1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) 2 /* 3 * Copyright (C) 2017-2022 Jason A. Donenfeld <[email protected]>. All Rights Reserved. 4 * Copyright Matt Mackall <[email protected]>, 2003, 2004, 2005 5 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved. 6 * 7 * This driver produces cryptographically secure pseudorandom data. It is divided 8 * into roughly six sections, each with a section header: 9 * 10 * - Initialization and readiness waiting. 11 * - Fast key erasure RNG, the "crng". 12 * - Entropy accumulation and extraction routines. 13 * - Entropy collection routines. 14 * - Userspace reader/writer interfaces. 15 * - Sysctl interface. 16 * 17 * The high level overview is that there is one input pool, into which 18 * various pieces of data are hashed. Prior to initialization, some of that 19 * data is then "credited" as having a certain number of bits of entropy. 20 * When enough bits of entropy are available, the hash is finalized and 21 * handed as a key to a stream cipher that expands it indefinitely for 22 * various consumers. This key is periodically refreshed as the various 23 * entropy collectors, described below, add data to the input pool. 24 */ 25 26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 27 28 #include <linux/utsname.h> 29 #include <linux/module.h> 30 #include <linux/kernel.h> 31 #include <linux/major.h> 32 #include <linux/string.h> 33 #include <linux/fcntl.h> 34 #include <linux/slab.h> 35 #include <linux/random.h> 36 #include <linux/poll.h> 37 #include <linux/init.h> 38 #include <linux/fs.h> 39 #include <linux/blkdev.h> 40 #include <linux/interrupt.h> 41 #include <linux/mm.h> 42 #include <linux/nodemask.h> 43 #include <linux/spinlock.h> 44 #include <linux/kthread.h> 45 #include <linux/percpu.h> 46 #include <linux/ptrace.h> 47 #include <linux/workqueue.h> 48 #include <linux/irq.h> 49 #include <linux/ratelimit.h> 50 #include <linux/syscalls.h> 51 #include <linux/completion.h> 52 #include <linux/uuid.h> 53 #include <linux/uaccess.h> 54 #include <linux/suspend.h> 55 #include <linux/siphash.h> 56 #include <crypto/chacha.h> 57 #include <crypto/blake2s.h> 58 #include <asm/processor.h> 59 #include <asm/irq.h> 60 #include <asm/irq_regs.h> 61 #include <asm/io.h> 62 63 /********************************************************************* 64 * 65 * Initialization and readiness waiting. 66 * 67 * Much of the RNG infrastructure is devoted to various dependencies 68 * being able to wait until the RNG has collected enough entropy and 69 * is ready for safe consumption. 70 * 71 *********************************************************************/ 72 73 /* 74 * crng_init is protected by base_crng->lock, and only increases 75 * its value (from empty->early->ready). 76 */ 77 static enum { 78 CRNG_EMPTY = 0, /* Little to no entropy collected */ 79 CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */ 80 CRNG_READY = 2 /* Fully initialized with POOL_READY_BITS collected */ 81 } crng_init __read_mostly = CRNG_EMPTY; 82 static DEFINE_STATIC_KEY_FALSE(crng_is_ready); 83 #define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY) 84 /* Various types of waiters for crng_init->CRNG_READY transition. */ 85 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait); 86 static struct fasync_struct *fasync; 87 static ATOMIC_NOTIFIER_HEAD(random_ready_notifier); 88 89 /* Control how we warn userspace. */ 90 static struct ratelimit_state urandom_warning = 91 RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE); 92 static int ratelimit_disable __read_mostly = 93 IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM); 94 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644); 95 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression"); 96 97 /* 98 * Returns whether or not the input pool has been seeded and thus guaranteed 99 * to supply cryptographically secure random numbers. This applies to: the 100 * /dev/urandom device, the get_random_bytes function, and the get_random_{u8, 101 * u16,u32,u64,long} family of functions. 102 * 103 * Returns: true if the input pool has been seeded. 104 * false if the input pool has not been seeded. 105 */ 106 bool rng_is_initialized(void) 107 { 108 return crng_ready(); 109 } 110 EXPORT_SYMBOL(rng_is_initialized); 111 112 static void __cold crng_set_ready(struct work_struct *work) 113 { 114 static_branch_enable(&crng_is_ready); 115 } 116 117 /* Used by wait_for_random_bytes(), and considered an entropy collector, below. */ 118 static void try_to_generate_entropy(void); 119 120 /* 121 * Wait for the input pool to be seeded and thus guaranteed to supply 122 * cryptographically secure random numbers. This applies to: the /dev/urandom 123 * device, the get_random_bytes function, and the get_random_{u8,u16,u32,u64, 124 * long} family of functions. Using any of these functions without first 125 * calling this function forfeits the guarantee of security. 126 * 127 * Returns: 0 if the input pool has been seeded. 128 * -ERESTARTSYS if the function was interrupted by a signal. 129 */ 130 int wait_for_random_bytes(void) 131 { 132 while (!crng_ready()) { 133 int ret; 134 135 try_to_generate_entropy(); 136 ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ); 137 if (ret) 138 return ret > 0 ? 0 : ret; 139 } 140 return 0; 141 } 142 EXPORT_SYMBOL(wait_for_random_bytes); 143 144 /* 145 * Add a callback function that will be invoked when the crng is initialised, 146 * or immediately if it already has been. Only use this is you are absolutely 147 * sure it is required. Most users should instead be able to test 148 * `rng_is_initialized()` on demand, or make use of `get_random_bytes_wait()`. 149 */ 150 int __cold execute_with_initialized_rng(struct notifier_block *nb) 151 { 152 unsigned long flags; 153 int ret = 0; 154 155 spin_lock_irqsave(&random_ready_notifier.lock, flags); 156 if (crng_ready()) 157 nb->notifier_call(nb, 0, NULL); 158 else 159 ret = raw_notifier_chain_register((struct raw_notifier_head *)&random_ready_notifier.head, nb); 160 spin_unlock_irqrestore(&random_ready_notifier.lock, flags); 161 return ret; 162 } 163 164 #define warn_unseeded_randomness() \ 165 if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \ 166 printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \ 167 __func__, (void *)_RET_IP_, crng_init) 168 169 170 /********************************************************************* 171 * 172 * Fast key erasure RNG, the "crng". 173 * 174 * These functions expand entropy from the entropy extractor into 175 * long streams for external consumption using the "fast key erasure" 176 * RNG described at <https://blog.cr.yp.to/20170723-random.html>. 177 * 178 * There are a few exported interfaces for use by other drivers: 179 * 180 * void get_random_bytes(void *buf, size_t len) 181 * u8 get_random_u8() 182 * u16 get_random_u16() 183 * u32 get_random_u32() 184 * u32 get_random_u32_below(u32 ceil) 185 * u32 get_random_u32_above(u32 floor) 186 * u32 get_random_u32_inclusive(u32 floor, u32 ceil) 187 * u64 get_random_u64() 188 * unsigned long get_random_long() 189 * 190 * These interfaces will return the requested number of random bytes 191 * into the given buffer or as a return value. This is equivalent to 192 * a read from /dev/urandom. The u8, u16, u32, u64, long family of 193 * functions may be higher performance for one-off random integers, 194 * because they do a bit of buffering and do not invoke reseeding 195 * until the buffer is emptied. 196 * 197 *********************************************************************/ 198 199 enum { 200 CRNG_RESEED_START_INTERVAL = HZ, 201 CRNG_RESEED_INTERVAL = 60 * HZ 202 }; 203 204 static struct { 205 u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long)); 206 unsigned long generation; 207 spinlock_t lock; 208 } base_crng = { 209 .lock = __SPIN_LOCK_UNLOCKED(base_crng.lock) 210 }; 211 212 struct crng { 213 u8 key[CHACHA_KEY_SIZE]; 214 unsigned long generation; 215 local_lock_t lock; 216 }; 217 218 static DEFINE_PER_CPU(struct crng, crngs) = { 219 .generation = ULONG_MAX, 220 .lock = INIT_LOCAL_LOCK(crngs.lock), 221 }; 222 223 /* 224 * Return the interval until the next reseeding, which is normally 225 * CRNG_RESEED_INTERVAL, but during early boot, it is at an interval 226 * proportional to the uptime. 227 */ 228 static unsigned int crng_reseed_interval(void) 229 { 230 static bool early_boot = true; 231 232 if (unlikely(READ_ONCE(early_boot))) { 233 time64_t uptime = ktime_get_seconds(); 234 if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2) 235 WRITE_ONCE(early_boot, false); 236 else 237 return max_t(unsigned int, CRNG_RESEED_START_INTERVAL, 238 (unsigned int)uptime / 2 * HZ); 239 } 240 return CRNG_RESEED_INTERVAL; 241 } 242 243 /* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */ 244 static void extract_entropy(void *buf, size_t len); 245 246 /* This extracts a new crng key from the input pool. */ 247 static void crng_reseed(struct work_struct *work) 248 { 249 static DECLARE_DELAYED_WORK(next_reseed, crng_reseed); 250 unsigned long flags; 251 unsigned long next_gen; 252 u8 key[CHACHA_KEY_SIZE]; 253 254 /* Immediately schedule the next reseeding, so that it fires sooner rather than later. */ 255 if (likely(system_unbound_wq)) 256 queue_delayed_work(system_unbound_wq, &next_reseed, crng_reseed_interval()); 257 258 extract_entropy(key, sizeof(key)); 259 260 /* 261 * We copy the new key into the base_crng, overwriting the old one, 262 * and update the generation counter. We avoid hitting ULONG_MAX, 263 * because the per-cpu crngs are initialized to ULONG_MAX, so this 264 * forces new CPUs that come online to always initialize. 265 */ 266 spin_lock_irqsave(&base_crng.lock, flags); 267 memcpy(base_crng.key, key, sizeof(base_crng.key)); 268 next_gen = base_crng.generation + 1; 269 if (next_gen == ULONG_MAX) 270 ++next_gen; 271 WRITE_ONCE(base_crng.generation, next_gen); 272 if (!static_branch_likely(&crng_is_ready)) 273 crng_init = CRNG_READY; 274 spin_unlock_irqrestore(&base_crng.lock, flags); 275 memzero_explicit(key, sizeof(key)); 276 } 277 278 /* 279 * This generates a ChaCha block using the provided key, and then 280 * immediately overwrites that key with half the block. It returns 281 * the resultant ChaCha state to the user, along with the second 282 * half of the block containing 32 bytes of random data that may 283 * be used; random_data_len may not be greater than 32. 284 * 285 * The returned ChaCha state contains within it a copy of the old 286 * key value, at index 4, so the state should always be zeroed out 287 * immediately after using in order to maintain forward secrecy. 288 * If the state cannot be erased in a timely manner, then it is 289 * safer to set the random_data parameter to &chacha_state[4] so 290 * that this function overwrites it before returning. 291 */ 292 static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE], 293 u32 chacha_state[CHACHA_STATE_WORDS], 294 u8 *random_data, size_t random_data_len) 295 { 296 u8 first_block[CHACHA_BLOCK_SIZE]; 297 298 BUG_ON(random_data_len > 32); 299 300 chacha_init_consts(chacha_state); 301 memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE); 302 memset(&chacha_state[12], 0, sizeof(u32) * 4); 303 chacha20_block(chacha_state, first_block); 304 305 memcpy(key, first_block, CHACHA_KEY_SIZE); 306 memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len); 307 memzero_explicit(first_block, sizeof(first_block)); 308 } 309 310 /* 311 * This function returns a ChaCha state that you may use for generating 312 * random data. It also returns up to 32 bytes on its own of random data 313 * that may be used; random_data_len may not be greater than 32. 314 */ 315 static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS], 316 u8 *random_data, size_t random_data_len) 317 { 318 unsigned long flags; 319 struct crng *crng; 320 321 BUG_ON(random_data_len > 32); 322 323 /* 324 * For the fast path, we check whether we're ready, unlocked first, and 325 * then re-check once locked later. In the case where we're really not 326 * ready, we do fast key erasure with the base_crng directly, extracting 327 * when crng_init is CRNG_EMPTY. 328 */ 329 if (!crng_ready()) { 330 bool ready; 331 332 spin_lock_irqsave(&base_crng.lock, flags); 333 ready = crng_ready(); 334 if (!ready) { 335 if (crng_init == CRNG_EMPTY) 336 extract_entropy(base_crng.key, sizeof(base_crng.key)); 337 crng_fast_key_erasure(base_crng.key, chacha_state, 338 random_data, random_data_len); 339 } 340 spin_unlock_irqrestore(&base_crng.lock, flags); 341 if (!ready) 342 return; 343 } 344 345 local_lock_irqsave(&crngs.lock, flags); 346 crng = raw_cpu_ptr(&crngs); 347 348 /* 349 * If our per-cpu crng is older than the base_crng, then it means 350 * somebody reseeded the base_crng. In that case, we do fast key 351 * erasure on the base_crng, and use its output as the new key 352 * for our per-cpu crng. This brings us up to date with base_crng. 353 */ 354 if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) { 355 spin_lock(&base_crng.lock); 356 crng_fast_key_erasure(base_crng.key, chacha_state, 357 crng->key, sizeof(crng->key)); 358 crng->generation = base_crng.generation; 359 spin_unlock(&base_crng.lock); 360 } 361 362 /* 363 * Finally, when we've made it this far, our per-cpu crng has an up 364 * to date key, and we can do fast key erasure with it to produce 365 * some random data and a ChaCha state for the caller. All other 366 * branches of this function are "unlikely", so most of the time we 367 * should wind up here immediately. 368 */ 369 crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len); 370 local_unlock_irqrestore(&crngs.lock, flags); 371 } 372 373 static void _get_random_bytes(void *buf, size_t len) 374 { 375 u32 chacha_state[CHACHA_STATE_WORDS]; 376 u8 tmp[CHACHA_BLOCK_SIZE]; 377 size_t first_block_len; 378 379 if (!len) 380 return; 381 382 first_block_len = min_t(size_t, 32, len); 383 crng_make_state(chacha_state, buf, first_block_len); 384 len -= first_block_len; 385 buf += first_block_len; 386 387 while (len) { 388 if (len < CHACHA_BLOCK_SIZE) { 389 chacha20_block(chacha_state, tmp); 390 memcpy(buf, tmp, len); 391 memzero_explicit(tmp, sizeof(tmp)); 392 break; 393 } 394 395 chacha20_block(chacha_state, buf); 396 if (unlikely(chacha_state[12] == 0)) 397 ++chacha_state[13]; 398 len -= CHACHA_BLOCK_SIZE; 399 buf += CHACHA_BLOCK_SIZE; 400 } 401 402 memzero_explicit(chacha_state, sizeof(chacha_state)); 403 } 404 405 /* 406 * This returns random bytes in arbitrary quantities. The quality of the 407 * random bytes is good as /dev/urandom. In order to ensure that the 408 * randomness provided by this function is okay, the function 409 * wait_for_random_bytes() should be called and return 0 at least once 410 * at any point prior. 411 */ 412 void get_random_bytes(void *buf, size_t len) 413 { 414 warn_unseeded_randomness(); 415 _get_random_bytes(buf, len); 416 } 417 EXPORT_SYMBOL(get_random_bytes); 418 419 static ssize_t get_random_bytes_user(struct iov_iter *iter) 420 { 421 u32 chacha_state[CHACHA_STATE_WORDS]; 422 u8 block[CHACHA_BLOCK_SIZE]; 423 size_t ret = 0, copied; 424 425 if (unlikely(!iov_iter_count(iter))) 426 return 0; 427 428 /* 429 * Immediately overwrite the ChaCha key at index 4 with random 430 * bytes, in case userspace causes copy_to_iter() below to sleep 431 * forever, so that we still retain forward secrecy in that case. 432 */ 433 crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE); 434 /* 435 * However, if we're doing a read of len <= 32, we don't need to 436 * use chacha_state after, so we can simply return those bytes to 437 * the user directly. 438 */ 439 if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) { 440 ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter); 441 goto out_zero_chacha; 442 } 443 444 for (;;) { 445 chacha20_block(chacha_state, block); 446 if (unlikely(chacha_state[12] == 0)) 447 ++chacha_state[13]; 448 449 copied = copy_to_iter(block, sizeof(block), iter); 450 ret += copied; 451 if (!iov_iter_count(iter) || copied != sizeof(block)) 452 break; 453 454 BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0); 455 if (ret % PAGE_SIZE == 0) { 456 if (signal_pending(current)) 457 break; 458 cond_resched(); 459 } 460 } 461 462 memzero_explicit(block, sizeof(block)); 463 out_zero_chacha: 464 memzero_explicit(chacha_state, sizeof(chacha_state)); 465 return ret ? ret : -EFAULT; 466 } 467 468 /* 469 * Batched entropy returns random integers. The quality of the random 470 * number is good as /dev/urandom. In order to ensure that the randomness 471 * provided by this function is okay, the function wait_for_random_bytes() 472 * should be called and return 0 at least once at any point prior. 473 */ 474 475 #define DEFINE_BATCHED_ENTROPY(type) \ 476 struct batch_ ##type { \ 477 /* \ 478 * We make this 1.5x a ChaCha block, so that we get the \ 479 * remaining 32 bytes from fast key erasure, plus one full \ 480 * block from the detached ChaCha state. We can increase \ 481 * the size of this later if needed so long as we keep the \ 482 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE. \ 483 */ \ 484 type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))]; \ 485 local_lock_t lock; \ 486 unsigned long generation; \ 487 unsigned int position; \ 488 }; \ 489 \ 490 static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = { \ 491 .lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock), \ 492 .position = UINT_MAX \ 493 }; \ 494 \ 495 type get_random_ ##type(void) \ 496 { \ 497 type ret; \ 498 unsigned long flags; \ 499 struct batch_ ##type *batch; \ 500 unsigned long next_gen; \ 501 \ 502 warn_unseeded_randomness(); \ 503 \ 504 if (!crng_ready()) { \ 505 _get_random_bytes(&ret, sizeof(ret)); \ 506 return ret; \ 507 } \ 508 \ 509 local_lock_irqsave(&batched_entropy_ ##type.lock, flags); \ 510 batch = raw_cpu_ptr(&batched_entropy_##type); \ 511 \ 512 next_gen = READ_ONCE(base_crng.generation); \ 513 if (batch->position >= ARRAY_SIZE(batch->entropy) || \ 514 next_gen != batch->generation) { \ 515 _get_random_bytes(batch->entropy, sizeof(batch->entropy)); \ 516 batch->position = 0; \ 517 batch->generation = next_gen; \ 518 } \ 519 \ 520 ret = batch->entropy[batch->position]; \ 521 batch->entropy[batch->position] = 0; \ 522 ++batch->position; \ 523 local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags); \ 524 return ret; \ 525 } \ 526 EXPORT_SYMBOL(get_random_ ##type); 527 528 DEFINE_BATCHED_ENTROPY(u8) 529 DEFINE_BATCHED_ENTROPY(u16) 530 DEFINE_BATCHED_ENTROPY(u32) 531 DEFINE_BATCHED_ENTROPY(u64) 532 533 u32 __get_random_u32_below(u32 ceil) 534 { 535 /* 536 * This is the slow path for variable ceil. It is still fast, most of 537 * the time, by doing traditional reciprocal multiplication and 538 * opportunistically comparing the lower half to ceil itself, before 539 * falling back to computing a larger bound, and then rejecting samples 540 * whose lower half would indicate a range indivisible by ceil. The use 541 * of `-ceil % ceil` is analogous to `2^32 % ceil`, but is computable 542 * in 32-bits. 543 */ 544 u32 rand = get_random_u32(); 545 u64 mult; 546 547 /* 548 * This function is technically undefined for ceil == 0, and in fact 549 * for the non-underscored constant version in the header, we build bug 550 * on that. But for the non-constant case, it's convenient to have that 551 * evaluate to being a straight call to get_random_u32(), so that 552 * get_random_u32_inclusive() can work over its whole range without 553 * undefined behavior. 554 */ 555 if (unlikely(!ceil)) 556 return rand; 557 558 mult = (u64)ceil * rand; 559 if (unlikely((u32)mult < ceil)) { 560 u32 bound = -ceil % ceil; 561 while (unlikely((u32)mult < bound)) 562 mult = (u64)ceil * get_random_u32(); 563 } 564 return mult >> 32; 565 } 566 EXPORT_SYMBOL(__get_random_u32_below); 567 568 #ifdef CONFIG_SMP 569 /* 570 * This function is called when the CPU is coming up, with entry 571 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP. 572 */ 573 int __cold random_prepare_cpu(unsigned int cpu) 574 { 575 /* 576 * When the cpu comes back online, immediately invalidate both 577 * the per-cpu crng and all batches, so that we serve fresh 578 * randomness. 579 */ 580 per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX; 581 per_cpu_ptr(&batched_entropy_u8, cpu)->position = UINT_MAX; 582 per_cpu_ptr(&batched_entropy_u16, cpu)->position = UINT_MAX; 583 per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX; 584 per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX; 585 return 0; 586 } 587 #endif 588 589 590 /********************************************************************** 591 * 592 * Entropy accumulation and extraction routines. 593 * 594 * Callers may add entropy via: 595 * 596 * static void mix_pool_bytes(const void *buf, size_t len) 597 * 598 * After which, if added entropy should be credited: 599 * 600 * static void credit_init_bits(size_t bits) 601 * 602 * Finally, extract entropy via: 603 * 604 * static void extract_entropy(void *buf, size_t len) 605 * 606 **********************************************************************/ 607 608 enum { 609 POOL_BITS = BLAKE2S_HASH_SIZE * 8, 610 POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */ 611 POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */ 612 }; 613 614 static struct { 615 struct blake2s_state hash; 616 spinlock_t lock; 617 unsigned int init_bits; 618 } input_pool = { 619 .hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE), 620 BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4, 621 BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 }, 622 .hash.outlen = BLAKE2S_HASH_SIZE, 623 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock), 624 }; 625 626 static void _mix_pool_bytes(const void *buf, size_t len) 627 { 628 blake2s_update(&input_pool.hash, buf, len); 629 } 630 631 /* 632 * This function adds bytes into the input pool. It does not 633 * update the initialization bit counter; the caller should call 634 * credit_init_bits if this is appropriate. 635 */ 636 static void mix_pool_bytes(const void *buf, size_t len) 637 { 638 unsigned long flags; 639 640 spin_lock_irqsave(&input_pool.lock, flags); 641 _mix_pool_bytes(buf, len); 642 spin_unlock_irqrestore(&input_pool.lock, flags); 643 } 644 645 /* 646 * This is an HKDF-like construction for using the hashed collected entropy 647 * as a PRF key, that's then expanded block-by-block. 648 */ 649 static void extract_entropy(void *buf, size_t len) 650 { 651 unsigned long flags; 652 u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE]; 653 struct { 654 unsigned long rdseed[32 / sizeof(long)]; 655 size_t counter; 656 } block; 657 size_t i, longs; 658 659 for (i = 0; i < ARRAY_SIZE(block.rdseed);) { 660 longs = arch_get_random_seed_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i); 661 if (longs) { 662 i += longs; 663 continue; 664 } 665 longs = arch_get_random_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i); 666 if (longs) { 667 i += longs; 668 continue; 669 } 670 block.rdseed[i++] = random_get_entropy(); 671 } 672 673 spin_lock_irqsave(&input_pool.lock, flags); 674 675 /* seed = HASHPRF(last_key, entropy_input) */ 676 blake2s_final(&input_pool.hash, seed); 677 678 /* next_key = HASHPRF(seed, RDSEED || 0) */ 679 block.counter = 0; 680 blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed)); 681 blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key)); 682 683 spin_unlock_irqrestore(&input_pool.lock, flags); 684 memzero_explicit(next_key, sizeof(next_key)); 685 686 while (len) { 687 i = min_t(size_t, len, BLAKE2S_HASH_SIZE); 688 /* output = HASHPRF(seed, RDSEED || ++counter) */ 689 ++block.counter; 690 blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed)); 691 len -= i; 692 buf += i; 693 } 694 695 memzero_explicit(seed, sizeof(seed)); 696 memzero_explicit(&block, sizeof(block)); 697 } 698 699 #define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits) 700 701 static void __cold _credit_init_bits(size_t bits) 702 { 703 static struct execute_work set_ready; 704 unsigned int new, orig, add; 705 unsigned long flags; 706 707 if (!bits) 708 return; 709 710 add = min_t(size_t, bits, POOL_BITS); 711 712 orig = READ_ONCE(input_pool.init_bits); 713 do { 714 new = min_t(unsigned int, POOL_BITS, orig + add); 715 } while (!try_cmpxchg(&input_pool.init_bits, &orig, new)); 716 717 if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) { 718 crng_reseed(NULL); /* Sets crng_init to CRNG_READY under base_crng.lock. */ 719 if (static_key_initialized) 720 execute_in_process_context(crng_set_ready, &set_ready); 721 atomic_notifier_call_chain(&random_ready_notifier, 0, NULL); 722 wake_up_interruptible(&crng_init_wait); 723 kill_fasync(&fasync, SIGIO, POLL_IN); 724 pr_notice("crng init done\n"); 725 if (urandom_warning.missed) 726 pr_notice("%d urandom warning(s) missed due to ratelimiting\n", 727 urandom_warning.missed); 728 } else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) { 729 spin_lock_irqsave(&base_crng.lock, flags); 730 /* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */ 731 if (crng_init == CRNG_EMPTY) { 732 extract_entropy(base_crng.key, sizeof(base_crng.key)); 733 crng_init = CRNG_EARLY; 734 } 735 spin_unlock_irqrestore(&base_crng.lock, flags); 736 } 737 } 738 739 740 /********************************************************************** 741 * 742 * Entropy collection routines. 743 * 744 * The following exported functions are used for pushing entropy into 745 * the above entropy accumulation routines: 746 * 747 * void add_device_randomness(const void *buf, size_t len); 748 * void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after); 749 * void add_bootloader_randomness(const void *buf, size_t len); 750 * void add_vmfork_randomness(const void *unique_vm_id, size_t len); 751 * void add_interrupt_randomness(int irq); 752 * void add_input_randomness(unsigned int type, unsigned int code, unsigned int value); 753 * void add_disk_randomness(struct gendisk *disk); 754 * 755 * add_device_randomness() adds data to the input pool that 756 * is likely to differ between two devices (or possibly even per boot). 757 * This would be things like MAC addresses or serial numbers, or the 758 * read-out of the RTC. This does *not* credit any actual entropy to 759 * the pool, but it initializes the pool to different values for devices 760 * that might otherwise be identical and have very little entropy 761 * available to them (particularly common in the embedded world). 762 * 763 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit 764 * entropy as specified by the caller. If the entropy pool is full it will 765 * block until more entropy is needed. 766 * 767 * add_bootloader_randomness() is called by bootloader drivers, such as EFI 768 * and device tree, and credits its input depending on whether or not the 769 * command line option 'random.trust_bootloader'. 770 * 771 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID 772 * representing the current instance of a VM to the pool, without crediting, 773 * and then force-reseeds the crng so that it takes effect immediately. 774 * 775 * add_interrupt_randomness() uses the interrupt timing as random 776 * inputs to the entropy pool. Using the cycle counters and the irq source 777 * as inputs, it feeds the input pool roughly once a second or after 64 778 * interrupts, crediting 1 bit of entropy for whichever comes first. 779 * 780 * add_input_randomness() uses the input layer interrupt timing, as well 781 * as the event type information from the hardware. 782 * 783 * add_disk_randomness() uses what amounts to the seek time of block 784 * layer request events, on a per-disk_devt basis, as input to the 785 * entropy pool. Note that high-speed solid state drives with very low 786 * seek times do not make for good sources of entropy, as their seek 787 * times are usually fairly consistent. 788 * 789 * The last two routines try to estimate how many bits of entropy 790 * to credit. They do this by keeping track of the first and second 791 * order deltas of the event timings. 792 * 793 **********************************************************************/ 794 795 static bool trust_cpu __initdata = true; 796 static bool trust_bootloader __initdata = true; 797 static int __init parse_trust_cpu(char *arg) 798 { 799 return kstrtobool(arg, &trust_cpu); 800 } 801 static int __init parse_trust_bootloader(char *arg) 802 { 803 return kstrtobool(arg, &trust_bootloader); 804 } 805 early_param("random.trust_cpu", parse_trust_cpu); 806 early_param("random.trust_bootloader", parse_trust_bootloader); 807 808 static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data) 809 { 810 unsigned long flags, entropy = random_get_entropy(); 811 812 /* 813 * Encode a representation of how long the system has been suspended, 814 * in a way that is distinct from prior system suspends. 815 */ 816 ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() }; 817 818 spin_lock_irqsave(&input_pool.lock, flags); 819 _mix_pool_bytes(&action, sizeof(action)); 820 _mix_pool_bytes(stamps, sizeof(stamps)); 821 _mix_pool_bytes(&entropy, sizeof(entropy)); 822 spin_unlock_irqrestore(&input_pool.lock, flags); 823 824 if (crng_ready() && (action == PM_RESTORE_PREPARE || 825 (action == PM_POST_SUSPEND && !IS_ENABLED(CONFIG_PM_AUTOSLEEP) && 826 !IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)))) { 827 crng_reseed(NULL); 828 pr_notice("crng reseeded on system resumption\n"); 829 } 830 return 0; 831 } 832 833 static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification }; 834 835 /* 836 * This is called extremely early, before time keeping functionality is 837 * available, but arch randomness is. Interrupts are not yet enabled. 838 */ 839 void __init random_init_early(const char *command_line) 840 { 841 unsigned long entropy[BLAKE2S_BLOCK_SIZE / sizeof(long)]; 842 size_t i, longs, arch_bits; 843 844 #if defined(LATENT_ENTROPY_PLUGIN) 845 static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy; 846 _mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed)); 847 #endif 848 849 for (i = 0, arch_bits = sizeof(entropy) * 8; i < ARRAY_SIZE(entropy);) { 850 longs = arch_get_random_seed_longs(entropy, ARRAY_SIZE(entropy) - i); 851 if (longs) { 852 _mix_pool_bytes(entropy, sizeof(*entropy) * longs); 853 i += longs; 854 continue; 855 } 856 longs = arch_get_random_longs(entropy, ARRAY_SIZE(entropy) - i); 857 if (longs) { 858 _mix_pool_bytes(entropy, sizeof(*entropy) * longs); 859 i += longs; 860 continue; 861 } 862 arch_bits -= sizeof(*entropy) * 8; 863 ++i; 864 } 865 866 _mix_pool_bytes(init_utsname(), sizeof(*(init_utsname()))); 867 _mix_pool_bytes(command_line, strlen(command_line)); 868 869 /* Reseed if already seeded by earlier phases. */ 870 if (crng_ready()) 871 crng_reseed(NULL); 872 else if (trust_cpu) 873 _credit_init_bits(arch_bits); 874 } 875 876 /* 877 * This is called a little bit after the prior function, and now there is 878 * access to timestamps counters. Interrupts are not yet enabled. 879 */ 880 void __init random_init(void) 881 { 882 unsigned long entropy = random_get_entropy(); 883 ktime_t now = ktime_get_real(); 884 885 _mix_pool_bytes(&now, sizeof(now)); 886 _mix_pool_bytes(&entropy, sizeof(entropy)); 887 add_latent_entropy(); 888 889 /* 890 * If we were initialized by the cpu or bootloader before jump labels 891 * are initialized, then we should enable the static branch here, where 892 * it's guaranteed that jump labels have been initialized. 893 */ 894 if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY) 895 crng_set_ready(NULL); 896 897 /* Reseed if already seeded by earlier phases. */ 898 if (crng_ready()) 899 crng_reseed(NULL); 900 901 WARN_ON(register_pm_notifier(&pm_notifier)); 902 903 WARN(!entropy, "Missing cycle counter and fallback timer; RNG " 904 "entropy collection will consequently suffer."); 905 } 906 907 /* 908 * Add device- or boot-specific data to the input pool to help 909 * initialize it. 910 * 911 * None of this adds any entropy; it is meant to avoid the problem of 912 * the entropy pool having similar initial state across largely 913 * identical devices. 914 */ 915 void add_device_randomness(const void *buf, size_t len) 916 { 917 unsigned long entropy = random_get_entropy(); 918 unsigned long flags; 919 920 spin_lock_irqsave(&input_pool.lock, flags); 921 _mix_pool_bytes(&entropy, sizeof(entropy)); 922 _mix_pool_bytes(buf, len); 923 spin_unlock_irqrestore(&input_pool.lock, flags); 924 } 925 EXPORT_SYMBOL(add_device_randomness); 926 927 /* 928 * Interface for in-kernel drivers of true hardware RNGs. Those devices 929 * may produce endless random bits, so this function will sleep for 930 * some amount of time after, if the sleep_after parameter is true. 931 */ 932 void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after) 933 { 934 mix_pool_bytes(buf, len); 935 credit_init_bits(entropy); 936 937 /* 938 * Throttle writing to once every reseed interval, unless we're not yet 939 * initialized or no entropy is credited. 940 */ 941 if (sleep_after && !kthread_should_stop() && (crng_ready() || !entropy)) 942 schedule_timeout_interruptible(crng_reseed_interval()); 943 } 944 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness); 945 946 /* 947 * Handle random seed passed by bootloader, and credit it depending 948 * on the command line option 'random.trust_bootloader'. 949 */ 950 void __init add_bootloader_randomness(const void *buf, size_t len) 951 { 952 mix_pool_bytes(buf, len); 953 if (trust_bootloader) 954 credit_init_bits(len * 8); 955 } 956 957 #if IS_ENABLED(CONFIG_VMGENID) 958 static BLOCKING_NOTIFIER_HEAD(vmfork_chain); 959 960 /* 961 * Handle a new unique VM ID, which is unique, not secret, so we 962 * don't credit it, but we do immediately force a reseed after so 963 * that it's used by the crng posthaste. 964 */ 965 void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len) 966 { 967 add_device_randomness(unique_vm_id, len); 968 if (crng_ready()) { 969 crng_reseed(NULL); 970 pr_notice("crng reseeded due to virtual machine fork\n"); 971 } 972 blocking_notifier_call_chain(&vmfork_chain, 0, NULL); 973 } 974 #if IS_MODULE(CONFIG_VMGENID) 975 EXPORT_SYMBOL_GPL(add_vmfork_randomness); 976 #endif 977 978 int __cold register_random_vmfork_notifier(struct notifier_block *nb) 979 { 980 return blocking_notifier_chain_register(&vmfork_chain, nb); 981 } 982 EXPORT_SYMBOL_GPL(register_random_vmfork_notifier); 983 984 int __cold unregister_random_vmfork_notifier(struct notifier_block *nb) 985 { 986 return blocking_notifier_chain_unregister(&vmfork_chain, nb); 987 } 988 EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier); 989 #endif 990 991 struct fast_pool { 992 unsigned long pool[4]; 993 unsigned long last; 994 unsigned int count; 995 struct timer_list mix; 996 }; 997 998 static void mix_interrupt_randomness(struct timer_list *work); 999 1000 static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = { 1001 #ifdef CONFIG_64BIT 1002 #define FASTMIX_PERM SIPHASH_PERMUTATION 1003 .pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 }, 1004 #else 1005 #define FASTMIX_PERM HSIPHASH_PERMUTATION 1006 .pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 }, 1007 #endif 1008 .mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0) 1009 }; 1010 1011 /* 1012 * This is [Half]SipHash-1-x, starting from an empty key. Because 1013 * the key is fixed, it assumes that its inputs are non-malicious, 1014 * and therefore this has no security on its own. s represents the 1015 * four-word SipHash state, while v represents a two-word input. 1016 */ 1017 static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2) 1018 { 1019 s[3] ^= v1; 1020 FASTMIX_PERM(s[0], s[1], s[2], s[3]); 1021 s[0] ^= v1; 1022 s[3] ^= v2; 1023 FASTMIX_PERM(s[0], s[1], s[2], s[3]); 1024 s[0] ^= v2; 1025 } 1026 1027 #ifdef CONFIG_SMP 1028 /* 1029 * This function is called when the CPU has just come online, with 1030 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE. 1031 */ 1032 int __cold random_online_cpu(unsigned int cpu) 1033 { 1034 /* 1035 * During CPU shutdown and before CPU onlining, add_interrupt_ 1036 * randomness() may schedule mix_interrupt_randomness(), and 1037 * set the MIX_INFLIGHT flag. However, because the worker can 1038 * be scheduled on a different CPU during this period, that 1039 * flag will never be cleared. For that reason, we zero out 1040 * the flag here, which runs just after workqueues are onlined 1041 * for the CPU again. This also has the effect of setting the 1042 * irq randomness count to zero so that new accumulated irqs 1043 * are fresh. 1044 */ 1045 per_cpu_ptr(&irq_randomness, cpu)->count = 0; 1046 return 0; 1047 } 1048 #endif 1049 1050 static void mix_interrupt_randomness(struct timer_list *work) 1051 { 1052 struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix); 1053 /* 1054 * The size of the copied stack pool is explicitly 2 longs so that we 1055 * only ever ingest half of the siphash output each time, retaining 1056 * the other half as the next "key" that carries over. The entropy is 1057 * supposed to be sufficiently dispersed between bits so on average 1058 * we don't wind up "losing" some. 1059 */ 1060 unsigned long pool[2]; 1061 unsigned int count; 1062 1063 /* Check to see if we're running on the wrong CPU due to hotplug. */ 1064 local_irq_disable(); 1065 if (fast_pool != this_cpu_ptr(&irq_randomness)) { 1066 local_irq_enable(); 1067 return; 1068 } 1069 1070 /* 1071 * Copy the pool to the stack so that the mixer always has a 1072 * consistent view, before we reenable irqs again. 1073 */ 1074 memcpy(pool, fast_pool->pool, sizeof(pool)); 1075 count = fast_pool->count; 1076 fast_pool->count = 0; 1077 fast_pool->last = jiffies; 1078 local_irq_enable(); 1079 1080 mix_pool_bytes(pool, sizeof(pool)); 1081 credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8)); 1082 1083 memzero_explicit(pool, sizeof(pool)); 1084 } 1085 1086 void add_interrupt_randomness(int irq) 1087 { 1088 enum { MIX_INFLIGHT = 1U << 31 }; 1089 unsigned long entropy = random_get_entropy(); 1090 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness); 1091 struct pt_regs *regs = get_irq_regs(); 1092 unsigned int new_count; 1093 1094 fast_mix(fast_pool->pool, entropy, 1095 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq)); 1096 new_count = ++fast_pool->count; 1097 1098 if (new_count & MIX_INFLIGHT) 1099 return; 1100 1101 if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ)) 1102 return; 1103 1104 fast_pool->count |= MIX_INFLIGHT; 1105 if (!timer_pending(&fast_pool->mix)) { 1106 fast_pool->mix.expires = jiffies; 1107 add_timer_on(&fast_pool->mix, raw_smp_processor_id()); 1108 } 1109 } 1110 EXPORT_SYMBOL_GPL(add_interrupt_randomness); 1111 1112 /* There is one of these per entropy source */ 1113 struct timer_rand_state { 1114 unsigned long last_time; 1115 long last_delta, last_delta2; 1116 }; 1117 1118 /* 1119 * This function adds entropy to the entropy "pool" by using timing 1120 * delays. It uses the timer_rand_state structure to make an estimate 1121 * of how many bits of entropy this call has added to the pool. The 1122 * value "num" is also added to the pool; it should somehow describe 1123 * the type of event that just happened. 1124 */ 1125 static void add_timer_randomness(struct timer_rand_state *state, unsigned int num) 1126 { 1127 unsigned long entropy = random_get_entropy(), now = jiffies, flags; 1128 long delta, delta2, delta3; 1129 unsigned int bits; 1130 1131 /* 1132 * If we're in a hard IRQ, add_interrupt_randomness() will be called 1133 * sometime after, so mix into the fast pool. 1134 */ 1135 if (in_hardirq()) { 1136 fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num); 1137 } else { 1138 spin_lock_irqsave(&input_pool.lock, flags); 1139 _mix_pool_bytes(&entropy, sizeof(entropy)); 1140 _mix_pool_bytes(&num, sizeof(num)); 1141 spin_unlock_irqrestore(&input_pool.lock, flags); 1142 } 1143 1144 if (crng_ready()) 1145 return; 1146 1147 /* 1148 * Calculate number of bits of randomness we probably added. 1149 * We take into account the first, second and third-order deltas 1150 * in order to make our estimate. 1151 */ 1152 delta = now - READ_ONCE(state->last_time); 1153 WRITE_ONCE(state->last_time, now); 1154 1155 delta2 = delta - READ_ONCE(state->last_delta); 1156 WRITE_ONCE(state->last_delta, delta); 1157 1158 delta3 = delta2 - READ_ONCE(state->last_delta2); 1159 WRITE_ONCE(state->last_delta2, delta2); 1160 1161 if (delta < 0) 1162 delta = -delta; 1163 if (delta2 < 0) 1164 delta2 = -delta2; 1165 if (delta3 < 0) 1166 delta3 = -delta3; 1167 if (delta > delta2) 1168 delta = delta2; 1169 if (delta > delta3) 1170 delta = delta3; 1171 1172 /* 1173 * delta is now minimum absolute delta. Round down by 1 bit 1174 * on general principles, and limit entropy estimate to 11 bits. 1175 */ 1176 bits = min(fls(delta >> 1), 11); 1177 1178 /* 1179 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness() 1180 * will run after this, which uses a different crediting scheme of 1 bit 1181 * per every 64 interrupts. In order to let that function do accounting 1182 * close to the one in this function, we credit a full 64/64 bit per bit, 1183 * and then subtract one to account for the extra one added. 1184 */ 1185 if (in_hardirq()) 1186 this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1; 1187 else 1188 _credit_init_bits(bits); 1189 } 1190 1191 void add_input_randomness(unsigned int type, unsigned int code, unsigned int value) 1192 { 1193 static unsigned char last_value; 1194 static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES }; 1195 1196 /* Ignore autorepeat and the like. */ 1197 if (value == last_value) 1198 return; 1199 1200 last_value = value; 1201 add_timer_randomness(&input_timer_state, 1202 (type << 4) ^ code ^ (code >> 4) ^ value); 1203 } 1204 EXPORT_SYMBOL_GPL(add_input_randomness); 1205 1206 #ifdef CONFIG_BLOCK 1207 void add_disk_randomness(struct gendisk *disk) 1208 { 1209 if (!disk || !disk->random) 1210 return; 1211 /* First major is 1, so we get >= 0x200 here. */ 1212 add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); 1213 } 1214 EXPORT_SYMBOL_GPL(add_disk_randomness); 1215 1216 void __cold rand_initialize_disk(struct gendisk *disk) 1217 { 1218 struct timer_rand_state *state; 1219 1220 /* 1221 * If kzalloc returns null, we just won't use that entropy 1222 * source. 1223 */ 1224 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 1225 if (state) { 1226 state->last_time = INITIAL_JIFFIES; 1227 disk->random = state; 1228 } 1229 } 1230 #endif 1231 1232 struct entropy_timer_state { 1233 unsigned long entropy; 1234 struct timer_list timer; 1235 unsigned int samples, samples_per_bit; 1236 }; 1237 1238 /* 1239 * Each time the timer fires, we expect that we got an unpredictable 1240 * jump in the cycle counter. Even if the timer is running on another 1241 * CPU, the timer activity will be touching the stack of the CPU that is 1242 * generating entropy.. 1243 * 1244 * Note that we don't re-arm the timer in the timer itself - we are 1245 * happy to be scheduled away, since that just makes the load more 1246 * complex, but we do not want the timer to keep ticking unless the 1247 * entropy loop is running. 1248 * 1249 * So the re-arming always happens in the entropy loop itself. 1250 */ 1251 static void __cold entropy_timer(struct timer_list *timer) 1252 { 1253 struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer); 1254 1255 if (++state->samples == state->samples_per_bit) { 1256 credit_init_bits(1); 1257 state->samples = 0; 1258 } 1259 } 1260 1261 /* 1262 * If we have an actual cycle counter, see if we can 1263 * generate enough entropy with timing noise 1264 */ 1265 static void __cold try_to_generate_entropy(void) 1266 { 1267 enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = HZ / 15 }; 1268 struct entropy_timer_state stack; 1269 unsigned int i, num_different = 0; 1270 unsigned long last = random_get_entropy(); 1271 1272 for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) { 1273 stack.entropy = random_get_entropy(); 1274 if (stack.entropy != last) 1275 ++num_different; 1276 last = stack.entropy; 1277 } 1278 stack.samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1); 1279 if (stack.samples_per_bit > MAX_SAMPLES_PER_BIT) 1280 return; 1281 1282 stack.samples = 0; 1283 timer_setup_on_stack(&stack.timer, entropy_timer, 0); 1284 while (!crng_ready() && !signal_pending(current)) { 1285 if (!timer_pending(&stack.timer)) 1286 mod_timer(&stack.timer, jiffies); 1287 mix_pool_bytes(&stack.entropy, sizeof(stack.entropy)); 1288 schedule(); 1289 stack.entropy = random_get_entropy(); 1290 } 1291 1292 del_timer_sync(&stack.timer); 1293 destroy_timer_on_stack(&stack.timer); 1294 mix_pool_bytes(&stack.entropy, sizeof(stack.entropy)); 1295 } 1296 1297 1298 /********************************************************************** 1299 * 1300 * Userspace reader/writer interfaces. 1301 * 1302 * getrandom(2) is the primary modern interface into the RNG and should 1303 * be used in preference to anything else. 1304 * 1305 * Reading from /dev/random has the same functionality as calling 1306 * getrandom(2) with flags=0. In earlier versions, however, it had 1307 * vastly different semantics and should therefore be avoided, to 1308 * prevent backwards compatibility issues. 1309 * 1310 * Reading from /dev/urandom has the same functionality as calling 1311 * getrandom(2) with flags=GRND_INSECURE. Because it does not block 1312 * waiting for the RNG to be ready, it should not be used. 1313 * 1314 * Writing to either /dev/random or /dev/urandom adds entropy to 1315 * the input pool but does not credit it. 1316 * 1317 * Polling on /dev/random indicates when the RNG is initialized, on 1318 * the read side, and when it wants new entropy, on the write side. 1319 * 1320 * Both /dev/random and /dev/urandom have the same set of ioctls for 1321 * adding entropy, getting the entropy count, zeroing the count, and 1322 * reseeding the crng. 1323 * 1324 **********************************************************************/ 1325 1326 SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags) 1327 { 1328 struct iov_iter iter; 1329 struct iovec iov; 1330 int ret; 1331 1332 if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE)) 1333 return -EINVAL; 1334 1335 /* 1336 * Requesting insecure and blocking randomness at the same time makes 1337 * no sense. 1338 */ 1339 if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM)) 1340 return -EINVAL; 1341 1342 if (!crng_ready() && !(flags & GRND_INSECURE)) { 1343 if (flags & GRND_NONBLOCK) 1344 return -EAGAIN; 1345 ret = wait_for_random_bytes(); 1346 if (unlikely(ret)) 1347 return ret; 1348 } 1349 1350 ret = import_single_range(READ, ubuf, len, &iov, &iter); 1351 if (unlikely(ret)) 1352 return ret; 1353 return get_random_bytes_user(&iter); 1354 } 1355 1356 static __poll_t random_poll(struct file *file, poll_table *wait) 1357 { 1358 poll_wait(file, &crng_init_wait, wait); 1359 return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM; 1360 } 1361 1362 static ssize_t write_pool_user(struct iov_iter *iter) 1363 { 1364 u8 block[BLAKE2S_BLOCK_SIZE]; 1365 ssize_t ret = 0; 1366 size_t copied; 1367 1368 if (unlikely(!iov_iter_count(iter))) 1369 return 0; 1370 1371 for (;;) { 1372 copied = copy_from_iter(block, sizeof(block), iter); 1373 ret += copied; 1374 mix_pool_bytes(block, copied); 1375 if (!iov_iter_count(iter) || copied != sizeof(block)) 1376 break; 1377 1378 BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0); 1379 if (ret % PAGE_SIZE == 0) { 1380 if (signal_pending(current)) 1381 break; 1382 cond_resched(); 1383 } 1384 } 1385 1386 memzero_explicit(block, sizeof(block)); 1387 return ret ? ret : -EFAULT; 1388 } 1389 1390 static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter) 1391 { 1392 return write_pool_user(iter); 1393 } 1394 1395 static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter) 1396 { 1397 static int maxwarn = 10; 1398 1399 /* 1400 * Opportunistically attempt to initialize the RNG on platforms that 1401 * have fast cycle counters, but don't (for now) require it to succeed. 1402 */ 1403 if (!crng_ready()) 1404 try_to_generate_entropy(); 1405 1406 if (!crng_ready()) { 1407 if (!ratelimit_disable && maxwarn <= 0) 1408 ++urandom_warning.missed; 1409 else if (ratelimit_disable || __ratelimit(&urandom_warning)) { 1410 --maxwarn; 1411 pr_notice("%s: uninitialized urandom read (%zu bytes read)\n", 1412 current->comm, iov_iter_count(iter)); 1413 } 1414 } 1415 1416 return get_random_bytes_user(iter); 1417 } 1418 1419 static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter) 1420 { 1421 int ret; 1422 1423 if (!crng_ready() && 1424 ((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) || 1425 (kiocb->ki_filp->f_flags & O_NONBLOCK))) 1426 return -EAGAIN; 1427 1428 ret = wait_for_random_bytes(); 1429 if (ret != 0) 1430 return ret; 1431 return get_random_bytes_user(iter); 1432 } 1433 1434 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) 1435 { 1436 int __user *p = (int __user *)arg; 1437 int ent_count; 1438 1439 switch (cmd) { 1440 case RNDGETENTCNT: 1441 /* Inherently racy, no point locking. */ 1442 if (put_user(input_pool.init_bits, p)) 1443 return -EFAULT; 1444 return 0; 1445 case RNDADDTOENTCNT: 1446 if (!capable(CAP_SYS_ADMIN)) 1447 return -EPERM; 1448 if (get_user(ent_count, p)) 1449 return -EFAULT; 1450 if (ent_count < 0) 1451 return -EINVAL; 1452 credit_init_bits(ent_count); 1453 return 0; 1454 case RNDADDENTROPY: { 1455 struct iov_iter iter; 1456 struct iovec iov; 1457 ssize_t ret; 1458 int len; 1459 1460 if (!capable(CAP_SYS_ADMIN)) 1461 return -EPERM; 1462 if (get_user(ent_count, p++)) 1463 return -EFAULT; 1464 if (ent_count < 0) 1465 return -EINVAL; 1466 if (get_user(len, p++)) 1467 return -EFAULT; 1468 ret = import_single_range(WRITE, p, len, &iov, &iter); 1469 if (unlikely(ret)) 1470 return ret; 1471 ret = write_pool_user(&iter); 1472 if (unlikely(ret < 0)) 1473 return ret; 1474 /* Since we're crediting, enforce that it was all written into the pool. */ 1475 if (unlikely(ret != len)) 1476 return -EFAULT; 1477 credit_init_bits(ent_count); 1478 return 0; 1479 } 1480 case RNDZAPENTCNT: 1481 case RNDCLEARPOOL: 1482 /* No longer has any effect. */ 1483 if (!capable(CAP_SYS_ADMIN)) 1484 return -EPERM; 1485 return 0; 1486 case RNDRESEEDCRNG: 1487 if (!capable(CAP_SYS_ADMIN)) 1488 return -EPERM; 1489 if (!crng_ready()) 1490 return -ENODATA; 1491 crng_reseed(NULL); 1492 return 0; 1493 default: 1494 return -EINVAL; 1495 } 1496 } 1497 1498 static int random_fasync(int fd, struct file *filp, int on) 1499 { 1500 return fasync_helper(fd, filp, on, &fasync); 1501 } 1502 1503 const struct file_operations random_fops = { 1504 .read_iter = random_read_iter, 1505 .write_iter = random_write_iter, 1506 .poll = random_poll, 1507 .unlocked_ioctl = random_ioctl, 1508 .compat_ioctl = compat_ptr_ioctl, 1509 .fasync = random_fasync, 1510 .llseek = noop_llseek, 1511 .splice_read = generic_file_splice_read, 1512 .splice_write = iter_file_splice_write, 1513 }; 1514 1515 const struct file_operations urandom_fops = { 1516 .read_iter = urandom_read_iter, 1517 .write_iter = random_write_iter, 1518 .unlocked_ioctl = random_ioctl, 1519 .compat_ioctl = compat_ptr_ioctl, 1520 .fasync = random_fasync, 1521 .llseek = noop_llseek, 1522 .splice_read = generic_file_splice_read, 1523 .splice_write = iter_file_splice_write, 1524 }; 1525 1526 1527 /******************************************************************** 1528 * 1529 * Sysctl interface. 1530 * 1531 * These are partly unused legacy knobs with dummy values to not break 1532 * userspace and partly still useful things. They are usually accessible 1533 * in /proc/sys/kernel/random/ and are as follows: 1534 * 1535 * - boot_id - a UUID representing the current boot. 1536 * 1537 * - uuid - a random UUID, different each time the file is read. 1538 * 1539 * - poolsize - the number of bits of entropy that the input pool can 1540 * hold, tied to the POOL_BITS constant. 1541 * 1542 * - entropy_avail - the number of bits of entropy currently in the 1543 * input pool. Always <= poolsize. 1544 * 1545 * - write_wakeup_threshold - the amount of entropy in the input pool 1546 * below which write polls to /dev/random will unblock, requesting 1547 * more entropy, tied to the POOL_READY_BITS constant. It is writable 1548 * to avoid breaking old userspaces, but writing to it does not 1549 * change any behavior of the RNG. 1550 * 1551 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL. 1552 * It is writable to avoid breaking old userspaces, but writing 1553 * to it does not change any behavior of the RNG. 1554 * 1555 ********************************************************************/ 1556 1557 #ifdef CONFIG_SYSCTL 1558 1559 #include <linux/sysctl.h> 1560 1561 static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ; 1562 static int sysctl_random_write_wakeup_bits = POOL_READY_BITS; 1563 static int sysctl_poolsize = POOL_BITS; 1564 static u8 sysctl_bootid[UUID_SIZE]; 1565 1566 /* 1567 * This function is used to return both the bootid UUID, and random 1568 * UUID. The difference is in whether table->data is NULL; if it is, 1569 * then a new UUID is generated and returned to the user. 1570 */ 1571 static int proc_do_uuid(struct ctl_table *table, int write, void *buf, 1572 size_t *lenp, loff_t *ppos) 1573 { 1574 u8 tmp_uuid[UUID_SIZE], *uuid; 1575 char uuid_string[UUID_STRING_LEN + 1]; 1576 struct ctl_table fake_table = { 1577 .data = uuid_string, 1578 .maxlen = UUID_STRING_LEN 1579 }; 1580 1581 if (write) 1582 return -EPERM; 1583 1584 uuid = table->data; 1585 if (!uuid) { 1586 uuid = tmp_uuid; 1587 generate_random_uuid(uuid); 1588 } else { 1589 static DEFINE_SPINLOCK(bootid_spinlock); 1590 1591 spin_lock(&bootid_spinlock); 1592 if (!uuid[8]) 1593 generate_random_uuid(uuid); 1594 spin_unlock(&bootid_spinlock); 1595 } 1596 1597 snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid); 1598 return proc_dostring(&fake_table, 0, buf, lenp, ppos); 1599 } 1600 1601 /* The same as proc_dointvec, but writes don't change anything. */ 1602 static int proc_do_rointvec(struct ctl_table *table, int write, void *buf, 1603 size_t *lenp, loff_t *ppos) 1604 { 1605 return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos); 1606 } 1607 1608 static struct ctl_table random_table[] = { 1609 { 1610 .procname = "poolsize", 1611 .data = &sysctl_poolsize, 1612 .maxlen = sizeof(int), 1613 .mode = 0444, 1614 .proc_handler = proc_dointvec, 1615 }, 1616 { 1617 .procname = "entropy_avail", 1618 .data = &input_pool.init_bits, 1619 .maxlen = sizeof(int), 1620 .mode = 0444, 1621 .proc_handler = proc_dointvec, 1622 }, 1623 { 1624 .procname = "write_wakeup_threshold", 1625 .data = &sysctl_random_write_wakeup_bits, 1626 .maxlen = sizeof(int), 1627 .mode = 0644, 1628 .proc_handler = proc_do_rointvec, 1629 }, 1630 { 1631 .procname = "urandom_min_reseed_secs", 1632 .data = &sysctl_random_min_urandom_seed, 1633 .maxlen = sizeof(int), 1634 .mode = 0644, 1635 .proc_handler = proc_do_rointvec, 1636 }, 1637 { 1638 .procname = "boot_id", 1639 .data = &sysctl_bootid, 1640 .mode = 0444, 1641 .proc_handler = proc_do_uuid, 1642 }, 1643 { 1644 .procname = "uuid", 1645 .mode = 0444, 1646 .proc_handler = proc_do_uuid, 1647 }, 1648 { } 1649 }; 1650 1651 /* 1652 * random_init() is called before sysctl_init(), 1653 * so we cannot call register_sysctl_init() in random_init() 1654 */ 1655 static int __init random_sysctls_init(void) 1656 { 1657 register_sysctl_init("kernel/random", random_table); 1658 return 0; 1659 } 1660 device_initcall(random_sysctls_init); 1661 #endif 1662