xref: /linux-6.15/drivers/char/random.c (revision bbc7e1be)
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /*
3  * Copyright (C) 2017-2022 Jason A. Donenfeld <[email protected]>. All Rights Reserved.
4  * Copyright Matt Mackall <[email protected]>, 2003, 2004, 2005
5  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
6  *
7  * This driver produces cryptographically secure pseudorandom data. It is divided
8  * into roughly six sections, each with a section header:
9  *
10  *   - Initialization and readiness waiting.
11  *   - Fast key erasure RNG, the "crng".
12  *   - Entropy accumulation and extraction routines.
13  *   - Entropy collection routines.
14  *   - Userspace reader/writer interfaces.
15  *   - Sysctl interface.
16  *
17  * The high level overview is that there is one input pool, into which
18  * various pieces of data are hashed. Prior to initialization, some of that
19  * data is then "credited" as having a certain number of bits of entropy.
20  * When enough bits of entropy are available, the hash is finalized and
21  * handed as a key to a stream cipher that expands it indefinitely for
22  * various consumers. This key is periodically refreshed as the various
23  * entropy collectors, described below, add data to the input pool.
24  */
25 
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 
28 #include <linux/utsname.h>
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/major.h>
32 #include <linux/string.h>
33 #include <linux/fcntl.h>
34 #include <linux/slab.h>
35 #include <linux/random.h>
36 #include <linux/poll.h>
37 #include <linux/init.h>
38 #include <linux/fs.h>
39 #include <linux/blkdev.h>
40 #include <linux/interrupt.h>
41 #include <linux/mm.h>
42 #include <linux/nodemask.h>
43 #include <linux/spinlock.h>
44 #include <linux/kthread.h>
45 #include <linux/percpu.h>
46 #include <linux/ptrace.h>
47 #include <linux/workqueue.h>
48 #include <linux/irq.h>
49 #include <linux/ratelimit.h>
50 #include <linux/syscalls.h>
51 #include <linux/completion.h>
52 #include <linux/uuid.h>
53 #include <linux/uaccess.h>
54 #include <linux/suspend.h>
55 #include <linux/siphash.h>
56 #include <crypto/chacha.h>
57 #include <crypto/blake2s.h>
58 #include <asm/processor.h>
59 #include <asm/irq.h>
60 #include <asm/irq_regs.h>
61 #include <asm/io.h>
62 
63 /*********************************************************************
64  *
65  * Initialization and readiness waiting.
66  *
67  * Much of the RNG infrastructure is devoted to various dependencies
68  * being able to wait until the RNG has collected enough entropy and
69  * is ready for safe consumption.
70  *
71  *********************************************************************/
72 
73 /*
74  * crng_init is protected by base_crng->lock, and only increases
75  * its value (from empty->early->ready).
76  */
77 static enum {
78 	CRNG_EMPTY = 0, /* Little to no entropy collected */
79 	CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
80 	CRNG_READY = 2  /* Fully initialized with POOL_READY_BITS collected */
81 } crng_init __read_mostly = CRNG_EMPTY;
82 static DEFINE_STATIC_KEY_FALSE(crng_is_ready);
83 #define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY)
84 /* Various types of waiters for crng_init->CRNG_READY transition. */
85 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
86 static struct fasync_struct *fasync;
87 static ATOMIC_NOTIFIER_HEAD(random_ready_notifier);
88 
89 /* Control how we warn userspace. */
90 static struct ratelimit_state urandom_warning =
91 	RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE);
92 static int ratelimit_disable __read_mostly =
93 	IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
94 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
95 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
96 
97 /*
98  * Returns whether or not the input pool has been seeded and thus guaranteed
99  * to supply cryptographically secure random numbers. This applies to: the
100  * /dev/urandom device, the get_random_bytes function, and the get_random_{u8,
101  * u16,u32,u64,long} family of functions.
102  *
103  * Returns: true if the input pool has been seeded.
104  *          false if the input pool has not been seeded.
105  */
106 bool rng_is_initialized(void)
107 {
108 	return crng_ready();
109 }
110 EXPORT_SYMBOL(rng_is_initialized);
111 
112 static void __cold crng_set_ready(struct work_struct *work)
113 {
114 	static_branch_enable(&crng_is_ready);
115 }
116 
117 /* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
118 static void try_to_generate_entropy(void);
119 
120 /*
121  * Wait for the input pool to be seeded and thus guaranteed to supply
122  * cryptographically secure random numbers. This applies to: the /dev/urandom
123  * device, the get_random_bytes function, and the get_random_{u8,u16,u32,u64,
124  * long} family of functions. Using any of these functions without first
125  * calling this function forfeits the guarantee of security.
126  *
127  * Returns: 0 if the input pool has been seeded.
128  *          -ERESTARTSYS if the function was interrupted by a signal.
129  */
130 int wait_for_random_bytes(void)
131 {
132 	while (!crng_ready()) {
133 		int ret;
134 
135 		try_to_generate_entropy();
136 		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
137 		if (ret)
138 			return ret > 0 ? 0 : ret;
139 	}
140 	return 0;
141 }
142 EXPORT_SYMBOL(wait_for_random_bytes);
143 
144 /*
145  * Add a callback function that will be invoked when the crng is initialised,
146  * or immediately if it already has been. Only use this is you are absolutely
147  * sure it is required. Most users should instead be able to test
148  * `rng_is_initialized()` on demand, or make use of `get_random_bytes_wait()`.
149  */
150 int __cold execute_with_initialized_rng(struct notifier_block *nb)
151 {
152 	unsigned long flags;
153 	int ret = 0;
154 
155 	spin_lock_irqsave(&random_ready_notifier.lock, flags);
156 	if (crng_ready())
157 		nb->notifier_call(nb, 0, NULL);
158 	else
159 		ret = raw_notifier_chain_register((struct raw_notifier_head *)&random_ready_notifier.head, nb);
160 	spin_unlock_irqrestore(&random_ready_notifier.lock, flags);
161 	return ret;
162 }
163 
164 #define warn_unseeded_randomness() \
165 	if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \
166 		printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \
167 				__func__, (void *)_RET_IP_, crng_init)
168 
169 
170 /*********************************************************************
171  *
172  * Fast key erasure RNG, the "crng".
173  *
174  * These functions expand entropy from the entropy extractor into
175  * long streams for external consumption using the "fast key erasure"
176  * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
177  *
178  * There are a few exported interfaces for use by other drivers:
179  *
180  *	void get_random_bytes(void *buf, size_t len)
181  *	u8 get_random_u8()
182  *	u16 get_random_u16()
183  *	u32 get_random_u32()
184  *	u32 get_random_u32_below(u32 ceil)
185  *	u32 get_random_u32_above(u32 floor)
186  *	u32 get_random_u32_inclusive(u32 floor, u32 ceil)
187  *	u64 get_random_u64()
188  *	unsigned long get_random_long()
189  *
190  * These interfaces will return the requested number of random bytes
191  * into the given buffer or as a return value. This is equivalent to
192  * a read from /dev/urandom. The u8, u16, u32, u64, long family of
193  * functions may be higher performance for one-off random integers,
194  * because they do a bit of buffering and do not invoke reseeding
195  * until the buffer is emptied.
196  *
197  *********************************************************************/
198 
199 enum {
200 	CRNG_RESEED_START_INTERVAL = HZ,
201 	CRNG_RESEED_INTERVAL = 60 * HZ
202 };
203 
204 static struct {
205 	u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
206 	unsigned long generation;
207 	spinlock_t lock;
208 } base_crng = {
209 	.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
210 };
211 
212 struct crng {
213 	u8 key[CHACHA_KEY_SIZE];
214 	unsigned long generation;
215 	local_lock_t lock;
216 };
217 
218 static DEFINE_PER_CPU(struct crng, crngs) = {
219 	.generation = ULONG_MAX,
220 	.lock = INIT_LOCAL_LOCK(crngs.lock),
221 };
222 
223 /*
224  * Return the interval until the next reseeding, which is normally
225  * CRNG_RESEED_INTERVAL, but during early boot, it is at an interval
226  * proportional to the uptime.
227  */
228 static unsigned int crng_reseed_interval(void)
229 {
230 	static bool early_boot = true;
231 
232 	if (unlikely(READ_ONCE(early_boot))) {
233 		time64_t uptime = ktime_get_seconds();
234 		if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
235 			WRITE_ONCE(early_boot, false);
236 		else
237 			return max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
238 				     (unsigned int)uptime / 2 * HZ);
239 	}
240 	return CRNG_RESEED_INTERVAL;
241 }
242 
243 /* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
244 static void extract_entropy(void *buf, size_t len);
245 
246 /* This extracts a new crng key from the input pool. */
247 static void crng_reseed(struct work_struct *work)
248 {
249 	static DECLARE_DELAYED_WORK(next_reseed, crng_reseed);
250 	unsigned long flags;
251 	unsigned long next_gen;
252 	u8 key[CHACHA_KEY_SIZE];
253 
254 	/* Immediately schedule the next reseeding, so that it fires sooner rather than later. */
255 	if (likely(system_unbound_wq))
256 		queue_delayed_work(system_unbound_wq, &next_reseed, crng_reseed_interval());
257 
258 	extract_entropy(key, sizeof(key));
259 
260 	/*
261 	 * We copy the new key into the base_crng, overwriting the old one,
262 	 * and update the generation counter. We avoid hitting ULONG_MAX,
263 	 * because the per-cpu crngs are initialized to ULONG_MAX, so this
264 	 * forces new CPUs that come online to always initialize.
265 	 */
266 	spin_lock_irqsave(&base_crng.lock, flags);
267 	memcpy(base_crng.key, key, sizeof(base_crng.key));
268 	next_gen = base_crng.generation + 1;
269 	if (next_gen == ULONG_MAX)
270 		++next_gen;
271 	WRITE_ONCE(base_crng.generation, next_gen);
272 	if (!static_branch_likely(&crng_is_ready))
273 		crng_init = CRNG_READY;
274 	spin_unlock_irqrestore(&base_crng.lock, flags);
275 	memzero_explicit(key, sizeof(key));
276 }
277 
278 /*
279  * This generates a ChaCha block using the provided key, and then
280  * immediately overwrites that key with half the block. It returns
281  * the resultant ChaCha state to the user, along with the second
282  * half of the block containing 32 bytes of random data that may
283  * be used; random_data_len may not be greater than 32.
284  *
285  * The returned ChaCha state contains within it a copy of the old
286  * key value, at index 4, so the state should always be zeroed out
287  * immediately after using in order to maintain forward secrecy.
288  * If the state cannot be erased in a timely manner, then it is
289  * safer to set the random_data parameter to &chacha_state[4] so
290  * that this function overwrites it before returning.
291  */
292 static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
293 				  u32 chacha_state[CHACHA_STATE_WORDS],
294 				  u8 *random_data, size_t random_data_len)
295 {
296 	u8 first_block[CHACHA_BLOCK_SIZE];
297 
298 	BUG_ON(random_data_len > 32);
299 
300 	chacha_init_consts(chacha_state);
301 	memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
302 	memset(&chacha_state[12], 0, sizeof(u32) * 4);
303 	chacha20_block(chacha_state, first_block);
304 
305 	memcpy(key, first_block, CHACHA_KEY_SIZE);
306 	memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
307 	memzero_explicit(first_block, sizeof(first_block));
308 }
309 
310 /*
311  * This function returns a ChaCha state that you may use for generating
312  * random data. It also returns up to 32 bytes on its own of random data
313  * that may be used; random_data_len may not be greater than 32.
314  */
315 static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
316 			    u8 *random_data, size_t random_data_len)
317 {
318 	unsigned long flags;
319 	struct crng *crng;
320 
321 	BUG_ON(random_data_len > 32);
322 
323 	/*
324 	 * For the fast path, we check whether we're ready, unlocked first, and
325 	 * then re-check once locked later. In the case where we're really not
326 	 * ready, we do fast key erasure with the base_crng directly, extracting
327 	 * when crng_init is CRNG_EMPTY.
328 	 */
329 	if (!crng_ready()) {
330 		bool ready;
331 
332 		spin_lock_irqsave(&base_crng.lock, flags);
333 		ready = crng_ready();
334 		if (!ready) {
335 			if (crng_init == CRNG_EMPTY)
336 				extract_entropy(base_crng.key, sizeof(base_crng.key));
337 			crng_fast_key_erasure(base_crng.key, chacha_state,
338 					      random_data, random_data_len);
339 		}
340 		spin_unlock_irqrestore(&base_crng.lock, flags);
341 		if (!ready)
342 			return;
343 	}
344 
345 	local_lock_irqsave(&crngs.lock, flags);
346 	crng = raw_cpu_ptr(&crngs);
347 
348 	/*
349 	 * If our per-cpu crng is older than the base_crng, then it means
350 	 * somebody reseeded the base_crng. In that case, we do fast key
351 	 * erasure on the base_crng, and use its output as the new key
352 	 * for our per-cpu crng. This brings us up to date with base_crng.
353 	 */
354 	if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
355 		spin_lock(&base_crng.lock);
356 		crng_fast_key_erasure(base_crng.key, chacha_state,
357 				      crng->key, sizeof(crng->key));
358 		crng->generation = base_crng.generation;
359 		spin_unlock(&base_crng.lock);
360 	}
361 
362 	/*
363 	 * Finally, when we've made it this far, our per-cpu crng has an up
364 	 * to date key, and we can do fast key erasure with it to produce
365 	 * some random data and a ChaCha state for the caller. All other
366 	 * branches of this function are "unlikely", so most of the time we
367 	 * should wind up here immediately.
368 	 */
369 	crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
370 	local_unlock_irqrestore(&crngs.lock, flags);
371 }
372 
373 static void _get_random_bytes(void *buf, size_t len)
374 {
375 	u32 chacha_state[CHACHA_STATE_WORDS];
376 	u8 tmp[CHACHA_BLOCK_SIZE];
377 	size_t first_block_len;
378 
379 	if (!len)
380 		return;
381 
382 	first_block_len = min_t(size_t, 32, len);
383 	crng_make_state(chacha_state, buf, first_block_len);
384 	len -= first_block_len;
385 	buf += first_block_len;
386 
387 	while (len) {
388 		if (len < CHACHA_BLOCK_SIZE) {
389 			chacha20_block(chacha_state, tmp);
390 			memcpy(buf, tmp, len);
391 			memzero_explicit(tmp, sizeof(tmp));
392 			break;
393 		}
394 
395 		chacha20_block(chacha_state, buf);
396 		if (unlikely(chacha_state[12] == 0))
397 			++chacha_state[13];
398 		len -= CHACHA_BLOCK_SIZE;
399 		buf += CHACHA_BLOCK_SIZE;
400 	}
401 
402 	memzero_explicit(chacha_state, sizeof(chacha_state));
403 }
404 
405 /*
406  * This returns random bytes in arbitrary quantities. The quality of the
407  * random bytes is good as /dev/urandom. In order to ensure that the
408  * randomness provided by this function is okay, the function
409  * wait_for_random_bytes() should be called and return 0 at least once
410  * at any point prior.
411  */
412 void get_random_bytes(void *buf, size_t len)
413 {
414 	warn_unseeded_randomness();
415 	_get_random_bytes(buf, len);
416 }
417 EXPORT_SYMBOL(get_random_bytes);
418 
419 static ssize_t get_random_bytes_user(struct iov_iter *iter)
420 {
421 	u32 chacha_state[CHACHA_STATE_WORDS];
422 	u8 block[CHACHA_BLOCK_SIZE];
423 	size_t ret = 0, copied;
424 
425 	if (unlikely(!iov_iter_count(iter)))
426 		return 0;
427 
428 	/*
429 	 * Immediately overwrite the ChaCha key at index 4 with random
430 	 * bytes, in case userspace causes copy_to_iter() below to sleep
431 	 * forever, so that we still retain forward secrecy in that case.
432 	 */
433 	crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE);
434 	/*
435 	 * However, if we're doing a read of len <= 32, we don't need to
436 	 * use chacha_state after, so we can simply return those bytes to
437 	 * the user directly.
438 	 */
439 	if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) {
440 		ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter);
441 		goto out_zero_chacha;
442 	}
443 
444 	for (;;) {
445 		chacha20_block(chacha_state, block);
446 		if (unlikely(chacha_state[12] == 0))
447 			++chacha_state[13];
448 
449 		copied = copy_to_iter(block, sizeof(block), iter);
450 		ret += copied;
451 		if (!iov_iter_count(iter) || copied != sizeof(block))
452 			break;
453 
454 		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
455 		if (ret % PAGE_SIZE == 0) {
456 			if (signal_pending(current))
457 				break;
458 			cond_resched();
459 		}
460 	}
461 
462 	memzero_explicit(block, sizeof(block));
463 out_zero_chacha:
464 	memzero_explicit(chacha_state, sizeof(chacha_state));
465 	return ret ? ret : -EFAULT;
466 }
467 
468 /*
469  * Batched entropy returns random integers. The quality of the random
470  * number is good as /dev/urandom. In order to ensure that the randomness
471  * provided by this function is okay, the function wait_for_random_bytes()
472  * should be called and return 0 at least once at any point prior.
473  */
474 
475 #define DEFINE_BATCHED_ENTROPY(type)						\
476 struct batch_ ##type {								\
477 	/*									\
478 	 * We make this 1.5x a ChaCha block, so that we get the			\
479 	 * remaining 32 bytes from fast key erasure, plus one full		\
480 	 * block from the detached ChaCha state. We can increase		\
481 	 * the size of this later if needed so long as we keep the		\
482 	 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.		\
483 	 */									\
484 	type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))];		\
485 	local_lock_t lock;							\
486 	unsigned long generation;						\
487 	unsigned int position;							\
488 };										\
489 										\
490 static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = {	\
491 	.lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock),			\
492 	.position = UINT_MAX							\
493 };										\
494 										\
495 type get_random_ ##type(void)							\
496 {										\
497 	type ret;								\
498 	unsigned long flags;							\
499 	struct batch_ ##type *batch;						\
500 	unsigned long next_gen;							\
501 										\
502 	warn_unseeded_randomness();						\
503 										\
504 	if  (!crng_ready()) {							\
505 		_get_random_bytes(&ret, sizeof(ret));				\
506 		return ret;							\
507 	}									\
508 										\
509 	local_lock_irqsave(&batched_entropy_ ##type.lock, flags);		\
510 	batch = raw_cpu_ptr(&batched_entropy_##type);				\
511 										\
512 	next_gen = READ_ONCE(base_crng.generation);				\
513 	if (batch->position >= ARRAY_SIZE(batch->entropy) ||			\
514 	    next_gen != batch->generation) {					\
515 		_get_random_bytes(batch->entropy, sizeof(batch->entropy));	\
516 		batch->position = 0;						\
517 		batch->generation = next_gen;					\
518 	}									\
519 										\
520 	ret = batch->entropy[batch->position];					\
521 	batch->entropy[batch->position] = 0;					\
522 	++batch->position;							\
523 	local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags);		\
524 	return ret;								\
525 }										\
526 EXPORT_SYMBOL(get_random_ ##type);
527 
528 DEFINE_BATCHED_ENTROPY(u8)
529 DEFINE_BATCHED_ENTROPY(u16)
530 DEFINE_BATCHED_ENTROPY(u32)
531 DEFINE_BATCHED_ENTROPY(u64)
532 
533 u32 __get_random_u32_below(u32 ceil)
534 {
535 	/*
536 	 * This is the slow path for variable ceil. It is still fast, most of
537 	 * the time, by doing traditional reciprocal multiplication and
538 	 * opportunistically comparing the lower half to ceil itself, before
539 	 * falling back to computing a larger bound, and then rejecting samples
540 	 * whose lower half would indicate a range indivisible by ceil. The use
541 	 * of `-ceil % ceil` is analogous to `2^32 % ceil`, but is computable
542 	 * in 32-bits.
543 	 */
544 	u32 rand = get_random_u32();
545 	u64 mult;
546 
547 	/*
548 	 * This function is technically undefined for ceil == 0, and in fact
549 	 * for the non-underscored constant version in the header, we build bug
550 	 * on that. But for the non-constant case, it's convenient to have that
551 	 * evaluate to being a straight call to get_random_u32(), so that
552 	 * get_random_u32_inclusive() can work over its whole range without
553 	 * undefined behavior.
554 	 */
555 	if (unlikely(!ceil))
556 		return rand;
557 
558 	mult = (u64)ceil * rand;
559 	if (unlikely((u32)mult < ceil)) {
560 		u32 bound = -ceil % ceil;
561 		while (unlikely((u32)mult < bound))
562 			mult = (u64)ceil * get_random_u32();
563 	}
564 	return mult >> 32;
565 }
566 EXPORT_SYMBOL(__get_random_u32_below);
567 
568 #ifdef CONFIG_SMP
569 /*
570  * This function is called when the CPU is coming up, with entry
571  * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
572  */
573 int __cold random_prepare_cpu(unsigned int cpu)
574 {
575 	/*
576 	 * When the cpu comes back online, immediately invalidate both
577 	 * the per-cpu crng and all batches, so that we serve fresh
578 	 * randomness.
579 	 */
580 	per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
581 	per_cpu_ptr(&batched_entropy_u8, cpu)->position = UINT_MAX;
582 	per_cpu_ptr(&batched_entropy_u16, cpu)->position = UINT_MAX;
583 	per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
584 	per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
585 	return 0;
586 }
587 #endif
588 
589 
590 /**********************************************************************
591  *
592  * Entropy accumulation and extraction routines.
593  *
594  * Callers may add entropy via:
595  *
596  *     static void mix_pool_bytes(const void *buf, size_t len)
597  *
598  * After which, if added entropy should be credited:
599  *
600  *     static void credit_init_bits(size_t bits)
601  *
602  * Finally, extract entropy via:
603  *
604  *     static void extract_entropy(void *buf, size_t len)
605  *
606  **********************************************************************/
607 
608 enum {
609 	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
610 	POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
611 	POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
612 };
613 
614 static struct {
615 	struct blake2s_state hash;
616 	spinlock_t lock;
617 	unsigned int init_bits;
618 } input_pool = {
619 	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
620 		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
621 		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
622 	.hash.outlen = BLAKE2S_HASH_SIZE,
623 	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
624 };
625 
626 static void _mix_pool_bytes(const void *buf, size_t len)
627 {
628 	blake2s_update(&input_pool.hash, buf, len);
629 }
630 
631 /*
632  * This function adds bytes into the input pool. It does not
633  * update the initialization bit counter; the caller should call
634  * credit_init_bits if this is appropriate.
635  */
636 static void mix_pool_bytes(const void *buf, size_t len)
637 {
638 	unsigned long flags;
639 
640 	spin_lock_irqsave(&input_pool.lock, flags);
641 	_mix_pool_bytes(buf, len);
642 	spin_unlock_irqrestore(&input_pool.lock, flags);
643 }
644 
645 /*
646  * This is an HKDF-like construction for using the hashed collected entropy
647  * as a PRF key, that's then expanded block-by-block.
648  */
649 static void extract_entropy(void *buf, size_t len)
650 {
651 	unsigned long flags;
652 	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
653 	struct {
654 		unsigned long rdseed[32 / sizeof(long)];
655 		size_t counter;
656 	} block;
657 	size_t i, longs;
658 
659 	for (i = 0; i < ARRAY_SIZE(block.rdseed);) {
660 		longs = arch_get_random_seed_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
661 		if (longs) {
662 			i += longs;
663 			continue;
664 		}
665 		longs = arch_get_random_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
666 		if (longs) {
667 			i += longs;
668 			continue;
669 		}
670 		block.rdseed[i++] = random_get_entropy();
671 	}
672 
673 	spin_lock_irqsave(&input_pool.lock, flags);
674 
675 	/* seed = HASHPRF(last_key, entropy_input) */
676 	blake2s_final(&input_pool.hash, seed);
677 
678 	/* next_key = HASHPRF(seed, RDSEED || 0) */
679 	block.counter = 0;
680 	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
681 	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));
682 
683 	spin_unlock_irqrestore(&input_pool.lock, flags);
684 	memzero_explicit(next_key, sizeof(next_key));
685 
686 	while (len) {
687 		i = min_t(size_t, len, BLAKE2S_HASH_SIZE);
688 		/* output = HASHPRF(seed, RDSEED || ++counter) */
689 		++block.counter;
690 		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
691 		len -= i;
692 		buf += i;
693 	}
694 
695 	memzero_explicit(seed, sizeof(seed));
696 	memzero_explicit(&block, sizeof(block));
697 }
698 
699 #define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits)
700 
701 static void __cold _credit_init_bits(size_t bits)
702 {
703 	static struct execute_work set_ready;
704 	unsigned int new, orig, add;
705 	unsigned long flags;
706 
707 	if (!bits)
708 		return;
709 
710 	add = min_t(size_t, bits, POOL_BITS);
711 
712 	orig = READ_ONCE(input_pool.init_bits);
713 	do {
714 		new = min_t(unsigned int, POOL_BITS, orig + add);
715 	} while (!try_cmpxchg(&input_pool.init_bits, &orig, new));
716 
717 	if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
718 		crng_reseed(NULL); /* Sets crng_init to CRNG_READY under base_crng.lock. */
719 		if (static_key_initialized)
720 			execute_in_process_context(crng_set_ready, &set_ready);
721 		atomic_notifier_call_chain(&random_ready_notifier, 0, NULL);
722 		wake_up_interruptible(&crng_init_wait);
723 		kill_fasync(&fasync, SIGIO, POLL_IN);
724 		pr_notice("crng init done\n");
725 		if (urandom_warning.missed)
726 			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
727 				  urandom_warning.missed);
728 	} else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
729 		spin_lock_irqsave(&base_crng.lock, flags);
730 		/* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
731 		if (crng_init == CRNG_EMPTY) {
732 			extract_entropy(base_crng.key, sizeof(base_crng.key));
733 			crng_init = CRNG_EARLY;
734 		}
735 		spin_unlock_irqrestore(&base_crng.lock, flags);
736 	}
737 }
738 
739 
740 /**********************************************************************
741  *
742  * Entropy collection routines.
743  *
744  * The following exported functions are used for pushing entropy into
745  * the above entropy accumulation routines:
746  *
747  *	void add_device_randomness(const void *buf, size_t len);
748  *	void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after);
749  *	void add_bootloader_randomness(const void *buf, size_t len);
750  *	void add_vmfork_randomness(const void *unique_vm_id, size_t len);
751  *	void add_interrupt_randomness(int irq);
752  *	void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);
753  *	void add_disk_randomness(struct gendisk *disk);
754  *
755  * add_device_randomness() adds data to the input pool that
756  * is likely to differ between two devices (or possibly even per boot).
757  * This would be things like MAC addresses or serial numbers, or the
758  * read-out of the RTC. This does *not* credit any actual entropy to
759  * the pool, but it initializes the pool to different values for devices
760  * that might otherwise be identical and have very little entropy
761  * available to them (particularly common in the embedded world).
762  *
763  * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
764  * entropy as specified by the caller. If the entropy pool is full it will
765  * block until more entropy is needed.
766  *
767  * add_bootloader_randomness() is called by bootloader drivers, such as EFI
768  * and device tree, and credits its input depending on whether or not the
769  * command line option 'random.trust_bootloader'.
770  *
771  * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
772  * representing the current instance of a VM to the pool, without crediting,
773  * and then force-reseeds the crng so that it takes effect immediately.
774  *
775  * add_interrupt_randomness() uses the interrupt timing as random
776  * inputs to the entropy pool. Using the cycle counters and the irq source
777  * as inputs, it feeds the input pool roughly once a second or after 64
778  * interrupts, crediting 1 bit of entropy for whichever comes first.
779  *
780  * add_input_randomness() uses the input layer interrupt timing, as well
781  * as the event type information from the hardware.
782  *
783  * add_disk_randomness() uses what amounts to the seek time of block
784  * layer request events, on a per-disk_devt basis, as input to the
785  * entropy pool. Note that high-speed solid state drives with very low
786  * seek times do not make for good sources of entropy, as their seek
787  * times are usually fairly consistent.
788  *
789  * The last two routines try to estimate how many bits of entropy
790  * to credit. They do this by keeping track of the first and second
791  * order deltas of the event timings.
792  *
793  **********************************************************************/
794 
795 static bool trust_cpu __initdata = true;
796 static bool trust_bootloader __initdata = true;
797 static int __init parse_trust_cpu(char *arg)
798 {
799 	return kstrtobool(arg, &trust_cpu);
800 }
801 static int __init parse_trust_bootloader(char *arg)
802 {
803 	return kstrtobool(arg, &trust_bootloader);
804 }
805 early_param("random.trust_cpu", parse_trust_cpu);
806 early_param("random.trust_bootloader", parse_trust_bootloader);
807 
808 static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data)
809 {
810 	unsigned long flags, entropy = random_get_entropy();
811 
812 	/*
813 	 * Encode a representation of how long the system has been suspended,
814 	 * in a way that is distinct from prior system suspends.
815 	 */
816 	ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() };
817 
818 	spin_lock_irqsave(&input_pool.lock, flags);
819 	_mix_pool_bytes(&action, sizeof(action));
820 	_mix_pool_bytes(stamps, sizeof(stamps));
821 	_mix_pool_bytes(&entropy, sizeof(entropy));
822 	spin_unlock_irqrestore(&input_pool.lock, flags);
823 
824 	if (crng_ready() && (action == PM_RESTORE_PREPARE ||
825 	    (action == PM_POST_SUSPEND && !IS_ENABLED(CONFIG_PM_AUTOSLEEP) &&
826 	     !IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)))) {
827 		crng_reseed(NULL);
828 		pr_notice("crng reseeded on system resumption\n");
829 	}
830 	return 0;
831 }
832 
833 static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification };
834 
835 /*
836  * This is called extremely early, before time keeping functionality is
837  * available, but arch randomness is. Interrupts are not yet enabled.
838  */
839 void __init random_init_early(const char *command_line)
840 {
841 	unsigned long entropy[BLAKE2S_BLOCK_SIZE / sizeof(long)];
842 	size_t i, longs, arch_bits;
843 
844 #if defined(LATENT_ENTROPY_PLUGIN)
845 	static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
846 	_mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
847 #endif
848 
849 	for (i = 0, arch_bits = sizeof(entropy) * 8; i < ARRAY_SIZE(entropy);) {
850 		longs = arch_get_random_seed_longs(entropy, ARRAY_SIZE(entropy) - i);
851 		if (longs) {
852 			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
853 			i += longs;
854 			continue;
855 		}
856 		longs = arch_get_random_longs(entropy, ARRAY_SIZE(entropy) - i);
857 		if (longs) {
858 			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
859 			i += longs;
860 			continue;
861 		}
862 		arch_bits -= sizeof(*entropy) * 8;
863 		++i;
864 	}
865 
866 	_mix_pool_bytes(init_utsname(), sizeof(*(init_utsname())));
867 	_mix_pool_bytes(command_line, strlen(command_line));
868 
869 	/* Reseed if already seeded by earlier phases. */
870 	if (crng_ready())
871 		crng_reseed(NULL);
872 	else if (trust_cpu)
873 		_credit_init_bits(arch_bits);
874 }
875 
876 /*
877  * This is called a little bit after the prior function, and now there is
878  * access to timestamps counters. Interrupts are not yet enabled.
879  */
880 void __init random_init(void)
881 {
882 	unsigned long entropy = random_get_entropy();
883 	ktime_t now = ktime_get_real();
884 
885 	_mix_pool_bytes(&now, sizeof(now));
886 	_mix_pool_bytes(&entropy, sizeof(entropy));
887 	add_latent_entropy();
888 
889 	/*
890 	 * If we were initialized by the cpu or bootloader before jump labels
891 	 * are initialized, then we should enable the static branch here, where
892 	 * it's guaranteed that jump labels have been initialized.
893 	 */
894 	if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY)
895 		crng_set_ready(NULL);
896 
897 	/* Reseed if already seeded by earlier phases. */
898 	if (crng_ready())
899 		crng_reseed(NULL);
900 
901 	WARN_ON(register_pm_notifier(&pm_notifier));
902 
903 	WARN(!entropy, "Missing cycle counter and fallback timer; RNG "
904 		       "entropy collection will consequently suffer.");
905 }
906 
907 /*
908  * Add device- or boot-specific data to the input pool to help
909  * initialize it.
910  *
911  * None of this adds any entropy; it is meant to avoid the problem of
912  * the entropy pool having similar initial state across largely
913  * identical devices.
914  */
915 void add_device_randomness(const void *buf, size_t len)
916 {
917 	unsigned long entropy = random_get_entropy();
918 	unsigned long flags;
919 
920 	spin_lock_irqsave(&input_pool.lock, flags);
921 	_mix_pool_bytes(&entropy, sizeof(entropy));
922 	_mix_pool_bytes(buf, len);
923 	spin_unlock_irqrestore(&input_pool.lock, flags);
924 }
925 EXPORT_SYMBOL(add_device_randomness);
926 
927 /*
928  * Interface for in-kernel drivers of true hardware RNGs. Those devices
929  * may produce endless random bits, so this function will sleep for
930  * some amount of time after, if the sleep_after parameter is true.
931  */
932 void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after)
933 {
934 	mix_pool_bytes(buf, len);
935 	credit_init_bits(entropy);
936 
937 	/*
938 	 * Throttle writing to once every reseed interval, unless we're not yet
939 	 * initialized or no entropy is credited.
940 	 */
941 	if (sleep_after && !kthread_should_stop() && (crng_ready() || !entropy))
942 		schedule_timeout_interruptible(crng_reseed_interval());
943 }
944 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
945 
946 /*
947  * Handle random seed passed by bootloader, and credit it depending
948  * on the command line option 'random.trust_bootloader'.
949  */
950 void __init add_bootloader_randomness(const void *buf, size_t len)
951 {
952 	mix_pool_bytes(buf, len);
953 	if (trust_bootloader)
954 		credit_init_bits(len * 8);
955 }
956 
957 #if IS_ENABLED(CONFIG_VMGENID)
958 static BLOCKING_NOTIFIER_HEAD(vmfork_chain);
959 
960 /*
961  * Handle a new unique VM ID, which is unique, not secret, so we
962  * don't credit it, but we do immediately force a reseed after so
963  * that it's used by the crng posthaste.
964  */
965 void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len)
966 {
967 	add_device_randomness(unique_vm_id, len);
968 	if (crng_ready()) {
969 		crng_reseed(NULL);
970 		pr_notice("crng reseeded due to virtual machine fork\n");
971 	}
972 	blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
973 }
974 #if IS_MODULE(CONFIG_VMGENID)
975 EXPORT_SYMBOL_GPL(add_vmfork_randomness);
976 #endif
977 
978 int __cold register_random_vmfork_notifier(struct notifier_block *nb)
979 {
980 	return blocking_notifier_chain_register(&vmfork_chain, nb);
981 }
982 EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);
983 
984 int __cold unregister_random_vmfork_notifier(struct notifier_block *nb)
985 {
986 	return blocking_notifier_chain_unregister(&vmfork_chain, nb);
987 }
988 EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
989 #endif
990 
991 struct fast_pool {
992 	unsigned long pool[4];
993 	unsigned long last;
994 	unsigned int count;
995 	struct timer_list mix;
996 };
997 
998 static void mix_interrupt_randomness(struct timer_list *work);
999 
1000 static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
1001 #ifdef CONFIG_64BIT
1002 #define FASTMIX_PERM SIPHASH_PERMUTATION
1003 	.pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 },
1004 #else
1005 #define FASTMIX_PERM HSIPHASH_PERMUTATION
1006 	.pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 },
1007 #endif
1008 	.mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0)
1009 };
1010 
1011 /*
1012  * This is [Half]SipHash-1-x, starting from an empty key. Because
1013  * the key is fixed, it assumes that its inputs are non-malicious,
1014  * and therefore this has no security on its own. s represents the
1015  * four-word SipHash state, while v represents a two-word input.
1016  */
1017 static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
1018 {
1019 	s[3] ^= v1;
1020 	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1021 	s[0] ^= v1;
1022 	s[3] ^= v2;
1023 	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1024 	s[0] ^= v2;
1025 }
1026 
1027 #ifdef CONFIG_SMP
1028 /*
1029  * This function is called when the CPU has just come online, with
1030  * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
1031  */
1032 int __cold random_online_cpu(unsigned int cpu)
1033 {
1034 	/*
1035 	 * During CPU shutdown and before CPU onlining, add_interrupt_
1036 	 * randomness() may schedule mix_interrupt_randomness(), and
1037 	 * set the MIX_INFLIGHT flag. However, because the worker can
1038 	 * be scheduled on a different CPU during this period, that
1039 	 * flag will never be cleared. For that reason, we zero out
1040 	 * the flag here, which runs just after workqueues are onlined
1041 	 * for the CPU again. This also has the effect of setting the
1042 	 * irq randomness count to zero so that new accumulated irqs
1043 	 * are fresh.
1044 	 */
1045 	per_cpu_ptr(&irq_randomness, cpu)->count = 0;
1046 	return 0;
1047 }
1048 #endif
1049 
1050 static void mix_interrupt_randomness(struct timer_list *work)
1051 {
1052 	struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
1053 	/*
1054 	 * The size of the copied stack pool is explicitly 2 longs so that we
1055 	 * only ever ingest half of the siphash output each time, retaining
1056 	 * the other half as the next "key" that carries over. The entropy is
1057 	 * supposed to be sufficiently dispersed between bits so on average
1058 	 * we don't wind up "losing" some.
1059 	 */
1060 	unsigned long pool[2];
1061 	unsigned int count;
1062 
1063 	/* Check to see if we're running on the wrong CPU due to hotplug. */
1064 	local_irq_disable();
1065 	if (fast_pool != this_cpu_ptr(&irq_randomness)) {
1066 		local_irq_enable();
1067 		return;
1068 	}
1069 
1070 	/*
1071 	 * Copy the pool to the stack so that the mixer always has a
1072 	 * consistent view, before we reenable irqs again.
1073 	 */
1074 	memcpy(pool, fast_pool->pool, sizeof(pool));
1075 	count = fast_pool->count;
1076 	fast_pool->count = 0;
1077 	fast_pool->last = jiffies;
1078 	local_irq_enable();
1079 
1080 	mix_pool_bytes(pool, sizeof(pool));
1081 	credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8));
1082 
1083 	memzero_explicit(pool, sizeof(pool));
1084 }
1085 
1086 void add_interrupt_randomness(int irq)
1087 {
1088 	enum { MIX_INFLIGHT = 1U << 31 };
1089 	unsigned long entropy = random_get_entropy();
1090 	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
1091 	struct pt_regs *regs = get_irq_regs();
1092 	unsigned int new_count;
1093 
1094 	fast_mix(fast_pool->pool, entropy,
1095 		 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
1096 	new_count = ++fast_pool->count;
1097 
1098 	if (new_count & MIX_INFLIGHT)
1099 		return;
1100 
1101 	if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ))
1102 		return;
1103 
1104 	fast_pool->count |= MIX_INFLIGHT;
1105 	if (!timer_pending(&fast_pool->mix)) {
1106 		fast_pool->mix.expires = jiffies;
1107 		add_timer_on(&fast_pool->mix, raw_smp_processor_id());
1108 	}
1109 }
1110 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1111 
1112 /* There is one of these per entropy source */
1113 struct timer_rand_state {
1114 	unsigned long last_time;
1115 	long last_delta, last_delta2;
1116 };
1117 
1118 /*
1119  * This function adds entropy to the entropy "pool" by using timing
1120  * delays. It uses the timer_rand_state structure to make an estimate
1121  * of how many bits of entropy this call has added to the pool. The
1122  * value "num" is also added to the pool; it should somehow describe
1123  * the type of event that just happened.
1124  */
1125 static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
1126 {
1127 	unsigned long entropy = random_get_entropy(), now = jiffies, flags;
1128 	long delta, delta2, delta3;
1129 	unsigned int bits;
1130 
1131 	/*
1132 	 * If we're in a hard IRQ, add_interrupt_randomness() will be called
1133 	 * sometime after, so mix into the fast pool.
1134 	 */
1135 	if (in_hardirq()) {
1136 		fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
1137 	} else {
1138 		spin_lock_irqsave(&input_pool.lock, flags);
1139 		_mix_pool_bytes(&entropy, sizeof(entropy));
1140 		_mix_pool_bytes(&num, sizeof(num));
1141 		spin_unlock_irqrestore(&input_pool.lock, flags);
1142 	}
1143 
1144 	if (crng_ready())
1145 		return;
1146 
1147 	/*
1148 	 * Calculate number of bits of randomness we probably added.
1149 	 * We take into account the first, second and third-order deltas
1150 	 * in order to make our estimate.
1151 	 */
1152 	delta = now - READ_ONCE(state->last_time);
1153 	WRITE_ONCE(state->last_time, now);
1154 
1155 	delta2 = delta - READ_ONCE(state->last_delta);
1156 	WRITE_ONCE(state->last_delta, delta);
1157 
1158 	delta3 = delta2 - READ_ONCE(state->last_delta2);
1159 	WRITE_ONCE(state->last_delta2, delta2);
1160 
1161 	if (delta < 0)
1162 		delta = -delta;
1163 	if (delta2 < 0)
1164 		delta2 = -delta2;
1165 	if (delta3 < 0)
1166 		delta3 = -delta3;
1167 	if (delta > delta2)
1168 		delta = delta2;
1169 	if (delta > delta3)
1170 		delta = delta3;
1171 
1172 	/*
1173 	 * delta is now minimum absolute delta. Round down by 1 bit
1174 	 * on general principles, and limit entropy estimate to 11 bits.
1175 	 */
1176 	bits = min(fls(delta >> 1), 11);
1177 
1178 	/*
1179 	 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
1180 	 * will run after this, which uses a different crediting scheme of 1 bit
1181 	 * per every 64 interrupts. In order to let that function do accounting
1182 	 * close to the one in this function, we credit a full 64/64 bit per bit,
1183 	 * and then subtract one to account for the extra one added.
1184 	 */
1185 	if (in_hardirq())
1186 		this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
1187 	else
1188 		_credit_init_bits(bits);
1189 }
1190 
1191 void add_input_randomness(unsigned int type, unsigned int code, unsigned int value)
1192 {
1193 	static unsigned char last_value;
1194 	static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };
1195 
1196 	/* Ignore autorepeat and the like. */
1197 	if (value == last_value)
1198 		return;
1199 
1200 	last_value = value;
1201 	add_timer_randomness(&input_timer_state,
1202 			     (type << 4) ^ code ^ (code >> 4) ^ value);
1203 }
1204 EXPORT_SYMBOL_GPL(add_input_randomness);
1205 
1206 #ifdef CONFIG_BLOCK
1207 void add_disk_randomness(struct gendisk *disk)
1208 {
1209 	if (!disk || !disk->random)
1210 		return;
1211 	/* First major is 1, so we get >= 0x200 here. */
1212 	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1213 }
1214 EXPORT_SYMBOL_GPL(add_disk_randomness);
1215 
1216 void __cold rand_initialize_disk(struct gendisk *disk)
1217 {
1218 	struct timer_rand_state *state;
1219 
1220 	/*
1221 	 * If kzalloc returns null, we just won't use that entropy
1222 	 * source.
1223 	 */
1224 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1225 	if (state) {
1226 		state->last_time = INITIAL_JIFFIES;
1227 		disk->random = state;
1228 	}
1229 }
1230 #endif
1231 
1232 struct entropy_timer_state {
1233 	unsigned long entropy;
1234 	struct timer_list timer;
1235 	unsigned int samples, samples_per_bit;
1236 };
1237 
1238 /*
1239  * Each time the timer fires, we expect that we got an unpredictable
1240  * jump in the cycle counter. Even if the timer is running on another
1241  * CPU, the timer activity will be touching the stack of the CPU that is
1242  * generating entropy..
1243  *
1244  * Note that we don't re-arm the timer in the timer itself - we are
1245  * happy to be scheduled away, since that just makes the load more
1246  * complex, but we do not want the timer to keep ticking unless the
1247  * entropy loop is running.
1248  *
1249  * So the re-arming always happens in the entropy loop itself.
1250  */
1251 static void __cold entropy_timer(struct timer_list *timer)
1252 {
1253 	struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer);
1254 
1255 	if (++state->samples == state->samples_per_bit) {
1256 		credit_init_bits(1);
1257 		state->samples = 0;
1258 	}
1259 }
1260 
1261 /*
1262  * If we have an actual cycle counter, see if we can
1263  * generate enough entropy with timing noise
1264  */
1265 static void __cold try_to_generate_entropy(void)
1266 {
1267 	enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = HZ / 15 };
1268 	struct entropy_timer_state stack;
1269 	unsigned int i, num_different = 0;
1270 	unsigned long last = random_get_entropy();
1271 
1272 	for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) {
1273 		stack.entropy = random_get_entropy();
1274 		if (stack.entropy != last)
1275 			++num_different;
1276 		last = stack.entropy;
1277 	}
1278 	stack.samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1);
1279 	if (stack.samples_per_bit > MAX_SAMPLES_PER_BIT)
1280 		return;
1281 
1282 	stack.samples = 0;
1283 	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1284 	while (!crng_ready() && !signal_pending(current)) {
1285 		if (!timer_pending(&stack.timer))
1286 			mod_timer(&stack.timer, jiffies);
1287 		mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1288 		schedule();
1289 		stack.entropy = random_get_entropy();
1290 	}
1291 
1292 	del_timer_sync(&stack.timer);
1293 	destroy_timer_on_stack(&stack.timer);
1294 	mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1295 }
1296 
1297 
1298 /**********************************************************************
1299  *
1300  * Userspace reader/writer interfaces.
1301  *
1302  * getrandom(2) is the primary modern interface into the RNG and should
1303  * be used in preference to anything else.
1304  *
1305  * Reading from /dev/random has the same functionality as calling
1306  * getrandom(2) with flags=0. In earlier versions, however, it had
1307  * vastly different semantics and should therefore be avoided, to
1308  * prevent backwards compatibility issues.
1309  *
1310  * Reading from /dev/urandom has the same functionality as calling
1311  * getrandom(2) with flags=GRND_INSECURE. Because it does not block
1312  * waiting for the RNG to be ready, it should not be used.
1313  *
1314  * Writing to either /dev/random or /dev/urandom adds entropy to
1315  * the input pool but does not credit it.
1316  *
1317  * Polling on /dev/random indicates when the RNG is initialized, on
1318  * the read side, and when it wants new entropy, on the write side.
1319  *
1320  * Both /dev/random and /dev/urandom have the same set of ioctls for
1321  * adding entropy, getting the entropy count, zeroing the count, and
1322  * reseeding the crng.
1323  *
1324  **********************************************************************/
1325 
1326 SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags)
1327 {
1328 	struct iov_iter iter;
1329 	struct iovec iov;
1330 	int ret;
1331 
1332 	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
1333 		return -EINVAL;
1334 
1335 	/*
1336 	 * Requesting insecure and blocking randomness at the same time makes
1337 	 * no sense.
1338 	 */
1339 	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
1340 		return -EINVAL;
1341 
1342 	if (!crng_ready() && !(flags & GRND_INSECURE)) {
1343 		if (flags & GRND_NONBLOCK)
1344 			return -EAGAIN;
1345 		ret = wait_for_random_bytes();
1346 		if (unlikely(ret))
1347 			return ret;
1348 	}
1349 
1350 	ret = import_single_range(READ, ubuf, len, &iov, &iter);
1351 	if (unlikely(ret))
1352 		return ret;
1353 	return get_random_bytes_user(&iter);
1354 }
1355 
1356 static __poll_t random_poll(struct file *file, poll_table *wait)
1357 {
1358 	poll_wait(file, &crng_init_wait, wait);
1359 	return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
1360 }
1361 
1362 static ssize_t write_pool_user(struct iov_iter *iter)
1363 {
1364 	u8 block[BLAKE2S_BLOCK_SIZE];
1365 	ssize_t ret = 0;
1366 	size_t copied;
1367 
1368 	if (unlikely(!iov_iter_count(iter)))
1369 		return 0;
1370 
1371 	for (;;) {
1372 		copied = copy_from_iter(block, sizeof(block), iter);
1373 		ret += copied;
1374 		mix_pool_bytes(block, copied);
1375 		if (!iov_iter_count(iter) || copied != sizeof(block))
1376 			break;
1377 
1378 		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
1379 		if (ret % PAGE_SIZE == 0) {
1380 			if (signal_pending(current))
1381 				break;
1382 			cond_resched();
1383 		}
1384 	}
1385 
1386 	memzero_explicit(block, sizeof(block));
1387 	return ret ? ret : -EFAULT;
1388 }
1389 
1390 static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter)
1391 {
1392 	return write_pool_user(iter);
1393 }
1394 
1395 static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1396 {
1397 	static int maxwarn = 10;
1398 
1399 	/*
1400 	 * Opportunistically attempt to initialize the RNG on platforms that
1401 	 * have fast cycle counters, but don't (for now) require it to succeed.
1402 	 */
1403 	if (!crng_ready())
1404 		try_to_generate_entropy();
1405 
1406 	if (!crng_ready()) {
1407 		if (!ratelimit_disable && maxwarn <= 0)
1408 			++urandom_warning.missed;
1409 		else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
1410 			--maxwarn;
1411 			pr_notice("%s: uninitialized urandom read (%zu bytes read)\n",
1412 				  current->comm, iov_iter_count(iter));
1413 		}
1414 	}
1415 
1416 	return get_random_bytes_user(iter);
1417 }
1418 
1419 static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1420 {
1421 	int ret;
1422 
1423 	if (!crng_ready() &&
1424 	    ((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) ||
1425 	     (kiocb->ki_filp->f_flags & O_NONBLOCK)))
1426 		return -EAGAIN;
1427 
1428 	ret = wait_for_random_bytes();
1429 	if (ret != 0)
1430 		return ret;
1431 	return get_random_bytes_user(iter);
1432 }
1433 
1434 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1435 {
1436 	int __user *p = (int __user *)arg;
1437 	int ent_count;
1438 
1439 	switch (cmd) {
1440 	case RNDGETENTCNT:
1441 		/* Inherently racy, no point locking. */
1442 		if (put_user(input_pool.init_bits, p))
1443 			return -EFAULT;
1444 		return 0;
1445 	case RNDADDTOENTCNT:
1446 		if (!capable(CAP_SYS_ADMIN))
1447 			return -EPERM;
1448 		if (get_user(ent_count, p))
1449 			return -EFAULT;
1450 		if (ent_count < 0)
1451 			return -EINVAL;
1452 		credit_init_bits(ent_count);
1453 		return 0;
1454 	case RNDADDENTROPY: {
1455 		struct iov_iter iter;
1456 		struct iovec iov;
1457 		ssize_t ret;
1458 		int len;
1459 
1460 		if (!capable(CAP_SYS_ADMIN))
1461 			return -EPERM;
1462 		if (get_user(ent_count, p++))
1463 			return -EFAULT;
1464 		if (ent_count < 0)
1465 			return -EINVAL;
1466 		if (get_user(len, p++))
1467 			return -EFAULT;
1468 		ret = import_single_range(WRITE, p, len, &iov, &iter);
1469 		if (unlikely(ret))
1470 			return ret;
1471 		ret = write_pool_user(&iter);
1472 		if (unlikely(ret < 0))
1473 			return ret;
1474 		/* Since we're crediting, enforce that it was all written into the pool. */
1475 		if (unlikely(ret != len))
1476 			return -EFAULT;
1477 		credit_init_bits(ent_count);
1478 		return 0;
1479 	}
1480 	case RNDZAPENTCNT:
1481 	case RNDCLEARPOOL:
1482 		/* No longer has any effect. */
1483 		if (!capable(CAP_SYS_ADMIN))
1484 			return -EPERM;
1485 		return 0;
1486 	case RNDRESEEDCRNG:
1487 		if (!capable(CAP_SYS_ADMIN))
1488 			return -EPERM;
1489 		if (!crng_ready())
1490 			return -ENODATA;
1491 		crng_reseed(NULL);
1492 		return 0;
1493 	default:
1494 		return -EINVAL;
1495 	}
1496 }
1497 
1498 static int random_fasync(int fd, struct file *filp, int on)
1499 {
1500 	return fasync_helper(fd, filp, on, &fasync);
1501 }
1502 
1503 const struct file_operations random_fops = {
1504 	.read_iter = random_read_iter,
1505 	.write_iter = random_write_iter,
1506 	.poll = random_poll,
1507 	.unlocked_ioctl = random_ioctl,
1508 	.compat_ioctl = compat_ptr_ioctl,
1509 	.fasync = random_fasync,
1510 	.llseek = noop_llseek,
1511 	.splice_read = generic_file_splice_read,
1512 	.splice_write = iter_file_splice_write,
1513 };
1514 
1515 const struct file_operations urandom_fops = {
1516 	.read_iter = urandom_read_iter,
1517 	.write_iter = random_write_iter,
1518 	.unlocked_ioctl = random_ioctl,
1519 	.compat_ioctl = compat_ptr_ioctl,
1520 	.fasync = random_fasync,
1521 	.llseek = noop_llseek,
1522 	.splice_read = generic_file_splice_read,
1523 	.splice_write = iter_file_splice_write,
1524 };
1525 
1526 
1527 /********************************************************************
1528  *
1529  * Sysctl interface.
1530  *
1531  * These are partly unused legacy knobs with dummy values to not break
1532  * userspace and partly still useful things. They are usually accessible
1533  * in /proc/sys/kernel/random/ and are as follows:
1534  *
1535  * - boot_id - a UUID representing the current boot.
1536  *
1537  * - uuid - a random UUID, different each time the file is read.
1538  *
1539  * - poolsize - the number of bits of entropy that the input pool can
1540  *   hold, tied to the POOL_BITS constant.
1541  *
1542  * - entropy_avail - the number of bits of entropy currently in the
1543  *   input pool. Always <= poolsize.
1544  *
1545  * - write_wakeup_threshold - the amount of entropy in the input pool
1546  *   below which write polls to /dev/random will unblock, requesting
1547  *   more entropy, tied to the POOL_READY_BITS constant. It is writable
1548  *   to avoid breaking old userspaces, but writing to it does not
1549  *   change any behavior of the RNG.
1550  *
1551  * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1552  *   It is writable to avoid breaking old userspaces, but writing
1553  *   to it does not change any behavior of the RNG.
1554  *
1555  ********************************************************************/
1556 
1557 #ifdef CONFIG_SYSCTL
1558 
1559 #include <linux/sysctl.h>
1560 
1561 static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1562 static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
1563 static int sysctl_poolsize = POOL_BITS;
1564 static u8 sysctl_bootid[UUID_SIZE];
1565 
1566 /*
1567  * This function is used to return both the bootid UUID, and random
1568  * UUID. The difference is in whether table->data is NULL; if it is,
1569  * then a new UUID is generated and returned to the user.
1570  */
1571 static int proc_do_uuid(struct ctl_table *table, int write, void *buf,
1572 			size_t *lenp, loff_t *ppos)
1573 {
1574 	u8 tmp_uuid[UUID_SIZE], *uuid;
1575 	char uuid_string[UUID_STRING_LEN + 1];
1576 	struct ctl_table fake_table = {
1577 		.data = uuid_string,
1578 		.maxlen = UUID_STRING_LEN
1579 	};
1580 
1581 	if (write)
1582 		return -EPERM;
1583 
1584 	uuid = table->data;
1585 	if (!uuid) {
1586 		uuid = tmp_uuid;
1587 		generate_random_uuid(uuid);
1588 	} else {
1589 		static DEFINE_SPINLOCK(bootid_spinlock);
1590 
1591 		spin_lock(&bootid_spinlock);
1592 		if (!uuid[8])
1593 			generate_random_uuid(uuid);
1594 		spin_unlock(&bootid_spinlock);
1595 	}
1596 
1597 	snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
1598 	return proc_dostring(&fake_table, 0, buf, lenp, ppos);
1599 }
1600 
1601 /* The same as proc_dointvec, but writes don't change anything. */
1602 static int proc_do_rointvec(struct ctl_table *table, int write, void *buf,
1603 			    size_t *lenp, loff_t *ppos)
1604 {
1605 	return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos);
1606 }
1607 
1608 static struct ctl_table random_table[] = {
1609 	{
1610 		.procname	= "poolsize",
1611 		.data		= &sysctl_poolsize,
1612 		.maxlen		= sizeof(int),
1613 		.mode		= 0444,
1614 		.proc_handler	= proc_dointvec,
1615 	},
1616 	{
1617 		.procname	= "entropy_avail",
1618 		.data		= &input_pool.init_bits,
1619 		.maxlen		= sizeof(int),
1620 		.mode		= 0444,
1621 		.proc_handler	= proc_dointvec,
1622 	},
1623 	{
1624 		.procname	= "write_wakeup_threshold",
1625 		.data		= &sysctl_random_write_wakeup_bits,
1626 		.maxlen		= sizeof(int),
1627 		.mode		= 0644,
1628 		.proc_handler	= proc_do_rointvec,
1629 	},
1630 	{
1631 		.procname	= "urandom_min_reseed_secs",
1632 		.data		= &sysctl_random_min_urandom_seed,
1633 		.maxlen		= sizeof(int),
1634 		.mode		= 0644,
1635 		.proc_handler	= proc_do_rointvec,
1636 	},
1637 	{
1638 		.procname	= "boot_id",
1639 		.data		= &sysctl_bootid,
1640 		.mode		= 0444,
1641 		.proc_handler	= proc_do_uuid,
1642 	},
1643 	{
1644 		.procname	= "uuid",
1645 		.mode		= 0444,
1646 		.proc_handler	= proc_do_uuid,
1647 	},
1648 	{ }
1649 };
1650 
1651 /*
1652  * random_init() is called before sysctl_init(),
1653  * so we cannot call register_sysctl_init() in random_init()
1654  */
1655 static int __init random_sysctls_init(void)
1656 {
1657 	register_sysctl_init("kernel/random", random_table);
1658 	return 0;
1659 }
1660 device_initcall(random_sysctls_init);
1661 #endif
1662