xref: /linux-6.15/drivers/block/loop.c (revision c4399016)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - [email protected] Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <[email protected]> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, [email protected]
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <[email protected]> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bols�, <[email protected]>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <[email protected]>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <[email protected]>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations prepare_write and/or commit_write are not available on the
44  * backing filesystem.
45  * Anton Altaparmakov, 16 Feb 2005
46  *
47  * Still To Fix:
48  * - Advisory locking is ignored here.
49  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
50  *
51  */
52 
53 #include <linux/module.h>
54 #include <linux/moduleparam.h>
55 #include <linux/sched.h>
56 #include <linux/fs.h>
57 #include <linux/file.h>
58 #include <linux/stat.h>
59 #include <linux/errno.h>
60 #include <linux/major.h>
61 #include <linux/wait.h>
62 #include <linux/blkdev.h>
63 #include <linux/blkpg.h>
64 #include <linux/init.h>
65 #include <linux/smp_lock.h>
66 #include <linux/swap.h>
67 #include <linux/slab.h>
68 #include <linux/loop.h>
69 #include <linux/compat.h>
70 #include <linux/suspend.h>
71 #include <linux/writeback.h>
72 #include <linux/buffer_head.h>		/* for invalidate_bdev() */
73 #include <linux/completion.h>
74 #include <linux/highmem.h>
75 #include <linux/gfp.h>
76 #include <linux/kthread.h>
77 #include <linux/splice.h>
78 
79 #include <asm/uaccess.h>
80 
81 static LIST_HEAD(loop_devices);
82 static DEFINE_MUTEX(loop_devices_mutex);
83 
84 /*
85  * Transfer functions
86  */
87 static int transfer_none(struct loop_device *lo, int cmd,
88 			 struct page *raw_page, unsigned raw_off,
89 			 struct page *loop_page, unsigned loop_off,
90 			 int size, sector_t real_block)
91 {
92 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
93 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
94 
95 	if (cmd == READ)
96 		memcpy(loop_buf, raw_buf, size);
97 	else
98 		memcpy(raw_buf, loop_buf, size);
99 
100 	kunmap_atomic(raw_buf, KM_USER0);
101 	kunmap_atomic(loop_buf, KM_USER1);
102 	cond_resched();
103 	return 0;
104 }
105 
106 static int transfer_xor(struct loop_device *lo, int cmd,
107 			struct page *raw_page, unsigned raw_off,
108 			struct page *loop_page, unsigned loop_off,
109 			int size, sector_t real_block)
110 {
111 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
112 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
113 	char *in, *out, *key;
114 	int i, keysize;
115 
116 	if (cmd == READ) {
117 		in = raw_buf;
118 		out = loop_buf;
119 	} else {
120 		in = loop_buf;
121 		out = raw_buf;
122 	}
123 
124 	key = lo->lo_encrypt_key;
125 	keysize = lo->lo_encrypt_key_size;
126 	for (i = 0; i < size; i++)
127 		*out++ = *in++ ^ key[(i & 511) % keysize];
128 
129 	kunmap_atomic(raw_buf, KM_USER0);
130 	kunmap_atomic(loop_buf, KM_USER1);
131 	cond_resched();
132 	return 0;
133 }
134 
135 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
136 {
137 	if (unlikely(info->lo_encrypt_key_size <= 0))
138 		return -EINVAL;
139 	return 0;
140 }
141 
142 static struct loop_func_table none_funcs = {
143 	.number = LO_CRYPT_NONE,
144 	.transfer = transfer_none,
145 };
146 
147 static struct loop_func_table xor_funcs = {
148 	.number = LO_CRYPT_XOR,
149 	.transfer = transfer_xor,
150 	.init = xor_init
151 };
152 
153 /* xfer_funcs[0] is special - its release function is never called */
154 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
155 	&none_funcs,
156 	&xor_funcs
157 };
158 
159 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
160 {
161 	loff_t size, offset, loopsize;
162 
163 	/* Compute loopsize in bytes */
164 	size = i_size_read(file->f_mapping->host);
165 	offset = lo->lo_offset;
166 	loopsize = size - offset;
167 	if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
168 		loopsize = lo->lo_sizelimit;
169 
170 	/*
171 	 * Unfortunately, if we want to do I/O on the device,
172 	 * the number of 512-byte sectors has to fit into a sector_t.
173 	 */
174 	return loopsize >> 9;
175 }
176 
177 static int
178 figure_loop_size(struct loop_device *lo)
179 {
180 	loff_t size = get_loop_size(lo, lo->lo_backing_file);
181 	sector_t x = (sector_t)size;
182 
183 	if (unlikely((loff_t)x != size))
184 		return -EFBIG;
185 
186 	set_capacity(lo->lo_disk, x);
187 	return 0;
188 }
189 
190 static inline int
191 lo_do_transfer(struct loop_device *lo, int cmd,
192 	       struct page *rpage, unsigned roffs,
193 	       struct page *lpage, unsigned loffs,
194 	       int size, sector_t rblock)
195 {
196 	if (unlikely(!lo->transfer))
197 		return 0;
198 
199 	return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
200 }
201 
202 /**
203  * do_lo_send_aops - helper for writing data to a loop device
204  *
205  * This is the fast version for backing filesystems which implement the address
206  * space operations prepare_write and commit_write.
207  */
208 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
209 		int bsize, loff_t pos, struct page *page)
210 {
211 	struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
212 	struct address_space *mapping = file->f_mapping;
213 	const struct address_space_operations *aops = mapping->a_ops;
214 	pgoff_t index;
215 	unsigned offset, bv_offs;
216 	int len, ret;
217 
218 	mutex_lock(&mapping->host->i_mutex);
219 	index = pos >> PAGE_CACHE_SHIFT;
220 	offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
221 	bv_offs = bvec->bv_offset;
222 	len = bvec->bv_len;
223 	while (len > 0) {
224 		sector_t IV;
225 		unsigned size;
226 		int transfer_result;
227 
228 		IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
229 		size = PAGE_CACHE_SIZE - offset;
230 		if (size > len)
231 			size = len;
232 		page = grab_cache_page(mapping, index);
233 		if (unlikely(!page))
234 			goto fail;
235 		ret = aops->prepare_write(file, page, offset,
236 					  offset + size);
237 		if (unlikely(ret)) {
238 			if (ret == AOP_TRUNCATED_PAGE) {
239 				page_cache_release(page);
240 				continue;
241 			}
242 			goto unlock;
243 		}
244 		transfer_result = lo_do_transfer(lo, WRITE, page, offset,
245 				bvec->bv_page, bv_offs, size, IV);
246 		if (unlikely(transfer_result)) {
247 			/*
248 			 * The transfer failed, but we still write the data to
249 			 * keep prepare/commit calls balanced.
250 			 */
251 			printk(KERN_ERR "loop: transfer error block %llu\n",
252 			       (unsigned long long)index);
253 			zero_user_page(page, offset, size, KM_USER0);
254 		}
255 		flush_dcache_page(page);
256 		ret = aops->commit_write(file, page, offset,
257 					 offset + size);
258 		if (unlikely(ret)) {
259 			if (ret == AOP_TRUNCATED_PAGE) {
260 				page_cache_release(page);
261 				continue;
262 			}
263 			goto unlock;
264 		}
265 		if (unlikely(transfer_result))
266 			goto unlock;
267 		bv_offs += size;
268 		len -= size;
269 		offset = 0;
270 		index++;
271 		pos += size;
272 		unlock_page(page);
273 		page_cache_release(page);
274 	}
275 	ret = 0;
276 out:
277 	mutex_unlock(&mapping->host->i_mutex);
278 	return ret;
279 unlock:
280 	unlock_page(page);
281 	page_cache_release(page);
282 fail:
283 	ret = -1;
284 	goto out;
285 }
286 
287 /**
288  * __do_lo_send_write - helper for writing data to a loop device
289  *
290  * This helper just factors out common code between do_lo_send_direct_write()
291  * and do_lo_send_write().
292  */
293 static int __do_lo_send_write(struct file *file,
294 		u8 *buf, const int len, loff_t pos)
295 {
296 	ssize_t bw;
297 	mm_segment_t old_fs = get_fs();
298 
299 	set_fs(get_ds());
300 	bw = file->f_op->write(file, buf, len, &pos);
301 	set_fs(old_fs);
302 	if (likely(bw == len))
303 		return 0;
304 	printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
305 			(unsigned long long)pos, len);
306 	if (bw >= 0)
307 		bw = -EIO;
308 	return bw;
309 }
310 
311 /**
312  * do_lo_send_direct_write - helper for writing data to a loop device
313  *
314  * This is the fast, non-transforming version for backing filesystems which do
315  * not implement the address space operations prepare_write and commit_write.
316  * It uses the write file operation which should be present on all writeable
317  * filesystems.
318  */
319 static int do_lo_send_direct_write(struct loop_device *lo,
320 		struct bio_vec *bvec, int bsize, loff_t pos, struct page *page)
321 {
322 	ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
323 			kmap(bvec->bv_page) + bvec->bv_offset,
324 			bvec->bv_len, pos);
325 	kunmap(bvec->bv_page);
326 	cond_resched();
327 	return bw;
328 }
329 
330 /**
331  * do_lo_send_write - helper for writing data to a loop device
332  *
333  * This is the slow, transforming version for filesystems which do not
334  * implement the address space operations prepare_write and commit_write.  It
335  * uses the write file operation which should be present on all writeable
336  * filesystems.
337  *
338  * Using fops->write is slower than using aops->{prepare,commit}_write in the
339  * transforming case because we need to double buffer the data as we cannot do
340  * the transformations in place as we do not have direct access to the
341  * destination pages of the backing file.
342  */
343 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
344 		int bsize, loff_t pos, struct page *page)
345 {
346 	int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
347 			bvec->bv_offset, bvec->bv_len, pos >> 9);
348 	if (likely(!ret))
349 		return __do_lo_send_write(lo->lo_backing_file,
350 				page_address(page), bvec->bv_len,
351 				pos);
352 	printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
353 			"length %i.\n", (unsigned long long)pos, bvec->bv_len);
354 	if (ret > 0)
355 		ret = -EIO;
356 	return ret;
357 }
358 
359 static int lo_send(struct loop_device *lo, struct bio *bio, int bsize,
360 		loff_t pos)
361 {
362 	int (*do_lo_send)(struct loop_device *, struct bio_vec *, int, loff_t,
363 			struct page *page);
364 	struct bio_vec *bvec;
365 	struct page *page = NULL;
366 	int i, ret = 0;
367 
368 	do_lo_send = do_lo_send_aops;
369 	if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
370 		do_lo_send = do_lo_send_direct_write;
371 		if (lo->transfer != transfer_none) {
372 			page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
373 			if (unlikely(!page))
374 				goto fail;
375 			kmap(page);
376 			do_lo_send = do_lo_send_write;
377 		}
378 	}
379 	bio_for_each_segment(bvec, bio, i) {
380 		ret = do_lo_send(lo, bvec, bsize, pos, page);
381 		if (ret < 0)
382 			break;
383 		pos += bvec->bv_len;
384 	}
385 	if (page) {
386 		kunmap(page);
387 		__free_page(page);
388 	}
389 out:
390 	return ret;
391 fail:
392 	printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
393 	ret = -ENOMEM;
394 	goto out;
395 }
396 
397 struct lo_read_data {
398 	struct loop_device *lo;
399 	struct page *page;
400 	unsigned offset;
401 	int bsize;
402 };
403 
404 static int
405 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
406 		struct splice_desc *sd)
407 {
408 	struct lo_read_data *p = sd->u.data;
409 	struct loop_device *lo = p->lo;
410 	struct page *page = buf->page;
411 	sector_t IV;
412 	size_t size;
413 	int ret;
414 
415 	ret = buf->ops->confirm(pipe, buf);
416 	if (unlikely(ret))
417 		return ret;
418 
419 	IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
420 							(buf->offset >> 9);
421 	size = sd->len;
422 	if (size > p->bsize)
423 		size = p->bsize;
424 
425 	if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
426 		printk(KERN_ERR "loop: transfer error block %ld\n",
427 		       page->index);
428 		size = -EINVAL;
429 	}
430 
431 	flush_dcache_page(p->page);
432 
433 	if (size > 0)
434 		p->offset += size;
435 
436 	return size;
437 }
438 
439 static int
440 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
441 {
442 	return __splice_from_pipe(pipe, sd, lo_splice_actor);
443 }
444 
445 static int
446 do_lo_receive(struct loop_device *lo,
447 	      struct bio_vec *bvec, int bsize, loff_t pos)
448 {
449 	struct lo_read_data cookie;
450 	struct splice_desc sd;
451 	struct file *file;
452 	long retval;
453 
454 	cookie.lo = lo;
455 	cookie.page = bvec->bv_page;
456 	cookie.offset = bvec->bv_offset;
457 	cookie.bsize = bsize;
458 
459 	sd.len = 0;
460 	sd.total_len = bvec->bv_len;
461 	sd.flags = 0;
462 	sd.pos = pos;
463 	sd.u.data = &cookie;
464 
465 	file = lo->lo_backing_file;
466 	retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
467 
468 	if (retval < 0)
469 		return retval;
470 
471 	return 0;
472 }
473 
474 static int
475 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
476 {
477 	struct bio_vec *bvec;
478 	int i, ret = 0;
479 
480 	bio_for_each_segment(bvec, bio, i) {
481 		ret = do_lo_receive(lo, bvec, bsize, pos);
482 		if (ret < 0)
483 			break;
484 		pos += bvec->bv_len;
485 	}
486 	return ret;
487 }
488 
489 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
490 {
491 	loff_t pos;
492 	int ret;
493 
494 	pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
495 	if (bio_rw(bio) == WRITE)
496 		ret = lo_send(lo, bio, lo->lo_blocksize, pos);
497 	else
498 		ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
499 	return ret;
500 }
501 
502 /*
503  * Add bio to back of pending list
504  */
505 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
506 {
507 	if (lo->lo_biotail) {
508 		lo->lo_biotail->bi_next = bio;
509 		lo->lo_biotail = bio;
510 	} else
511 		lo->lo_bio = lo->lo_biotail = bio;
512 }
513 
514 /*
515  * Grab first pending buffer
516  */
517 static struct bio *loop_get_bio(struct loop_device *lo)
518 {
519 	struct bio *bio;
520 
521 	if ((bio = lo->lo_bio)) {
522 		if (bio == lo->lo_biotail)
523 			lo->lo_biotail = NULL;
524 		lo->lo_bio = bio->bi_next;
525 		bio->bi_next = NULL;
526 	}
527 
528 	return bio;
529 }
530 
531 static int loop_make_request(request_queue_t *q, struct bio *old_bio)
532 {
533 	struct loop_device *lo = q->queuedata;
534 	int rw = bio_rw(old_bio);
535 
536 	if (rw == READA)
537 		rw = READ;
538 
539 	BUG_ON(!lo || (rw != READ && rw != WRITE));
540 
541 	spin_lock_irq(&lo->lo_lock);
542 	if (lo->lo_state != Lo_bound)
543 		goto out;
544 	if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
545 		goto out;
546 	loop_add_bio(lo, old_bio);
547 	wake_up(&lo->lo_event);
548 	spin_unlock_irq(&lo->lo_lock);
549 	return 0;
550 
551 out:
552 	spin_unlock_irq(&lo->lo_lock);
553 	bio_io_error(old_bio, old_bio->bi_size);
554 	return 0;
555 }
556 
557 /*
558  * kick off io on the underlying address space
559  */
560 static void loop_unplug(request_queue_t *q)
561 {
562 	struct loop_device *lo = q->queuedata;
563 
564 	clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags);
565 	blk_run_address_space(lo->lo_backing_file->f_mapping);
566 }
567 
568 struct switch_request {
569 	struct file *file;
570 	struct completion wait;
571 };
572 
573 static void do_loop_switch(struct loop_device *, struct switch_request *);
574 
575 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
576 {
577 	if (unlikely(!bio->bi_bdev)) {
578 		do_loop_switch(lo, bio->bi_private);
579 		bio_put(bio);
580 	} else {
581 		int ret = do_bio_filebacked(lo, bio);
582 		bio_endio(bio, bio->bi_size, ret);
583 	}
584 }
585 
586 /*
587  * worker thread that handles reads/writes to file backed loop devices,
588  * to avoid blocking in our make_request_fn. it also does loop decrypting
589  * on reads for block backed loop, as that is too heavy to do from
590  * b_end_io context where irqs may be disabled.
591  *
592  * Loop explanation:  loop_clr_fd() sets lo_state to Lo_rundown before
593  * calling kthread_stop().  Therefore once kthread_should_stop() is
594  * true, make_request will not place any more requests.  Therefore
595  * once kthread_should_stop() is true and lo_bio is NULL, we are
596  * done with the loop.
597  */
598 static int loop_thread(void *data)
599 {
600 	struct loop_device *lo = data;
601 	struct bio *bio;
602 
603 	/*
604 	 * loop can be used in an encrypted device,
605 	 * hence, it mustn't be stopped at all
606 	 * because it could be indirectly used during suspension
607 	 */
608 	current->flags |= PF_NOFREEZE;
609 
610 	set_user_nice(current, -20);
611 
612 	while (!kthread_should_stop() || lo->lo_bio) {
613 
614 		wait_event_interruptible(lo->lo_event,
615 				lo->lo_bio || kthread_should_stop());
616 
617 		if (!lo->lo_bio)
618 			continue;
619 		spin_lock_irq(&lo->lo_lock);
620 		bio = loop_get_bio(lo);
621 		spin_unlock_irq(&lo->lo_lock);
622 
623 		BUG_ON(!bio);
624 		loop_handle_bio(lo, bio);
625 	}
626 
627 	return 0;
628 }
629 
630 /*
631  * loop_switch performs the hard work of switching a backing store.
632  * First it needs to flush existing IO, it does this by sending a magic
633  * BIO down the pipe. The completion of this BIO does the actual switch.
634  */
635 static int loop_switch(struct loop_device *lo, struct file *file)
636 {
637 	struct switch_request w;
638 	struct bio *bio = bio_alloc(GFP_KERNEL, 1);
639 	if (!bio)
640 		return -ENOMEM;
641 	init_completion(&w.wait);
642 	w.file = file;
643 	bio->bi_private = &w;
644 	bio->bi_bdev = NULL;
645 	loop_make_request(lo->lo_queue, bio);
646 	wait_for_completion(&w.wait);
647 	return 0;
648 }
649 
650 /*
651  * Do the actual switch; called from the BIO completion routine
652  */
653 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
654 {
655 	struct file *file = p->file;
656 	struct file *old_file = lo->lo_backing_file;
657 	struct address_space *mapping = file->f_mapping;
658 
659 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
660 	lo->lo_backing_file = file;
661 	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
662 		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
663 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
664 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
665 	complete(&p->wait);
666 }
667 
668 
669 /*
670  * loop_change_fd switched the backing store of a loopback device to
671  * a new file. This is useful for operating system installers to free up
672  * the original file and in High Availability environments to switch to
673  * an alternative location for the content in case of server meltdown.
674  * This can only work if the loop device is used read-only, and if the
675  * new backing store is the same size and type as the old backing store.
676  */
677 static int loop_change_fd(struct loop_device *lo, struct file *lo_file,
678 		       struct block_device *bdev, unsigned int arg)
679 {
680 	struct file	*file, *old_file;
681 	struct inode	*inode;
682 	int		error;
683 
684 	error = -ENXIO;
685 	if (lo->lo_state != Lo_bound)
686 		goto out;
687 
688 	/* the loop device has to be read-only */
689 	error = -EINVAL;
690 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
691 		goto out;
692 
693 	error = -EBADF;
694 	file = fget(arg);
695 	if (!file)
696 		goto out;
697 
698 	inode = file->f_mapping->host;
699 	old_file = lo->lo_backing_file;
700 
701 	error = -EINVAL;
702 
703 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
704 		goto out_putf;
705 
706 	/* new backing store needs to support loop (eg splice_read) */
707 	if (!inode->i_fop->splice_read)
708 		goto out_putf;
709 
710 	/* size of the new backing store needs to be the same */
711 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
712 		goto out_putf;
713 
714 	/* and ... switch */
715 	error = loop_switch(lo, file);
716 	if (error)
717 		goto out_putf;
718 
719 	fput(old_file);
720 	return 0;
721 
722  out_putf:
723 	fput(file);
724  out:
725 	return error;
726 }
727 
728 static inline int is_loop_device(struct file *file)
729 {
730 	struct inode *i = file->f_mapping->host;
731 
732 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
733 }
734 
735 static int loop_set_fd(struct loop_device *lo, struct file *lo_file,
736 		       struct block_device *bdev, unsigned int arg)
737 {
738 	struct file	*file, *f;
739 	struct inode	*inode;
740 	struct address_space *mapping;
741 	unsigned lo_blocksize;
742 	int		lo_flags = 0;
743 	int		error;
744 	loff_t		size;
745 
746 	/* This is safe, since we have a reference from open(). */
747 	__module_get(THIS_MODULE);
748 
749 	error = -EBADF;
750 	file = fget(arg);
751 	if (!file)
752 		goto out;
753 
754 	error = -EBUSY;
755 	if (lo->lo_state != Lo_unbound)
756 		goto out_putf;
757 
758 	/* Avoid recursion */
759 	f = file;
760 	while (is_loop_device(f)) {
761 		struct loop_device *l;
762 
763 		if (f->f_mapping->host->i_rdev == lo_file->f_mapping->host->i_rdev)
764 			goto out_putf;
765 
766 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
767 		if (l->lo_state == Lo_unbound) {
768 			error = -EINVAL;
769 			goto out_putf;
770 		}
771 		f = l->lo_backing_file;
772 	}
773 
774 	mapping = file->f_mapping;
775 	inode = mapping->host;
776 
777 	if (!(file->f_mode & FMODE_WRITE))
778 		lo_flags |= LO_FLAGS_READ_ONLY;
779 
780 	error = -EINVAL;
781 	if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
782 		const struct address_space_operations *aops = mapping->a_ops;
783 		/*
784 		 * If we can't read - sorry. If we only can't write - well,
785 		 * it's going to be read-only.
786 		 */
787 		if (!file->f_op->splice_read)
788 			goto out_putf;
789 		if (aops->prepare_write && aops->commit_write)
790 			lo_flags |= LO_FLAGS_USE_AOPS;
791 		if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
792 			lo_flags |= LO_FLAGS_READ_ONLY;
793 
794 		lo_blocksize = S_ISBLK(inode->i_mode) ?
795 			inode->i_bdev->bd_block_size : PAGE_SIZE;
796 
797 		error = 0;
798 	} else {
799 		goto out_putf;
800 	}
801 
802 	size = get_loop_size(lo, file);
803 
804 	if ((loff_t)(sector_t)size != size) {
805 		error = -EFBIG;
806 		goto out_putf;
807 	}
808 
809 	if (!(lo_file->f_mode & FMODE_WRITE))
810 		lo_flags |= LO_FLAGS_READ_ONLY;
811 
812 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
813 
814 	lo->lo_blocksize = lo_blocksize;
815 	lo->lo_device = bdev;
816 	lo->lo_flags = lo_flags;
817 	lo->lo_backing_file = file;
818 	lo->transfer = transfer_none;
819 	lo->ioctl = NULL;
820 	lo->lo_sizelimit = 0;
821 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
822 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
823 
824 	lo->lo_bio = lo->lo_biotail = NULL;
825 
826 	/*
827 	 * set queue make_request_fn, and add limits based on lower level
828 	 * device
829 	 */
830 	blk_queue_make_request(lo->lo_queue, loop_make_request);
831 	lo->lo_queue->queuedata = lo;
832 	lo->lo_queue->unplug_fn = loop_unplug;
833 
834 	set_capacity(lo->lo_disk, size);
835 	bd_set_size(bdev, size << 9);
836 
837 	set_blocksize(bdev, lo_blocksize);
838 
839 	lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
840 						lo->lo_number);
841 	if (IS_ERR(lo->lo_thread)) {
842 		error = PTR_ERR(lo->lo_thread);
843 		goto out_clr;
844 	}
845 	lo->lo_state = Lo_bound;
846 	wake_up_process(lo->lo_thread);
847 	return 0;
848 
849 out_clr:
850 	lo->lo_thread = NULL;
851 	lo->lo_device = NULL;
852 	lo->lo_backing_file = NULL;
853 	lo->lo_flags = 0;
854 	set_capacity(lo->lo_disk, 0);
855 	invalidate_bdev(bdev);
856 	bd_set_size(bdev, 0);
857 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
858 	lo->lo_state = Lo_unbound;
859  out_putf:
860 	fput(file);
861  out:
862 	/* This is safe: open() is still holding a reference. */
863 	module_put(THIS_MODULE);
864 	return error;
865 }
866 
867 static int
868 loop_release_xfer(struct loop_device *lo)
869 {
870 	int err = 0;
871 	struct loop_func_table *xfer = lo->lo_encryption;
872 
873 	if (xfer) {
874 		if (xfer->release)
875 			err = xfer->release(lo);
876 		lo->transfer = NULL;
877 		lo->lo_encryption = NULL;
878 		module_put(xfer->owner);
879 	}
880 	return err;
881 }
882 
883 static int
884 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
885 	       const struct loop_info64 *i)
886 {
887 	int err = 0;
888 
889 	if (xfer) {
890 		struct module *owner = xfer->owner;
891 
892 		if (!try_module_get(owner))
893 			return -EINVAL;
894 		if (xfer->init)
895 			err = xfer->init(lo, i);
896 		if (err)
897 			module_put(owner);
898 		else
899 			lo->lo_encryption = xfer;
900 	}
901 	return err;
902 }
903 
904 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
905 {
906 	struct file *filp = lo->lo_backing_file;
907 	gfp_t gfp = lo->old_gfp_mask;
908 
909 	if (lo->lo_state != Lo_bound)
910 		return -ENXIO;
911 
912 	if (lo->lo_refcnt > 1)	/* we needed one fd for the ioctl */
913 		return -EBUSY;
914 
915 	if (filp == NULL)
916 		return -EINVAL;
917 
918 	spin_lock_irq(&lo->lo_lock);
919 	lo->lo_state = Lo_rundown;
920 	spin_unlock_irq(&lo->lo_lock);
921 
922 	kthread_stop(lo->lo_thread);
923 
924 	lo->lo_backing_file = NULL;
925 
926 	loop_release_xfer(lo);
927 	lo->transfer = NULL;
928 	lo->ioctl = NULL;
929 	lo->lo_device = NULL;
930 	lo->lo_encryption = NULL;
931 	lo->lo_offset = 0;
932 	lo->lo_sizelimit = 0;
933 	lo->lo_encrypt_key_size = 0;
934 	lo->lo_flags = 0;
935 	lo->lo_thread = NULL;
936 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
937 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
938 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
939 	invalidate_bdev(bdev);
940 	set_capacity(lo->lo_disk, 0);
941 	bd_set_size(bdev, 0);
942 	mapping_set_gfp_mask(filp->f_mapping, gfp);
943 	lo->lo_state = Lo_unbound;
944 	fput(filp);
945 	/* This is safe: open() is still holding a reference. */
946 	module_put(THIS_MODULE);
947 	return 0;
948 }
949 
950 static int
951 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
952 {
953 	int err;
954 	struct loop_func_table *xfer;
955 
956 	if (lo->lo_encrypt_key_size && lo->lo_key_owner != current->uid &&
957 	    !capable(CAP_SYS_ADMIN))
958 		return -EPERM;
959 	if (lo->lo_state != Lo_bound)
960 		return -ENXIO;
961 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
962 		return -EINVAL;
963 
964 	err = loop_release_xfer(lo);
965 	if (err)
966 		return err;
967 
968 	if (info->lo_encrypt_type) {
969 		unsigned int type = info->lo_encrypt_type;
970 
971 		if (type >= MAX_LO_CRYPT)
972 			return -EINVAL;
973 		xfer = xfer_funcs[type];
974 		if (xfer == NULL)
975 			return -EINVAL;
976 	} else
977 		xfer = NULL;
978 
979 	err = loop_init_xfer(lo, xfer, info);
980 	if (err)
981 		return err;
982 
983 	if (lo->lo_offset != info->lo_offset ||
984 	    lo->lo_sizelimit != info->lo_sizelimit) {
985 		lo->lo_offset = info->lo_offset;
986 		lo->lo_sizelimit = info->lo_sizelimit;
987 		if (figure_loop_size(lo))
988 			return -EFBIG;
989 	}
990 
991 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
992 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
993 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
994 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
995 
996 	if (!xfer)
997 		xfer = &none_funcs;
998 	lo->transfer = xfer->transfer;
999 	lo->ioctl = xfer->ioctl;
1000 
1001 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1002 	lo->lo_init[0] = info->lo_init[0];
1003 	lo->lo_init[1] = info->lo_init[1];
1004 	if (info->lo_encrypt_key_size) {
1005 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1006 		       info->lo_encrypt_key_size);
1007 		lo->lo_key_owner = current->uid;
1008 	}
1009 
1010 	return 0;
1011 }
1012 
1013 static int
1014 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1015 {
1016 	struct file *file = lo->lo_backing_file;
1017 	struct kstat stat;
1018 	int error;
1019 
1020 	if (lo->lo_state != Lo_bound)
1021 		return -ENXIO;
1022 	error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1023 	if (error)
1024 		return error;
1025 	memset(info, 0, sizeof(*info));
1026 	info->lo_number = lo->lo_number;
1027 	info->lo_device = huge_encode_dev(stat.dev);
1028 	info->lo_inode = stat.ino;
1029 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1030 	info->lo_offset = lo->lo_offset;
1031 	info->lo_sizelimit = lo->lo_sizelimit;
1032 	info->lo_flags = lo->lo_flags;
1033 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1034 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1035 	info->lo_encrypt_type =
1036 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1037 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1038 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1039 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1040 		       lo->lo_encrypt_key_size);
1041 	}
1042 	return 0;
1043 }
1044 
1045 static void
1046 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1047 {
1048 	memset(info64, 0, sizeof(*info64));
1049 	info64->lo_number = info->lo_number;
1050 	info64->lo_device = info->lo_device;
1051 	info64->lo_inode = info->lo_inode;
1052 	info64->lo_rdevice = info->lo_rdevice;
1053 	info64->lo_offset = info->lo_offset;
1054 	info64->lo_sizelimit = 0;
1055 	info64->lo_encrypt_type = info->lo_encrypt_type;
1056 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1057 	info64->lo_flags = info->lo_flags;
1058 	info64->lo_init[0] = info->lo_init[0];
1059 	info64->lo_init[1] = info->lo_init[1];
1060 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1061 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1062 	else
1063 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1064 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1065 }
1066 
1067 static int
1068 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1069 {
1070 	memset(info, 0, sizeof(*info));
1071 	info->lo_number = info64->lo_number;
1072 	info->lo_device = info64->lo_device;
1073 	info->lo_inode = info64->lo_inode;
1074 	info->lo_rdevice = info64->lo_rdevice;
1075 	info->lo_offset = info64->lo_offset;
1076 	info->lo_encrypt_type = info64->lo_encrypt_type;
1077 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1078 	info->lo_flags = info64->lo_flags;
1079 	info->lo_init[0] = info64->lo_init[0];
1080 	info->lo_init[1] = info64->lo_init[1];
1081 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1082 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1083 	else
1084 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1085 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1086 
1087 	/* error in case values were truncated */
1088 	if (info->lo_device != info64->lo_device ||
1089 	    info->lo_rdevice != info64->lo_rdevice ||
1090 	    info->lo_inode != info64->lo_inode ||
1091 	    info->lo_offset != info64->lo_offset)
1092 		return -EOVERFLOW;
1093 
1094 	return 0;
1095 }
1096 
1097 static int
1098 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1099 {
1100 	struct loop_info info;
1101 	struct loop_info64 info64;
1102 
1103 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1104 		return -EFAULT;
1105 	loop_info64_from_old(&info, &info64);
1106 	return loop_set_status(lo, &info64);
1107 }
1108 
1109 static int
1110 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1111 {
1112 	struct loop_info64 info64;
1113 
1114 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1115 		return -EFAULT;
1116 	return loop_set_status(lo, &info64);
1117 }
1118 
1119 static int
1120 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1121 	struct loop_info info;
1122 	struct loop_info64 info64;
1123 	int err = 0;
1124 
1125 	if (!arg)
1126 		err = -EINVAL;
1127 	if (!err)
1128 		err = loop_get_status(lo, &info64);
1129 	if (!err)
1130 		err = loop_info64_to_old(&info64, &info);
1131 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1132 		err = -EFAULT;
1133 
1134 	return err;
1135 }
1136 
1137 static int
1138 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1139 	struct loop_info64 info64;
1140 	int err = 0;
1141 
1142 	if (!arg)
1143 		err = -EINVAL;
1144 	if (!err)
1145 		err = loop_get_status(lo, &info64);
1146 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1147 		err = -EFAULT;
1148 
1149 	return err;
1150 }
1151 
1152 static int lo_ioctl(struct inode * inode, struct file * file,
1153 	unsigned int cmd, unsigned long arg)
1154 {
1155 	struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1156 	int err;
1157 
1158 	mutex_lock(&lo->lo_ctl_mutex);
1159 	switch (cmd) {
1160 	case LOOP_SET_FD:
1161 		err = loop_set_fd(lo, file, inode->i_bdev, arg);
1162 		break;
1163 	case LOOP_CHANGE_FD:
1164 		err = loop_change_fd(lo, file, inode->i_bdev, arg);
1165 		break;
1166 	case LOOP_CLR_FD:
1167 		err = loop_clr_fd(lo, inode->i_bdev);
1168 		break;
1169 	case LOOP_SET_STATUS:
1170 		err = loop_set_status_old(lo, (struct loop_info __user *) arg);
1171 		break;
1172 	case LOOP_GET_STATUS:
1173 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1174 		break;
1175 	case LOOP_SET_STATUS64:
1176 		err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
1177 		break;
1178 	case LOOP_GET_STATUS64:
1179 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1180 		break;
1181 	default:
1182 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1183 	}
1184 	mutex_unlock(&lo->lo_ctl_mutex);
1185 	return err;
1186 }
1187 
1188 #ifdef CONFIG_COMPAT
1189 struct compat_loop_info {
1190 	compat_int_t	lo_number;      /* ioctl r/o */
1191 	compat_dev_t	lo_device;      /* ioctl r/o */
1192 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1193 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1194 	compat_int_t	lo_offset;
1195 	compat_int_t	lo_encrypt_type;
1196 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1197 	compat_int_t	lo_flags;       /* ioctl r/o */
1198 	char		lo_name[LO_NAME_SIZE];
1199 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1200 	compat_ulong_t	lo_init[2];
1201 	char		reserved[4];
1202 };
1203 
1204 /*
1205  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1206  * - noinlined to reduce stack space usage in main part of driver
1207  */
1208 static noinline int
1209 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1210 			struct loop_info64 *info64)
1211 {
1212 	struct compat_loop_info info;
1213 
1214 	if (copy_from_user(&info, arg, sizeof(info)))
1215 		return -EFAULT;
1216 
1217 	memset(info64, 0, sizeof(*info64));
1218 	info64->lo_number = info.lo_number;
1219 	info64->lo_device = info.lo_device;
1220 	info64->lo_inode = info.lo_inode;
1221 	info64->lo_rdevice = info.lo_rdevice;
1222 	info64->lo_offset = info.lo_offset;
1223 	info64->lo_sizelimit = 0;
1224 	info64->lo_encrypt_type = info.lo_encrypt_type;
1225 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1226 	info64->lo_flags = info.lo_flags;
1227 	info64->lo_init[0] = info.lo_init[0];
1228 	info64->lo_init[1] = info.lo_init[1];
1229 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1230 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1231 	else
1232 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1233 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1234 	return 0;
1235 }
1236 
1237 /*
1238  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1239  * - noinlined to reduce stack space usage in main part of driver
1240  */
1241 static noinline int
1242 loop_info64_to_compat(const struct loop_info64 *info64,
1243 		      struct compat_loop_info __user *arg)
1244 {
1245 	struct compat_loop_info info;
1246 
1247 	memset(&info, 0, sizeof(info));
1248 	info.lo_number = info64->lo_number;
1249 	info.lo_device = info64->lo_device;
1250 	info.lo_inode = info64->lo_inode;
1251 	info.lo_rdevice = info64->lo_rdevice;
1252 	info.lo_offset = info64->lo_offset;
1253 	info.lo_encrypt_type = info64->lo_encrypt_type;
1254 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1255 	info.lo_flags = info64->lo_flags;
1256 	info.lo_init[0] = info64->lo_init[0];
1257 	info.lo_init[1] = info64->lo_init[1];
1258 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1259 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1260 	else
1261 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1262 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1263 
1264 	/* error in case values were truncated */
1265 	if (info.lo_device != info64->lo_device ||
1266 	    info.lo_rdevice != info64->lo_rdevice ||
1267 	    info.lo_inode != info64->lo_inode ||
1268 	    info.lo_offset != info64->lo_offset ||
1269 	    info.lo_init[0] != info64->lo_init[0] ||
1270 	    info.lo_init[1] != info64->lo_init[1])
1271 		return -EOVERFLOW;
1272 
1273 	if (copy_to_user(arg, &info, sizeof(info)))
1274 		return -EFAULT;
1275 	return 0;
1276 }
1277 
1278 static int
1279 loop_set_status_compat(struct loop_device *lo,
1280 		       const struct compat_loop_info __user *arg)
1281 {
1282 	struct loop_info64 info64;
1283 	int ret;
1284 
1285 	ret = loop_info64_from_compat(arg, &info64);
1286 	if (ret < 0)
1287 		return ret;
1288 	return loop_set_status(lo, &info64);
1289 }
1290 
1291 static int
1292 loop_get_status_compat(struct loop_device *lo,
1293 		       struct compat_loop_info __user *arg)
1294 {
1295 	struct loop_info64 info64;
1296 	int err = 0;
1297 
1298 	if (!arg)
1299 		err = -EINVAL;
1300 	if (!err)
1301 		err = loop_get_status(lo, &info64);
1302 	if (!err)
1303 		err = loop_info64_to_compat(&info64, arg);
1304 	return err;
1305 }
1306 
1307 static long lo_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1308 {
1309 	struct inode *inode = file->f_path.dentry->d_inode;
1310 	struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1311 	int err;
1312 
1313 	lock_kernel();
1314 	switch(cmd) {
1315 	case LOOP_SET_STATUS:
1316 		mutex_lock(&lo->lo_ctl_mutex);
1317 		err = loop_set_status_compat(
1318 			lo, (const struct compat_loop_info __user *) arg);
1319 		mutex_unlock(&lo->lo_ctl_mutex);
1320 		break;
1321 	case LOOP_GET_STATUS:
1322 		mutex_lock(&lo->lo_ctl_mutex);
1323 		err = loop_get_status_compat(
1324 			lo, (struct compat_loop_info __user *) arg);
1325 		mutex_unlock(&lo->lo_ctl_mutex);
1326 		break;
1327 	case LOOP_CLR_FD:
1328 	case LOOP_GET_STATUS64:
1329 	case LOOP_SET_STATUS64:
1330 		arg = (unsigned long) compat_ptr(arg);
1331 	case LOOP_SET_FD:
1332 	case LOOP_CHANGE_FD:
1333 		err = lo_ioctl(inode, file, cmd, arg);
1334 		break;
1335 	default:
1336 		err = -ENOIOCTLCMD;
1337 		break;
1338 	}
1339 	unlock_kernel();
1340 	return err;
1341 }
1342 #endif
1343 
1344 static int lo_open(struct inode *inode, struct file *file)
1345 {
1346 	struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1347 
1348 	mutex_lock(&lo->lo_ctl_mutex);
1349 	lo->lo_refcnt++;
1350 	mutex_unlock(&lo->lo_ctl_mutex);
1351 
1352 	return 0;
1353 }
1354 
1355 static int lo_release(struct inode *inode, struct file *file)
1356 {
1357 	struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1358 
1359 	mutex_lock(&lo->lo_ctl_mutex);
1360 	--lo->lo_refcnt;
1361 	mutex_unlock(&lo->lo_ctl_mutex);
1362 
1363 	return 0;
1364 }
1365 
1366 static struct block_device_operations lo_fops = {
1367 	.owner =	THIS_MODULE,
1368 	.open =		lo_open,
1369 	.release =	lo_release,
1370 	.ioctl =	lo_ioctl,
1371 #ifdef CONFIG_COMPAT
1372 	.compat_ioctl =	lo_compat_ioctl,
1373 #endif
1374 };
1375 
1376 /*
1377  * And now the modules code and kernel interface.
1378  */
1379 static int max_loop;
1380 module_param(max_loop, int, 0);
1381 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1382 MODULE_LICENSE("GPL");
1383 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1384 
1385 int loop_register_transfer(struct loop_func_table *funcs)
1386 {
1387 	unsigned int n = funcs->number;
1388 
1389 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1390 		return -EINVAL;
1391 	xfer_funcs[n] = funcs;
1392 	return 0;
1393 }
1394 
1395 int loop_unregister_transfer(int number)
1396 {
1397 	unsigned int n = number;
1398 	struct loop_device *lo;
1399 	struct loop_func_table *xfer;
1400 
1401 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1402 		return -EINVAL;
1403 
1404 	xfer_funcs[n] = NULL;
1405 
1406 	list_for_each_entry(lo, &loop_devices, lo_list) {
1407 		mutex_lock(&lo->lo_ctl_mutex);
1408 
1409 		if (lo->lo_encryption == xfer)
1410 			loop_release_xfer(lo);
1411 
1412 		mutex_unlock(&lo->lo_ctl_mutex);
1413 	}
1414 
1415 	return 0;
1416 }
1417 
1418 EXPORT_SYMBOL(loop_register_transfer);
1419 EXPORT_SYMBOL(loop_unregister_transfer);
1420 
1421 static struct loop_device *loop_alloc(int i)
1422 {
1423 	struct loop_device *lo;
1424 	struct gendisk *disk;
1425 
1426 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1427 	if (!lo)
1428 		goto out;
1429 
1430 	lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1431 	if (!lo->lo_queue)
1432 		goto out_free_dev;
1433 
1434 	disk = lo->lo_disk = alloc_disk(1);
1435 	if (!disk)
1436 		goto out_free_queue;
1437 
1438 	mutex_init(&lo->lo_ctl_mutex);
1439 	lo->lo_number		= i;
1440 	lo->lo_thread		= NULL;
1441 	init_waitqueue_head(&lo->lo_event);
1442 	spin_lock_init(&lo->lo_lock);
1443 	disk->major		= LOOP_MAJOR;
1444 	disk->first_minor	= i;
1445 	disk->fops		= &lo_fops;
1446 	disk->private_data	= lo;
1447 	disk->queue		= lo->lo_queue;
1448 	sprintf(disk->disk_name, "loop%d", i);
1449 	return lo;
1450 
1451 out_free_queue:
1452 	blk_cleanup_queue(lo->lo_queue);
1453 out_free_dev:
1454 	kfree(lo);
1455 out:
1456 	return NULL;
1457 }
1458 
1459 static void loop_free(struct loop_device *lo)
1460 {
1461 	blk_cleanup_queue(lo->lo_queue);
1462 	put_disk(lo->lo_disk);
1463 	list_del(&lo->lo_list);
1464 	kfree(lo);
1465 }
1466 
1467 static struct loop_device *loop_init_one(int i)
1468 {
1469 	struct loop_device *lo;
1470 
1471 	list_for_each_entry(lo, &loop_devices, lo_list) {
1472 		if (lo->lo_number == i)
1473 			return lo;
1474 	}
1475 
1476 	lo = loop_alloc(i);
1477 	if (lo) {
1478 		add_disk(lo->lo_disk);
1479 		list_add_tail(&lo->lo_list, &loop_devices);
1480 	}
1481 	return lo;
1482 }
1483 
1484 static void loop_del_one(struct loop_device *lo)
1485 {
1486 	del_gendisk(lo->lo_disk);
1487 	loop_free(lo);
1488 }
1489 
1490 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1491 {
1492 	struct loop_device *lo;
1493 	struct kobject *kobj;
1494 
1495 	mutex_lock(&loop_devices_mutex);
1496 	lo = loop_init_one(dev & MINORMASK);
1497 	kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM);
1498 	mutex_unlock(&loop_devices_mutex);
1499 
1500 	*part = 0;
1501 	return kobj;
1502 }
1503 
1504 static int __init loop_init(void)
1505 {
1506 	int i, nr;
1507 	unsigned long range;
1508 	struct loop_device *lo, *next;
1509 
1510 	/*
1511 	 * loop module now has a feature to instantiate underlying device
1512 	 * structure on-demand, provided that there is an access dev node.
1513 	 * However, this will not work well with user space tool that doesn't
1514 	 * know about such "feature".  In order to not break any existing
1515 	 * tool, we do the following:
1516 	 *
1517 	 * (1) if max_loop is specified, create that many upfront, and this
1518 	 *     also becomes a hard limit.
1519 	 * (2) if max_loop is not specified, create 8 loop device on module
1520 	 *     load, user can further extend loop device by create dev node
1521 	 *     themselves and have kernel automatically instantiate actual
1522 	 *     device on-demand.
1523 	 */
1524 	if (max_loop > 1UL << MINORBITS)
1525 		return -EINVAL;
1526 
1527 	if (max_loop) {
1528 		nr = max_loop;
1529 		range = max_loop;
1530 	} else {
1531 		nr = 8;
1532 		range = 1UL << MINORBITS;
1533 	}
1534 
1535 	if (register_blkdev(LOOP_MAJOR, "loop"))
1536 		return -EIO;
1537 
1538 	for (i = 0; i < nr; i++) {
1539 		lo = loop_alloc(i);
1540 		if (!lo)
1541 			goto Enomem;
1542 		list_add_tail(&lo->lo_list, &loop_devices);
1543 	}
1544 
1545 	/* point of no return */
1546 
1547 	list_for_each_entry(lo, &loop_devices, lo_list)
1548 		add_disk(lo->lo_disk);
1549 
1550 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1551 				  THIS_MODULE, loop_probe, NULL, NULL);
1552 
1553 	printk(KERN_INFO "loop: module loaded\n");
1554 	return 0;
1555 
1556 Enomem:
1557 	printk(KERN_INFO "loop: out of memory\n");
1558 
1559 	list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1560 		loop_free(lo);
1561 
1562 	unregister_blkdev(LOOP_MAJOR, "loop");
1563 	return -ENOMEM;
1564 }
1565 
1566 static void __exit loop_exit(void)
1567 {
1568 	unsigned long range;
1569 	struct loop_device *lo, *next;
1570 
1571 	range = max_loop ? max_loop :  1UL << MINORBITS;
1572 
1573 	list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1574 		loop_del_one(lo);
1575 
1576 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1577 	if (unregister_blkdev(LOOP_MAJOR, "loop"))
1578 		printk(KERN_WARNING "loop: cannot unregister blkdev\n");
1579 }
1580 
1581 module_init(loop_init);
1582 module_exit(loop_exit);
1583 
1584 #ifndef MODULE
1585 static int __init max_loop_setup(char *str)
1586 {
1587 	max_loop = simple_strtol(str, NULL, 0);
1588 	return 1;
1589 }
1590 
1591 __setup("max_loop=", max_loop_setup);
1592 #endif
1593