1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - [email protected] Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <[email protected]> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, [email protected] 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <[email protected]> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bols�, <[email protected]>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <[email protected]>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <[email protected]>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations prepare_write and/or commit_write are not available on the 44 * backing filesystem. 45 * Anton Altaparmakov, 16 Feb 2005 46 * 47 * Still To Fix: 48 * - Advisory locking is ignored here. 49 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 50 * 51 */ 52 53 #include <linux/module.h> 54 #include <linux/moduleparam.h> 55 #include <linux/sched.h> 56 #include <linux/fs.h> 57 #include <linux/file.h> 58 #include <linux/stat.h> 59 #include <linux/errno.h> 60 #include <linux/major.h> 61 #include <linux/wait.h> 62 #include <linux/blkdev.h> 63 #include <linux/blkpg.h> 64 #include <linux/init.h> 65 #include <linux/smp_lock.h> 66 #include <linux/swap.h> 67 #include <linux/slab.h> 68 #include <linux/loop.h> 69 #include <linux/compat.h> 70 #include <linux/suspend.h> 71 #include <linux/writeback.h> 72 #include <linux/buffer_head.h> /* for invalidate_bdev() */ 73 #include <linux/completion.h> 74 #include <linux/highmem.h> 75 #include <linux/gfp.h> 76 #include <linux/kthread.h> 77 #include <linux/splice.h> 78 79 #include <asm/uaccess.h> 80 81 static LIST_HEAD(loop_devices); 82 static DEFINE_MUTEX(loop_devices_mutex); 83 84 /* 85 * Transfer functions 86 */ 87 static int transfer_none(struct loop_device *lo, int cmd, 88 struct page *raw_page, unsigned raw_off, 89 struct page *loop_page, unsigned loop_off, 90 int size, sector_t real_block) 91 { 92 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off; 93 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off; 94 95 if (cmd == READ) 96 memcpy(loop_buf, raw_buf, size); 97 else 98 memcpy(raw_buf, loop_buf, size); 99 100 kunmap_atomic(raw_buf, KM_USER0); 101 kunmap_atomic(loop_buf, KM_USER1); 102 cond_resched(); 103 return 0; 104 } 105 106 static int transfer_xor(struct loop_device *lo, int cmd, 107 struct page *raw_page, unsigned raw_off, 108 struct page *loop_page, unsigned loop_off, 109 int size, sector_t real_block) 110 { 111 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off; 112 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off; 113 char *in, *out, *key; 114 int i, keysize; 115 116 if (cmd == READ) { 117 in = raw_buf; 118 out = loop_buf; 119 } else { 120 in = loop_buf; 121 out = raw_buf; 122 } 123 124 key = lo->lo_encrypt_key; 125 keysize = lo->lo_encrypt_key_size; 126 for (i = 0; i < size; i++) 127 *out++ = *in++ ^ key[(i & 511) % keysize]; 128 129 kunmap_atomic(raw_buf, KM_USER0); 130 kunmap_atomic(loop_buf, KM_USER1); 131 cond_resched(); 132 return 0; 133 } 134 135 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 136 { 137 if (unlikely(info->lo_encrypt_key_size <= 0)) 138 return -EINVAL; 139 return 0; 140 } 141 142 static struct loop_func_table none_funcs = { 143 .number = LO_CRYPT_NONE, 144 .transfer = transfer_none, 145 }; 146 147 static struct loop_func_table xor_funcs = { 148 .number = LO_CRYPT_XOR, 149 .transfer = transfer_xor, 150 .init = xor_init 151 }; 152 153 /* xfer_funcs[0] is special - its release function is never called */ 154 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 155 &none_funcs, 156 &xor_funcs 157 }; 158 159 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 160 { 161 loff_t size, offset, loopsize; 162 163 /* Compute loopsize in bytes */ 164 size = i_size_read(file->f_mapping->host); 165 offset = lo->lo_offset; 166 loopsize = size - offset; 167 if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize) 168 loopsize = lo->lo_sizelimit; 169 170 /* 171 * Unfortunately, if we want to do I/O on the device, 172 * the number of 512-byte sectors has to fit into a sector_t. 173 */ 174 return loopsize >> 9; 175 } 176 177 static int 178 figure_loop_size(struct loop_device *lo) 179 { 180 loff_t size = get_loop_size(lo, lo->lo_backing_file); 181 sector_t x = (sector_t)size; 182 183 if (unlikely((loff_t)x != size)) 184 return -EFBIG; 185 186 set_capacity(lo->lo_disk, x); 187 return 0; 188 } 189 190 static inline int 191 lo_do_transfer(struct loop_device *lo, int cmd, 192 struct page *rpage, unsigned roffs, 193 struct page *lpage, unsigned loffs, 194 int size, sector_t rblock) 195 { 196 if (unlikely(!lo->transfer)) 197 return 0; 198 199 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 200 } 201 202 /** 203 * do_lo_send_aops - helper for writing data to a loop device 204 * 205 * This is the fast version for backing filesystems which implement the address 206 * space operations prepare_write and commit_write. 207 */ 208 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec, 209 int bsize, loff_t pos, struct page *page) 210 { 211 struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */ 212 struct address_space *mapping = file->f_mapping; 213 const struct address_space_operations *aops = mapping->a_ops; 214 pgoff_t index; 215 unsigned offset, bv_offs; 216 int len, ret; 217 218 mutex_lock(&mapping->host->i_mutex); 219 index = pos >> PAGE_CACHE_SHIFT; 220 offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1); 221 bv_offs = bvec->bv_offset; 222 len = bvec->bv_len; 223 while (len > 0) { 224 sector_t IV; 225 unsigned size; 226 int transfer_result; 227 228 IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9); 229 size = PAGE_CACHE_SIZE - offset; 230 if (size > len) 231 size = len; 232 page = grab_cache_page(mapping, index); 233 if (unlikely(!page)) 234 goto fail; 235 ret = aops->prepare_write(file, page, offset, 236 offset + size); 237 if (unlikely(ret)) { 238 if (ret == AOP_TRUNCATED_PAGE) { 239 page_cache_release(page); 240 continue; 241 } 242 goto unlock; 243 } 244 transfer_result = lo_do_transfer(lo, WRITE, page, offset, 245 bvec->bv_page, bv_offs, size, IV); 246 if (unlikely(transfer_result)) { 247 /* 248 * The transfer failed, but we still write the data to 249 * keep prepare/commit calls balanced. 250 */ 251 printk(KERN_ERR "loop: transfer error block %llu\n", 252 (unsigned long long)index); 253 zero_user_page(page, offset, size, KM_USER0); 254 } 255 flush_dcache_page(page); 256 ret = aops->commit_write(file, page, offset, 257 offset + size); 258 if (unlikely(ret)) { 259 if (ret == AOP_TRUNCATED_PAGE) { 260 page_cache_release(page); 261 continue; 262 } 263 goto unlock; 264 } 265 if (unlikely(transfer_result)) 266 goto unlock; 267 bv_offs += size; 268 len -= size; 269 offset = 0; 270 index++; 271 pos += size; 272 unlock_page(page); 273 page_cache_release(page); 274 } 275 ret = 0; 276 out: 277 mutex_unlock(&mapping->host->i_mutex); 278 return ret; 279 unlock: 280 unlock_page(page); 281 page_cache_release(page); 282 fail: 283 ret = -1; 284 goto out; 285 } 286 287 /** 288 * __do_lo_send_write - helper for writing data to a loop device 289 * 290 * This helper just factors out common code between do_lo_send_direct_write() 291 * and do_lo_send_write(). 292 */ 293 static int __do_lo_send_write(struct file *file, 294 u8 *buf, const int len, loff_t pos) 295 { 296 ssize_t bw; 297 mm_segment_t old_fs = get_fs(); 298 299 set_fs(get_ds()); 300 bw = file->f_op->write(file, buf, len, &pos); 301 set_fs(old_fs); 302 if (likely(bw == len)) 303 return 0; 304 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n", 305 (unsigned long long)pos, len); 306 if (bw >= 0) 307 bw = -EIO; 308 return bw; 309 } 310 311 /** 312 * do_lo_send_direct_write - helper for writing data to a loop device 313 * 314 * This is the fast, non-transforming version for backing filesystems which do 315 * not implement the address space operations prepare_write and commit_write. 316 * It uses the write file operation which should be present on all writeable 317 * filesystems. 318 */ 319 static int do_lo_send_direct_write(struct loop_device *lo, 320 struct bio_vec *bvec, int bsize, loff_t pos, struct page *page) 321 { 322 ssize_t bw = __do_lo_send_write(lo->lo_backing_file, 323 kmap(bvec->bv_page) + bvec->bv_offset, 324 bvec->bv_len, pos); 325 kunmap(bvec->bv_page); 326 cond_resched(); 327 return bw; 328 } 329 330 /** 331 * do_lo_send_write - helper for writing data to a loop device 332 * 333 * This is the slow, transforming version for filesystems which do not 334 * implement the address space operations prepare_write and commit_write. It 335 * uses the write file operation which should be present on all writeable 336 * filesystems. 337 * 338 * Using fops->write is slower than using aops->{prepare,commit}_write in the 339 * transforming case because we need to double buffer the data as we cannot do 340 * the transformations in place as we do not have direct access to the 341 * destination pages of the backing file. 342 */ 343 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec, 344 int bsize, loff_t pos, struct page *page) 345 { 346 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page, 347 bvec->bv_offset, bvec->bv_len, pos >> 9); 348 if (likely(!ret)) 349 return __do_lo_send_write(lo->lo_backing_file, 350 page_address(page), bvec->bv_len, 351 pos); 352 printk(KERN_ERR "loop: Transfer error at byte offset %llu, " 353 "length %i.\n", (unsigned long long)pos, bvec->bv_len); 354 if (ret > 0) 355 ret = -EIO; 356 return ret; 357 } 358 359 static int lo_send(struct loop_device *lo, struct bio *bio, int bsize, 360 loff_t pos) 361 { 362 int (*do_lo_send)(struct loop_device *, struct bio_vec *, int, loff_t, 363 struct page *page); 364 struct bio_vec *bvec; 365 struct page *page = NULL; 366 int i, ret = 0; 367 368 do_lo_send = do_lo_send_aops; 369 if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) { 370 do_lo_send = do_lo_send_direct_write; 371 if (lo->transfer != transfer_none) { 372 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM); 373 if (unlikely(!page)) 374 goto fail; 375 kmap(page); 376 do_lo_send = do_lo_send_write; 377 } 378 } 379 bio_for_each_segment(bvec, bio, i) { 380 ret = do_lo_send(lo, bvec, bsize, pos, page); 381 if (ret < 0) 382 break; 383 pos += bvec->bv_len; 384 } 385 if (page) { 386 kunmap(page); 387 __free_page(page); 388 } 389 out: 390 return ret; 391 fail: 392 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n"); 393 ret = -ENOMEM; 394 goto out; 395 } 396 397 struct lo_read_data { 398 struct loop_device *lo; 399 struct page *page; 400 unsigned offset; 401 int bsize; 402 }; 403 404 static int 405 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 406 struct splice_desc *sd) 407 { 408 struct lo_read_data *p = sd->u.data; 409 struct loop_device *lo = p->lo; 410 struct page *page = buf->page; 411 sector_t IV; 412 size_t size; 413 int ret; 414 415 ret = buf->ops->confirm(pipe, buf); 416 if (unlikely(ret)) 417 return ret; 418 419 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) + 420 (buf->offset >> 9); 421 size = sd->len; 422 if (size > p->bsize) 423 size = p->bsize; 424 425 if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) { 426 printk(KERN_ERR "loop: transfer error block %ld\n", 427 page->index); 428 size = -EINVAL; 429 } 430 431 flush_dcache_page(p->page); 432 433 if (size > 0) 434 p->offset += size; 435 436 return size; 437 } 438 439 static int 440 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd) 441 { 442 return __splice_from_pipe(pipe, sd, lo_splice_actor); 443 } 444 445 static int 446 do_lo_receive(struct loop_device *lo, 447 struct bio_vec *bvec, int bsize, loff_t pos) 448 { 449 struct lo_read_data cookie; 450 struct splice_desc sd; 451 struct file *file; 452 long retval; 453 454 cookie.lo = lo; 455 cookie.page = bvec->bv_page; 456 cookie.offset = bvec->bv_offset; 457 cookie.bsize = bsize; 458 459 sd.len = 0; 460 sd.total_len = bvec->bv_len; 461 sd.flags = 0; 462 sd.pos = pos; 463 sd.u.data = &cookie; 464 465 file = lo->lo_backing_file; 466 retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor); 467 468 if (retval < 0) 469 return retval; 470 471 return 0; 472 } 473 474 static int 475 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos) 476 { 477 struct bio_vec *bvec; 478 int i, ret = 0; 479 480 bio_for_each_segment(bvec, bio, i) { 481 ret = do_lo_receive(lo, bvec, bsize, pos); 482 if (ret < 0) 483 break; 484 pos += bvec->bv_len; 485 } 486 return ret; 487 } 488 489 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio) 490 { 491 loff_t pos; 492 int ret; 493 494 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset; 495 if (bio_rw(bio) == WRITE) 496 ret = lo_send(lo, bio, lo->lo_blocksize, pos); 497 else 498 ret = lo_receive(lo, bio, lo->lo_blocksize, pos); 499 return ret; 500 } 501 502 /* 503 * Add bio to back of pending list 504 */ 505 static void loop_add_bio(struct loop_device *lo, struct bio *bio) 506 { 507 if (lo->lo_biotail) { 508 lo->lo_biotail->bi_next = bio; 509 lo->lo_biotail = bio; 510 } else 511 lo->lo_bio = lo->lo_biotail = bio; 512 } 513 514 /* 515 * Grab first pending buffer 516 */ 517 static struct bio *loop_get_bio(struct loop_device *lo) 518 { 519 struct bio *bio; 520 521 if ((bio = lo->lo_bio)) { 522 if (bio == lo->lo_biotail) 523 lo->lo_biotail = NULL; 524 lo->lo_bio = bio->bi_next; 525 bio->bi_next = NULL; 526 } 527 528 return bio; 529 } 530 531 static int loop_make_request(request_queue_t *q, struct bio *old_bio) 532 { 533 struct loop_device *lo = q->queuedata; 534 int rw = bio_rw(old_bio); 535 536 if (rw == READA) 537 rw = READ; 538 539 BUG_ON(!lo || (rw != READ && rw != WRITE)); 540 541 spin_lock_irq(&lo->lo_lock); 542 if (lo->lo_state != Lo_bound) 543 goto out; 544 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY))) 545 goto out; 546 loop_add_bio(lo, old_bio); 547 wake_up(&lo->lo_event); 548 spin_unlock_irq(&lo->lo_lock); 549 return 0; 550 551 out: 552 spin_unlock_irq(&lo->lo_lock); 553 bio_io_error(old_bio, old_bio->bi_size); 554 return 0; 555 } 556 557 /* 558 * kick off io on the underlying address space 559 */ 560 static void loop_unplug(request_queue_t *q) 561 { 562 struct loop_device *lo = q->queuedata; 563 564 clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags); 565 blk_run_address_space(lo->lo_backing_file->f_mapping); 566 } 567 568 struct switch_request { 569 struct file *file; 570 struct completion wait; 571 }; 572 573 static void do_loop_switch(struct loop_device *, struct switch_request *); 574 575 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio) 576 { 577 if (unlikely(!bio->bi_bdev)) { 578 do_loop_switch(lo, bio->bi_private); 579 bio_put(bio); 580 } else { 581 int ret = do_bio_filebacked(lo, bio); 582 bio_endio(bio, bio->bi_size, ret); 583 } 584 } 585 586 /* 587 * worker thread that handles reads/writes to file backed loop devices, 588 * to avoid blocking in our make_request_fn. it also does loop decrypting 589 * on reads for block backed loop, as that is too heavy to do from 590 * b_end_io context where irqs may be disabled. 591 * 592 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before 593 * calling kthread_stop(). Therefore once kthread_should_stop() is 594 * true, make_request will not place any more requests. Therefore 595 * once kthread_should_stop() is true and lo_bio is NULL, we are 596 * done with the loop. 597 */ 598 static int loop_thread(void *data) 599 { 600 struct loop_device *lo = data; 601 struct bio *bio; 602 603 /* 604 * loop can be used in an encrypted device, 605 * hence, it mustn't be stopped at all 606 * because it could be indirectly used during suspension 607 */ 608 current->flags |= PF_NOFREEZE; 609 610 set_user_nice(current, -20); 611 612 while (!kthread_should_stop() || lo->lo_bio) { 613 614 wait_event_interruptible(lo->lo_event, 615 lo->lo_bio || kthread_should_stop()); 616 617 if (!lo->lo_bio) 618 continue; 619 spin_lock_irq(&lo->lo_lock); 620 bio = loop_get_bio(lo); 621 spin_unlock_irq(&lo->lo_lock); 622 623 BUG_ON(!bio); 624 loop_handle_bio(lo, bio); 625 } 626 627 return 0; 628 } 629 630 /* 631 * loop_switch performs the hard work of switching a backing store. 632 * First it needs to flush existing IO, it does this by sending a magic 633 * BIO down the pipe. The completion of this BIO does the actual switch. 634 */ 635 static int loop_switch(struct loop_device *lo, struct file *file) 636 { 637 struct switch_request w; 638 struct bio *bio = bio_alloc(GFP_KERNEL, 1); 639 if (!bio) 640 return -ENOMEM; 641 init_completion(&w.wait); 642 w.file = file; 643 bio->bi_private = &w; 644 bio->bi_bdev = NULL; 645 loop_make_request(lo->lo_queue, bio); 646 wait_for_completion(&w.wait); 647 return 0; 648 } 649 650 /* 651 * Do the actual switch; called from the BIO completion routine 652 */ 653 static void do_loop_switch(struct loop_device *lo, struct switch_request *p) 654 { 655 struct file *file = p->file; 656 struct file *old_file = lo->lo_backing_file; 657 struct address_space *mapping = file->f_mapping; 658 659 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 660 lo->lo_backing_file = file; 661 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ? 662 mapping->host->i_bdev->bd_block_size : PAGE_SIZE; 663 lo->old_gfp_mask = mapping_gfp_mask(mapping); 664 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 665 complete(&p->wait); 666 } 667 668 669 /* 670 * loop_change_fd switched the backing store of a loopback device to 671 * a new file. This is useful for operating system installers to free up 672 * the original file and in High Availability environments to switch to 673 * an alternative location for the content in case of server meltdown. 674 * This can only work if the loop device is used read-only, and if the 675 * new backing store is the same size and type as the old backing store. 676 */ 677 static int loop_change_fd(struct loop_device *lo, struct file *lo_file, 678 struct block_device *bdev, unsigned int arg) 679 { 680 struct file *file, *old_file; 681 struct inode *inode; 682 int error; 683 684 error = -ENXIO; 685 if (lo->lo_state != Lo_bound) 686 goto out; 687 688 /* the loop device has to be read-only */ 689 error = -EINVAL; 690 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 691 goto out; 692 693 error = -EBADF; 694 file = fget(arg); 695 if (!file) 696 goto out; 697 698 inode = file->f_mapping->host; 699 old_file = lo->lo_backing_file; 700 701 error = -EINVAL; 702 703 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 704 goto out_putf; 705 706 /* new backing store needs to support loop (eg splice_read) */ 707 if (!inode->i_fop->splice_read) 708 goto out_putf; 709 710 /* size of the new backing store needs to be the same */ 711 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 712 goto out_putf; 713 714 /* and ... switch */ 715 error = loop_switch(lo, file); 716 if (error) 717 goto out_putf; 718 719 fput(old_file); 720 return 0; 721 722 out_putf: 723 fput(file); 724 out: 725 return error; 726 } 727 728 static inline int is_loop_device(struct file *file) 729 { 730 struct inode *i = file->f_mapping->host; 731 732 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 733 } 734 735 static int loop_set_fd(struct loop_device *lo, struct file *lo_file, 736 struct block_device *bdev, unsigned int arg) 737 { 738 struct file *file, *f; 739 struct inode *inode; 740 struct address_space *mapping; 741 unsigned lo_blocksize; 742 int lo_flags = 0; 743 int error; 744 loff_t size; 745 746 /* This is safe, since we have a reference from open(). */ 747 __module_get(THIS_MODULE); 748 749 error = -EBADF; 750 file = fget(arg); 751 if (!file) 752 goto out; 753 754 error = -EBUSY; 755 if (lo->lo_state != Lo_unbound) 756 goto out_putf; 757 758 /* Avoid recursion */ 759 f = file; 760 while (is_loop_device(f)) { 761 struct loop_device *l; 762 763 if (f->f_mapping->host->i_rdev == lo_file->f_mapping->host->i_rdev) 764 goto out_putf; 765 766 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 767 if (l->lo_state == Lo_unbound) { 768 error = -EINVAL; 769 goto out_putf; 770 } 771 f = l->lo_backing_file; 772 } 773 774 mapping = file->f_mapping; 775 inode = mapping->host; 776 777 if (!(file->f_mode & FMODE_WRITE)) 778 lo_flags |= LO_FLAGS_READ_ONLY; 779 780 error = -EINVAL; 781 if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) { 782 const struct address_space_operations *aops = mapping->a_ops; 783 /* 784 * If we can't read - sorry. If we only can't write - well, 785 * it's going to be read-only. 786 */ 787 if (!file->f_op->splice_read) 788 goto out_putf; 789 if (aops->prepare_write && aops->commit_write) 790 lo_flags |= LO_FLAGS_USE_AOPS; 791 if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write) 792 lo_flags |= LO_FLAGS_READ_ONLY; 793 794 lo_blocksize = S_ISBLK(inode->i_mode) ? 795 inode->i_bdev->bd_block_size : PAGE_SIZE; 796 797 error = 0; 798 } else { 799 goto out_putf; 800 } 801 802 size = get_loop_size(lo, file); 803 804 if ((loff_t)(sector_t)size != size) { 805 error = -EFBIG; 806 goto out_putf; 807 } 808 809 if (!(lo_file->f_mode & FMODE_WRITE)) 810 lo_flags |= LO_FLAGS_READ_ONLY; 811 812 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 813 814 lo->lo_blocksize = lo_blocksize; 815 lo->lo_device = bdev; 816 lo->lo_flags = lo_flags; 817 lo->lo_backing_file = file; 818 lo->transfer = transfer_none; 819 lo->ioctl = NULL; 820 lo->lo_sizelimit = 0; 821 lo->old_gfp_mask = mapping_gfp_mask(mapping); 822 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 823 824 lo->lo_bio = lo->lo_biotail = NULL; 825 826 /* 827 * set queue make_request_fn, and add limits based on lower level 828 * device 829 */ 830 blk_queue_make_request(lo->lo_queue, loop_make_request); 831 lo->lo_queue->queuedata = lo; 832 lo->lo_queue->unplug_fn = loop_unplug; 833 834 set_capacity(lo->lo_disk, size); 835 bd_set_size(bdev, size << 9); 836 837 set_blocksize(bdev, lo_blocksize); 838 839 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d", 840 lo->lo_number); 841 if (IS_ERR(lo->lo_thread)) { 842 error = PTR_ERR(lo->lo_thread); 843 goto out_clr; 844 } 845 lo->lo_state = Lo_bound; 846 wake_up_process(lo->lo_thread); 847 return 0; 848 849 out_clr: 850 lo->lo_thread = NULL; 851 lo->lo_device = NULL; 852 lo->lo_backing_file = NULL; 853 lo->lo_flags = 0; 854 set_capacity(lo->lo_disk, 0); 855 invalidate_bdev(bdev); 856 bd_set_size(bdev, 0); 857 mapping_set_gfp_mask(mapping, lo->old_gfp_mask); 858 lo->lo_state = Lo_unbound; 859 out_putf: 860 fput(file); 861 out: 862 /* This is safe: open() is still holding a reference. */ 863 module_put(THIS_MODULE); 864 return error; 865 } 866 867 static int 868 loop_release_xfer(struct loop_device *lo) 869 { 870 int err = 0; 871 struct loop_func_table *xfer = lo->lo_encryption; 872 873 if (xfer) { 874 if (xfer->release) 875 err = xfer->release(lo); 876 lo->transfer = NULL; 877 lo->lo_encryption = NULL; 878 module_put(xfer->owner); 879 } 880 return err; 881 } 882 883 static int 884 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 885 const struct loop_info64 *i) 886 { 887 int err = 0; 888 889 if (xfer) { 890 struct module *owner = xfer->owner; 891 892 if (!try_module_get(owner)) 893 return -EINVAL; 894 if (xfer->init) 895 err = xfer->init(lo, i); 896 if (err) 897 module_put(owner); 898 else 899 lo->lo_encryption = xfer; 900 } 901 return err; 902 } 903 904 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev) 905 { 906 struct file *filp = lo->lo_backing_file; 907 gfp_t gfp = lo->old_gfp_mask; 908 909 if (lo->lo_state != Lo_bound) 910 return -ENXIO; 911 912 if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */ 913 return -EBUSY; 914 915 if (filp == NULL) 916 return -EINVAL; 917 918 spin_lock_irq(&lo->lo_lock); 919 lo->lo_state = Lo_rundown; 920 spin_unlock_irq(&lo->lo_lock); 921 922 kthread_stop(lo->lo_thread); 923 924 lo->lo_backing_file = NULL; 925 926 loop_release_xfer(lo); 927 lo->transfer = NULL; 928 lo->ioctl = NULL; 929 lo->lo_device = NULL; 930 lo->lo_encryption = NULL; 931 lo->lo_offset = 0; 932 lo->lo_sizelimit = 0; 933 lo->lo_encrypt_key_size = 0; 934 lo->lo_flags = 0; 935 lo->lo_thread = NULL; 936 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 937 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 938 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 939 invalidate_bdev(bdev); 940 set_capacity(lo->lo_disk, 0); 941 bd_set_size(bdev, 0); 942 mapping_set_gfp_mask(filp->f_mapping, gfp); 943 lo->lo_state = Lo_unbound; 944 fput(filp); 945 /* This is safe: open() is still holding a reference. */ 946 module_put(THIS_MODULE); 947 return 0; 948 } 949 950 static int 951 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 952 { 953 int err; 954 struct loop_func_table *xfer; 955 956 if (lo->lo_encrypt_key_size && lo->lo_key_owner != current->uid && 957 !capable(CAP_SYS_ADMIN)) 958 return -EPERM; 959 if (lo->lo_state != Lo_bound) 960 return -ENXIO; 961 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 962 return -EINVAL; 963 964 err = loop_release_xfer(lo); 965 if (err) 966 return err; 967 968 if (info->lo_encrypt_type) { 969 unsigned int type = info->lo_encrypt_type; 970 971 if (type >= MAX_LO_CRYPT) 972 return -EINVAL; 973 xfer = xfer_funcs[type]; 974 if (xfer == NULL) 975 return -EINVAL; 976 } else 977 xfer = NULL; 978 979 err = loop_init_xfer(lo, xfer, info); 980 if (err) 981 return err; 982 983 if (lo->lo_offset != info->lo_offset || 984 lo->lo_sizelimit != info->lo_sizelimit) { 985 lo->lo_offset = info->lo_offset; 986 lo->lo_sizelimit = info->lo_sizelimit; 987 if (figure_loop_size(lo)) 988 return -EFBIG; 989 } 990 991 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 992 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 993 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 994 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 995 996 if (!xfer) 997 xfer = &none_funcs; 998 lo->transfer = xfer->transfer; 999 lo->ioctl = xfer->ioctl; 1000 1001 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1002 lo->lo_init[0] = info->lo_init[0]; 1003 lo->lo_init[1] = info->lo_init[1]; 1004 if (info->lo_encrypt_key_size) { 1005 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1006 info->lo_encrypt_key_size); 1007 lo->lo_key_owner = current->uid; 1008 } 1009 1010 return 0; 1011 } 1012 1013 static int 1014 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1015 { 1016 struct file *file = lo->lo_backing_file; 1017 struct kstat stat; 1018 int error; 1019 1020 if (lo->lo_state != Lo_bound) 1021 return -ENXIO; 1022 error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat); 1023 if (error) 1024 return error; 1025 memset(info, 0, sizeof(*info)); 1026 info->lo_number = lo->lo_number; 1027 info->lo_device = huge_encode_dev(stat.dev); 1028 info->lo_inode = stat.ino; 1029 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev); 1030 info->lo_offset = lo->lo_offset; 1031 info->lo_sizelimit = lo->lo_sizelimit; 1032 info->lo_flags = lo->lo_flags; 1033 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1034 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1035 info->lo_encrypt_type = 1036 lo->lo_encryption ? lo->lo_encryption->number : 0; 1037 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1038 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1039 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1040 lo->lo_encrypt_key_size); 1041 } 1042 return 0; 1043 } 1044 1045 static void 1046 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1047 { 1048 memset(info64, 0, sizeof(*info64)); 1049 info64->lo_number = info->lo_number; 1050 info64->lo_device = info->lo_device; 1051 info64->lo_inode = info->lo_inode; 1052 info64->lo_rdevice = info->lo_rdevice; 1053 info64->lo_offset = info->lo_offset; 1054 info64->lo_sizelimit = 0; 1055 info64->lo_encrypt_type = info->lo_encrypt_type; 1056 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1057 info64->lo_flags = info->lo_flags; 1058 info64->lo_init[0] = info->lo_init[0]; 1059 info64->lo_init[1] = info->lo_init[1]; 1060 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1061 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1062 else 1063 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1064 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1065 } 1066 1067 static int 1068 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1069 { 1070 memset(info, 0, sizeof(*info)); 1071 info->lo_number = info64->lo_number; 1072 info->lo_device = info64->lo_device; 1073 info->lo_inode = info64->lo_inode; 1074 info->lo_rdevice = info64->lo_rdevice; 1075 info->lo_offset = info64->lo_offset; 1076 info->lo_encrypt_type = info64->lo_encrypt_type; 1077 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1078 info->lo_flags = info64->lo_flags; 1079 info->lo_init[0] = info64->lo_init[0]; 1080 info->lo_init[1] = info64->lo_init[1]; 1081 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1082 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1083 else 1084 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1085 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1086 1087 /* error in case values were truncated */ 1088 if (info->lo_device != info64->lo_device || 1089 info->lo_rdevice != info64->lo_rdevice || 1090 info->lo_inode != info64->lo_inode || 1091 info->lo_offset != info64->lo_offset) 1092 return -EOVERFLOW; 1093 1094 return 0; 1095 } 1096 1097 static int 1098 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1099 { 1100 struct loop_info info; 1101 struct loop_info64 info64; 1102 1103 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1104 return -EFAULT; 1105 loop_info64_from_old(&info, &info64); 1106 return loop_set_status(lo, &info64); 1107 } 1108 1109 static int 1110 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1111 { 1112 struct loop_info64 info64; 1113 1114 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1115 return -EFAULT; 1116 return loop_set_status(lo, &info64); 1117 } 1118 1119 static int 1120 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1121 struct loop_info info; 1122 struct loop_info64 info64; 1123 int err = 0; 1124 1125 if (!arg) 1126 err = -EINVAL; 1127 if (!err) 1128 err = loop_get_status(lo, &info64); 1129 if (!err) 1130 err = loop_info64_to_old(&info64, &info); 1131 if (!err && copy_to_user(arg, &info, sizeof(info))) 1132 err = -EFAULT; 1133 1134 return err; 1135 } 1136 1137 static int 1138 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1139 struct loop_info64 info64; 1140 int err = 0; 1141 1142 if (!arg) 1143 err = -EINVAL; 1144 if (!err) 1145 err = loop_get_status(lo, &info64); 1146 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1147 err = -EFAULT; 1148 1149 return err; 1150 } 1151 1152 static int lo_ioctl(struct inode * inode, struct file * file, 1153 unsigned int cmd, unsigned long arg) 1154 { 1155 struct loop_device *lo = inode->i_bdev->bd_disk->private_data; 1156 int err; 1157 1158 mutex_lock(&lo->lo_ctl_mutex); 1159 switch (cmd) { 1160 case LOOP_SET_FD: 1161 err = loop_set_fd(lo, file, inode->i_bdev, arg); 1162 break; 1163 case LOOP_CHANGE_FD: 1164 err = loop_change_fd(lo, file, inode->i_bdev, arg); 1165 break; 1166 case LOOP_CLR_FD: 1167 err = loop_clr_fd(lo, inode->i_bdev); 1168 break; 1169 case LOOP_SET_STATUS: 1170 err = loop_set_status_old(lo, (struct loop_info __user *) arg); 1171 break; 1172 case LOOP_GET_STATUS: 1173 err = loop_get_status_old(lo, (struct loop_info __user *) arg); 1174 break; 1175 case LOOP_SET_STATUS64: 1176 err = loop_set_status64(lo, (struct loop_info64 __user *) arg); 1177 break; 1178 case LOOP_GET_STATUS64: 1179 err = loop_get_status64(lo, (struct loop_info64 __user *) arg); 1180 break; 1181 default: 1182 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1183 } 1184 mutex_unlock(&lo->lo_ctl_mutex); 1185 return err; 1186 } 1187 1188 #ifdef CONFIG_COMPAT 1189 struct compat_loop_info { 1190 compat_int_t lo_number; /* ioctl r/o */ 1191 compat_dev_t lo_device; /* ioctl r/o */ 1192 compat_ulong_t lo_inode; /* ioctl r/o */ 1193 compat_dev_t lo_rdevice; /* ioctl r/o */ 1194 compat_int_t lo_offset; 1195 compat_int_t lo_encrypt_type; 1196 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1197 compat_int_t lo_flags; /* ioctl r/o */ 1198 char lo_name[LO_NAME_SIZE]; 1199 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1200 compat_ulong_t lo_init[2]; 1201 char reserved[4]; 1202 }; 1203 1204 /* 1205 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1206 * - noinlined to reduce stack space usage in main part of driver 1207 */ 1208 static noinline int 1209 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1210 struct loop_info64 *info64) 1211 { 1212 struct compat_loop_info info; 1213 1214 if (copy_from_user(&info, arg, sizeof(info))) 1215 return -EFAULT; 1216 1217 memset(info64, 0, sizeof(*info64)); 1218 info64->lo_number = info.lo_number; 1219 info64->lo_device = info.lo_device; 1220 info64->lo_inode = info.lo_inode; 1221 info64->lo_rdevice = info.lo_rdevice; 1222 info64->lo_offset = info.lo_offset; 1223 info64->lo_sizelimit = 0; 1224 info64->lo_encrypt_type = info.lo_encrypt_type; 1225 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1226 info64->lo_flags = info.lo_flags; 1227 info64->lo_init[0] = info.lo_init[0]; 1228 info64->lo_init[1] = info.lo_init[1]; 1229 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1230 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1231 else 1232 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1233 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1234 return 0; 1235 } 1236 1237 /* 1238 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1239 * - noinlined to reduce stack space usage in main part of driver 1240 */ 1241 static noinline int 1242 loop_info64_to_compat(const struct loop_info64 *info64, 1243 struct compat_loop_info __user *arg) 1244 { 1245 struct compat_loop_info info; 1246 1247 memset(&info, 0, sizeof(info)); 1248 info.lo_number = info64->lo_number; 1249 info.lo_device = info64->lo_device; 1250 info.lo_inode = info64->lo_inode; 1251 info.lo_rdevice = info64->lo_rdevice; 1252 info.lo_offset = info64->lo_offset; 1253 info.lo_encrypt_type = info64->lo_encrypt_type; 1254 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1255 info.lo_flags = info64->lo_flags; 1256 info.lo_init[0] = info64->lo_init[0]; 1257 info.lo_init[1] = info64->lo_init[1]; 1258 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1259 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1260 else 1261 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1262 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1263 1264 /* error in case values were truncated */ 1265 if (info.lo_device != info64->lo_device || 1266 info.lo_rdevice != info64->lo_rdevice || 1267 info.lo_inode != info64->lo_inode || 1268 info.lo_offset != info64->lo_offset || 1269 info.lo_init[0] != info64->lo_init[0] || 1270 info.lo_init[1] != info64->lo_init[1]) 1271 return -EOVERFLOW; 1272 1273 if (copy_to_user(arg, &info, sizeof(info))) 1274 return -EFAULT; 1275 return 0; 1276 } 1277 1278 static int 1279 loop_set_status_compat(struct loop_device *lo, 1280 const struct compat_loop_info __user *arg) 1281 { 1282 struct loop_info64 info64; 1283 int ret; 1284 1285 ret = loop_info64_from_compat(arg, &info64); 1286 if (ret < 0) 1287 return ret; 1288 return loop_set_status(lo, &info64); 1289 } 1290 1291 static int 1292 loop_get_status_compat(struct loop_device *lo, 1293 struct compat_loop_info __user *arg) 1294 { 1295 struct loop_info64 info64; 1296 int err = 0; 1297 1298 if (!arg) 1299 err = -EINVAL; 1300 if (!err) 1301 err = loop_get_status(lo, &info64); 1302 if (!err) 1303 err = loop_info64_to_compat(&info64, arg); 1304 return err; 1305 } 1306 1307 static long lo_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1308 { 1309 struct inode *inode = file->f_path.dentry->d_inode; 1310 struct loop_device *lo = inode->i_bdev->bd_disk->private_data; 1311 int err; 1312 1313 lock_kernel(); 1314 switch(cmd) { 1315 case LOOP_SET_STATUS: 1316 mutex_lock(&lo->lo_ctl_mutex); 1317 err = loop_set_status_compat( 1318 lo, (const struct compat_loop_info __user *) arg); 1319 mutex_unlock(&lo->lo_ctl_mutex); 1320 break; 1321 case LOOP_GET_STATUS: 1322 mutex_lock(&lo->lo_ctl_mutex); 1323 err = loop_get_status_compat( 1324 lo, (struct compat_loop_info __user *) arg); 1325 mutex_unlock(&lo->lo_ctl_mutex); 1326 break; 1327 case LOOP_CLR_FD: 1328 case LOOP_GET_STATUS64: 1329 case LOOP_SET_STATUS64: 1330 arg = (unsigned long) compat_ptr(arg); 1331 case LOOP_SET_FD: 1332 case LOOP_CHANGE_FD: 1333 err = lo_ioctl(inode, file, cmd, arg); 1334 break; 1335 default: 1336 err = -ENOIOCTLCMD; 1337 break; 1338 } 1339 unlock_kernel(); 1340 return err; 1341 } 1342 #endif 1343 1344 static int lo_open(struct inode *inode, struct file *file) 1345 { 1346 struct loop_device *lo = inode->i_bdev->bd_disk->private_data; 1347 1348 mutex_lock(&lo->lo_ctl_mutex); 1349 lo->lo_refcnt++; 1350 mutex_unlock(&lo->lo_ctl_mutex); 1351 1352 return 0; 1353 } 1354 1355 static int lo_release(struct inode *inode, struct file *file) 1356 { 1357 struct loop_device *lo = inode->i_bdev->bd_disk->private_data; 1358 1359 mutex_lock(&lo->lo_ctl_mutex); 1360 --lo->lo_refcnt; 1361 mutex_unlock(&lo->lo_ctl_mutex); 1362 1363 return 0; 1364 } 1365 1366 static struct block_device_operations lo_fops = { 1367 .owner = THIS_MODULE, 1368 .open = lo_open, 1369 .release = lo_release, 1370 .ioctl = lo_ioctl, 1371 #ifdef CONFIG_COMPAT 1372 .compat_ioctl = lo_compat_ioctl, 1373 #endif 1374 }; 1375 1376 /* 1377 * And now the modules code and kernel interface. 1378 */ 1379 static int max_loop; 1380 module_param(max_loop, int, 0); 1381 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1382 MODULE_LICENSE("GPL"); 1383 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1384 1385 int loop_register_transfer(struct loop_func_table *funcs) 1386 { 1387 unsigned int n = funcs->number; 1388 1389 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1390 return -EINVAL; 1391 xfer_funcs[n] = funcs; 1392 return 0; 1393 } 1394 1395 int loop_unregister_transfer(int number) 1396 { 1397 unsigned int n = number; 1398 struct loop_device *lo; 1399 struct loop_func_table *xfer; 1400 1401 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1402 return -EINVAL; 1403 1404 xfer_funcs[n] = NULL; 1405 1406 list_for_each_entry(lo, &loop_devices, lo_list) { 1407 mutex_lock(&lo->lo_ctl_mutex); 1408 1409 if (lo->lo_encryption == xfer) 1410 loop_release_xfer(lo); 1411 1412 mutex_unlock(&lo->lo_ctl_mutex); 1413 } 1414 1415 return 0; 1416 } 1417 1418 EXPORT_SYMBOL(loop_register_transfer); 1419 EXPORT_SYMBOL(loop_unregister_transfer); 1420 1421 static struct loop_device *loop_alloc(int i) 1422 { 1423 struct loop_device *lo; 1424 struct gendisk *disk; 1425 1426 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1427 if (!lo) 1428 goto out; 1429 1430 lo->lo_queue = blk_alloc_queue(GFP_KERNEL); 1431 if (!lo->lo_queue) 1432 goto out_free_dev; 1433 1434 disk = lo->lo_disk = alloc_disk(1); 1435 if (!disk) 1436 goto out_free_queue; 1437 1438 mutex_init(&lo->lo_ctl_mutex); 1439 lo->lo_number = i; 1440 lo->lo_thread = NULL; 1441 init_waitqueue_head(&lo->lo_event); 1442 spin_lock_init(&lo->lo_lock); 1443 disk->major = LOOP_MAJOR; 1444 disk->first_minor = i; 1445 disk->fops = &lo_fops; 1446 disk->private_data = lo; 1447 disk->queue = lo->lo_queue; 1448 sprintf(disk->disk_name, "loop%d", i); 1449 return lo; 1450 1451 out_free_queue: 1452 blk_cleanup_queue(lo->lo_queue); 1453 out_free_dev: 1454 kfree(lo); 1455 out: 1456 return NULL; 1457 } 1458 1459 static void loop_free(struct loop_device *lo) 1460 { 1461 blk_cleanup_queue(lo->lo_queue); 1462 put_disk(lo->lo_disk); 1463 list_del(&lo->lo_list); 1464 kfree(lo); 1465 } 1466 1467 static struct loop_device *loop_init_one(int i) 1468 { 1469 struct loop_device *lo; 1470 1471 list_for_each_entry(lo, &loop_devices, lo_list) { 1472 if (lo->lo_number == i) 1473 return lo; 1474 } 1475 1476 lo = loop_alloc(i); 1477 if (lo) { 1478 add_disk(lo->lo_disk); 1479 list_add_tail(&lo->lo_list, &loop_devices); 1480 } 1481 return lo; 1482 } 1483 1484 static void loop_del_one(struct loop_device *lo) 1485 { 1486 del_gendisk(lo->lo_disk); 1487 loop_free(lo); 1488 } 1489 1490 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 1491 { 1492 struct loop_device *lo; 1493 struct kobject *kobj; 1494 1495 mutex_lock(&loop_devices_mutex); 1496 lo = loop_init_one(dev & MINORMASK); 1497 kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM); 1498 mutex_unlock(&loop_devices_mutex); 1499 1500 *part = 0; 1501 return kobj; 1502 } 1503 1504 static int __init loop_init(void) 1505 { 1506 int i, nr; 1507 unsigned long range; 1508 struct loop_device *lo, *next; 1509 1510 /* 1511 * loop module now has a feature to instantiate underlying device 1512 * structure on-demand, provided that there is an access dev node. 1513 * However, this will not work well with user space tool that doesn't 1514 * know about such "feature". In order to not break any existing 1515 * tool, we do the following: 1516 * 1517 * (1) if max_loop is specified, create that many upfront, and this 1518 * also becomes a hard limit. 1519 * (2) if max_loop is not specified, create 8 loop device on module 1520 * load, user can further extend loop device by create dev node 1521 * themselves and have kernel automatically instantiate actual 1522 * device on-demand. 1523 */ 1524 if (max_loop > 1UL << MINORBITS) 1525 return -EINVAL; 1526 1527 if (max_loop) { 1528 nr = max_loop; 1529 range = max_loop; 1530 } else { 1531 nr = 8; 1532 range = 1UL << MINORBITS; 1533 } 1534 1535 if (register_blkdev(LOOP_MAJOR, "loop")) 1536 return -EIO; 1537 1538 for (i = 0; i < nr; i++) { 1539 lo = loop_alloc(i); 1540 if (!lo) 1541 goto Enomem; 1542 list_add_tail(&lo->lo_list, &loop_devices); 1543 } 1544 1545 /* point of no return */ 1546 1547 list_for_each_entry(lo, &loop_devices, lo_list) 1548 add_disk(lo->lo_disk); 1549 1550 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 1551 THIS_MODULE, loop_probe, NULL, NULL); 1552 1553 printk(KERN_INFO "loop: module loaded\n"); 1554 return 0; 1555 1556 Enomem: 1557 printk(KERN_INFO "loop: out of memory\n"); 1558 1559 list_for_each_entry_safe(lo, next, &loop_devices, lo_list) 1560 loop_free(lo); 1561 1562 unregister_blkdev(LOOP_MAJOR, "loop"); 1563 return -ENOMEM; 1564 } 1565 1566 static void __exit loop_exit(void) 1567 { 1568 unsigned long range; 1569 struct loop_device *lo, *next; 1570 1571 range = max_loop ? max_loop : 1UL << MINORBITS; 1572 1573 list_for_each_entry_safe(lo, next, &loop_devices, lo_list) 1574 loop_del_one(lo); 1575 1576 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 1577 if (unregister_blkdev(LOOP_MAJOR, "loop")) 1578 printk(KERN_WARNING "loop: cannot unregister blkdev\n"); 1579 } 1580 1581 module_init(loop_init); 1582 module_exit(loop_exit); 1583 1584 #ifndef MODULE 1585 static int __init max_loop_setup(char *str) 1586 { 1587 max_loop = simple_strtol(str, NULL, 0); 1588 return 1; 1589 } 1590 1591 __setup("max_loop=", max_loop_setup); 1592 #endif 1593