1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright 2014-2018 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 #include <linux/dma-buf.h> 24 #include <linux/list.h> 25 #include <linux/pagemap.h> 26 #include <linux/sched/mm.h> 27 #include <linux/sched/task.h> 28 #include <linux/fdtable.h> 29 #include <drm/ttm/ttm_tt.h> 30 31 #include <drm/drm_exec.h> 32 33 #include "amdgpu_object.h" 34 #include "amdgpu_gem.h" 35 #include "amdgpu_vm.h" 36 #include "amdgpu_hmm.h" 37 #include "amdgpu_amdkfd.h" 38 #include "amdgpu_dma_buf.h" 39 #include <uapi/linux/kfd_ioctl.h> 40 #include "amdgpu_xgmi.h" 41 #include "kfd_priv.h" 42 #include "kfd_smi_events.h" 43 44 /* Userptr restore delay, just long enough to allow consecutive VM 45 * changes to accumulate 46 */ 47 #define AMDGPU_USERPTR_RESTORE_DELAY_MS 1 48 #define AMDGPU_RESERVE_MEM_LIMIT (3UL << 29) 49 50 /* 51 * Align VRAM availability to 2MB to avoid fragmentation caused by 4K allocations in the tail 2MB 52 * BO chunk 53 */ 54 #define VRAM_AVAILABLITY_ALIGN (1 << 21) 55 56 /* Impose limit on how much memory KFD can use */ 57 static struct { 58 uint64_t max_system_mem_limit; 59 uint64_t max_ttm_mem_limit; 60 int64_t system_mem_used; 61 int64_t ttm_mem_used; 62 spinlock_t mem_limit_lock; 63 } kfd_mem_limit; 64 65 static const char * const domain_bit_to_string[] = { 66 "CPU", 67 "GTT", 68 "VRAM", 69 "GDS", 70 "GWS", 71 "OA" 72 }; 73 74 #define domain_string(domain) domain_bit_to_string[ffs(domain)-1] 75 76 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work); 77 78 static bool kfd_mem_is_attached(struct amdgpu_vm *avm, 79 struct kgd_mem *mem) 80 { 81 struct kfd_mem_attachment *entry; 82 83 list_for_each_entry(entry, &mem->attachments, list) 84 if (entry->bo_va->base.vm == avm) 85 return true; 86 87 return false; 88 } 89 90 /** 91 * reuse_dmamap() - Check whether adev can share the original 92 * userptr BO 93 * 94 * If both adev and bo_adev are in direct mapping or 95 * in the same iommu group, they can share the original BO. 96 * 97 * @adev: Device to which can or cannot share the original BO 98 * @bo_adev: Device to which allocated BO belongs to 99 * 100 * Return: returns true if adev can share original userptr BO, 101 * false otherwise. 102 */ 103 static bool reuse_dmamap(struct amdgpu_device *adev, struct amdgpu_device *bo_adev) 104 { 105 return (adev->ram_is_direct_mapped && bo_adev->ram_is_direct_mapped) || 106 (adev->dev->iommu_group == bo_adev->dev->iommu_group); 107 } 108 109 /* Set memory usage limits. Current, limits are 110 * System (TTM + userptr) memory - 15/16th System RAM 111 * TTM memory - 3/8th System RAM 112 */ 113 void amdgpu_amdkfd_gpuvm_init_mem_limits(void) 114 { 115 struct sysinfo si; 116 uint64_t mem; 117 118 if (kfd_mem_limit.max_system_mem_limit) 119 return; 120 121 si_meminfo(&si); 122 mem = si.totalram - si.totalhigh; 123 mem *= si.mem_unit; 124 125 spin_lock_init(&kfd_mem_limit.mem_limit_lock); 126 kfd_mem_limit.max_system_mem_limit = mem - (mem >> 6); 127 if (kfd_mem_limit.max_system_mem_limit < 2 * AMDGPU_RESERVE_MEM_LIMIT) 128 kfd_mem_limit.max_system_mem_limit >>= 1; 129 else 130 kfd_mem_limit.max_system_mem_limit -= AMDGPU_RESERVE_MEM_LIMIT; 131 132 kfd_mem_limit.max_ttm_mem_limit = ttm_tt_pages_limit() << PAGE_SHIFT; 133 pr_debug("Kernel memory limit %lluM, TTM limit %lluM\n", 134 (kfd_mem_limit.max_system_mem_limit >> 20), 135 (kfd_mem_limit.max_ttm_mem_limit >> 20)); 136 } 137 138 void amdgpu_amdkfd_reserve_system_mem(uint64_t size) 139 { 140 kfd_mem_limit.system_mem_used += size; 141 } 142 143 /* Estimate page table size needed to represent a given memory size 144 * 145 * With 4KB pages, we need one 8 byte PTE for each 4KB of memory 146 * (factor 512, >> 9). With 2MB pages, we need one 8 byte PTE for 2MB 147 * of memory (factor 256K, >> 18). ROCm user mode tries to optimize 148 * for 2MB pages for TLB efficiency. However, small allocations and 149 * fragmented system memory still need some 4KB pages. We choose a 150 * compromise that should work in most cases without reserving too 151 * much memory for page tables unnecessarily (factor 16K, >> 14). 152 */ 153 154 #define ESTIMATE_PT_SIZE(mem_size) max(((mem_size) >> 14), AMDGPU_VM_RESERVED_VRAM) 155 156 /** 157 * amdgpu_amdkfd_reserve_mem_limit() - Decrease available memory by size 158 * of buffer. 159 * 160 * @adev: Device to which allocated BO belongs to 161 * @size: Size of buffer, in bytes, encapsulated by B0. This should be 162 * equivalent to amdgpu_bo_size(BO) 163 * @alloc_flag: Flag used in allocating a BO as noted above 164 * @xcp_id: xcp_id is used to get xcp from xcp manager, one xcp is 165 * managed as one compute node in driver for app 166 * 167 * Return: 168 * returns -ENOMEM in case of error, ZERO otherwise 169 */ 170 int amdgpu_amdkfd_reserve_mem_limit(struct amdgpu_device *adev, 171 uint64_t size, u32 alloc_flag, int8_t xcp_id) 172 { 173 uint64_t reserved_for_pt = 174 ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size); 175 size_t system_mem_needed, ttm_mem_needed, vram_needed; 176 int ret = 0; 177 uint64_t vram_size = 0; 178 179 system_mem_needed = 0; 180 ttm_mem_needed = 0; 181 vram_needed = 0; 182 if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 183 system_mem_needed = size; 184 ttm_mem_needed = size; 185 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 186 /* 187 * Conservatively round up the allocation requirement to 2 MB 188 * to avoid fragmentation caused by 4K allocations in the tail 189 * 2M BO chunk. 190 */ 191 vram_needed = size; 192 /* 193 * For GFX 9.4.3, get the VRAM size from XCP structs 194 */ 195 if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id)) 196 return -EINVAL; 197 198 vram_size = KFD_XCP_MEMORY_SIZE(adev, xcp_id); 199 if (adev->gmc.is_app_apu) { 200 system_mem_needed = size; 201 ttm_mem_needed = size; 202 } 203 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 204 system_mem_needed = size; 205 } else if (!(alloc_flag & 206 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 207 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 208 pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag); 209 return -ENOMEM; 210 } 211 212 spin_lock(&kfd_mem_limit.mem_limit_lock); 213 214 if (kfd_mem_limit.system_mem_used + system_mem_needed > 215 kfd_mem_limit.max_system_mem_limit) 216 pr_debug("Set no_system_mem_limit=1 if using shared memory\n"); 217 218 if ((kfd_mem_limit.system_mem_used + system_mem_needed > 219 kfd_mem_limit.max_system_mem_limit && !no_system_mem_limit) || 220 (kfd_mem_limit.ttm_mem_used + ttm_mem_needed > 221 kfd_mem_limit.max_ttm_mem_limit) || 222 (adev && xcp_id >= 0 && adev->kfd.vram_used[xcp_id] + vram_needed > 223 vram_size - reserved_for_pt - atomic64_read(&adev->vram_pin_size))) { 224 ret = -ENOMEM; 225 goto release; 226 } 227 228 /* Update memory accounting by decreasing available system 229 * memory, TTM memory and GPU memory as computed above 230 */ 231 WARN_ONCE(vram_needed && !adev, 232 "adev reference can't be null when vram is used"); 233 if (adev && xcp_id >= 0) { 234 adev->kfd.vram_used[xcp_id] += vram_needed; 235 adev->kfd.vram_used_aligned[xcp_id] += adev->gmc.is_app_apu ? 236 vram_needed : 237 ALIGN(vram_needed, VRAM_AVAILABLITY_ALIGN); 238 } 239 kfd_mem_limit.system_mem_used += system_mem_needed; 240 kfd_mem_limit.ttm_mem_used += ttm_mem_needed; 241 242 release: 243 spin_unlock(&kfd_mem_limit.mem_limit_lock); 244 return ret; 245 } 246 247 void amdgpu_amdkfd_unreserve_mem_limit(struct amdgpu_device *adev, 248 uint64_t size, u32 alloc_flag, int8_t xcp_id) 249 { 250 spin_lock(&kfd_mem_limit.mem_limit_lock); 251 252 if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 253 kfd_mem_limit.system_mem_used -= size; 254 kfd_mem_limit.ttm_mem_used -= size; 255 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 256 WARN_ONCE(!adev, 257 "adev reference can't be null when alloc mem flags vram is set"); 258 if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id)) 259 goto release; 260 261 if (adev) { 262 adev->kfd.vram_used[xcp_id] -= size; 263 if (adev->gmc.is_app_apu) { 264 adev->kfd.vram_used_aligned[xcp_id] -= size; 265 kfd_mem_limit.system_mem_used -= size; 266 kfd_mem_limit.ttm_mem_used -= size; 267 } else { 268 adev->kfd.vram_used_aligned[xcp_id] -= 269 ALIGN(size, VRAM_AVAILABLITY_ALIGN); 270 } 271 } 272 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 273 kfd_mem_limit.system_mem_used -= size; 274 } else if (!(alloc_flag & 275 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 276 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 277 pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag); 278 goto release; 279 } 280 WARN_ONCE(adev && xcp_id >= 0 && adev->kfd.vram_used[xcp_id] < 0, 281 "KFD VRAM memory accounting unbalanced for xcp: %d", xcp_id); 282 WARN_ONCE(kfd_mem_limit.ttm_mem_used < 0, 283 "KFD TTM memory accounting unbalanced"); 284 WARN_ONCE(kfd_mem_limit.system_mem_used < 0, 285 "KFD system memory accounting unbalanced"); 286 287 release: 288 spin_unlock(&kfd_mem_limit.mem_limit_lock); 289 } 290 291 void amdgpu_amdkfd_release_notify(struct amdgpu_bo *bo) 292 { 293 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 294 u32 alloc_flags = bo->kfd_bo->alloc_flags; 295 u64 size = amdgpu_bo_size(bo); 296 297 amdgpu_amdkfd_unreserve_mem_limit(adev, size, alloc_flags, 298 bo->xcp_id); 299 300 kfree(bo->kfd_bo); 301 } 302 303 /** 304 * create_dmamap_sg_bo() - Creates a amdgpu_bo object to reflect information 305 * about USERPTR or DOOREBELL or MMIO BO. 306 * 307 * @adev: Device for which dmamap BO is being created 308 * @mem: BO of peer device that is being DMA mapped. Provides parameters 309 * in building the dmamap BO 310 * @bo_out: Output parameter updated with handle of dmamap BO 311 */ 312 static int 313 create_dmamap_sg_bo(struct amdgpu_device *adev, 314 struct kgd_mem *mem, struct amdgpu_bo **bo_out) 315 { 316 struct drm_gem_object *gem_obj; 317 int ret; 318 uint64_t flags = 0; 319 320 ret = amdgpu_bo_reserve(mem->bo, false); 321 if (ret) 322 return ret; 323 324 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) 325 flags |= mem->bo->flags & (AMDGPU_GEM_CREATE_COHERENT | 326 AMDGPU_GEM_CREATE_UNCACHED); 327 328 ret = amdgpu_gem_object_create(adev, mem->bo->tbo.base.size, 1, 329 AMDGPU_GEM_DOMAIN_CPU, AMDGPU_GEM_CREATE_PREEMPTIBLE | flags, 330 ttm_bo_type_sg, mem->bo->tbo.base.resv, &gem_obj, 0); 331 332 amdgpu_bo_unreserve(mem->bo); 333 334 if (ret) { 335 pr_err("Error in creating DMA mappable SG BO on domain: %d\n", ret); 336 return -EINVAL; 337 } 338 339 *bo_out = gem_to_amdgpu_bo(gem_obj); 340 (*bo_out)->parent = amdgpu_bo_ref(mem->bo); 341 return ret; 342 } 343 344 /* amdgpu_amdkfd_remove_eviction_fence - Removes eviction fence from BO's 345 * reservation object. 346 * 347 * @bo: [IN] Remove eviction fence(s) from this BO 348 * @ef: [IN] This eviction fence is removed if it 349 * is present in the shared list. 350 * 351 * NOTE: Must be called with BO reserved i.e. bo->tbo.resv->lock held. 352 */ 353 static int amdgpu_amdkfd_remove_eviction_fence(struct amdgpu_bo *bo, 354 struct amdgpu_amdkfd_fence *ef) 355 { 356 struct dma_fence *replacement; 357 358 if (!ef) 359 return -EINVAL; 360 361 /* TODO: Instead of block before we should use the fence of the page 362 * table update and TLB flush here directly. 363 */ 364 replacement = dma_fence_get_stub(); 365 dma_resv_replace_fences(bo->tbo.base.resv, ef->base.context, 366 replacement, DMA_RESV_USAGE_BOOKKEEP); 367 dma_fence_put(replacement); 368 return 0; 369 } 370 371 int amdgpu_amdkfd_remove_fence_on_pt_pd_bos(struct amdgpu_bo *bo) 372 { 373 struct amdgpu_bo *root = bo; 374 struct amdgpu_vm_bo_base *vm_bo; 375 struct amdgpu_vm *vm; 376 struct amdkfd_process_info *info; 377 struct amdgpu_amdkfd_fence *ef; 378 int ret; 379 380 /* we can always get vm_bo from root PD bo.*/ 381 while (root->parent) 382 root = root->parent; 383 384 vm_bo = root->vm_bo; 385 if (!vm_bo) 386 return 0; 387 388 vm = vm_bo->vm; 389 if (!vm) 390 return 0; 391 392 info = vm->process_info; 393 if (!info || !info->eviction_fence) 394 return 0; 395 396 ef = container_of(dma_fence_get(&info->eviction_fence->base), 397 struct amdgpu_amdkfd_fence, base); 398 399 BUG_ON(!dma_resv_trylock(bo->tbo.base.resv)); 400 ret = amdgpu_amdkfd_remove_eviction_fence(bo, ef); 401 dma_resv_unlock(bo->tbo.base.resv); 402 403 dma_fence_put(&ef->base); 404 return ret; 405 } 406 407 static int amdgpu_amdkfd_bo_validate(struct amdgpu_bo *bo, uint32_t domain, 408 bool wait) 409 { 410 struct ttm_operation_ctx ctx = { false, false }; 411 int ret; 412 413 if (WARN(amdgpu_ttm_tt_get_usermm(bo->tbo.ttm), 414 "Called with userptr BO")) 415 return -EINVAL; 416 417 amdgpu_bo_placement_from_domain(bo, domain); 418 419 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 420 if (ret) 421 goto validate_fail; 422 if (wait) 423 amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false); 424 425 validate_fail: 426 return ret; 427 } 428 429 int amdgpu_amdkfd_bo_validate_and_fence(struct amdgpu_bo *bo, 430 uint32_t domain, 431 struct dma_fence *fence) 432 { 433 int ret = amdgpu_bo_reserve(bo, false); 434 435 if (ret) 436 return ret; 437 438 ret = amdgpu_amdkfd_bo_validate(bo, domain, true); 439 if (ret) 440 goto unreserve_out; 441 442 ret = dma_resv_reserve_fences(bo->tbo.base.resv, 1); 443 if (ret) 444 goto unreserve_out; 445 446 dma_resv_add_fence(bo->tbo.base.resv, fence, 447 DMA_RESV_USAGE_BOOKKEEP); 448 449 unreserve_out: 450 amdgpu_bo_unreserve(bo); 451 452 return ret; 453 } 454 455 static int amdgpu_amdkfd_validate_vm_bo(void *_unused, struct amdgpu_bo *bo) 456 { 457 return amdgpu_amdkfd_bo_validate(bo, bo->allowed_domains, false); 458 } 459 460 /* vm_validate_pt_pd_bos - Validate page table and directory BOs 461 * 462 * Page directories are not updated here because huge page handling 463 * during page table updates can invalidate page directory entries 464 * again. Page directories are only updated after updating page 465 * tables. 466 */ 467 static int vm_validate_pt_pd_bos(struct amdgpu_vm *vm, 468 struct ww_acquire_ctx *ticket) 469 { 470 struct amdgpu_bo *pd = vm->root.bo; 471 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 472 int ret; 473 474 ret = amdgpu_vm_validate(adev, vm, ticket, 475 amdgpu_amdkfd_validate_vm_bo, NULL); 476 if (ret) { 477 pr_err("failed to validate PT BOs\n"); 478 return ret; 479 } 480 481 vm->pd_phys_addr = amdgpu_gmc_pd_addr(vm->root.bo); 482 483 return 0; 484 } 485 486 static int vm_update_pds(struct amdgpu_vm *vm, struct amdgpu_sync *sync) 487 { 488 struct amdgpu_bo *pd = vm->root.bo; 489 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 490 int ret; 491 492 ret = amdgpu_vm_update_pdes(adev, vm, false); 493 if (ret) 494 return ret; 495 496 return amdgpu_sync_fence(sync, vm->last_update); 497 } 498 499 static uint64_t get_pte_flags(struct amdgpu_device *adev, struct kgd_mem *mem) 500 { 501 uint32_t mapping_flags = AMDGPU_VM_PAGE_READABLE | 502 AMDGPU_VM_MTYPE_DEFAULT; 503 504 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE) 505 mapping_flags |= AMDGPU_VM_PAGE_WRITEABLE; 506 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE) 507 mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE; 508 509 return amdgpu_gem_va_map_flags(adev, mapping_flags); 510 } 511 512 /** 513 * create_sg_table() - Create an sg_table for a contiguous DMA addr range 514 * @addr: The starting address to point to 515 * @size: Size of memory area in bytes being pointed to 516 * 517 * Allocates an instance of sg_table and initializes it to point to memory 518 * area specified by input parameters. The address used to build is assumed 519 * to be DMA mapped, if needed. 520 * 521 * DOORBELL or MMIO BOs use only one scatterlist node in their sg_table 522 * because they are physically contiguous. 523 * 524 * Return: Initialized instance of SG Table or NULL 525 */ 526 static struct sg_table *create_sg_table(uint64_t addr, uint32_t size) 527 { 528 struct sg_table *sg = kmalloc(sizeof(*sg), GFP_KERNEL); 529 530 if (!sg) 531 return NULL; 532 if (sg_alloc_table(sg, 1, GFP_KERNEL)) { 533 kfree(sg); 534 return NULL; 535 } 536 sg_dma_address(sg->sgl) = addr; 537 sg->sgl->length = size; 538 #ifdef CONFIG_NEED_SG_DMA_LENGTH 539 sg->sgl->dma_length = size; 540 #endif 541 return sg; 542 } 543 544 static int 545 kfd_mem_dmamap_userptr(struct kgd_mem *mem, 546 struct kfd_mem_attachment *attachment) 547 { 548 enum dma_data_direction direction = 549 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 550 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 551 struct ttm_operation_ctx ctx = {.interruptible = true}; 552 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 553 struct amdgpu_device *adev = attachment->adev; 554 struct ttm_tt *src_ttm = mem->bo->tbo.ttm; 555 struct ttm_tt *ttm = bo->tbo.ttm; 556 int ret; 557 558 if (WARN_ON(ttm->num_pages != src_ttm->num_pages)) 559 return -EINVAL; 560 561 ttm->sg = kmalloc(sizeof(*ttm->sg), GFP_KERNEL); 562 if (unlikely(!ttm->sg)) 563 return -ENOMEM; 564 565 /* Same sequence as in amdgpu_ttm_tt_pin_userptr */ 566 ret = sg_alloc_table_from_pages(ttm->sg, src_ttm->pages, 567 ttm->num_pages, 0, 568 (u64)ttm->num_pages << PAGE_SHIFT, 569 GFP_KERNEL); 570 if (unlikely(ret)) 571 goto free_sg; 572 573 ret = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 574 if (unlikely(ret)) 575 goto release_sg; 576 577 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 578 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 579 if (ret) 580 goto unmap_sg; 581 582 return 0; 583 584 unmap_sg: 585 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 586 release_sg: 587 pr_err("DMA map userptr failed: %d\n", ret); 588 sg_free_table(ttm->sg); 589 free_sg: 590 kfree(ttm->sg); 591 ttm->sg = NULL; 592 return ret; 593 } 594 595 static int 596 kfd_mem_dmamap_dmabuf(struct kfd_mem_attachment *attachment) 597 { 598 struct ttm_operation_ctx ctx = {.interruptible = true}; 599 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 600 int ret; 601 602 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 603 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 604 if (ret) 605 return ret; 606 607 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 608 return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 609 } 610 611 /** 612 * kfd_mem_dmamap_sg_bo() - Create DMA mapped sg_table to access DOORBELL or MMIO BO 613 * @mem: SG BO of the DOORBELL or MMIO resource on the owning device 614 * @attachment: Virtual address attachment of the BO on accessing device 615 * 616 * An access request from the device that owns DOORBELL does not require DMA mapping. 617 * This is because the request doesn't go through PCIe root complex i.e. it instead 618 * loops back. The need to DMA map arises only when accessing peer device's DOORBELL 619 * 620 * In contrast, all access requests for MMIO need to be DMA mapped without regard to 621 * device ownership. This is because access requests for MMIO go through PCIe root 622 * complex. 623 * 624 * This is accomplished in two steps: 625 * - Obtain DMA mapped address of DOORBELL or MMIO memory that could be used 626 * in updating requesting device's page table 627 * - Signal TTM to mark memory pointed to by requesting device's BO as GPU 628 * accessible. This allows an update of requesting device's page table 629 * with entries associated with DOOREBELL or MMIO memory 630 * 631 * This method is invoked in the following contexts: 632 * - Mapping of DOORBELL or MMIO BO of same or peer device 633 * - Validating an evicted DOOREBELL or MMIO BO on device seeking access 634 * 635 * Return: ZERO if successful, NON-ZERO otherwise 636 */ 637 static int 638 kfd_mem_dmamap_sg_bo(struct kgd_mem *mem, 639 struct kfd_mem_attachment *attachment) 640 { 641 struct ttm_operation_ctx ctx = {.interruptible = true}; 642 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 643 struct amdgpu_device *adev = attachment->adev; 644 struct ttm_tt *ttm = bo->tbo.ttm; 645 enum dma_data_direction dir; 646 dma_addr_t dma_addr; 647 bool mmio; 648 int ret; 649 650 /* Expect SG Table of dmapmap BO to be NULL */ 651 mmio = (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP); 652 if (unlikely(ttm->sg)) { 653 pr_err("SG Table of %d BO for peer device is UNEXPECTEDLY NON-NULL", mmio); 654 return -EINVAL; 655 } 656 657 dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 658 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 659 dma_addr = mem->bo->tbo.sg->sgl->dma_address; 660 pr_debug("%d BO size: %d\n", mmio, mem->bo->tbo.sg->sgl->length); 661 pr_debug("%d BO address before DMA mapping: %llx\n", mmio, dma_addr); 662 dma_addr = dma_map_resource(adev->dev, dma_addr, 663 mem->bo->tbo.sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC); 664 ret = dma_mapping_error(adev->dev, dma_addr); 665 if (unlikely(ret)) 666 return ret; 667 pr_debug("%d BO address after DMA mapping: %llx\n", mmio, dma_addr); 668 669 ttm->sg = create_sg_table(dma_addr, mem->bo->tbo.sg->sgl->length); 670 if (unlikely(!ttm->sg)) { 671 ret = -ENOMEM; 672 goto unmap_sg; 673 } 674 675 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 676 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 677 if (unlikely(ret)) 678 goto free_sg; 679 680 return ret; 681 682 free_sg: 683 sg_free_table(ttm->sg); 684 kfree(ttm->sg); 685 ttm->sg = NULL; 686 unmap_sg: 687 dma_unmap_resource(adev->dev, dma_addr, mem->bo->tbo.sg->sgl->length, 688 dir, DMA_ATTR_SKIP_CPU_SYNC); 689 return ret; 690 } 691 692 static int 693 kfd_mem_dmamap_attachment(struct kgd_mem *mem, 694 struct kfd_mem_attachment *attachment) 695 { 696 switch (attachment->type) { 697 case KFD_MEM_ATT_SHARED: 698 return 0; 699 case KFD_MEM_ATT_USERPTR: 700 return kfd_mem_dmamap_userptr(mem, attachment); 701 case KFD_MEM_ATT_DMABUF: 702 return kfd_mem_dmamap_dmabuf(attachment); 703 case KFD_MEM_ATT_SG: 704 return kfd_mem_dmamap_sg_bo(mem, attachment); 705 default: 706 WARN_ON_ONCE(1); 707 } 708 return -EINVAL; 709 } 710 711 static void 712 kfd_mem_dmaunmap_userptr(struct kgd_mem *mem, 713 struct kfd_mem_attachment *attachment) 714 { 715 enum dma_data_direction direction = 716 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 717 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 718 struct ttm_operation_ctx ctx = {.interruptible = false}; 719 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 720 struct amdgpu_device *adev = attachment->adev; 721 struct ttm_tt *ttm = bo->tbo.ttm; 722 723 if (unlikely(!ttm->sg)) 724 return; 725 726 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 727 ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 728 729 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 730 sg_free_table(ttm->sg); 731 kfree(ttm->sg); 732 ttm->sg = NULL; 733 } 734 735 static void 736 kfd_mem_dmaunmap_dmabuf(struct kfd_mem_attachment *attachment) 737 { 738 /* This is a no-op. We don't want to trigger eviction fences when 739 * unmapping DMABufs. Therefore the invalidation (moving to system 740 * domain) is done in kfd_mem_dmamap_dmabuf. 741 */ 742 } 743 744 /** 745 * kfd_mem_dmaunmap_sg_bo() - Free DMA mapped sg_table of DOORBELL or MMIO BO 746 * @mem: SG BO of the DOORBELL or MMIO resource on the owning device 747 * @attachment: Virtual address attachment of the BO on accessing device 748 * 749 * The method performs following steps: 750 * - Signal TTM to mark memory pointed to by BO as GPU inaccessible 751 * - Free SG Table that is used to encapsulate DMA mapped memory of 752 * peer device's DOORBELL or MMIO memory 753 * 754 * This method is invoked in the following contexts: 755 * UNMapping of DOORBELL or MMIO BO on a device having access to its memory 756 * Eviction of DOOREBELL or MMIO BO on device having access to its memory 757 * 758 * Return: void 759 */ 760 static void 761 kfd_mem_dmaunmap_sg_bo(struct kgd_mem *mem, 762 struct kfd_mem_attachment *attachment) 763 { 764 struct ttm_operation_ctx ctx = {.interruptible = true}; 765 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 766 struct amdgpu_device *adev = attachment->adev; 767 struct ttm_tt *ttm = bo->tbo.ttm; 768 enum dma_data_direction dir; 769 770 if (unlikely(!ttm->sg)) { 771 pr_debug("SG Table of BO is NULL"); 772 return; 773 } 774 775 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 776 ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 777 778 dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 779 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 780 dma_unmap_resource(adev->dev, ttm->sg->sgl->dma_address, 781 ttm->sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC); 782 sg_free_table(ttm->sg); 783 kfree(ttm->sg); 784 ttm->sg = NULL; 785 bo->tbo.sg = NULL; 786 } 787 788 static void 789 kfd_mem_dmaunmap_attachment(struct kgd_mem *mem, 790 struct kfd_mem_attachment *attachment) 791 { 792 switch (attachment->type) { 793 case KFD_MEM_ATT_SHARED: 794 break; 795 case KFD_MEM_ATT_USERPTR: 796 kfd_mem_dmaunmap_userptr(mem, attachment); 797 break; 798 case KFD_MEM_ATT_DMABUF: 799 kfd_mem_dmaunmap_dmabuf(attachment); 800 break; 801 case KFD_MEM_ATT_SG: 802 kfd_mem_dmaunmap_sg_bo(mem, attachment); 803 break; 804 default: 805 WARN_ON_ONCE(1); 806 } 807 } 808 809 static int kfd_mem_export_dmabuf(struct kgd_mem *mem) 810 { 811 if (!mem->dmabuf) { 812 struct amdgpu_device *bo_adev; 813 struct dma_buf *dmabuf; 814 int r, fd; 815 816 bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev); 817 r = drm_gem_prime_handle_to_fd(&bo_adev->ddev, bo_adev->kfd.client.file, 818 mem->gem_handle, 819 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 820 DRM_RDWR : 0, &fd); 821 if (r) 822 return r; 823 dmabuf = dma_buf_get(fd); 824 close_fd(fd); 825 if (WARN_ON_ONCE(IS_ERR(dmabuf))) 826 return PTR_ERR(dmabuf); 827 mem->dmabuf = dmabuf; 828 } 829 830 return 0; 831 } 832 833 static int 834 kfd_mem_attach_dmabuf(struct amdgpu_device *adev, struct kgd_mem *mem, 835 struct amdgpu_bo **bo) 836 { 837 struct drm_gem_object *gobj; 838 int ret; 839 840 ret = kfd_mem_export_dmabuf(mem); 841 if (ret) 842 return ret; 843 844 gobj = amdgpu_gem_prime_import(adev_to_drm(adev), mem->dmabuf); 845 if (IS_ERR(gobj)) 846 return PTR_ERR(gobj); 847 848 *bo = gem_to_amdgpu_bo(gobj); 849 (*bo)->flags |= AMDGPU_GEM_CREATE_PREEMPTIBLE; 850 851 return 0; 852 } 853 854 /* kfd_mem_attach - Add a BO to a VM 855 * 856 * Everything that needs to bo done only once when a BO is first added 857 * to a VM. It can later be mapped and unmapped many times without 858 * repeating these steps. 859 * 860 * 0. Create BO for DMA mapping, if needed 861 * 1. Allocate and initialize BO VA entry data structure 862 * 2. Add BO to the VM 863 * 3. Determine ASIC-specific PTE flags 864 * 4. Alloc page tables and directories if needed 865 * 4a. Validate new page tables and directories 866 */ 867 static int kfd_mem_attach(struct amdgpu_device *adev, struct kgd_mem *mem, 868 struct amdgpu_vm *vm, bool is_aql) 869 { 870 struct amdgpu_device *bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev); 871 unsigned long bo_size = mem->bo->tbo.base.size; 872 uint64_t va = mem->va; 873 struct kfd_mem_attachment *attachment[2] = {NULL, NULL}; 874 struct amdgpu_bo *bo[2] = {NULL, NULL}; 875 struct amdgpu_bo_va *bo_va; 876 bool same_hive = false; 877 int i, ret; 878 879 if (!va) { 880 pr_err("Invalid VA when adding BO to VM\n"); 881 return -EINVAL; 882 } 883 884 /* Determine access to VRAM, MMIO and DOORBELL BOs of peer devices 885 * 886 * The access path of MMIO and DOORBELL BOs of is always over PCIe. 887 * In contrast the access path of VRAM BOs depens upon the type of 888 * link that connects the peer device. Access over PCIe is allowed 889 * if peer device has large BAR. In contrast, access over xGMI is 890 * allowed for both small and large BAR configurations of peer device 891 */ 892 if ((adev != bo_adev && !adev->gmc.is_app_apu) && 893 ((mem->domain == AMDGPU_GEM_DOMAIN_VRAM) || 894 (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) || 895 (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 896 if (mem->domain == AMDGPU_GEM_DOMAIN_VRAM) 897 same_hive = amdgpu_xgmi_same_hive(adev, bo_adev); 898 if (!same_hive && !amdgpu_device_is_peer_accessible(bo_adev, adev)) 899 return -EINVAL; 900 } 901 902 for (i = 0; i <= is_aql; i++) { 903 attachment[i] = kzalloc(sizeof(*attachment[i]), GFP_KERNEL); 904 if (unlikely(!attachment[i])) { 905 ret = -ENOMEM; 906 goto unwind; 907 } 908 909 pr_debug("\t add VA 0x%llx - 0x%llx to vm %p\n", va, 910 va + bo_size, vm); 911 912 if ((adev == bo_adev && !(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) || 913 (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm) && reuse_dmamap(adev, bo_adev)) || 914 (mem->domain == AMDGPU_GEM_DOMAIN_GTT && reuse_dmamap(adev, bo_adev)) || 915 same_hive) { 916 /* Mappings on the local GPU, or VRAM mappings in the 917 * local hive, or userptr, or GTT mapping can reuse dma map 918 * address space share the original BO 919 */ 920 attachment[i]->type = KFD_MEM_ATT_SHARED; 921 bo[i] = mem->bo; 922 drm_gem_object_get(&bo[i]->tbo.base); 923 } else if (i > 0) { 924 /* Multiple mappings on the same GPU share the BO */ 925 attachment[i]->type = KFD_MEM_ATT_SHARED; 926 bo[i] = bo[0]; 927 drm_gem_object_get(&bo[i]->tbo.base); 928 } else if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) { 929 /* Create an SG BO to DMA-map userptrs on other GPUs */ 930 attachment[i]->type = KFD_MEM_ATT_USERPTR; 931 ret = create_dmamap_sg_bo(adev, mem, &bo[i]); 932 if (ret) 933 goto unwind; 934 /* Handle DOORBELL BOs of peer devices and MMIO BOs of local and peer devices */ 935 } else if (mem->bo->tbo.type == ttm_bo_type_sg) { 936 WARN_ONCE(!(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL || 937 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP), 938 "Handing invalid SG BO in ATTACH request"); 939 attachment[i]->type = KFD_MEM_ATT_SG; 940 ret = create_dmamap_sg_bo(adev, mem, &bo[i]); 941 if (ret) 942 goto unwind; 943 /* Enable acces to GTT and VRAM BOs of peer devices */ 944 } else if (mem->domain == AMDGPU_GEM_DOMAIN_GTT || 945 mem->domain == AMDGPU_GEM_DOMAIN_VRAM) { 946 attachment[i]->type = KFD_MEM_ATT_DMABUF; 947 ret = kfd_mem_attach_dmabuf(adev, mem, &bo[i]); 948 if (ret) 949 goto unwind; 950 pr_debug("Employ DMABUF mechanism to enable peer GPU access\n"); 951 } else { 952 WARN_ONCE(true, "Handling invalid ATTACH request"); 953 ret = -EINVAL; 954 goto unwind; 955 } 956 957 /* Add BO to VM internal data structures */ 958 ret = amdgpu_bo_reserve(bo[i], false); 959 if (ret) { 960 pr_debug("Unable to reserve BO during memory attach"); 961 goto unwind; 962 } 963 bo_va = amdgpu_vm_bo_find(vm, bo[i]); 964 if (!bo_va) 965 bo_va = amdgpu_vm_bo_add(adev, vm, bo[i]); 966 else 967 ++bo_va->ref_count; 968 attachment[i]->bo_va = bo_va; 969 amdgpu_bo_unreserve(bo[i]); 970 if (unlikely(!attachment[i]->bo_va)) { 971 ret = -ENOMEM; 972 pr_err("Failed to add BO object to VM. ret == %d\n", 973 ret); 974 goto unwind; 975 } 976 attachment[i]->va = va; 977 attachment[i]->pte_flags = get_pte_flags(adev, mem); 978 attachment[i]->adev = adev; 979 list_add(&attachment[i]->list, &mem->attachments); 980 981 va += bo_size; 982 } 983 984 return 0; 985 986 unwind: 987 for (; i >= 0; i--) { 988 if (!attachment[i]) 989 continue; 990 if (attachment[i]->bo_va) { 991 amdgpu_bo_reserve(bo[i], true); 992 if (--attachment[i]->bo_va->ref_count == 0) 993 amdgpu_vm_bo_del(adev, attachment[i]->bo_va); 994 amdgpu_bo_unreserve(bo[i]); 995 list_del(&attachment[i]->list); 996 } 997 if (bo[i]) 998 drm_gem_object_put(&bo[i]->tbo.base); 999 kfree(attachment[i]); 1000 } 1001 return ret; 1002 } 1003 1004 static void kfd_mem_detach(struct kfd_mem_attachment *attachment) 1005 { 1006 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 1007 1008 pr_debug("\t remove VA 0x%llx in entry %p\n", 1009 attachment->va, attachment); 1010 if (--attachment->bo_va->ref_count == 0) 1011 amdgpu_vm_bo_del(attachment->adev, attachment->bo_va); 1012 drm_gem_object_put(&bo->tbo.base); 1013 list_del(&attachment->list); 1014 kfree(attachment); 1015 } 1016 1017 static void add_kgd_mem_to_kfd_bo_list(struct kgd_mem *mem, 1018 struct amdkfd_process_info *process_info, 1019 bool userptr) 1020 { 1021 mutex_lock(&process_info->lock); 1022 if (userptr) 1023 list_add_tail(&mem->validate_list, 1024 &process_info->userptr_valid_list); 1025 else 1026 list_add_tail(&mem->validate_list, &process_info->kfd_bo_list); 1027 mutex_unlock(&process_info->lock); 1028 } 1029 1030 static void remove_kgd_mem_from_kfd_bo_list(struct kgd_mem *mem, 1031 struct amdkfd_process_info *process_info) 1032 { 1033 mutex_lock(&process_info->lock); 1034 list_del(&mem->validate_list); 1035 mutex_unlock(&process_info->lock); 1036 } 1037 1038 /* Initializes user pages. It registers the MMU notifier and validates 1039 * the userptr BO in the GTT domain. 1040 * 1041 * The BO must already be on the userptr_valid_list. Otherwise an 1042 * eviction and restore may happen that leaves the new BO unmapped 1043 * with the user mode queues running. 1044 * 1045 * Takes the process_info->lock to protect against concurrent restore 1046 * workers. 1047 * 1048 * Returns 0 for success, negative errno for errors. 1049 */ 1050 static int init_user_pages(struct kgd_mem *mem, uint64_t user_addr, 1051 bool criu_resume) 1052 { 1053 struct amdkfd_process_info *process_info = mem->process_info; 1054 struct amdgpu_bo *bo = mem->bo; 1055 struct ttm_operation_ctx ctx = { true, false }; 1056 struct hmm_range *range; 1057 int ret = 0; 1058 1059 mutex_lock(&process_info->lock); 1060 1061 ret = amdgpu_ttm_tt_set_userptr(&bo->tbo, user_addr, 0); 1062 if (ret) { 1063 pr_err("%s: Failed to set userptr: %d\n", __func__, ret); 1064 goto out; 1065 } 1066 1067 ret = amdgpu_hmm_register(bo, user_addr); 1068 if (ret) { 1069 pr_err("%s: Failed to register MMU notifier: %d\n", 1070 __func__, ret); 1071 goto out; 1072 } 1073 1074 if (criu_resume) { 1075 /* 1076 * During a CRIU restore operation, the userptr buffer objects 1077 * will be validated in the restore_userptr_work worker at a 1078 * later stage when it is scheduled by another ioctl called by 1079 * CRIU master process for the target pid for restore. 1080 */ 1081 mutex_lock(&process_info->notifier_lock); 1082 mem->invalid++; 1083 mutex_unlock(&process_info->notifier_lock); 1084 mutex_unlock(&process_info->lock); 1085 return 0; 1086 } 1087 1088 ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages, &range); 1089 if (ret) { 1090 pr_err("%s: Failed to get user pages: %d\n", __func__, ret); 1091 goto unregister_out; 1092 } 1093 1094 ret = amdgpu_bo_reserve(bo, true); 1095 if (ret) { 1096 pr_err("%s: Failed to reserve BO\n", __func__); 1097 goto release_out; 1098 } 1099 amdgpu_bo_placement_from_domain(bo, mem->domain); 1100 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 1101 if (ret) 1102 pr_err("%s: failed to validate BO\n", __func__); 1103 amdgpu_bo_unreserve(bo); 1104 1105 release_out: 1106 amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm, range); 1107 unregister_out: 1108 if (ret) 1109 amdgpu_hmm_unregister(bo); 1110 out: 1111 mutex_unlock(&process_info->lock); 1112 return ret; 1113 } 1114 1115 /* Reserving a BO and its page table BOs must happen atomically to 1116 * avoid deadlocks. Some operations update multiple VMs at once. Track 1117 * all the reservation info in a context structure. Optionally a sync 1118 * object can track VM updates. 1119 */ 1120 struct bo_vm_reservation_context { 1121 /* DRM execution context for the reservation */ 1122 struct drm_exec exec; 1123 /* Number of VMs reserved */ 1124 unsigned int n_vms; 1125 /* Pointer to sync object */ 1126 struct amdgpu_sync *sync; 1127 }; 1128 1129 enum bo_vm_match { 1130 BO_VM_NOT_MAPPED = 0, /* Match VMs where a BO is not mapped */ 1131 BO_VM_MAPPED, /* Match VMs where a BO is mapped */ 1132 BO_VM_ALL, /* Match all VMs a BO was added to */ 1133 }; 1134 1135 /** 1136 * reserve_bo_and_vm - reserve a BO and a VM unconditionally. 1137 * @mem: KFD BO structure. 1138 * @vm: the VM to reserve. 1139 * @ctx: the struct that will be used in unreserve_bo_and_vms(). 1140 */ 1141 static int reserve_bo_and_vm(struct kgd_mem *mem, 1142 struct amdgpu_vm *vm, 1143 struct bo_vm_reservation_context *ctx) 1144 { 1145 struct amdgpu_bo *bo = mem->bo; 1146 int ret; 1147 1148 WARN_ON(!vm); 1149 1150 ctx->n_vms = 1; 1151 ctx->sync = &mem->sync; 1152 drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT, 0); 1153 drm_exec_until_all_locked(&ctx->exec) { 1154 ret = amdgpu_vm_lock_pd(vm, &ctx->exec, 2); 1155 drm_exec_retry_on_contention(&ctx->exec); 1156 if (unlikely(ret)) 1157 goto error; 1158 1159 ret = drm_exec_prepare_obj(&ctx->exec, &bo->tbo.base, 1); 1160 drm_exec_retry_on_contention(&ctx->exec); 1161 if (unlikely(ret)) 1162 goto error; 1163 } 1164 return 0; 1165 1166 error: 1167 pr_err("Failed to reserve buffers in ttm.\n"); 1168 drm_exec_fini(&ctx->exec); 1169 return ret; 1170 } 1171 1172 /** 1173 * reserve_bo_and_cond_vms - reserve a BO and some VMs conditionally 1174 * @mem: KFD BO structure. 1175 * @vm: the VM to reserve. If NULL, then all VMs associated with the BO 1176 * is used. Otherwise, a single VM associated with the BO. 1177 * @map_type: the mapping status that will be used to filter the VMs. 1178 * @ctx: the struct that will be used in unreserve_bo_and_vms(). 1179 * 1180 * Returns 0 for success, negative for failure. 1181 */ 1182 static int reserve_bo_and_cond_vms(struct kgd_mem *mem, 1183 struct amdgpu_vm *vm, enum bo_vm_match map_type, 1184 struct bo_vm_reservation_context *ctx) 1185 { 1186 struct kfd_mem_attachment *entry; 1187 struct amdgpu_bo *bo = mem->bo; 1188 int ret; 1189 1190 ctx->sync = &mem->sync; 1191 drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT | 1192 DRM_EXEC_IGNORE_DUPLICATES, 0); 1193 drm_exec_until_all_locked(&ctx->exec) { 1194 ctx->n_vms = 0; 1195 list_for_each_entry(entry, &mem->attachments, list) { 1196 if ((vm && vm != entry->bo_va->base.vm) || 1197 (entry->is_mapped != map_type 1198 && map_type != BO_VM_ALL)) 1199 continue; 1200 1201 ret = amdgpu_vm_lock_pd(entry->bo_va->base.vm, 1202 &ctx->exec, 2); 1203 drm_exec_retry_on_contention(&ctx->exec); 1204 if (unlikely(ret)) 1205 goto error; 1206 ++ctx->n_vms; 1207 } 1208 1209 ret = drm_exec_prepare_obj(&ctx->exec, &bo->tbo.base, 1); 1210 drm_exec_retry_on_contention(&ctx->exec); 1211 if (unlikely(ret)) 1212 goto error; 1213 } 1214 return 0; 1215 1216 error: 1217 pr_err("Failed to reserve buffers in ttm.\n"); 1218 drm_exec_fini(&ctx->exec); 1219 return ret; 1220 } 1221 1222 /** 1223 * unreserve_bo_and_vms - Unreserve BO and VMs from a reservation context 1224 * @ctx: Reservation context to unreserve 1225 * @wait: Optionally wait for a sync object representing pending VM updates 1226 * @intr: Whether the wait is interruptible 1227 * 1228 * Also frees any resources allocated in 1229 * reserve_bo_and_(cond_)vm(s). Returns the status from 1230 * amdgpu_sync_wait. 1231 */ 1232 static int unreserve_bo_and_vms(struct bo_vm_reservation_context *ctx, 1233 bool wait, bool intr) 1234 { 1235 int ret = 0; 1236 1237 if (wait) 1238 ret = amdgpu_sync_wait(ctx->sync, intr); 1239 1240 drm_exec_fini(&ctx->exec); 1241 ctx->sync = NULL; 1242 return ret; 1243 } 1244 1245 static void unmap_bo_from_gpuvm(struct kgd_mem *mem, 1246 struct kfd_mem_attachment *entry, 1247 struct amdgpu_sync *sync) 1248 { 1249 struct amdgpu_bo_va *bo_va = entry->bo_va; 1250 struct amdgpu_device *adev = entry->adev; 1251 struct amdgpu_vm *vm = bo_va->base.vm; 1252 1253 amdgpu_vm_bo_unmap(adev, bo_va, entry->va); 1254 1255 amdgpu_vm_clear_freed(adev, vm, &bo_va->last_pt_update); 1256 1257 amdgpu_sync_fence(sync, bo_va->last_pt_update); 1258 } 1259 1260 static int update_gpuvm_pte(struct kgd_mem *mem, 1261 struct kfd_mem_attachment *entry, 1262 struct amdgpu_sync *sync) 1263 { 1264 struct amdgpu_bo_va *bo_va = entry->bo_va; 1265 struct amdgpu_device *adev = entry->adev; 1266 int ret; 1267 1268 ret = kfd_mem_dmamap_attachment(mem, entry); 1269 if (ret) 1270 return ret; 1271 1272 /* Update the page tables */ 1273 ret = amdgpu_vm_bo_update(adev, bo_va, false); 1274 if (ret) { 1275 pr_err("amdgpu_vm_bo_update failed\n"); 1276 return ret; 1277 } 1278 1279 return amdgpu_sync_fence(sync, bo_va->last_pt_update); 1280 } 1281 1282 static int map_bo_to_gpuvm(struct kgd_mem *mem, 1283 struct kfd_mem_attachment *entry, 1284 struct amdgpu_sync *sync, 1285 bool no_update_pte) 1286 { 1287 int ret; 1288 1289 /* Set virtual address for the allocation */ 1290 ret = amdgpu_vm_bo_map(entry->adev, entry->bo_va, entry->va, 0, 1291 amdgpu_bo_size(entry->bo_va->base.bo), 1292 entry->pte_flags); 1293 if (ret) { 1294 pr_err("Failed to map VA 0x%llx in vm. ret %d\n", 1295 entry->va, ret); 1296 return ret; 1297 } 1298 1299 if (no_update_pte) 1300 return 0; 1301 1302 ret = update_gpuvm_pte(mem, entry, sync); 1303 if (ret) { 1304 pr_err("update_gpuvm_pte() failed\n"); 1305 goto update_gpuvm_pte_failed; 1306 } 1307 1308 return 0; 1309 1310 update_gpuvm_pte_failed: 1311 unmap_bo_from_gpuvm(mem, entry, sync); 1312 kfd_mem_dmaunmap_attachment(mem, entry); 1313 return ret; 1314 } 1315 1316 static int process_validate_vms(struct amdkfd_process_info *process_info, 1317 struct ww_acquire_ctx *ticket) 1318 { 1319 struct amdgpu_vm *peer_vm; 1320 int ret; 1321 1322 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1323 vm_list_node) { 1324 ret = vm_validate_pt_pd_bos(peer_vm, ticket); 1325 if (ret) 1326 return ret; 1327 } 1328 1329 return 0; 1330 } 1331 1332 static int process_sync_pds_resv(struct amdkfd_process_info *process_info, 1333 struct amdgpu_sync *sync) 1334 { 1335 struct amdgpu_vm *peer_vm; 1336 int ret; 1337 1338 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1339 vm_list_node) { 1340 struct amdgpu_bo *pd = peer_vm->root.bo; 1341 1342 ret = amdgpu_sync_resv(NULL, sync, pd->tbo.base.resv, 1343 AMDGPU_SYNC_NE_OWNER, 1344 AMDGPU_FENCE_OWNER_KFD); 1345 if (ret) 1346 return ret; 1347 } 1348 1349 return 0; 1350 } 1351 1352 static int process_update_pds(struct amdkfd_process_info *process_info, 1353 struct amdgpu_sync *sync) 1354 { 1355 struct amdgpu_vm *peer_vm; 1356 int ret; 1357 1358 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1359 vm_list_node) { 1360 ret = vm_update_pds(peer_vm, sync); 1361 if (ret) 1362 return ret; 1363 } 1364 1365 return 0; 1366 } 1367 1368 static int init_kfd_vm(struct amdgpu_vm *vm, void **process_info, 1369 struct dma_fence **ef) 1370 { 1371 struct amdkfd_process_info *info = NULL; 1372 int ret; 1373 1374 if (!*process_info) { 1375 info = kzalloc(sizeof(*info), GFP_KERNEL); 1376 if (!info) 1377 return -ENOMEM; 1378 1379 mutex_init(&info->lock); 1380 mutex_init(&info->notifier_lock); 1381 INIT_LIST_HEAD(&info->vm_list_head); 1382 INIT_LIST_HEAD(&info->kfd_bo_list); 1383 INIT_LIST_HEAD(&info->userptr_valid_list); 1384 INIT_LIST_HEAD(&info->userptr_inval_list); 1385 1386 info->eviction_fence = 1387 amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1), 1388 current->mm, 1389 NULL); 1390 if (!info->eviction_fence) { 1391 pr_err("Failed to create eviction fence\n"); 1392 ret = -ENOMEM; 1393 goto create_evict_fence_fail; 1394 } 1395 1396 info->pid = get_task_pid(current->group_leader, PIDTYPE_PID); 1397 INIT_DELAYED_WORK(&info->restore_userptr_work, 1398 amdgpu_amdkfd_restore_userptr_worker); 1399 1400 *process_info = info; 1401 } 1402 1403 vm->process_info = *process_info; 1404 1405 /* Validate page directory and attach eviction fence */ 1406 ret = amdgpu_bo_reserve(vm->root.bo, true); 1407 if (ret) 1408 goto reserve_pd_fail; 1409 ret = vm_validate_pt_pd_bos(vm, NULL); 1410 if (ret) { 1411 pr_err("validate_pt_pd_bos() failed\n"); 1412 goto validate_pd_fail; 1413 } 1414 ret = amdgpu_bo_sync_wait(vm->root.bo, 1415 AMDGPU_FENCE_OWNER_KFD, false); 1416 if (ret) 1417 goto wait_pd_fail; 1418 ret = dma_resv_reserve_fences(vm->root.bo->tbo.base.resv, 1); 1419 if (ret) 1420 goto reserve_shared_fail; 1421 dma_resv_add_fence(vm->root.bo->tbo.base.resv, 1422 &vm->process_info->eviction_fence->base, 1423 DMA_RESV_USAGE_BOOKKEEP); 1424 amdgpu_bo_unreserve(vm->root.bo); 1425 1426 /* Update process info */ 1427 mutex_lock(&vm->process_info->lock); 1428 list_add_tail(&vm->vm_list_node, 1429 &(vm->process_info->vm_list_head)); 1430 vm->process_info->n_vms++; 1431 1432 *ef = dma_fence_get(&vm->process_info->eviction_fence->base); 1433 mutex_unlock(&vm->process_info->lock); 1434 1435 return 0; 1436 1437 reserve_shared_fail: 1438 wait_pd_fail: 1439 validate_pd_fail: 1440 amdgpu_bo_unreserve(vm->root.bo); 1441 reserve_pd_fail: 1442 vm->process_info = NULL; 1443 if (info) { 1444 dma_fence_put(&info->eviction_fence->base); 1445 *process_info = NULL; 1446 put_pid(info->pid); 1447 create_evict_fence_fail: 1448 mutex_destroy(&info->lock); 1449 mutex_destroy(&info->notifier_lock); 1450 kfree(info); 1451 } 1452 return ret; 1453 } 1454 1455 /** 1456 * amdgpu_amdkfd_gpuvm_pin_bo() - Pins a BO using following criteria 1457 * @bo: Handle of buffer object being pinned 1458 * @domain: Domain into which BO should be pinned 1459 * 1460 * - USERPTR BOs are UNPINNABLE and will return error 1461 * - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their 1462 * PIN count incremented. It is valid to PIN a BO multiple times 1463 * 1464 * Return: ZERO if successful in pinning, Non-Zero in case of error. 1465 */ 1466 static int amdgpu_amdkfd_gpuvm_pin_bo(struct amdgpu_bo *bo, u32 domain) 1467 { 1468 int ret = 0; 1469 1470 ret = amdgpu_bo_reserve(bo, false); 1471 if (unlikely(ret)) 1472 return ret; 1473 1474 if (bo->flags & AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS) { 1475 /* 1476 * If bo is not contiguous on VRAM, move to system memory first to ensure 1477 * we can get contiguous VRAM space after evicting other BOs. 1478 */ 1479 if (!(bo->tbo.resource->placement & TTM_PL_FLAG_CONTIGUOUS)) { 1480 struct ttm_operation_ctx ctx = { true, false }; 1481 1482 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 1483 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 1484 if (unlikely(ret)) { 1485 pr_debug("validate bo 0x%p to GTT failed %d\n", &bo->tbo, ret); 1486 goto out; 1487 } 1488 } 1489 } 1490 1491 ret = amdgpu_bo_pin_restricted(bo, domain, 0, 0); 1492 if (ret) 1493 pr_err("Error in Pinning BO to domain: %d\n", domain); 1494 1495 amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false); 1496 out: 1497 amdgpu_bo_unreserve(bo); 1498 return ret; 1499 } 1500 1501 /** 1502 * amdgpu_amdkfd_gpuvm_unpin_bo() - Unpins BO using following criteria 1503 * @bo: Handle of buffer object being unpinned 1504 * 1505 * - Is a illegal request for USERPTR BOs and is ignored 1506 * - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their 1507 * PIN count decremented. Calls to UNPIN must balance calls to PIN 1508 */ 1509 static void amdgpu_amdkfd_gpuvm_unpin_bo(struct amdgpu_bo *bo) 1510 { 1511 int ret = 0; 1512 1513 ret = amdgpu_bo_reserve(bo, false); 1514 if (unlikely(ret)) 1515 return; 1516 1517 amdgpu_bo_unpin(bo); 1518 amdgpu_bo_unreserve(bo); 1519 } 1520 1521 int amdgpu_amdkfd_gpuvm_set_vm_pasid(struct amdgpu_device *adev, 1522 struct amdgpu_vm *avm, u32 pasid) 1523 1524 { 1525 int ret; 1526 1527 /* Free the original amdgpu allocated pasid, 1528 * will be replaced with kfd allocated pasid. 1529 */ 1530 if (avm->pasid) { 1531 amdgpu_pasid_free(avm->pasid); 1532 amdgpu_vm_set_pasid(adev, avm, 0); 1533 } 1534 1535 ret = amdgpu_vm_set_pasid(adev, avm, pasid); 1536 if (ret) 1537 return ret; 1538 1539 return 0; 1540 } 1541 1542 int amdgpu_amdkfd_gpuvm_acquire_process_vm(struct amdgpu_device *adev, 1543 struct amdgpu_vm *avm, 1544 void **process_info, 1545 struct dma_fence **ef) 1546 { 1547 int ret; 1548 1549 /* Already a compute VM? */ 1550 if (avm->process_info) 1551 return -EINVAL; 1552 1553 /* Convert VM into a compute VM */ 1554 ret = amdgpu_vm_make_compute(adev, avm); 1555 if (ret) 1556 return ret; 1557 1558 /* Initialize KFD part of the VM and process info */ 1559 ret = init_kfd_vm(avm, process_info, ef); 1560 if (ret) 1561 return ret; 1562 1563 amdgpu_vm_set_task_info(avm); 1564 1565 return 0; 1566 } 1567 1568 void amdgpu_amdkfd_gpuvm_destroy_cb(struct amdgpu_device *adev, 1569 struct amdgpu_vm *vm) 1570 { 1571 struct amdkfd_process_info *process_info = vm->process_info; 1572 1573 if (!process_info) 1574 return; 1575 1576 /* Update process info */ 1577 mutex_lock(&process_info->lock); 1578 process_info->n_vms--; 1579 list_del(&vm->vm_list_node); 1580 mutex_unlock(&process_info->lock); 1581 1582 vm->process_info = NULL; 1583 1584 /* Release per-process resources when last compute VM is destroyed */ 1585 if (!process_info->n_vms) { 1586 WARN_ON(!list_empty(&process_info->kfd_bo_list)); 1587 WARN_ON(!list_empty(&process_info->userptr_valid_list)); 1588 WARN_ON(!list_empty(&process_info->userptr_inval_list)); 1589 1590 dma_fence_put(&process_info->eviction_fence->base); 1591 cancel_delayed_work_sync(&process_info->restore_userptr_work); 1592 put_pid(process_info->pid); 1593 mutex_destroy(&process_info->lock); 1594 mutex_destroy(&process_info->notifier_lock); 1595 kfree(process_info); 1596 } 1597 } 1598 1599 void amdgpu_amdkfd_gpuvm_release_process_vm(struct amdgpu_device *adev, 1600 void *drm_priv) 1601 { 1602 struct amdgpu_vm *avm; 1603 1604 if (WARN_ON(!adev || !drm_priv)) 1605 return; 1606 1607 avm = drm_priv_to_vm(drm_priv); 1608 1609 pr_debug("Releasing process vm %p\n", avm); 1610 1611 /* The original pasid of amdgpu vm has already been 1612 * released during making a amdgpu vm to a compute vm 1613 * The current pasid is managed by kfd and will be 1614 * released on kfd process destroy. Set amdgpu pasid 1615 * to 0 to avoid duplicate release. 1616 */ 1617 amdgpu_vm_release_compute(adev, avm); 1618 } 1619 1620 uint64_t amdgpu_amdkfd_gpuvm_get_process_page_dir(void *drm_priv) 1621 { 1622 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1623 struct amdgpu_bo *pd = avm->root.bo; 1624 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 1625 1626 if (adev->asic_type < CHIP_VEGA10) 1627 return avm->pd_phys_addr >> AMDGPU_GPU_PAGE_SHIFT; 1628 return avm->pd_phys_addr; 1629 } 1630 1631 void amdgpu_amdkfd_block_mmu_notifications(void *p) 1632 { 1633 struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p; 1634 1635 mutex_lock(&pinfo->lock); 1636 WRITE_ONCE(pinfo->block_mmu_notifications, true); 1637 mutex_unlock(&pinfo->lock); 1638 } 1639 1640 int amdgpu_amdkfd_criu_resume(void *p) 1641 { 1642 int ret = 0; 1643 struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p; 1644 1645 mutex_lock(&pinfo->lock); 1646 pr_debug("scheduling work\n"); 1647 mutex_lock(&pinfo->notifier_lock); 1648 pinfo->evicted_bos++; 1649 mutex_unlock(&pinfo->notifier_lock); 1650 if (!READ_ONCE(pinfo->block_mmu_notifications)) { 1651 ret = -EINVAL; 1652 goto out_unlock; 1653 } 1654 WRITE_ONCE(pinfo->block_mmu_notifications, false); 1655 queue_delayed_work(system_freezable_wq, 1656 &pinfo->restore_userptr_work, 0); 1657 1658 out_unlock: 1659 mutex_unlock(&pinfo->lock); 1660 return ret; 1661 } 1662 1663 size_t amdgpu_amdkfd_get_available_memory(struct amdgpu_device *adev, 1664 uint8_t xcp_id) 1665 { 1666 uint64_t reserved_for_pt = 1667 ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size); 1668 ssize_t available; 1669 uint64_t vram_available, system_mem_available, ttm_mem_available; 1670 1671 spin_lock(&kfd_mem_limit.mem_limit_lock); 1672 vram_available = KFD_XCP_MEMORY_SIZE(adev, xcp_id) 1673 - adev->kfd.vram_used_aligned[xcp_id] 1674 - atomic64_read(&adev->vram_pin_size) 1675 - reserved_for_pt; 1676 1677 if (adev->gmc.is_app_apu) { 1678 system_mem_available = no_system_mem_limit ? 1679 kfd_mem_limit.max_system_mem_limit : 1680 kfd_mem_limit.max_system_mem_limit - 1681 kfd_mem_limit.system_mem_used; 1682 1683 ttm_mem_available = kfd_mem_limit.max_ttm_mem_limit - 1684 kfd_mem_limit.ttm_mem_used; 1685 1686 available = min3(system_mem_available, ttm_mem_available, 1687 vram_available); 1688 available = ALIGN_DOWN(available, PAGE_SIZE); 1689 } else { 1690 available = ALIGN_DOWN(vram_available, VRAM_AVAILABLITY_ALIGN); 1691 } 1692 1693 spin_unlock(&kfd_mem_limit.mem_limit_lock); 1694 1695 if (available < 0) 1696 available = 0; 1697 1698 return available; 1699 } 1700 1701 int amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu( 1702 struct amdgpu_device *adev, uint64_t va, uint64_t size, 1703 void *drm_priv, struct kgd_mem **mem, 1704 uint64_t *offset, uint32_t flags, bool criu_resume) 1705 { 1706 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1707 struct amdgpu_fpriv *fpriv = container_of(avm, struct amdgpu_fpriv, vm); 1708 enum ttm_bo_type bo_type = ttm_bo_type_device; 1709 struct sg_table *sg = NULL; 1710 uint64_t user_addr = 0; 1711 struct amdgpu_bo *bo; 1712 struct drm_gem_object *gobj = NULL; 1713 u32 domain, alloc_domain; 1714 uint64_t aligned_size; 1715 int8_t xcp_id = -1; 1716 u64 alloc_flags; 1717 int ret; 1718 1719 /* 1720 * Check on which domain to allocate BO 1721 */ 1722 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 1723 domain = alloc_domain = AMDGPU_GEM_DOMAIN_VRAM; 1724 1725 if (adev->gmc.is_app_apu) { 1726 domain = AMDGPU_GEM_DOMAIN_GTT; 1727 alloc_domain = AMDGPU_GEM_DOMAIN_GTT; 1728 alloc_flags = 0; 1729 } else { 1730 alloc_flags = AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE; 1731 alloc_flags |= (flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) ? 1732 AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED : 0; 1733 1734 /* For contiguous VRAM allocation */ 1735 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_CONTIGUOUS) 1736 alloc_flags |= AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 1737 } 1738 xcp_id = fpriv->xcp_id == AMDGPU_XCP_NO_PARTITION ? 1739 0 : fpriv->xcp_id; 1740 } else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 1741 domain = alloc_domain = AMDGPU_GEM_DOMAIN_GTT; 1742 alloc_flags = 0; 1743 } else { 1744 domain = AMDGPU_GEM_DOMAIN_GTT; 1745 alloc_domain = AMDGPU_GEM_DOMAIN_CPU; 1746 alloc_flags = AMDGPU_GEM_CREATE_PREEMPTIBLE; 1747 1748 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 1749 if (!offset || !*offset) 1750 return -EINVAL; 1751 user_addr = untagged_addr(*offset); 1752 } else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1753 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1754 bo_type = ttm_bo_type_sg; 1755 if (size > UINT_MAX) 1756 return -EINVAL; 1757 sg = create_sg_table(*offset, size); 1758 if (!sg) 1759 return -ENOMEM; 1760 } else { 1761 return -EINVAL; 1762 } 1763 } 1764 1765 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_COHERENT) 1766 alloc_flags |= AMDGPU_GEM_CREATE_COHERENT; 1767 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_EXT_COHERENT) 1768 alloc_flags |= AMDGPU_GEM_CREATE_EXT_COHERENT; 1769 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_UNCACHED) 1770 alloc_flags |= AMDGPU_GEM_CREATE_UNCACHED; 1771 1772 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 1773 if (!*mem) { 1774 ret = -ENOMEM; 1775 goto err; 1776 } 1777 INIT_LIST_HEAD(&(*mem)->attachments); 1778 mutex_init(&(*mem)->lock); 1779 (*mem)->aql_queue = !!(flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM); 1780 1781 /* Workaround for AQL queue wraparound bug. Map the same 1782 * memory twice. That means we only actually allocate half 1783 * the memory. 1784 */ 1785 if ((*mem)->aql_queue) 1786 size >>= 1; 1787 aligned_size = PAGE_ALIGN(size); 1788 1789 (*mem)->alloc_flags = flags; 1790 1791 amdgpu_sync_create(&(*mem)->sync); 1792 1793 ret = amdgpu_amdkfd_reserve_mem_limit(adev, aligned_size, flags, 1794 xcp_id); 1795 if (ret) { 1796 pr_debug("Insufficient memory\n"); 1797 goto err_reserve_limit; 1798 } 1799 1800 pr_debug("\tcreate BO VA 0x%llx size 0x%llx domain %s xcp_id %d\n", 1801 va, (*mem)->aql_queue ? size << 1 : size, 1802 domain_string(alloc_domain), xcp_id); 1803 1804 ret = amdgpu_gem_object_create(adev, aligned_size, 1, alloc_domain, alloc_flags, 1805 bo_type, NULL, &gobj, xcp_id + 1); 1806 if (ret) { 1807 pr_debug("Failed to create BO on domain %s. ret %d\n", 1808 domain_string(alloc_domain), ret); 1809 goto err_bo_create; 1810 } 1811 ret = drm_vma_node_allow(&gobj->vma_node, drm_priv); 1812 if (ret) { 1813 pr_debug("Failed to allow vma node access. ret %d\n", ret); 1814 goto err_node_allow; 1815 } 1816 ret = drm_gem_handle_create(adev->kfd.client.file, gobj, &(*mem)->gem_handle); 1817 if (ret) 1818 goto err_gem_handle_create; 1819 bo = gem_to_amdgpu_bo(gobj); 1820 if (bo_type == ttm_bo_type_sg) { 1821 bo->tbo.sg = sg; 1822 bo->tbo.ttm->sg = sg; 1823 } 1824 bo->kfd_bo = *mem; 1825 (*mem)->bo = bo; 1826 if (user_addr) 1827 bo->flags |= AMDGPU_AMDKFD_CREATE_USERPTR_BO; 1828 1829 (*mem)->va = va; 1830 (*mem)->domain = domain; 1831 (*mem)->mapped_to_gpu_memory = 0; 1832 (*mem)->process_info = avm->process_info; 1833 1834 add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, user_addr); 1835 1836 if (user_addr) { 1837 pr_debug("creating userptr BO for user_addr = %llx\n", user_addr); 1838 ret = init_user_pages(*mem, user_addr, criu_resume); 1839 if (ret) 1840 goto allocate_init_user_pages_failed; 1841 } else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1842 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1843 ret = amdgpu_amdkfd_gpuvm_pin_bo(bo, AMDGPU_GEM_DOMAIN_GTT); 1844 if (ret) { 1845 pr_err("Pinning MMIO/DOORBELL BO during ALLOC FAILED\n"); 1846 goto err_pin_bo; 1847 } 1848 bo->allowed_domains = AMDGPU_GEM_DOMAIN_GTT; 1849 bo->preferred_domains = AMDGPU_GEM_DOMAIN_GTT; 1850 } else { 1851 mutex_lock(&avm->process_info->lock); 1852 if (avm->process_info->eviction_fence && 1853 !dma_fence_is_signaled(&avm->process_info->eviction_fence->base)) 1854 ret = amdgpu_amdkfd_bo_validate_and_fence(bo, domain, 1855 &avm->process_info->eviction_fence->base); 1856 mutex_unlock(&avm->process_info->lock); 1857 if (ret) 1858 goto err_validate_bo; 1859 } 1860 1861 if (offset) 1862 *offset = amdgpu_bo_mmap_offset(bo); 1863 1864 return 0; 1865 1866 allocate_init_user_pages_failed: 1867 err_pin_bo: 1868 err_validate_bo: 1869 remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info); 1870 drm_gem_handle_delete(adev->kfd.client.file, (*mem)->gem_handle); 1871 err_gem_handle_create: 1872 drm_vma_node_revoke(&gobj->vma_node, drm_priv); 1873 err_node_allow: 1874 /* Don't unreserve system mem limit twice */ 1875 goto err_reserve_limit; 1876 err_bo_create: 1877 amdgpu_amdkfd_unreserve_mem_limit(adev, aligned_size, flags, xcp_id); 1878 err_reserve_limit: 1879 amdgpu_sync_free(&(*mem)->sync); 1880 mutex_destroy(&(*mem)->lock); 1881 if (gobj) 1882 drm_gem_object_put(gobj); 1883 else 1884 kfree(*mem); 1885 err: 1886 if (sg) { 1887 sg_free_table(sg); 1888 kfree(sg); 1889 } 1890 return ret; 1891 } 1892 1893 int amdgpu_amdkfd_gpuvm_free_memory_of_gpu( 1894 struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv, 1895 uint64_t *size) 1896 { 1897 struct amdkfd_process_info *process_info = mem->process_info; 1898 unsigned long bo_size = mem->bo->tbo.base.size; 1899 bool use_release_notifier = (mem->bo->kfd_bo == mem); 1900 struct kfd_mem_attachment *entry, *tmp; 1901 struct bo_vm_reservation_context ctx; 1902 unsigned int mapped_to_gpu_memory; 1903 int ret; 1904 bool is_imported = false; 1905 1906 mutex_lock(&mem->lock); 1907 1908 /* Unpin MMIO/DOORBELL BO's that were pinned during allocation */ 1909 if (mem->alloc_flags & 1910 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1911 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1912 amdgpu_amdkfd_gpuvm_unpin_bo(mem->bo); 1913 } 1914 1915 mapped_to_gpu_memory = mem->mapped_to_gpu_memory; 1916 is_imported = mem->is_imported; 1917 mutex_unlock(&mem->lock); 1918 /* lock is not needed after this, since mem is unused and will 1919 * be freed anyway 1920 */ 1921 1922 if (mapped_to_gpu_memory > 0) { 1923 pr_debug("BO VA 0x%llx size 0x%lx is still mapped.\n", 1924 mem->va, bo_size); 1925 return -EBUSY; 1926 } 1927 1928 /* Make sure restore workers don't access the BO any more */ 1929 mutex_lock(&process_info->lock); 1930 list_del(&mem->validate_list); 1931 mutex_unlock(&process_info->lock); 1932 1933 /* Cleanup user pages and MMU notifiers */ 1934 if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) { 1935 amdgpu_hmm_unregister(mem->bo); 1936 mutex_lock(&process_info->notifier_lock); 1937 amdgpu_ttm_tt_discard_user_pages(mem->bo->tbo.ttm, mem->range); 1938 mutex_unlock(&process_info->notifier_lock); 1939 } 1940 1941 ret = reserve_bo_and_cond_vms(mem, NULL, BO_VM_ALL, &ctx); 1942 if (unlikely(ret)) 1943 return ret; 1944 1945 amdgpu_amdkfd_remove_eviction_fence(mem->bo, 1946 process_info->eviction_fence); 1947 pr_debug("Release VA 0x%llx - 0x%llx\n", mem->va, 1948 mem->va + bo_size * (1 + mem->aql_queue)); 1949 1950 /* Remove from VM internal data structures */ 1951 list_for_each_entry_safe(entry, tmp, &mem->attachments, list) { 1952 kfd_mem_dmaunmap_attachment(mem, entry); 1953 kfd_mem_detach(entry); 1954 } 1955 1956 ret = unreserve_bo_and_vms(&ctx, false, false); 1957 1958 /* Free the sync object */ 1959 amdgpu_sync_free(&mem->sync); 1960 1961 /* If the SG is not NULL, it's one we created for a doorbell or mmio 1962 * remap BO. We need to free it. 1963 */ 1964 if (mem->bo->tbo.sg) { 1965 sg_free_table(mem->bo->tbo.sg); 1966 kfree(mem->bo->tbo.sg); 1967 } 1968 1969 /* Update the size of the BO being freed if it was allocated from 1970 * VRAM and is not imported. For APP APU VRAM allocations are done 1971 * in GTT domain 1972 */ 1973 if (size) { 1974 if (!is_imported && 1975 (mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_VRAM || 1976 (adev->gmc.is_app_apu && 1977 mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_GTT))) 1978 *size = bo_size; 1979 else 1980 *size = 0; 1981 } 1982 1983 /* Free the BO*/ 1984 drm_vma_node_revoke(&mem->bo->tbo.base.vma_node, drm_priv); 1985 drm_gem_handle_delete(adev->kfd.client.file, mem->gem_handle); 1986 if (mem->dmabuf) { 1987 dma_buf_put(mem->dmabuf); 1988 mem->dmabuf = NULL; 1989 } 1990 mutex_destroy(&mem->lock); 1991 1992 /* If this releases the last reference, it will end up calling 1993 * amdgpu_amdkfd_release_notify and kfree the mem struct. That's why 1994 * this needs to be the last call here. 1995 */ 1996 drm_gem_object_put(&mem->bo->tbo.base); 1997 1998 /* 1999 * For kgd_mem allocated in amdgpu_amdkfd_gpuvm_import_dmabuf(), 2000 * explicitly free it here. 2001 */ 2002 if (!use_release_notifier) 2003 kfree(mem); 2004 2005 return ret; 2006 } 2007 2008 int amdgpu_amdkfd_gpuvm_map_memory_to_gpu( 2009 struct amdgpu_device *adev, struct kgd_mem *mem, 2010 void *drm_priv) 2011 { 2012 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 2013 int ret; 2014 struct amdgpu_bo *bo; 2015 uint32_t domain; 2016 struct kfd_mem_attachment *entry; 2017 struct bo_vm_reservation_context ctx; 2018 unsigned long bo_size; 2019 bool is_invalid_userptr = false; 2020 2021 bo = mem->bo; 2022 if (!bo) { 2023 pr_err("Invalid BO when mapping memory to GPU\n"); 2024 return -EINVAL; 2025 } 2026 2027 /* Make sure restore is not running concurrently. Since we 2028 * don't map invalid userptr BOs, we rely on the next restore 2029 * worker to do the mapping 2030 */ 2031 mutex_lock(&mem->process_info->lock); 2032 2033 /* Lock notifier lock. If we find an invalid userptr BO, we can be 2034 * sure that the MMU notifier is no longer running 2035 * concurrently and the queues are actually stopped 2036 */ 2037 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 2038 mutex_lock(&mem->process_info->notifier_lock); 2039 is_invalid_userptr = !!mem->invalid; 2040 mutex_unlock(&mem->process_info->notifier_lock); 2041 } 2042 2043 mutex_lock(&mem->lock); 2044 2045 domain = mem->domain; 2046 bo_size = bo->tbo.base.size; 2047 2048 pr_debug("Map VA 0x%llx - 0x%llx to vm %p domain %s\n", 2049 mem->va, 2050 mem->va + bo_size * (1 + mem->aql_queue), 2051 avm, domain_string(domain)); 2052 2053 if (!kfd_mem_is_attached(avm, mem)) { 2054 ret = kfd_mem_attach(adev, mem, avm, mem->aql_queue); 2055 if (ret) 2056 goto out; 2057 } 2058 2059 ret = reserve_bo_and_vm(mem, avm, &ctx); 2060 if (unlikely(ret)) 2061 goto out; 2062 2063 /* Userptr can be marked as "not invalid", but not actually be 2064 * validated yet (still in the system domain). In that case 2065 * the queues are still stopped and we can leave mapping for 2066 * the next restore worker 2067 */ 2068 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm) && 2069 bo->tbo.resource->mem_type == TTM_PL_SYSTEM) 2070 is_invalid_userptr = true; 2071 2072 ret = vm_validate_pt_pd_bos(avm, NULL); 2073 if (unlikely(ret)) 2074 goto out_unreserve; 2075 2076 list_for_each_entry(entry, &mem->attachments, list) { 2077 if (entry->bo_va->base.vm != avm || entry->is_mapped) 2078 continue; 2079 2080 pr_debug("\t map VA 0x%llx - 0x%llx in entry %p\n", 2081 entry->va, entry->va + bo_size, entry); 2082 2083 ret = map_bo_to_gpuvm(mem, entry, ctx.sync, 2084 is_invalid_userptr); 2085 if (ret) { 2086 pr_err("Failed to map bo to gpuvm\n"); 2087 goto out_unreserve; 2088 } 2089 2090 ret = vm_update_pds(avm, ctx.sync); 2091 if (ret) { 2092 pr_err("Failed to update page directories\n"); 2093 goto out_unreserve; 2094 } 2095 2096 entry->is_mapped = true; 2097 mem->mapped_to_gpu_memory++; 2098 pr_debug("\t INC mapping count %d\n", 2099 mem->mapped_to_gpu_memory); 2100 } 2101 2102 ret = unreserve_bo_and_vms(&ctx, false, false); 2103 2104 goto out; 2105 2106 out_unreserve: 2107 unreserve_bo_and_vms(&ctx, false, false); 2108 out: 2109 mutex_unlock(&mem->process_info->lock); 2110 mutex_unlock(&mem->lock); 2111 return ret; 2112 } 2113 2114 int amdgpu_amdkfd_gpuvm_dmaunmap_mem(struct kgd_mem *mem, void *drm_priv) 2115 { 2116 struct kfd_mem_attachment *entry; 2117 struct amdgpu_vm *vm; 2118 int ret; 2119 2120 vm = drm_priv_to_vm(drm_priv); 2121 2122 mutex_lock(&mem->lock); 2123 2124 ret = amdgpu_bo_reserve(mem->bo, true); 2125 if (ret) 2126 goto out; 2127 2128 list_for_each_entry(entry, &mem->attachments, list) { 2129 if (entry->bo_va->base.vm != vm) 2130 continue; 2131 if (entry->bo_va->base.bo->tbo.ttm && 2132 !entry->bo_va->base.bo->tbo.ttm->sg) 2133 continue; 2134 2135 kfd_mem_dmaunmap_attachment(mem, entry); 2136 } 2137 2138 amdgpu_bo_unreserve(mem->bo); 2139 out: 2140 mutex_unlock(&mem->lock); 2141 2142 return ret; 2143 } 2144 2145 int amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 2146 struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv) 2147 { 2148 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 2149 unsigned long bo_size = mem->bo->tbo.base.size; 2150 struct kfd_mem_attachment *entry; 2151 struct bo_vm_reservation_context ctx; 2152 int ret; 2153 2154 mutex_lock(&mem->lock); 2155 2156 ret = reserve_bo_and_cond_vms(mem, avm, BO_VM_MAPPED, &ctx); 2157 if (unlikely(ret)) 2158 goto out; 2159 /* If no VMs were reserved, it means the BO wasn't actually mapped */ 2160 if (ctx.n_vms == 0) { 2161 ret = -EINVAL; 2162 goto unreserve_out; 2163 } 2164 2165 ret = vm_validate_pt_pd_bos(avm, NULL); 2166 if (unlikely(ret)) 2167 goto unreserve_out; 2168 2169 pr_debug("Unmap VA 0x%llx - 0x%llx from vm %p\n", 2170 mem->va, 2171 mem->va + bo_size * (1 + mem->aql_queue), 2172 avm); 2173 2174 list_for_each_entry(entry, &mem->attachments, list) { 2175 if (entry->bo_va->base.vm != avm || !entry->is_mapped) 2176 continue; 2177 2178 pr_debug("\t unmap VA 0x%llx - 0x%llx from entry %p\n", 2179 entry->va, entry->va + bo_size, entry); 2180 2181 unmap_bo_from_gpuvm(mem, entry, ctx.sync); 2182 entry->is_mapped = false; 2183 2184 mem->mapped_to_gpu_memory--; 2185 pr_debug("\t DEC mapping count %d\n", 2186 mem->mapped_to_gpu_memory); 2187 } 2188 2189 unreserve_out: 2190 unreserve_bo_and_vms(&ctx, false, false); 2191 out: 2192 mutex_unlock(&mem->lock); 2193 return ret; 2194 } 2195 2196 int amdgpu_amdkfd_gpuvm_sync_memory( 2197 struct amdgpu_device *adev, struct kgd_mem *mem, bool intr) 2198 { 2199 struct amdgpu_sync sync; 2200 int ret; 2201 2202 amdgpu_sync_create(&sync); 2203 2204 mutex_lock(&mem->lock); 2205 amdgpu_sync_clone(&mem->sync, &sync); 2206 mutex_unlock(&mem->lock); 2207 2208 ret = amdgpu_sync_wait(&sync, intr); 2209 amdgpu_sync_free(&sync); 2210 return ret; 2211 } 2212 2213 /** 2214 * amdgpu_amdkfd_map_gtt_bo_to_gart - Map BO to GART and increment reference count 2215 * @bo: Buffer object to be mapped 2216 * 2217 * Before return, bo reference count is incremented. To release the reference and unpin/ 2218 * unmap the BO, call amdgpu_amdkfd_free_gtt_mem. 2219 */ 2220 int amdgpu_amdkfd_map_gtt_bo_to_gart(struct amdgpu_bo *bo) 2221 { 2222 int ret; 2223 2224 ret = amdgpu_bo_reserve(bo, true); 2225 if (ret) { 2226 pr_err("Failed to reserve bo. ret %d\n", ret); 2227 goto err_reserve_bo_failed; 2228 } 2229 2230 ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT); 2231 if (ret) { 2232 pr_err("Failed to pin bo. ret %d\n", ret); 2233 goto err_pin_bo_failed; 2234 } 2235 2236 ret = amdgpu_ttm_alloc_gart(&bo->tbo); 2237 if (ret) { 2238 pr_err("Failed to bind bo to GART. ret %d\n", ret); 2239 goto err_map_bo_gart_failed; 2240 } 2241 2242 amdgpu_amdkfd_remove_eviction_fence( 2243 bo, bo->vm_bo->vm->process_info->eviction_fence); 2244 2245 amdgpu_bo_unreserve(bo); 2246 2247 bo = amdgpu_bo_ref(bo); 2248 2249 return 0; 2250 2251 err_map_bo_gart_failed: 2252 amdgpu_bo_unpin(bo); 2253 err_pin_bo_failed: 2254 amdgpu_bo_unreserve(bo); 2255 err_reserve_bo_failed: 2256 2257 return ret; 2258 } 2259 2260 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Map a GTT BO for kernel CPU access 2261 * 2262 * @mem: Buffer object to be mapped for CPU access 2263 * @kptr[out]: pointer in kernel CPU address space 2264 * @size[out]: size of the buffer 2265 * 2266 * Pins the BO and maps it for kernel CPU access. The eviction fence is removed 2267 * from the BO, since pinned BOs cannot be evicted. The bo must remain on the 2268 * validate_list, so the GPU mapping can be restored after a page table was 2269 * evicted. 2270 * 2271 * Return: 0 on success, error code on failure 2272 */ 2273 int amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(struct kgd_mem *mem, 2274 void **kptr, uint64_t *size) 2275 { 2276 int ret; 2277 struct amdgpu_bo *bo = mem->bo; 2278 2279 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 2280 pr_err("userptr can't be mapped to kernel\n"); 2281 return -EINVAL; 2282 } 2283 2284 mutex_lock(&mem->process_info->lock); 2285 2286 ret = amdgpu_bo_reserve(bo, true); 2287 if (ret) { 2288 pr_err("Failed to reserve bo. ret %d\n", ret); 2289 goto bo_reserve_failed; 2290 } 2291 2292 ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT); 2293 if (ret) { 2294 pr_err("Failed to pin bo. ret %d\n", ret); 2295 goto pin_failed; 2296 } 2297 2298 ret = amdgpu_bo_kmap(bo, kptr); 2299 if (ret) { 2300 pr_err("Failed to map bo to kernel. ret %d\n", ret); 2301 goto kmap_failed; 2302 } 2303 2304 amdgpu_amdkfd_remove_eviction_fence( 2305 bo, mem->process_info->eviction_fence); 2306 2307 if (size) 2308 *size = amdgpu_bo_size(bo); 2309 2310 amdgpu_bo_unreserve(bo); 2311 2312 mutex_unlock(&mem->process_info->lock); 2313 return 0; 2314 2315 kmap_failed: 2316 amdgpu_bo_unpin(bo); 2317 pin_failed: 2318 amdgpu_bo_unreserve(bo); 2319 bo_reserve_failed: 2320 mutex_unlock(&mem->process_info->lock); 2321 2322 return ret; 2323 } 2324 2325 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Unmap a GTT BO for kernel CPU access 2326 * 2327 * @mem: Buffer object to be unmapped for CPU access 2328 * 2329 * Removes the kernel CPU mapping and unpins the BO. It does not restore the 2330 * eviction fence, so this function should only be used for cleanup before the 2331 * BO is destroyed. 2332 */ 2333 void amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(struct kgd_mem *mem) 2334 { 2335 struct amdgpu_bo *bo = mem->bo; 2336 2337 amdgpu_bo_reserve(bo, true); 2338 amdgpu_bo_kunmap(bo); 2339 amdgpu_bo_unpin(bo); 2340 amdgpu_bo_unreserve(bo); 2341 } 2342 2343 int amdgpu_amdkfd_gpuvm_get_vm_fault_info(struct amdgpu_device *adev, 2344 struct kfd_vm_fault_info *mem) 2345 { 2346 if (atomic_read(&adev->gmc.vm_fault_info_updated) == 1) { 2347 *mem = *adev->gmc.vm_fault_info; 2348 mb(); /* make sure read happened */ 2349 atomic_set(&adev->gmc.vm_fault_info_updated, 0); 2350 } 2351 return 0; 2352 } 2353 2354 static int import_obj_create(struct amdgpu_device *adev, 2355 struct dma_buf *dma_buf, 2356 struct drm_gem_object *obj, 2357 uint64_t va, void *drm_priv, 2358 struct kgd_mem **mem, uint64_t *size, 2359 uint64_t *mmap_offset) 2360 { 2361 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 2362 struct amdgpu_bo *bo; 2363 int ret; 2364 2365 bo = gem_to_amdgpu_bo(obj); 2366 if (!(bo->preferred_domains & (AMDGPU_GEM_DOMAIN_VRAM | 2367 AMDGPU_GEM_DOMAIN_GTT))) 2368 /* Only VRAM and GTT BOs are supported */ 2369 return -EINVAL; 2370 2371 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 2372 if (!*mem) 2373 return -ENOMEM; 2374 2375 ret = drm_vma_node_allow(&obj->vma_node, drm_priv); 2376 if (ret) 2377 goto err_free_mem; 2378 2379 if (size) 2380 *size = amdgpu_bo_size(bo); 2381 2382 if (mmap_offset) 2383 *mmap_offset = amdgpu_bo_mmap_offset(bo); 2384 2385 INIT_LIST_HEAD(&(*mem)->attachments); 2386 mutex_init(&(*mem)->lock); 2387 2388 (*mem)->alloc_flags = 2389 ((bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) ? 2390 KFD_IOC_ALLOC_MEM_FLAGS_VRAM : KFD_IOC_ALLOC_MEM_FLAGS_GTT) 2391 | KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE 2392 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 2393 2394 get_dma_buf(dma_buf); 2395 (*mem)->dmabuf = dma_buf; 2396 (*mem)->bo = bo; 2397 (*mem)->va = va; 2398 (*mem)->domain = (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) && !adev->gmc.is_app_apu ? 2399 AMDGPU_GEM_DOMAIN_VRAM : AMDGPU_GEM_DOMAIN_GTT; 2400 2401 (*mem)->mapped_to_gpu_memory = 0; 2402 (*mem)->process_info = avm->process_info; 2403 add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, false); 2404 amdgpu_sync_create(&(*mem)->sync); 2405 (*mem)->is_imported = true; 2406 2407 mutex_lock(&avm->process_info->lock); 2408 if (avm->process_info->eviction_fence && 2409 !dma_fence_is_signaled(&avm->process_info->eviction_fence->base)) 2410 ret = amdgpu_amdkfd_bo_validate_and_fence(bo, (*mem)->domain, 2411 &avm->process_info->eviction_fence->base); 2412 mutex_unlock(&avm->process_info->lock); 2413 if (ret) 2414 goto err_remove_mem; 2415 2416 return 0; 2417 2418 err_remove_mem: 2419 remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info); 2420 drm_vma_node_revoke(&obj->vma_node, drm_priv); 2421 err_free_mem: 2422 kfree(*mem); 2423 return ret; 2424 } 2425 2426 int amdgpu_amdkfd_gpuvm_import_dmabuf_fd(struct amdgpu_device *adev, int fd, 2427 uint64_t va, void *drm_priv, 2428 struct kgd_mem **mem, uint64_t *size, 2429 uint64_t *mmap_offset) 2430 { 2431 struct drm_gem_object *obj; 2432 uint32_t handle; 2433 int ret; 2434 2435 ret = drm_gem_prime_fd_to_handle(&adev->ddev, adev->kfd.client.file, fd, 2436 &handle); 2437 if (ret) 2438 return ret; 2439 obj = drm_gem_object_lookup(adev->kfd.client.file, handle); 2440 if (!obj) { 2441 ret = -EINVAL; 2442 goto err_release_handle; 2443 } 2444 2445 ret = import_obj_create(adev, obj->dma_buf, obj, va, drm_priv, mem, size, 2446 mmap_offset); 2447 if (ret) 2448 goto err_put_obj; 2449 2450 (*mem)->gem_handle = handle; 2451 2452 return 0; 2453 2454 err_put_obj: 2455 drm_gem_object_put(obj); 2456 err_release_handle: 2457 drm_gem_handle_delete(adev->kfd.client.file, handle); 2458 return ret; 2459 } 2460 2461 int amdgpu_amdkfd_gpuvm_export_dmabuf(struct kgd_mem *mem, 2462 struct dma_buf **dma_buf) 2463 { 2464 int ret; 2465 2466 mutex_lock(&mem->lock); 2467 ret = kfd_mem_export_dmabuf(mem); 2468 if (ret) 2469 goto out; 2470 2471 get_dma_buf(mem->dmabuf); 2472 *dma_buf = mem->dmabuf; 2473 out: 2474 mutex_unlock(&mem->lock); 2475 return ret; 2476 } 2477 2478 /* Evict a userptr BO by stopping the queues if necessary 2479 * 2480 * Runs in MMU notifier, may be in RECLAIM_FS context. This means it 2481 * cannot do any memory allocations, and cannot take any locks that 2482 * are held elsewhere while allocating memory. 2483 * 2484 * It doesn't do anything to the BO itself. The real work happens in 2485 * restore, where we get updated page addresses. This function only 2486 * ensures that GPU access to the BO is stopped. 2487 */ 2488 int amdgpu_amdkfd_evict_userptr(struct mmu_interval_notifier *mni, 2489 unsigned long cur_seq, struct kgd_mem *mem) 2490 { 2491 struct amdkfd_process_info *process_info = mem->process_info; 2492 int r = 0; 2493 2494 /* Do not process MMU notifications during CRIU restore until 2495 * KFD_CRIU_OP_RESUME IOCTL is received 2496 */ 2497 if (READ_ONCE(process_info->block_mmu_notifications)) 2498 return 0; 2499 2500 mutex_lock(&process_info->notifier_lock); 2501 mmu_interval_set_seq(mni, cur_seq); 2502 2503 mem->invalid++; 2504 if (++process_info->evicted_bos == 1) { 2505 /* First eviction, stop the queues */ 2506 r = kgd2kfd_quiesce_mm(mni->mm, 2507 KFD_QUEUE_EVICTION_TRIGGER_USERPTR); 2508 if (r) 2509 pr_err("Failed to quiesce KFD\n"); 2510 queue_delayed_work(system_freezable_wq, 2511 &process_info->restore_userptr_work, 2512 msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS)); 2513 } 2514 mutex_unlock(&process_info->notifier_lock); 2515 2516 return r; 2517 } 2518 2519 /* Update invalid userptr BOs 2520 * 2521 * Moves invalidated (evicted) userptr BOs from userptr_valid_list to 2522 * userptr_inval_list and updates user pages for all BOs that have 2523 * been invalidated since their last update. 2524 */ 2525 static int update_invalid_user_pages(struct amdkfd_process_info *process_info, 2526 struct mm_struct *mm) 2527 { 2528 struct kgd_mem *mem, *tmp_mem; 2529 struct amdgpu_bo *bo; 2530 struct ttm_operation_ctx ctx = { false, false }; 2531 uint32_t invalid; 2532 int ret = 0; 2533 2534 mutex_lock(&process_info->notifier_lock); 2535 2536 /* Move all invalidated BOs to the userptr_inval_list */ 2537 list_for_each_entry_safe(mem, tmp_mem, 2538 &process_info->userptr_valid_list, 2539 validate_list) 2540 if (mem->invalid) 2541 list_move_tail(&mem->validate_list, 2542 &process_info->userptr_inval_list); 2543 2544 /* Go through userptr_inval_list and update any invalid user_pages */ 2545 list_for_each_entry(mem, &process_info->userptr_inval_list, 2546 validate_list) { 2547 invalid = mem->invalid; 2548 if (!invalid) 2549 /* BO hasn't been invalidated since the last 2550 * revalidation attempt. Keep its page list. 2551 */ 2552 continue; 2553 2554 bo = mem->bo; 2555 2556 amdgpu_ttm_tt_discard_user_pages(bo->tbo.ttm, mem->range); 2557 mem->range = NULL; 2558 2559 /* BO reservations and getting user pages (hmm_range_fault) 2560 * must happen outside the notifier lock 2561 */ 2562 mutex_unlock(&process_info->notifier_lock); 2563 2564 /* Move the BO to system (CPU) domain if necessary to unmap 2565 * and free the SG table 2566 */ 2567 if (bo->tbo.resource->mem_type != TTM_PL_SYSTEM) { 2568 if (amdgpu_bo_reserve(bo, true)) 2569 return -EAGAIN; 2570 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 2571 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 2572 amdgpu_bo_unreserve(bo); 2573 if (ret) { 2574 pr_err("%s: Failed to invalidate userptr BO\n", 2575 __func__); 2576 return -EAGAIN; 2577 } 2578 } 2579 2580 /* Get updated user pages */ 2581 ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages, 2582 &mem->range); 2583 if (ret) { 2584 pr_debug("Failed %d to get user pages\n", ret); 2585 2586 /* Return -EFAULT bad address error as success. It will 2587 * fail later with a VM fault if the GPU tries to access 2588 * it. Better than hanging indefinitely with stalled 2589 * user mode queues. 2590 * 2591 * Return other error -EBUSY or -ENOMEM to retry restore 2592 */ 2593 if (ret != -EFAULT) 2594 return ret; 2595 2596 ret = 0; 2597 } 2598 2599 mutex_lock(&process_info->notifier_lock); 2600 2601 /* Mark the BO as valid unless it was invalidated 2602 * again concurrently. 2603 */ 2604 if (mem->invalid != invalid) { 2605 ret = -EAGAIN; 2606 goto unlock_out; 2607 } 2608 /* set mem valid if mem has hmm range associated */ 2609 if (mem->range) 2610 mem->invalid = 0; 2611 } 2612 2613 unlock_out: 2614 mutex_unlock(&process_info->notifier_lock); 2615 2616 return ret; 2617 } 2618 2619 /* Validate invalid userptr BOs 2620 * 2621 * Validates BOs on the userptr_inval_list. Also updates GPUVM page tables 2622 * with new page addresses and waits for the page table updates to complete. 2623 */ 2624 static int validate_invalid_user_pages(struct amdkfd_process_info *process_info) 2625 { 2626 struct ttm_operation_ctx ctx = { false, false }; 2627 struct amdgpu_sync sync; 2628 struct drm_exec exec; 2629 2630 struct amdgpu_vm *peer_vm; 2631 struct kgd_mem *mem, *tmp_mem; 2632 struct amdgpu_bo *bo; 2633 int ret; 2634 2635 amdgpu_sync_create(&sync); 2636 2637 drm_exec_init(&exec, 0, 0); 2638 /* Reserve all BOs and page tables for validation */ 2639 drm_exec_until_all_locked(&exec) { 2640 /* Reserve all the page directories */ 2641 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2642 vm_list_node) { 2643 ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2); 2644 drm_exec_retry_on_contention(&exec); 2645 if (unlikely(ret)) 2646 goto unreserve_out; 2647 } 2648 2649 /* Reserve the userptr_inval_list entries to resv_list */ 2650 list_for_each_entry(mem, &process_info->userptr_inval_list, 2651 validate_list) { 2652 struct drm_gem_object *gobj; 2653 2654 gobj = &mem->bo->tbo.base; 2655 ret = drm_exec_prepare_obj(&exec, gobj, 1); 2656 drm_exec_retry_on_contention(&exec); 2657 if (unlikely(ret)) 2658 goto unreserve_out; 2659 } 2660 } 2661 2662 ret = process_validate_vms(process_info, NULL); 2663 if (ret) 2664 goto unreserve_out; 2665 2666 /* Validate BOs and update GPUVM page tables */ 2667 list_for_each_entry_safe(mem, tmp_mem, 2668 &process_info->userptr_inval_list, 2669 validate_list) { 2670 struct kfd_mem_attachment *attachment; 2671 2672 bo = mem->bo; 2673 2674 /* Validate the BO if we got user pages */ 2675 if (bo->tbo.ttm->pages[0]) { 2676 amdgpu_bo_placement_from_domain(bo, mem->domain); 2677 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 2678 if (ret) { 2679 pr_err("%s: failed to validate BO\n", __func__); 2680 goto unreserve_out; 2681 } 2682 } 2683 2684 /* Update mapping. If the BO was not validated 2685 * (because we couldn't get user pages), this will 2686 * clear the page table entries, which will result in 2687 * VM faults if the GPU tries to access the invalid 2688 * memory. 2689 */ 2690 list_for_each_entry(attachment, &mem->attachments, list) { 2691 if (!attachment->is_mapped) 2692 continue; 2693 2694 kfd_mem_dmaunmap_attachment(mem, attachment); 2695 ret = update_gpuvm_pte(mem, attachment, &sync); 2696 if (ret) { 2697 pr_err("%s: update PTE failed\n", __func__); 2698 /* make sure this gets validated again */ 2699 mutex_lock(&process_info->notifier_lock); 2700 mem->invalid++; 2701 mutex_unlock(&process_info->notifier_lock); 2702 goto unreserve_out; 2703 } 2704 } 2705 } 2706 2707 /* Update page directories */ 2708 ret = process_update_pds(process_info, &sync); 2709 2710 unreserve_out: 2711 drm_exec_fini(&exec); 2712 amdgpu_sync_wait(&sync, false); 2713 amdgpu_sync_free(&sync); 2714 2715 return ret; 2716 } 2717 2718 /* Confirm that all user pages are valid while holding the notifier lock 2719 * 2720 * Moves valid BOs from the userptr_inval_list back to userptr_val_list. 2721 */ 2722 static int confirm_valid_user_pages_locked(struct amdkfd_process_info *process_info) 2723 { 2724 struct kgd_mem *mem, *tmp_mem; 2725 int ret = 0; 2726 2727 list_for_each_entry_safe(mem, tmp_mem, 2728 &process_info->userptr_inval_list, 2729 validate_list) { 2730 bool valid; 2731 2732 /* keep mem without hmm range at userptr_inval_list */ 2733 if (!mem->range) 2734 continue; 2735 2736 /* Only check mem with hmm range associated */ 2737 valid = amdgpu_ttm_tt_get_user_pages_done( 2738 mem->bo->tbo.ttm, mem->range); 2739 2740 mem->range = NULL; 2741 if (!valid) { 2742 WARN(!mem->invalid, "Invalid BO not marked invalid"); 2743 ret = -EAGAIN; 2744 continue; 2745 } 2746 2747 if (mem->invalid) { 2748 WARN(1, "Valid BO is marked invalid"); 2749 ret = -EAGAIN; 2750 continue; 2751 } 2752 2753 list_move_tail(&mem->validate_list, 2754 &process_info->userptr_valid_list); 2755 } 2756 2757 return ret; 2758 } 2759 2760 /* Worker callback to restore evicted userptr BOs 2761 * 2762 * Tries to update and validate all userptr BOs. If successful and no 2763 * concurrent evictions happened, the queues are restarted. Otherwise, 2764 * reschedule for another attempt later. 2765 */ 2766 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work) 2767 { 2768 struct delayed_work *dwork = to_delayed_work(work); 2769 struct amdkfd_process_info *process_info = 2770 container_of(dwork, struct amdkfd_process_info, 2771 restore_userptr_work); 2772 struct task_struct *usertask; 2773 struct mm_struct *mm; 2774 uint32_t evicted_bos; 2775 2776 mutex_lock(&process_info->notifier_lock); 2777 evicted_bos = process_info->evicted_bos; 2778 mutex_unlock(&process_info->notifier_lock); 2779 if (!evicted_bos) 2780 return; 2781 2782 /* Reference task and mm in case of concurrent process termination */ 2783 usertask = get_pid_task(process_info->pid, PIDTYPE_PID); 2784 if (!usertask) 2785 return; 2786 mm = get_task_mm(usertask); 2787 if (!mm) { 2788 put_task_struct(usertask); 2789 return; 2790 } 2791 2792 mutex_lock(&process_info->lock); 2793 2794 if (update_invalid_user_pages(process_info, mm)) 2795 goto unlock_out; 2796 /* userptr_inval_list can be empty if all evicted userptr BOs 2797 * have been freed. In that case there is nothing to validate 2798 * and we can just restart the queues. 2799 */ 2800 if (!list_empty(&process_info->userptr_inval_list)) { 2801 if (validate_invalid_user_pages(process_info)) 2802 goto unlock_out; 2803 } 2804 /* Final check for concurrent evicton and atomic update. If 2805 * another eviction happens after successful update, it will 2806 * be a first eviction that calls quiesce_mm. The eviction 2807 * reference counting inside KFD will handle this case. 2808 */ 2809 mutex_lock(&process_info->notifier_lock); 2810 if (process_info->evicted_bos != evicted_bos) 2811 goto unlock_notifier_out; 2812 2813 if (confirm_valid_user_pages_locked(process_info)) { 2814 WARN(1, "User pages unexpectedly invalid"); 2815 goto unlock_notifier_out; 2816 } 2817 2818 process_info->evicted_bos = evicted_bos = 0; 2819 2820 if (kgd2kfd_resume_mm(mm)) { 2821 pr_err("%s: Failed to resume KFD\n", __func__); 2822 /* No recovery from this failure. Probably the CP is 2823 * hanging. No point trying again. 2824 */ 2825 } 2826 2827 unlock_notifier_out: 2828 mutex_unlock(&process_info->notifier_lock); 2829 unlock_out: 2830 mutex_unlock(&process_info->lock); 2831 2832 /* If validation failed, reschedule another attempt */ 2833 if (evicted_bos) { 2834 queue_delayed_work(system_freezable_wq, 2835 &process_info->restore_userptr_work, 2836 msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS)); 2837 2838 kfd_smi_event_queue_restore_rescheduled(mm); 2839 } 2840 mmput(mm); 2841 put_task_struct(usertask); 2842 } 2843 2844 static void replace_eviction_fence(struct dma_fence __rcu **ef, 2845 struct dma_fence *new_ef) 2846 { 2847 struct dma_fence *old_ef = rcu_replace_pointer(*ef, new_ef, true 2848 /* protected by process_info->lock */); 2849 2850 /* If we're replacing an unsignaled eviction fence, that fence will 2851 * never be signaled, and if anyone is still waiting on that fence, 2852 * they will hang forever. This should never happen. We should only 2853 * replace the fence in restore_work that only gets scheduled after 2854 * eviction work signaled the fence. 2855 */ 2856 WARN_ONCE(!dma_fence_is_signaled(old_ef), 2857 "Replacing unsignaled eviction fence"); 2858 dma_fence_put(old_ef); 2859 } 2860 2861 /** amdgpu_amdkfd_gpuvm_restore_process_bos - Restore all BOs for the given 2862 * KFD process identified by process_info 2863 * 2864 * @process_info: amdkfd_process_info of the KFD process 2865 * 2866 * After memory eviction, restore thread calls this function. The function 2867 * should be called when the Process is still valid. BO restore involves - 2868 * 2869 * 1. Release old eviction fence and create new one 2870 * 2. Get two copies of PD BO list from all the VMs. Keep one copy as pd_list. 2871 * 3 Use the second PD list and kfd_bo_list to create a list (ctx.list) of 2872 * BOs that need to be reserved. 2873 * 4. Reserve all the BOs 2874 * 5. Validate of PD and PT BOs. 2875 * 6. Validate all KFD BOs using kfd_bo_list and Map them and add new fence 2876 * 7. Add fence to all PD and PT BOs. 2877 * 8. Unreserve all BOs 2878 */ 2879 int amdgpu_amdkfd_gpuvm_restore_process_bos(void *info, struct dma_fence __rcu **ef) 2880 { 2881 struct amdkfd_process_info *process_info = info; 2882 struct amdgpu_vm *peer_vm; 2883 struct kgd_mem *mem; 2884 struct list_head duplicate_save; 2885 struct amdgpu_sync sync_obj; 2886 unsigned long failed_size = 0; 2887 unsigned long total_size = 0; 2888 struct drm_exec exec; 2889 int ret; 2890 2891 INIT_LIST_HEAD(&duplicate_save); 2892 2893 mutex_lock(&process_info->lock); 2894 2895 drm_exec_init(&exec, DRM_EXEC_IGNORE_DUPLICATES, 0); 2896 drm_exec_until_all_locked(&exec) { 2897 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2898 vm_list_node) { 2899 ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2); 2900 drm_exec_retry_on_contention(&exec); 2901 if (unlikely(ret)) { 2902 pr_err("Locking VM PD failed, ret: %d\n", ret); 2903 goto ttm_reserve_fail; 2904 } 2905 } 2906 2907 /* Reserve all BOs and page tables/directory. Add all BOs from 2908 * kfd_bo_list to ctx.list 2909 */ 2910 list_for_each_entry(mem, &process_info->kfd_bo_list, 2911 validate_list) { 2912 struct drm_gem_object *gobj; 2913 2914 gobj = &mem->bo->tbo.base; 2915 ret = drm_exec_prepare_obj(&exec, gobj, 1); 2916 drm_exec_retry_on_contention(&exec); 2917 if (unlikely(ret)) { 2918 pr_err("drm_exec_prepare_obj failed, ret: %d\n", ret); 2919 goto ttm_reserve_fail; 2920 } 2921 } 2922 } 2923 2924 amdgpu_sync_create(&sync_obj); 2925 2926 /* Validate BOs managed by KFD */ 2927 list_for_each_entry(mem, &process_info->kfd_bo_list, 2928 validate_list) { 2929 2930 struct amdgpu_bo *bo = mem->bo; 2931 uint32_t domain = mem->domain; 2932 struct dma_resv_iter cursor; 2933 struct dma_fence *fence; 2934 2935 total_size += amdgpu_bo_size(bo); 2936 2937 ret = amdgpu_amdkfd_bo_validate(bo, domain, false); 2938 if (ret) { 2939 pr_debug("Memory eviction: Validate BOs failed\n"); 2940 failed_size += amdgpu_bo_size(bo); 2941 ret = amdgpu_amdkfd_bo_validate(bo, 2942 AMDGPU_GEM_DOMAIN_GTT, false); 2943 if (ret) { 2944 pr_debug("Memory eviction: Try again\n"); 2945 goto validate_map_fail; 2946 } 2947 } 2948 dma_resv_for_each_fence(&cursor, bo->tbo.base.resv, 2949 DMA_RESV_USAGE_KERNEL, fence) { 2950 ret = amdgpu_sync_fence(&sync_obj, fence); 2951 if (ret) { 2952 pr_debug("Memory eviction: Sync BO fence failed. Try again\n"); 2953 goto validate_map_fail; 2954 } 2955 } 2956 } 2957 2958 if (failed_size) 2959 pr_debug("0x%lx/0x%lx in system\n", failed_size, total_size); 2960 2961 /* Validate PDs, PTs and evicted DMABuf imports last. Otherwise BO 2962 * validations above would invalidate DMABuf imports again. 2963 */ 2964 ret = process_validate_vms(process_info, &exec.ticket); 2965 if (ret) { 2966 pr_debug("Validating VMs failed, ret: %d\n", ret); 2967 goto validate_map_fail; 2968 } 2969 2970 /* Update mappings managed by KFD. */ 2971 list_for_each_entry(mem, &process_info->kfd_bo_list, 2972 validate_list) { 2973 struct kfd_mem_attachment *attachment; 2974 2975 list_for_each_entry(attachment, &mem->attachments, list) { 2976 if (!attachment->is_mapped) 2977 continue; 2978 2979 if (attachment->bo_va->base.bo->tbo.pin_count) 2980 continue; 2981 2982 kfd_mem_dmaunmap_attachment(mem, attachment); 2983 ret = update_gpuvm_pte(mem, attachment, &sync_obj); 2984 if (ret) { 2985 pr_debug("Memory eviction: update PTE failed. Try again\n"); 2986 goto validate_map_fail; 2987 } 2988 } 2989 } 2990 2991 /* Update mappings not managed by KFD */ 2992 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2993 vm_list_node) { 2994 struct amdgpu_device *adev = amdgpu_ttm_adev( 2995 peer_vm->root.bo->tbo.bdev); 2996 2997 ret = amdgpu_vm_handle_moved(adev, peer_vm, &exec.ticket); 2998 if (ret) { 2999 pr_debug("Memory eviction: handle moved failed. Try again\n"); 3000 goto validate_map_fail; 3001 } 3002 } 3003 3004 /* Update page directories */ 3005 ret = process_update_pds(process_info, &sync_obj); 3006 if (ret) { 3007 pr_debug("Memory eviction: update PDs failed. Try again\n"); 3008 goto validate_map_fail; 3009 } 3010 3011 /* Sync with fences on all the page tables. They implicitly depend on any 3012 * move fences from amdgpu_vm_handle_moved above. 3013 */ 3014 ret = process_sync_pds_resv(process_info, &sync_obj); 3015 if (ret) { 3016 pr_debug("Memory eviction: Failed to sync to PD BO moving fence. Try again\n"); 3017 goto validate_map_fail; 3018 } 3019 3020 /* Wait for validate and PT updates to finish */ 3021 amdgpu_sync_wait(&sync_obj, false); 3022 3023 /* The old eviction fence may be unsignaled if restore happens 3024 * after a GPU reset or suspend/resume. Keep the old fence in that 3025 * case. Otherwise release the old eviction fence and create new 3026 * one, because fence only goes from unsignaled to signaled once 3027 * and cannot be reused. Use context and mm from the old fence. 3028 * 3029 * If an old eviction fence signals after this check, that's OK. 3030 * Anyone signaling an eviction fence must stop the queues first 3031 * and schedule another restore worker. 3032 */ 3033 if (dma_fence_is_signaled(&process_info->eviction_fence->base)) { 3034 struct amdgpu_amdkfd_fence *new_fence = 3035 amdgpu_amdkfd_fence_create( 3036 process_info->eviction_fence->base.context, 3037 process_info->eviction_fence->mm, 3038 NULL); 3039 3040 if (!new_fence) { 3041 pr_err("Failed to create eviction fence\n"); 3042 ret = -ENOMEM; 3043 goto validate_map_fail; 3044 } 3045 dma_fence_put(&process_info->eviction_fence->base); 3046 process_info->eviction_fence = new_fence; 3047 replace_eviction_fence(ef, dma_fence_get(&new_fence->base)); 3048 } else { 3049 WARN_ONCE(*ef != &process_info->eviction_fence->base, 3050 "KFD eviction fence doesn't match KGD process_info"); 3051 } 3052 3053 /* Attach new eviction fence to all BOs except pinned ones */ 3054 list_for_each_entry(mem, &process_info->kfd_bo_list, validate_list) { 3055 if (mem->bo->tbo.pin_count) 3056 continue; 3057 3058 dma_resv_add_fence(mem->bo->tbo.base.resv, 3059 &process_info->eviction_fence->base, 3060 DMA_RESV_USAGE_BOOKKEEP); 3061 } 3062 /* Attach eviction fence to PD / PT BOs and DMABuf imports */ 3063 list_for_each_entry(peer_vm, &process_info->vm_list_head, 3064 vm_list_node) { 3065 struct amdgpu_bo *bo = peer_vm->root.bo; 3066 3067 dma_resv_add_fence(bo->tbo.base.resv, 3068 &process_info->eviction_fence->base, 3069 DMA_RESV_USAGE_BOOKKEEP); 3070 } 3071 3072 validate_map_fail: 3073 amdgpu_sync_free(&sync_obj); 3074 ttm_reserve_fail: 3075 drm_exec_fini(&exec); 3076 mutex_unlock(&process_info->lock); 3077 return ret; 3078 } 3079 3080 int amdgpu_amdkfd_add_gws_to_process(void *info, void *gws, struct kgd_mem **mem) 3081 { 3082 struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info; 3083 struct amdgpu_bo *gws_bo = (struct amdgpu_bo *)gws; 3084 int ret; 3085 3086 if (!info || !gws) 3087 return -EINVAL; 3088 3089 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 3090 if (!*mem) 3091 return -ENOMEM; 3092 3093 mutex_init(&(*mem)->lock); 3094 INIT_LIST_HEAD(&(*mem)->attachments); 3095 (*mem)->bo = amdgpu_bo_ref(gws_bo); 3096 (*mem)->domain = AMDGPU_GEM_DOMAIN_GWS; 3097 (*mem)->process_info = process_info; 3098 add_kgd_mem_to_kfd_bo_list(*mem, process_info, false); 3099 amdgpu_sync_create(&(*mem)->sync); 3100 3101 3102 /* Validate gws bo the first time it is added to process */ 3103 mutex_lock(&(*mem)->process_info->lock); 3104 ret = amdgpu_bo_reserve(gws_bo, false); 3105 if (unlikely(ret)) { 3106 pr_err("Reserve gws bo failed %d\n", ret); 3107 goto bo_reservation_failure; 3108 } 3109 3110 ret = amdgpu_amdkfd_bo_validate(gws_bo, AMDGPU_GEM_DOMAIN_GWS, true); 3111 if (ret) { 3112 pr_err("GWS BO validate failed %d\n", ret); 3113 goto bo_validation_failure; 3114 } 3115 /* GWS resource is shared b/t amdgpu and amdkfd 3116 * Add process eviction fence to bo so they can 3117 * evict each other. 3118 */ 3119 ret = dma_resv_reserve_fences(gws_bo->tbo.base.resv, 1); 3120 if (ret) 3121 goto reserve_shared_fail; 3122 dma_resv_add_fence(gws_bo->tbo.base.resv, 3123 &process_info->eviction_fence->base, 3124 DMA_RESV_USAGE_BOOKKEEP); 3125 amdgpu_bo_unreserve(gws_bo); 3126 mutex_unlock(&(*mem)->process_info->lock); 3127 3128 return ret; 3129 3130 reserve_shared_fail: 3131 bo_validation_failure: 3132 amdgpu_bo_unreserve(gws_bo); 3133 bo_reservation_failure: 3134 mutex_unlock(&(*mem)->process_info->lock); 3135 amdgpu_sync_free(&(*mem)->sync); 3136 remove_kgd_mem_from_kfd_bo_list(*mem, process_info); 3137 amdgpu_bo_unref(&gws_bo); 3138 mutex_destroy(&(*mem)->lock); 3139 kfree(*mem); 3140 *mem = NULL; 3141 return ret; 3142 } 3143 3144 int amdgpu_amdkfd_remove_gws_from_process(void *info, void *mem) 3145 { 3146 int ret; 3147 struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info; 3148 struct kgd_mem *kgd_mem = (struct kgd_mem *)mem; 3149 struct amdgpu_bo *gws_bo = kgd_mem->bo; 3150 3151 /* Remove BO from process's validate list so restore worker won't touch 3152 * it anymore 3153 */ 3154 remove_kgd_mem_from_kfd_bo_list(kgd_mem, process_info); 3155 3156 ret = amdgpu_bo_reserve(gws_bo, false); 3157 if (unlikely(ret)) { 3158 pr_err("Reserve gws bo failed %d\n", ret); 3159 //TODO add BO back to validate_list? 3160 return ret; 3161 } 3162 amdgpu_amdkfd_remove_eviction_fence(gws_bo, 3163 process_info->eviction_fence); 3164 amdgpu_bo_unreserve(gws_bo); 3165 amdgpu_sync_free(&kgd_mem->sync); 3166 amdgpu_bo_unref(&gws_bo); 3167 mutex_destroy(&kgd_mem->lock); 3168 kfree(mem); 3169 return 0; 3170 } 3171 3172 /* Returns GPU-specific tiling mode information */ 3173 int amdgpu_amdkfd_get_tile_config(struct amdgpu_device *adev, 3174 struct tile_config *config) 3175 { 3176 config->gb_addr_config = adev->gfx.config.gb_addr_config; 3177 config->tile_config_ptr = adev->gfx.config.tile_mode_array; 3178 config->num_tile_configs = 3179 ARRAY_SIZE(adev->gfx.config.tile_mode_array); 3180 config->macro_tile_config_ptr = 3181 adev->gfx.config.macrotile_mode_array; 3182 config->num_macro_tile_configs = 3183 ARRAY_SIZE(adev->gfx.config.macrotile_mode_array); 3184 3185 /* Those values are not set from GFX9 onwards */ 3186 config->num_banks = adev->gfx.config.num_banks; 3187 config->num_ranks = adev->gfx.config.num_ranks; 3188 3189 return 0; 3190 } 3191 3192 bool amdgpu_amdkfd_bo_mapped_to_dev(struct amdgpu_device *adev, struct kgd_mem *mem) 3193 { 3194 struct kfd_mem_attachment *entry; 3195 3196 list_for_each_entry(entry, &mem->attachments, list) { 3197 if (entry->is_mapped && entry->adev == adev) 3198 return true; 3199 } 3200 return false; 3201 } 3202 3203 #if defined(CONFIG_DEBUG_FS) 3204 3205 int kfd_debugfs_kfd_mem_limits(struct seq_file *m, void *data) 3206 { 3207 3208 spin_lock(&kfd_mem_limit.mem_limit_lock); 3209 seq_printf(m, "System mem used %lldM out of %lluM\n", 3210 (kfd_mem_limit.system_mem_used >> 20), 3211 (kfd_mem_limit.max_system_mem_limit >> 20)); 3212 seq_printf(m, "TTM mem used %lldM out of %lluM\n", 3213 (kfd_mem_limit.ttm_mem_used >> 20), 3214 (kfd_mem_limit.max_ttm_mem_limit >> 20)); 3215 spin_unlock(&kfd_mem_limit.mem_limit_lock); 3216 3217 return 0; 3218 } 3219 3220 #endif 3221