1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <linux/dma-fence-array.h> 29 #include <linux/interval_tree_generic.h> 30 #include <linux/idr.h> 31 32 #include <drm/amdgpu_drm.h> 33 #include "amdgpu.h" 34 #include "amdgpu_trace.h" 35 #include "amdgpu_amdkfd.h" 36 #include "amdgpu_gmc.h" 37 #include "amdgpu_xgmi.h" 38 39 /** 40 * DOC: GPUVM 41 * 42 * GPUVM is similar to the legacy gart on older asics, however 43 * rather than there being a single global gart table 44 * for the entire GPU, there are multiple VM page tables active 45 * at any given time. The VM page tables can contain a mix 46 * vram pages and system memory pages and system memory pages 47 * can be mapped as snooped (cached system pages) or unsnooped 48 * (uncached system pages). 49 * Each VM has an ID associated with it and there is a page table 50 * associated with each VMID. When execting a command buffer, 51 * the kernel tells the the ring what VMID to use for that command 52 * buffer. VMIDs are allocated dynamically as commands are submitted. 53 * The userspace drivers maintain their own address space and the kernel 54 * sets up their pages tables accordingly when they submit their 55 * command buffers and a VMID is assigned. 56 * Cayman/Trinity support up to 8 active VMs at any given time; 57 * SI supports 16. 58 */ 59 60 #define START(node) ((node)->start) 61 #define LAST(node) ((node)->last) 62 63 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 64 START, LAST, static, amdgpu_vm_it) 65 66 #undef START 67 #undef LAST 68 69 /** 70 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 71 */ 72 struct amdgpu_prt_cb { 73 74 /** 75 * @adev: amdgpu device 76 */ 77 struct amdgpu_device *adev; 78 79 /** 80 * @cb: callback 81 */ 82 struct dma_fence_cb cb; 83 }; 84 85 /** 86 * amdgpu_vm_level_shift - return the addr shift for each level 87 * 88 * @adev: amdgpu_device pointer 89 * @level: VMPT level 90 * 91 * Returns: 92 * The number of bits the pfn needs to be right shifted for a level. 93 */ 94 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev, 95 unsigned level) 96 { 97 unsigned shift = 0xff; 98 99 switch (level) { 100 case AMDGPU_VM_PDB2: 101 case AMDGPU_VM_PDB1: 102 case AMDGPU_VM_PDB0: 103 shift = 9 * (AMDGPU_VM_PDB0 - level) + 104 adev->vm_manager.block_size; 105 break; 106 case AMDGPU_VM_PTB: 107 shift = 0; 108 break; 109 default: 110 dev_err(adev->dev, "the level%d isn't supported.\n", level); 111 } 112 113 return shift; 114 } 115 116 /** 117 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 118 * 119 * @adev: amdgpu_device pointer 120 * @level: VMPT level 121 * 122 * Returns: 123 * The number of entries in a page directory or page table. 124 */ 125 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 126 unsigned level) 127 { 128 unsigned shift = amdgpu_vm_level_shift(adev, 129 adev->vm_manager.root_level); 130 131 if (level == adev->vm_manager.root_level) 132 /* For the root directory */ 133 return round_up(adev->vm_manager.max_pfn, 1ULL << shift) >> shift; 134 else if (level != AMDGPU_VM_PTB) 135 /* Everything in between */ 136 return 512; 137 else 138 /* For the page tables on the leaves */ 139 return AMDGPU_VM_PTE_COUNT(adev); 140 } 141 142 /** 143 * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD 144 * 145 * @adev: amdgpu_device pointer 146 * 147 * Returns: 148 * The number of entries in the root page directory which needs the ATS setting. 149 */ 150 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev) 151 { 152 unsigned shift; 153 154 shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level); 155 return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT); 156 } 157 158 /** 159 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT 160 * 161 * @adev: amdgpu_device pointer 162 * @level: VMPT level 163 * 164 * Returns: 165 * The mask to extract the entry number of a PD/PT from an address. 166 */ 167 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev, 168 unsigned int level) 169 { 170 if (level <= adev->vm_manager.root_level) 171 return 0xffffffff; 172 else if (level != AMDGPU_VM_PTB) 173 return 0x1ff; 174 else 175 return AMDGPU_VM_PTE_COUNT(adev) - 1; 176 } 177 178 /** 179 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 180 * 181 * @adev: amdgpu_device pointer 182 * @level: VMPT level 183 * 184 * Returns: 185 * The size of the BO for a page directory or page table in bytes. 186 */ 187 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 188 { 189 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 190 } 191 192 /** 193 * amdgpu_vm_bo_evicted - vm_bo is evicted 194 * 195 * @vm_bo: vm_bo which is evicted 196 * 197 * State for PDs/PTs and per VM BOs which are not at the location they should 198 * be. 199 */ 200 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 201 { 202 struct amdgpu_vm *vm = vm_bo->vm; 203 struct amdgpu_bo *bo = vm_bo->bo; 204 205 vm_bo->moved = true; 206 if (bo->tbo.type == ttm_bo_type_kernel) 207 list_move(&vm_bo->vm_status, &vm->evicted); 208 else 209 list_move_tail(&vm_bo->vm_status, &vm->evicted); 210 } 211 212 /** 213 * amdgpu_vm_bo_relocated - vm_bo is reloacted 214 * 215 * @vm_bo: vm_bo which is relocated 216 * 217 * State for PDs/PTs which needs to update their parent PD. 218 */ 219 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 220 { 221 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 222 } 223 224 /** 225 * amdgpu_vm_bo_moved - vm_bo is moved 226 * 227 * @vm_bo: vm_bo which is moved 228 * 229 * State for per VM BOs which are moved, but that change is not yet reflected 230 * in the page tables. 231 */ 232 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 233 { 234 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 235 } 236 237 /** 238 * amdgpu_vm_bo_idle - vm_bo is idle 239 * 240 * @vm_bo: vm_bo which is now idle 241 * 242 * State for PDs/PTs and per VM BOs which have gone through the state machine 243 * and are now idle. 244 */ 245 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 246 { 247 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 248 vm_bo->moved = false; 249 } 250 251 /** 252 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 253 * 254 * @vm_bo: vm_bo which is now invalidated 255 * 256 * State for normal BOs which are invalidated and that change not yet reflected 257 * in the PTs. 258 */ 259 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 260 { 261 spin_lock(&vm_bo->vm->invalidated_lock); 262 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 263 spin_unlock(&vm_bo->vm->invalidated_lock); 264 } 265 266 /** 267 * amdgpu_vm_bo_done - vm_bo is done 268 * 269 * @vm_bo: vm_bo which is now done 270 * 271 * State for normal BOs which are invalidated and that change has been updated 272 * in the PTs. 273 */ 274 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 275 { 276 spin_lock(&vm_bo->vm->invalidated_lock); 277 list_del_init(&vm_bo->vm_status); 278 spin_unlock(&vm_bo->vm->invalidated_lock); 279 } 280 281 /** 282 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 283 * 284 * @base: base structure for tracking BO usage in a VM 285 * @vm: vm to which bo is to be added 286 * @bo: amdgpu buffer object 287 * 288 * Initialize a bo_va_base structure and add it to the appropriate lists 289 * 290 */ 291 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 292 struct amdgpu_vm *vm, 293 struct amdgpu_bo *bo) 294 { 295 base->vm = vm; 296 base->bo = bo; 297 base->next = NULL; 298 INIT_LIST_HEAD(&base->vm_status); 299 300 if (!bo) 301 return; 302 base->next = bo->vm_bo; 303 bo->vm_bo = base; 304 305 if (bo->tbo.base.resv != vm->root.base.bo->tbo.base.resv) 306 return; 307 308 vm->bulk_moveable = false; 309 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent) 310 amdgpu_vm_bo_relocated(base); 311 else 312 amdgpu_vm_bo_idle(base); 313 314 if (bo->preferred_domains & 315 amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type)) 316 return; 317 318 /* 319 * we checked all the prerequisites, but it looks like this per vm bo 320 * is currently evicted. add the bo to the evicted list to make sure it 321 * is validated on next vm use to avoid fault. 322 * */ 323 amdgpu_vm_bo_evicted(base); 324 } 325 326 /** 327 * amdgpu_vm_pt_parent - get the parent page directory 328 * 329 * @pt: child page table 330 * 331 * Helper to get the parent entry for the child page table. NULL if we are at 332 * the root page directory. 333 */ 334 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt) 335 { 336 struct amdgpu_bo *parent = pt->base.bo->parent; 337 338 if (!parent) 339 return NULL; 340 341 return container_of(parent->vm_bo, struct amdgpu_vm_pt, base); 342 } 343 344 /** 345 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt 346 */ 347 struct amdgpu_vm_pt_cursor { 348 uint64_t pfn; 349 struct amdgpu_vm_pt *parent; 350 struct amdgpu_vm_pt *entry; 351 unsigned level; 352 }; 353 354 /** 355 * amdgpu_vm_pt_start - start PD/PT walk 356 * 357 * @adev: amdgpu_device pointer 358 * @vm: amdgpu_vm structure 359 * @start: start address of the walk 360 * @cursor: state to initialize 361 * 362 * Initialize a amdgpu_vm_pt_cursor to start a walk. 363 */ 364 static void amdgpu_vm_pt_start(struct amdgpu_device *adev, 365 struct amdgpu_vm *vm, uint64_t start, 366 struct amdgpu_vm_pt_cursor *cursor) 367 { 368 cursor->pfn = start; 369 cursor->parent = NULL; 370 cursor->entry = &vm->root; 371 cursor->level = adev->vm_manager.root_level; 372 } 373 374 /** 375 * amdgpu_vm_pt_descendant - go to child node 376 * 377 * @adev: amdgpu_device pointer 378 * @cursor: current state 379 * 380 * Walk to the child node of the current node. 381 * Returns: 382 * True if the walk was possible, false otherwise. 383 */ 384 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev, 385 struct amdgpu_vm_pt_cursor *cursor) 386 { 387 unsigned mask, shift, idx; 388 389 if (!cursor->entry->entries) 390 return false; 391 392 BUG_ON(!cursor->entry->base.bo); 393 mask = amdgpu_vm_entries_mask(adev, cursor->level); 394 shift = amdgpu_vm_level_shift(adev, cursor->level); 395 396 ++cursor->level; 397 idx = (cursor->pfn >> shift) & mask; 398 cursor->parent = cursor->entry; 399 cursor->entry = &cursor->entry->entries[idx]; 400 return true; 401 } 402 403 /** 404 * amdgpu_vm_pt_sibling - go to sibling node 405 * 406 * @adev: amdgpu_device pointer 407 * @cursor: current state 408 * 409 * Walk to the sibling node of the current node. 410 * Returns: 411 * True if the walk was possible, false otherwise. 412 */ 413 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev, 414 struct amdgpu_vm_pt_cursor *cursor) 415 { 416 unsigned shift, num_entries; 417 418 /* Root doesn't have a sibling */ 419 if (!cursor->parent) 420 return false; 421 422 /* Go to our parents and see if we got a sibling */ 423 shift = amdgpu_vm_level_shift(adev, cursor->level - 1); 424 num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1); 425 426 if (cursor->entry == &cursor->parent->entries[num_entries - 1]) 427 return false; 428 429 cursor->pfn += 1ULL << shift; 430 cursor->pfn &= ~((1ULL << shift) - 1); 431 ++cursor->entry; 432 return true; 433 } 434 435 /** 436 * amdgpu_vm_pt_ancestor - go to parent node 437 * 438 * @cursor: current state 439 * 440 * Walk to the parent node of the current node. 441 * Returns: 442 * True if the walk was possible, false otherwise. 443 */ 444 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor) 445 { 446 if (!cursor->parent) 447 return false; 448 449 --cursor->level; 450 cursor->entry = cursor->parent; 451 cursor->parent = amdgpu_vm_pt_parent(cursor->parent); 452 return true; 453 } 454 455 /** 456 * amdgpu_vm_pt_next - get next PD/PT in hieratchy 457 * 458 * @adev: amdgpu_device pointer 459 * @cursor: current state 460 * 461 * Walk the PD/PT tree to the next node. 462 */ 463 static void amdgpu_vm_pt_next(struct amdgpu_device *adev, 464 struct amdgpu_vm_pt_cursor *cursor) 465 { 466 /* First try a newborn child */ 467 if (amdgpu_vm_pt_descendant(adev, cursor)) 468 return; 469 470 /* If that didn't worked try to find a sibling */ 471 while (!amdgpu_vm_pt_sibling(adev, cursor)) { 472 /* No sibling, go to our parents and grandparents */ 473 if (!amdgpu_vm_pt_ancestor(cursor)) { 474 cursor->pfn = ~0ll; 475 return; 476 } 477 } 478 } 479 480 /** 481 * amdgpu_vm_pt_first_dfs - start a deep first search 482 * 483 * @adev: amdgpu_device structure 484 * @vm: amdgpu_vm structure 485 * @cursor: state to initialize 486 * 487 * Starts a deep first traversal of the PD/PT tree. 488 */ 489 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev, 490 struct amdgpu_vm *vm, 491 struct amdgpu_vm_pt_cursor *start, 492 struct amdgpu_vm_pt_cursor *cursor) 493 { 494 if (start) 495 *cursor = *start; 496 else 497 amdgpu_vm_pt_start(adev, vm, 0, cursor); 498 while (amdgpu_vm_pt_descendant(adev, cursor)); 499 } 500 501 /** 502 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue 503 * 504 * @start: starting point for the search 505 * @entry: current entry 506 * 507 * Returns: 508 * True when the search should continue, false otherwise. 509 */ 510 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start, 511 struct amdgpu_vm_pt *entry) 512 { 513 return entry && (!start || entry != start->entry); 514 } 515 516 /** 517 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search 518 * 519 * @adev: amdgpu_device structure 520 * @cursor: current state 521 * 522 * Move the cursor to the next node in a deep first search. 523 */ 524 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev, 525 struct amdgpu_vm_pt_cursor *cursor) 526 { 527 if (!cursor->entry) 528 return; 529 530 if (!cursor->parent) 531 cursor->entry = NULL; 532 else if (amdgpu_vm_pt_sibling(adev, cursor)) 533 while (amdgpu_vm_pt_descendant(adev, cursor)); 534 else 535 amdgpu_vm_pt_ancestor(cursor); 536 } 537 538 /** 539 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs 540 */ 541 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) \ 542 for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)), \ 543 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\ 544 amdgpu_vm_pt_continue_dfs((start), (entry)); \ 545 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor))) 546 547 /** 548 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 549 * 550 * @vm: vm providing the BOs 551 * @validated: head of validation list 552 * @entry: entry to add 553 * 554 * Add the page directory to the list of BOs to 555 * validate for command submission. 556 */ 557 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 558 struct list_head *validated, 559 struct amdgpu_bo_list_entry *entry) 560 { 561 entry->priority = 0; 562 entry->tv.bo = &vm->root.base.bo->tbo; 563 /* One for the VM updates, one for TTM and one for the CS job */ 564 entry->tv.num_shared = 3; 565 entry->user_pages = NULL; 566 list_add(&entry->tv.head, validated); 567 } 568 569 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo) 570 { 571 struct amdgpu_bo *abo; 572 struct amdgpu_vm_bo_base *bo_base; 573 574 if (!amdgpu_bo_is_amdgpu_bo(bo)) 575 return; 576 577 if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) 578 return; 579 580 abo = ttm_to_amdgpu_bo(bo); 581 if (!abo->parent) 582 return; 583 for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) { 584 struct amdgpu_vm *vm = bo_base->vm; 585 586 if (abo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) 587 vm->bulk_moveable = false; 588 } 589 590 } 591 /** 592 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 593 * 594 * @adev: amdgpu device pointer 595 * @vm: vm providing the BOs 596 * 597 * Move all BOs to the end of LRU and remember their positions to put them 598 * together. 599 */ 600 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 601 struct amdgpu_vm *vm) 602 { 603 struct amdgpu_vm_bo_base *bo_base; 604 605 if (vm->bulk_moveable) { 606 spin_lock(&ttm_bo_glob.lru_lock); 607 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move); 608 spin_unlock(&ttm_bo_glob.lru_lock); 609 return; 610 } 611 612 memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move)); 613 614 spin_lock(&ttm_bo_glob.lru_lock); 615 list_for_each_entry(bo_base, &vm->idle, vm_status) { 616 struct amdgpu_bo *bo = bo_base->bo; 617 618 if (!bo->parent) 619 continue; 620 621 ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move); 622 if (bo->shadow) 623 ttm_bo_move_to_lru_tail(&bo->shadow->tbo, 624 &vm->lru_bulk_move); 625 } 626 spin_unlock(&ttm_bo_glob.lru_lock); 627 628 vm->bulk_moveable = true; 629 } 630 631 /** 632 * amdgpu_vm_validate_pt_bos - validate the page table BOs 633 * 634 * @adev: amdgpu device pointer 635 * @vm: vm providing the BOs 636 * @validate: callback to do the validation 637 * @param: parameter for the validation callback 638 * 639 * Validate the page table BOs on command submission if neccessary. 640 * 641 * Returns: 642 * Validation result. 643 */ 644 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 645 int (*validate)(void *p, struct amdgpu_bo *bo), 646 void *param) 647 { 648 struct amdgpu_vm_bo_base *bo_base, *tmp; 649 int r = 0; 650 651 vm->bulk_moveable &= list_empty(&vm->evicted); 652 653 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) { 654 struct amdgpu_bo *bo = bo_base->bo; 655 656 r = validate(param, bo); 657 if (r) 658 break; 659 660 if (bo->tbo.type != ttm_bo_type_kernel) { 661 amdgpu_vm_bo_moved(bo_base); 662 } else { 663 vm->update_funcs->map_table(bo); 664 if (bo->parent) 665 amdgpu_vm_bo_relocated(bo_base); 666 else 667 amdgpu_vm_bo_idle(bo_base); 668 } 669 } 670 671 return r; 672 } 673 674 /** 675 * amdgpu_vm_ready - check VM is ready for updates 676 * 677 * @vm: VM to check 678 * 679 * Check if all VM PDs/PTs are ready for updates 680 * 681 * Returns: 682 * True if eviction list is empty. 683 */ 684 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 685 { 686 return list_empty(&vm->evicted); 687 } 688 689 /** 690 * amdgpu_vm_clear_bo - initially clear the PDs/PTs 691 * 692 * @adev: amdgpu_device pointer 693 * @vm: VM to clear BO from 694 * @bo: BO to clear 695 * 696 * Root PD needs to be reserved when calling this. 697 * 698 * Returns: 699 * 0 on success, errno otherwise. 700 */ 701 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, 702 struct amdgpu_vm *vm, 703 struct amdgpu_bo *bo) 704 { 705 struct ttm_operation_ctx ctx = { true, false }; 706 unsigned level = adev->vm_manager.root_level; 707 struct amdgpu_vm_update_params params; 708 struct amdgpu_bo *ancestor = bo; 709 unsigned entries, ats_entries; 710 uint64_t addr; 711 int r; 712 713 /* Figure out our place in the hierarchy */ 714 if (ancestor->parent) { 715 ++level; 716 while (ancestor->parent->parent) { 717 ++level; 718 ancestor = ancestor->parent; 719 } 720 } 721 722 entries = amdgpu_bo_size(bo) / 8; 723 if (!vm->pte_support_ats) { 724 ats_entries = 0; 725 726 } else if (!bo->parent) { 727 ats_entries = amdgpu_vm_num_ats_entries(adev); 728 ats_entries = min(ats_entries, entries); 729 entries -= ats_entries; 730 731 } else { 732 struct amdgpu_vm_pt *pt; 733 734 pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base); 735 ats_entries = amdgpu_vm_num_ats_entries(adev); 736 if ((pt - vm->root.entries) >= ats_entries) { 737 ats_entries = 0; 738 } else { 739 ats_entries = entries; 740 entries = 0; 741 } 742 } 743 744 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 745 if (r) 746 return r; 747 748 if (bo->shadow) { 749 r = ttm_bo_validate(&bo->shadow->tbo, &bo->shadow->placement, 750 &ctx); 751 if (r) 752 return r; 753 } 754 755 r = vm->update_funcs->map_table(bo); 756 if (r) 757 return r; 758 759 memset(¶ms, 0, sizeof(params)); 760 params.adev = adev; 761 params.vm = vm; 762 763 r = vm->update_funcs->prepare(¶ms, AMDGPU_FENCE_OWNER_KFD, NULL); 764 if (r) 765 return r; 766 767 addr = 0; 768 if (ats_entries) { 769 uint64_t value = 0, flags; 770 771 flags = AMDGPU_PTE_DEFAULT_ATC; 772 if (level != AMDGPU_VM_PTB) { 773 /* Handle leaf PDEs as PTEs */ 774 flags |= AMDGPU_PDE_PTE; 775 amdgpu_gmc_get_vm_pde(adev, level, &value, &flags); 776 } 777 778 r = vm->update_funcs->update(¶ms, bo, addr, 0, ats_entries, 779 value, flags); 780 if (r) 781 return r; 782 783 addr += ats_entries * 8; 784 } 785 786 if (entries) { 787 uint64_t value = 0, flags = 0; 788 789 if (adev->asic_type >= CHIP_VEGA10) { 790 if (level != AMDGPU_VM_PTB) { 791 /* Handle leaf PDEs as PTEs */ 792 flags |= AMDGPU_PDE_PTE; 793 amdgpu_gmc_get_vm_pde(adev, level, 794 &value, &flags); 795 } else { 796 /* Workaround for fault priority problem on GMC9 */ 797 flags = AMDGPU_PTE_EXECUTABLE; 798 } 799 } 800 801 r = vm->update_funcs->update(¶ms, bo, addr, 0, entries, 802 value, flags); 803 if (r) 804 return r; 805 } 806 807 return vm->update_funcs->commit(¶ms, NULL); 808 } 809 810 /** 811 * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation 812 * 813 * @adev: amdgpu_device pointer 814 * @vm: requesting vm 815 * @bp: resulting BO allocation parameters 816 */ 817 static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm, 818 int level, struct amdgpu_bo_param *bp) 819 { 820 memset(bp, 0, sizeof(*bp)); 821 822 bp->size = amdgpu_vm_bo_size(adev, level); 823 bp->byte_align = AMDGPU_GPU_PAGE_SIZE; 824 bp->domain = AMDGPU_GEM_DOMAIN_VRAM; 825 bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain); 826 bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 827 AMDGPU_GEM_CREATE_CPU_GTT_USWC; 828 if (vm->use_cpu_for_update) 829 bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 830 else if (!vm->root.base.bo || vm->root.base.bo->shadow) 831 bp->flags |= AMDGPU_GEM_CREATE_SHADOW; 832 bp->type = ttm_bo_type_kernel; 833 if (vm->root.base.bo) 834 bp->resv = vm->root.base.bo->tbo.base.resv; 835 } 836 837 /** 838 * amdgpu_vm_alloc_pts - Allocate a specific page table 839 * 840 * @adev: amdgpu_device pointer 841 * @vm: VM to allocate page tables for 842 * @cursor: Which page table to allocate 843 * 844 * Make sure a specific page table or directory is allocated. 845 * 846 * Returns: 847 * 1 if page table needed to be allocated, 0 if page table was already 848 * allocated, negative errno if an error occurred. 849 */ 850 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 851 struct amdgpu_vm *vm, 852 struct amdgpu_vm_pt_cursor *cursor) 853 { 854 struct amdgpu_vm_pt *entry = cursor->entry; 855 struct amdgpu_bo_param bp; 856 struct amdgpu_bo *pt; 857 int r; 858 859 if (cursor->level < AMDGPU_VM_PTB && !entry->entries) { 860 unsigned num_entries; 861 862 num_entries = amdgpu_vm_num_entries(adev, cursor->level); 863 entry->entries = kvmalloc_array(num_entries, 864 sizeof(*entry->entries), 865 GFP_KERNEL | __GFP_ZERO); 866 if (!entry->entries) 867 return -ENOMEM; 868 } 869 870 if (entry->base.bo) 871 return 0; 872 873 amdgpu_vm_bo_param(adev, vm, cursor->level, &bp); 874 875 r = amdgpu_bo_create(adev, &bp, &pt); 876 if (r) 877 return r; 878 879 /* Keep a reference to the root directory to avoid 880 * freeing them up in the wrong order. 881 */ 882 pt->parent = amdgpu_bo_ref(cursor->parent->base.bo); 883 amdgpu_vm_bo_base_init(&entry->base, vm, pt); 884 885 r = amdgpu_vm_clear_bo(adev, vm, pt); 886 if (r) 887 goto error_free_pt; 888 889 return 0; 890 891 error_free_pt: 892 amdgpu_bo_unref(&pt->shadow); 893 amdgpu_bo_unref(&pt); 894 return r; 895 } 896 897 /** 898 * amdgpu_vm_free_table - fre one PD/PT 899 * 900 * @entry: PDE to free 901 */ 902 static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry) 903 { 904 if (entry->base.bo) { 905 entry->base.bo->vm_bo = NULL; 906 list_del(&entry->base.vm_status); 907 amdgpu_bo_unref(&entry->base.bo->shadow); 908 amdgpu_bo_unref(&entry->base.bo); 909 } 910 kvfree(entry->entries); 911 entry->entries = NULL; 912 } 913 914 /** 915 * amdgpu_vm_free_pts - free PD/PT levels 916 * 917 * @adev: amdgpu device structure 918 * @vm: amdgpu vm structure 919 * @start: optional cursor where to start freeing PDs/PTs 920 * 921 * Free the page directory or page table level and all sub levels. 922 */ 923 static void amdgpu_vm_free_pts(struct amdgpu_device *adev, 924 struct amdgpu_vm *vm, 925 struct amdgpu_vm_pt_cursor *start) 926 { 927 struct amdgpu_vm_pt_cursor cursor; 928 struct amdgpu_vm_pt *entry; 929 930 vm->bulk_moveable = false; 931 932 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) 933 amdgpu_vm_free_table(entry); 934 935 if (start) 936 amdgpu_vm_free_table(start->entry); 937 } 938 939 /** 940 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 941 * 942 * @adev: amdgpu_device pointer 943 */ 944 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 945 { 946 const struct amdgpu_ip_block *ip_block; 947 bool has_compute_vm_bug; 948 struct amdgpu_ring *ring; 949 int i; 950 951 has_compute_vm_bug = false; 952 953 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 954 if (ip_block) { 955 /* Compute has a VM bug for GFX version < 7. 956 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 957 if (ip_block->version->major <= 7) 958 has_compute_vm_bug = true; 959 else if (ip_block->version->major == 8) 960 if (adev->gfx.mec_fw_version < 673) 961 has_compute_vm_bug = true; 962 } 963 964 for (i = 0; i < adev->num_rings; i++) { 965 ring = adev->rings[i]; 966 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 967 /* only compute rings */ 968 ring->has_compute_vm_bug = has_compute_vm_bug; 969 else 970 ring->has_compute_vm_bug = false; 971 } 972 } 973 974 /** 975 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 976 * 977 * @ring: ring on which the job will be submitted 978 * @job: job to submit 979 * 980 * Returns: 981 * True if sync is needed. 982 */ 983 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 984 struct amdgpu_job *job) 985 { 986 struct amdgpu_device *adev = ring->adev; 987 unsigned vmhub = ring->funcs->vmhub; 988 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 989 struct amdgpu_vmid *id; 990 bool gds_switch_needed; 991 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; 992 993 if (job->vmid == 0) 994 return false; 995 id = &id_mgr->ids[job->vmid]; 996 gds_switch_needed = ring->funcs->emit_gds_switch && ( 997 id->gds_base != job->gds_base || 998 id->gds_size != job->gds_size || 999 id->gws_base != job->gws_base || 1000 id->gws_size != job->gws_size || 1001 id->oa_base != job->oa_base || 1002 id->oa_size != job->oa_size); 1003 1004 if (amdgpu_vmid_had_gpu_reset(adev, id)) 1005 return true; 1006 1007 return vm_flush_needed || gds_switch_needed; 1008 } 1009 1010 /** 1011 * amdgpu_vm_flush - hardware flush the vm 1012 * 1013 * @ring: ring to use for flush 1014 * @job: related job 1015 * @need_pipe_sync: is pipe sync needed 1016 * 1017 * Emit a VM flush when it is necessary. 1018 * 1019 * Returns: 1020 * 0 on success, errno otherwise. 1021 */ 1022 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync) 1023 { 1024 struct amdgpu_device *adev = ring->adev; 1025 unsigned vmhub = ring->funcs->vmhub; 1026 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1027 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 1028 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 1029 id->gds_base != job->gds_base || 1030 id->gds_size != job->gds_size || 1031 id->gws_base != job->gws_base || 1032 id->gws_size != job->gws_size || 1033 id->oa_base != job->oa_base || 1034 id->oa_size != job->oa_size); 1035 bool vm_flush_needed = job->vm_needs_flush; 1036 bool pasid_mapping_needed = id->pasid != job->pasid || 1037 !id->pasid_mapping || 1038 !dma_fence_is_signaled(id->pasid_mapping); 1039 struct dma_fence *fence = NULL; 1040 unsigned patch_offset = 0; 1041 int r; 1042 1043 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 1044 gds_switch_needed = true; 1045 vm_flush_needed = true; 1046 pasid_mapping_needed = true; 1047 } 1048 1049 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 1050 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 1051 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 1052 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 1053 ring->funcs->emit_wreg; 1054 1055 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 1056 return 0; 1057 1058 if (ring->funcs->init_cond_exec) 1059 patch_offset = amdgpu_ring_init_cond_exec(ring); 1060 1061 if (need_pipe_sync) 1062 amdgpu_ring_emit_pipeline_sync(ring); 1063 1064 if (vm_flush_needed) { 1065 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 1066 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 1067 } 1068 1069 if (pasid_mapping_needed) 1070 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 1071 1072 if (vm_flush_needed || pasid_mapping_needed) { 1073 r = amdgpu_fence_emit(ring, &fence, 0); 1074 if (r) 1075 return r; 1076 } 1077 1078 if (vm_flush_needed) { 1079 mutex_lock(&id_mgr->lock); 1080 dma_fence_put(id->last_flush); 1081 id->last_flush = dma_fence_get(fence); 1082 id->current_gpu_reset_count = 1083 atomic_read(&adev->gpu_reset_counter); 1084 mutex_unlock(&id_mgr->lock); 1085 } 1086 1087 if (pasid_mapping_needed) { 1088 id->pasid = job->pasid; 1089 dma_fence_put(id->pasid_mapping); 1090 id->pasid_mapping = dma_fence_get(fence); 1091 } 1092 dma_fence_put(fence); 1093 1094 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 1095 id->gds_base = job->gds_base; 1096 id->gds_size = job->gds_size; 1097 id->gws_base = job->gws_base; 1098 id->gws_size = job->gws_size; 1099 id->oa_base = job->oa_base; 1100 id->oa_size = job->oa_size; 1101 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 1102 job->gds_size, job->gws_base, 1103 job->gws_size, job->oa_base, 1104 job->oa_size); 1105 } 1106 1107 if (ring->funcs->patch_cond_exec) 1108 amdgpu_ring_patch_cond_exec(ring, patch_offset); 1109 1110 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 1111 if (ring->funcs->emit_switch_buffer) { 1112 amdgpu_ring_emit_switch_buffer(ring); 1113 amdgpu_ring_emit_switch_buffer(ring); 1114 } 1115 return 0; 1116 } 1117 1118 /** 1119 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 1120 * 1121 * @vm: requested vm 1122 * @bo: requested buffer object 1123 * 1124 * Find @bo inside the requested vm. 1125 * Search inside the @bos vm list for the requested vm 1126 * Returns the found bo_va or NULL if none is found 1127 * 1128 * Object has to be reserved! 1129 * 1130 * Returns: 1131 * Found bo_va or NULL. 1132 */ 1133 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 1134 struct amdgpu_bo *bo) 1135 { 1136 struct amdgpu_vm_bo_base *base; 1137 1138 for (base = bo->vm_bo; base; base = base->next) { 1139 if (base->vm != vm) 1140 continue; 1141 1142 return container_of(base, struct amdgpu_bo_va, base); 1143 } 1144 return NULL; 1145 } 1146 1147 /** 1148 * amdgpu_vm_map_gart - Resolve gart mapping of addr 1149 * 1150 * @pages_addr: optional DMA address to use for lookup 1151 * @addr: the unmapped addr 1152 * 1153 * Look up the physical address of the page that the pte resolves 1154 * to. 1155 * 1156 * Returns: 1157 * The pointer for the page table entry. 1158 */ 1159 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 1160 { 1161 uint64_t result; 1162 1163 /* page table offset */ 1164 result = pages_addr[addr >> PAGE_SHIFT]; 1165 1166 /* in case cpu page size != gpu page size*/ 1167 result |= addr & (~PAGE_MASK); 1168 1169 result &= 0xFFFFFFFFFFFFF000ULL; 1170 1171 return result; 1172 } 1173 1174 /* 1175 * amdgpu_vm_update_pde - update a single level in the hierarchy 1176 * 1177 * @param: parameters for the update 1178 * @vm: requested vm 1179 * @entry: entry to update 1180 * 1181 * Makes sure the requested entry in parent is up to date. 1182 */ 1183 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params, 1184 struct amdgpu_vm *vm, 1185 struct amdgpu_vm_pt *entry) 1186 { 1187 struct amdgpu_vm_pt *parent = amdgpu_vm_pt_parent(entry); 1188 struct amdgpu_bo *bo = parent->base.bo, *pbo; 1189 uint64_t pde, pt, flags; 1190 unsigned level; 1191 1192 for (level = 0, pbo = bo->parent; pbo; ++level) 1193 pbo = pbo->parent; 1194 1195 level += params->adev->vm_manager.root_level; 1196 amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags); 1197 pde = (entry - parent->entries) * 8; 1198 return vm->update_funcs->update(params, bo, pde, pt, 1, 0, flags); 1199 } 1200 1201 /* 1202 * amdgpu_vm_invalidate_pds - mark all PDs as invalid 1203 * 1204 * @adev: amdgpu_device pointer 1205 * @vm: related vm 1206 * 1207 * Mark all PD level as invalid after an error. 1208 */ 1209 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev, 1210 struct amdgpu_vm *vm) 1211 { 1212 struct amdgpu_vm_pt_cursor cursor; 1213 struct amdgpu_vm_pt *entry; 1214 1215 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry) 1216 if (entry->base.bo && !entry->base.moved) 1217 amdgpu_vm_bo_relocated(&entry->base); 1218 } 1219 1220 /* 1221 * amdgpu_vm_update_directories - make sure that all directories are valid 1222 * 1223 * @adev: amdgpu_device pointer 1224 * @vm: requested vm 1225 * 1226 * Makes sure all directories are up to date. 1227 * 1228 * Returns: 1229 * 0 for success, error for failure. 1230 */ 1231 int amdgpu_vm_update_directories(struct amdgpu_device *adev, 1232 struct amdgpu_vm *vm) 1233 { 1234 struct amdgpu_vm_update_params params; 1235 int r; 1236 1237 if (list_empty(&vm->relocated)) 1238 return 0; 1239 1240 memset(¶ms, 0, sizeof(params)); 1241 params.adev = adev; 1242 params.vm = vm; 1243 1244 r = vm->update_funcs->prepare(¶ms, AMDGPU_FENCE_OWNER_VM, NULL); 1245 if (r) 1246 return r; 1247 1248 while (!list_empty(&vm->relocated)) { 1249 struct amdgpu_vm_pt *entry; 1250 1251 entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt, 1252 base.vm_status); 1253 amdgpu_vm_bo_idle(&entry->base); 1254 1255 r = amdgpu_vm_update_pde(¶ms, vm, entry); 1256 if (r) 1257 goto error; 1258 } 1259 1260 r = vm->update_funcs->commit(¶ms, &vm->last_update); 1261 if (r) 1262 goto error; 1263 return 0; 1264 1265 error: 1266 amdgpu_vm_invalidate_pds(adev, vm); 1267 return r; 1268 } 1269 1270 /** 1271 * amdgpu_vm_update_flags - figure out flags for PTE updates 1272 * 1273 * Make sure to set the right flags for the PTEs at the desired level. 1274 */ 1275 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params, 1276 struct amdgpu_bo *bo, unsigned level, 1277 uint64_t pe, uint64_t addr, 1278 unsigned count, uint32_t incr, 1279 uint64_t flags) 1280 1281 { 1282 if (level != AMDGPU_VM_PTB) { 1283 flags |= AMDGPU_PDE_PTE; 1284 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags); 1285 1286 } else if (params->adev->asic_type >= CHIP_VEGA10 && 1287 !(flags & AMDGPU_PTE_VALID) && 1288 !(flags & AMDGPU_PTE_PRT)) { 1289 1290 /* Workaround for fault priority problem on GMC9 */ 1291 flags |= AMDGPU_PTE_EXECUTABLE; 1292 } 1293 1294 params->vm->update_funcs->update(params, bo, pe, addr, count, incr, 1295 flags); 1296 } 1297 1298 /** 1299 * amdgpu_vm_fragment - get fragment for PTEs 1300 * 1301 * @params: see amdgpu_vm_update_params definition 1302 * @start: first PTE to handle 1303 * @end: last PTE to handle 1304 * @flags: hw mapping flags 1305 * @frag: resulting fragment size 1306 * @frag_end: end of this fragment 1307 * 1308 * Returns the first possible fragment for the start and end address. 1309 */ 1310 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params, 1311 uint64_t start, uint64_t end, uint64_t flags, 1312 unsigned int *frag, uint64_t *frag_end) 1313 { 1314 /** 1315 * The MC L1 TLB supports variable sized pages, based on a fragment 1316 * field in the PTE. When this field is set to a non-zero value, page 1317 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1318 * flags are considered valid for all PTEs within the fragment range 1319 * and corresponding mappings are assumed to be physically contiguous. 1320 * 1321 * The L1 TLB can store a single PTE for the whole fragment, 1322 * significantly increasing the space available for translation 1323 * caching. This leads to large improvements in throughput when the 1324 * TLB is under pressure. 1325 * 1326 * The L2 TLB distributes small and large fragments into two 1327 * asymmetric partitions. The large fragment cache is significantly 1328 * larger. Thus, we try to use large fragments wherever possible. 1329 * Userspace can support this by aligning virtual base address and 1330 * allocation size to the fragment size. 1331 * 1332 * Starting with Vega10 the fragment size only controls the L1. The L2 1333 * is now directly feed with small/huge/giant pages from the walker. 1334 */ 1335 unsigned max_frag; 1336 1337 if (params->adev->asic_type < CHIP_VEGA10) 1338 max_frag = params->adev->vm_manager.fragment_size; 1339 else 1340 max_frag = 31; 1341 1342 /* system pages are non continuously */ 1343 if (params->pages_addr) { 1344 *frag = 0; 1345 *frag_end = end; 1346 return; 1347 } 1348 1349 /* This intentionally wraps around if no bit is set */ 1350 *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1); 1351 if (*frag >= max_frag) { 1352 *frag = max_frag; 1353 *frag_end = end & ~((1ULL << max_frag) - 1); 1354 } else { 1355 *frag_end = start + (1 << *frag); 1356 } 1357 } 1358 1359 /** 1360 * amdgpu_vm_update_ptes - make sure that page tables are valid 1361 * 1362 * @params: see amdgpu_vm_update_params definition 1363 * @start: start of GPU address range 1364 * @end: end of GPU address range 1365 * @dst: destination address to map to, the next dst inside the function 1366 * @flags: mapping flags 1367 * 1368 * Update the page tables in the range @start - @end. 1369 * 1370 * Returns: 1371 * 0 for success, -EINVAL for failure. 1372 */ 1373 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params, 1374 uint64_t start, uint64_t end, 1375 uint64_t dst, uint64_t flags) 1376 { 1377 struct amdgpu_device *adev = params->adev; 1378 struct amdgpu_vm_pt_cursor cursor; 1379 uint64_t frag_start = start, frag_end; 1380 unsigned int frag; 1381 int r; 1382 1383 /* figure out the initial fragment */ 1384 amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end); 1385 1386 /* walk over the address space and update the PTs */ 1387 amdgpu_vm_pt_start(adev, params->vm, start, &cursor); 1388 while (cursor.pfn < end) { 1389 unsigned shift, parent_shift, mask; 1390 uint64_t incr, entry_end, pe_start; 1391 struct amdgpu_bo *pt; 1392 1393 r = amdgpu_vm_alloc_pts(params->adev, params->vm, &cursor); 1394 if (r) 1395 return r; 1396 1397 pt = cursor.entry->base.bo; 1398 1399 /* The root level can't be a huge page */ 1400 if (cursor.level == adev->vm_manager.root_level) { 1401 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1402 return -ENOENT; 1403 continue; 1404 } 1405 1406 shift = amdgpu_vm_level_shift(adev, cursor.level); 1407 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1); 1408 if (adev->asic_type < CHIP_VEGA10 && 1409 (flags & AMDGPU_PTE_VALID)) { 1410 /* No huge page support before GMC v9 */ 1411 if (cursor.level != AMDGPU_VM_PTB) { 1412 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1413 return -ENOENT; 1414 continue; 1415 } 1416 } else if (frag < shift) { 1417 /* We can't use this level when the fragment size is 1418 * smaller than the address shift. Go to the next 1419 * child entry and try again. 1420 */ 1421 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1422 return -ENOENT; 1423 continue; 1424 } else if (frag >= parent_shift && 1425 cursor.level - 1 != adev->vm_manager.root_level) { 1426 /* If the fragment size is even larger than the parent 1427 * shift we should go up one level and check it again 1428 * unless one level up is the root level. 1429 */ 1430 if (!amdgpu_vm_pt_ancestor(&cursor)) 1431 return -ENOENT; 1432 continue; 1433 } 1434 1435 /* Looks good so far, calculate parameters for the update */ 1436 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift; 1437 mask = amdgpu_vm_entries_mask(adev, cursor.level); 1438 pe_start = ((cursor.pfn >> shift) & mask) * 8; 1439 entry_end = (uint64_t)(mask + 1) << shift; 1440 entry_end += cursor.pfn & ~(entry_end - 1); 1441 entry_end = min(entry_end, end); 1442 1443 do { 1444 uint64_t upd_end = min(entry_end, frag_end); 1445 unsigned nptes = (upd_end - frag_start) >> shift; 1446 1447 amdgpu_vm_update_flags(params, pt, cursor.level, 1448 pe_start, dst, nptes, incr, 1449 flags | AMDGPU_PTE_FRAG(frag)); 1450 1451 pe_start += nptes * 8; 1452 dst += (uint64_t)nptes * AMDGPU_GPU_PAGE_SIZE << shift; 1453 1454 frag_start = upd_end; 1455 if (frag_start >= frag_end) { 1456 /* figure out the next fragment */ 1457 amdgpu_vm_fragment(params, frag_start, end, 1458 flags, &frag, &frag_end); 1459 if (frag < shift) 1460 break; 1461 } 1462 } while (frag_start < entry_end); 1463 1464 if (amdgpu_vm_pt_descendant(adev, &cursor)) { 1465 /* Free all child entries */ 1466 while (cursor.pfn < frag_start) { 1467 amdgpu_vm_free_pts(adev, params->vm, &cursor); 1468 amdgpu_vm_pt_next(adev, &cursor); 1469 } 1470 1471 } else if (frag >= shift) { 1472 /* or just move on to the next on the same level. */ 1473 amdgpu_vm_pt_next(adev, &cursor); 1474 } 1475 } 1476 1477 return 0; 1478 } 1479 1480 /** 1481 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1482 * 1483 * @adev: amdgpu_device pointer 1484 * @exclusive: fence we need to sync to 1485 * @pages_addr: DMA addresses to use for mapping 1486 * @vm: requested vm 1487 * @start: start of mapped range 1488 * @last: last mapped entry 1489 * @flags: flags for the entries 1490 * @addr: addr to set the area to 1491 * @fence: optional resulting fence 1492 * 1493 * Fill in the page table entries between @start and @last. 1494 * 1495 * Returns: 1496 * 0 for success, -EINVAL for failure. 1497 */ 1498 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1499 struct dma_fence *exclusive, 1500 dma_addr_t *pages_addr, 1501 struct amdgpu_vm *vm, 1502 uint64_t start, uint64_t last, 1503 uint64_t flags, uint64_t addr, 1504 struct dma_fence **fence) 1505 { 1506 struct amdgpu_vm_update_params params; 1507 void *owner = AMDGPU_FENCE_OWNER_VM; 1508 int r; 1509 1510 memset(¶ms, 0, sizeof(params)); 1511 params.adev = adev; 1512 params.vm = vm; 1513 params.pages_addr = pages_addr; 1514 1515 /* sync to everything except eviction fences on unmapping */ 1516 if (!(flags & AMDGPU_PTE_VALID)) 1517 owner = AMDGPU_FENCE_OWNER_KFD; 1518 1519 r = vm->update_funcs->prepare(¶ms, owner, exclusive); 1520 if (r) 1521 return r; 1522 1523 r = amdgpu_vm_update_ptes(¶ms, start, last + 1, addr, flags); 1524 if (r) 1525 return r; 1526 1527 return vm->update_funcs->commit(¶ms, fence); 1528 } 1529 1530 /** 1531 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks 1532 * 1533 * @adev: amdgpu_device pointer 1534 * @exclusive: fence we need to sync to 1535 * @pages_addr: DMA addresses to use for mapping 1536 * @vm: requested vm 1537 * @mapping: mapped range and flags to use for the update 1538 * @flags: HW flags for the mapping 1539 * @bo_adev: amdgpu_device pointer that bo actually been allocated 1540 * @nodes: array of drm_mm_nodes with the MC addresses 1541 * @fence: optional resulting fence 1542 * 1543 * Split the mapping into smaller chunks so that each update fits 1544 * into a SDMA IB. 1545 * 1546 * Returns: 1547 * 0 for success, -EINVAL for failure. 1548 */ 1549 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev, 1550 struct dma_fence *exclusive, 1551 dma_addr_t *pages_addr, 1552 struct amdgpu_vm *vm, 1553 struct amdgpu_bo_va_mapping *mapping, 1554 uint64_t flags, 1555 struct amdgpu_device *bo_adev, 1556 struct drm_mm_node *nodes, 1557 struct dma_fence **fence) 1558 { 1559 unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size; 1560 uint64_t pfn, start = mapping->start; 1561 int r; 1562 1563 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1564 * but in case of something, we filter the flags in first place 1565 */ 1566 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1567 flags &= ~AMDGPU_PTE_READABLE; 1568 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1569 flags &= ~AMDGPU_PTE_WRITEABLE; 1570 1571 flags &= ~AMDGPU_PTE_EXECUTABLE; 1572 flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE; 1573 1574 if (adev->asic_type >= CHIP_NAVI10) { 1575 flags &= ~AMDGPU_PTE_MTYPE_NV10_MASK; 1576 flags |= (mapping->flags & AMDGPU_PTE_MTYPE_NV10_MASK); 1577 } else { 1578 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK; 1579 flags |= (mapping->flags & AMDGPU_PTE_MTYPE_VG10_MASK); 1580 } 1581 1582 if ((mapping->flags & AMDGPU_PTE_PRT) && 1583 (adev->asic_type >= CHIP_VEGA10)) { 1584 flags |= AMDGPU_PTE_PRT; 1585 if (adev->asic_type >= CHIP_NAVI10) { 1586 flags |= AMDGPU_PTE_SNOOPED; 1587 flags |= AMDGPU_PTE_LOG; 1588 flags |= AMDGPU_PTE_SYSTEM; 1589 } 1590 flags &= ~AMDGPU_PTE_VALID; 1591 } 1592 1593 trace_amdgpu_vm_bo_update(mapping); 1594 1595 pfn = mapping->offset >> PAGE_SHIFT; 1596 if (nodes) { 1597 while (pfn >= nodes->size) { 1598 pfn -= nodes->size; 1599 ++nodes; 1600 } 1601 } 1602 1603 do { 1604 dma_addr_t *dma_addr = NULL; 1605 uint64_t max_entries; 1606 uint64_t addr, last; 1607 1608 if (nodes) { 1609 addr = nodes->start << PAGE_SHIFT; 1610 max_entries = (nodes->size - pfn) * 1611 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1612 } else { 1613 addr = 0; 1614 max_entries = S64_MAX; 1615 } 1616 1617 if (pages_addr) { 1618 uint64_t count; 1619 1620 for (count = 1; 1621 count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1622 ++count) { 1623 uint64_t idx = pfn + count; 1624 1625 if (pages_addr[idx] != 1626 (pages_addr[idx - 1] + PAGE_SIZE)) 1627 break; 1628 } 1629 1630 if (count < min_linear_pages) { 1631 addr = pfn << PAGE_SHIFT; 1632 dma_addr = pages_addr; 1633 } else { 1634 addr = pages_addr[pfn]; 1635 max_entries = count * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1636 } 1637 1638 } else if (flags & AMDGPU_PTE_VALID) { 1639 addr += bo_adev->vm_manager.vram_base_offset; 1640 addr += pfn << PAGE_SHIFT; 1641 } 1642 1643 last = min((uint64_t)mapping->last, start + max_entries - 1); 1644 r = amdgpu_vm_bo_update_mapping(adev, exclusive, dma_addr, vm, 1645 start, last, flags, addr, 1646 fence); 1647 if (r) 1648 return r; 1649 1650 pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1651 if (nodes && nodes->size == pfn) { 1652 pfn = 0; 1653 ++nodes; 1654 } 1655 start = last + 1; 1656 1657 } while (unlikely(start != mapping->last + 1)); 1658 1659 return 0; 1660 } 1661 1662 /** 1663 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1664 * 1665 * @adev: amdgpu_device pointer 1666 * @bo_va: requested BO and VM object 1667 * @clear: if true clear the entries 1668 * 1669 * Fill in the page table entries for @bo_va. 1670 * 1671 * Returns: 1672 * 0 for success, -EINVAL for failure. 1673 */ 1674 int amdgpu_vm_bo_update(struct amdgpu_device *adev, 1675 struct amdgpu_bo_va *bo_va, 1676 bool clear) 1677 { 1678 struct amdgpu_bo *bo = bo_va->base.bo; 1679 struct amdgpu_vm *vm = bo_va->base.vm; 1680 struct amdgpu_bo_va_mapping *mapping; 1681 dma_addr_t *pages_addr = NULL; 1682 struct ttm_mem_reg *mem; 1683 struct drm_mm_node *nodes; 1684 struct dma_fence *exclusive, **last_update; 1685 uint64_t flags; 1686 struct amdgpu_device *bo_adev = adev; 1687 int r; 1688 1689 if (clear || !bo) { 1690 mem = NULL; 1691 nodes = NULL; 1692 exclusive = NULL; 1693 } else { 1694 struct ttm_dma_tt *ttm; 1695 1696 mem = &bo->tbo.mem; 1697 nodes = mem->mm_node; 1698 if (mem->mem_type == TTM_PL_TT) { 1699 ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm); 1700 pages_addr = ttm->dma_address; 1701 } 1702 exclusive = dma_resv_get_excl(bo->tbo.base.resv); 1703 } 1704 1705 if (bo) { 1706 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1707 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev); 1708 } else { 1709 flags = 0x0; 1710 } 1711 1712 if (clear || (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)) 1713 last_update = &vm->last_update; 1714 else 1715 last_update = &bo_va->last_pt_update; 1716 1717 if (!clear && bo_va->base.moved) { 1718 bo_va->base.moved = false; 1719 list_splice_init(&bo_va->valids, &bo_va->invalids); 1720 1721 } else if (bo_va->cleared != clear) { 1722 list_splice_init(&bo_va->valids, &bo_va->invalids); 1723 } 1724 1725 list_for_each_entry(mapping, &bo_va->invalids, list) { 1726 r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm, 1727 mapping, flags, bo_adev, nodes, 1728 last_update); 1729 if (r) 1730 return r; 1731 } 1732 1733 if (vm->use_cpu_for_update) { 1734 /* Flush HDP */ 1735 mb(); 1736 amdgpu_asic_flush_hdp(adev, NULL); 1737 } 1738 1739 /* If the BO is not in its preferred location add it back to 1740 * the evicted list so that it gets validated again on the 1741 * next command submission. 1742 */ 1743 if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) { 1744 uint32_t mem_type = bo->tbo.mem.mem_type; 1745 1746 if (!(bo->preferred_domains & amdgpu_mem_type_to_domain(mem_type))) 1747 amdgpu_vm_bo_evicted(&bo_va->base); 1748 else 1749 amdgpu_vm_bo_idle(&bo_va->base); 1750 } else { 1751 amdgpu_vm_bo_done(&bo_va->base); 1752 } 1753 1754 list_splice_init(&bo_va->invalids, &bo_va->valids); 1755 bo_va->cleared = clear; 1756 1757 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1758 list_for_each_entry(mapping, &bo_va->valids, list) 1759 trace_amdgpu_vm_bo_mapping(mapping); 1760 } 1761 1762 return 0; 1763 } 1764 1765 /** 1766 * amdgpu_vm_update_prt_state - update the global PRT state 1767 * 1768 * @adev: amdgpu_device pointer 1769 */ 1770 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1771 { 1772 unsigned long flags; 1773 bool enable; 1774 1775 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1776 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1777 adev->gmc.gmc_funcs->set_prt(adev, enable); 1778 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1779 } 1780 1781 /** 1782 * amdgpu_vm_prt_get - add a PRT user 1783 * 1784 * @adev: amdgpu_device pointer 1785 */ 1786 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1787 { 1788 if (!adev->gmc.gmc_funcs->set_prt) 1789 return; 1790 1791 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1792 amdgpu_vm_update_prt_state(adev); 1793 } 1794 1795 /** 1796 * amdgpu_vm_prt_put - drop a PRT user 1797 * 1798 * @adev: amdgpu_device pointer 1799 */ 1800 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1801 { 1802 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1803 amdgpu_vm_update_prt_state(adev); 1804 } 1805 1806 /** 1807 * amdgpu_vm_prt_cb - callback for updating the PRT status 1808 * 1809 * @fence: fence for the callback 1810 * @_cb: the callback function 1811 */ 1812 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1813 { 1814 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1815 1816 amdgpu_vm_prt_put(cb->adev); 1817 kfree(cb); 1818 } 1819 1820 /** 1821 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1822 * 1823 * @adev: amdgpu_device pointer 1824 * @fence: fence for the callback 1825 */ 1826 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 1827 struct dma_fence *fence) 1828 { 1829 struct amdgpu_prt_cb *cb; 1830 1831 if (!adev->gmc.gmc_funcs->set_prt) 1832 return; 1833 1834 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 1835 if (!cb) { 1836 /* Last resort when we are OOM */ 1837 if (fence) 1838 dma_fence_wait(fence, false); 1839 1840 amdgpu_vm_prt_put(adev); 1841 } else { 1842 cb->adev = adev; 1843 if (!fence || dma_fence_add_callback(fence, &cb->cb, 1844 amdgpu_vm_prt_cb)) 1845 amdgpu_vm_prt_cb(fence, &cb->cb); 1846 } 1847 } 1848 1849 /** 1850 * amdgpu_vm_free_mapping - free a mapping 1851 * 1852 * @adev: amdgpu_device pointer 1853 * @vm: requested vm 1854 * @mapping: mapping to be freed 1855 * @fence: fence of the unmap operation 1856 * 1857 * Free a mapping and make sure we decrease the PRT usage count if applicable. 1858 */ 1859 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 1860 struct amdgpu_vm *vm, 1861 struct amdgpu_bo_va_mapping *mapping, 1862 struct dma_fence *fence) 1863 { 1864 if (mapping->flags & AMDGPU_PTE_PRT) 1865 amdgpu_vm_add_prt_cb(adev, fence); 1866 kfree(mapping); 1867 } 1868 1869 /** 1870 * amdgpu_vm_prt_fini - finish all prt mappings 1871 * 1872 * @adev: amdgpu_device pointer 1873 * @vm: requested vm 1874 * 1875 * Register a cleanup callback to disable PRT support after VM dies. 1876 */ 1877 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1878 { 1879 struct dma_resv *resv = vm->root.base.bo->tbo.base.resv; 1880 struct dma_fence *excl, **shared; 1881 unsigned i, shared_count; 1882 int r; 1883 1884 r = dma_resv_get_fences_rcu(resv, &excl, 1885 &shared_count, &shared); 1886 if (r) { 1887 /* Not enough memory to grab the fence list, as last resort 1888 * block for all the fences to complete. 1889 */ 1890 dma_resv_wait_timeout_rcu(resv, true, false, 1891 MAX_SCHEDULE_TIMEOUT); 1892 return; 1893 } 1894 1895 /* Add a callback for each fence in the reservation object */ 1896 amdgpu_vm_prt_get(adev); 1897 amdgpu_vm_add_prt_cb(adev, excl); 1898 1899 for (i = 0; i < shared_count; ++i) { 1900 amdgpu_vm_prt_get(adev); 1901 amdgpu_vm_add_prt_cb(adev, shared[i]); 1902 } 1903 1904 kfree(shared); 1905 } 1906 1907 /** 1908 * amdgpu_vm_clear_freed - clear freed BOs in the PT 1909 * 1910 * @adev: amdgpu_device pointer 1911 * @vm: requested vm 1912 * @fence: optional resulting fence (unchanged if no work needed to be done 1913 * or if an error occurred) 1914 * 1915 * Make sure all freed BOs are cleared in the PT. 1916 * PTs have to be reserved and mutex must be locked! 1917 * 1918 * Returns: 1919 * 0 for success. 1920 * 1921 */ 1922 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 1923 struct amdgpu_vm *vm, 1924 struct dma_fence **fence) 1925 { 1926 struct amdgpu_bo_va_mapping *mapping; 1927 uint64_t init_pte_value = 0; 1928 struct dma_fence *f = NULL; 1929 int r; 1930 1931 while (!list_empty(&vm->freed)) { 1932 mapping = list_first_entry(&vm->freed, 1933 struct amdgpu_bo_va_mapping, list); 1934 list_del(&mapping->list); 1935 1936 if (vm->pte_support_ats && 1937 mapping->start < AMDGPU_GMC_HOLE_START) 1938 init_pte_value = AMDGPU_PTE_DEFAULT_ATC; 1939 1940 r = amdgpu_vm_bo_update_mapping(adev, NULL, NULL, vm, 1941 mapping->start, mapping->last, 1942 init_pte_value, 0, &f); 1943 amdgpu_vm_free_mapping(adev, vm, mapping, f); 1944 if (r) { 1945 dma_fence_put(f); 1946 return r; 1947 } 1948 } 1949 1950 if (fence && f) { 1951 dma_fence_put(*fence); 1952 *fence = f; 1953 } else { 1954 dma_fence_put(f); 1955 } 1956 1957 return 0; 1958 1959 } 1960 1961 /** 1962 * amdgpu_vm_handle_moved - handle moved BOs in the PT 1963 * 1964 * @adev: amdgpu_device pointer 1965 * @vm: requested vm 1966 * 1967 * Make sure all BOs which are moved are updated in the PTs. 1968 * 1969 * Returns: 1970 * 0 for success. 1971 * 1972 * PTs have to be reserved! 1973 */ 1974 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 1975 struct amdgpu_vm *vm) 1976 { 1977 struct amdgpu_bo_va *bo_va, *tmp; 1978 struct dma_resv *resv; 1979 bool clear; 1980 int r; 1981 1982 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 1983 /* Per VM BOs never need to bo cleared in the page tables */ 1984 r = amdgpu_vm_bo_update(adev, bo_va, false); 1985 if (r) 1986 return r; 1987 } 1988 1989 spin_lock(&vm->invalidated_lock); 1990 while (!list_empty(&vm->invalidated)) { 1991 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 1992 base.vm_status); 1993 resv = bo_va->base.bo->tbo.base.resv; 1994 spin_unlock(&vm->invalidated_lock); 1995 1996 /* Try to reserve the BO to avoid clearing its ptes */ 1997 if (!amdgpu_vm_debug && dma_resv_trylock(resv)) 1998 clear = false; 1999 /* Somebody else is using the BO right now */ 2000 else 2001 clear = true; 2002 2003 r = amdgpu_vm_bo_update(adev, bo_va, clear); 2004 if (r) 2005 return r; 2006 2007 if (!clear) 2008 dma_resv_unlock(resv); 2009 spin_lock(&vm->invalidated_lock); 2010 } 2011 spin_unlock(&vm->invalidated_lock); 2012 2013 return 0; 2014 } 2015 2016 /** 2017 * amdgpu_vm_bo_add - add a bo to a specific vm 2018 * 2019 * @adev: amdgpu_device pointer 2020 * @vm: requested vm 2021 * @bo: amdgpu buffer object 2022 * 2023 * Add @bo into the requested vm. 2024 * Add @bo to the list of bos associated with the vm 2025 * 2026 * Returns: 2027 * Newly added bo_va or NULL for failure 2028 * 2029 * Object has to be reserved! 2030 */ 2031 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 2032 struct amdgpu_vm *vm, 2033 struct amdgpu_bo *bo) 2034 { 2035 struct amdgpu_bo_va *bo_va; 2036 2037 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 2038 if (bo_va == NULL) { 2039 return NULL; 2040 } 2041 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 2042 2043 bo_va->ref_count = 1; 2044 INIT_LIST_HEAD(&bo_va->valids); 2045 INIT_LIST_HEAD(&bo_va->invalids); 2046 2047 if (bo && amdgpu_xgmi_same_hive(adev, amdgpu_ttm_adev(bo->tbo.bdev)) && 2048 (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM)) { 2049 bo_va->is_xgmi = true; 2050 mutex_lock(&adev->vm_manager.lock_pstate); 2051 /* Power up XGMI if it can be potentially used */ 2052 if (++adev->vm_manager.xgmi_map_counter == 1) 2053 amdgpu_xgmi_set_pstate(adev, 1); 2054 mutex_unlock(&adev->vm_manager.lock_pstate); 2055 } 2056 2057 return bo_va; 2058 } 2059 2060 2061 /** 2062 * amdgpu_vm_bo_insert_mapping - insert a new mapping 2063 * 2064 * @adev: amdgpu_device pointer 2065 * @bo_va: bo_va to store the address 2066 * @mapping: the mapping to insert 2067 * 2068 * Insert a new mapping into all structures. 2069 */ 2070 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 2071 struct amdgpu_bo_va *bo_va, 2072 struct amdgpu_bo_va_mapping *mapping) 2073 { 2074 struct amdgpu_vm *vm = bo_va->base.vm; 2075 struct amdgpu_bo *bo = bo_va->base.bo; 2076 2077 mapping->bo_va = bo_va; 2078 list_add(&mapping->list, &bo_va->invalids); 2079 amdgpu_vm_it_insert(mapping, &vm->va); 2080 2081 if (mapping->flags & AMDGPU_PTE_PRT) 2082 amdgpu_vm_prt_get(adev); 2083 2084 if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv && 2085 !bo_va->base.moved) { 2086 list_move(&bo_va->base.vm_status, &vm->moved); 2087 } 2088 trace_amdgpu_vm_bo_map(bo_va, mapping); 2089 } 2090 2091 /** 2092 * amdgpu_vm_bo_map - map bo inside a vm 2093 * 2094 * @adev: amdgpu_device pointer 2095 * @bo_va: bo_va to store the address 2096 * @saddr: where to map the BO 2097 * @offset: requested offset in the BO 2098 * @size: BO size in bytes 2099 * @flags: attributes of pages (read/write/valid/etc.) 2100 * 2101 * Add a mapping of the BO at the specefied addr into the VM. 2102 * 2103 * Returns: 2104 * 0 for success, error for failure. 2105 * 2106 * Object has to be reserved and unreserved outside! 2107 */ 2108 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 2109 struct amdgpu_bo_va *bo_va, 2110 uint64_t saddr, uint64_t offset, 2111 uint64_t size, uint64_t flags) 2112 { 2113 struct amdgpu_bo_va_mapping *mapping, *tmp; 2114 struct amdgpu_bo *bo = bo_va->base.bo; 2115 struct amdgpu_vm *vm = bo_va->base.vm; 2116 uint64_t eaddr; 2117 2118 /* validate the parameters */ 2119 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2120 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2121 return -EINVAL; 2122 2123 /* make sure object fit at this offset */ 2124 eaddr = saddr + size - 1; 2125 if (saddr >= eaddr || 2126 (bo && offset + size > amdgpu_bo_size(bo))) 2127 return -EINVAL; 2128 2129 saddr /= AMDGPU_GPU_PAGE_SIZE; 2130 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2131 2132 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2133 if (tmp) { 2134 /* bo and tmp overlap, invalid addr */ 2135 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 2136 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 2137 tmp->start, tmp->last + 1); 2138 return -EINVAL; 2139 } 2140 2141 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2142 if (!mapping) 2143 return -ENOMEM; 2144 2145 mapping->start = saddr; 2146 mapping->last = eaddr; 2147 mapping->offset = offset; 2148 mapping->flags = flags; 2149 2150 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2151 2152 return 0; 2153 } 2154 2155 /** 2156 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 2157 * 2158 * @adev: amdgpu_device pointer 2159 * @bo_va: bo_va to store the address 2160 * @saddr: where to map the BO 2161 * @offset: requested offset in the BO 2162 * @size: BO size in bytes 2163 * @flags: attributes of pages (read/write/valid/etc.) 2164 * 2165 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 2166 * mappings as we do so. 2167 * 2168 * Returns: 2169 * 0 for success, error for failure. 2170 * 2171 * Object has to be reserved and unreserved outside! 2172 */ 2173 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 2174 struct amdgpu_bo_va *bo_va, 2175 uint64_t saddr, uint64_t offset, 2176 uint64_t size, uint64_t flags) 2177 { 2178 struct amdgpu_bo_va_mapping *mapping; 2179 struct amdgpu_bo *bo = bo_va->base.bo; 2180 uint64_t eaddr; 2181 int r; 2182 2183 /* validate the parameters */ 2184 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2185 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2186 return -EINVAL; 2187 2188 /* make sure object fit at this offset */ 2189 eaddr = saddr + size - 1; 2190 if (saddr >= eaddr || 2191 (bo && offset + size > amdgpu_bo_size(bo))) 2192 return -EINVAL; 2193 2194 /* Allocate all the needed memory */ 2195 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2196 if (!mapping) 2197 return -ENOMEM; 2198 2199 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 2200 if (r) { 2201 kfree(mapping); 2202 return r; 2203 } 2204 2205 saddr /= AMDGPU_GPU_PAGE_SIZE; 2206 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2207 2208 mapping->start = saddr; 2209 mapping->last = eaddr; 2210 mapping->offset = offset; 2211 mapping->flags = flags; 2212 2213 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2214 2215 return 0; 2216 } 2217 2218 /** 2219 * amdgpu_vm_bo_unmap - remove bo mapping from vm 2220 * 2221 * @adev: amdgpu_device pointer 2222 * @bo_va: bo_va to remove the address from 2223 * @saddr: where to the BO is mapped 2224 * 2225 * Remove a mapping of the BO at the specefied addr from the VM. 2226 * 2227 * Returns: 2228 * 0 for success, error for failure. 2229 * 2230 * Object has to be reserved and unreserved outside! 2231 */ 2232 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 2233 struct amdgpu_bo_va *bo_va, 2234 uint64_t saddr) 2235 { 2236 struct amdgpu_bo_va_mapping *mapping; 2237 struct amdgpu_vm *vm = bo_va->base.vm; 2238 bool valid = true; 2239 2240 saddr /= AMDGPU_GPU_PAGE_SIZE; 2241 2242 list_for_each_entry(mapping, &bo_va->valids, list) { 2243 if (mapping->start == saddr) 2244 break; 2245 } 2246 2247 if (&mapping->list == &bo_va->valids) { 2248 valid = false; 2249 2250 list_for_each_entry(mapping, &bo_va->invalids, list) { 2251 if (mapping->start == saddr) 2252 break; 2253 } 2254 2255 if (&mapping->list == &bo_va->invalids) 2256 return -ENOENT; 2257 } 2258 2259 list_del(&mapping->list); 2260 amdgpu_vm_it_remove(mapping, &vm->va); 2261 mapping->bo_va = NULL; 2262 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2263 2264 if (valid) 2265 list_add(&mapping->list, &vm->freed); 2266 else 2267 amdgpu_vm_free_mapping(adev, vm, mapping, 2268 bo_va->last_pt_update); 2269 2270 return 0; 2271 } 2272 2273 /** 2274 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 2275 * 2276 * @adev: amdgpu_device pointer 2277 * @vm: VM structure to use 2278 * @saddr: start of the range 2279 * @size: size of the range 2280 * 2281 * Remove all mappings in a range, split them as appropriate. 2282 * 2283 * Returns: 2284 * 0 for success, error for failure. 2285 */ 2286 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 2287 struct amdgpu_vm *vm, 2288 uint64_t saddr, uint64_t size) 2289 { 2290 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 2291 LIST_HEAD(removed); 2292 uint64_t eaddr; 2293 2294 eaddr = saddr + size - 1; 2295 saddr /= AMDGPU_GPU_PAGE_SIZE; 2296 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2297 2298 /* Allocate all the needed memory */ 2299 before = kzalloc(sizeof(*before), GFP_KERNEL); 2300 if (!before) 2301 return -ENOMEM; 2302 INIT_LIST_HEAD(&before->list); 2303 2304 after = kzalloc(sizeof(*after), GFP_KERNEL); 2305 if (!after) { 2306 kfree(before); 2307 return -ENOMEM; 2308 } 2309 INIT_LIST_HEAD(&after->list); 2310 2311 /* Now gather all removed mappings */ 2312 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2313 while (tmp) { 2314 /* Remember mapping split at the start */ 2315 if (tmp->start < saddr) { 2316 before->start = tmp->start; 2317 before->last = saddr - 1; 2318 before->offset = tmp->offset; 2319 before->flags = tmp->flags; 2320 before->bo_va = tmp->bo_va; 2321 list_add(&before->list, &tmp->bo_va->invalids); 2322 } 2323 2324 /* Remember mapping split at the end */ 2325 if (tmp->last > eaddr) { 2326 after->start = eaddr + 1; 2327 after->last = tmp->last; 2328 after->offset = tmp->offset; 2329 after->offset += after->start - tmp->start; 2330 after->flags = tmp->flags; 2331 after->bo_va = tmp->bo_va; 2332 list_add(&after->list, &tmp->bo_va->invalids); 2333 } 2334 2335 list_del(&tmp->list); 2336 list_add(&tmp->list, &removed); 2337 2338 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2339 } 2340 2341 /* And free them up */ 2342 list_for_each_entry_safe(tmp, next, &removed, list) { 2343 amdgpu_vm_it_remove(tmp, &vm->va); 2344 list_del(&tmp->list); 2345 2346 if (tmp->start < saddr) 2347 tmp->start = saddr; 2348 if (tmp->last > eaddr) 2349 tmp->last = eaddr; 2350 2351 tmp->bo_va = NULL; 2352 list_add(&tmp->list, &vm->freed); 2353 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2354 } 2355 2356 /* Insert partial mapping before the range */ 2357 if (!list_empty(&before->list)) { 2358 amdgpu_vm_it_insert(before, &vm->va); 2359 if (before->flags & AMDGPU_PTE_PRT) 2360 amdgpu_vm_prt_get(adev); 2361 } else { 2362 kfree(before); 2363 } 2364 2365 /* Insert partial mapping after the range */ 2366 if (!list_empty(&after->list)) { 2367 amdgpu_vm_it_insert(after, &vm->va); 2368 if (after->flags & AMDGPU_PTE_PRT) 2369 amdgpu_vm_prt_get(adev); 2370 } else { 2371 kfree(after); 2372 } 2373 2374 return 0; 2375 } 2376 2377 /** 2378 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2379 * 2380 * @vm: the requested VM 2381 * @addr: the address 2382 * 2383 * Find a mapping by it's address. 2384 * 2385 * Returns: 2386 * The amdgpu_bo_va_mapping matching for addr or NULL 2387 * 2388 */ 2389 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2390 uint64_t addr) 2391 { 2392 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2393 } 2394 2395 /** 2396 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2397 * 2398 * @vm: the requested vm 2399 * @ticket: CS ticket 2400 * 2401 * Trace all mappings of BOs reserved during a command submission. 2402 */ 2403 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2404 { 2405 struct amdgpu_bo_va_mapping *mapping; 2406 2407 if (!trace_amdgpu_vm_bo_cs_enabled()) 2408 return; 2409 2410 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2411 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2412 if (mapping->bo_va && mapping->bo_va->base.bo) { 2413 struct amdgpu_bo *bo; 2414 2415 bo = mapping->bo_va->base.bo; 2416 if (dma_resv_locking_ctx(bo->tbo.base.resv) != 2417 ticket) 2418 continue; 2419 } 2420 2421 trace_amdgpu_vm_bo_cs(mapping); 2422 } 2423 } 2424 2425 /** 2426 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 2427 * 2428 * @adev: amdgpu_device pointer 2429 * @bo_va: requested bo_va 2430 * 2431 * Remove @bo_va->bo from the requested vm. 2432 * 2433 * Object have to be reserved! 2434 */ 2435 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 2436 struct amdgpu_bo_va *bo_va) 2437 { 2438 struct amdgpu_bo_va_mapping *mapping, *next; 2439 struct amdgpu_bo *bo = bo_va->base.bo; 2440 struct amdgpu_vm *vm = bo_va->base.vm; 2441 struct amdgpu_vm_bo_base **base; 2442 2443 if (bo) { 2444 if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) 2445 vm->bulk_moveable = false; 2446 2447 for (base = &bo_va->base.bo->vm_bo; *base; 2448 base = &(*base)->next) { 2449 if (*base != &bo_va->base) 2450 continue; 2451 2452 *base = bo_va->base.next; 2453 break; 2454 } 2455 } 2456 2457 spin_lock(&vm->invalidated_lock); 2458 list_del(&bo_va->base.vm_status); 2459 spin_unlock(&vm->invalidated_lock); 2460 2461 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2462 list_del(&mapping->list); 2463 amdgpu_vm_it_remove(mapping, &vm->va); 2464 mapping->bo_va = NULL; 2465 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2466 list_add(&mapping->list, &vm->freed); 2467 } 2468 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2469 list_del(&mapping->list); 2470 amdgpu_vm_it_remove(mapping, &vm->va); 2471 amdgpu_vm_free_mapping(adev, vm, mapping, 2472 bo_va->last_pt_update); 2473 } 2474 2475 dma_fence_put(bo_va->last_pt_update); 2476 2477 if (bo && bo_va->is_xgmi) { 2478 mutex_lock(&adev->vm_manager.lock_pstate); 2479 if (--adev->vm_manager.xgmi_map_counter == 0) 2480 amdgpu_xgmi_set_pstate(adev, 0); 2481 mutex_unlock(&adev->vm_manager.lock_pstate); 2482 } 2483 2484 kfree(bo_va); 2485 } 2486 2487 /** 2488 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2489 * 2490 * @adev: amdgpu_device pointer 2491 * @bo: amdgpu buffer object 2492 * @evicted: is the BO evicted 2493 * 2494 * Mark @bo as invalid. 2495 */ 2496 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2497 struct amdgpu_bo *bo, bool evicted) 2498 { 2499 struct amdgpu_vm_bo_base *bo_base; 2500 2501 /* shadow bo doesn't have bo base, its validation needs its parent */ 2502 if (bo->parent && bo->parent->shadow == bo) 2503 bo = bo->parent; 2504 2505 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2506 struct amdgpu_vm *vm = bo_base->vm; 2507 2508 if (evicted && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) { 2509 amdgpu_vm_bo_evicted(bo_base); 2510 continue; 2511 } 2512 2513 if (bo_base->moved) 2514 continue; 2515 bo_base->moved = true; 2516 2517 if (bo->tbo.type == ttm_bo_type_kernel) 2518 amdgpu_vm_bo_relocated(bo_base); 2519 else if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) 2520 amdgpu_vm_bo_moved(bo_base); 2521 else 2522 amdgpu_vm_bo_invalidated(bo_base); 2523 } 2524 } 2525 2526 /** 2527 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2528 * 2529 * @vm_size: VM size 2530 * 2531 * Returns: 2532 * VM page table as power of two 2533 */ 2534 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2535 { 2536 /* Total bits covered by PD + PTs */ 2537 unsigned bits = ilog2(vm_size) + 18; 2538 2539 /* Make sure the PD is 4K in size up to 8GB address space. 2540 Above that split equal between PD and PTs */ 2541 if (vm_size <= 8) 2542 return (bits - 9); 2543 else 2544 return ((bits + 3) / 2); 2545 } 2546 2547 /** 2548 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2549 * 2550 * @adev: amdgpu_device pointer 2551 * @min_vm_size: the minimum vm size in GB if it's set auto 2552 * @fragment_size_default: Default PTE fragment size 2553 * @max_level: max VMPT level 2554 * @max_bits: max address space size in bits 2555 * 2556 */ 2557 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2558 uint32_t fragment_size_default, unsigned max_level, 2559 unsigned max_bits) 2560 { 2561 unsigned int max_size = 1 << (max_bits - 30); 2562 unsigned int vm_size; 2563 uint64_t tmp; 2564 2565 /* adjust vm size first */ 2566 if (amdgpu_vm_size != -1) { 2567 vm_size = amdgpu_vm_size; 2568 if (vm_size > max_size) { 2569 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2570 amdgpu_vm_size, max_size); 2571 vm_size = max_size; 2572 } 2573 } else { 2574 struct sysinfo si; 2575 unsigned int phys_ram_gb; 2576 2577 /* Optimal VM size depends on the amount of physical 2578 * RAM available. Underlying requirements and 2579 * assumptions: 2580 * 2581 * - Need to map system memory and VRAM from all GPUs 2582 * - VRAM from other GPUs not known here 2583 * - Assume VRAM <= system memory 2584 * - On GFX8 and older, VM space can be segmented for 2585 * different MTYPEs 2586 * - Need to allow room for fragmentation, guard pages etc. 2587 * 2588 * This adds up to a rough guess of system memory x3. 2589 * Round up to power of two to maximize the available 2590 * VM size with the given page table size. 2591 */ 2592 si_meminfo(&si); 2593 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2594 (1 << 30) - 1) >> 30; 2595 vm_size = roundup_pow_of_two( 2596 min(max(phys_ram_gb * 3, min_vm_size), max_size)); 2597 } 2598 2599 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2600 2601 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2602 if (amdgpu_vm_block_size != -1) 2603 tmp >>= amdgpu_vm_block_size - 9; 2604 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2605 adev->vm_manager.num_level = min(max_level, (unsigned)tmp); 2606 switch (adev->vm_manager.num_level) { 2607 case 3: 2608 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2609 break; 2610 case 2: 2611 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2612 break; 2613 case 1: 2614 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2615 break; 2616 default: 2617 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2618 } 2619 /* block size depends on vm size and hw setup*/ 2620 if (amdgpu_vm_block_size != -1) 2621 adev->vm_manager.block_size = 2622 min((unsigned)amdgpu_vm_block_size, max_bits 2623 - AMDGPU_GPU_PAGE_SHIFT 2624 - 9 * adev->vm_manager.num_level); 2625 else if (adev->vm_manager.num_level > 1) 2626 adev->vm_manager.block_size = 9; 2627 else 2628 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2629 2630 if (amdgpu_vm_fragment_size == -1) 2631 adev->vm_manager.fragment_size = fragment_size_default; 2632 else 2633 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2634 2635 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2636 vm_size, adev->vm_manager.num_level + 1, 2637 adev->vm_manager.block_size, 2638 adev->vm_manager.fragment_size); 2639 } 2640 2641 /** 2642 * amdgpu_vm_wait_idle - wait for the VM to become idle 2643 * 2644 * @vm: VM object to wait for 2645 * @timeout: timeout to wait for VM to become idle 2646 */ 2647 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout) 2648 { 2649 return dma_resv_wait_timeout_rcu(vm->root.base.bo->tbo.base.resv, 2650 true, true, timeout); 2651 } 2652 2653 /** 2654 * amdgpu_vm_init - initialize a vm instance 2655 * 2656 * @adev: amdgpu_device pointer 2657 * @vm: requested vm 2658 * @vm_context: Indicates if it GFX or Compute context 2659 * @pasid: Process address space identifier 2660 * 2661 * Init @vm fields. 2662 * 2663 * Returns: 2664 * 0 for success, error for failure. 2665 */ 2666 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2667 int vm_context, unsigned int pasid) 2668 { 2669 struct amdgpu_bo_param bp; 2670 struct amdgpu_bo *root; 2671 int r, i; 2672 2673 vm->va = RB_ROOT_CACHED; 2674 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2675 vm->reserved_vmid[i] = NULL; 2676 INIT_LIST_HEAD(&vm->evicted); 2677 INIT_LIST_HEAD(&vm->relocated); 2678 INIT_LIST_HEAD(&vm->moved); 2679 INIT_LIST_HEAD(&vm->idle); 2680 INIT_LIST_HEAD(&vm->invalidated); 2681 spin_lock_init(&vm->invalidated_lock); 2682 INIT_LIST_HEAD(&vm->freed); 2683 2684 /* create scheduler entity for page table updates */ 2685 r = drm_sched_entity_init(&vm->entity, adev->vm_manager.vm_pte_rqs, 2686 adev->vm_manager.vm_pte_num_rqs, NULL); 2687 if (r) 2688 return r; 2689 2690 vm->pte_support_ats = false; 2691 2692 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) { 2693 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2694 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2695 2696 if (adev->asic_type == CHIP_RAVEN) 2697 vm->pte_support_ats = true; 2698 } else { 2699 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2700 AMDGPU_VM_USE_CPU_FOR_GFX); 2701 } 2702 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2703 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2704 WARN_ONCE((vm->use_cpu_for_update && !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2705 "CPU update of VM recommended only for large BAR system\n"); 2706 2707 if (vm->use_cpu_for_update) 2708 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2709 else 2710 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2711 vm->last_update = NULL; 2712 2713 amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, &bp); 2714 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) 2715 bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW; 2716 r = amdgpu_bo_create(adev, &bp, &root); 2717 if (r) 2718 goto error_free_sched_entity; 2719 2720 r = amdgpu_bo_reserve(root, true); 2721 if (r) 2722 goto error_free_root; 2723 2724 r = dma_resv_reserve_shared(root->tbo.base.resv, 1); 2725 if (r) 2726 goto error_unreserve; 2727 2728 amdgpu_vm_bo_base_init(&vm->root.base, vm, root); 2729 2730 r = amdgpu_vm_clear_bo(adev, vm, root); 2731 if (r) 2732 goto error_unreserve; 2733 2734 amdgpu_bo_unreserve(vm->root.base.bo); 2735 2736 if (pasid) { 2737 unsigned long flags; 2738 2739 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2740 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 2741 GFP_ATOMIC); 2742 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2743 if (r < 0) 2744 goto error_free_root; 2745 2746 vm->pasid = pasid; 2747 } 2748 2749 INIT_KFIFO(vm->faults); 2750 2751 return 0; 2752 2753 error_unreserve: 2754 amdgpu_bo_unreserve(vm->root.base.bo); 2755 2756 error_free_root: 2757 amdgpu_bo_unref(&vm->root.base.bo->shadow); 2758 amdgpu_bo_unref(&vm->root.base.bo); 2759 vm->root.base.bo = NULL; 2760 2761 error_free_sched_entity: 2762 drm_sched_entity_destroy(&vm->entity); 2763 2764 return r; 2765 } 2766 2767 /** 2768 * amdgpu_vm_check_clean_reserved - check if a VM is clean 2769 * 2770 * @adev: amdgpu_device pointer 2771 * @vm: the VM to check 2772 * 2773 * check all entries of the root PD, if any subsequent PDs are allocated, 2774 * it means there are page table creating and filling, and is no a clean 2775 * VM 2776 * 2777 * Returns: 2778 * 0 if this VM is clean 2779 */ 2780 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev, 2781 struct amdgpu_vm *vm) 2782 { 2783 enum amdgpu_vm_level root = adev->vm_manager.root_level; 2784 unsigned int entries = amdgpu_vm_num_entries(adev, root); 2785 unsigned int i = 0; 2786 2787 if (!(vm->root.entries)) 2788 return 0; 2789 2790 for (i = 0; i < entries; i++) { 2791 if (vm->root.entries[i].base.bo) 2792 return -EINVAL; 2793 } 2794 2795 return 0; 2796 } 2797 2798 /** 2799 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 2800 * 2801 * @adev: amdgpu_device pointer 2802 * @vm: requested vm 2803 * 2804 * This only works on GFX VMs that don't have any BOs added and no 2805 * page tables allocated yet. 2806 * 2807 * Changes the following VM parameters: 2808 * - use_cpu_for_update 2809 * - pte_supports_ats 2810 * - pasid (old PASID is released, because compute manages its own PASIDs) 2811 * 2812 * Reinitializes the page directory to reflect the changed ATS 2813 * setting. 2814 * 2815 * Returns: 2816 * 0 for success, -errno for errors. 2817 */ 2818 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm, unsigned int pasid) 2819 { 2820 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN); 2821 int r; 2822 2823 r = amdgpu_bo_reserve(vm->root.base.bo, true); 2824 if (r) 2825 return r; 2826 2827 /* Sanity checks */ 2828 r = amdgpu_vm_check_clean_reserved(adev, vm); 2829 if (r) 2830 goto unreserve_bo; 2831 2832 if (pasid) { 2833 unsigned long flags; 2834 2835 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2836 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 2837 GFP_ATOMIC); 2838 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2839 2840 if (r == -ENOSPC) 2841 goto unreserve_bo; 2842 r = 0; 2843 } 2844 2845 /* Check if PD needs to be reinitialized and do it before 2846 * changing any other state, in case it fails. 2847 */ 2848 if (pte_support_ats != vm->pte_support_ats) { 2849 vm->pte_support_ats = pte_support_ats; 2850 r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo); 2851 if (r) 2852 goto free_idr; 2853 } 2854 2855 /* Update VM state */ 2856 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2857 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2858 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2859 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2860 WARN_ONCE((vm->use_cpu_for_update && !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2861 "CPU update of VM recommended only for large BAR system\n"); 2862 2863 if (vm->use_cpu_for_update) 2864 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2865 else 2866 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2867 dma_fence_put(vm->last_update); 2868 vm->last_update = NULL; 2869 2870 if (vm->pasid) { 2871 unsigned long flags; 2872 2873 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2874 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 2875 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2876 2877 /* Free the original amdgpu allocated pasid 2878 * Will be replaced with kfd allocated pasid 2879 */ 2880 amdgpu_pasid_free(vm->pasid); 2881 vm->pasid = 0; 2882 } 2883 2884 /* Free the shadow bo for compute VM */ 2885 amdgpu_bo_unref(&vm->root.base.bo->shadow); 2886 2887 if (pasid) 2888 vm->pasid = pasid; 2889 2890 goto unreserve_bo; 2891 2892 free_idr: 2893 if (pasid) { 2894 unsigned long flags; 2895 2896 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2897 idr_remove(&adev->vm_manager.pasid_idr, pasid); 2898 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2899 } 2900 unreserve_bo: 2901 amdgpu_bo_unreserve(vm->root.base.bo); 2902 return r; 2903 } 2904 2905 /** 2906 * amdgpu_vm_release_compute - release a compute vm 2907 * @adev: amdgpu_device pointer 2908 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute 2909 * 2910 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute 2911 * pasid from vm. Compute should stop use of vm after this call. 2912 */ 2913 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2914 { 2915 if (vm->pasid) { 2916 unsigned long flags; 2917 2918 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2919 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 2920 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2921 } 2922 vm->pasid = 0; 2923 } 2924 2925 /** 2926 * amdgpu_vm_fini - tear down a vm instance 2927 * 2928 * @adev: amdgpu_device pointer 2929 * @vm: requested vm 2930 * 2931 * Tear down @vm. 2932 * Unbind the VM and remove all bos from the vm bo list 2933 */ 2934 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2935 { 2936 struct amdgpu_bo_va_mapping *mapping, *tmp; 2937 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 2938 struct amdgpu_bo *root; 2939 int i, r; 2940 2941 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 2942 2943 if (vm->pasid) { 2944 unsigned long flags; 2945 2946 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2947 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 2948 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2949 } 2950 2951 drm_sched_entity_destroy(&vm->entity); 2952 2953 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 2954 dev_err(adev->dev, "still active bo inside vm\n"); 2955 } 2956 rbtree_postorder_for_each_entry_safe(mapping, tmp, 2957 &vm->va.rb_root, rb) { 2958 /* Don't remove the mapping here, we don't want to trigger a 2959 * rebalance and the tree is about to be destroyed anyway. 2960 */ 2961 list_del(&mapping->list); 2962 kfree(mapping); 2963 } 2964 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 2965 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 2966 amdgpu_vm_prt_fini(adev, vm); 2967 prt_fini_needed = false; 2968 } 2969 2970 list_del(&mapping->list); 2971 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 2972 } 2973 2974 root = amdgpu_bo_ref(vm->root.base.bo); 2975 r = amdgpu_bo_reserve(root, true); 2976 if (r) { 2977 dev_err(adev->dev, "Leaking page tables because BO reservation failed\n"); 2978 } else { 2979 amdgpu_vm_free_pts(adev, vm, NULL); 2980 amdgpu_bo_unreserve(root); 2981 } 2982 amdgpu_bo_unref(&root); 2983 WARN_ON(vm->root.base.bo); 2984 dma_fence_put(vm->last_update); 2985 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2986 amdgpu_vmid_free_reserved(adev, vm, i); 2987 } 2988 2989 /** 2990 * amdgpu_vm_manager_init - init the VM manager 2991 * 2992 * @adev: amdgpu_device pointer 2993 * 2994 * Initialize the VM manager structures 2995 */ 2996 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 2997 { 2998 unsigned i; 2999 3000 amdgpu_vmid_mgr_init(adev); 3001 3002 adev->vm_manager.fence_context = 3003 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 3004 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 3005 adev->vm_manager.seqno[i] = 0; 3006 3007 spin_lock_init(&adev->vm_manager.prt_lock); 3008 atomic_set(&adev->vm_manager.num_prt_users, 0); 3009 3010 /* If not overridden by the user, by default, only in large BAR systems 3011 * Compute VM tables will be updated by CPU 3012 */ 3013 #ifdef CONFIG_X86_64 3014 if (amdgpu_vm_update_mode == -1) { 3015 if (amdgpu_gmc_vram_full_visible(&adev->gmc)) 3016 adev->vm_manager.vm_update_mode = 3017 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 3018 else 3019 adev->vm_manager.vm_update_mode = 0; 3020 } else 3021 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 3022 #else 3023 adev->vm_manager.vm_update_mode = 0; 3024 #endif 3025 3026 idr_init(&adev->vm_manager.pasid_idr); 3027 spin_lock_init(&adev->vm_manager.pasid_lock); 3028 3029 adev->vm_manager.xgmi_map_counter = 0; 3030 mutex_init(&adev->vm_manager.lock_pstate); 3031 } 3032 3033 /** 3034 * amdgpu_vm_manager_fini - cleanup VM manager 3035 * 3036 * @adev: amdgpu_device pointer 3037 * 3038 * Cleanup the VM manager and free resources. 3039 */ 3040 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 3041 { 3042 WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr)); 3043 idr_destroy(&adev->vm_manager.pasid_idr); 3044 3045 amdgpu_vmid_mgr_fini(adev); 3046 } 3047 3048 /** 3049 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 3050 * 3051 * @dev: drm device pointer 3052 * @data: drm_amdgpu_vm 3053 * @filp: drm file pointer 3054 * 3055 * Returns: 3056 * 0 for success, -errno for errors. 3057 */ 3058 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 3059 { 3060 union drm_amdgpu_vm *args = data; 3061 struct amdgpu_device *adev = dev->dev_private; 3062 struct amdgpu_fpriv *fpriv = filp->driver_priv; 3063 int r; 3064 3065 switch (args->in.op) { 3066 case AMDGPU_VM_OP_RESERVE_VMID: 3067 /* current, we only have requirement to reserve vmid from gfxhub */ 3068 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0); 3069 if (r) 3070 return r; 3071 break; 3072 case AMDGPU_VM_OP_UNRESERVE_VMID: 3073 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0); 3074 break; 3075 default: 3076 return -EINVAL; 3077 } 3078 3079 return 0; 3080 } 3081 3082 /** 3083 * amdgpu_vm_get_task_info - Extracts task info for a PASID. 3084 * 3085 * @adev: drm device pointer 3086 * @pasid: PASID identifier for VM 3087 * @task_info: task_info to fill. 3088 */ 3089 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid, 3090 struct amdgpu_task_info *task_info) 3091 { 3092 struct amdgpu_vm *vm; 3093 unsigned long flags; 3094 3095 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3096 3097 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3098 if (vm) 3099 *task_info = vm->task_info; 3100 3101 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3102 } 3103 3104 /** 3105 * amdgpu_vm_set_task_info - Sets VMs task info. 3106 * 3107 * @vm: vm for which to set the info 3108 */ 3109 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 3110 { 3111 if (!vm->task_info.pid) { 3112 vm->task_info.pid = current->pid; 3113 get_task_comm(vm->task_info.task_name, current); 3114 3115 if (current->group_leader->mm == current->mm) { 3116 vm->task_info.tgid = current->group_leader->pid; 3117 get_task_comm(vm->task_info.process_name, current->group_leader); 3118 } 3119 } 3120 } 3121