xref: /linux-6.15/drivers/block/loop.c (revision c0d2b837)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - [email protected] Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <[email protected]> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, [email protected]
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <[email protected]> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <[email protected]>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <[email protected]>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <[email protected]>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/loop.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/mutex.h>
71 #include <linux/writeback.h>
72 #include <linux/buffer_head.h>		/* for invalidate_bdev() */
73 #include <linux/completion.h>
74 #include <linux/highmem.h>
75 #include <linux/kthread.h>
76 #include <linux/splice.h>
77 #include <linux/sysfs.h>
78 #include <linux/miscdevice.h>
79 #include <linux/falloc.h>
80 
81 #include <asm/uaccess.h>
82 
83 static DEFINE_IDR(loop_index_idr);
84 static DEFINE_MUTEX(loop_index_mutex);
85 
86 static int max_part;
87 static int part_shift;
88 
89 /*
90  * Transfer functions
91  */
92 static int transfer_none(struct loop_device *lo, int cmd,
93 			 struct page *raw_page, unsigned raw_off,
94 			 struct page *loop_page, unsigned loop_off,
95 			 int size, sector_t real_block)
96 {
97 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
98 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
99 
100 	if (cmd == READ)
101 		memcpy(loop_buf, raw_buf, size);
102 	else
103 		memcpy(raw_buf, loop_buf, size);
104 
105 	kunmap_atomic(loop_buf, KM_USER1);
106 	kunmap_atomic(raw_buf, KM_USER0);
107 	cond_resched();
108 	return 0;
109 }
110 
111 static int transfer_xor(struct loop_device *lo, int cmd,
112 			struct page *raw_page, unsigned raw_off,
113 			struct page *loop_page, unsigned loop_off,
114 			int size, sector_t real_block)
115 {
116 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
117 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
118 	char *in, *out, *key;
119 	int i, keysize;
120 
121 	if (cmd == READ) {
122 		in = raw_buf;
123 		out = loop_buf;
124 	} else {
125 		in = loop_buf;
126 		out = raw_buf;
127 	}
128 
129 	key = lo->lo_encrypt_key;
130 	keysize = lo->lo_encrypt_key_size;
131 	for (i = 0; i < size; i++)
132 		*out++ = *in++ ^ key[(i & 511) % keysize];
133 
134 	kunmap_atomic(loop_buf, KM_USER1);
135 	kunmap_atomic(raw_buf, KM_USER0);
136 	cond_resched();
137 	return 0;
138 }
139 
140 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
141 {
142 	if (unlikely(info->lo_encrypt_key_size <= 0))
143 		return -EINVAL;
144 	return 0;
145 }
146 
147 static struct loop_func_table none_funcs = {
148 	.number = LO_CRYPT_NONE,
149 	.transfer = transfer_none,
150 };
151 
152 static struct loop_func_table xor_funcs = {
153 	.number = LO_CRYPT_XOR,
154 	.transfer = transfer_xor,
155 	.init = xor_init
156 };
157 
158 /* xfer_funcs[0] is special - its release function is never called */
159 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
160 	&none_funcs,
161 	&xor_funcs
162 };
163 
164 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
165 {
166 	loff_t size, loopsize;
167 
168 	/* Compute loopsize in bytes */
169 	size = i_size_read(file->f_mapping->host);
170 	loopsize = size - offset;
171 	/* offset is beyond i_size, wierd but possible */
172 	if (loopsize < 0)
173 		return 0;
174 
175 	if (sizelimit > 0 && sizelimit < loopsize)
176 		loopsize = sizelimit;
177 	/*
178 	 * Unfortunately, if we want to do I/O on the device,
179 	 * the number of 512-byte sectors has to fit into a sector_t.
180 	 */
181 	return loopsize >> 9;
182 }
183 
184 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
185 {
186 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
187 }
188 
189 static int
190 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
191 {
192 	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
193 	sector_t x = (sector_t)size;
194 
195 	if (unlikely((loff_t)x != size))
196 		return -EFBIG;
197 	if (lo->lo_offset != offset)
198 		lo->lo_offset = offset;
199 	if (lo->lo_sizelimit != sizelimit)
200 		lo->lo_sizelimit = sizelimit;
201 	set_capacity(lo->lo_disk, x);
202 	return 0;
203 }
204 
205 static inline int
206 lo_do_transfer(struct loop_device *lo, int cmd,
207 	       struct page *rpage, unsigned roffs,
208 	       struct page *lpage, unsigned loffs,
209 	       int size, sector_t rblock)
210 {
211 	if (unlikely(!lo->transfer))
212 		return 0;
213 
214 	return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
215 }
216 
217 /**
218  * __do_lo_send_write - helper for writing data to a loop device
219  *
220  * This helper just factors out common code between do_lo_send_direct_write()
221  * and do_lo_send_write().
222  */
223 static int __do_lo_send_write(struct file *file,
224 		u8 *buf, const int len, loff_t pos)
225 {
226 	ssize_t bw;
227 	mm_segment_t old_fs = get_fs();
228 
229 	set_fs(get_ds());
230 	bw = file->f_op->write(file, buf, len, &pos);
231 	set_fs(old_fs);
232 	if (likely(bw == len))
233 		return 0;
234 	printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
235 			(unsigned long long)pos, len);
236 	if (bw >= 0)
237 		bw = -EIO;
238 	return bw;
239 }
240 
241 /**
242  * do_lo_send_direct_write - helper for writing data to a loop device
243  *
244  * This is the fast, non-transforming version that does not need double
245  * buffering.
246  */
247 static int do_lo_send_direct_write(struct loop_device *lo,
248 		struct bio_vec *bvec, loff_t pos, struct page *page)
249 {
250 	ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
251 			kmap(bvec->bv_page) + bvec->bv_offset,
252 			bvec->bv_len, pos);
253 	kunmap(bvec->bv_page);
254 	cond_resched();
255 	return bw;
256 }
257 
258 /**
259  * do_lo_send_write - helper for writing data to a loop device
260  *
261  * This is the slow, transforming version that needs to double buffer the
262  * data as it cannot do the transformations in place without having direct
263  * access to the destination pages of the backing file.
264  */
265 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
266 		loff_t pos, struct page *page)
267 {
268 	int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
269 			bvec->bv_offset, bvec->bv_len, pos >> 9);
270 	if (likely(!ret))
271 		return __do_lo_send_write(lo->lo_backing_file,
272 				page_address(page), bvec->bv_len,
273 				pos);
274 	printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
275 			"length %i.\n", (unsigned long long)pos, bvec->bv_len);
276 	if (ret > 0)
277 		ret = -EIO;
278 	return ret;
279 }
280 
281 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
282 {
283 	int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
284 			struct page *page);
285 	struct bio_vec *bvec;
286 	struct page *page = NULL;
287 	int i, ret = 0;
288 
289 	if (lo->transfer != transfer_none) {
290 		page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
291 		if (unlikely(!page))
292 			goto fail;
293 		kmap(page);
294 		do_lo_send = do_lo_send_write;
295 	} else {
296 		do_lo_send = do_lo_send_direct_write;
297 	}
298 
299 	bio_for_each_segment(bvec, bio, i) {
300 		ret = do_lo_send(lo, bvec, pos, page);
301 		if (ret < 0)
302 			break;
303 		pos += bvec->bv_len;
304 	}
305 	if (page) {
306 		kunmap(page);
307 		__free_page(page);
308 	}
309 out:
310 	return ret;
311 fail:
312 	printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
313 	ret = -ENOMEM;
314 	goto out;
315 }
316 
317 struct lo_read_data {
318 	struct loop_device *lo;
319 	struct page *page;
320 	unsigned offset;
321 	int bsize;
322 };
323 
324 static int
325 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
326 		struct splice_desc *sd)
327 {
328 	struct lo_read_data *p = sd->u.data;
329 	struct loop_device *lo = p->lo;
330 	struct page *page = buf->page;
331 	sector_t IV;
332 	int size;
333 
334 	IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
335 							(buf->offset >> 9);
336 	size = sd->len;
337 	if (size > p->bsize)
338 		size = p->bsize;
339 
340 	if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
341 		printk(KERN_ERR "loop: transfer error block %ld\n",
342 		       page->index);
343 		size = -EINVAL;
344 	}
345 
346 	flush_dcache_page(p->page);
347 
348 	if (size > 0)
349 		p->offset += size;
350 
351 	return size;
352 }
353 
354 static int
355 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
356 {
357 	return __splice_from_pipe(pipe, sd, lo_splice_actor);
358 }
359 
360 static int
361 do_lo_receive(struct loop_device *lo,
362 	      struct bio_vec *bvec, int bsize, loff_t pos)
363 {
364 	struct lo_read_data cookie;
365 	struct splice_desc sd;
366 	struct file *file;
367 	long retval;
368 
369 	cookie.lo = lo;
370 	cookie.page = bvec->bv_page;
371 	cookie.offset = bvec->bv_offset;
372 	cookie.bsize = bsize;
373 
374 	sd.len = 0;
375 	sd.total_len = bvec->bv_len;
376 	sd.flags = 0;
377 	sd.pos = pos;
378 	sd.u.data = &cookie;
379 
380 	file = lo->lo_backing_file;
381 	retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
382 
383 	if (retval < 0)
384 		return retval;
385 	if (retval != bvec->bv_len)
386 		return -EIO;
387 	return 0;
388 }
389 
390 static int
391 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
392 {
393 	struct bio_vec *bvec;
394 	int i, ret = 0;
395 
396 	bio_for_each_segment(bvec, bio, i) {
397 		ret = do_lo_receive(lo, bvec, bsize, pos);
398 		if (ret < 0)
399 			break;
400 		pos += bvec->bv_len;
401 	}
402 	return ret;
403 }
404 
405 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
406 {
407 	loff_t pos;
408 	int ret;
409 
410 	pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
411 
412 	if (bio_rw(bio) == WRITE) {
413 		struct file *file = lo->lo_backing_file;
414 
415 		if (bio->bi_rw & REQ_FLUSH) {
416 			ret = vfs_fsync(file, 0);
417 			if (unlikely(ret && ret != -EINVAL)) {
418 				ret = -EIO;
419 				goto out;
420 			}
421 		}
422 
423 		/*
424 		 * We use punch hole to reclaim the free space used by the
425 		 * image a.k.a. discard. However we do not support discard if
426 		 * encryption is enabled, because it may give an attacker
427 		 * useful information.
428 		 */
429 		if (bio->bi_rw & REQ_DISCARD) {
430 			struct file *file = lo->lo_backing_file;
431 			int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
432 
433 			if ((!file->f_op->fallocate) ||
434 			    lo->lo_encrypt_key_size) {
435 				ret = -EOPNOTSUPP;
436 				goto out;
437 			}
438 			ret = file->f_op->fallocate(file, mode, pos,
439 						    bio->bi_size);
440 			if (unlikely(ret && ret != -EINVAL &&
441 				     ret != -EOPNOTSUPP))
442 				ret = -EIO;
443 			goto out;
444 		}
445 
446 		ret = lo_send(lo, bio, pos);
447 
448 		if ((bio->bi_rw & REQ_FUA) && !ret) {
449 			ret = vfs_fsync(file, 0);
450 			if (unlikely(ret && ret != -EINVAL))
451 				ret = -EIO;
452 		}
453 	} else
454 		ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
455 
456 out:
457 	return ret;
458 }
459 
460 /*
461  * Add bio to back of pending list
462  */
463 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
464 {
465 	bio_list_add(&lo->lo_bio_list, bio);
466 }
467 
468 /*
469  * Grab first pending buffer
470  */
471 static struct bio *loop_get_bio(struct loop_device *lo)
472 {
473 	return bio_list_pop(&lo->lo_bio_list);
474 }
475 
476 static void loop_make_request(struct request_queue *q, struct bio *old_bio)
477 {
478 	struct loop_device *lo = q->queuedata;
479 	int rw = bio_rw(old_bio);
480 
481 	if (rw == READA)
482 		rw = READ;
483 
484 	BUG_ON(!lo || (rw != READ && rw != WRITE));
485 
486 	spin_lock_irq(&lo->lo_lock);
487 	if (lo->lo_state != Lo_bound)
488 		goto out;
489 	if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
490 		goto out;
491 	loop_add_bio(lo, old_bio);
492 	wake_up(&lo->lo_event);
493 	spin_unlock_irq(&lo->lo_lock);
494 	return;
495 
496 out:
497 	spin_unlock_irq(&lo->lo_lock);
498 	bio_io_error(old_bio);
499 }
500 
501 struct switch_request {
502 	struct file *file;
503 	struct completion wait;
504 };
505 
506 static void do_loop_switch(struct loop_device *, struct switch_request *);
507 
508 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
509 {
510 	if (unlikely(!bio->bi_bdev)) {
511 		do_loop_switch(lo, bio->bi_private);
512 		bio_put(bio);
513 	} else {
514 		int ret = do_bio_filebacked(lo, bio);
515 		bio_endio(bio, ret);
516 	}
517 }
518 
519 /*
520  * worker thread that handles reads/writes to file backed loop devices,
521  * to avoid blocking in our make_request_fn. it also does loop decrypting
522  * on reads for block backed loop, as that is too heavy to do from
523  * b_end_io context where irqs may be disabled.
524  *
525  * Loop explanation:  loop_clr_fd() sets lo_state to Lo_rundown before
526  * calling kthread_stop().  Therefore once kthread_should_stop() is
527  * true, make_request will not place any more requests.  Therefore
528  * once kthread_should_stop() is true and lo_bio is NULL, we are
529  * done with the loop.
530  */
531 static int loop_thread(void *data)
532 {
533 	struct loop_device *lo = data;
534 	struct bio *bio;
535 
536 	set_user_nice(current, -20);
537 
538 	while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) {
539 
540 		wait_event_interruptible(lo->lo_event,
541 				!bio_list_empty(&lo->lo_bio_list) ||
542 				kthread_should_stop());
543 
544 		if (bio_list_empty(&lo->lo_bio_list))
545 			continue;
546 		spin_lock_irq(&lo->lo_lock);
547 		bio = loop_get_bio(lo);
548 		spin_unlock_irq(&lo->lo_lock);
549 
550 		BUG_ON(!bio);
551 		loop_handle_bio(lo, bio);
552 	}
553 
554 	return 0;
555 }
556 
557 /*
558  * loop_switch performs the hard work of switching a backing store.
559  * First it needs to flush existing IO, it does this by sending a magic
560  * BIO down the pipe. The completion of this BIO does the actual switch.
561  */
562 static int loop_switch(struct loop_device *lo, struct file *file)
563 {
564 	struct switch_request w;
565 	struct bio *bio = bio_alloc(GFP_KERNEL, 0);
566 	if (!bio)
567 		return -ENOMEM;
568 	init_completion(&w.wait);
569 	w.file = file;
570 	bio->bi_private = &w;
571 	bio->bi_bdev = NULL;
572 	loop_make_request(lo->lo_queue, bio);
573 	wait_for_completion(&w.wait);
574 	return 0;
575 }
576 
577 /*
578  * Helper to flush the IOs in loop, but keeping loop thread running
579  */
580 static int loop_flush(struct loop_device *lo)
581 {
582 	/* loop not yet configured, no running thread, nothing to flush */
583 	if (!lo->lo_thread)
584 		return 0;
585 
586 	return loop_switch(lo, NULL);
587 }
588 
589 /*
590  * Do the actual switch; called from the BIO completion routine
591  */
592 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
593 {
594 	struct file *file = p->file;
595 	struct file *old_file = lo->lo_backing_file;
596 	struct address_space *mapping;
597 
598 	/* if no new file, only flush of queued bios requested */
599 	if (!file)
600 		goto out;
601 
602 	mapping = file->f_mapping;
603 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
604 	lo->lo_backing_file = file;
605 	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
606 		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
607 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
608 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
609 out:
610 	complete(&p->wait);
611 }
612 
613 
614 /*
615  * loop_change_fd switched the backing store of a loopback device to
616  * a new file. This is useful for operating system installers to free up
617  * the original file and in High Availability environments to switch to
618  * an alternative location for the content in case of server meltdown.
619  * This can only work if the loop device is used read-only, and if the
620  * new backing store is the same size and type as the old backing store.
621  */
622 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
623 			  unsigned int arg)
624 {
625 	struct file	*file, *old_file;
626 	struct inode	*inode;
627 	int		error;
628 
629 	error = -ENXIO;
630 	if (lo->lo_state != Lo_bound)
631 		goto out;
632 
633 	/* the loop device has to be read-only */
634 	error = -EINVAL;
635 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
636 		goto out;
637 
638 	error = -EBADF;
639 	file = fget(arg);
640 	if (!file)
641 		goto out;
642 
643 	inode = file->f_mapping->host;
644 	old_file = lo->lo_backing_file;
645 
646 	error = -EINVAL;
647 
648 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
649 		goto out_putf;
650 
651 	/* size of the new backing store needs to be the same */
652 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
653 		goto out_putf;
654 
655 	/* and ... switch */
656 	error = loop_switch(lo, file);
657 	if (error)
658 		goto out_putf;
659 
660 	fput(old_file);
661 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
662 		ioctl_by_bdev(bdev, BLKRRPART, 0);
663 	return 0;
664 
665  out_putf:
666 	fput(file);
667  out:
668 	return error;
669 }
670 
671 static inline int is_loop_device(struct file *file)
672 {
673 	struct inode *i = file->f_mapping->host;
674 
675 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
676 }
677 
678 /* loop sysfs attributes */
679 
680 static ssize_t loop_attr_show(struct device *dev, char *page,
681 			      ssize_t (*callback)(struct loop_device *, char *))
682 {
683 	struct gendisk *disk = dev_to_disk(dev);
684 	struct loop_device *lo = disk->private_data;
685 
686 	return callback(lo, page);
687 }
688 
689 #define LOOP_ATTR_RO(_name)						\
690 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
691 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
692 				struct device_attribute *attr, char *b)	\
693 {									\
694 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
695 }									\
696 static struct device_attribute loop_attr_##_name =			\
697 	__ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
698 
699 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
700 {
701 	ssize_t ret;
702 	char *p = NULL;
703 
704 	spin_lock_irq(&lo->lo_lock);
705 	if (lo->lo_backing_file)
706 		p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1);
707 	spin_unlock_irq(&lo->lo_lock);
708 
709 	if (IS_ERR_OR_NULL(p))
710 		ret = PTR_ERR(p);
711 	else {
712 		ret = strlen(p);
713 		memmove(buf, p, ret);
714 		buf[ret++] = '\n';
715 		buf[ret] = 0;
716 	}
717 
718 	return ret;
719 }
720 
721 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
722 {
723 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
724 }
725 
726 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
727 {
728 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
729 }
730 
731 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
732 {
733 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
734 
735 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
736 }
737 
738 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
739 {
740 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
741 
742 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
743 }
744 
745 LOOP_ATTR_RO(backing_file);
746 LOOP_ATTR_RO(offset);
747 LOOP_ATTR_RO(sizelimit);
748 LOOP_ATTR_RO(autoclear);
749 LOOP_ATTR_RO(partscan);
750 
751 static struct attribute *loop_attrs[] = {
752 	&loop_attr_backing_file.attr,
753 	&loop_attr_offset.attr,
754 	&loop_attr_sizelimit.attr,
755 	&loop_attr_autoclear.attr,
756 	&loop_attr_partscan.attr,
757 	NULL,
758 };
759 
760 static struct attribute_group loop_attribute_group = {
761 	.name = "loop",
762 	.attrs= loop_attrs,
763 };
764 
765 static int loop_sysfs_init(struct loop_device *lo)
766 {
767 	return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
768 				  &loop_attribute_group);
769 }
770 
771 static void loop_sysfs_exit(struct loop_device *lo)
772 {
773 	sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
774 			   &loop_attribute_group);
775 }
776 
777 static void loop_config_discard(struct loop_device *lo)
778 {
779 	struct file *file = lo->lo_backing_file;
780 	struct inode *inode = file->f_mapping->host;
781 	struct request_queue *q = lo->lo_queue;
782 
783 	/*
784 	 * We use punch hole to reclaim the free space used by the
785 	 * image a.k.a. discard. However we do support discard if
786 	 * encryption is enabled, because it may give an attacker
787 	 * useful information.
788 	 */
789 	if ((!file->f_op->fallocate) ||
790 	    lo->lo_encrypt_key_size) {
791 		q->limits.discard_granularity = 0;
792 		q->limits.discard_alignment = 0;
793 		q->limits.max_discard_sectors = 0;
794 		q->limits.discard_zeroes_data = 0;
795 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
796 		return;
797 	}
798 
799 	q->limits.discard_granularity = inode->i_sb->s_blocksize;
800 	q->limits.discard_alignment = 0;
801 	q->limits.max_discard_sectors = UINT_MAX >> 9;
802 	q->limits.discard_zeroes_data = 1;
803 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
804 }
805 
806 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
807 		       struct block_device *bdev, unsigned int arg)
808 {
809 	struct file	*file, *f;
810 	struct inode	*inode;
811 	struct address_space *mapping;
812 	unsigned lo_blocksize;
813 	int		lo_flags = 0;
814 	int		error;
815 	loff_t		size;
816 
817 	/* This is safe, since we have a reference from open(). */
818 	__module_get(THIS_MODULE);
819 
820 	error = -EBADF;
821 	file = fget(arg);
822 	if (!file)
823 		goto out;
824 
825 	error = -EBUSY;
826 	if (lo->lo_state != Lo_unbound)
827 		goto out_putf;
828 
829 	/* Avoid recursion */
830 	f = file;
831 	while (is_loop_device(f)) {
832 		struct loop_device *l;
833 
834 		if (f->f_mapping->host->i_bdev == bdev)
835 			goto out_putf;
836 
837 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
838 		if (l->lo_state == Lo_unbound) {
839 			error = -EINVAL;
840 			goto out_putf;
841 		}
842 		f = l->lo_backing_file;
843 	}
844 
845 	mapping = file->f_mapping;
846 	inode = mapping->host;
847 
848 	error = -EINVAL;
849 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
850 		goto out_putf;
851 
852 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
853 	    !file->f_op->write)
854 		lo_flags |= LO_FLAGS_READ_ONLY;
855 
856 	lo_blocksize = S_ISBLK(inode->i_mode) ?
857 		inode->i_bdev->bd_block_size : PAGE_SIZE;
858 
859 	error = -EFBIG;
860 	size = get_loop_size(lo, file);
861 	if ((loff_t)(sector_t)size != size)
862 		goto out_putf;
863 
864 	error = 0;
865 
866 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
867 
868 	lo->lo_blocksize = lo_blocksize;
869 	lo->lo_device = bdev;
870 	lo->lo_flags = lo_flags;
871 	lo->lo_backing_file = file;
872 	lo->transfer = transfer_none;
873 	lo->ioctl = NULL;
874 	lo->lo_sizelimit = 0;
875 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
876 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
877 
878 	bio_list_init(&lo->lo_bio_list);
879 
880 	/*
881 	 * set queue make_request_fn, and add limits based on lower level
882 	 * device
883 	 */
884 	blk_queue_make_request(lo->lo_queue, loop_make_request);
885 	lo->lo_queue->queuedata = lo;
886 
887 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
888 		blk_queue_flush(lo->lo_queue, REQ_FLUSH);
889 
890 	set_capacity(lo->lo_disk, size);
891 	bd_set_size(bdev, size << 9);
892 	loop_sysfs_init(lo);
893 	/* let user-space know about the new size */
894 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
895 
896 	set_blocksize(bdev, lo_blocksize);
897 
898 	lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
899 						lo->lo_number);
900 	if (IS_ERR(lo->lo_thread)) {
901 		error = PTR_ERR(lo->lo_thread);
902 		goto out_clr;
903 	}
904 	lo->lo_state = Lo_bound;
905 	wake_up_process(lo->lo_thread);
906 	if (part_shift)
907 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
908 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
909 		ioctl_by_bdev(bdev, BLKRRPART, 0);
910 	return 0;
911 
912 out_clr:
913 	loop_sysfs_exit(lo);
914 	lo->lo_thread = NULL;
915 	lo->lo_device = NULL;
916 	lo->lo_backing_file = NULL;
917 	lo->lo_flags = 0;
918 	set_capacity(lo->lo_disk, 0);
919 	invalidate_bdev(bdev);
920 	bd_set_size(bdev, 0);
921 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
922 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
923 	lo->lo_state = Lo_unbound;
924  out_putf:
925 	fput(file);
926  out:
927 	/* This is safe: open() is still holding a reference. */
928 	module_put(THIS_MODULE);
929 	return error;
930 }
931 
932 static int
933 loop_release_xfer(struct loop_device *lo)
934 {
935 	int err = 0;
936 	struct loop_func_table *xfer = lo->lo_encryption;
937 
938 	if (xfer) {
939 		if (xfer->release)
940 			err = xfer->release(lo);
941 		lo->transfer = NULL;
942 		lo->lo_encryption = NULL;
943 		module_put(xfer->owner);
944 	}
945 	return err;
946 }
947 
948 static int
949 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
950 	       const struct loop_info64 *i)
951 {
952 	int err = 0;
953 
954 	if (xfer) {
955 		struct module *owner = xfer->owner;
956 
957 		if (!try_module_get(owner))
958 			return -EINVAL;
959 		if (xfer->init)
960 			err = xfer->init(lo, i);
961 		if (err)
962 			module_put(owner);
963 		else
964 			lo->lo_encryption = xfer;
965 	}
966 	return err;
967 }
968 
969 static int loop_clr_fd(struct loop_device *lo)
970 {
971 	struct file *filp = lo->lo_backing_file;
972 	gfp_t gfp = lo->old_gfp_mask;
973 	struct block_device *bdev = lo->lo_device;
974 
975 	if (lo->lo_state != Lo_bound)
976 		return -ENXIO;
977 
978 	if (lo->lo_refcnt > 1)	/* we needed one fd for the ioctl */
979 		return -EBUSY;
980 
981 	if (filp == NULL)
982 		return -EINVAL;
983 
984 	spin_lock_irq(&lo->lo_lock);
985 	lo->lo_state = Lo_rundown;
986 	spin_unlock_irq(&lo->lo_lock);
987 
988 	kthread_stop(lo->lo_thread);
989 
990 	spin_lock_irq(&lo->lo_lock);
991 	lo->lo_backing_file = NULL;
992 	spin_unlock_irq(&lo->lo_lock);
993 
994 	loop_release_xfer(lo);
995 	lo->transfer = NULL;
996 	lo->ioctl = NULL;
997 	lo->lo_device = NULL;
998 	lo->lo_encryption = NULL;
999 	lo->lo_offset = 0;
1000 	lo->lo_sizelimit = 0;
1001 	lo->lo_encrypt_key_size = 0;
1002 	lo->lo_thread = NULL;
1003 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1004 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1005 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1006 	if (bdev)
1007 		invalidate_bdev(bdev);
1008 	set_capacity(lo->lo_disk, 0);
1009 	loop_sysfs_exit(lo);
1010 	if (bdev) {
1011 		bd_set_size(bdev, 0);
1012 		/* let user-space know about this change */
1013 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1014 	}
1015 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1016 	lo->lo_state = Lo_unbound;
1017 	/* This is safe: open() is still holding a reference. */
1018 	module_put(THIS_MODULE);
1019 	if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1020 		ioctl_by_bdev(bdev, BLKRRPART, 0);
1021 	lo->lo_flags = 0;
1022 	if (!part_shift)
1023 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1024 	mutex_unlock(&lo->lo_ctl_mutex);
1025 	/*
1026 	 * Need not hold lo_ctl_mutex to fput backing file.
1027 	 * Calling fput holding lo_ctl_mutex triggers a circular
1028 	 * lock dependency possibility warning as fput can take
1029 	 * bd_mutex which is usually taken before lo_ctl_mutex.
1030 	 */
1031 	fput(filp);
1032 	return 0;
1033 }
1034 
1035 static int
1036 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1037 {
1038 	int err;
1039 	struct loop_func_table *xfer;
1040 	uid_t uid = current_uid();
1041 
1042 	if (lo->lo_encrypt_key_size &&
1043 	    lo->lo_key_owner != uid &&
1044 	    !capable(CAP_SYS_ADMIN))
1045 		return -EPERM;
1046 	if (lo->lo_state != Lo_bound)
1047 		return -ENXIO;
1048 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1049 		return -EINVAL;
1050 
1051 	err = loop_release_xfer(lo);
1052 	if (err)
1053 		return err;
1054 
1055 	if (info->lo_encrypt_type) {
1056 		unsigned int type = info->lo_encrypt_type;
1057 
1058 		if (type >= MAX_LO_CRYPT)
1059 			return -EINVAL;
1060 		xfer = xfer_funcs[type];
1061 		if (xfer == NULL)
1062 			return -EINVAL;
1063 	} else
1064 		xfer = NULL;
1065 
1066 	err = loop_init_xfer(lo, xfer, info);
1067 	if (err)
1068 		return err;
1069 
1070 	if (lo->lo_offset != info->lo_offset ||
1071 	    lo->lo_sizelimit != info->lo_sizelimit) {
1072 		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit))
1073 			return -EFBIG;
1074 	}
1075 	loop_config_discard(lo);
1076 
1077 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1078 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1079 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1080 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1081 
1082 	if (!xfer)
1083 		xfer = &none_funcs;
1084 	lo->transfer = xfer->transfer;
1085 	lo->ioctl = xfer->ioctl;
1086 
1087 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1088 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1089 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1090 
1091 	if ((info->lo_flags & LO_FLAGS_PARTSCAN) &&
1092 	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1093 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1094 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1095 		ioctl_by_bdev(lo->lo_device, BLKRRPART, 0);
1096 	}
1097 
1098 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1099 	lo->lo_init[0] = info->lo_init[0];
1100 	lo->lo_init[1] = info->lo_init[1];
1101 	if (info->lo_encrypt_key_size) {
1102 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1103 		       info->lo_encrypt_key_size);
1104 		lo->lo_key_owner = uid;
1105 	}
1106 
1107 	return 0;
1108 }
1109 
1110 static int
1111 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1112 {
1113 	struct file *file = lo->lo_backing_file;
1114 	struct kstat stat;
1115 	int error;
1116 
1117 	if (lo->lo_state != Lo_bound)
1118 		return -ENXIO;
1119 	error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1120 	if (error)
1121 		return error;
1122 	memset(info, 0, sizeof(*info));
1123 	info->lo_number = lo->lo_number;
1124 	info->lo_device = huge_encode_dev(stat.dev);
1125 	info->lo_inode = stat.ino;
1126 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1127 	info->lo_offset = lo->lo_offset;
1128 	info->lo_sizelimit = lo->lo_sizelimit;
1129 	info->lo_flags = lo->lo_flags;
1130 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1131 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1132 	info->lo_encrypt_type =
1133 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1134 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1135 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1136 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1137 		       lo->lo_encrypt_key_size);
1138 	}
1139 	return 0;
1140 }
1141 
1142 static void
1143 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1144 {
1145 	memset(info64, 0, sizeof(*info64));
1146 	info64->lo_number = info->lo_number;
1147 	info64->lo_device = info->lo_device;
1148 	info64->lo_inode = info->lo_inode;
1149 	info64->lo_rdevice = info->lo_rdevice;
1150 	info64->lo_offset = info->lo_offset;
1151 	info64->lo_sizelimit = 0;
1152 	info64->lo_encrypt_type = info->lo_encrypt_type;
1153 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1154 	info64->lo_flags = info->lo_flags;
1155 	info64->lo_init[0] = info->lo_init[0];
1156 	info64->lo_init[1] = info->lo_init[1];
1157 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1158 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1159 	else
1160 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1161 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1162 }
1163 
1164 static int
1165 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1166 {
1167 	memset(info, 0, sizeof(*info));
1168 	info->lo_number = info64->lo_number;
1169 	info->lo_device = info64->lo_device;
1170 	info->lo_inode = info64->lo_inode;
1171 	info->lo_rdevice = info64->lo_rdevice;
1172 	info->lo_offset = info64->lo_offset;
1173 	info->lo_encrypt_type = info64->lo_encrypt_type;
1174 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1175 	info->lo_flags = info64->lo_flags;
1176 	info->lo_init[0] = info64->lo_init[0];
1177 	info->lo_init[1] = info64->lo_init[1];
1178 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1179 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1180 	else
1181 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1182 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1183 
1184 	/* error in case values were truncated */
1185 	if (info->lo_device != info64->lo_device ||
1186 	    info->lo_rdevice != info64->lo_rdevice ||
1187 	    info->lo_inode != info64->lo_inode ||
1188 	    info->lo_offset != info64->lo_offset)
1189 		return -EOVERFLOW;
1190 
1191 	return 0;
1192 }
1193 
1194 static int
1195 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1196 {
1197 	struct loop_info info;
1198 	struct loop_info64 info64;
1199 
1200 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1201 		return -EFAULT;
1202 	loop_info64_from_old(&info, &info64);
1203 	return loop_set_status(lo, &info64);
1204 }
1205 
1206 static int
1207 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1208 {
1209 	struct loop_info64 info64;
1210 
1211 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1212 		return -EFAULT;
1213 	return loop_set_status(lo, &info64);
1214 }
1215 
1216 static int
1217 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1218 	struct loop_info info;
1219 	struct loop_info64 info64;
1220 	int err = 0;
1221 
1222 	if (!arg)
1223 		err = -EINVAL;
1224 	if (!err)
1225 		err = loop_get_status(lo, &info64);
1226 	if (!err)
1227 		err = loop_info64_to_old(&info64, &info);
1228 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1229 		err = -EFAULT;
1230 
1231 	return err;
1232 }
1233 
1234 static int
1235 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1236 	struct loop_info64 info64;
1237 	int err = 0;
1238 
1239 	if (!arg)
1240 		err = -EINVAL;
1241 	if (!err)
1242 		err = loop_get_status(lo, &info64);
1243 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1244 		err = -EFAULT;
1245 
1246 	return err;
1247 }
1248 
1249 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1250 {
1251 	int err;
1252 	sector_t sec;
1253 	loff_t sz;
1254 
1255 	err = -ENXIO;
1256 	if (unlikely(lo->lo_state != Lo_bound))
1257 		goto out;
1258 	err = figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1259 	if (unlikely(err))
1260 		goto out;
1261 	sec = get_capacity(lo->lo_disk);
1262 	/* the width of sector_t may be narrow for bit-shift */
1263 	sz = sec;
1264 	sz <<= 9;
1265 	mutex_lock(&bdev->bd_mutex);
1266 	bd_set_size(bdev, sz);
1267 	/* let user-space know about the new size */
1268 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1269 	mutex_unlock(&bdev->bd_mutex);
1270 
1271  out:
1272 	return err;
1273 }
1274 
1275 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1276 	unsigned int cmd, unsigned long arg)
1277 {
1278 	struct loop_device *lo = bdev->bd_disk->private_data;
1279 	int err;
1280 
1281 	mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1282 	switch (cmd) {
1283 	case LOOP_SET_FD:
1284 		err = loop_set_fd(lo, mode, bdev, arg);
1285 		break;
1286 	case LOOP_CHANGE_FD:
1287 		err = loop_change_fd(lo, bdev, arg);
1288 		break;
1289 	case LOOP_CLR_FD:
1290 		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1291 		err = loop_clr_fd(lo);
1292 		if (!err)
1293 			goto out_unlocked;
1294 		break;
1295 	case LOOP_SET_STATUS:
1296 		err = -EPERM;
1297 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1298 			err = loop_set_status_old(lo,
1299 					(struct loop_info __user *)arg);
1300 		break;
1301 	case LOOP_GET_STATUS:
1302 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1303 		break;
1304 	case LOOP_SET_STATUS64:
1305 		err = -EPERM;
1306 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1307 			err = loop_set_status64(lo,
1308 					(struct loop_info64 __user *) arg);
1309 		break;
1310 	case LOOP_GET_STATUS64:
1311 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1312 		break;
1313 	case LOOP_SET_CAPACITY:
1314 		err = -EPERM;
1315 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1316 			err = loop_set_capacity(lo, bdev);
1317 		break;
1318 	default:
1319 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1320 	}
1321 	mutex_unlock(&lo->lo_ctl_mutex);
1322 
1323 out_unlocked:
1324 	return err;
1325 }
1326 
1327 #ifdef CONFIG_COMPAT
1328 struct compat_loop_info {
1329 	compat_int_t	lo_number;      /* ioctl r/o */
1330 	compat_dev_t	lo_device;      /* ioctl r/o */
1331 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1332 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1333 	compat_int_t	lo_offset;
1334 	compat_int_t	lo_encrypt_type;
1335 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1336 	compat_int_t	lo_flags;       /* ioctl r/o */
1337 	char		lo_name[LO_NAME_SIZE];
1338 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1339 	compat_ulong_t	lo_init[2];
1340 	char		reserved[4];
1341 };
1342 
1343 /*
1344  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1345  * - noinlined to reduce stack space usage in main part of driver
1346  */
1347 static noinline int
1348 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1349 			struct loop_info64 *info64)
1350 {
1351 	struct compat_loop_info info;
1352 
1353 	if (copy_from_user(&info, arg, sizeof(info)))
1354 		return -EFAULT;
1355 
1356 	memset(info64, 0, sizeof(*info64));
1357 	info64->lo_number = info.lo_number;
1358 	info64->lo_device = info.lo_device;
1359 	info64->lo_inode = info.lo_inode;
1360 	info64->lo_rdevice = info.lo_rdevice;
1361 	info64->lo_offset = info.lo_offset;
1362 	info64->lo_sizelimit = 0;
1363 	info64->lo_encrypt_type = info.lo_encrypt_type;
1364 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1365 	info64->lo_flags = info.lo_flags;
1366 	info64->lo_init[0] = info.lo_init[0];
1367 	info64->lo_init[1] = info.lo_init[1];
1368 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1369 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1370 	else
1371 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1372 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1373 	return 0;
1374 }
1375 
1376 /*
1377  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1378  * - noinlined to reduce stack space usage in main part of driver
1379  */
1380 static noinline int
1381 loop_info64_to_compat(const struct loop_info64 *info64,
1382 		      struct compat_loop_info __user *arg)
1383 {
1384 	struct compat_loop_info info;
1385 
1386 	memset(&info, 0, sizeof(info));
1387 	info.lo_number = info64->lo_number;
1388 	info.lo_device = info64->lo_device;
1389 	info.lo_inode = info64->lo_inode;
1390 	info.lo_rdevice = info64->lo_rdevice;
1391 	info.lo_offset = info64->lo_offset;
1392 	info.lo_encrypt_type = info64->lo_encrypt_type;
1393 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1394 	info.lo_flags = info64->lo_flags;
1395 	info.lo_init[0] = info64->lo_init[0];
1396 	info.lo_init[1] = info64->lo_init[1];
1397 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1398 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1399 	else
1400 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1401 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1402 
1403 	/* error in case values were truncated */
1404 	if (info.lo_device != info64->lo_device ||
1405 	    info.lo_rdevice != info64->lo_rdevice ||
1406 	    info.lo_inode != info64->lo_inode ||
1407 	    info.lo_offset != info64->lo_offset ||
1408 	    info.lo_init[0] != info64->lo_init[0] ||
1409 	    info.lo_init[1] != info64->lo_init[1])
1410 		return -EOVERFLOW;
1411 
1412 	if (copy_to_user(arg, &info, sizeof(info)))
1413 		return -EFAULT;
1414 	return 0;
1415 }
1416 
1417 static int
1418 loop_set_status_compat(struct loop_device *lo,
1419 		       const struct compat_loop_info __user *arg)
1420 {
1421 	struct loop_info64 info64;
1422 	int ret;
1423 
1424 	ret = loop_info64_from_compat(arg, &info64);
1425 	if (ret < 0)
1426 		return ret;
1427 	return loop_set_status(lo, &info64);
1428 }
1429 
1430 static int
1431 loop_get_status_compat(struct loop_device *lo,
1432 		       struct compat_loop_info __user *arg)
1433 {
1434 	struct loop_info64 info64;
1435 	int err = 0;
1436 
1437 	if (!arg)
1438 		err = -EINVAL;
1439 	if (!err)
1440 		err = loop_get_status(lo, &info64);
1441 	if (!err)
1442 		err = loop_info64_to_compat(&info64, arg);
1443 	return err;
1444 }
1445 
1446 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1447 			   unsigned int cmd, unsigned long arg)
1448 {
1449 	struct loop_device *lo = bdev->bd_disk->private_data;
1450 	int err;
1451 
1452 	switch(cmd) {
1453 	case LOOP_SET_STATUS:
1454 		mutex_lock(&lo->lo_ctl_mutex);
1455 		err = loop_set_status_compat(
1456 			lo, (const struct compat_loop_info __user *) arg);
1457 		mutex_unlock(&lo->lo_ctl_mutex);
1458 		break;
1459 	case LOOP_GET_STATUS:
1460 		mutex_lock(&lo->lo_ctl_mutex);
1461 		err = loop_get_status_compat(
1462 			lo, (struct compat_loop_info __user *) arg);
1463 		mutex_unlock(&lo->lo_ctl_mutex);
1464 		break;
1465 	case LOOP_SET_CAPACITY:
1466 	case LOOP_CLR_FD:
1467 	case LOOP_GET_STATUS64:
1468 	case LOOP_SET_STATUS64:
1469 		arg = (unsigned long) compat_ptr(arg);
1470 	case LOOP_SET_FD:
1471 	case LOOP_CHANGE_FD:
1472 		err = lo_ioctl(bdev, mode, cmd, arg);
1473 		break;
1474 	default:
1475 		err = -ENOIOCTLCMD;
1476 		break;
1477 	}
1478 	return err;
1479 }
1480 #endif
1481 
1482 static int lo_open(struct block_device *bdev, fmode_t mode)
1483 {
1484 	struct loop_device *lo;
1485 	int err = 0;
1486 
1487 	mutex_lock(&loop_index_mutex);
1488 	lo = bdev->bd_disk->private_data;
1489 	if (!lo) {
1490 		err = -ENXIO;
1491 		goto out;
1492 	}
1493 
1494 	mutex_lock(&lo->lo_ctl_mutex);
1495 	lo->lo_refcnt++;
1496 	mutex_unlock(&lo->lo_ctl_mutex);
1497 out:
1498 	mutex_unlock(&loop_index_mutex);
1499 	return err;
1500 }
1501 
1502 static int lo_release(struct gendisk *disk, fmode_t mode)
1503 {
1504 	struct loop_device *lo = disk->private_data;
1505 	int err;
1506 
1507 	mutex_lock(&lo->lo_ctl_mutex);
1508 
1509 	if (--lo->lo_refcnt)
1510 		goto out;
1511 
1512 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1513 		/*
1514 		 * In autoclear mode, stop the loop thread
1515 		 * and remove configuration after last close.
1516 		 */
1517 		err = loop_clr_fd(lo);
1518 		if (!err)
1519 			goto out_unlocked;
1520 	} else {
1521 		/*
1522 		 * Otherwise keep thread (if running) and config,
1523 		 * but flush possible ongoing bios in thread.
1524 		 */
1525 		loop_flush(lo);
1526 	}
1527 
1528 out:
1529 	mutex_unlock(&lo->lo_ctl_mutex);
1530 out_unlocked:
1531 	return 0;
1532 }
1533 
1534 static const struct block_device_operations lo_fops = {
1535 	.owner =	THIS_MODULE,
1536 	.open =		lo_open,
1537 	.release =	lo_release,
1538 	.ioctl =	lo_ioctl,
1539 #ifdef CONFIG_COMPAT
1540 	.compat_ioctl =	lo_compat_ioctl,
1541 #endif
1542 };
1543 
1544 /*
1545  * And now the modules code and kernel interface.
1546  */
1547 static int max_loop;
1548 module_param(max_loop, int, S_IRUGO);
1549 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1550 module_param(max_part, int, S_IRUGO);
1551 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1552 MODULE_LICENSE("GPL");
1553 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1554 
1555 int loop_register_transfer(struct loop_func_table *funcs)
1556 {
1557 	unsigned int n = funcs->number;
1558 
1559 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1560 		return -EINVAL;
1561 	xfer_funcs[n] = funcs;
1562 	return 0;
1563 }
1564 
1565 static int unregister_transfer_cb(int id, void *ptr, void *data)
1566 {
1567 	struct loop_device *lo = ptr;
1568 	struct loop_func_table *xfer = data;
1569 
1570 	mutex_lock(&lo->lo_ctl_mutex);
1571 	if (lo->lo_encryption == xfer)
1572 		loop_release_xfer(lo);
1573 	mutex_unlock(&lo->lo_ctl_mutex);
1574 	return 0;
1575 }
1576 
1577 int loop_unregister_transfer(int number)
1578 {
1579 	unsigned int n = number;
1580 	struct loop_func_table *xfer;
1581 
1582 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1583 		return -EINVAL;
1584 
1585 	xfer_funcs[n] = NULL;
1586 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1587 	return 0;
1588 }
1589 
1590 EXPORT_SYMBOL(loop_register_transfer);
1591 EXPORT_SYMBOL(loop_unregister_transfer);
1592 
1593 static int loop_add(struct loop_device **l, int i)
1594 {
1595 	struct loop_device *lo;
1596 	struct gendisk *disk;
1597 	int err;
1598 
1599 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1600 	if (!lo) {
1601 		err = -ENOMEM;
1602 		goto out;
1603 	}
1604 
1605 	err = idr_pre_get(&loop_index_idr, GFP_KERNEL);
1606 	if (err < 0)
1607 		goto out_free_dev;
1608 
1609 	if (i >= 0) {
1610 		int m;
1611 
1612 		/* create specific i in the index */
1613 		err = idr_get_new_above(&loop_index_idr, lo, i, &m);
1614 		if (err >= 0 && i != m) {
1615 			idr_remove(&loop_index_idr, m);
1616 			err = -EEXIST;
1617 		}
1618 	} else if (i == -1) {
1619 		int m;
1620 
1621 		/* get next free nr */
1622 		err = idr_get_new(&loop_index_idr, lo, &m);
1623 		if (err >= 0)
1624 			i = m;
1625 	} else {
1626 		err = -EINVAL;
1627 	}
1628 	if (err < 0)
1629 		goto out_free_dev;
1630 
1631 	lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1632 	if (!lo->lo_queue)
1633 		goto out_free_dev;
1634 
1635 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1636 	if (!disk)
1637 		goto out_free_queue;
1638 
1639 	/*
1640 	 * Disable partition scanning by default. The in-kernel partition
1641 	 * scanning can be requested individually per-device during its
1642 	 * setup. Userspace can always add and remove partitions from all
1643 	 * devices. The needed partition minors are allocated from the
1644 	 * extended minor space, the main loop device numbers will continue
1645 	 * to match the loop minors, regardless of the number of partitions
1646 	 * used.
1647 	 *
1648 	 * If max_part is given, partition scanning is globally enabled for
1649 	 * all loop devices. The minors for the main loop devices will be
1650 	 * multiples of max_part.
1651 	 *
1652 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
1653 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
1654 	 * complicated, are too static, inflexible and may surprise
1655 	 * userspace tools. Parameters like this in general should be avoided.
1656 	 */
1657 	if (!part_shift)
1658 		disk->flags |= GENHD_FL_NO_PART_SCAN;
1659 	disk->flags |= GENHD_FL_EXT_DEVT;
1660 	mutex_init(&lo->lo_ctl_mutex);
1661 	lo->lo_number		= i;
1662 	lo->lo_thread		= NULL;
1663 	init_waitqueue_head(&lo->lo_event);
1664 	spin_lock_init(&lo->lo_lock);
1665 	disk->major		= LOOP_MAJOR;
1666 	disk->first_minor	= i << part_shift;
1667 	disk->fops		= &lo_fops;
1668 	disk->private_data	= lo;
1669 	disk->queue		= lo->lo_queue;
1670 	sprintf(disk->disk_name, "loop%d", i);
1671 	add_disk(disk);
1672 	*l = lo;
1673 	return lo->lo_number;
1674 
1675 out_free_queue:
1676 	blk_cleanup_queue(lo->lo_queue);
1677 out_free_dev:
1678 	kfree(lo);
1679 out:
1680 	return err;
1681 }
1682 
1683 static void loop_remove(struct loop_device *lo)
1684 {
1685 	del_gendisk(lo->lo_disk);
1686 	blk_cleanup_queue(lo->lo_queue);
1687 	put_disk(lo->lo_disk);
1688 	kfree(lo);
1689 }
1690 
1691 static int find_free_cb(int id, void *ptr, void *data)
1692 {
1693 	struct loop_device *lo = ptr;
1694 	struct loop_device **l = data;
1695 
1696 	if (lo->lo_state == Lo_unbound) {
1697 		*l = lo;
1698 		return 1;
1699 	}
1700 	return 0;
1701 }
1702 
1703 static int loop_lookup(struct loop_device **l, int i)
1704 {
1705 	struct loop_device *lo;
1706 	int ret = -ENODEV;
1707 
1708 	if (i < 0) {
1709 		int err;
1710 
1711 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1712 		if (err == 1) {
1713 			*l = lo;
1714 			ret = lo->lo_number;
1715 		}
1716 		goto out;
1717 	}
1718 
1719 	/* lookup and return a specific i */
1720 	lo = idr_find(&loop_index_idr, i);
1721 	if (lo) {
1722 		*l = lo;
1723 		ret = lo->lo_number;
1724 	}
1725 out:
1726 	return ret;
1727 }
1728 
1729 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1730 {
1731 	struct loop_device *lo;
1732 	struct kobject *kobj;
1733 	int err;
1734 
1735 	mutex_lock(&loop_index_mutex);
1736 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1737 	if (err < 0)
1738 		err = loop_add(&lo, MINOR(dev) >> part_shift);
1739 	if (err < 0)
1740 		kobj = ERR_PTR(err);
1741 	else
1742 		kobj = get_disk(lo->lo_disk);
1743 	mutex_unlock(&loop_index_mutex);
1744 
1745 	*part = 0;
1746 	return kobj;
1747 }
1748 
1749 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1750 			       unsigned long parm)
1751 {
1752 	struct loop_device *lo;
1753 	int ret = -ENOSYS;
1754 
1755 	mutex_lock(&loop_index_mutex);
1756 	switch (cmd) {
1757 	case LOOP_CTL_ADD:
1758 		ret = loop_lookup(&lo, parm);
1759 		if (ret >= 0) {
1760 			ret = -EEXIST;
1761 			break;
1762 		}
1763 		ret = loop_add(&lo, parm);
1764 		break;
1765 	case LOOP_CTL_REMOVE:
1766 		ret = loop_lookup(&lo, parm);
1767 		if (ret < 0)
1768 			break;
1769 		mutex_lock(&lo->lo_ctl_mutex);
1770 		if (lo->lo_state != Lo_unbound) {
1771 			ret = -EBUSY;
1772 			mutex_unlock(&lo->lo_ctl_mutex);
1773 			break;
1774 		}
1775 		if (lo->lo_refcnt > 0) {
1776 			ret = -EBUSY;
1777 			mutex_unlock(&lo->lo_ctl_mutex);
1778 			break;
1779 		}
1780 		lo->lo_disk->private_data = NULL;
1781 		mutex_unlock(&lo->lo_ctl_mutex);
1782 		idr_remove(&loop_index_idr, lo->lo_number);
1783 		loop_remove(lo);
1784 		break;
1785 	case LOOP_CTL_GET_FREE:
1786 		ret = loop_lookup(&lo, -1);
1787 		if (ret >= 0)
1788 			break;
1789 		ret = loop_add(&lo, -1);
1790 	}
1791 	mutex_unlock(&loop_index_mutex);
1792 
1793 	return ret;
1794 }
1795 
1796 static const struct file_operations loop_ctl_fops = {
1797 	.open		= nonseekable_open,
1798 	.unlocked_ioctl	= loop_control_ioctl,
1799 	.compat_ioctl	= loop_control_ioctl,
1800 	.owner		= THIS_MODULE,
1801 	.llseek		= noop_llseek,
1802 };
1803 
1804 static struct miscdevice loop_misc = {
1805 	.minor		= LOOP_CTRL_MINOR,
1806 	.name		= "loop-control",
1807 	.fops		= &loop_ctl_fops,
1808 };
1809 
1810 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1811 MODULE_ALIAS("devname:loop-control");
1812 
1813 static int __init loop_init(void)
1814 {
1815 	int i, nr;
1816 	unsigned long range;
1817 	struct loop_device *lo;
1818 	int err;
1819 
1820 	err = misc_register(&loop_misc);
1821 	if (err < 0)
1822 		return err;
1823 
1824 	part_shift = 0;
1825 	if (max_part > 0) {
1826 		part_shift = fls(max_part);
1827 
1828 		/*
1829 		 * Adjust max_part according to part_shift as it is exported
1830 		 * to user space so that user can decide correct minor number
1831 		 * if [s]he want to create more devices.
1832 		 *
1833 		 * Note that -1 is required because partition 0 is reserved
1834 		 * for the whole disk.
1835 		 */
1836 		max_part = (1UL << part_shift) - 1;
1837 	}
1838 
1839 	if ((1UL << part_shift) > DISK_MAX_PARTS)
1840 		return -EINVAL;
1841 
1842 	if (max_loop > 1UL << (MINORBITS - part_shift))
1843 		return -EINVAL;
1844 
1845 	/*
1846 	 * If max_loop is specified, create that many devices upfront.
1847 	 * This also becomes a hard limit. If max_loop is not specified,
1848 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1849 	 * init time. Loop devices can be requested on-demand with the
1850 	 * /dev/loop-control interface, or be instantiated by accessing
1851 	 * a 'dead' device node.
1852 	 */
1853 	if (max_loop) {
1854 		nr = max_loop;
1855 		range = max_loop << part_shift;
1856 	} else {
1857 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1858 		range = 1UL << MINORBITS;
1859 	}
1860 
1861 	if (register_blkdev(LOOP_MAJOR, "loop"))
1862 		return -EIO;
1863 
1864 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1865 				  THIS_MODULE, loop_probe, NULL, NULL);
1866 
1867 	/* pre-create number of devices given by config or max_loop */
1868 	mutex_lock(&loop_index_mutex);
1869 	for (i = 0; i < nr; i++)
1870 		loop_add(&lo, i);
1871 	mutex_unlock(&loop_index_mutex);
1872 
1873 	printk(KERN_INFO "loop: module loaded\n");
1874 	return 0;
1875 }
1876 
1877 static int loop_exit_cb(int id, void *ptr, void *data)
1878 {
1879 	struct loop_device *lo = ptr;
1880 
1881 	loop_remove(lo);
1882 	return 0;
1883 }
1884 
1885 static void __exit loop_exit(void)
1886 {
1887 	unsigned long range;
1888 
1889 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
1890 
1891 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
1892 	idr_remove_all(&loop_index_idr);
1893 	idr_destroy(&loop_index_idr);
1894 
1895 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1896 	unregister_blkdev(LOOP_MAJOR, "loop");
1897 
1898 	misc_deregister(&loop_misc);
1899 }
1900 
1901 module_init(loop_init);
1902 module_exit(loop_exit);
1903 
1904 #ifndef MODULE
1905 static int __init max_loop_setup(char *str)
1906 {
1907 	max_loop = simple_strtol(str, NULL, 0);
1908 	return 1;
1909 }
1910 
1911 __setup("max_loop=", max_loop_setup);
1912 #endif
1913