1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 #include <drm/drmP.h>
29 #include <drm/amdgpu_drm.h>
30 #include "amdgpu.h"
31 #include "amdgpu_trace.h"
32 
33 /*
34  * GPUVM
35  * GPUVM is similar to the legacy gart on older asics, however
36  * rather than there being a single global gart table
37  * for the entire GPU, there are multiple VM page tables active
38  * at any given time.  The VM page tables can contain a mix
39  * vram pages and system memory pages and system memory pages
40  * can be mapped as snooped (cached system pages) or unsnooped
41  * (uncached system pages).
42  * Each VM has an ID associated with it and there is a page table
43  * associated with each VMID.  When execting a command buffer,
44  * the kernel tells the the ring what VMID to use for that command
45  * buffer.  VMIDs are allocated dynamically as commands are submitted.
46  * The userspace drivers maintain their own address space and the kernel
47  * sets up their pages tables accordingly when they submit their
48  * command buffers and a VMID is assigned.
49  * Cayman/Trinity support up to 8 active VMs at any given time;
50  * SI supports 16.
51  */
52 
53 /* Special value that no flush is necessary */
54 #define AMDGPU_VM_NO_FLUSH (~0ll)
55 
56 /**
57  * amdgpu_vm_num_pde - return the number of page directory entries
58  *
59  * @adev: amdgpu_device pointer
60  *
61  * Calculate the number of page directory entries.
62  */
63 static unsigned amdgpu_vm_num_pdes(struct amdgpu_device *adev)
64 {
65 	return adev->vm_manager.max_pfn >> amdgpu_vm_block_size;
66 }
67 
68 /**
69  * amdgpu_vm_directory_size - returns the size of the page directory in bytes
70  *
71  * @adev: amdgpu_device pointer
72  *
73  * Calculate the size of the page directory in bytes.
74  */
75 static unsigned amdgpu_vm_directory_size(struct amdgpu_device *adev)
76 {
77 	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_pdes(adev) * 8);
78 }
79 
80 /**
81  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
82  *
83  * @vm: vm providing the BOs
84  * @validated: head of validation list
85  * @entry: entry to add
86  *
87  * Add the page directory to the list of BOs to
88  * validate for command submission.
89  */
90 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
91 			 struct list_head *validated,
92 			 struct amdgpu_bo_list_entry *entry)
93 {
94 	entry->robj = vm->page_directory;
95 	entry->priority = 0;
96 	entry->tv.bo = &vm->page_directory->tbo;
97 	entry->tv.shared = true;
98 	entry->user_pages = NULL;
99 	list_add(&entry->tv.head, validated);
100 }
101 
102 /**
103  * amdgpu_vm_get_bos - add the vm BOs to a duplicates list
104  *
105  * @vm: vm providing the BOs
106  * @duplicates: head of duplicates list
107  *
108  * Add the page directory to the BO duplicates list
109  * for command submission.
110  */
111 void amdgpu_vm_get_pt_bos(struct amdgpu_vm *vm, struct list_head *duplicates)
112 {
113 	unsigned i;
114 
115 	/* add the vm page table to the list */
116 	for (i = 0; i <= vm->max_pde_used; ++i) {
117 		struct amdgpu_bo_list_entry *entry = &vm->page_tables[i].entry;
118 
119 		if (!entry->robj)
120 			continue;
121 
122 		list_add(&entry->tv.head, duplicates);
123 	}
124 
125 }
126 
127 /**
128  * amdgpu_vm_move_pt_bos_in_lru - move the PT BOs to the LRU tail
129  *
130  * @adev: amdgpu device instance
131  * @vm: vm providing the BOs
132  *
133  * Move the PT BOs to the tail of the LRU.
134  */
135 void amdgpu_vm_move_pt_bos_in_lru(struct amdgpu_device *adev,
136 				  struct amdgpu_vm *vm)
137 {
138 	struct ttm_bo_global *glob = adev->mman.bdev.glob;
139 	unsigned i;
140 
141 	spin_lock(&glob->lru_lock);
142 	for (i = 0; i <= vm->max_pde_used; ++i) {
143 		struct amdgpu_bo_list_entry *entry = &vm->page_tables[i].entry;
144 
145 		if (!entry->robj)
146 			continue;
147 
148 		ttm_bo_move_to_lru_tail(&entry->robj->tbo);
149 	}
150 	spin_unlock(&glob->lru_lock);
151 }
152 
153 /**
154  * amdgpu_vm_grab_id - allocate the next free VMID
155  *
156  * @vm: vm to allocate id for
157  * @ring: ring we want to submit job to
158  * @sync: sync object where we add dependencies
159  * @fence: fence protecting ID from reuse
160  *
161  * Allocate an id for the vm, adding fences to the sync obj as necessary.
162  */
163 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring,
164 		      struct amdgpu_sync *sync, struct fence *fence,
165 		      unsigned *vm_id, uint64_t *vm_pd_addr)
166 {
167 	uint64_t pd_addr = amdgpu_bo_gpu_offset(vm->page_directory);
168 	struct amdgpu_device *adev = ring->adev;
169 	struct fence *updates = sync->last_vm_update;
170 	struct amdgpu_vm_id *id;
171 	unsigned i = ring->idx;
172 	int r;
173 
174 	mutex_lock(&adev->vm_manager.lock);
175 
176 	/* Check if we can use a VMID already assigned to this VM */
177 	do {
178 		struct fence *flushed;
179 
180 		id = vm->ids[i++];
181 		if (i == AMDGPU_MAX_RINGS)
182 			i = 0;
183 
184 		/* Check all the prerequisites to using this VMID */
185 		if (!id)
186 			continue;
187 
188 		if (atomic64_read(&id->owner) != vm->client_id)
189 			continue;
190 
191 		if (pd_addr != id->pd_gpu_addr)
192 			continue;
193 
194 		if (id->last_user != ring &&
195 		    (!id->last_flush || !fence_is_signaled(id->last_flush)))
196 			continue;
197 
198 		flushed  = id->flushed_updates;
199 		if (updates && (!flushed || fence_is_later(updates, flushed)))
200 			continue;
201 
202 		/* Good we can use this VMID */
203 		if (id->last_user == ring) {
204 			r = amdgpu_sync_fence(ring->adev, sync,
205 					      id->first);
206 			if (r)
207 				goto error;
208 		}
209 
210 		/* And remember this submission as user of the VMID */
211 		r = amdgpu_sync_fence(ring->adev, &id->active, fence);
212 		if (r)
213 			goto error;
214 
215 		list_move_tail(&id->list, &adev->vm_manager.ids_lru);
216 		vm->ids[ring->idx] = id;
217 
218 		*vm_id = id - adev->vm_manager.ids;
219 		*vm_pd_addr = AMDGPU_VM_NO_FLUSH;
220 		trace_amdgpu_vm_grab_id(vm, ring->idx, *vm_id, *vm_pd_addr);
221 
222 		mutex_unlock(&adev->vm_manager.lock);
223 		return 0;
224 
225 	} while (i != ring->idx);
226 
227 	id = list_first_entry(&adev->vm_manager.ids_lru,
228 			      struct amdgpu_vm_id,
229 			      list);
230 
231 	if (!amdgpu_sync_is_idle(&id->active)) {
232 		struct list_head *head = &adev->vm_manager.ids_lru;
233 		struct amdgpu_vm_id *tmp;
234 
235 		list_for_each_entry_safe(id, tmp, &adev->vm_manager.ids_lru,
236 					 list) {
237 			if (amdgpu_sync_is_idle(&id->active)) {
238 				list_move(&id->list, head);
239 				head = &id->list;
240 			}
241 		}
242 		id = list_first_entry(&adev->vm_manager.ids_lru,
243 				      struct amdgpu_vm_id,
244 				      list);
245 	}
246 
247 	r = amdgpu_sync_cycle_fences(sync, &id->active, fence);
248 	if (r)
249 		goto error;
250 
251 	fence_put(id->first);
252 	id->first = fence_get(fence);
253 
254 	fence_put(id->last_flush);
255 	id->last_flush = NULL;
256 
257 	fence_put(id->flushed_updates);
258 	id->flushed_updates = fence_get(updates);
259 
260 	id->pd_gpu_addr = pd_addr;
261 
262 	list_move_tail(&id->list, &adev->vm_manager.ids_lru);
263 	id->last_user = ring;
264 	atomic64_set(&id->owner, vm->client_id);
265 	vm->ids[ring->idx] = id;
266 
267 	*vm_id = id - adev->vm_manager.ids;
268 	*vm_pd_addr = pd_addr;
269 	trace_amdgpu_vm_grab_id(vm, ring->idx, *vm_id, *vm_pd_addr);
270 
271 error:
272 	mutex_unlock(&adev->vm_manager.lock);
273 	return r;
274 }
275 
276 /**
277  * amdgpu_vm_flush - hardware flush the vm
278  *
279  * @ring: ring to use for flush
280  * @vm_id: vmid number to use
281  * @pd_addr: address of the page directory
282  *
283  * Emit a VM flush when it is necessary.
284  */
285 int amdgpu_vm_flush(struct amdgpu_ring *ring,
286 		    unsigned vm_id, uint64_t pd_addr,
287 		    uint32_t gds_base, uint32_t gds_size,
288 		    uint32_t gws_base, uint32_t gws_size,
289 		    uint32_t oa_base, uint32_t oa_size)
290 {
291 	struct amdgpu_device *adev = ring->adev;
292 	struct amdgpu_vm_id *id = &adev->vm_manager.ids[vm_id];
293 	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
294 		id->gds_base != gds_base ||
295 		id->gds_size != gds_size ||
296 		id->gws_base != gws_base ||
297 		id->gws_size != gws_size ||
298 		id->oa_base != oa_base ||
299 		id->oa_size != oa_size);
300 	int r;
301 
302 	if (ring->funcs->emit_pipeline_sync && (
303 	    pd_addr != AMDGPU_VM_NO_FLUSH || gds_switch_needed ||
304 		    ring->type == AMDGPU_RING_TYPE_COMPUTE))
305 		amdgpu_ring_emit_pipeline_sync(ring);
306 
307 	if (ring->funcs->emit_vm_flush &&
308 	    pd_addr != AMDGPU_VM_NO_FLUSH) {
309 		struct fence *fence;
310 
311 		trace_amdgpu_vm_flush(pd_addr, ring->idx, vm_id);
312 		amdgpu_ring_emit_vm_flush(ring, vm_id, pd_addr);
313 
314 		mutex_lock(&adev->vm_manager.lock);
315 		if ((id->pd_gpu_addr == pd_addr) && (id->last_user == ring)) {
316 			r = amdgpu_fence_emit(ring, &fence);
317 			if (r) {
318 				mutex_unlock(&adev->vm_manager.lock);
319 				return r;
320 			}
321 			fence_put(id->last_flush);
322 			id->last_flush = fence;
323 		}
324 		mutex_unlock(&adev->vm_manager.lock);
325 	}
326 
327 	if (gds_switch_needed) {
328 		id->gds_base = gds_base;
329 		id->gds_size = gds_size;
330 		id->gws_base = gws_base;
331 		id->gws_size = gws_size;
332 		id->oa_base = oa_base;
333 		id->oa_size = oa_size;
334 		amdgpu_ring_emit_gds_switch(ring, vm_id,
335 					    gds_base, gds_size,
336 					    gws_base, gws_size,
337 					    oa_base, oa_size);
338 	}
339 
340 	return 0;
341 }
342 
343 /**
344  * amdgpu_vm_reset_id - reset VMID to zero
345  *
346  * @adev: amdgpu device structure
347  * @vm_id: vmid number to use
348  *
349  * Reset saved GDW, GWS and OA to force switch on next flush.
350  */
351 void amdgpu_vm_reset_id(struct amdgpu_device *adev, unsigned vm_id)
352 {
353 	struct amdgpu_vm_id *id = &adev->vm_manager.ids[vm_id];
354 
355 	id->gds_base = 0;
356 	id->gds_size = 0;
357 	id->gws_base = 0;
358 	id->gws_size = 0;
359 	id->oa_base = 0;
360 	id->oa_size = 0;
361 }
362 
363 /**
364  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
365  *
366  * @vm: requested vm
367  * @bo: requested buffer object
368  *
369  * Find @bo inside the requested vm.
370  * Search inside the @bos vm list for the requested vm
371  * Returns the found bo_va or NULL if none is found
372  *
373  * Object has to be reserved!
374  */
375 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
376 				       struct amdgpu_bo *bo)
377 {
378 	struct amdgpu_bo_va *bo_va;
379 
380 	list_for_each_entry(bo_va, &bo->va, bo_list) {
381 		if (bo_va->vm == vm) {
382 			return bo_va;
383 		}
384 	}
385 	return NULL;
386 }
387 
388 /**
389  * amdgpu_vm_update_pages - helper to call the right asic function
390  *
391  * @adev: amdgpu_device pointer
392  * @src: address where to copy page table entries from
393  * @pages_addr: DMA addresses to use for mapping
394  * @ib: indirect buffer to fill with commands
395  * @pe: addr of the page entry
396  * @addr: dst addr to write into pe
397  * @count: number of page entries to update
398  * @incr: increase next addr by incr bytes
399  * @flags: hw access flags
400  *
401  * Traces the parameters and calls the right asic functions
402  * to setup the page table using the DMA.
403  */
404 static void amdgpu_vm_update_pages(struct amdgpu_device *adev,
405 				   uint64_t src,
406 				   dma_addr_t *pages_addr,
407 				   struct amdgpu_ib *ib,
408 				   uint64_t pe, uint64_t addr,
409 				   unsigned count, uint32_t incr,
410 				   uint32_t flags)
411 {
412 	trace_amdgpu_vm_set_page(pe, addr, count, incr, flags);
413 
414 	if (src) {
415 		src += (addr >> 12) * 8;
416 		amdgpu_vm_copy_pte(adev, ib, pe, src, count);
417 
418 	} else if (pages_addr) {
419 		amdgpu_vm_write_pte(adev, ib, pages_addr, pe, addr,
420 				    count, incr, flags);
421 
422 	} else if (count < 3) {
423 		amdgpu_vm_write_pte(adev, ib, NULL, pe, addr,
424 				    count, incr, flags);
425 
426 	} else {
427 		amdgpu_vm_set_pte_pde(adev, ib, pe, addr,
428 				      count, incr, flags);
429 	}
430 }
431 
432 /**
433  * amdgpu_vm_clear_bo - initially clear the page dir/table
434  *
435  * @adev: amdgpu_device pointer
436  * @bo: bo to clear
437  *
438  * need to reserve bo first before calling it.
439  */
440 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
441 			      struct amdgpu_vm *vm,
442 			      struct amdgpu_bo *bo)
443 {
444 	struct amdgpu_ring *ring;
445 	struct fence *fence = NULL;
446 	struct amdgpu_job *job;
447 	unsigned entries;
448 	uint64_t addr;
449 	int r;
450 
451 	ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
452 
453 	r = reservation_object_reserve_shared(bo->tbo.resv);
454 	if (r)
455 		return r;
456 
457 	r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false);
458 	if (r)
459 		goto error;
460 
461 	addr = amdgpu_bo_gpu_offset(bo);
462 	entries = amdgpu_bo_size(bo) / 8;
463 
464 	r = amdgpu_job_alloc_with_ib(adev, 64, &job);
465 	if (r)
466 		goto error;
467 
468 	amdgpu_vm_update_pages(adev, 0, NULL, &job->ibs[0], addr, 0, entries,
469 			       0, 0);
470 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
471 
472 	WARN_ON(job->ibs[0].length_dw > 64);
473 	r = amdgpu_job_submit(job, ring, &vm->entity,
474 			      AMDGPU_FENCE_OWNER_VM, &fence);
475 	if (r)
476 		goto error_free;
477 
478 	amdgpu_bo_fence(bo, fence, true);
479 	fence_put(fence);
480 	return 0;
481 
482 error_free:
483 	amdgpu_job_free(job);
484 
485 error:
486 	return r;
487 }
488 
489 /**
490  * amdgpu_vm_map_gart - Resolve gart mapping of addr
491  *
492  * @pages_addr: optional DMA address to use for lookup
493  * @addr: the unmapped addr
494  *
495  * Look up the physical address of the page that the pte resolves
496  * to and return the pointer for the page table entry.
497  */
498 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
499 {
500 	uint64_t result;
501 
502 	if (pages_addr) {
503 		/* page table offset */
504 		result = pages_addr[addr >> PAGE_SHIFT];
505 
506 		/* in case cpu page size != gpu page size*/
507 		result |= addr & (~PAGE_MASK);
508 
509 	} else {
510 		/* No mapping required */
511 		result = addr;
512 	}
513 
514 	result &= 0xFFFFFFFFFFFFF000ULL;
515 
516 	return result;
517 }
518 
519 /**
520  * amdgpu_vm_update_pdes - make sure that page directory is valid
521  *
522  * @adev: amdgpu_device pointer
523  * @vm: requested vm
524  * @start: start of GPU address range
525  * @end: end of GPU address range
526  *
527  * Allocates new page tables if necessary
528  * and updates the page directory.
529  * Returns 0 for success, error for failure.
530  */
531 int amdgpu_vm_update_page_directory(struct amdgpu_device *adev,
532 				    struct amdgpu_vm *vm)
533 {
534 	struct amdgpu_ring *ring;
535 	struct amdgpu_bo *pd = vm->page_directory;
536 	uint64_t pd_addr = amdgpu_bo_gpu_offset(pd);
537 	uint32_t incr = AMDGPU_VM_PTE_COUNT * 8;
538 	uint64_t last_pde = ~0, last_pt = ~0;
539 	unsigned count = 0, pt_idx, ndw;
540 	struct amdgpu_job *job;
541 	struct amdgpu_ib *ib;
542 	struct fence *fence = NULL;
543 
544 	int r;
545 
546 	ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
547 
548 	/* padding, etc. */
549 	ndw = 64;
550 
551 	/* assume the worst case */
552 	ndw += vm->max_pde_used * 6;
553 
554 	r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
555 	if (r)
556 		return r;
557 
558 	ib = &job->ibs[0];
559 
560 	/* walk over the address space and update the page directory */
561 	for (pt_idx = 0; pt_idx <= vm->max_pde_used; ++pt_idx) {
562 		struct amdgpu_bo *bo = vm->page_tables[pt_idx].entry.robj;
563 		uint64_t pde, pt;
564 
565 		if (bo == NULL)
566 			continue;
567 
568 		pt = amdgpu_bo_gpu_offset(bo);
569 		if (vm->page_tables[pt_idx].addr == pt)
570 			continue;
571 		vm->page_tables[pt_idx].addr = pt;
572 
573 		pde = pd_addr + pt_idx * 8;
574 		if (((last_pde + 8 * count) != pde) ||
575 		    ((last_pt + incr * count) != pt)) {
576 
577 			if (count) {
578 				amdgpu_vm_update_pages(adev, 0, NULL, ib,
579 						       last_pde, last_pt,
580 						       count, incr,
581 						       AMDGPU_PTE_VALID);
582 			}
583 
584 			count = 1;
585 			last_pde = pde;
586 			last_pt = pt;
587 		} else {
588 			++count;
589 		}
590 	}
591 
592 	if (count)
593 		amdgpu_vm_update_pages(adev, 0, NULL, ib, last_pde, last_pt,
594 				       count, incr, AMDGPU_PTE_VALID);
595 
596 	if (ib->length_dw != 0) {
597 		amdgpu_ring_pad_ib(ring, ib);
598 		amdgpu_sync_resv(adev, &job->sync, pd->tbo.resv,
599 				 AMDGPU_FENCE_OWNER_VM);
600 		WARN_ON(ib->length_dw > ndw);
601 		r = amdgpu_job_submit(job, ring, &vm->entity,
602 				      AMDGPU_FENCE_OWNER_VM, &fence);
603 		if (r)
604 			goto error_free;
605 
606 		amdgpu_bo_fence(pd, fence, true);
607 		fence_put(vm->page_directory_fence);
608 		vm->page_directory_fence = fence_get(fence);
609 		fence_put(fence);
610 
611 	} else {
612 		amdgpu_job_free(job);
613 	}
614 
615 	return 0;
616 
617 error_free:
618 	amdgpu_job_free(job);
619 	return r;
620 }
621 
622 /**
623  * amdgpu_vm_frag_ptes - add fragment information to PTEs
624  *
625  * @adev: amdgpu_device pointer
626  * @src: address where to copy page table entries from
627  * @pages_addr: DMA addresses to use for mapping
628  * @ib: IB for the update
629  * @pe_start: first PTE to handle
630  * @pe_end: last PTE to handle
631  * @addr: addr those PTEs should point to
632  * @flags: hw mapping flags
633  */
634 static void amdgpu_vm_frag_ptes(struct amdgpu_device *adev,
635 				uint64_t src,
636 				dma_addr_t *pages_addr,
637 				struct amdgpu_ib *ib,
638 				uint64_t pe_start, uint64_t pe_end,
639 				uint64_t addr, uint32_t flags)
640 {
641 	/**
642 	 * The MC L1 TLB supports variable sized pages, based on a fragment
643 	 * field in the PTE. When this field is set to a non-zero value, page
644 	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
645 	 * flags are considered valid for all PTEs within the fragment range
646 	 * and corresponding mappings are assumed to be physically contiguous.
647 	 *
648 	 * The L1 TLB can store a single PTE for the whole fragment,
649 	 * significantly increasing the space available for translation
650 	 * caching. This leads to large improvements in throughput when the
651 	 * TLB is under pressure.
652 	 *
653 	 * The L2 TLB distributes small and large fragments into two
654 	 * asymmetric partitions. The large fragment cache is significantly
655 	 * larger. Thus, we try to use large fragments wherever possible.
656 	 * Userspace can support this by aligning virtual base address and
657 	 * allocation size to the fragment size.
658 	 */
659 
660 	/* SI and newer are optimized for 64KB */
661 	uint64_t frag_flags = AMDGPU_PTE_FRAG_64KB;
662 	uint64_t frag_align = 0x80;
663 
664 	uint64_t frag_start = ALIGN(pe_start, frag_align);
665 	uint64_t frag_end = pe_end & ~(frag_align - 1);
666 
667 	unsigned count;
668 
669 	/* Abort early if there isn't anything to do */
670 	if (pe_start == pe_end)
671 		return;
672 
673 	/* system pages are non continuously */
674 	if (src || pages_addr || !(flags & AMDGPU_PTE_VALID) ||
675 	    (frag_start >= frag_end)) {
676 
677 		count = (pe_end - pe_start) / 8;
678 		amdgpu_vm_update_pages(adev, src, pages_addr, ib, pe_start,
679 				       addr, count, AMDGPU_GPU_PAGE_SIZE,
680 				       flags);
681 		return;
682 	}
683 
684 	/* handle the 4K area at the beginning */
685 	if (pe_start != frag_start) {
686 		count = (frag_start - pe_start) / 8;
687 		amdgpu_vm_update_pages(adev, 0, NULL, ib, pe_start, addr,
688 				       count, AMDGPU_GPU_PAGE_SIZE, flags);
689 		addr += AMDGPU_GPU_PAGE_SIZE * count;
690 	}
691 
692 	/* handle the area in the middle */
693 	count = (frag_end - frag_start) / 8;
694 	amdgpu_vm_update_pages(adev, 0, NULL, ib, frag_start, addr, count,
695 			       AMDGPU_GPU_PAGE_SIZE, flags | frag_flags);
696 
697 	/* handle the 4K area at the end */
698 	if (frag_end != pe_end) {
699 		addr += AMDGPU_GPU_PAGE_SIZE * count;
700 		count = (pe_end - frag_end) / 8;
701 		amdgpu_vm_update_pages(adev, 0, NULL, ib, frag_end, addr,
702 				       count, AMDGPU_GPU_PAGE_SIZE, flags);
703 	}
704 }
705 
706 /**
707  * amdgpu_vm_update_ptes - make sure that page tables are valid
708  *
709  * @adev: amdgpu_device pointer
710  * @src: address where to copy page table entries from
711  * @pages_addr: DMA addresses to use for mapping
712  * @vm: requested vm
713  * @start: start of GPU address range
714  * @end: end of GPU address range
715  * @dst: destination address to map to
716  * @flags: mapping flags
717  *
718  * Update the page tables in the range @start - @end.
719  */
720 static void amdgpu_vm_update_ptes(struct amdgpu_device *adev,
721 				  uint64_t src,
722 				  dma_addr_t *pages_addr,
723 				  struct amdgpu_vm *vm,
724 				  struct amdgpu_ib *ib,
725 				  uint64_t start, uint64_t end,
726 				  uint64_t dst, uint32_t flags)
727 {
728 	const uint64_t mask = AMDGPU_VM_PTE_COUNT - 1;
729 
730 	uint64_t last_pe_start = ~0, last_pe_end = ~0, last_dst = ~0;
731 	uint64_t addr;
732 
733 	/* walk over the address space and update the page tables */
734 	for (addr = start; addr < end; ) {
735 		uint64_t pt_idx = addr >> amdgpu_vm_block_size;
736 		struct amdgpu_bo *pt = vm->page_tables[pt_idx].entry.robj;
737 		unsigned nptes;
738 		uint64_t pe_start;
739 
740 		if ((addr & ~mask) == (end & ~mask))
741 			nptes = end - addr;
742 		else
743 			nptes = AMDGPU_VM_PTE_COUNT - (addr & mask);
744 
745 		pe_start = amdgpu_bo_gpu_offset(pt);
746 		pe_start += (addr & mask) * 8;
747 
748 		if (last_pe_end != pe_start) {
749 
750 			amdgpu_vm_frag_ptes(adev, src, pages_addr, ib,
751 					    last_pe_start, last_pe_end,
752 					    last_dst, flags);
753 
754 			last_pe_start = pe_start;
755 			last_pe_end = pe_start + 8 * nptes;
756 			last_dst = dst;
757 		} else {
758 			last_pe_end += 8 * nptes;
759 		}
760 
761 		addr += nptes;
762 		dst += nptes * AMDGPU_GPU_PAGE_SIZE;
763 	}
764 
765 	amdgpu_vm_frag_ptes(adev, src, pages_addr, ib, last_pe_start,
766 			    last_pe_end, last_dst, flags);
767 }
768 
769 /**
770  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
771  *
772  * @adev: amdgpu_device pointer
773  * @src: address where to copy page table entries from
774  * @pages_addr: DMA addresses to use for mapping
775  * @vm: requested vm
776  * @start: start of mapped range
777  * @last: last mapped entry
778  * @flags: flags for the entries
779  * @addr: addr to set the area to
780  * @fence: optional resulting fence
781  *
782  * Fill in the page table entries between @start and @last.
783  * Returns 0 for success, -EINVAL for failure.
784  */
785 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
786 				       uint64_t src,
787 				       dma_addr_t *pages_addr,
788 				       struct amdgpu_vm *vm,
789 				       uint64_t start, uint64_t last,
790 				       uint32_t flags, uint64_t addr,
791 				       struct fence **fence)
792 {
793 	struct amdgpu_ring *ring;
794 	void *owner = AMDGPU_FENCE_OWNER_VM;
795 	unsigned nptes, ncmds, ndw;
796 	struct amdgpu_job *job;
797 	struct amdgpu_ib *ib;
798 	struct fence *f = NULL;
799 	int r;
800 
801 	ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
802 
803 	/* sync to everything on unmapping */
804 	if (!(flags & AMDGPU_PTE_VALID))
805 		owner = AMDGPU_FENCE_OWNER_UNDEFINED;
806 
807 	nptes = last - start + 1;
808 
809 	/*
810 	 * reserve space for one command every (1 << BLOCK_SIZE)
811 	 *  entries or 2k dwords (whatever is smaller)
812 	 */
813 	ncmds = (nptes >> min(amdgpu_vm_block_size, 11)) + 1;
814 
815 	/* padding, etc. */
816 	ndw = 64;
817 
818 	if (src) {
819 		/* only copy commands needed */
820 		ndw += ncmds * 7;
821 
822 	} else if (pages_addr) {
823 		/* header for write data commands */
824 		ndw += ncmds * 4;
825 
826 		/* body of write data command */
827 		ndw += nptes * 2;
828 
829 	} else {
830 		/* set page commands needed */
831 		ndw += ncmds * 10;
832 
833 		/* two extra commands for begin/end of fragment */
834 		ndw += 2 * 10;
835 	}
836 
837 	r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
838 	if (r)
839 		return r;
840 
841 	ib = &job->ibs[0];
842 
843 	r = amdgpu_sync_resv(adev, &job->sync, vm->page_directory->tbo.resv,
844 			     owner);
845 	if (r)
846 		goto error_free;
847 
848 	r = reservation_object_reserve_shared(vm->page_directory->tbo.resv);
849 	if (r)
850 		goto error_free;
851 
852 	amdgpu_vm_update_ptes(adev, src, pages_addr, vm, ib, start,
853 			      last + 1, addr, flags);
854 
855 	amdgpu_ring_pad_ib(ring, ib);
856 	WARN_ON(ib->length_dw > ndw);
857 	r = amdgpu_job_submit(job, ring, &vm->entity,
858 			      AMDGPU_FENCE_OWNER_VM, &f);
859 	if (r)
860 		goto error_free;
861 
862 	amdgpu_bo_fence(vm->page_directory, f, true);
863 	if (fence) {
864 		fence_put(*fence);
865 		*fence = fence_get(f);
866 	}
867 	fence_put(f);
868 	return 0;
869 
870 error_free:
871 	amdgpu_job_free(job);
872 	return r;
873 }
874 
875 /**
876  * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
877  *
878  * @adev: amdgpu_device pointer
879  * @gtt_flags: flags as they are used for GTT
880  * @pages_addr: DMA addresses to use for mapping
881  * @vm: requested vm
882  * @mapping: mapped range and flags to use for the update
883  * @addr: addr to set the area to
884  * @flags: HW flags for the mapping
885  * @fence: optional resulting fence
886  *
887  * Split the mapping into smaller chunks so that each update fits
888  * into a SDMA IB.
889  * Returns 0 for success, -EINVAL for failure.
890  */
891 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
892 				      uint32_t gtt_flags,
893 				      dma_addr_t *pages_addr,
894 				      struct amdgpu_vm *vm,
895 				      struct amdgpu_bo_va_mapping *mapping,
896 				      uint32_t flags, uint64_t addr,
897 				      struct fence **fence)
898 {
899 	const uint64_t max_size = 64ULL * 1024ULL * 1024ULL / AMDGPU_GPU_PAGE_SIZE;
900 
901 	uint64_t src = 0, start = mapping->it.start;
902 	int r;
903 
904 	/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
905 	 * but in case of something, we filter the flags in first place
906 	 */
907 	if (!(mapping->flags & AMDGPU_PTE_READABLE))
908 		flags &= ~AMDGPU_PTE_READABLE;
909 	if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
910 		flags &= ~AMDGPU_PTE_WRITEABLE;
911 
912 	trace_amdgpu_vm_bo_update(mapping);
913 
914 	if (pages_addr) {
915 		if (flags == gtt_flags)
916 			src = adev->gart.table_addr + (addr >> 12) * 8;
917 		addr = 0;
918 	}
919 	addr += mapping->offset;
920 
921 	if (!pages_addr || src)
922 		return amdgpu_vm_bo_update_mapping(adev, src, pages_addr, vm,
923 						   start, mapping->it.last,
924 						   flags, addr, fence);
925 
926 	while (start != mapping->it.last + 1) {
927 		uint64_t last;
928 
929 		last = min((uint64_t)mapping->it.last, start + max_size - 1);
930 		r = amdgpu_vm_bo_update_mapping(adev, src, pages_addr, vm,
931 						start, last, flags, addr,
932 						fence);
933 		if (r)
934 			return r;
935 
936 		start = last + 1;
937 		addr += max_size * AMDGPU_GPU_PAGE_SIZE;
938 	}
939 
940 	return 0;
941 }
942 
943 /**
944  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
945  *
946  * @adev: amdgpu_device pointer
947  * @bo_va: requested BO and VM object
948  * @mem: ttm mem
949  *
950  * Fill in the page table entries for @bo_va.
951  * Returns 0 for success, -EINVAL for failure.
952  *
953  * Object have to be reserved and mutex must be locked!
954  */
955 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
956 			struct amdgpu_bo_va *bo_va,
957 			struct ttm_mem_reg *mem)
958 {
959 	struct amdgpu_vm *vm = bo_va->vm;
960 	struct amdgpu_bo_va_mapping *mapping;
961 	dma_addr_t *pages_addr = NULL;
962 	uint32_t gtt_flags, flags;
963 	uint64_t addr;
964 	int r;
965 
966 	if (mem) {
967 		struct ttm_dma_tt *ttm;
968 
969 		addr = (u64)mem->start << PAGE_SHIFT;
970 		switch (mem->mem_type) {
971 		case TTM_PL_TT:
972 			ttm = container_of(bo_va->bo->tbo.ttm, struct
973 					   ttm_dma_tt, ttm);
974 			pages_addr = ttm->dma_address;
975 			break;
976 
977 		case TTM_PL_VRAM:
978 			addr += adev->vm_manager.vram_base_offset;
979 			break;
980 
981 		default:
982 			break;
983 		}
984 	} else {
985 		addr = 0;
986 	}
987 
988 	flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem);
989 	gtt_flags = (adev == bo_va->bo->adev) ? flags : 0;
990 
991 	spin_lock(&vm->status_lock);
992 	if (!list_empty(&bo_va->vm_status))
993 		list_splice_init(&bo_va->valids, &bo_va->invalids);
994 	spin_unlock(&vm->status_lock);
995 
996 	list_for_each_entry(mapping, &bo_va->invalids, list) {
997 		r = amdgpu_vm_bo_split_mapping(adev, gtt_flags, pages_addr, vm,
998 					       mapping, flags, addr,
999 					       &bo_va->last_pt_update);
1000 		if (r)
1001 			return r;
1002 	}
1003 
1004 	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1005 		list_for_each_entry(mapping, &bo_va->valids, list)
1006 			trace_amdgpu_vm_bo_mapping(mapping);
1007 
1008 		list_for_each_entry(mapping, &bo_va->invalids, list)
1009 			trace_amdgpu_vm_bo_mapping(mapping);
1010 	}
1011 
1012 	spin_lock(&vm->status_lock);
1013 	list_splice_init(&bo_va->invalids, &bo_va->valids);
1014 	list_del_init(&bo_va->vm_status);
1015 	if (!mem)
1016 		list_add(&bo_va->vm_status, &vm->cleared);
1017 	spin_unlock(&vm->status_lock);
1018 
1019 	return 0;
1020 }
1021 
1022 /**
1023  * amdgpu_vm_clear_freed - clear freed BOs in the PT
1024  *
1025  * @adev: amdgpu_device pointer
1026  * @vm: requested vm
1027  *
1028  * Make sure all freed BOs are cleared in the PT.
1029  * Returns 0 for success.
1030  *
1031  * PTs have to be reserved and mutex must be locked!
1032  */
1033 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1034 			  struct amdgpu_vm *vm)
1035 {
1036 	struct amdgpu_bo_va_mapping *mapping;
1037 	int r;
1038 
1039 	while (!list_empty(&vm->freed)) {
1040 		mapping = list_first_entry(&vm->freed,
1041 			struct amdgpu_bo_va_mapping, list);
1042 		list_del(&mapping->list);
1043 
1044 		r = amdgpu_vm_bo_split_mapping(adev, 0, NULL, vm, mapping,
1045 					       0, 0, NULL);
1046 		kfree(mapping);
1047 		if (r)
1048 			return r;
1049 
1050 	}
1051 	return 0;
1052 
1053 }
1054 
1055 /**
1056  * amdgpu_vm_clear_invalids - clear invalidated BOs in the PT
1057  *
1058  * @adev: amdgpu_device pointer
1059  * @vm: requested vm
1060  *
1061  * Make sure all invalidated BOs are cleared in the PT.
1062  * Returns 0 for success.
1063  *
1064  * PTs have to be reserved and mutex must be locked!
1065  */
1066 int amdgpu_vm_clear_invalids(struct amdgpu_device *adev,
1067 			     struct amdgpu_vm *vm, struct amdgpu_sync *sync)
1068 {
1069 	struct amdgpu_bo_va *bo_va = NULL;
1070 	int r = 0;
1071 
1072 	spin_lock(&vm->status_lock);
1073 	while (!list_empty(&vm->invalidated)) {
1074 		bo_va = list_first_entry(&vm->invalidated,
1075 			struct amdgpu_bo_va, vm_status);
1076 		spin_unlock(&vm->status_lock);
1077 
1078 		r = amdgpu_vm_bo_update(adev, bo_va, NULL);
1079 		if (r)
1080 			return r;
1081 
1082 		spin_lock(&vm->status_lock);
1083 	}
1084 	spin_unlock(&vm->status_lock);
1085 
1086 	if (bo_va)
1087 		r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update);
1088 
1089 	return r;
1090 }
1091 
1092 /**
1093  * amdgpu_vm_bo_add - add a bo to a specific vm
1094  *
1095  * @adev: amdgpu_device pointer
1096  * @vm: requested vm
1097  * @bo: amdgpu buffer object
1098  *
1099  * Add @bo into the requested vm.
1100  * Add @bo to the list of bos associated with the vm
1101  * Returns newly added bo_va or NULL for failure
1102  *
1103  * Object has to be reserved!
1104  */
1105 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
1106 				      struct amdgpu_vm *vm,
1107 				      struct amdgpu_bo *bo)
1108 {
1109 	struct amdgpu_bo_va *bo_va;
1110 
1111 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
1112 	if (bo_va == NULL) {
1113 		return NULL;
1114 	}
1115 	bo_va->vm = vm;
1116 	bo_va->bo = bo;
1117 	bo_va->ref_count = 1;
1118 	INIT_LIST_HEAD(&bo_va->bo_list);
1119 	INIT_LIST_HEAD(&bo_va->valids);
1120 	INIT_LIST_HEAD(&bo_va->invalids);
1121 	INIT_LIST_HEAD(&bo_va->vm_status);
1122 
1123 	list_add_tail(&bo_va->bo_list, &bo->va);
1124 
1125 	return bo_va;
1126 }
1127 
1128 /**
1129  * amdgpu_vm_bo_map - map bo inside a vm
1130  *
1131  * @adev: amdgpu_device pointer
1132  * @bo_va: bo_va to store the address
1133  * @saddr: where to map the BO
1134  * @offset: requested offset in the BO
1135  * @flags: attributes of pages (read/write/valid/etc.)
1136  *
1137  * Add a mapping of the BO at the specefied addr into the VM.
1138  * Returns 0 for success, error for failure.
1139  *
1140  * Object has to be reserved and unreserved outside!
1141  */
1142 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
1143 		     struct amdgpu_bo_va *bo_va,
1144 		     uint64_t saddr, uint64_t offset,
1145 		     uint64_t size, uint32_t flags)
1146 {
1147 	struct amdgpu_bo_va_mapping *mapping;
1148 	struct amdgpu_vm *vm = bo_va->vm;
1149 	struct interval_tree_node *it;
1150 	unsigned last_pfn, pt_idx;
1151 	uint64_t eaddr;
1152 	int r;
1153 
1154 	/* validate the parameters */
1155 	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1156 	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
1157 		return -EINVAL;
1158 
1159 	/* make sure object fit at this offset */
1160 	eaddr = saddr + size - 1;
1161 	if ((saddr >= eaddr) || (offset + size > amdgpu_bo_size(bo_va->bo)))
1162 		return -EINVAL;
1163 
1164 	last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE;
1165 	if (last_pfn >= adev->vm_manager.max_pfn) {
1166 		dev_err(adev->dev, "va above limit (0x%08X >= 0x%08X)\n",
1167 			last_pfn, adev->vm_manager.max_pfn);
1168 		return -EINVAL;
1169 	}
1170 
1171 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1172 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
1173 
1174 	it = interval_tree_iter_first(&vm->va, saddr, eaddr);
1175 	if (it) {
1176 		struct amdgpu_bo_va_mapping *tmp;
1177 		tmp = container_of(it, struct amdgpu_bo_va_mapping, it);
1178 		/* bo and tmp overlap, invalid addr */
1179 		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
1180 			"0x%010lx-0x%010lx\n", bo_va->bo, saddr, eaddr,
1181 			tmp->it.start, tmp->it.last + 1);
1182 		r = -EINVAL;
1183 		goto error;
1184 	}
1185 
1186 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1187 	if (!mapping) {
1188 		r = -ENOMEM;
1189 		goto error;
1190 	}
1191 
1192 	INIT_LIST_HEAD(&mapping->list);
1193 	mapping->it.start = saddr;
1194 	mapping->it.last = eaddr;
1195 	mapping->offset = offset;
1196 	mapping->flags = flags;
1197 
1198 	list_add(&mapping->list, &bo_va->invalids);
1199 	interval_tree_insert(&mapping->it, &vm->va);
1200 
1201 	/* Make sure the page tables are allocated */
1202 	saddr >>= amdgpu_vm_block_size;
1203 	eaddr >>= amdgpu_vm_block_size;
1204 
1205 	BUG_ON(eaddr >= amdgpu_vm_num_pdes(adev));
1206 
1207 	if (eaddr > vm->max_pde_used)
1208 		vm->max_pde_used = eaddr;
1209 
1210 	/* walk over the address space and allocate the page tables */
1211 	for (pt_idx = saddr; pt_idx <= eaddr; ++pt_idx) {
1212 		struct reservation_object *resv = vm->page_directory->tbo.resv;
1213 		struct amdgpu_bo_list_entry *entry;
1214 		struct amdgpu_bo *pt;
1215 
1216 		entry = &vm->page_tables[pt_idx].entry;
1217 		if (entry->robj)
1218 			continue;
1219 
1220 		r = amdgpu_bo_create(adev, AMDGPU_VM_PTE_COUNT * 8,
1221 				     AMDGPU_GPU_PAGE_SIZE, true,
1222 				     AMDGPU_GEM_DOMAIN_VRAM,
1223 				     AMDGPU_GEM_CREATE_NO_CPU_ACCESS,
1224 				     NULL, resv, &pt);
1225 		if (r)
1226 			goto error_free;
1227 
1228 		/* Keep a reference to the page table to avoid freeing
1229 		 * them up in the wrong order.
1230 		 */
1231 		pt->parent = amdgpu_bo_ref(vm->page_directory);
1232 
1233 		r = amdgpu_vm_clear_bo(adev, vm, pt);
1234 		if (r) {
1235 			amdgpu_bo_unref(&pt);
1236 			goto error_free;
1237 		}
1238 
1239 		entry->robj = pt;
1240 		entry->priority = 0;
1241 		entry->tv.bo = &entry->robj->tbo;
1242 		entry->tv.shared = true;
1243 		entry->user_pages = NULL;
1244 		vm->page_tables[pt_idx].addr = 0;
1245 	}
1246 
1247 	return 0;
1248 
1249 error_free:
1250 	list_del(&mapping->list);
1251 	interval_tree_remove(&mapping->it, &vm->va);
1252 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1253 	kfree(mapping);
1254 
1255 error:
1256 	return r;
1257 }
1258 
1259 /**
1260  * amdgpu_vm_bo_unmap - remove bo mapping from vm
1261  *
1262  * @adev: amdgpu_device pointer
1263  * @bo_va: bo_va to remove the address from
1264  * @saddr: where to the BO is mapped
1265  *
1266  * Remove a mapping of the BO at the specefied addr from the VM.
1267  * Returns 0 for success, error for failure.
1268  *
1269  * Object has to be reserved and unreserved outside!
1270  */
1271 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
1272 		       struct amdgpu_bo_va *bo_va,
1273 		       uint64_t saddr)
1274 {
1275 	struct amdgpu_bo_va_mapping *mapping;
1276 	struct amdgpu_vm *vm = bo_va->vm;
1277 	bool valid = true;
1278 
1279 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1280 
1281 	list_for_each_entry(mapping, &bo_va->valids, list) {
1282 		if (mapping->it.start == saddr)
1283 			break;
1284 	}
1285 
1286 	if (&mapping->list == &bo_va->valids) {
1287 		valid = false;
1288 
1289 		list_for_each_entry(mapping, &bo_va->invalids, list) {
1290 			if (mapping->it.start == saddr)
1291 				break;
1292 		}
1293 
1294 		if (&mapping->list == &bo_va->invalids)
1295 			return -ENOENT;
1296 	}
1297 
1298 	list_del(&mapping->list);
1299 	interval_tree_remove(&mapping->it, &vm->va);
1300 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1301 
1302 	if (valid)
1303 		list_add(&mapping->list, &vm->freed);
1304 	else
1305 		kfree(mapping);
1306 
1307 	return 0;
1308 }
1309 
1310 /**
1311  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
1312  *
1313  * @adev: amdgpu_device pointer
1314  * @bo_va: requested bo_va
1315  *
1316  * Remove @bo_va->bo from the requested vm.
1317  *
1318  * Object have to be reserved!
1319  */
1320 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
1321 		      struct amdgpu_bo_va *bo_va)
1322 {
1323 	struct amdgpu_bo_va_mapping *mapping, *next;
1324 	struct amdgpu_vm *vm = bo_va->vm;
1325 
1326 	list_del(&bo_va->bo_list);
1327 
1328 	spin_lock(&vm->status_lock);
1329 	list_del(&bo_va->vm_status);
1330 	spin_unlock(&vm->status_lock);
1331 
1332 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
1333 		list_del(&mapping->list);
1334 		interval_tree_remove(&mapping->it, &vm->va);
1335 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1336 		list_add(&mapping->list, &vm->freed);
1337 	}
1338 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
1339 		list_del(&mapping->list);
1340 		interval_tree_remove(&mapping->it, &vm->va);
1341 		kfree(mapping);
1342 	}
1343 
1344 	fence_put(bo_va->last_pt_update);
1345 	kfree(bo_va);
1346 }
1347 
1348 /**
1349  * amdgpu_vm_bo_invalidate - mark the bo as invalid
1350  *
1351  * @adev: amdgpu_device pointer
1352  * @vm: requested vm
1353  * @bo: amdgpu buffer object
1354  *
1355  * Mark @bo as invalid.
1356  */
1357 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
1358 			     struct amdgpu_bo *bo)
1359 {
1360 	struct amdgpu_bo_va *bo_va;
1361 
1362 	list_for_each_entry(bo_va, &bo->va, bo_list) {
1363 		spin_lock(&bo_va->vm->status_lock);
1364 		if (list_empty(&bo_va->vm_status))
1365 			list_add(&bo_va->vm_status, &bo_va->vm->invalidated);
1366 		spin_unlock(&bo_va->vm->status_lock);
1367 	}
1368 }
1369 
1370 /**
1371  * amdgpu_vm_init - initialize a vm instance
1372  *
1373  * @adev: amdgpu_device pointer
1374  * @vm: requested vm
1375  *
1376  * Init @vm fields.
1377  */
1378 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1379 {
1380 	const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
1381 		AMDGPU_VM_PTE_COUNT * 8);
1382 	unsigned pd_size, pd_entries;
1383 	unsigned ring_instance;
1384 	struct amdgpu_ring *ring;
1385 	struct amd_sched_rq *rq;
1386 	int i, r;
1387 
1388 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
1389 		vm->ids[i] = NULL;
1390 	vm->va = RB_ROOT;
1391 	vm->client_id = atomic64_inc_return(&adev->vm_manager.client_counter);
1392 	spin_lock_init(&vm->status_lock);
1393 	INIT_LIST_HEAD(&vm->invalidated);
1394 	INIT_LIST_HEAD(&vm->cleared);
1395 	INIT_LIST_HEAD(&vm->freed);
1396 
1397 	pd_size = amdgpu_vm_directory_size(adev);
1398 	pd_entries = amdgpu_vm_num_pdes(adev);
1399 
1400 	/* allocate page table array */
1401 	vm->page_tables = drm_calloc_large(pd_entries, sizeof(struct amdgpu_vm_pt));
1402 	if (vm->page_tables == NULL) {
1403 		DRM_ERROR("Cannot allocate memory for page table array\n");
1404 		return -ENOMEM;
1405 	}
1406 
1407 	/* create scheduler entity for page table updates */
1408 
1409 	ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring);
1410 	ring_instance %= adev->vm_manager.vm_pte_num_rings;
1411 	ring = adev->vm_manager.vm_pte_rings[ring_instance];
1412 	rq = &ring->sched.sched_rq[AMD_SCHED_PRIORITY_KERNEL];
1413 	r = amd_sched_entity_init(&ring->sched, &vm->entity,
1414 				  rq, amdgpu_sched_jobs);
1415 	if (r)
1416 		return r;
1417 
1418 	vm->page_directory_fence = NULL;
1419 
1420 	r = amdgpu_bo_create(adev, pd_size, align, true,
1421 			     AMDGPU_GEM_DOMAIN_VRAM,
1422 			     AMDGPU_GEM_CREATE_NO_CPU_ACCESS,
1423 			     NULL, NULL, &vm->page_directory);
1424 	if (r)
1425 		goto error_free_sched_entity;
1426 
1427 	r = amdgpu_bo_reserve(vm->page_directory, false);
1428 	if (r)
1429 		goto error_free_page_directory;
1430 
1431 	r = amdgpu_vm_clear_bo(adev, vm, vm->page_directory);
1432 	amdgpu_bo_unreserve(vm->page_directory);
1433 	if (r)
1434 		goto error_free_page_directory;
1435 
1436 	return 0;
1437 
1438 error_free_page_directory:
1439 	amdgpu_bo_unref(&vm->page_directory);
1440 	vm->page_directory = NULL;
1441 
1442 error_free_sched_entity:
1443 	amd_sched_entity_fini(&ring->sched, &vm->entity);
1444 
1445 	return r;
1446 }
1447 
1448 /**
1449  * amdgpu_vm_fini - tear down a vm instance
1450  *
1451  * @adev: amdgpu_device pointer
1452  * @vm: requested vm
1453  *
1454  * Tear down @vm.
1455  * Unbind the VM and remove all bos from the vm bo list
1456  */
1457 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1458 {
1459 	struct amdgpu_bo_va_mapping *mapping, *tmp;
1460 	int i;
1461 
1462 	amd_sched_entity_fini(vm->entity.sched, &vm->entity);
1463 
1464 	if (!RB_EMPTY_ROOT(&vm->va)) {
1465 		dev_err(adev->dev, "still active bo inside vm\n");
1466 	}
1467 	rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, it.rb) {
1468 		list_del(&mapping->list);
1469 		interval_tree_remove(&mapping->it, &vm->va);
1470 		kfree(mapping);
1471 	}
1472 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
1473 		list_del(&mapping->list);
1474 		kfree(mapping);
1475 	}
1476 
1477 	for (i = 0; i < amdgpu_vm_num_pdes(adev); i++)
1478 		amdgpu_bo_unref(&vm->page_tables[i].entry.robj);
1479 	drm_free_large(vm->page_tables);
1480 
1481 	amdgpu_bo_unref(&vm->page_directory);
1482 	fence_put(vm->page_directory_fence);
1483 }
1484 
1485 /**
1486  * amdgpu_vm_manager_init - init the VM manager
1487  *
1488  * @adev: amdgpu_device pointer
1489  *
1490  * Initialize the VM manager structures
1491  */
1492 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
1493 {
1494 	unsigned i;
1495 
1496 	INIT_LIST_HEAD(&adev->vm_manager.ids_lru);
1497 
1498 	/* skip over VMID 0, since it is the system VM */
1499 	for (i = 1; i < adev->vm_manager.num_ids; ++i) {
1500 		amdgpu_vm_reset_id(adev, i);
1501 		amdgpu_sync_create(&adev->vm_manager.ids[i].active);
1502 		list_add_tail(&adev->vm_manager.ids[i].list,
1503 			      &adev->vm_manager.ids_lru);
1504 	}
1505 
1506 	atomic_set(&adev->vm_manager.vm_pte_next_ring, 0);
1507 	atomic64_set(&adev->vm_manager.client_counter, 0);
1508 }
1509 
1510 /**
1511  * amdgpu_vm_manager_fini - cleanup VM manager
1512  *
1513  * @adev: amdgpu_device pointer
1514  *
1515  * Cleanup the VM manager and free resources.
1516  */
1517 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
1518 {
1519 	unsigned i;
1520 
1521 	for (i = 0; i < AMDGPU_NUM_VM; ++i) {
1522 		struct amdgpu_vm_id *id = &adev->vm_manager.ids[i];
1523 
1524 		fence_put(adev->vm_manager.ids[i].first);
1525 		amdgpu_sync_free(&adev->vm_manager.ids[i].active);
1526 		fence_put(id->flushed_updates);
1527 	}
1528 }
1529