, int size, int full_len,
1357 				      const struct input_dev *id)
1358 {
1359 	int len, klen, remainder, space;
1360 
1361 	len = snprintf(buf, max(size, 0),
1362 		       "input:b%04Xv%04Xp%04Xe%04X-",
1363 		       id->id.bustype, id->id.vendor,
1364 		       id->id.product, id->id.version);
1365 
1366 	len += input_print_modalias_bits(buf + len, size - len,
1367 				'e', id->evbit, 0, EV_MAX);
1368 
1369 	/*
1370 	 * Calculate the remaining space in the buffer making sure we
1371 	 * have place for the terminating 0.
1372 	 */
1373 	space = max(size - (len + 1), 0);
1374 
1375 	klen = input_print_modalias_bits(buf + len, size - len,
1376 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1377 	len += klen;
1378 
1379 	/*
1380 	 * If we have more data than we can fit in the buffer, check
1381 	 * if we can trim key data to fit in the rest. We will indicate
1382 	 * that key data is incomplete by adding "+" sign at the end, like
1383 	 * this: * "k1,2,3,45,+,".
1384 	 *
1385 	 * Note that we shortest key info (if present) is "k+," so we
1386 	 * can only try to trim if key data is longer than that.
1387 	 */
1388 	if (full_len && size < full_len + 1 && klen > 3) {
1389 		remainder = full_len - len;
1390 		/*
1391 		 * We can only trim if we have space for the remainder
1392 		 * and also for at least "k+," which is 3 more characters.
1393 		 */
1394 		if (remainder <= space - 3) {
1395 			/*
1396 			 * We are guaranteed to have 'k' in the buffer, so
1397 			 * we need at least 3 additional bytes for storing
1398 			 * "+," in addition to the remainder.
1399 			 */
1400 			for (int i = size - 1 - remainder - 3; i >= 0; i--) {
1401 				if (buf[i] == 'k' || buf[i] == ',') {
1402 					strcpy(buf + i + 1, "+,");
1403 					len = i + 3; /* Not counting '\0' */
1404 					break;
1405 				}
1406 			}
1407 		}
1408 	}
1409 
1410 	len += input_print_modalias_bits(buf + len, size - len,
1411 				'r', id->relbit, 0, REL_MAX);
1412 	len += input_print_modalias_bits(buf + len, size - len,
1413 				'a', id->absbit, 0, ABS_MAX);
1414 	len += input_print_modalias_bits(buf + len, size - len,
1415 				'm', id->mscbit, 0, MSC_MAX);
1416 	len += input_print_modalias_bits(buf + len, size - len,
1417 				'l', id->ledbit, 0, LED_MAX);
1418 	len += input_print_modalias_bits(buf + len, size - len,
1419 				's', id->sndbit, 0, SND_MAX);
1420 	len += input_print_modalias_bits(buf + len, size - len,
1421 				'f', id->ffbit, 0, FF_MAX);
1422 	len += input_print_modalias_bits(buf + len, size - len,
1423 				'w', id->swbit, 0, SW_MAX);
1424 
1425 	return len;
1426 }
1427 
1428 static int input_print_modalias(char *buf, int size, const struct input_dev *id)
1429 {
1430 	int full_len;
1431 
1432 	/*
1433 	 * Printing is done in 2 passes: first one figures out total length
1434 	 * needed for the modalias string, second one will try to trim key
1435 	 * data in case when buffer is too small for the entire modalias.
1436 	 * If the buffer is too small regardless, it will fill as much as it
1437 	 * can (without trimming key data) into the buffer and leave it to
1438 	 * the caller to figure out what to do with the result.
1439 	 */
1440 	full_len = input_print_modalias_parts(NULL, 0, 0, id);
1441 	return input_print_modalias_parts(buf, size, full_len, id);
1442 }
1443 
1444 static ssize_t input_dev_show_modalias(struct device *dev,
1445 				       struct device_attribute *attr,
1446 				       char *buf)
1447 {
1448 	struct input_dev *id = to_input_dev(dev);
1449 	ssize_t len;
1450 
1451 	len = input_print_modalias(buf, PAGE_SIZE, id);
1452 	if (len < PAGE_SIZE - 2)
1453 		len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1454 
1455 	return min_t(int, len, PAGE_SIZE);
1456 }
1457 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1458 
1459 static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
1460 			      int max, int add_cr);
1461 
1462 static ssize_t input_dev_show_properties(struct device *dev,
1463 					 struct device_attribute *attr,
1464 					 char *buf)
1465 {
1466 	struct input_dev *input_dev = to_input_dev(dev);
1467 	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1468 				     INPUT_PROP_MAX, true);
1469 	return min_t(int, len, PAGE_SIZE);
1470 }
1471 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1472 
1473 static int input_inhibit_device(struct input_dev *dev);
1474 static int input_uninhibit_device(struct input_dev *dev);
1475 
1476 static ssize_t inhibited_show(struct device *dev,
1477 			      struct device_attribute *attr,
1478 			      char *buf)
1479 {
1480 	struct input_dev *input_dev = to_input_dev(dev);
1481 
1482 	return sysfs_emit(buf, "%d\n", input_dev->inhibited);
1483 }
1484 
1485 static ssize_t inhibited_store(struct device *dev,
1486 			       struct device_attribute *attr, const char *buf,
1487 			       size_t len)
1488 {
1489 	struct input_dev *input_dev = to_input_dev(dev);
1490 	ssize_t rv;
1491 	bool inhibited;
1492 
1493 	if (kstrtobool(buf, &inhibited))
1494 		return -EINVAL;
1495 
1496 	if (inhibited)
1497 		rv = input_inhibit_device(input_dev);
1498 	else
1499 		rv = input_uninhibit_device(input_dev);
1500 
1501 	if (rv != 0)
1502 		return rv;
1503 
1504 	return len;
1505 }
1506 
1507 static DEVICE_ATTR_RW(inhibited);
1508 
1509 static struct attribute *input_dev_attrs[] = {
1510 	&dev_attr_name.attr,
1511 	&dev_attr_phys.attr,
1512 	&dev_attr_uniq.attr,
1513 	&dev_attr_modalias.attr,
1514 	&dev_attr_properties.attr,
1515 	&dev_attr_inhibited.attr,
1516 	NULL
1517 };
1518 
1519 static const struct attribute_group input_dev_attr_group = {
1520 	.attrs	= input_dev_attrs,
1521 };
1522 
1523 #define INPUT_DEV_ID_ATTR(name)						\
1524 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1525 					struct device_attribute *attr,	\
1526 					char *buf)			\
1527 {									\
1528 	struct input_dev *input_dev = to_input_dev(dev);		\
1529 	return sysfs_emit(buf, "%04x\n", input_dev->id.name);		\
1530 }									\
1531 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1532 
1533 INPUT_DEV_ID_ATTR(bustype);
1534 INPUT_DEV_ID_ATTR(vendor);
1535 INPUT_DEV_ID_ATTR(product);
1536 INPUT_DEV_ID_ATTR(version);
1537 
1538 static struct attribute *input_dev_id_attrs[] = {
1539 	&dev_attr_bustype.attr,
1540 	&dev_attr_vendor.attr,
1541 	&dev_attr_product.attr,
1542 	&dev_attr_version.attr,
1543 	NULL
1544 };
1545 
1546 static const struct attribute_group input_dev_id_attr_group = {
1547 	.name	= "id",
1548 	.attrs	= input_dev_id_attrs,
1549 };
1550 
1551 static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
1552 			      int max, int add_cr)
1553 {
1554 	int i;
1555 	int len = 0;
1556 	bool skip_empty = true;
1557 
1558 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1559 		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1560 					    bitmap[i], skip_empty);
1561 		if (len) {
1562 			skip_empty = false;
1563 			if (i > 0)
1564 				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1565 		}
1566 	}
1567 
1568 	/*
1569 	 * If no output was produced print a single 0.
1570 	 */
1571 	if (len == 0)
1572 		len = snprintf(buf, buf_size, "%d", 0);
1573 
1574 	if (add_cr)
1575 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1576 
1577 	return len;
1578 }
1579 
1580 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1581 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1582 				       struct device_attribute *attr,	\
1583 				       char *buf)			\
1584 {									\
1585 	struct input_dev *input_dev = to_input_dev(dev);		\
1586 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1587 				     input_dev->bm##bit, ev##_MAX,	\
1588 				     true);				\
1589 	return min_t(int, len, PAGE_SIZE);				\
1590 }									\
1591 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1592 
1593 INPUT_DEV_CAP_ATTR(EV, ev);
1594 INPUT_DEV_CAP_ATTR(KEY, key);
1595 INPUT_DEV_CAP_ATTR(REL, rel);
1596 INPUT_DEV_CAP_ATTR(ABS, abs);
1597 INPUT_DEV_CAP_ATTR(MSC, msc);
1598 INPUT_DEV_CAP_ATTR(LED, led);
1599 INPUT_DEV_CAP_ATTR(SND, snd);
1600 INPUT_DEV_CAP_ATTR(FF, ff);
1601 INPUT_DEV_CAP_ATTR(SW, sw);
1602 
1603 static struct attribute *input_dev_caps_attrs[] = {
1604 	&dev_attr_ev.attr,
1605 	&dev_attr_key.attr,
1606 	&dev_attr_rel.attr,
1607 	&dev_attr_abs.attr,
1608 	&dev_attr_msc.attr,
1609 	&dev_attr_led.attr,
1610 	&dev_attr_snd.attr,
1611 	&dev_attr_ff.attr,
1612 	&dev_attr_sw.attr,
1613 	NULL
1614 };
1615 
1616 static const struct attribute_group input_dev_caps_attr_group = {
1617 	.name	= "capabilities",
1618 	.attrs	= input_dev_caps_attrs,
1619 };
1620 
1621 static const struct attribute_group *input_dev_attr_groups[] = {
1622 	&input_dev_attr_group,
1623 	&input_dev_id_attr_group,
1624 	&input_dev_caps_attr_group,
1625 	&input_poller_attribute_group,
1626 	NULL
1627 };
1628 
1629 static void input_dev_release(struct device *device)
1630 {
1631 	struct input_dev *dev = to_input_dev(device);
1632 
1633 	input_ff_destroy(dev);
1634 	input_mt_destroy_slots(dev);
1635 	kfree(dev->poller);
1636 	kfree(dev->absinfo);
1637 	kfree(dev->vals);
1638 	kfree(dev);
1639 
1640 	module_put(THIS_MODULE);
1641 }
1642 
1643 /*
1644  * Input uevent interface - loading event handlers based on
1645  * device bitfields.
1646  */
1647 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1648 				   const char *name, const unsigned long *bitmap, int max)
1649 {
1650 	int len;
1651 
1652 	if (add_uevent_var(env, "%s", name))
1653 		return -ENOMEM;
1654 
1655 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1656 				 sizeof(env->buf) - env->buflen,
1657 				 bitmap, max, false);
1658 	if (len >= (sizeof(env->buf) - env->buflen))
1659 		return -ENOMEM;
1660 
1661 	env->buflen += len;
1662 	return 0;
1663 }
1664 
1665 /*
1666  * This is a pretty gross hack. When building uevent data the driver core
1667  * may try adding more environment variables to kobj_uevent_env without
1668  * telling us, so we have no idea how much of the buffer we can use to
1669  * avoid overflows/-ENOMEM elsewhere. To work around this let's artificially
1670  * reduce amount of memory we will use for the modalias environment variable.
1671  *
1672  * The potential additions are:
1673  *
1674  * SEQNUM=18446744073709551615 - (%llu - 28 bytes)
1675  * HOME=/ (6 bytes)
1676  * PATH=/sbin:/bin:/usr/sbin:/usr/bin (34 bytes)
1677  *
1678  * 68 bytes total. Allow extra buffer - 96 bytes
1679  */
1680 #define UEVENT_ENV_EXTRA_LEN	96
1681 
1682 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1683 					 const struct input_dev *dev)
1684 {
1685 	int len;
1686 
1687 	if (add_uevent_var(env, "MODALIAS="))
1688 		return -ENOMEM;
1689 
1690 	len = input_print_modalias(&env->buf[env->buflen - 1],
1691 				   (int)sizeof(env->buf) - env->buflen -
1692 					UEVENT_ENV_EXTRA_LEN,
1693 				   dev);
1694 	if (len >= ((int)sizeof(env->buf) - env->buflen -
1695 					UEVENT_ENV_EXTRA_LEN))
1696 		return -ENOMEM;
1697 
1698 	env->buflen += len;
1699 	return 0;
1700 }
1701 
1702 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1703 	do {								\
1704 		int err = add_uevent_var(env, fmt, val);		\
1705 		if (err)						\
1706 			return err;					\
1707 	} while (0)
1708 
1709 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1710 	do {								\
1711 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1712 		if (err)						\
1713 			return err;					\
1714 	} while (0)
1715 
1716 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1717 	do {								\
1718 		int err = input_add_uevent_modalias_var(env, dev);	\
1719 		if (err)						\
1720 			return err;					\
1721 	} while (0)
1722 
1723 static int input_dev_uevent(const struct device *device, struct kobj_uevent_env *env)
1724 {
1725 	const struct input_dev *dev = to_input_dev(device);
1726 
1727 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1728 				dev->id.bustype, dev->id.vendor,
1729 				dev->id.product, dev->id.version);
1730 	if (dev->name)
1731 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1732 	if (dev->phys)
1733 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1734 	if (dev->uniq)
1735 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1736 
1737 	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1738 
1739 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1740 	if (test_bit(EV_KEY, dev->evbit))
1741 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1742 	if (test_bit(EV_REL, dev->evbit))
1743 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1744 	if (test_bit(EV_ABS, dev->evbit))
1745 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1746 	if (test_bit(EV_MSC, dev->evbit))
1747 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1748 	if (test_bit(EV_LED, dev->evbit))
1749 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1750 	if (test_bit(EV_SND, dev->evbit))
1751 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1752 	if (test_bit(EV_FF, dev->evbit))
1753 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1754 	if (test_bit(EV_SW, dev->evbit))
1755 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1756 
1757 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1758 
1759 	return 0;
1760 }
1761 
1762 #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1763 	do {								\
1764 		int i;							\
1765 		bool active;						\
1766 									\
1767 		if (!test_bit(EV_##type, dev->evbit))			\
1768 			break;						\
1769 									\
1770 		for_each_set_bit(i, dev->bits##bit, type##_CNT) {	\
1771 			active = test_bit(i, dev->bits);		\
1772 			if (!active && !on)				\
1773 				continue;				\
1774 									\
1775 			dev->event(dev, EV_##type, i, on ? active : 0);	\
1776 		}							\
1777 	} while (0)
1778 
1779 static void input_dev_toggle(struct input_dev *dev, bool activate)
1780 {
1781 	if (!dev->event)
1782 		return;
1783 
1784 	INPUT_DO_TOGGLE(dev, LED, led, activate);
1785 	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1786 
1787 	if (activate && test_bit(EV_REP, dev->evbit)) {
1788 		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1789 		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1790 	}
1791 }
1792 
1793 /**
1794  * input_reset_device() - reset/restore the state of input device
1795  * @dev: input device whose state needs to be reset
1796  *
1797  * This function tries to reset the state of an opened input device and
1798  * bring internal state and state if the hardware in sync with each other.
1799  * We mark all keys as released, restore LED state, repeat rate, etc.
1800  */
1801 void input_reset_device(struct input_dev *dev)
1802 {
1803 	unsigned long flags;
1804 
1805 	mutex_lock(&dev->mutex);
1806 	spin_lock_irqsave(&dev->event_lock, flags);
1807 
1808 	input_dev_toggle(dev, true);
1809 	if (input_dev_release_keys(dev))
1810 		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1811 
1812 	spin_unlock_irqrestore(&dev->event_lock, flags);
1813 	mutex_unlock(&dev->mutex);
1814 }
1815 EXPORT_SYMBOL(input_reset_device);
1816 
1817 static int input_inhibit_device(struct input_dev *dev)
1818 {
1819 	mutex_lock(&dev->mutex);
1820 
1821 	if (dev->inhibited)
1822 		goto out;
1823 
1824 	if (dev->users) {
1825 		if (dev->close)
1826 			dev->close(dev);
1827 		if (dev->poller)
1828 			input_dev_poller_stop(dev->poller);
1829 	}
1830 
1831 	spin_lock_irq(&dev->event_lock);
1832 	input_mt_release_slots(dev);
1833 	input_dev_release_keys(dev);
1834 	input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1835 	input_dev_toggle(dev, false);
1836 	spin_unlock_irq(&dev->event_lock);
1837 
1838 	dev->inhibited = true;
1839 
1840 out:
1841 	mutex_unlock(&dev->mutex);
1842 	return 0;
1843 }
1844 
1845 static int input_uninhibit_device(struct input_dev *dev)
1846 {
1847 	int ret = 0;
1848 
1849 	mutex_lock(&dev->mutex);
1850 
1851 	if (!dev->inhibited)
1852 		goto out;
1853 
1854 	if (dev->users) {
1855 		if (dev->open) {
1856 			ret = dev->open(dev);
1857 			if (ret)
1858 				goto out;
1859 		}
1860 		if (dev->poller)
1861 			input_dev_poller_start(dev->poller);
1862 	}
1863 
1864 	dev->inhibited = false;
1865 	spin_lock_irq(&dev->event_lock);
1866 	input_dev_toggle(dev, true);
1867 	spin_unlock_irq(&dev->event_lock);
1868 
1869 out:
1870 	mutex_unlock(&dev->mutex);
1871 	return ret;
1872 }
1873 
1874 static int input_dev_suspend(struct device *dev)
1875 {
1876 	struct input_dev *input_dev = to_input_dev(dev);
1877 
1878 	spin_lock_irq(&input_dev->event_lock);
1879 
1880 	/*
1881 	 * Keys that are pressed now are unlikely to be
1882 	 * still pressed when we resume.
1883 	 */
1884 	if (input_dev_release_keys(input_dev))
1885 		input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1886 
1887 	/* Turn off LEDs and sounds, if any are active. */
1888 	input_dev_toggle(input_dev, false);
1889 
1890 	spin_unlock_irq(&input_dev->event_lock);
1891 
1892 	return 0;
1893 }
1894 
1895 static int input_dev_resume(struct device *dev)
1896 {
1897 	struct input_dev *input_dev = to_input_dev(dev);
1898 
1899 	spin_lock_irq(&input_dev->event_lock);
1900 
1901 	/* Restore state of LEDs and sounds, if any were active. */
1902 	input_dev_toggle(input_dev, true);
1903 
1904 	spin_unlock_irq(&input_dev->event_lock);
1905 
1906 	return 0;
1907 }
1908 
1909 static int input_dev_freeze(struct device *dev)
1910 {
1911 	struct input_dev *input_dev = to_input_dev(dev);
1912 
1913 	spin_lock_irq(&input_dev->event_lock);
1914 
1915 	/*
1916 	 * Keys that are pressed now are unlikely to be
1917 	 * still pressed when we resume.
1918 	 */
1919 	if (input_dev_release_keys(input_dev))
1920 		input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1921 
1922 	spin_unlock_irq(&input_dev->event_lock);
1923 
1924 	return 0;
1925 }
1926 
1927 static int input_dev_poweroff(struct device *dev)
1928 {
1929 	struct input_dev *input_dev = to_input_dev(dev);
1930 
1931 	spin_lock_irq(&input_dev->event_lock);
1932 
1933 	/* Turn off LEDs and sounds, if any are active. */
1934 	input_dev_toggle(input_dev, false);
1935 
1936 	spin_unlock_irq(&input_dev->event_lock);
1937 
1938 	return 0;
1939 }
1940 
1941 static const struct dev_pm_ops input_dev_pm_ops = {
1942 	.suspend	= input_dev_suspend,
1943 	.resume		= input_dev_resume,
1944 	.freeze		= input_dev_freeze,
1945 	.poweroff	= input_dev_poweroff,
1946 	.restore	= input_dev_resume,
1947 };
1948 
1949 static const struct device_type input_dev_type = {
1950 	.groups		= input_dev_attr_groups,
1951 	.release	= input_dev_release,
1952 	.uevent		= input_dev_uevent,
1953 	.pm		= pm_sleep_ptr(&input_dev_pm_ops),
1954 };
1955 
1956 static char *input_devnode(const struct device *dev, umode_t *mode)
1957 {
1958 	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1959 }
1960 
1961 const struct class input_class = {
1962 	.name		= "input",
1963 	.devnode	= input_devnode,
1964 };
1965 EXPORT_SYMBOL_GPL(input_class);
1966 
1967 /**
1968  * input_allocate_device - allocate memory for new input device
1969  *
1970  * Returns prepared struct input_dev or %NULL.
1971  *
1972  * NOTE: Use input_free_device() to free devices that have not been
1973  * registered; input_unregister_device() should be used for already
1974  * registered devices.
1975  */
1976 struct input_dev *input_allocate_device(void)
1977 {
1978 	static atomic_t input_no = ATOMIC_INIT(-1);
1979 	struct input_dev *dev;
1980 
1981 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1982 	if (!dev)
1983 		return NULL;
1984 
1985 	/*
1986 	 * Start with space for SYN_REPORT + 7 EV_KEY/EV_MSC events + 2 spare,
1987 	 * see input_estimate_events_per_packet(). We will tune the number
1988 	 * when we register the device.
1989 	 */
1990 	dev->max_vals = 10;
1991 	dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
1992 	if (!dev->vals) {
1993 		kfree(dev);
1994 		return NULL;
1995 	}
1996 
1997 	mutex_init(&dev->mutex);
1998 	spin_lock_init(&dev->event_lock);
1999 	timer_setup(&dev->timer, NULL, 0);
2000 	INIT_LIST_HEAD(&dev->h_list);
2001 	INIT_LIST_HEAD(&dev->node);
2002 
2003 	dev->dev.type = &input_dev_type;
2004 	dev->dev.class = &input_class;
2005 	device_initialize(&dev->dev);
2006 	/*
2007 	 * From this point on we can no longer simply "kfree(dev)", we need
2008 	 * to use input_free_device() so that device core properly frees its
2009 	 * resources associated with the input device.
2010 	 */
2011 
2012 	dev_set_name(&dev->dev, "input%lu",
2013 		     (unsigned long)atomic_inc_return(&input_no));
2014 
2015 	__module_get(THIS_MODULE);
2016 
2017 	return dev;
2018 }
2019 EXPORT_SYMBOL(input_allocate_device);
2020 
2021 struct input_devres {
2022 	struct input_dev *input;
2023 };
2024 
2025 static int devm_input_device_match(struct device *dev, void *res, void *data)
2026 {
2027 	struct input_devres *devres = res;
2028 
2029 	return devres->input == data;
2030 }
2031 
2032 static void devm_input_device_release(struct device *dev, void *res)
2033 {
2034 	struct input_devres *devres = res;
2035 	struct input_dev *input = devres->input;
2036 
2037 	dev_dbg(dev, "%s: dropping reference to %s\n",
2038 		__func__, dev_name(&input->dev));
2039 	input_put_device(input);
2040 }
2041 
2042 /**
2043  * devm_input_allocate_device - allocate managed input device
2044  * @dev: device owning the input device being created
2045  *
2046  * Returns prepared struct input_dev or %NULL.
2047  *
2048  * Managed input devices do not need to be explicitly unregistered or
2049  * freed as it will be done automatically when owner device unbinds from
2050  * its driver (or binding fails). Once managed input device is allocated,
2051  * it is ready to be set up and registered in the same fashion as regular
2052  * input device. There are no special devm_input_device_[un]register()
2053  * variants, regular ones work with both managed and unmanaged devices,
2054  * should you need them. In most cases however, managed input device need
2055  * not be explicitly unregistered or freed.
2056  *
2057  * NOTE: the owner device is set up as parent of input device and users
2058  * should not override it.
2059  */
2060 struct input_dev *devm_input_allocate_device(struct device *dev)
2061 {
2062 	struct input_dev *input;
2063 	struct input_devres *devres;
2064 
2065 	devres = devres_alloc(devm_input_device_release,
2066 			      sizeof(*devres), GFP_KERNEL);
2067 	if (!devres)
2068 		return NULL;
2069 
2070 	input = input_allocate_device();
2071 	if (!input) {
2072 		devres_free(devres);
2073 		return NULL;
2074 	}
2075 
2076 	input->dev.parent = dev;
2077 	input->devres_managed = true;
2078 
2079 	devres->input = input;
2080 	devres_add(dev, devres);
2081 
2082 	return input;
2083 }
2084 EXPORT_SYMBOL(devm_input_allocate_device);
2085 
2086 /**
2087  * input_free_device - free memory occupied by input_dev structure
2088  * @dev: input device to free
2089  *
2090  * This function should only be used if input_register_device()
2091  * was not called yet or if it failed. Once device was registered
2092  * use input_unregister_device() and memory will be freed once last
2093  * reference to the device is dropped.
2094  *
2095  * Device should be allocated by input_allocate_device().
2096  *
2097  * NOTE: If there are references to the input device then memory
2098  * will not be freed until last reference is dropped.
2099  */
2100 void input_free_device(struct input_dev *dev)
2101 {
2102 	if (dev) {
2103 		if (dev->devres_managed)
2104 			WARN_ON(devres_destroy(dev->dev.parent,
2105 						devm_input_device_release,
2106 						devm_input_device_match,
2107 						dev));
2108 		input_put_device(dev);
2109 	}
2110 }
2111 EXPORT_SYMBOL(input_free_device);
2112 
2113 /**
2114  * input_set_timestamp - set timestamp for input events
2115  * @dev: input device to set timestamp for
2116  * @timestamp: the time at which the event has occurred
2117  *   in CLOCK_MONOTONIC
2118  *
2119  * This function is intended to provide to the input system a more
2120  * accurate time of when an event actually occurred. The driver should
2121  * call this function as soon as a timestamp is acquired ensuring
2122  * clock conversions in input_set_timestamp are done correctly.
2123  *
2124  * The system entering suspend state between timestamp acquisition and
2125  * calling input_set_timestamp can result in inaccurate conversions.
2126  */
2127 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
2128 {
2129 	dev->timestamp[INPUT_CLK_MONO] = timestamp;
2130 	dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
2131 	dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
2132 							   TK_OFFS_BOOT);
2133 }
2134 EXPORT_SYMBOL(input_set_timestamp);
2135 
2136 /**
2137  * input_get_timestamp - get timestamp for input events
2138  * @dev: input device to get timestamp from
2139  *
2140  * A valid timestamp is a timestamp of non-zero value.
2141  */
2142 ktime_t *input_get_timestamp(struct input_dev *dev)
2143 {
2144 	const ktime_t invalid_timestamp = ktime_set(0, 0);
2145 
2146 	if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
2147 		input_set_timestamp(dev, ktime_get());
2148 
2149 	return dev->timestamp;
2150 }
2151 EXPORT_SYMBOL(input_get_timestamp);
2152 
2153 /**
2154  * input_set_capability - mark device as capable of a certain event
2155  * @dev: device that is capable of emitting or accepting event
2156  * @type: type of the event (EV_KEY, EV_REL, etc...)
2157  * @code: event code
2158  *
2159  * In addition to setting up corresponding bit in appropriate capability
2160  * bitmap the function also adjusts dev->evbit.
2161  */
2162 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
2163 {
2164 	if (type < EV_CNT && input_max_code[type] &&
2165 	    code > input_max_code[type]) {
2166 		pr_err("%s: invalid code %u for type %u\n", __func__, code,
2167 		       type);
2168 		dump_stack();
2169 		return;
2170 	}
2171 
2172 	switch (type) {
2173 	case EV_KEY:
2174 		__set_bit(code, dev->keybit);
2175 		break;
2176 
2177 	case EV_REL:
2178 		__set_bit(code, dev->relbit);
2179 		break;
2180 
2181 	case EV_ABS:
2182 		input_alloc_absinfo(dev);
2183 		__set_bit(code, dev->absbit);
2184 		break;
2185 
2186 	case EV_MSC:
2187 		__set_bit(code, dev->mscbit);
2188 		break;
2189 
2190 	case EV_SW:
2191 		__set_bit(code, dev->swbit);
2192 		break;
2193 
2194 	case EV_LED:
2195 		__set_bit(code, dev->ledbit);
2196 		break;
2197 
2198 	case EV_SND:
2199 		__set_bit(code, dev->sndbit);
2200 		break;
2201 
2202 	case EV_FF:
2203 		__set_bit(code, dev->ffbit);
2204 		break;
2205 
2206 	case EV_PWR:
2207 		/* do nothing */
2208 		break;
2209 
2210 	default:
2211 		pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2212 		dump_stack();
2213 		return;
2214 	}
2215 
2216 	__set_bit(type, dev->evbit);
2217 }
2218 EXPORT_SYMBOL(input_set_capability);
2219 
2220 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2221 {
2222 	int mt_slots;
2223 	int i;
2224 	unsigned int events;
2225 
2226 	if (dev->mt) {
2227 		mt_slots = dev->mt->num_slots;
2228 	} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2229 		mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2230 			   dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
2231 		mt_slots = clamp(mt_slots, 2, 32);
2232 	} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2233 		mt_slots = 2;
2234 	} else {
2235 		mt_slots = 0;
2236 	}
2237 
2238 	events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2239 
2240 	if (test_bit(EV_ABS, dev->evbit))
2241 		for_each_set_bit(i, dev->absbit, ABS_CNT)
2242 			events += input_is_mt_axis(i) ? mt_slots : 1;
2243 
2244 	if (test_bit(EV_REL, dev->evbit))
2245 		events += bitmap_weight(dev->relbit, REL_CNT);
2246 
2247 	/* Make room for KEY and MSC events */
2248 	events += 7;
2249 
2250 	return events;
2251 }
2252 
2253 #define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
2254 	do {								\
2255 		if (!test_bit(EV_##type, dev->evbit))			\
2256 			memset(dev->bits##bit, 0,			\
2257 				sizeof(dev->bits##bit));		\
2258 	} while (0)
2259 
2260 static void input_cleanse_bitmasks(struct input_dev *dev)
2261 {
2262 	INPUT_CLEANSE_BITMASK(dev, KEY, key);
2263 	INPUT_CLEANSE_BITMASK(dev, REL, rel);
2264 	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2265 	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2266 	INPUT_CLEANSE_BITMASK(dev, LED, led);
2267 	INPUT_CLEANSE_BITMASK(dev, SND, snd);
2268 	INPUT_CLEANSE_BITMASK(dev, FF, ff);
2269 	INPUT_CLEANSE_BITMASK(dev, SW, sw);
2270 }
2271 
2272 static void __input_unregister_device(struct input_dev *dev)
2273 {
2274 	struct input_handle *handle, *next;
2275 
2276 	input_disconnect_device(dev);
2277 
2278 	mutex_lock(&input_mutex);
2279 
2280 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2281 		handle->handler->disconnect(handle);
2282 	WARN_ON(!list_empty(&dev->h_list));
2283 
2284 	del_timer_sync(&dev->timer);
2285 	list_del_init(&dev->node);
2286 
2287 	input_wakeup_procfs_readers();
2288 
2289 	mutex_unlock(&input_mutex);
2290 
2291 	device_del(&dev->dev);
2292 }
2293 
2294 static void devm_input_device_unregister(struct device *dev, void *res)
2295 {
2296 	struct input_devres *devres = res;
2297 	struct input_dev *input = devres->input;
2298 
2299 	dev_dbg(dev, "%s: unregistering device %s\n",
2300 		__func__, dev_name(&input->dev));
2301 	__input_unregister_device(input);
2302 }
2303 
2304 /*
2305  * Generate software autorepeat event. Note that we take
2306  * dev->event_lock here to avoid racing with input_event
2307  * which may cause keys get "stuck".
2308  */
2309 static void input_repeat_key(struct timer_list *t)
2310 {
2311 	struct input_dev *dev = from_timer(dev, t, timer);
2312 	unsigned long flags;
2313 
2314 	spin_lock_irqsave(&dev->event_lock, flags);
2315 
2316 	if (!dev->inhibited &&
2317 	    test_bit(dev->repeat_key, dev->key) &&
2318 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
2319 
2320 		input_set_timestamp(dev, ktime_get());
2321 		input_handle_event(dev, EV_KEY, dev->repeat_key, 2);
2322 		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
2323 
2324 		if (dev->rep[REP_PERIOD])
2325 			mod_timer(&dev->timer, jiffies +
2326 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
2327 	}
2328 
2329 	spin_unlock_irqrestore(&dev->event_lock, flags);
2330 }
2331 
2332 /**
2333  * input_enable_softrepeat - enable software autorepeat
2334  * @dev: input device
2335  * @delay: repeat delay
2336  * @period: repeat period
2337  *
2338  * Enable software autorepeat on the input device.
2339  */
2340 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2341 {
2342 	dev->timer.function = input_repeat_key;
2343 	dev->rep[REP_DELAY] = delay;
2344 	dev->rep[REP_PERIOD] = period;
2345 }
2346 EXPORT_SYMBOL(input_enable_softrepeat);
2347 
2348 bool input_device_enabled(struct input_dev *dev)
2349 {
2350 	lockdep_assert_held(&dev->mutex);
2351 
2352 	return !dev->inhibited && dev->users > 0;
2353 }
2354 EXPORT_SYMBOL_GPL(input_device_enabled);
2355 
2356 static int input_device_tune_vals(struct input_dev *dev)
2357 {
2358 	struct input_value *vals;
2359 	unsigned int packet_size;
2360 	unsigned int max_vals;
2361 
2362 	packet_size = input_estimate_events_per_packet(dev);
2363 	if (dev->hint_events_per_packet < packet_size)
2364 		dev->hint_events_per_packet = packet_size;
2365 
2366 	max_vals = dev->hint_events_per_packet + 2;
2367 	if (dev->max_vals >= max_vals)
2368 		return 0;
2369 
2370 	vals = kcalloc(max_vals, sizeof(*vals), GFP_KERNEL);
2371 	if (!vals)
2372 		return -ENOMEM;
2373 
2374 	spin_lock_irq(&dev->event_lock);
2375 	dev->max_vals = max_vals;
2376 	swap(dev->vals, vals);
2377 	spin_unlock_irq(&dev->event_lock);
2378 
2379 	/* Because of swap() above, this frees the old vals memory */
2380 	kfree(vals);
2381 
2382 	return 0;
2383 }
2384 
2385 /**
2386  * input_register_device - register device with input core
2387  * @dev: device to be registered
2388  *
2389  * This function registers device with input core. The device must be
2390  * allocated with input_allocate_device() and all it's capabilities
2391  * set up before registering.
2392  * If function fails the device must be freed with input_free_device().
2393  * Once device has been successfully registered it can be unregistered
2394  * with input_unregister_device(); input_free_device() should not be
2395  * called in this case.
2396  *
2397  * Note that this function is also used to register managed input devices
2398  * (ones allocated with devm_input_allocate_device()). Such managed input
2399  * devices need not be explicitly unregistered or freed, their tear down
2400  * is controlled by the devres infrastructure. It is also worth noting
2401  * that tear down of managed input devices is internally a 2-step process:
2402  * registered managed input device is first unregistered, but stays in
2403  * memory and can still handle input_event() calls (although events will
2404  * not be delivered anywhere). The freeing of managed input device will
2405  * happen later, when devres stack is unwound to the point where device
2406  * allocation was made.
2407  */
2408 int input_register_device(struct input_dev *dev)
2409 {
2410 	struct input_devres *devres = NULL;
2411 	struct input_handler *handler;
2412 	const char *path;
2413 	int error;
2414 
2415 	if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2416 		dev_err(&dev->dev,
2417 			"Absolute device without dev->absinfo, refusing to register\n");
2418 		return -EINVAL;
2419 	}
2420 
2421 	if (dev->devres_managed) {
2422 		devres = devres_alloc(devm_input_device_unregister,
2423 				      sizeof(*devres), GFP_KERNEL);
2424 		if (!devres)
2425 			return -ENOMEM;
2426 
2427 		devres->input = dev;
2428 	}
2429 
2430 	/* Every input device generates EV_SYN/SYN_REPORT events. */
2431 	__set_bit(EV_SYN, dev->evbit);
2432 
2433 	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
2434 	__clear_bit(KEY_RESERVED, dev->keybit);
2435 
2436 	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2437 	input_cleanse_bitmasks(dev);
2438 
2439 	error = input_device_tune_vals(dev);
2440 	if (error)
2441 		goto err_devres_free;
2442 
2443 	/*
2444 	 * If delay and period are pre-set by the driver, then autorepeating
2445 	 * is handled by the driver itself and we don't do it in input.c.
2446 	 */
2447 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2448 		input_enable_softrepeat(dev, 250, 33);
2449 
2450 	if (!dev->getkeycode)
2451 		dev->getkeycode = input_default_getkeycode;
2452 
2453 	if (!dev->setkeycode)
2454 		dev->setkeycode = input_default_setkeycode;
2455 
2456 	if (dev->poller)
2457 		input_dev_poller_finalize(dev->poller);
2458 
2459 	error = device_add(&dev->dev);
2460 	if (error)
2461 		goto err_devres_free;
2462 
2463 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2464 	pr_info("%s as %s\n",
2465 		dev->name ? dev->name : "Unspecified device",
2466 		path ? path : "N/A");
2467 	kfree(path);
2468 
2469 	error = mutex_lock_interruptible(&input_mutex);
2470 	if (error)
2471 		goto err_device_del;
2472 
2473 	list_add_tail(&dev->node, &input_dev_list);
2474 
2475 	list_for_each_entry(handler, &input_handler_list, node)
2476 		input_attach_handler(dev, handler);
2477 
2478 	input_wakeup_procfs_readers();
2479 
2480 	mutex_unlock(&input_mutex);
2481 
2482 	if (dev->devres_managed) {
2483 		dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2484 			__func__, dev_name(&dev->dev));
2485 		devres_add(dev->dev.parent, devres);
2486 	}
2487 	return 0;
2488 
2489 err_device_del:
2490 	device_del(&dev->dev);
2491 err_devres_free:
2492 	devres_free(devres);
2493 	return error;
2494 }
2495 EXPORT_SYMBOL(input_register_device);
2496 
2497 /**
2498  * input_unregister_device - unregister previously registered device
2499  * @dev: device to be unregistered
2500  *
2501  * This function unregisters an input device. Once device is unregistered
2502  * the caller should not try to access it as it may get freed at any moment.
2503  */
2504 void input_unregister_device(struct input_dev *dev)
2505 {
2506 	if (dev->devres_managed) {
2507 		WARN_ON(devres_destroy(dev->dev.parent,
2508 					devm_input_device_unregister,
2509 					devm_input_device_match,
2510 					dev));
2511 		__input_unregister_device(dev);
2512 		/*
2513 		 * We do not do input_put_device() here because it will be done
2514 		 * when 2nd devres fires up.
2515 		 */
2516 	} else {
2517 		__input_unregister_device(dev);
2518 		input_put_device(dev);
2519 	}
2520 }
2521 EXPORT_SYMBOL(input_unregister_device);
2522 
2523 static int input_handler_check_methods(const struct input_handler *handler)
2524 {
2525 	int count = 0;
2526 
2527 	if (handler->filter)
2528 		count++;
2529 	if (handler->events)
2530 		count++;
2531 	if (handler->event)
2532 		count++;
2533 
2534 	if (count > 1) {
2535 		pr_err("%s: only one event processing method can be defined (%s)\n",
2536 		       __func__, handler->name);
2537 		return -EINVAL;
2538 	}
2539 
2540 	return 0;
2541 }
2542 
2543 /*
2544  * An implementation of input_handler's events() method that simply
2545  * invokes handler->event() method for each event one by one.
2546  */
2547 static unsigned int input_handler_events_default(struct input_handle *handle,
2548 						 struct input_value *vals,
2549 						 unsigned int count)
2550 {
2551 	struct input_handler *handler = handle->handler;
2552 	struct input_value *v;
2553 
2554 	for (v = vals; v != vals + count; v++)
2555 		handler->event(handle, v->type, v->code, v->value);
2556 
2557 	return count;
2558 }
2559 
2560 /*
2561  * An implementation of input_handler's events() method that invokes
2562  * handler->filter() method for each event one by one and removes events
2563  * that were filtered out from the "vals" array.
2564  */
2565 static unsigned int input_handler_events_filter(struct input_handle *handle,
2566 						struct input_value *vals,
2567 						unsigned int count)
2568 {
2569 	struct input_handler *handler = handle->handler;
2570 	struct input_value *end = vals;
2571 	struct input_value *v;
2572 
2573 	for (v = vals; v != vals + count; v++) {
2574 		if (handler->filter(handle, v->type, v->code, v->value))
2575 			continue;
2576 		if (end != v)
2577 			*end = *v;
2578 		end++;
2579 	}
2580 
2581 	return end - vals;
2582 }
2583 
2584 /*
2585  * An implementation of input_handler's events() method that does nothing.
2586  */
2587 static unsigned int input_handler_events_null(struct input_handle *handle,
2588 					      struct input_value *vals,
2589 					      unsigned int count)
2590 {
2591 	return count;
2592 }
2593 
2594 /**
2595  * input_register_handler - register a new input handler
2596  * @handler: handler to be registered
2597  *
2598  * This function registers a new input handler (interface) for input
2599  * devices in the system and attaches it to all input devices that
2600  * are compatible with the handler.
2601  */
2602 int input_register_handler(struct input_handler *handler)
2603 {
2604 	struct input_dev *dev;
2605 	int error;
2606 
2607 	error = input_handler_check_methods(handler);
2608 	if (error)
2609 		return error;
2610 
2611 	INIT_LIST_HEAD(&handler->h_list);
2612 
2613 	if (handler->filter)
2614 		handler->events = input_handler_events_filter;
2615 	else if (handler->event)
2616 		handler->events = input_handler_events_default;
2617 	else if (!handler->events)
2618 		handler->events = input_handler_events_null;
2619 
2620 	error = mutex_lock_interruptible(&input_mutex);
2621 	if (error)
2622 		return error;
2623 
2624 	list_add_tail(&handler->node, &input_handler_list);
2625 
2626 	list_for_each_entry(dev, &input_dev_list, node)
2627 		input_attach_handler(dev, handler);
2628 
2629 	input_wakeup_procfs_readers();
2630 
2631 	mutex_unlock(&input_mutex);
2632 	return 0;
2633 }
2634 EXPORT_SYMBOL(input_register_handler);
2635 
2636 /**
2637  * input_unregister_handler - unregisters an input handler
2638  * @handler: handler to be unregistered
2639  *
2640  * This function disconnects a handler from its input devices and
2641  * removes it from lists of known handlers.
2642  */
2643 void input_unregister_handler(struct input_handler *handler)
2644 {
2645 	struct input_handle *handle, *next;
2646 
2647 	mutex_lock(&input_mutex);
2648 
2649 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2650 		handler->disconnect(handle);
2651 	WARN_ON(!list_empty(&handler->h_list));
2652 
2653 	list_del_init(&handler->node);
2654 
2655 	input_wakeup_procfs_readers();
2656 
2657 	mutex_unlock(&input_mutex);
2658 }
2659 EXPORT_SYMBOL(input_unregister_handler);
2660 
2661 /**
2662  * input_handler_for_each_handle - handle iterator
2663  * @handler: input handler to iterate
2664  * @data: data for the callback
2665  * @fn: function to be called for each handle
2666  *
2667  * Iterate over @bus's list of devices, and call @fn for each, passing
2668  * it @data and stop when @fn returns a non-zero value. The function is
2669  * using RCU to traverse the list and therefore may be using in atomic
2670  * contexts. The @fn callback is invoked from RCU critical section and
2671  * thus must not sleep.
2672  */
2673 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2674 				  int (*fn)(struct input_handle *, void *))
2675 {
2676 	struct input_handle *handle;
2677 	int retval = 0;
2678 
2679 	rcu_read_lock();
2680 
2681 	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2682 		retval = fn(handle, data);
2683 		if (retval)
2684 			break;
2685 	}
2686 
2687 	rcu_read_unlock();
2688 
2689 	return retval;
2690 }
2691 EXPORT_SYMBOL(input_handler_for_each_handle);
2692 
2693 /**
2694  * input_register_handle - register a new input handle
2695  * @handle: handle to register
2696  *
2697  * This function puts a new input handle onto device's
2698  * and handler's lists so that events can flow through
2699  * it once it is opened using input_open_device().
2700  *
2701  * This function is supposed to be called from handler's
2702  * connect() method.
2703  */
2704 int input_register_handle(struct input_handle *handle)
2705 {
2706 	struct input_handler *handler = handle->handler;
2707 	struct input_dev *dev = handle->dev;
2708 	int error;
2709 
2710 	/*
2711 	 * We take dev->mutex here to prevent race with
2712 	 * input_release_device().
2713 	 */
2714 	error = mutex_lock_interruptible(&dev->mutex);
2715 	if (error)
2716 		return error;
2717 
2718 	/*
2719 	 * Filters go to the head of the list, normal handlers
2720 	 * to the tail.
2721 	 */
2722 	if (handler->filter)
2723 		list_add_rcu(&handle->d_node, &dev->h_list);
2724 	else
2725 		list_add_tail_rcu(&handle->d_node, &dev->h_list);
2726 
2727 	mutex_unlock(&dev->mutex);
2728 
2729 	/*
2730 	 * Since we are supposed to be called from ->connect()
2731 	 * which is mutually exclusive with ->disconnect()
2732 	 * we can't be racing with input_unregister_handle()
2733 	 * and so separate lock is not needed here.
2734 	 */
2735 	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2736 
2737 	if (handler->start)
2738 		handler->start(handle);
2739 
2740 	return 0;
2741 }
2742 EXPORT_SYMBOL(input_register_handle);
2743 
2744 /**
2745  * input_unregister_handle - unregister an input handle
2746  * @handle: handle to unregister
2747  *
2748  * This function removes input handle from device's
2749  * and handler's lists.
2750  *
2751  * This function is supposed to be called from handler's
2752  * disconnect() method.
2753  */
2754 void input_unregister_handle(struct input_handle *handle)
2755 {
2756 	struct input_dev *dev = handle->dev;
2757 
2758 	list_del_rcu(&handle->h_node);
2759 
2760 	/*
2761 	 * Take dev->mutex to prevent race with input_release_device().
2762 	 */
2763 	mutex_lock(&dev->mutex);
2764 	list_del_rcu(&handle->d_node);
2765 	mutex_unlock(&dev->mutex);
2766 
2767 	synchronize_rcu();
2768 }
2769 EXPORT_SYMBOL(input_unregister_handle);
2770 
2771 /**
2772  * input_get_new_minor - allocates a new input minor number
2773  * @legacy_base: beginning or the legacy range to be searched
2774  * @legacy_num: size of legacy range
2775  * @allow_dynamic: whether we can also take ID from the dynamic range
2776  *
2777  * This function allocates a new device minor for from input major namespace.
2778  * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2779  * parameters and whether ID can be allocated from dynamic range if there are
2780  * no free IDs in legacy range.
2781  */
2782 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2783 			bool allow_dynamic)
2784 {
2785 	/*
2786 	 * This function should be called from input handler's ->connect()
2787 	 * methods, which are serialized with input_mutex, so no additional
2788 	 * locking is needed here.
2789 	 */
2790 	if (legacy_base >= 0) {
2791 		int minor = ida_alloc_range(&input_ida, legacy_base,
2792 					    legacy_base + legacy_num - 1,
2793 					    GFP_KERNEL);
2794 		if (minor >= 0 || !allow_dynamic)
2795 			return minor;
2796 	}
2797 
2798 	return ida_alloc_range(&input_ida, INPUT_FIRST_DYNAMIC_DEV,
2799 			       INPUT_MAX_CHAR_DEVICES - 1, GFP_KERNEL);
2800 }
2801 EXPORT_SYMBOL(input_get_new_minor);
2802 
2803 /**
2804  * input_free_minor - release previously allocated minor
2805  * @minor: minor to be released
2806  *
2807  * This function releases previously allocated input minor so that it can be
2808  * reused later.
2809  */
2810 void input_free_minor(unsigned int minor)
2811 {
2812 	ida_free(&input_ida, minor);
2813 }
2814 EXPORT_SYMBOL(input_free_minor);
2815 
2816 static int __init input_init(void)
2817 {
2818 	int err;
2819 
2820 	err = class_register(&input_class);
2821 	if (err) {
2822 		pr_err("unable to register input_dev class\n");
2823 		return err;
2824 	}
2825 
2826 	err = input_proc_init();
2827 	if (err)
2828 		goto fail1;
2829 
2830 	err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2831 				     INPUT_MAX_CHAR_DEVICES, "input");
2832 	if (err) {
2833 		pr_err("unable to register char major %d", INPUT_MAJOR);
2834 		goto fail2;
2835 	}
2836 
2837 	return 0;
2838 
2839  fail2:	input_proc_exit();
2840  fail1:	class_unregister(&input_class);
2841 	return err;
2842 }
2843 
2844 static void __exit input_exit(void)
2845 {
2846 	input_proc_exit();
2847 	unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2848 				 INPUT_MAX_CHAR_DEVICES);
2849 	class_unregister(&input_class);
2850 }
2851 
2852 subsys_initcall(input_init);
2853 module_exit(input_exit);
2854