1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <drm/drmP.h> 29 #include <drm/amdgpu_drm.h> 30 #include "amdgpu.h" 31 #include "amdgpu_trace.h" 32 33 /* 34 * GPUVM 35 * GPUVM is similar to the legacy gart on older asics, however 36 * rather than there being a single global gart table 37 * for the entire GPU, there are multiple VM page tables active 38 * at any given time. The VM page tables can contain a mix 39 * vram pages and system memory pages and system memory pages 40 * can be mapped as snooped (cached system pages) or unsnooped 41 * (uncached system pages). 42 * Each VM has an ID associated with it and there is a page table 43 * associated with each VMID. When execting a command buffer, 44 * the kernel tells the the ring what VMID to use for that command 45 * buffer. VMIDs are allocated dynamically as commands are submitted. 46 * The userspace drivers maintain their own address space and the kernel 47 * sets up their pages tables accordingly when they submit their 48 * command buffers and a VMID is assigned. 49 * Cayman/Trinity support up to 8 active VMs at any given time; 50 * SI supports 16. 51 */ 52 53 /* Special value that no flush is necessary */ 54 #define AMDGPU_VM_NO_FLUSH (~0ll) 55 56 /** 57 * amdgpu_vm_num_pde - return the number of page directory entries 58 * 59 * @adev: amdgpu_device pointer 60 * 61 * Calculate the number of page directory entries. 62 */ 63 static unsigned amdgpu_vm_num_pdes(struct amdgpu_device *adev) 64 { 65 return adev->vm_manager.max_pfn >> amdgpu_vm_block_size; 66 } 67 68 /** 69 * amdgpu_vm_directory_size - returns the size of the page directory in bytes 70 * 71 * @adev: amdgpu_device pointer 72 * 73 * Calculate the size of the page directory in bytes. 74 */ 75 static unsigned amdgpu_vm_directory_size(struct amdgpu_device *adev) 76 { 77 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_pdes(adev) * 8); 78 } 79 80 /** 81 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 82 * 83 * @vm: vm providing the BOs 84 * @validated: head of validation list 85 * @entry: entry to add 86 * 87 * Add the page directory to the list of BOs to 88 * validate for command submission. 89 */ 90 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 91 struct list_head *validated, 92 struct amdgpu_bo_list_entry *entry) 93 { 94 entry->robj = vm->page_directory; 95 entry->priority = 0; 96 entry->tv.bo = &vm->page_directory->tbo; 97 entry->tv.shared = true; 98 entry->user_pages = NULL; 99 list_add(&entry->tv.head, validated); 100 } 101 102 /** 103 * amdgpu_vm_get_bos - add the vm BOs to a duplicates list 104 * 105 * @vm: vm providing the BOs 106 * @duplicates: head of duplicates list 107 * 108 * Add the page directory to the BO duplicates list 109 * for command submission. 110 */ 111 void amdgpu_vm_get_pt_bos(struct amdgpu_vm *vm, struct list_head *duplicates) 112 { 113 unsigned i; 114 115 /* add the vm page table to the list */ 116 for (i = 0; i <= vm->max_pde_used; ++i) { 117 struct amdgpu_bo_list_entry *entry = &vm->page_tables[i].entry; 118 119 if (!entry->robj) 120 continue; 121 122 list_add(&entry->tv.head, duplicates); 123 } 124 125 } 126 127 /** 128 * amdgpu_vm_move_pt_bos_in_lru - move the PT BOs to the LRU tail 129 * 130 * @adev: amdgpu device instance 131 * @vm: vm providing the BOs 132 * 133 * Move the PT BOs to the tail of the LRU. 134 */ 135 void amdgpu_vm_move_pt_bos_in_lru(struct amdgpu_device *adev, 136 struct amdgpu_vm *vm) 137 { 138 struct ttm_bo_global *glob = adev->mman.bdev.glob; 139 unsigned i; 140 141 spin_lock(&glob->lru_lock); 142 for (i = 0; i <= vm->max_pde_used; ++i) { 143 struct amdgpu_bo_list_entry *entry = &vm->page_tables[i].entry; 144 145 if (!entry->robj) 146 continue; 147 148 ttm_bo_move_to_lru_tail(&entry->robj->tbo); 149 } 150 spin_unlock(&glob->lru_lock); 151 } 152 153 /** 154 * amdgpu_vm_grab_id - allocate the next free VMID 155 * 156 * @vm: vm to allocate id for 157 * @ring: ring we want to submit job to 158 * @sync: sync object where we add dependencies 159 * @fence: fence protecting ID from reuse 160 * 161 * Allocate an id for the vm, adding fences to the sync obj as necessary. 162 */ 163 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring, 164 struct amdgpu_sync *sync, struct fence *fence, 165 unsigned *vm_id, uint64_t *vm_pd_addr) 166 { 167 uint64_t pd_addr = amdgpu_bo_gpu_offset(vm->page_directory); 168 struct amdgpu_device *adev = ring->adev; 169 struct fence *updates = sync->last_vm_update; 170 struct amdgpu_vm_id *id; 171 unsigned i = ring->idx; 172 int r; 173 174 mutex_lock(&adev->vm_manager.lock); 175 176 /* Check if we can use a VMID already assigned to this VM */ 177 do { 178 struct fence *flushed; 179 180 id = vm->ids[i++]; 181 if (i == AMDGPU_MAX_RINGS) 182 i = 0; 183 184 /* Check all the prerequisites to using this VMID */ 185 if (!id) 186 continue; 187 188 if (atomic64_read(&id->owner) != vm->client_id) 189 continue; 190 191 if (pd_addr != id->pd_gpu_addr) 192 continue; 193 194 if (id->last_user != ring && 195 (!id->last_flush || !fence_is_signaled(id->last_flush))) 196 continue; 197 198 flushed = id->flushed_updates; 199 if (updates && (!flushed || fence_is_later(updates, flushed))) 200 continue; 201 202 /* Good we can use this VMID */ 203 if (id->last_user == ring) { 204 r = amdgpu_sync_fence(ring->adev, sync, 205 id->first); 206 if (r) 207 goto error; 208 } 209 210 /* And remember this submission as user of the VMID */ 211 r = amdgpu_sync_fence(ring->adev, &id->active, fence); 212 if (r) 213 goto error; 214 215 list_move_tail(&id->list, &adev->vm_manager.ids_lru); 216 vm->ids[ring->idx] = id; 217 218 *vm_id = id - adev->vm_manager.ids; 219 *vm_pd_addr = AMDGPU_VM_NO_FLUSH; 220 trace_amdgpu_vm_grab_id(vm, ring->idx, *vm_id, *vm_pd_addr); 221 222 mutex_unlock(&adev->vm_manager.lock); 223 return 0; 224 225 } while (i != ring->idx); 226 227 id = list_first_entry(&adev->vm_manager.ids_lru, 228 struct amdgpu_vm_id, 229 list); 230 231 if (!amdgpu_sync_is_idle(&id->active)) { 232 struct list_head *head = &adev->vm_manager.ids_lru; 233 struct amdgpu_vm_id *tmp; 234 235 list_for_each_entry_safe(id, tmp, &adev->vm_manager.ids_lru, 236 list) { 237 if (amdgpu_sync_is_idle(&id->active)) { 238 list_move(&id->list, head); 239 head = &id->list; 240 } 241 } 242 id = list_first_entry(&adev->vm_manager.ids_lru, 243 struct amdgpu_vm_id, 244 list); 245 } 246 247 r = amdgpu_sync_cycle_fences(sync, &id->active, fence); 248 if (r) 249 goto error; 250 251 fence_put(id->first); 252 id->first = fence_get(fence); 253 254 fence_put(id->last_flush); 255 id->last_flush = NULL; 256 257 fence_put(id->flushed_updates); 258 id->flushed_updates = fence_get(updates); 259 260 id->pd_gpu_addr = pd_addr; 261 262 list_move_tail(&id->list, &adev->vm_manager.ids_lru); 263 id->last_user = ring; 264 atomic64_set(&id->owner, vm->client_id); 265 vm->ids[ring->idx] = id; 266 267 *vm_id = id - adev->vm_manager.ids; 268 *vm_pd_addr = pd_addr; 269 trace_amdgpu_vm_grab_id(vm, ring->idx, *vm_id, *vm_pd_addr); 270 271 error: 272 mutex_unlock(&adev->vm_manager.lock); 273 return r; 274 } 275 276 /** 277 * amdgpu_vm_flush - hardware flush the vm 278 * 279 * @ring: ring to use for flush 280 * @vm_id: vmid number to use 281 * @pd_addr: address of the page directory 282 * 283 * Emit a VM flush when it is necessary. 284 */ 285 int amdgpu_vm_flush(struct amdgpu_ring *ring, 286 unsigned vm_id, uint64_t pd_addr, 287 uint32_t gds_base, uint32_t gds_size, 288 uint32_t gws_base, uint32_t gws_size, 289 uint32_t oa_base, uint32_t oa_size) 290 { 291 struct amdgpu_device *adev = ring->adev; 292 struct amdgpu_vm_id *id = &adev->vm_manager.ids[vm_id]; 293 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 294 id->gds_base != gds_base || 295 id->gds_size != gds_size || 296 id->gws_base != gws_base || 297 id->gws_size != gws_size || 298 id->oa_base != oa_base || 299 id->oa_size != oa_size); 300 int r; 301 302 if (ring->funcs->emit_pipeline_sync && ( 303 pd_addr != AMDGPU_VM_NO_FLUSH || gds_switch_needed || 304 ring->type == AMDGPU_RING_TYPE_COMPUTE)) 305 amdgpu_ring_emit_pipeline_sync(ring); 306 307 if (ring->funcs->emit_vm_flush && 308 pd_addr != AMDGPU_VM_NO_FLUSH) { 309 struct fence *fence; 310 311 trace_amdgpu_vm_flush(pd_addr, ring->idx, vm_id); 312 amdgpu_ring_emit_vm_flush(ring, vm_id, pd_addr); 313 314 mutex_lock(&adev->vm_manager.lock); 315 if ((id->pd_gpu_addr == pd_addr) && (id->last_user == ring)) { 316 r = amdgpu_fence_emit(ring, &fence); 317 if (r) { 318 mutex_unlock(&adev->vm_manager.lock); 319 return r; 320 } 321 fence_put(id->last_flush); 322 id->last_flush = fence; 323 } 324 mutex_unlock(&adev->vm_manager.lock); 325 } 326 327 if (gds_switch_needed) { 328 id->gds_base = gds_base; 329 id->gds_size = gds_size; 330 id->gws_base = gws_base; 331 id->gws_size = gws_size; 332 id->oa_base = oa_base; 333 id->oa_size = oa_size; 334 amdgpu_ring_emit_gds_switch(ring, vm_id, 335 gds_base, gds_size, 336 gws_base, gws_size, 337 oa_base, oa_size); 338 } 339 340 return 0; 341 } 342 343 /** 344 * amdgpu_vm_reset_id - reset VMID to zero 345 * 346 * @adev: amdgpu device structure 347 * @vm_id: vmid number to use 348 * 349 * Reset saved GDW, GWS and OA to force switch on next flush. 350 */ 351 void amdgpu_vm_reset_id(struct amdgpu_device *adev, unsigned vm_id) 352 { 353 struct amdgpu_vm_id *id = &adev->vm_manager.ids[vm_id]; 354 355 id->gds_base = 0; 356 id->gds_size = 0; 357 id->gws_base = 0; 358 id->gws_size = 0; 359 id->oa_base = 0; 360 id->oa_size = 0; 361 } 362 363 /** 364 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 365 * 366 * @vm: requested vm 367 * @bo: requested buffer object 368 * 369 * Find @bo inside the requested vm. 370 * Search inside the @bos vm list for the requested vm 371 * Returns the found bo_va or NULL if none is found 372 * 373 * Object has to be reserved! 374 */ 375 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 376 struct amdgpu_bo *bo) 377 { 378 struct amdgpu_bo_va *bo_va; 379 380 list_for_each_entry(bo_va, &bo->va, bo_list) { 381 if (bo_va->vm == vm) { 382 return bo_va; 383 } 384 } 385 return NULL; 386 } 387 388 /** 389 * amdgpu_vm_update_pages - helper to call the right asic function 390 * 391 * @adev: amdgpu_device pointer 392 * @src: address where to copy page table entries from 393 * @pages_addr: DMA addresses to use for mapping 394 * @ib: indirect buffer to fill with commands 395 * @pe: addr of the page entry 396 * @addr: dst addr to write into pe 397 * @count: number of page entries to update 398 * @incr: increase next addr by incr bytes 399 * @flags: hw access flags 400 * 401 * Traces the parameters and calls the right asic functions 402 * to setup the page table using the DMA. 403 */ 404 static void amdgpu_vm_update_pages(struct amdgpu_device *adev, 405 uint64_t src, 406 dma_addr_t *pages_addr, 407 struct amdgpu_ib *ib, 408 uint64_t pe, uint64_t addr, 409 unsigned count, uint32_t incr, 410 uint32_t flags) 411 { 412 trace_amdgpu_vm_set_page(pe, addr, count, incr, flags); 413 414 if (src) { 415 src += (addr >> 12) * 8; 416 amdgpu_vm_copy_pte(adev, ib, pe, src, count); 417 418 } else if (pages_addr) { 419 amdgpu_vm_write_pte(adev, ib, pages_addr, pe, addr, 420 count, incr, flags); 421 422 } else if (count < 3) { 423 amdgpu_vm_write_pte(adev, ib, NULL, pe, addr, 424 count, incr, flags); 425 426 } else { 427 amdgpu_vm_set_pte_pde(adev, ib, pe, addr, 428 count, incr, flags); 429 } 430 } 431 432 /** 433 * amdgpu_vm_clear_bo - initially clear the page dir/table 434 * 435 * @adev: amdgpu_device pointer 436 * @bo: bo to clear 437 * 438 * need to reserve bo first before calling it. 439 */ 440 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, 441 struct amdgpu_vm *vm, 442 struct amdgpu_bo *bo) 443 { 444 struct amdgpu_ring *ring; 445 struct fence *fence = NULL; 446 struct amdgpu_job *job; 447 unsigned entries; 448 uint64_t addr; 449 int r; 450 451 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched); 452 453 r = reservation_object_reserve_shared(bo->tbo.resv); 454 if (r) 455 return r; 456 457 r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false); 458 if (r) 459 goto error; 460 461 addr = amdgpu_bo_gpu_offset(bo); 462 entries = amdgpu_bo_size(bo) / 8; 463 464 r = amdgpu_job_alloc_with_ib(adev, 64, &job); 465 if (r) 466 goto error; 467 468 amdgpu_vm_update_pages(adev, 0, NULL, &job->ibs[0], addr, 0, entries, 469 0, 0); 470 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 471 472 WARN_ON(job->ibs[0].length_dw > 64); 473 r = amdgpu_job_submit(job, ring, &vm->entity, 474 AMDGPU_FENCE_OWNER_VM, &fence); 475 if (r) 476 goto error_free; 477 478 amdgpu_bo_fence(bo, fence, true); 479 fence_put(fence); 480 return 0; 481 482 error_free: 483 amdgpu_job_free(job); 484 485 error: 486 return r; 487 } 488 489 /** 490 * amdgpu_vm_map_gart - Resolve gart mapping of addr 491 * 492 * @pages_addr: optional DMA address to use for lookup 493 * @addr: the unmapped addr 494 * 495 * Look up the physical address of the page that the pte resolves 496 * to and return the pointer for the page table entry. 497 */ 498 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 499 { 500 uint64_t result; 501 502 if (pages_addr) { 503 /* page table offset */ 504 result = pages_addr[addr >> PAGE_SHIFT]; 505 506 /* in case cpu page size != gpu page size*/ 507 result |= addr & (~PAGE_MASK); 508 509 } else { 510 /* No mapping required */ 511 result = addr; 512 } 513 514 result &= 0xFFFFFFFFFFFFF000ULL; 515 516 return result; 517 } 518 519 /** 520 * amdgpu_vm_update_pdes - make sure that page directory is valid 521 * 522 * @adev: amdgpu_device pointer 523 * @vm: requested vm 524 * @start: start of GPU address range 525 * @end: end of GPU address range 526 * 527 * Allocates new page tables if necessary 528 * and updates the page directory. 529 * Returns 0 for success, error for failure. 530 */ 531 int amdgpu_vm_update_page_directory(struct amdgpu_device *adev, 532 struct amdgpu_vm *vm) 533 { 534 struct amdgpu_ring *ring; 535 struct amdgpu_bo *pd = vm->page_directory; 536 uint64_t pd_addr = amdgpu_bo_gpu_offset(pd); 537 uint32_t incr = AMDGPU_VM_PTE_COUNT * 8; 538 uint64_t last_pde = ~0, last_pt = ~0; 539 unsigned count = 0, pt_idx, ndw; 540 struct amdgpu_job *job; 541 struct amdgpu_ib *ib; 542 struct fence *fence = NULL; 543 544 int r; 545 546 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched); 547 548 /* padding, etc. */ 549 ndw = 64; 550 551 /* assume the worst case */ 552 ndw += vm->max_pde_used * 6; 553 554 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 555 if (r) 556 return r; 557 558 ib = &job->ibs[0]; 559 560 /* walk over the address space and update the page directory */ 561 for (pt_idx = 0; pt_idx <= vm->max_pde_used; ++pt_idx) { 562 struct amdgpu_bo *bo = vm->page_tables[pt_idx].entry.robj; 563 uint64_t pde, pt; 564 565 if (bo == NULL) 566 continue; 567 568 pt = amdgpu_bo_gpu_offset(bo); 569 if (vm->page_tables[pt_idx].addr == pt) 570 continue; 571 vm->page_tables[pt_idx].addr = pt; 572 573 pde = pd_addr + pt_idx * 8; 574 if (((last_pde + 8 * count) != pde) || 575 ((last_pt + incr * count) != pt)) { 576 577 if (count) { 578 amdgpu_vm_update_pages(adev, 0, NULL, ib, 579 last_pde, last_pt, 580 count, incr, 581 AMDGPU_PTE_VALID); 582 } 583 584 count = 1; 585 last_pde = pde; 586 last_pt = pt; 587 } else { 588 ++count; 589 } 590 } 591 592 if (count) 593 amdgpu_vm_update_pages(adev, 0, NULL, ib, last_pde, last_pt, 594 count, incr, AMDGPU_PTE_VALID); 595 596 if (ib->length_dw != 0) { 597 amdgpu_ring_pad_ib(ring, ib); 598 amdgpu_sync_resv(adev, &job->sync, pd->tbo.resv, 599 AMDGPU_FENCE_OWNER_VM); 600 WARN_ON(ib->length_dw > ndw); 601 r = amdgpu_job_submit(job, ring, &vm->entity, 602 AMDGPU_FENCE_OWNER_VM, &fence); 603 if (r) 604 goto error_free; 605 606 amdgpu_bo_fence(pd, fence, true); 607 fence_put(vm->page_directory_fence); 608 vm->page_directory_fence = fence_get(fence); 609 fence_put(fence); 610 611 } else { 612 amdgpu_job_free(job); 613 } 614 615 return 0; 616 617 error_free: 618 amdgpu_job_free(job); 619 return r; 620 } 621 622 /** 623 * amdgpu_vm_frag_ptes - add fragment information to PTEs 624 * 625 * @adev: amdgpu_device pointer 626 * @src: address where to copy page table entries from 627 * @pages_addr: DMA addresses to use for mapping 628 * @ib: IB for the update 629 * @pe_start: first PTE to handle 630 * @pe_end: last PTE to handle 631 * @addr: addr those PTEs should point to 632 * @flags: hw mapping flags 633 */ 634 static void amdgpu_vm_frag_ptes(struct amdgpu_device *adev, 635 uint64_t src, 636 dma_addr_t *pages_addr, 637 struct amdgpu_ib *ib, 638 uint64_t pe_start, uint64_t pe_end, 639 uint64_t addr, uint32_t flags) 640 { 641 /** 642 * The MC L1 TLB supports variable sized pages, based on a fragment 643 * field in the PTE. When this field is set to a non-zero value, page 644 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 645 * flags are considered valid for all PTEs within the fragment range 646 * and corresponding mappings are assumed to be physically contiguous. 647 * 648 * The L1 TLB can store a single PTE for the whole fragment, 649 * significantly increasing the space available for translation 650 * caching. This leads to large improvements in throughput when the 651 * TLB is under pressure. 652 * 653 * The L2 TLB distributes small and large fragments into two 654 * asymmetric partitions. The large fragment cache is significantly 655 * larger. Thus, we try to use large fragments wherever possible. 656 * Userspace can support this by aligning virtual base address and 657 * allocation size to the fragment size. 658 */ 659 660 /* SI and newer are optimized for 64KB */ 661 uint64_t frag_flags = AMDGPU_PTE_FRAG_64KB; 662 uint64_t frag_align = 0x80; 663 664 uint64_t frag_start = ALIGN(pe_start, frag_align); 665 uint64_t frag_end = pe_end & ~(frag_align - 1); 666 667 unsigned count; 668 669 /* Abort early if there isn't anything to do */ 670 if (pe_start == pe_end) 671 return; 672 673 /* system pages are non continuously */ 674 if (src || pages_addr || !(flags & AMDGPU_PTE_VALID) || 675 (frag_start >= frag_end)) { 676 677 count = (pe_end - pe_start) / 8; 678 amdgpu_vm_update_pages(adev, src, pages_addr, ib, pe_start, 679 addr, count, AMDGPU_GPU_PAGE_SIZE, 680 flags); 681 return; 682 } 683 684 /* handle the 4K area at the beginning */ 685 if (pe_start != frag_start) { 686 count = (frag_start - pe_start) / 8; 687 amdgpu_vm_update_pages(adev, 0, NULL, ib, pe_start, addr, 688 count, AMDGPU_GPU_PAGE_SIZE, flags); 689 addr += AMDGPU_GPU_PAGE_SIZE * count; 690 } 691 692 /* handle the area in the middle */ 693 count = (frag_end - frag_start) / 8; 694 amdgpu_vm_update_pages(adev, 0, NULL, ib, frag_start, addr, count, 695 AMDGPU_GPU_PAGE_SIZE, flags | frag_flags); 696 697 /* handle the 4K area at the end */ 698 if (frag_end != pe_end) { 699 addr += AMDGPU_GPU_PAGE_SIZE * count; 700 count = (pe_end - frag_end) / 8; 701 amdgpu_vm_update_pages(adev, 0, NULL, ib, frag_end, addr, 702 count, AMDGPU_GPU_PAGE_SIZE, flags); 703 } 704 } 705 706 /** 707 * amdgpu_vm_update_ptes - make sure that page tables are valid 708 * 709 * @adev: amdgpu_device pointer 710 * @src: address where to copy page table entries from 711 * @pages_addr: DMA addresses to use for mapping 712 * @vm: requested vm 713 * @start: start of GPU address range 714 * @end: end of GPU address range 715 * @dst: destination address to map to 716 * @flags: mapping flags 717 * 718 * Update the page tables in the range @start - @end. 719 */ 720 static void amdgpu_vm_update_ptes(struct amdgpu_device *adev, 721 uint64_t src, 722 dma_addr_t *pages_addr, 723 struct amdgpu_vm *vm, 724 struct amdgpu_ib *ib, 725 uint64_t start, uint64_t end, 726 uint64_t dst, uint32_t flags) 727 { 728 const uint64_t mask = AMDGPU_VM_PTE_COUNT - 1; 729 730 uint64_t last_pe_start = ~0, last_pe_end = ~0, last_dst = ~0; 731 uint64_t addr; 732 733 /* walk over the address space and update the page tables */ 734 for (addr = start; addr < end; ) { 735 uint64_t pt_idx = addr >> amdgpu_vm_block_size; 736 struct amdgpu_bo *pt = vm->page_tables[pt_idx].entry.robj; 737 unsigned nptes; 738 uint64_t pe_start; 739 740 if ((addr & ~mask) == (end & ~mask)) 741 nptes = end - addr; 742 else 743 nptes = AMDGPU_VM_PTE_COUNT - (addr & mask); 744 745 pe_start = amdgpu_bo_gpu_offset(pt); 746 pe_start += (addr & mask) * 8; 747 748 if (last_pe_end != pe_start) { 749 750 amdgpu_vm_frag_ptes(adev, src, pages_addr, ib, 751 last_pe_start, last_pe_end, 752 last_dst, flags); 753 754 last_pe_start = pe_start; 755 last_pe_end = pe_start + 8 * nptes; 756 last_dst = dst; 757 } else { 758 last_pe_end += 8 * nptes; 759 } 760 761 addr += nptes; 762 dst += nptes * AMDGPU_GPU_PAGE_SIZE; 763 } 764 765 amdgpu_vm_frag_ptes(adev, src, pages_addr, ib, last_pe_start, 766 last_pe_end, last_dst, flags); 767 } 768 769 /** 770 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 771 * 772 * @adev: amdgpu_device pointer 773 * @src: address where to copy page table entries from 774 * @pages_addr: DMA addresses to use for mapping 775 * @vm: requested vm 776 * @start: start of mapped range 777 * @last: last mapped entry 778 * @flags: flags for the entries 779 * @addr: addr to set the area to 780 * @fence: optional resulting fence 781 * 782 * Fill in the page table entries between @start and @last. 783 * Returns 0 for success, -EINVAL for failure. 784 */ 785 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 786 uint64_t src, 787 dma_addr_t *pages_addr, 788 struct amdgpu_vm *vm, 789 uint64_t start, uint64_t last, 790 uint32_t flags, uint64_t addr, 791 struct fence **fence) 792 { 793 struct amdgpu_ring *ring; 794 void *owner = AMDGPU_FENCE_OWNER_VM; 795 unsigned nptes, ncmds, ndw; 796 struct amdgpu_job *job; 797 struct amdgpu_ib *ib; 798 struct fence *f = NULL; 799 int r; 800 801 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched); 802 803 /* sync to everything on unmapping */ 804 if (!(flags & AMDGPU_PTE_VALID)) 805 owner = AMDGPU_FENCE_OWNER_UNDEFINED; 806 807 nptes = last - start + 1; 808 809 /* 810 * reserve space for one command every (1 << BLOCK_SIZE) 811 * entries or 2k dwords (whatever is smaller) 812 */ 813 ncmds = (nptes >> min(amdgpu_vm_block_size, 11)) + 1; 814 815 /* padding, etc. */ 816 ndw = 64; 817 818 if (src) { 819 /* only copy commands needed */ 820 ndw += ncmds * 7; 821 822 } else if (pages_addr) { 823 /* header for write data commands */ 824 ndw += ncmds * 4; 825 826 /* body of write data command */ 827 ndw += nptes * 2; 828 829 } else { 830 /* set page commands needed */ 831 ndw += ncmds * 10; 832 833 /* two extra commands for begin/end of fragment */ 834 ndw += 2 * 10; 835 } 836 837 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 838 if (r) 839 return r; 840 841 ib = &job->ibs[0]; 842 843 r = amdgpu_sync_resv(adev, &job->sync, vm->page_directory->tbo.resv, 844 owner); 845 if (r) 846 goto error_free; 847 848 r = reservation_object_reserve_shared(vm->page_directory->tbo.resv); 849 if (r) 850 goto error_free; 851 852 amdgpu_vm_update_ptes(adev, src, pages_addr, vm, ib, start, 853 last + 1, addr, flags); 854 855 amdgpu_ring_pad_ib(ring, ib); 856 WARN_ON(ib->length_dw > ndw); 857 r = amdgpu_job_submit(job, ring, &vm->entity, 858 AMDGPU_FENCE_OWNER_VM, &f); 859 if (r) 860 goto error_free; 861 862 amdgpu_bo_fence(vm->page_directory, f, true); 863 if (fence) { 864 fence_put(*fence); 865 *fence = fence_get(f); 866 } 867 fence_put(f); 868 return 0; 869 870 error_free: 871 amdgpu_job_free(job); 872 return r; 873 } 874 875 /** 876 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks 877 * 878 * @adev: amdgpu_device pointer 879 * @gtt_flags: flags as they are used for GTT 880 * @pages_addr: DMA addresses to use for mapping 881 * @vm: requested vm 882 * @mapping: mapped range and flags to use for the update 883 * @addr: addr to set the area to 884 * @flags: HW flags for the mapping 885 * @fence: optional resulting fence 886 * 887 * Split the mapping into smaller chunks so that each update fits 888 * into a SDMA IB. 889 * Returns 0 for success, -EINVAL for failure. 890 */ 891 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev, 892 uint32_t gtt_flags, 893 dma_addr_t *pages_addr, 894 struct amdgpu_vm *vm, 895 struct amdgpu_bo_va_mapping *mapping, 896 uint32_t flags, uint64_t addr, 897 struct fence **fence) 898 { 899 const uint64_t max_size = 64ULL * 1024ULL * 1024ULL / AMDGPU_GPU_PAGE_SIZE; 900 901 uint64_t src = 0, start = mapping->it.start; 902 int r; 903 904 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 905 * but in case of something, we filter the flags in first place 906 */ 907 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 908 flags &= ~AMDGPU_PTE_READABLE; 909 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 910 flags &= ~AMDGPU_PTE_WRITEABLE; 911 912 trace_amdgpu_vm_bo_update(mapping); 913 914 if (pages_addr) { 915 if (flags == gtt_flags) 916 src = adev->gart.table_addr + (addr >> 12) * 8; 917 addr = 0; 918 } 919 addr += mapping->offset; 920 921 if (!pages_addr || src) 922 return amdgpu_vm_bo_update_mapping(adev, src, pages_addr, vm, 923 start, mapping->it.last, 924 flags, addr, fence); 925 926 while (start != mapping->it.last + 1) { 927 uint64_t last; 928 929 last = min((uint64_t)mapping->it.last, start + max_size - 1); 930 r = amdgpu_vm_bo_update_mapping(adev, src, pages_addr, vm, 931 start, last, flags, addr, 932 fence); 933 if (r) 934 return r; 935 936 start = last + 1; 937 addr += max_size * AMDGPU_GPU_PAGE_SIZE; 938 } 939 940 return 0; 941 } 942 943 /** 944 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 945 * 946 * @adev: amdgpu_device pointer 947 * @bo_va: requested BO and VM object 948 * @mem: ttm mem 949 * 950 * Fill in the page table entries for @bo_va. 951 * Returns 0 for success, -EINVAL for failure. 952 * 953 * Object have to be reserved and mutex must be locked! 954 */ 955 int amdgpu_vm_bo_update(struct amdgpu_device *adev, 956 struct amdgpu_bo_va *bo_va, 957 struct ttm_mem_reg *mem) 958 { 959 struct amdgpu_vm *vm = bo_va->vm; 960 struct amdgpu_bo_va_mapping *mapping; 961 dma_addr_t *pages_addr = NULL; 962 uint32_t gtt_flags, flags; 963 uint64_t addr; 964 int r; 965 966 if (mem) { 967 struct ttm_dma_tt *ttm; 968 969 addr = (u64)mem->start << PAGE_SHIFT; 970 switch (mem->mem_type) { 971 case TTM_PL_TT: 972 ttm = container_of(bo_va->bo->tbo.ttm, struct 973 ttm_dma_tt, ttm); 974 pages_addr = ttm->dma_address; 975 break; 976 977 case TTM_PL_VRAM: 978 addr += adev->vm_manager.vram_base_offset; 979 break; 980 981 default: 982 break; 983 } 984 } else { 985 addr = 0; 986 } 987 988 flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem); 989 gtt_flags = (adev == bo_va->bo->adev) ? flags : 0; 990 991 spin_lock(&vm->status_lock); 992 if (!list_empty(&bo_va->vm_status)) 993 list_splice_init(&bo_va->valids, &bo_va->invalids); 994 spin_unlock(&vm->status_lock); 995 996 list_for_each_entry(mapping, &bo_va->invalids, list) { 997 r = amdgpu_vm_bo_split_mapping(adev, gtt_flags, pages_addr, vm, 998 mapping, flags, addr, 999 &bo_va->last_pt_update); 1000 if (r) 1001 return r; 1002 } 1003 1004 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1005 list_for_each_entry(mapping, &bo_va->valids, list) 1006 trace_amdgpu_vm_bo_mapping(mapping); 1007 1008 list_for_each_entry(mapping, &bo_va->invalids, list) 1009 trace_amdgpu_vm_bo_mapping(mapping); 1010 } 1011 1012 spin_lock(&vm->status_lock); 1013 list_splice_init(&bo_va->invalids, &bo_va->valids); 1014 list_del_init(&bo_va->vm_status); 1015 if (!mem) 1016 list_add(&bo_va->vm_status, &vm->cleared); 1017 spin_unlock(&vm->status_lock); 1018 1019 return 0; 1020 } 1021 1022 /** 1023 * amdgpu_vm_clear_freed - clear freed BOs in the PT 1024 * 1025 * @adev: amdgpu_device pointer 1026 * @vm: requested vm 1027 * 1028 * Make sure all freed BOs are cleared in the PT. 1029 * Returns 0 for success. 1030 * 1031 * PTs have to be reserved and mutex must be locked! 1032 */ 1033 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 1034 struct amdgpu_vm *vm) 1035 { 1036 struct amdgpu_bo_va_mapping *mapping; 1037 int r; 1038 1039 while (!list_empty(&vm->freed)) { 1040 mapping = list_first_entry(&vm->freed, 1041 struct amdgpu_bo_va_mapping, list); 1042 list_del(&mapping->list); 1043 1044 r = amdgpu_vm_bo_split_mapping(adev, 0, NULL, vm, mapping, 1045 0, 0, NULL); 1046 kfree(mapping); 1047 if (r) 1048 return r; 1049 1050 } 1051 return 0; 1052 1053 } 1054 1055 /** 1056 * amdgpu_vm_clear_invalids - clear invalidated BOs in the PT 1057 * 1058 * @adev: amdgpu_device pointer 1059 * @vm: requested vm 1060 * 1061 * Make sure all invalidated BOs are cleared in the PT. 1062 * Returns 0 for success. 1063 * 1064 * PTs have to be reserved and mutex must be locked! 1065 */ 1066 int amdgpu_vm_clear_invalids(struct amdgpu_device *adev, 1067 struct amdgpu_vm *vm, struct amdgpu_sync *sync) 1068 { 1069 struct amdgpu_bo_va *bo_va = NULL; 1070 int r = 0; 1071 1072 spin_lock(&vm->status_lock); 1073 while (!list_empty(&vm->invalidated)) { 1074 bo_va = list_first_entry(&vm->invalidated, 1075 struct amdgpu_bo_va, vm_status); 1076 spin_unlock(&vm->status_lock); 1077 1078 r = amdgpu_vm_bo_update(adev, bo_va, NULL); 1079 if (r) 1080 return r; 1081 1082 spin_lock(&vm->status_lock); 1083 } 1084 spin_unlock(&vm->status_lock); 1085 1086 if (bo_va) 1087 r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update); 1088 1089 return r; 1090 } 1091 1092 /** 1093 * amdgpu_vm_bo_add - add a bo to a specific vm 1094 * 1095 * @adev: amdgpu_device pointer 1096 * @vm: requested vm 1097 * @bo: amdgpu buffer object 1098 * 1099 * Add @bo into the requested vm. 1100 * Add @bo to the list of bos associated with the vm 1101 * Returns newly added bo_va or NULL for failure 1102 * 1103 * Object has to be reserved! 1104 */ 1105 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 1106 struct amdgpu_vm *vm, 1107 struct amdgpu_bo *bo) 1108 { 1109 struct amdgpu_bo_va *bo_va; 1110 1111 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 1112 if (bo_va == NULL) { 1113 return NULL; 1114 } 1115 bo_va->vm = vm; 1116 bo_va->bo = bo; 1117 bo_va->ref_count = 1; 1118 INIT_LIST_HEAD(&bo_va->bo_list); 1119 INIT_LIST_HEAD(&bo_va->valids); 1120 INIT_LIST_HEAD(&bo_va->invalids); 1121 INIT_LIST_HEAD(&bo_va->vm_status); 1122 1123 list_add_tail(&bo_va->bo_list, &bo->va); 1124 1125 return bo_va; 1126 } 1127 1128 /** 1129 * amdgpu_vm_bo_map - map bo inside a vm 1130 * 1131 * @adev: amdgpu_device pointer 1132 * @bo_va: bo_va to store the address 1133 * @saddr: where to map the BO 1134 * @offset: requested offset in the BO 1135 * @flags: attributes of pages (read/write/valid/etc.) 1136 * 1137 * Add a mapping of the BO at the specefied addr into the VM. 1138 * Returns 0 for success, error for failure. 1139 * 1140 * Object has to be reserved and unreserved outside! 1141 */ 1142 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 1143 struct amdgpu_bo_va *bo_va, 1144 uint64_t saddr, uint64_t offset, 1145 uint64_t size, uint32_t flags) 1146 { 1147 struct amdgpu_bo_va_mapping *mapping; 1148 struct amdgpu_vm *vm = bo_va->vm; 1149 struct interval_tree_node *it; 1150 unsigned last_pfn, pt_idx; 1151 uint64_t eaddr; 1152 int r; 1153 1154 /* validate the parameters */ 1155 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 1156 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 1157 return -EINVAL; 1158 1159 /* make sure object fit at this offset */ 1160 eaddr = saddr + size - 1; 1161 if ((saddr >= eaddr) || (offset + size > amdgpu_bo_size(bo_va->bo))) 1162 return -EINVAL; 1163 1164 last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE; 1165 if (last_pfn >= adev->vm_manager.max_pfn) { 1166 dev_err(adev->dev, "va above limit (0x%08X >= 0x%08X)\n", 1167 last_pfn, adev->vm_manager.max_pfn); 1168 return -EINVAL; 1169 } 1170 1171 saddr /= AMDGPU_GPU_PAGE_SIZE; 1172 eaddr /= AMDGPU_GPU_PAGE_SIZE; 1173 1174 it = interval_tree_iter_first(&vm->va, saddr, eaddr); 1175 if (it) { 1176 struct amdgpu_bo_va_mapping *tmp; 1177 tmp = container_of(it, struct amdgpu_bo_va_mapping, it); 1178 /* bo and tmp overlap, invalid addr */ 1179 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 1180 "0x%010lx-0x%010lx\n", bo_va->bo, saddr, eaddr, 1181 tmp->it.start, tmp->it.last + 1); 1182 r = -EINVAL; 1183 goto error; 1184 } 1185 1186 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1187 if (!mapping) { 1188 r = -ENOMEM; 1189 goto error; 1190 } 1191 1192 INIT_LIST_HEAD(&mapping->list); 1193 mapping->it.start = saddr; 1194 mapping->it.last = eaddr; 1195 mapping->offset = offset; 1196 mapping->flags = flags; 1197 1198 list_add(&mapping->list, &bo_va->invalids); 1199 interval_tree_insert(&mapping->it, &vm->va); 1200 1201 /* Make sure the page tables are allocated */ 1202 saddr >>= amdgpu_vm_block_size; 1203 eaddr >>= amdgpu_vm_block_size; 1204 1205 BUG_ON(eaddr >= amdgpu_vm_num_pdes(adev)); 1206 1207 if (eaddr > vm->max_pde_used) 1208 vm->max_pde_used = eaddr; 1209 1210 /* walk over the address space and allocate the page tables */ 1211 for (pt_idx = saddr; pt_idx <= eaddr; ++pt_idx) { 1212 struct reservation_object *resv = vm->page_directory->tbo.resv; 1213 struct amdgpu_bo_list_entry *entry; 1214 struct amdgpu_bo *pt; 1215 1216 entry = &vm->page_tables[pt_idx].entry; 1217 if (entry->robj) 1218 continue; 1219 1220 r = amdgpu_bo_create(adev, AMDGPU_VM_PTE_COUNT * 8, 1221 AMDGPU_GPU_PAGE_SIZE, true, 1222 AMDGPU_GEM_DOMAIN_VRAM, 1223 AMDGPU_GEM_CREATE_NO_CPU_ACCESS, 1224 NULL, resv, &pt); 1225 if (r) 1226 goto error_free; 1227 1228 /* Keep a reference to the page table to avoid freeing 1229 * them up in the wrong order. 1230 */ 1231 pt->parent = amdgpu_bo_ref(vm->page_directory); 1232 1233 r = amdgpu_vm_clear_bo(adev, vm, pt); 1234 if (r) { 1235 amdgpu_bo_unref(&pt); 1236 goto error_free; 1237 } 1238 1239 entry->robj = pt; 1240 entry->priority = 0; 1241 entry->tv.bo = &entry->robj->tbo; 1242 entry->tv.shared = true; 1243 entry->user_pages = NULL; 1244 vm->page_tables[pt_idx].addr = 0; 1245 } 1246 1247 return 0; 1248 1249 error_free: 1250 list_del(&mapping->list); 1251 interval_tree_remove(&mapping->it, &vm->va); 1252 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 1253 kfree(mapping); 1254 1255 error: 1256 return r; 1257 } 1258 1259 /** 1260 * amdgpu_vm_bo_unmap - remove bo mapping from vm 1261 * 1262 * @adev: amdgpu_device pointer 1263 * @bo_va: bo_va to remove the address from 1264 * @saddr: where to the BO is mapped 1265 * 1266 * Remove a mapping of the BO at the specefied addr from the VM. 1267 * Returns 0 for success, error for failure. 1268 * 1269 * Object has to be reserved and unreserved outside! 1270 */ 1271 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 1272 struct amdgpu_bo_va *bo_va, 1273 uint64_t saddr) 1274 { 1275 struct amdgpu_bo_va_mapping *mapping; 1276 struct amdgpu_vm *vm = bo_va->vm; 1277 bool valid = true; 1278 1279 saddr /= AMDGPU_GPU_PAGE_SIZE; 1280 1281 list_for_each_entry(mapping, &bo_va->valids, list) { 1282 if (mapping->it.start == saddr) 1283 break; 1284 } 1285 1286 if (&mapping->list == &bo_va->valids) { 1287 valid = false; 1288 1289 list_for_each_entry(mapping, &bo_va->invalids, list) { 1290 if (mapping->it.start == saddr) 1291 break; 1292 } 1293 1294 if (&mapping->list == &bo_va->invalids) 1295 return -ENOENT; 1296 } 1297 1298 list_del(&mapping->list); 1299 interval_tree_remove(&mapping->it, &vm->va); 1300 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 1301 1302 if (valid) 1303 list_add(&mapping->list, &vm->freed); 1304 else 1305 kfree(mapping); 1306 1307 return 0; 1308 } 1309 1310 /** 1311 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 1312 * 1313 * @adev: amdgpu_device pointer 1314 * @bo_va: requested bo_va 1315 * 1316 * Remove @bo_va->bo from the requested vm. 1317 * 1318 * Object have to be reserved! 1319 */ 1320 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 1321 struct amdgpu_bo_va *bo_va) 1322 { 1323 struct amdgpu_bo_va_mapping *mapping, *next; 1324 struct amdgpu_vm *vm = bo_va->vm; 1325 1326 list_del(&bo_va->bo_list); 1327 1328 spin_lock(&vm->status_lock); 1329 list_del(&bo_va->vm_status); 1330 spin_unlock(&vm->status_lock); 1331 1332 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 1333 list_del(&mapping->list); 1334 interval_tree_remove(&mapping->it, &vm->va); 1335 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 1336 list_add(&mapping->list, &vm->freed); 1337 } 1338 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 1339 list_del(&mapping->list); 1340 interval_tree_remove(&mapping->it, &vm->va); 1341 kfree(mapping); 1342 } 1343 1344 fence_put(bo_va->last_pt_update); 1345 kfree(bo_va); 1346 } 1347 1348 /** 1349 * amdgpu_vm_bo_invalidate - mark the bo as invalid 1350 * 1351 * @adev: amdgpu_device pointer 1352 * @vm: requested vm 1353 * @bo: amdgpu buffer object 1354 * 1355 * Mark @bo as invalid. 1356 */ 1357 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 1358 struct amdgpu_bo *bo) 1359 { 1360 struct amdgpu_bo_va *bo_va; 1361 1362 list_for_each_entry(bo_va, &bo->va, bo_list) { 1363 spin_lock(&bo_va->vm->status_lock); 1364 if (list_empty(&bo_va->vm_status)) 1365 list_add(&bo_va->vm_status, &bo_va->vm->invalidated); 1366 spin_unlock(&bo_va->vm->status_lock); 1367 } 1368 } 1369 1370 /** 1371 * amdgpu_vm_init - initialize a vm instance 1372 * 1373 * @adev: amdgpu_device pointer 1374 * @vm: requested vm 1375 * 1376 * Init @vm fields. 1377 */ 1378 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1379 { 1380 const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE, 1381 AMDGPU_VM_PTE_COUNT * 8); 1382 unsigned pd_size, pd_entries; 1383 unsigned ring_instance; 1384 struct amdgpu_ring *ring; 1385 struct amd_sched_rq *rq; 1386 int i, r; 1387 1388 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 1389 vm->ids[i] = NULL; 1390 vm->va = RB_ROOT; 1391 vm->client_id = atomic64_inc_return(&adev->vm_manager.client_counter); 1392 spin_lock_init(&vm->status_lock); 1393 INIT_LIST_HEAD(&vm->invalidated); 1394 INIT_LIST_HEAD(&vm->cleared); 1395 INIT_LIST_HEAD(&vm->freed); 1396 1397 pd_size = amdgpu_vm_directory_size(adev); 1398 pd_entries = amdgpu_vm_num_pdes(adev); 1399 1400 /* allocate page table array */ 1401 vm->page_tables = drm_calloc_large(pd_entries, sizeof(struct amdgpu_vm_pt)); 1402 if (vm->page_tables == NULL) { 1403 DRM_ERROR("Cannot allocate memory for page table array\n"); 1404 return -ENOMEM; 1405 } 1406 1407 /* create scheduler entity for page table updates */ 1408 1409 ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring); 1410 ring_instance %= adev->vm_manager.vm_pte_num_rings; 1411 ring = adev->vm_manager.vm_pte_rings[ring_instance]; 1412 rq = &ring->sched.sched_rq[AMD_SCHED_PRIORITY_KERNEL]; 1413 r = amd_sched_entity_init(&ring->sched, &vm->entity, 1414 rq, amdgpu_sched_jobs); 1415 if (r) 1416 return r; 1417 1418 vm->page_directory_fence = NULL; 1419 1420 r = amdgpu_bo_create(adev, pd_size, align, true, 1421 AMDGPU_GEM_DOMAIN_VRAM, 1422 AMDGPU_GEM_CREATE_NO_CPU_ACCESS, 1423 NULL, NULL, &vm->page_directory); 1424 if (r) 1425 goto error_free_sched_entity; 1426 1427 r = amdgpu_bo_reserve(vm->page_directory, false); 1428 if (r) 1429 goto error_free_page_directory; 1430 1431 r = amdgpu_vm_clear_bo(adev, vm, vm->page_directory); 1432 amdgpu_bo_unreserve(vm->page_directory); 1433 if (r) 1434 goto error_free_page_directory; 1435 1436 return 0; 1437 1438 error_free_page_directory: 1439 amdgpu_bo_unref(&vm->page_directory); 1440 vm->page_directory = NULL; 1441 1442 error_free_sched_entity: 1443 amd_sched_entity_fini(&ring->sched, &vm->entity); 1444 1445 return r; 1446 } 1447 1448 /** 1449 * amdgpu_vm_fini - tear down a vm instance 1450 * 1451 * @adev: amdgpu_device pointer 1452 * @vm: requested vm 1453 * 1454 * Tear down @vm. 1455 * Unbind the VM and remove all bos from the vm bo list 1456 */ 1457 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1458 { 1459 struct amdgpu_bo_va_mapping *mapping, *tmp; 1460 int i; 1461 1462 amd_sched_entity_fini(vm->entity.sched, &vm->entity); 1463 1464 if (!RB_EMPTY_ROOT(&vm->va)) { 1465 dev_err(adev->dev, "still active bo inside vm\n"); 1466 } 1467 rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, it.rb) { 1468 list_del(&mapping->list); 1469 interval_tree_remove(&mapping->it, &vm->va); 1470 kfree(mapping); 1471 } 1472 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 1473 list_del(&mapping->list); 1474 kfree(mapping); 1475 } 1476 1477 for (i = 0; i < amdgpu_vm_num_pdes(adev); i++) 1478 amdgpu_bo_unref(&vm->page_tables[i].entry.robj); 1479 drm_free_large(vm->page_tables); 1480 1481 amdgpu_bo_unref(&vm->page_directory); 1482 fence_put(vm->page_directory_fence); 1483 } 1484 1485 /** 1486 * amdgpu_vm_manager_init - init the VM manager 1487 * 1488 * @adev: amdgpu_device pointer 1489 * 1490 * Initialize the VM manager structures 1491 */ 1492 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 1493 { 1494 unsigned i; 1495 1496 INIT_LIST_HEAD(&adev->vm_manager.ids_lru); 1497 1498 /* skip over VMID 0, since it is the system VM */ 1499 for (i = 1; i < adev->vm_manager.num_ids; ++i) { 1500 amdgpu_vm_reset_id(adev, i); 1501 amdgpu_sync_create(&adev->vm_manager.ids[i].active); 1502 list_add_tail(&adev->vm_manager.ids[i].list, 1503 &adev->vm_manager.ids_lru); 1504 } 1505 1506 atomic_set(&adev->vm_manager.vm_pte_next_ring, 0); 1507 atomic64_set(&adev->vm_manager.client_counter, 0); 1508 } 1509 1510 /** 1511 * amdgpu_vm_manager_fini - cleanup VM manager 1512 * 1513 * @adev: amdgpu_device pointer 1514 * 1515 * Cleanup the VM manager and free resources. 1516 */ 1517 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 1518 { 1519 unsigned i; 1520 1521 for (i = 0; i < AMDGPU_NUM_VM; ++i) { 1522 struct amdgpu_vm_id *id = &adev->vm_manager.ids[i]; 1523 1524 fence_put(adev->vm_manager.ids[i].first); 1525 amdgpu_sync_free(&adev->vm_manager.ids[i].active); 1526 fence_put(id->flushed_updates); 1527 } 1528 } 1529