xref: /linux-6.15/drivers/block/loop.c (revision ae074d07)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 1993 by Theodore Ts'o.
4  */
5 #include <linux/module.h>
6 #include <linux/moduleparam.h>
7 #include <linux/sched.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/file.h>
11 #include <linux/stat.h>
12 #include <linux/errno.h>
13 #include <linux/major.h>
14 #include <linux/wait.h>
15 #include <linux/blkpg.h>
16 #include <linux/init.h>
17 #include <linux/swap.h>
18 #include <linux/slab.h>
19 #include <linux/compat.h>
20 #include <linux/suspend.h>
21 #include <linux/freezer.h>
22 #include <linux/mutex.h>
23 #include <linux/writeback.h>
24 #include <linux/completion.h>
25 #include <linux/highmem.h>
26 #include <linux/splice.h>
27 #include <linux/sysfs.h>
28 #include <linux/miscdevice.h>
29 #include <linux/falloc.h>
30 #include <linux/uio.h>
31 #include <linux/ioprio.h>
32 #include <linux/blk-cgroup.h>
33 #include <linux/sched/mm.h>
34 #include <linux/statfs.h>
35 #include <linux/uaccess.h>
36 #include <linux/blk-mq.h>
37 #include <linux/spinlock.h>
38 #include <uapi/linux/loop.h>
39 
40 /* Possible states of device */
41 enum {
42 	Lo_unbound,
43 	Lo_bound,
44 	Lo_rundown,
45 	Lo_deleting,
46 };
47 
48 struct loop_func_table;
49 
50 struct loop_device {
51 	int		lo_number;
52 	loff_t		lo_offset;
53 	loff_t		lo_sizelimit;
54 	int		lo_flags;
55 	char		lo_file_name[LO_NAME_SIZE];
56 
57 	struct file *	lo_backing_file;
58 	struct block_device *lo_device;
59 
60 	gfp_t		old_gfp_mask;
61 
62 	spinlock_t		lo_lock;
63 	int			lo_state;
64 	spinlock_t              lo_work_lock;
65 	struct workqueue_struct *workqueue;
66 	struct work_struct      rootcg_work;
67 	struct list_head        rootcg_cmd_list;
68 	struct list_head        idle_worker_list;
69 	struct rb_root          worker_tree;
70 	struct timer_list       timer;
71 	bool			use_dio;
72 	bool			sysfs_inited;
73 
74 	struct request_queue	*lo_queue;
75 	struct blk_mq_tag_set	tag_set;
76 	struct gendisk		*lo_disk;
77 	struct mutex		lo_mutex;
78 	bool			idr_visible;
79 };
80 
81 struct loop_cmd {
82 	struct list_head list_entry;
83 	bool use_aio; /* use AIO interface to handle I/O */
84 	atomic_t ref; /* only for aio */
85 	long ret;
86 	struct kiocb iocb;
87 	struct bio_vec *bvec;
88 	struct cgroup_subsys_state *blkcg_css;
89 	struct cgroup_subsys_state *memcg_css;
90 };
91 
92 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ)
93 #define LOOP_DEFAULT_HW_Q_DEPTH 128
94 
95 static DEFINE_IDR(loop_index_idr);
96 static DEFINE_MUTEX(loop_ctl_mutex);
97 static DEFINE_MUTEX(loop_validate_mutex);
98 
99 /**
100  * loop_global_lock_killable() - take locks for safe loop_validate_file() test
101  *
102  * @lo: struct loop_device
103  * @global: true if @lo is about to bind another "struct loop_device", false otherwise
104  *
105  * Returns 0 on success, -EINTR otherwise.
106  *
107  * Since loop_validate_file() traverses on other "struct loop_device" if
108  * is_loop_device() is true, we need a global lock for serializing concurrent
109  * loop_configure()/loop_change_fd()/__loop_clr_fd() calls.
110  */
111 static int loop_global_lock_killable(struct loop_device *lo, bool global)
112 {
113 	int err;
114 
115 	if (global) {
116 		err = mutex_lock_killable(&loop_validate_mutex);
117 		if (err)
118 			return err;
119 	}
120 	err = mutex_lock_killable(&lo->lo_mutex);
121 	if (err && global)
122 		mutex_unlock(&loop_validate_mutex);
123 	return err;
124 }
125 
126 /**
127  * loop_global_unlock() - release locks taken by loop_global_lock_killable()
128  *
129  * @lo: struct loop_device
130  * @global: true if @lo was about to bind another "struct loop_device", false otherwise
131  */
132 static void loop_global_unlock(struct loop_device *lo, bool global)
133 {
134 	mutex_unlock(&lo->lo_mutex);
135 	if (global)
136 		mutex_unlock(&loop_validate_mutex);
137 }
138 
139 static int max_part;
140 static int part_shift;
141 
142 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
143 {
144 	loff_t loopsize;
145 
146 	/* Compute loopsize in bytes */
147 	loopsize = i_size_read(file->f_mapping->host);
148 	if (offset > 0)
149 		loopsize -= offset;
150 	/* offset is beyond i_size, weird but possible */
151 	if (loopsize < 0)
152 		return 0;
153 
154 	if (sizelimit > 0 && sizelimit < loopsize)
155 		loopsize = sizelimit;
156 	/*
157 	 * Unfortunately, if we want to do I/O on the device,
158 	 * the number of 512-byte sectors has to fit into a sector_t.
159 	 */
160 	return loopsize >> 9;
161 }
162 
163 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
164 {
165 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
166 }
167 
168 /*
169  * We support direct I/O only if lo_offset is aligned with the logical I/O size
170  * of backing device, and the logical block size of loop is bigger than that of
171  * the backing device.
172  */
173 static bool lo_bdev_can_use_dio(struct loop_device *lo,
174 		struct block_device *backing_bdev)
175 {
176 	unsigned int sb_bsize = bdev_logical_block_size(backing_bdev);
177 
178 	if (queue_logical_block_size(lo->lo_queue) < sb_bsize)
179 		return false;
180 	if (lo->lo_offset & (sb_bsize - 1))
181 		return false;
182 	return true;
183 }
184 
185 static void __loop_update_dio(struct loop_device *lo, bool dio)
186 {
187 	struct file *file = lo->lo_backing_file;
188 	struct inode *inode = file->f_mapping->host;
189 	struct block_device *backing_bdev = NULL;
190 	bool use_dio;
191 
192 	if (S_ISBLK(inode->i_mode))
193 		backing_bdev = I_BDEV(inode);
194 	else if (inode->i_sb->s_bdev)
195 		backing_bdev = inode->i_sb->s_bdev;
196 
197 	use_dio = dio && (file->f_mode & FMODE_CAN_ODIRECT) &&
198 		(!backing_bdev || lo_bdev_can_use_dio(lo, backing_bdev));
199 
200 	if (lo->use_dio == use_dio)
201 		return;
202 
203 	/* flush dirty pages before changing direct IO */
204 	vfs_fsync(file, 0);
205 
206 	/*
207 	 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
208 	 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
209 	 * will get updated by ioctl(LOOP_GET_STATUS)
210 	 */
211 	if (lo->lo_state == Lo_bound)
212 		blk_mq_freeze_queue(lo->lo_queue);
213 	lo->use_dio = use_dio;
214 	if (use_dio)
215 		lo->lo_flags |= LO_FLAGS_DIRECT_IO;
216 	else
217 		lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
218 	if (lo->lo_state == Lo_bound)
219 		blk_mq_unfreeze_queue(lo->lo_queue);
220 }
221 
222 /**
223  * loop_set_size() - sets device size and notifies userspace
224  * @lo: struct loop_device to set the size for
225  * @size: new size of the loop device
226  *
227  * Callers must validate that the size passed into this function fits into
228  * a sector_t, eg using loop_validate_size()
229  */
230 static void loop_set_size(struct loop_device *lo, loff_t size)
231 {
232 	if (!set_capacity_and_notify(lo->lo_disk, size))
233 		kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
234 }
235 
236 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
237 {
238 	struct iov_iter i;
239 	ssize_t bw;
240 
241 	iov_iter_bvec(&i, ITER_SOURCE, bvec, 1, bvec->bv_len);
242 
243 	bw = vfs_iter_write(file, &i, ppos, 0);
244 
245 	if (likely(bw ==  bvec->bv_len))
246 		return 0;
247 
248 	printk_ratelimited(KERN_ERR
249 		"loop: Write error at byte offset %llu, length %i.\n",
250 		(unsigned long long)*ppos, bvec->bv_len);
251 	if (bw >= 0)
252 		bw = -EIO;
253 	return bw;
254 }
255 
256 static int lo_write_simple(struct loop_device *lo, struct request *rq,
257 		loff_t pos)
258 {
259 	struct bio_vec bvec;
260 	struct req_iterator iter;
261 	int ret = 0;
262 
263 	rq_for_each_segment(bvec, rq, iter) {
264 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
265 		if (ret < 0)
266 			break;
267 		cond_resched();
268 	}
269 
270 	return ret;
271 }
272 
273 static int lo_read_simple(struct loop_device *lo, struct request *rq,
274 		loff_t pos)
275 {
276 	struct bio_vec bvec;
277 	struct req_iterator iter;
278 	struct iov_iter i;
279 	ssize_t len;
280 
281 	rq_for_each_segment(bvec, rq, iter) {
282 		iov_iter_bvec(&i, ITER_DEST, &bvec, 1, bvec.bv_len);
283 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
284 		if (len < 0)
285 			return len;
286 
287 		flush_dcache_page(bvec.bv_page);
288 
289 		if (len != bvec.bv_len) {
290 			struct bio *bio;
291 
292 			__rq_for_each_bio(bio, rq)
293 				zero_fill_bio(bio);
294 			break;
295 		}
296 		cond_resched();
297 	}
298 
299 	return 0;
300 }
301 
302 static void loop_clear_limits(struct loop_device *lo, int mode)
303 {
304 	struct queue_limits lim = queue_limits_start_update(lo->lo_queue);
305 
306 	if (mode & FALLOC_FL_ZERO_RANGE)
307 		lim.max_write_zeroes_sectors = 0;
308 
309 	if (mode & FALLOC_FL_PUNCH_HOLE) {
310 		lim.max_hw_discard_sectors = 0;
311 		lim.discard_granularity = 0;
312 	}
313 
314 	/*
315 	 * XXX: this updates the queue limits without freezing the queue, which
316 	 * is against the locking protocol and dangerous.  But we can't just
317 	 * freeze the queue as we're inside the ->queue_rq method here.  So this
318 	 * should move out into a workqueue unless we get the file operations to
319 	 * advertise if they support specific fallocate operations.
320 	 */
321 	queue_limits_commit_update(lo->lo_queue, &lim);
322 }
323 
324 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
325 			int mode)
326 {
327 	/*
328 	 * We use fallocate to manipulate the space mappings used by the image
329 	 * a.k.a. discard/zerorange.
330 	 */
331 	struct file *file = lo->lo_backing_file;
332 	int ret;
333 
334 	mode |= FALLOC_FL_KEEP_SIZE;
335 
336 	if (!bdev_max_discard_sectors(lo->lo_device))
337 		return -EOPNOTSUPP;
338 
339 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
340 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
341 		return -EIO;
342 
343 	/*
344 	 * We initially configure the limits in a hope that fallocate is
345 	 * supported and clear them here if that turns out not to be true.
346 	 */
347 	if (unlikely(ret == -EOPNOTSUPP))
348 		loop_clear_limits(lo, mode);
349 
350 	return ret;
351 }
352 
353 static int lo_req_flush(struct loop_device *lo, struct request *rq)
354 {
355 	int ret = vfs_fsync(lo->lo_backing_file, 0);
356 	if (unlikely(ret && ret != -EINVAL))
357 		ret = -EIO;
358 
359 	return ret;
360 }
361 
362 static void lo_complete_rq(struct request *rq)
363 {
364 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
365 	blk_status_t ret = BLK_STS_OK;
366 
367 	if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
368 	    req_op(rq) != REQ_OP_READ) {
369 		if (cmd->ret < 0)
370 			ret = errno_to_blk_status(cmd->ret);
371 		goto end_io;
372 	}
373 
374 	/*
375 	 * Short READ - if we got some data, advance our request and
376 	 * retry it. If we got no data, end the rest with EIO.
377 	 */
378 	if (cmd->ret) {
379 		blk_update_request(rq, BLK_STS_OK, cmd->ret);
380 		cmd->ret = 0;
381 		blk_mq_requeue_request(rq, true);
382 	} else {
383 		if (cmd->use_aio) {
384 			struct bio *bio = rq->bio;
385 
386 			while (bio) {
387 				zero_fill_bio(bio);
388 				bio = bio->bi_next;
389 			}
390 		}
391 		ret = BLK_STS_IOERR;
392 end_io:
393 		blk_mq_end_request(rq, ret);
394 	}
395 }
396 
397 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
398 {
399 	struct request *rq = blk_mq_rq_from_pdu(cmd);
400 
401 	if (!atomic_dec_and_test(&cmd->ref))
402 		return;
403 	kfree(cmd->bvec);
404 	cmd->bvec = NULL;
405 	if (likely(!blk_should_fake_timeout(rq->q)))
406 		blk_mq_complete_request(rq);
407 }
408 
409 static void lo_rw_aio_complete(struct kiocb *iocb, long ret)
410 {
411 	struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
412 
413 	cmd->ret = ret;
414 	lo_rw_aio_do_completion(cmd);
415 }
416 
417 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
418 		     loff_t pos, int rw)
419 {
420 	struct iov_iter iter;
421 	struct req_iterator rq_iter;
422 	struct bio_vec *bvec;
423 	struct request *rq = blk_mq_rq_from_pdu(cmd);
424 	struct bio *bio = rq->bio;
425 	struct file *file = lo->lo_backing_file;
426 	struct bio_vec tmp;
427 	unsigned int offset;
428 	int nr_bvec = 0;
429 	int ret;
430 
431 	rq_for_each_bvec(tmp, rq, rq_iter)
432 		nr_bvec++;
433 
434 	if (rq->bio != rq->biotail) {
435 
436 		bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
437 				     GFP_NOIO);
438 		if (!bvec)
439 			return -EIO;
440 		cmd->bvec = bvec;
441 
442 		/*
443 		 * The bios of the request may be started from the middle of
444 		 * the 'bvec' because of bio splitting, so we can't directly
445 		 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
446 		 * API will take care of all details for us.
447 		 */
448 		rq_for_each_bvec(tmp, rq, rq_iter) {
449 			*bvec = tmp;
450 			bvec++;
451 		}
452 		bvec = cmd->bvec;
453 		offset = 0;
454 	} else {
455 		/*
456 		 * Same here, this bio may be started from the middle of the
457 		 * 'bvec' because of bio splitting, so offset from the bvec
458 		 * must be passed to iov iterator
459 		 */
460 		offset = bio->bi_iter.bi_bvec_done;
461 		bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
462 	}
463 	atomic_set(&cmd->ref, 2);
464 
465 	iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
466 	iter.iov_offset = offset;
467 
468 	cmd->iocb.ki_pos = pos;
469 	cmd->iocb.ki_filp = file;
470 	cmd->iocb.ki_complete = lo_rw_aio_complete;
471 	cmd->iocb.ki_flags = IOCB_DIRECT;
472 	cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
473 
474 	if (rw == ITER_SOURCE)
475 		ret = file->f_op->write_iter(&cmd->iocb, &iter);
476 	else
477 		ret = file->f_op->read_iter(&cmd->iocb, &iter);
478 
479 	lo_rw_aio_do_completion(cmd);
480 
481 	if (ret != -EIOCBQUEUED)
482 		lo_rw_aio_complete(&cmd->iocb, ret);
483 	return 0;
484 }
485 
486 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
487 {
488 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
489 	loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
490 
491 	/*
492 	 * lo_write_simple and lo_read_simple should have been covered
493 	 * by io submit style function like lo_rw_aio(), one blocker
494 	 * is that lo_read_simple() need to call flush_dcache_page after
495 	 * the page is written from kernel, and it isn't easy to handle
496 	 * this in io submit style function which submits all segments
497 	 * of the req at one time. And direct read IO doesn't need to
498 	 * run flush_dcache_page().
499 	 */
500 	switch (req_op(rq)) {
501 	case REQ_OP_FLUSH:
502 		return lo_req_flush(lo, rq);
503 	case REQ_OP_WRITE_ZEROES:
504 		/*
505 		 * If the caller doesn't want deallocation, call zeroout to
506 		 * write zeroes the range.  Otherwise, punch them out.
507 		 */
508 		return lo_fallocate(lo, rq, pos,
509 			(rq->cmd_flags & REQ_NOUNMAP) ?
510 				FALLOC_FL_ZERO_RANGE :
511 				FALLOC_FL_PUNCH_HOLE);
512 	case REQ_OP_DISCARD:
513 		return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
514 	case REQ_OP_WRITE:
515 		if (cmd->use_aio)
516 			return lo_rw_aio(lo, cmd, pos, ITER_SOURCE);
517 		else
518 			return lo_write_simple(lo, rq, pos);
519 	case REQ_OP_READ:
520 		if (cmd->use_aio)
521 			return lo_rw_aio(lo, cmd, pos, ITER_DEST);
522 		else
523 			return lo_read_simple(lo, rq, pos);
524 	default:
525 		WARN_ON_ONCE(1);
526 		return -EIO;
527 	}
528 }
529 
530 static inline void loop_update_dio(struct loop_device *lo)
531 {
532 	__loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) |
533 				lo->use_dio);
534 }
535 
536 static void loop_reread_partitions(struct loop_device *lo)
537 {
538 	int rc;
539 
540 	mutex_lock(&lo->lo_disk->open_mutex);
541 	rc = bdev_disk_changed(lo->lo_disk, false);
542 	mutex_unlock(&lo->lo_disk->open_mutex);
543 	if (rc)
544 		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
545 			__func__, lo->lo_number, lo->lo_file_name, rc);
546 }
547 
548 static inline int is_loop_device(struct file *file)
549 {
550 	struct inode *i = file->f_mapping->host;
551 
552 	return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR;
553 }
554 
555 static int loop_validate_file(struct file *file, struct block_device *bdev)
556 {
557 	struct inode	*inode = file->f_mapping->host;
558 	struct file	*f = file;
559 
560 	/* Avoid recursion */
561 	while (is_loop_device(f)) {
562 		struct loop_device *l;
563 
564 		lockdep_assert_held(&loop_validate_mutex);
565 		if (f->f_mapping->host->i_rdev == bdev->bd_dev)
566 			return -EBADF;
567 
568 		l = I_BDEV(f->f_mapping->host)->bd_disk->private_data;
569 		if (l->lo_state != Lo_bound)
570 			return -EINVAL;
571 		/* Order wrt setting lo->lo_backing_file in loop_configure(). */
572 		rmb();
573 		f = l->lo_backing_file;
574 	}
575 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
576 		return -EINVAL;
577 	return 0;
578 }
579 
580 /*
581  * loop_change_fd switched the backing store of a loopback device to
582  * a new file. This is useful for operating system installers to free up
583  * the original file and in High Availability environments to switch to
584  * an alternative location for the content in case of server meltdown.
585  * This can only work if the loop device is used read-only, and if the
586  * new backing store is the same size and type as the old backing store.
587  */
588 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
589 			  unsigned int arg)
590 {
591 	struct file *file = fget(arg);
592 	struct file *old_file;
593 	int error;
594 	bool partscan;
595 	bool is_loop;
596 
597 	if (!file)
598 		return -EBADF;
599 
600 	/* suppress uevents while reconfiguring the device */
601 	dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
602 
603 	is_loop = is_loop_device(file);
604 	error = loop_global_lock_killable(lo, is_loop);
605 	if (error)
606 		goto out_putf;
607 	error = -ENXIO;
608 	if (lo->lo_state != Lo_bound)
609 		goto out_err;
610 
611 	/* the loop device has to be read-only */
612 	error = -EINVAL;
613 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
614 		goto out_err;
615 
616 	error = loop_validate_file(file, bdev);
617 	if (error)
618 		goto out_err;
619 
620 	old_file = lo->lo_backing_file;
621 
622 	error = -EINVAL;
623 
624 	/* size of the new backing store needs to be the same */
625 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
626 		goto out_err;
627 
628 	/* and ... switch */
629 	disk_force_media_change(lo->lo_disk);
630 	blk_mq_freeze_queue(lo->lo_queue);
631 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
632 	lo->lo_backing_file = file;
633 	lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
634 	mapping_set_gfp_mask(file->f_mapping,
635 			     lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
636 	loop_update_dio(lo);
637 	blk_mq_unfreeze_queue(lo->lo_queue);
638 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
639 	loop_global_unlock(lo, is_loop);
640 
641 	/*
642 	 * Flush loop_validate_file() before fput(), for l->lo_backing_file
643 	 * might be pointing at old_file which might be the last reference.
644 	 */
645 	if (!is_loop) {
646 		mutex_lock(&loop_validate_mutex);
647 		mutex_unlock(&loop_validate_mutex);
648 	}
649 	/*
650 	 * We must drop file reference outside of lo_mutex as dropping
651 	 * the file ref can take open_mutex which creates circular locking
652 	 * dependency.
653 	 */
654 	fput(old_file);
655 	if (partscan)
656 		loop_reread_partitions(lo);
657 
658 	error = 0;
659 done:
660 	/* enable and uncork uevent now that we are done */
661 	dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
662 	return error;
663 
664 out_err:
665 	loop_global_unlock(lo, is_loop);
666 out_putf:
667 	fput(file);
668 	goto done;
669 }
670 
671 /* loop sysfs attributes */
672 
673 static ssize_t loop_attr_show(struct device *dev, char *page,
674 			      ssize_t (*callback)(struct loop_device *, char *))
675 {
676 	struct gendisk *disk = dev_to_disk(dev);
677 	struct loop_device *lo = disk->private_data;
678 
679 	return callback(lo, page);
680 }
681 
682 #define LOOP_ATTR_RO(_name)						\
683 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
684 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
685 				struct device_attribute *attr, char *b)	\
686 {									\
687 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
688 }									\
689 static struct device_attribute loop_attr_##_name =			\
690 	__ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
691 
692 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
693 {
694 	ssize_t ret;
695 	char *p = NULL;
696 
697 	spin_lock_irq(&lo->lo_lock);
698 	if (lo->lo_backing_file)
699 		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
700 	spin_unlock_irq(&lo->lo_lock);
701 
702 	if (IS_ERR_OR_NULL(p))
703 		ret = PTR_ERR(p);
704 	else {
705 		ret = strlen(p);
706 		memmove(buf, p, ret);
707 		buf[ret++] = '\n';
708 		buf[ret] = 0;
709 	}
710 
711 	return ret;
712 }
713 
714 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
715 {
716 	return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset);
717 }
718 
719 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
720 {
721 	return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
722 }
723 
724 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
725 {
726 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
727 
728 	return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0");
729 }
730 
731 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
732 {
733 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
734 
735 	return sysfs_emit(buf, "%s\n", partscan ? "1" : "0");
736 }
737 
738 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
739 {
740 	int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
741 
742 	return sysfs_emit(buf, "%s\n", dio ? "1" : "0");
743 }
744 
745 LOOP_ATTR_RO(backing_file);
746 LOOP_ATTR_RO(offset);
747 LOOP_ATTR_RO(sizelimit);
748 LOOP_ATTR_RO(autoclear);
749 LOOP_ATTR_RO(partscan);
750 LOOP_ATTR_RO(dio);
751 
752 static struct attribute *loop_attrs[] = {
753 	&loop_attr_backing_file.attr,
754 	&loop_attr_offset.attr,
755 	&loop_attr_sizelimit.attr,
756 	&loop_attr_autoclear.attr,
757 	&loop_attr_partscan.attr,
758 	&loop_attr_dio.attr,
759 	NULL,
760 };
761 
762 static struct attribute_group loop_attribute_group = {
763 	.name = "loop",
764 	.attrs= loop_attrs,
765 };
766 
767 static void loop_sysfs_init(struct loop_device *lo)
768 {
769 	lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
770 						&loop_attribute_group);
771 }
772 
773 static void loop_sysfs_exit(struct loop_device *lo)
774 {
775 	if (lo->sysfs_inited)
776 		sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
777 				   &loop_attribute_group);
778 }
779 
780 static void loop_get_discard_config(struct loop_device *lo,
781 				    u32 *granularity, u32 *max_discard_sectors)
782 {
783 	struct file *file = lo->lo_backing_file;
784 	struct inode *inode = file->f_mapping->host;
785 	struct kstatfs sbuf;
786 
787 	/*
788 	 * If the backing device is a block device, mirror its zeroing
789 	 * capability. Set the discard sectors to the block device's zeroing
790 	 * capabilities because loop discards result in blkdev_issue_zeroout(),
791 	 * not blkdev_issue_discard(). This maintains consistent behavior with
792 	 * file-backed loop devices: discarded regions read back as zero.
793 	 */
794 	if (S_ISBLK(inode->i_mode)) {
795 		struct block_device *bdev = I_BDEV(inode);
796 
797 		*max_discard_sectors = bdev_write_zeroes_sectors(bdev);
798 		*granularity = bdev_discard_granularity(bdev);
799 
800 	/*
801 	 * We use punch hole to reclaim the free space used by the
802 	 * image a.k.a. discard.
803 	 */
804 	} else if (file->f_op->fallocate && !vfs_statfs(&file->f_path, &sbuf)) {
805 		*max_discard_sectors = UINT_MAX >> 9;
806 		*granularity = sbuf.f_bsize;
807 	}
808 }
809 
810 struct loop_worker {
811 	struct rb_node rb_node;
812 	struct work_struct work;
813 	struct list_head cmd_list;
814 	struct list_head idle_list;
815 	struct loop_device *lo;
816 	struct cgroup_subsys_state *blkcg_css;
817 	unsigned long last_ran_at;
818 };
819 
820 static void loop_workfn(struct work_struct *work);
821 
822 #ifdef CONFIG_BLK_CGROUP
823 static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
824 {
825 	return !css || css == blkcg_root_css;
826 }
827 #else
828 static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
829 {
830 	return !css;
831 }
832 #endif
833 
834 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd)
835 {
836 	struct rb_node **node, *parent = NULL;
837 	struct loop_worker *cur_worker, *worker = NULL;
838 	struct work_struct *work;
839 	struct list_head *cmd_list;
840 
841 	spin_lock_irq(&lo->lo_work_lock);
842 
843 	if (queue_on_root_worker(cmd->blkcg_css))
844 		goto queue_work;
845 
846 	node = &lo->worker_tree.rb_node;
847 
848 	while (*node) {
849 		parent = *node;
850 		cur_worker = container_of(*node, struct loop_worker, rb_node);
851 		if (cur_worker->blkcg_css == cmd->blkcg_css) {
852 			worker = cur_worker;
853 			break;
854 		} else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) {
855 			node = &(*node)->rb_left;
856 		} else {
857 			node = &(*node)->rb_right;
858 		}
859 	}
860 	if (worker)
861 		goto queue_work;
862 
863 	worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN);
864 	/*
865 	 * In the event we cannot allocate a worker, just queue on the
866 	 * rootcg worker and issue the I/O as the rootcg
867 	 */
868 	if (!worker) {
869 		cmd->blkcg_css = NULL;
870 		if (cmd->memcg_css)
871 			css_put(cmd->memcg_css);
872 		cmd->memcg_css = NULL;
873 		goto queue_work;
874 	}
875 
876 	worker->blkcg_css = cmd->blkcg_css;
877 	css_get(worker->blkcg_css);
878 	INIT_WORK(&worker->work, loop_workfn);
879 	INIT_LIST_HEAD(&worker->cmd_list);
880 	INIT_LIST_HEAD(&worker->idle_list);
881 	worker->lo = lo;
882 	rb_link_node(&worker->rb_node, parent, node);
883 	rb_insert_color(&worker->rb_node, &lo->worker_tree);
884 queue_work:
885 	if (worker) {
886 		/*
887 		 * We need to remove from the idle list here while
888 		 * holding the lock so that the idle timer doesn't
889 		 * free the worker
890 		 */
891 		if (!list_empty(&worker->idle_list))
892 			list_del_init(&worker->idle_list);
893 		work = &worker->work;
894 		cmd_list = &worker->cmd_list;
895 	} else {
896 		work = &lo->rootcg_work;
897 		cmd_list = &lo->rootcg_cmd_list;
898 	}
899 	list_add_tail(&cmd->list_entry, cmd_list);
900 	queue_work(lo->workqueue, work);
901 	spin_unlock_irq(&lo->lo_work_lock);
902 }
903 
904 static void loop_set_timer(struct loop_device *lo)
905 {
906 	timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT);
907 }
908 
909 static void loop_free_idle_workers(struct loop_device *lo, bool delete_all)
910 {
911 	struct loop_worker *pos, *worker;
912 
913 	spin_lock_irq(&lo->lo_work_lock);
914 	list_for_each_entry_safe(worker, pos, &lo->idle_worker_list,
915 				idle_list) {
916 		if (!delete_all &&
917 		    time_is_after_jiffies(worker->last_ran_at +
918 					  LOOP_IDLE_WORKER_TIMEOUT))
919 			break;
920 		list_del(&worker->idle_list);
921 		rb_erase(&worker->rb_node, &lo->worker_tree);
922 		css_put(worker->blkcg_css);
923 		kfree(worker);
924 	}
925 	if (!list_empty(&lo->idle_worker_list))
926 		loop_set_timer(lo);
927 	spin_unlock_irq(&lo->lo_work_lock);
928 }
929 
930 static void loop_free_idle_workers_timer(struct timer_list *timer)
931 {
932 	struct loop_device *lo = container_of(timer, struct loop_device, timer);
933 
934 	return loop_free_idle_workers(lo, false);
935 }
936 
937 /**
938  * loop_set_status_from_info - configure device from loop_info
939  * @lo: struct loop_device to configure
940  * @info: struct loop_info64 to configure the device with
941  *
942  * Configures the loop device parameters according to the passed
943  * in loop_info64 configuration.
944  */
945 static int
946 loop_set_status_from_info(struct loop_device *lo,
947 			  const struct loop_info64 *info)
948 {
949 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
950 		return -EINVAL;
951 
952 	switch (info->lo_encrypt_type) {
953 	case LO_CRYPT_NONE:
954 		break;
955 	case LO_CRYPT_XOR:
956 		pr_warn("support for the xor transformation has been removed.\n");
957 		return -EINVAL;
958 	case LO_CRYPT_CRYPTOAPI:
959 		pr_warn("support for cryptoloop has been removed.  Use dm-crypt instead.\n");
960 		return -EINVAL;
961 	default:
962 		return -EINVAL;
963 	}
964 
965 	/* Avoid assigning overflow values */
966 	if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX)
967 		return -EOVERFLOW;
968 
969 	lo->lo_offset = info->lo_offset;
970 	lo->lo_sizelimit = info->lo_sizelimit;
971 
972 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
973 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
974 	return 0;
975 }
976 
977 static unsigned int loop_default_blocksize(struct loop_device *lo,
978 		struct block_device *backing_bdev)
979 {
980 	/* In case of direct I/O, match underlying block size */
981 	if ((lo->lo_backing_file->f_flags & O_DIRECT) && backing_bdev)
982 		return bdev_logical_block_size(backing_bdev);
983 	return SECTOR_SIZE;
984 }
985 
986 static void loop_update_limits(struct loop_device *lo, struct queue_limits *lim,
987 		unsigned int bsize)
988 {
989 	struct file *file = lo->lo_backing_file;
990 	struct inode *inode = file->f_mapping->host;
991 	struct block_device *backing_bdev = NULL;
992 	u32 granularity = 0, max_discard_sectors = 0;
993 
994 	if (S_ISBLK(inode->i_mode))
995 		backing_bdev = I_BDEV(inode);
996 	else if (inode->i_sb->s_bdev)
997 		backing_bdev = inode->i_sb->s_bdev;
998 
999 	if (!bsize)
1000 		bsize = loop_default_blocksize(lo, backing_bdev);
1001 
1002 	loop_get_discard_config(lo, &granularity, &max_discard_sectors);
1003 
1004 	lim->logical_block_size = bsize;
1005 	lim->physical_block_size = bsize;
1006 	lim->io_min = bsize;
1007 	lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_ROTATIONAL);
1008 	if (file->f_op->fsync && !(lo->lo_flags & LO_FLAGS_READ_ONLY))
1009 		lim->features |= BLK_FEAT_WRITE_CACHE;
1010 	if (backing_bdev && !bdev_nonrot(backing_bdev))
1011 		lim->features |= BLK_FEAT_ROTATIONAL;
1012 	lim->max_hw_discard_sectors = max_discard_sectors;
1013 	lim->max_write_zeroes_sectors = max_discard_sectors;
1014 	if (max_discard_sectors)
1015 		lim->discard_granularity = granularity;
1016 	else
1017 		lim->discard_granularity = 0;
1018 }
1019 
1020 static int loop_configure(struct loop_device *lo, blk_mode_t mode,
1021 			  struct block_device *bdev,
1022 			  const struct loop_config *config)
1023 {
1024 	struct file *file = fget(config->fd);
1025 	struct address_space *mapping;
1026 	struct queue_limits lim;
1027 	int error;
1028 	loff_t size;
1029 	bool partscan;
1030 	bool is_loop;
1031 
1032 	if (!file)
1033 		return -EBADF;
1034 	is_loop = is_loop_device(file);
1035 
1036 	/* This is safe, since we have a reference from open(). */
1037 	__module_get(THIS_MODULE);
1038 
1039 	/*
1040 	 * If we don't hold exclusive handle for the device, upgrade to it
1041 	 * here to avoid changing device under exclusive owner.
1042 	 */
1043 	if (!(mode & BLK_OPEN_EXCL)) {
1044 		error = bd_prepare_to_claim(bdev, loop_configure, NULL);
1045 		if (error)
1046 			goto out_putf;
1047 	}
1048 
1049 	error = loop_global_lock_killable(lo, is_loop);
1050 	if (error)
1051 		goto out_bdev;
1052 
1053 	error = -EBUSY;
1054 	if (lo->lo_state != Lo_unbound)
1055 		goto out_unlock;
1056 
1057 	error = loop_validate_file(file, bdev);
1058 	if (error)
1059 		goto out_unlock;
1060 
1061 	mapping = file->f_mapping;
1062 
1063 	if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) {
1064 		error = -EINVAL;
1065 		goto out_unlock;
1066 	}
1067 
1068 	error = loop_set_status_from_info(lo, &config->info);
1069 	if (error)
1070 		goto out_unlock;
1071 	lo->lo_flags = config->info.lo_flags;
1072 
1073 	if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) ||
1074 	    !file->f_op->write_iter)
1075 		lo->lo_flags |= LO_FLAGS_READ_ONLY;
1076 
1077 	if (!lo->workqueue) {
1078 		lo->workqueue = alloc_workqueue("loop%d",
1079 						WQ_UNBOUND | WQ_FREEZABLE,
1080 						0, lo->lo_number);
1081 		if (!lo->workqueue) {
1082 			error = -ENOMEM;
1083 			goto out_unlock;
1084 		}
1085 	}
1086 
1087 	/* suppress uevents while reconfiguring the device */
1088 	dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
1089 
1090 	disk_force_media_change(lo->lo_disk);
1091 	set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0);
1092 
1093 	lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO;
1094 	lo->lo_device = bdev;
1095 	lo->lo_backing_file = file;
1096 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
1097 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
1098 
1099 	lim = queue_limits_start_update(lo->lo_queue);
1100 	loop_update_limits(lo, &lim, config->block_size);
1101 	/* No need to freeze the queue as the device isn't bound yet. */
1102 	error = queue_limits_commit_update(lo->lo_queue, &lim);
1103 	if (error)
1104 		goto out_unlock;
1105 
1106 	loop_update_dio(lo);
1107 	loop_sysfs_init(lo);
1108 
1109 	size = get_loop_size(lo, file);
1110 	loop_set_size(lo, size);
1111 
1112 	/* Order wrt reading lo_state in loop_validate_file(). */
1113 	wmb();
1114 
1115 	lo->lo_state = Lo_bound;
1116 	if (part_shift)
1117 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1118 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1119 	if (partscan)
1120 		clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1121 
1122 	/* enable and uncork uevent now that we are done */
1123 	dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
1124 
1125 	loop_global_unlock(lo, is_loop);
1126 	if (partscan)
1127 		loop_reread_partitions(lo);
1128 
1129 	if (!(mode & BLK_OPEN_EXCL))
1130 		bd_abort_claiming(bdev, loop_configure);
1131 
1132 	return 0;
1133 
1134 out_unlock:
1135 	loop_global_unlock(lo, is_loop);
1136 out_bdev:
1137 	if (!(mode & BLK_OPEN_EXCL))
1138 		bd_abort_claiming(bdev, loop_configure);
1139 out_putf:
1140 	fput(file);
1141 	/* This is safe: open() is still holding a reference. */
1142 	module_put(THIS_MODULE);
1143 	return error;
1144 }
1145 
1146 static void __loop_clr_fd(struct loop_device *lo)
1147 {
1148 	struct queue_limits lim;
1149 	struct file *filp;
1150 	gfp_t gfp = lo->old_gfp_mask;
1151 
1152 	spin_lock_irq(&lo->lo_lock);
1153 	filp = lo->lo_backing_file;
1154 	lo->lo_backing_file = NULL;
1155 	spin_unlock_irq(&lo->lo_lock);
1156 
1157 	lo->lo_device = NULL;
1158 	lo->lo_offset = 0;
1159 	lo->lo_sizelimit = 0;
1160 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1161 
1162 	/*
1163 	 * Reset the block size to the default.
1164 	 *
1165 	 * No queue freezing needed because this is called from the final
1166 	 * ->release call only, so there can't be any outstanding I/O.
1167 	 */
1168 	lim = queue_limits_start_update(lo->lo_queue);
1169 	lim.logical_block_size = SECTOR_SIZE;
1170 	lim.physical_block_size = SECTOR_SIZE;
1171 	lim.io_min = SECTOR_SIZE;
1172 	queue_limits_commit_update(lo->lo_queue, &lim);
1173 
1174 	invalidate_disk(lo->lo_disk);
1175 	loop_sysfs_exit(lo);
1176 	/* let user-space know about this change */
1177 	kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
1178 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1179 	/* This is safe: open() is still holding a reference. */
1180 	module_put(THIS_MODULE);
1181 
1182 	disk_force_media_change(lo->lo_disk);
1183 
1184 	if (lo->lo_flags & LO_FLAGS_PARTSCAN) {
1185 		int err;
1186 
1187 		/*
1188 		 * open_mutex has been held already in release path, so don't
1189 		 * acquire it if this function is called in such case.
1190 		 *
1191 		 * If the reread partition isn't from release path, lo_refcnt
1192 		 * must be at least one and it can only become zero when the
1193 		 * current holder is released.
1194 		 */
1195 		err = bdev_disk_changed(lo->lo_disk, false);
1196 		if (err)
1197 			pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1198 				__func__, lo->lo_number, err);
1199 		/* Device is gone, no point in returning error */
1200 	}
1201 
1202 	/*
1203 	 * lo->lo_state is set to Lo_unbound here after above partscan has
1204 	 * finished. There cannot be anybody else entering __loop_clr_fd() as
1205 	 * Lo_rundown state protects us from all the other places trying to
1206 	 * change the 'lo' device.
1207 	 */
1208 	lo->lo_flags = 0;
1209 	if (!part_shift)
1210 		set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1211 	mutex_lock(&lo->lo_mutex);
1212 	lo->lo_state = Lo_unbound;
1213 	mutex_unlock(&lo->lo_mutex);
1214 
1215 	/*
1216 	 * Need not hold lo_mutex to fput backing file. Calling fput holding
1217 	 * lo_mutex triggers a circular lock dependency possibility warning as
1218 	 * fput can take open_mutex which is usually taken before lo_mutex.
1219 	 */
1220 	fput(filp);
1221 }
1222 
1223 static int loop_clr_fd(struct loop_device *lo)
1224 {
1225 	int err;
1226 
1227 	/*
1228 	 * Since lo_ioctl() is called without locks held, it is possible that
1229 	 * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel.
1230 	 *
1231 	 * Therefore, use global lock when setting Lo_rundown state in order to
1232 	 * make sure that loop_validate_file() will fail if the "struct file"
1233 	 * which loop_configure()/loop_change_fd() found via fget() was this
1234 	 * loop device.
1235 	 */
1236 	err = loop_global_lock_killable(lo, true);
1237 	if (err)
1238 		return err;
1239 	if (lo->lo_state != Lo_bound) {
1240 		loop_global_unlock(lo, true);
1241 		return -ENXIO;
1242 	}
1243 	/*
1244 	 * Mark the device for removing the backing device on last close.
1245 	 * If we are the only opener, also switch the state to roundown here to
1246 	 * prevent new openers from coming in.
1247 	 */
1248 
1249 	lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1250 	if (disk_openers(lo->lo_disk) == 1)
1251 		lo->lo_state = Lo_rundown;
1252 	loop_global_unlock(lo, true);
1253 
1254 	return 0;
1255 }
1256 
1257 static int
1258 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1259 {
1260 	int err;
1261 	bool partscan = false;
1262 	bool size_changed = false;
1263 
1264 	err = mutex_lock_killable(&lo->lo_mutex);
1265 	if (err)
1266 		return err;
1267 	if (lo->lo_state != Lo_bound) {
1268 		err = -ENXIO;
1269 		goto out_unlock;
1270 	}
1271 
1272 	if (lo->lo_offset != info->lo_offset ||
1273 	    lo->lo_sizelimit != info->lo_sizelimit) {
1274 		size_changed = true;
1275 		sync_blockdev(lo->lo_device);
1276 		invalidate_bdev(lo->lo_device);
1277 	}
1278 
1279 	/* I/O need to be drained during transfer transition */
1280 	blk_mq_freeze_queue(lo->lo_queue);
1281 
1282 	err = loop_set_status_from_info(lo, info);
1283 	if (err)
1284 		goto out_unfreeze;
1285 
1286 	partscan = !(lo->lo_flags & LO_FLAGS_PARTSCAN) &&
1287 		(info->lo_flags & LO_FLAGS_PARTSCAN);
1288 
1289 	lo->lo_flags &= ~(LOOP_SET_STATUS_SETTABLE_FLAGS |
1290 			  LOOP_SET_STATUS_CLEARABLE_FLAGS);
1291 	lo->lo_flags |= (info->lo_flags & LOOP_SET_STATUS_SETTABLE_FLAGS);
1292 
1293 	if (size_changed) {
1294 		loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit,
1295 					   lo->lo_backing_file);
1296 		loop_set_size(lo, new_size);
1297 	}
1298 
1299 	/* update dio if lo_offset or transfer is changed */
1300 	__loop_update_dio(lo, lo->use_dio);
1301 
1302 out_unfreeze:
1303 	blk_mq_unfreeze_queue(lo->lo_queue);
1304 	if (partscan)
1305 		clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1306 out_unlock:
1307 	mutex_unlock(&lo->lo_mutex);
1308 	if (partscan)
1309 		loop_reread_partitions(lo);
1310 
1311 	return err;
1312 }
1313 
1314 static int
1315 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1316 {
1317 	struct path path;
1318 	struct kstat stat;
1319 	int ret;
1320 
1321 	ret = mutex_lock_killable(&lo->lo_mutex);
1322 	if (ret)
1323 		return ret;
1324 	if (lo->lo_state != Lo_bound) {
1325 		mutex_unlock(&lo->lo_mutex);
1326 		return -ENXIO;
1327 	}
1328 
1329 	memset(info, 0, sizeof(*info));
1330 	info->lo_number = lo->lo_number;
1331 	info->lo_offset = lo->lo_offset;
1332 	info->lo_sizelimit = lo->lo_sizelimit;
1333 	info->lo_flags = lo->lo_flags;
1334 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1335 
1336 	/* Drop lo_mutex while we call into the filesystem. */
1337 	path = lo->lo_backing_file->f_path;
1338 	path_get(&path);
1339 	mutex_unlock(&lo->lo_mutex);
1340 	ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1341 	if (!ret) {
1342 		info->lo_device = huge_encode_dev(stat.dev);
1343 		info->lo_inode = stat.ino;
1344 		info->lo_rdevice = huge_encode_dev(stat.rdev);
1345 	}
1346 	path_put(&path);
1347 	return ret;
1348 }
1349 
1350 static void
1351 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1352 {
1353 	memset(info64, 0, sizeof(*info64));
1354 	info64->lo_number = info->lo_number;
1355 	info64->lo_device = info->lo_device;
1356 	info64->lo_inode = info->lo_inode;
1357 	info64->lo_rdevice = info->lo_rdevice;
1358 	info64->lo_offset = info->lo_offset;
1359 	info64->lo_sizelimit = 0;
1360 	info64->lo_flags = info->lo_flags;
1361 	memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1362 }
1363 
1364 static int
1365 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1366 {
1367 	memset(info, 0, sizeof(*info));
1368 	info->lo_number = info64->lo_number;
1369 	info->lo_device = info64->lo_device;
1370 	info->lo_inode = info64->lo_inode;
1371 	info->lo_rdevice = info64->lo_rdevice;
1372 	info->lo_offset = info64->lo_offset;
1373 	info->lo_flags = info64->lo_flags;
1374 	memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1375 
1376 	/* error in case values were truncated */
1377 	if (info->lo_device != info64->lo_device ||
1378 	    info->lo_rdevice != info64->lo_rdevice ||
1379 	    info->lo_inode != info64->lo_inode ||
1380 	    info->lo_offset != info64->lo_offset)
1381 		return -EOVERFLOW;
1382 
1383 	return 0;
1384 }
1385 
1386 static int
1387 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1388 {
1389 	struct loop_info info;
1390 	struct loop_info64 info64;
1391 
1392 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1393 		return -EFAULT;
1394 	loop_info64_from_old(&info, &info64);
1395 	return loop_set_status(lo, &info64);
1396 }
1397 
1398 static int
1399 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1400 {
1401 	struct loop_info64 info64;
1402 
1403 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1404 		return -EFAULT;
1405 	return loop_set_status(lo, &info64);
1406 }
1407 
1408 static int
1409 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1410 	struct loop_info info;
1411 	struct loop_info64 info64;
1412 	int err;
1413 
1414 	if (!arg)
1415 		return -EINVAL;
1416 	err = loop_get_status(lo, &info64);
1417 	if (!err)
1418 		err = loop_info64_to_old(&info64, &info);
1419 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1420 		err = -EFAULT;
1421 
1422 	return err;
1423 }
1424 
1425 static int
1426 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1427 	struct loop_info64 info64;
1428 	int err;
1429 
1430 	if (!arg)
1431 		return -EINVAL;
1432 	err = loop_get_status(lo, &info64);
1433 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1434 		err = -EFAULT;
1435 
1436 	return err;
1437 }
1438 
1439 static int loop_set_capacity(struct loop_device *lo)
1440 {
1441 	loff_t size;
1442 
1443 	if (unlikely(lo->lo_state != Lo_bound))
1444 		return -ENXIO;
1445 
1446 	size = get_loop_size(lo, lo->lo_backing_file);
1447 	loop_set_size(lo, size);
1448 
1449 	return 0;
1450 }
1451 
1452 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1453 {
1454 	int error = -ENXIO;
1455 	if (lo->lo_state != Lo_bound)
1456 		goto out;
1457 
1458 	__loop_update_dio(lo, !!arg);
1459 	if (lo->use_dio == !!arg)
1460 		return 0;
1461 	error = -EINVAL;
1462  out:
1463 	return error;
1464 }
1465 
1466 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1467 {
1468 	struct queue_limits lim;
1469 	int err = 0;
1470 
1471 	if (lo->lo_state != Lo_bound)
1472 		return -ENXIO;
1473 
1474 	if (lo->lo_queue->limits.logical_block_size == arg)
1475 		return 0;
1476 
1477 	sync_blockdev(lo->lo_device);
1478 	invalidate_bdev(lo->lo_device);
1479 
1480 	lim = queue_limits_start_update(lo->lo_queue);
1481 	loop_update_limits(lo, &lim, arg);
1482 
1483 	blk_mq_freeze_queue(lo->lo_queue);
1484 	err = queue_limits_commit_update(lo->lo_queue, &lim);
1485 	loop_update_dio(lo);
1486 	blk_mq_unfreeze_queue(lo->lo_queue);
1487 
1488 	return err;
1489 }
1490 
1491 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1492 			   unsigned long arg)
1493 {
1494 	int err;
1495 
1496 	err = mutex_lock_killable(&lo->lo_mutex);
1497 	if (err)
1498 		return err;
1499 	switch (cmd) {
1500 	case LOOP_SET_CAPACITY:
1501 		err = loop_set_capacity(lo);
1502 		break;
1503 	case LOOP_SET_DIRECT_IO:
1504 		err = loop_set_dio(lo, arg);
1505 		break;
1506 	case LOOP_SET_BLOCK_SIZE:
1507 		err = loop_set_block_size(lo, arg);
1508 		break;
1509 	default:
1510 		err = -EINVAL;
1511 	}
1512 	mutex_unlock(&lo->lo_mutex);
1513 	return err;
1514 }
1515 
1516 static int lo_ioctl(struct block_device *bdev, blk_mode_t mode,
1517 	unsigned int cmd, unsigned long arg)
1518 {
1519 	struct loop_device *lo = bdev->bd_disk->private_data;
1520 	void __user *argp = (void __user *) arg;
1521 	int err;
1522 
1523 	switch (cmd) {
1524 	case LOOP_SET_FD: {
1525 		/*
1526 		 * Legacy case - pass in a zeroed out struct loop_config with
1527 		 * only the file descriptor set , which corresponds with the
1528 		 * default parameters we'd have used otherwise.
1529 		 */
1530 		struct loop_config config;
1531 
1532 		memset(&config, 0, sizeof(config));
1533 		config.fd = arg;
1534 
1535 		return loop_configure(lo, mode, bdev, &config);
1536 	}
1537 	case LOOP_CONFIGURE: {
1538 		struct loop_config config;
1539 
1540 		if (copy_from_user(&config, argp, sizeof(config)))
1541 			return -EFAULT;
1542 
1543 		return loop_configure(lo, mode, bdev, &config);
1544 	}
1545 	case LOOP_CHANGE_FD:
1546 		return loop_change_fd(lo, bdev, arg);
1547 	case LOOP_CLR_FD:
1548 		return loop_clr_fd(lo);
1549 	case LOOP_SET_STATUS:
1550 		err = -EPERM;
1551 		if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN))
1552 			err = loop_set_status_old(lo, argp);
1553 		break;
1554 	case LOOP_GET_STATUS:
1555 		return loop_get_status_old(lo, argp);
1556 	case LOOP_SET_STATUS64:
1557 		err = -EPERM;
1558 		if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN))
1559 			err = loop_set_status64(lo, argp);
1560 		break;
1561 	case LOOP_GET_STATUS64:
1562 		return loop_get_status64(lo, argp);
1563 	case LOOP_SET_CAPACITY:
1564 	case LOOP_SET_DIRECT_IO:
1565 	case LOOP_SET_BLOCK_SIZE:
1566 		if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN))
1567 			return -EPERM;
1568 		fallthrough;
1569 	default:
1570 		err = lo_simple_ioctl(lo, cmd, arg);
1571 		break;
1572 	}
1573 
1574 	return err;
1575 }
1576 
1577 #ifdef CONFIG_COMPAT
1578 struct compat_loop_info {
1579 	compat_int_t	lo_number;      /* ioctl r/o */
1580 	compat_dev_t	lo_device;      /* ioctl r/o */
1581 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1582 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1583 	compat_int_t	lo_offset;
1584 	compat_int_t	lo_encrypt_type;        /* obsolete, ignored */
1585 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1586 	compat_int_t	lo_flags;       /* ioctl r/o */
1587 	char		lo_name[LO_NAME_SIZE];
1588 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1589 	compat_ulong_t	lo_init[2];
1590 	char		reserved[4];
1591 };
1592 
1593 /*
1594  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1595  * - noinlined to reduce stack space usage in main part of driver
1596  */
1597 static noinline int
1598 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1599 			struct loop_info64 *info64)
1600 {
1601 	struct compat_loop_info info;
1602 
1603 	if (copy_from_user(&info, arg, sizeof(info)))
1604 		return -EFAULT;
1605 
1606 	memset(info64, 0, sizeof(*info64));
1607 	info64->lo_number = info.lo_number;
1608 	info64->lo_device = info.lo_device;
1609 	info64->lo_inode = info.lo_inode;
1610 	info64->lo_rdevice = info.lo_rdevice;
1611 	info64->lo_offset = info.lo_offset;
1612 	info64->lo_sizelimit = 0;
1613 	info64->lo_flags = info.lo_flags;
1614 	memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1615 	return 0;
1616 }
1617 
1618 /*
1619  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1620  * - noinlined to reduce stack space usage in main part of driver
1621  */
1622 static noinline int
1623 loop_info64_to_compat(const struct loop_info64 *info64,
1624 		      struct compat_loop_info __user *arg)
1625 {
1626 	struct compat_loop_info info;
1627 
1628 	memset(&info, 0, sizeof(info));
1629 	info.lo_number = info64->lo_number;
1630 	info.lo_device = info64->lo_device;
1631 	info.lo_inode = info64->lo_inode;
1632 	info.lo_rdevice = info64->lo_rdevice;
1633 	info.lo_offset = info64->lo_offset;
1634 	info.lo_flags = info64->lo_flags;
1635 	memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1636 
1637 	/* error in case values were truncated */
1638 	if (info.lo_device != info64->lo_device ||
1639 	    info.lo_rdevice != info64->lo_rdevice ||
1640 	    info.lo_inode != info64->lo_inode ||
1641 	    info.lo_offset != info64->lo_offset)
1642 		return -EOVERFLOW;
1643 
1644 	if (copy_to_user(arg, &info, sizeof(info)))
1645 		return -EFAULT;
1646 	return 0;
1647 }
1648 
1649 static int
1650 loop_set_status_compat(struct loop_device *lo,
1651 		       const struct compat_loop_info __user *arg)
1652 {
1653 	struct loop_info64 info64;
1654 	int ret;
1655 
1656 	ret = loop_info64_from_compat(arg, &info64);
1657 	if (ret < 0)
1658 		return ret;
1659 	return loop_set_status(lo, &info64);
1660 }
1661 
1662 static int
1663 loop_get_status_compat(struct loop_device *lo,
1664 		       struct compat_loop_info __user *arg)
1665 {
1666 	struct loop_info64 info64;
1667 	int err;
1668 
1669 	if (!arg)
1670 		return -EINVAL;
1671 	err = loop_get_status(lo, &info64);
1672 	if (!err)
1673 		err = loop_info64_to_compat(&info64, arg);
1674 	return err;
1675 }
1676 
1677 static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
1678 			   unsigned int cmd, unsigned long arg)
1679 {
1680 	struct loop_device *lo = bdev->bd_disk->private_data;
1681 	int err;
1682 
1683 	switch(cmd) {
1684 	case LOOP_SET_STATUS:
1685 		err = loop_set_status_compat(lo,
1686 			     (const struct compat_loop_info __user *)arg);
1687 		break;
1688 	case LOOP_GET_STATUS:
1689 		err = loop_get_status_compat(lo,
1690 				     (struct compat_loop_info __user *)arg);
1691 		break;
1692 	case LOOP_SET_CAPACITY:
1693 	case LOOP_CLR_FD:
1694 	case LOOP_GET_STATUS64:
1695 	case LOOP_SET_STATUS64:
1696 	case LOOP_CONFIGURE:
1697 		arg = (unsigned long) compat_ptr(arg);
1698 		fallthrough;
1699 	case LOOP_SET_FD:
1700 	case LOOP_CHANGE_FD:
1701 	case LOOP_SET_BLOCK_SIZE:
1702 	case LOOP_SET_DIRECT_IO:
1703 		err = lo_ioctl(bdev, mode, cmd, arg);
1704 		break;
1705 	default:
1706 		err = -ENOIOCTLCMD;
1707 		break;
1708 	}
1709 	return err;
1710 }
1711 #endif
1712 
1713 static int lo_open(struct gendisk *disk, blk_mode_t mode)
1714 {
1715 	struct loop_device *lo = disk->private_data;
1716 	int err;
1717 
1718 	err = mutex_lock_killable(&lo->lo_mutex);
1719 	if (err)
1720 		return err;
1721 
1722 	if (lo->lo_state == Lo_deleting || lo->lo_state == Lo_rundown)
1723 		err = -ENXIO;
1724 	mutex_unlock(&lo->lo_mutex);
1725 	return err;
1726 }
1727 
1728 static void lo_release(struct gendisk *disk)
1729 {
1730 	struct loop_device *lo = disk->private_data;
1731 	bool need_clear = false;
1732 
1733 	if (disk_openers(disk) > 0)
1734 		return;
1735 	/*
1736 	 * Clear the backing device information if this is the last close of
1737 	 * a device that's been marked for auto clear, or on which LOOP_CLR_FD
1738 	 * has been called.
1739 	 */
1740 
1741 	mutex_lock(&lo->lo_mutex);
1742 	if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR))
1743 		lo->lo_state = Lo_rundown;
1744 
1745 	need_clear = (lo->lo_state == Lo_rundown);
1746 	mutex_unlock(&lo->lo_mutex);
1747 
1748 	if (need_clear)
1749 		__loop_clr_fd(lo);
1750 }
1751 
1752 static void lo_free_disk(struct gendisk *disk)
1753 {
1754 	struct loop_device *lo = disk->private_data;
1755 
1756 	if (lo->workqueue)
1757 		destroy_workqueue(lo->workqueue);
1758 	loop_free_idle_workers(lo, true);
1759 	timer_shutdown_sync(&lo->timer);
1760 	mutex_destroy(&lo->lo_mutex);
1761 	kfree(lo);
1762 }
1763 
1764 static const struct block_device_operations lo_fops = {
1765 	.owner =	THIS_MODULE,
1766 	.open =         lo_open,
1767 	.release =	lo_release,
1768 	.ioctl =	lo_ioctl,
1769 #ifdef CONFIG_COMPAT
1770 	.compat_ioctl =	lo_compat_ioctl,
1771 #endif
1772 	.free_disk =	lo_free_disk,
1773 };
1774 
1775 /*
1776  * And now the modules code and kernel interface.
1777  */
1778 
1779 /*
1780  * If max_loop is specified, create that many devices upfront.
1781  * This also becomes a hard limit. If max_loop is not specified,
1782  * the default isn't a hard limit (as before commit 85c50197716c
1783  * changed the default value from 0 for max_loop=0 reasons), just
1784  * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1785  * init time. Loop devices can be requested on-demand with the
1786  * /dev/loop-control interface, or be instantiated by accessing
1787  * a 'dead' device node.
1788  */
1789 static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1790 
1791 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
1792 static bool max_loop_specified;
1793 
1794 static int max_loop_param_set_int(const char *val,
1795 				  const struct kernel_param *kp)
1796 {
1797 	int ret;
1798 
1799 	ret = param_set_int(val, kp);
1800 	if (ret < 0)
1801 		return ret;
1802 
1803 	max_loop_specified = true;
1804 	return 0;
1805 }
1806 
1807 static const struct kernel_param_ops max_loop_param_ops = {
1808 	.set = max_loop_param_set_int,
1809 	.get = param_get_int,
1810 };
1811 
1812 module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444);
1813 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1814 #else
1815 module_param(max_loop, int, 0444);
1816 MODULE_PARM_DESC(max_loop, "Initial number of loop devices");
1817 #endif
1818 
1819 module_param(max_part, int, 0444);
1820 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1821 
1822 static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH;
1823 
1824 static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p)
1825 {
1826 	int qd, ret;
1827 
1828 	ret = kstrtoint(s, 0, &qd);
1829 	if (ret < 0)
1830 		return ret;
1831 	if (qd < 1)
1832 		return -EINVAL;
1833 	hw_queue_depth = qd;
1834 	return 0;
1835 }
1836 
1837 static const struct kernel_param_ops loop_hw_qdepth_param_ops = {
1838 	.set	= loop_set_hw_queue_depth,
1839 	.get	= param_get_int,
1840 };
1841 
1842 device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444);
1843 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH));
1844 
1845 MODULE_DESCRIPTION("Loopback device support");
1846 MODULE_LICENSE("GPL");
1847 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1848 
1849 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1850 		const struct blk_mq_queue_data *bd)
1851 {
1852 	struct request *rq = bd->rq;
1853 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1854 	struct loop_device *lo = rq->q->queuedata;
1855 
1856 	blk_mq_start_request(rq);
1857 
1858 	if (lo->lo_state != Lo_bound)
1859 		return BLK_STS_IOERR;
1860 
1861 	switch (req_op(rq)) {
1862 	case REQ_OP_FLUSH:
1863 	case REQ_OP_DISCARD:
1864 	case REQ_OP_WRITE_ZEROES:
1865 		cmd->use_aio = false;
1866 		break;
1867 	default:
1868 		cmd->use_aio = lo->use_dio;
1869 		break;
1870 	}
1871 
1872 	/* always use the first bio's css */
1873 	cmd->blkcg_css = NULL;
1874 	cmd->memcg_css = NULL;
1875 #ifdef CONFIG_BLK_CGROUP
1876 	if (rq->bio) {
1877 		cmd->blkcg_css = bio_blkcg_css(rq->bio);
1878 #ifdef CONFIG_MEMCG
1879 		if (cmd->blkcg_css) {
1880 			cmd->memcg_css =
1881 				cgroup_get_e_css(cmd->blkcg_css->cgroup,
1882 						&memory_cgrp_subsys);
1883 		}
1884 #endif
1885 	}
1886 #endif
1887 	loop_queue_work(lo, cmd);
1888 
1889 	return BLK_STS_OK;
1890 }
1891 
1892 static void loop_handle_cmd(struct loop_cmd *cmd)
1893 {
1894 	struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css;
1895 	struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css;
1896 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1897 	const bool write = op_is_write(req_op(rq));
1898 	struct loop_device *lo = rq->q->queuedata;
1899 	int ret = 0;
1900 	struct mem_cgroup *old_memcg = NULL;
1901 	const bool use_aio = cmd->use_aio;
1902 
1903 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1904 		ret = -EIO;
1905 		goto failed;
1906 	}
1907 
1908 	if (cmd_blkcg_css)
1909 		kthread_associate_blkcg(cmd_blkcg_css);
1910 	if (cmd_memcg_css)
1911 		old_memcg = set_active_memcg(
1912 			mem_cgroup_from_css(cmd_memcg_css));
1913 
1914 	/*
1915 	 * do_req_filebacked() may call blk_mq_complete_request() synchronously
1916 	 * or asynchronously if using aio. Hence, do not touch 'cmd' after
1917 	 * do_req_filebacked() has returned unless we are sure that 'cmd' has
1918 	 * not yet been completed.
1919 	 */
1920 	ret = do_req_filebacked(lo, rq);
1921 
1922 	if (cmd_blkcg_css)
1923 		kthread_associate_blkcg(NULL);
1924 
1925 	if (cmd_memcg_css) {
1926 		set_active_memcg(old_memcg);
1927 		css_put(cmd_memcg_css);
1928 	}
1929  failed:
1930 	/* complete non-aio request */
1931 	if (!use_aio || ret) {
1932 		if (ret == -EOPNOTSUPP)
1933 			cmd->ret = ret;
1934 		else
1935 			cmd->ret = ret ? -EIO : 0;
1936 		if (likely(!blk_should_fake_timeout(rq->q)))
1937 			blk_mq_complete_request(rq);
1938 	}
1939 }
1940 
1941 static void loop_process_work(struct loop_worker *worker,
1942 			struct list_head *cmd_list, struct loop_device *lo)
1943 {
1944 	int orig_flags = current->flags;
1945 	struct loop_cmd *cmd;
1946 
1947 	current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO;
1948 	spin_lock_irq(&lo->lo_work_lock);
1949 	while (!list_empty(cmd_list)) {
1950 		cmd = container_of(
1951 			cmd_list->next, struct loop_cmd, list_entry);
1952 		list_del(cmd_list->next);
1953 		spin_unlock_irq(&lo->lo_work_lock);
1954 
1955 		loop_handle_cmd(cmd);
1956 		cond_resched();
1957 
1958 		spin_lock_irq(&lo->lo_work_lock);
1959 	}
1960 
1961 	/*
1962 	 * We only add to the idle list if there are no pending cmds
1963 	 * *and* the worker will not run again which ensures that it
1964 	 * is safe to free any worker on the idle list
1965 	 */
1966 	if (worker && !work_pending(&worker->work)) {
1967 		worker->last_ran_at = jiffies;
1968 		list_add_tail(&worker->idle_list, &lo->idle_worker_list);
1969 		loop_set_timer(lo);
1970 	}
1971 	spin_unlock_irq(&lo->lo_work_lock);
1972 	current->flags = orig_flags;
1973 }
1974 
1975 static void loop_workfn(struct work_struct *work)
1976 {
1977 	struct loop_worker *worker =
1978 		container_of(work, struct loop_worker, work);
1979 	loop_process_work(worker, &worker->cmd_list, worker->lo);
1980 }
1981 
1982 static void loop_rootcg_workfn(struct work_struct *work)
1983 {
1984 	struct loop_device *lo =
1985 		container_of(work, struct loop_device, rootcg_work);
1986 	loop_process_work(NULL, &lo->rootcg_cmd_list, lo);
1987 }
1988 
1989 static const struct blk_mq_ops loop_mq_ops = {
1990 	.queue_rq       = loop_queue_rq,
1991 	.complete	= lo_complete_rq,
1992 };
1993 
1994 static int loop_add(int i)
1995 {
1996 	struct queue_limits lim = {
1997 		/*
1998 		 * Random number picked from the historic block max_sectors cap.
1999 		 */
2000 		.max_hw_sectors		= 2560u,
2001 	};
2002 	struct loop_device *lo;
2003 	struct gendisk *disk;
2004 	int err;
2005 
2006 	err = -ENOMEM;
2007 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
2008 	if (!lo)
2009 		goto out;
2010 	lo->worker_tree = RB_ROOT;
2011 	INIT_LIST_HEAD(&lo->idle_worker_list);
2012 	timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE);
2013 	lo->lo_state = Lo_unbound;
2014 
2015 	err = mutex_lock_killable(&loop_ctl_mutex);
2016 	if (err)
2017 		goto out_free_dev;
2018 
2019 	/* allocate id, if @id >= 0, we're requesting that specific id */
2020 	if (i >= 0) {
2021 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
2022 		if (err == -ENOSPC)
2023 			err = -EEXIST;
2024 	} else {
2025 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
2026 	}
2027 	mutex_unlock(&loop_ctl_mutex);
2028 	if (err < 0)
2029 		goto out_free_dev;
2030 	i = err;
2031 
2032 	lo->tag_set.ops = &loop_mq_ops;
2033 	lo->tag_set.nr_hw_queues = 1;
2034 	lo->tag_set.queue_depth = hw_queue_depth;
2035 	lo->tag_set.numa_node = NUMA_NO_NODE;
2036 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
2037 	lo->tag_set.flags = BLK_MQ_F_STACKING | BLK_MQ_F_NO_SCHED_BY_DEFAULT;
2038 	lo->tag_set.driver_data = lo;
2039 
2040 	err = blk_mq_alloc_tag_set(&lo->tag_set);
2041 	if (err)
2042 		goto out_free_idr;
2043 
2044 	disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, &lim, lo);
2045 	if (IS_ERR(disk)) {
2046 		err = PTR_ERR(disk);
2047 		goto out_cleanup_tags;
2048 	}
2049 	lo->lo_queue = lo->lo_disk->queue;
2050 
2051 	/*
2052 	 * Disable partition scanning by default. The in-kernel partition
2053 	 * scanning can be requested individually per-device during its
2054 	 * setup. Userspace can always add and remove partitions from all
2055 	 * devices. The needed partition minors are allocated from the
2056 	 * extended minor space, the main loop device numbers will continue
2057 	 * to match the loop minors, regardless of the number of partitions
2058 	 * used.
2059 	 *
2060 	 * If max_part is given, partition scanning is globally enabled for
2061 	 * all loop devices. The minors for the main loop devices will be
2062 	 * multiples of max_part.
2063 	 *
2064 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
2065 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
2066 	 * complicated, are too static, inflexible and may surprise
2067 	 * userspace tools. Parameters like this in general should be avoided.
2068 	 */
2069 	if (!part_shift)
2070 		set_bit(GD_SUPPRESS_PART_SCAN, &disk->state);
2071 	mutex_init(&lo->lo_mutex);
2072 	lo->lo_number		= i;
2073 	spin_lock_init(&lo->lo_lock);
2074 	spin_lock_init(&lo->lo_work_lock);
2075 	INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn);
2076 	INIT_LIST_HEAD(&lo->rootcg_cmd_list);
2077 	disk->major		= LOOP_MAJOR;
2078 	disk->first_minor	= i << part_shift;
2079 	disk->minors		= 1 << part_shift;
2080 	disk->fops		= &lo_fops;
2081 	disk->private_data	= lo;
2082 	disk->queue		= lo->lo_queue;
2083 	disk->events		= DISK_EVENT_MEDIA_CHANGE;
2084 	disk->event_flags	= DISK_EVENT_FLAG_UEVENT;
2085 	sprintf(disk->disk_name, "loop%d", i);
2086 	/* Make this loop device reachable from pathname. */
2087 	err = add_disk(disk);
2088 	if (err)
2089 		goto out_cleanup_disk;
2090 
2091 	/* Show this loop device. */
2092 	mutex_lock(&loop_ctl_mutex);
2093 	lo->idr_visible = true;
2094 	mutex_unlock(&loop_ctl_mutex);
2095 
2096 	return i;
2097 
2098 out_cleanup_disk:
2099 	put_disk(disk);
2100 out_cleanup_tags:
2101 	blk_mq_free_tag_set(&lo->tag_set);
2102 out_free_idr:
2103 	mutex_lock(&loop_ctl_mutex);
2104 	idr_remove(&loop_index_idr, i);
2105 	mutex_unlock(&loop_ctl_mutex);
2106 out_free_dev:
2107 	kfree(lo);
2108 out:
2109 	return err;
2110 }
2111 
2112 static void loop_remove(struct loop_device *lo)
2113 {
2114 	/* Make this loop device unreachable from pathname. */
2115 	del_gendisk(lo->lo_disk);
2116 	blk_mq_free_tag_set(&lo->tag_set);
2117 
2118 	mutex_lock(&loop_ctl_mutex);
2119 	idr_remove(&loop_index_idr, lo->lo_number);
2120 	mutex_unlock(&loop_ctl_mutex);
2121 
2122 	put_disk(lo->lo_disk);
2123 }
2124 
2125 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
2126 static void loop_probe(dev_t dev)
2127 {
2128 	int idx = MINOR(dev) >> part_shift;
2129 
2130 	if (max_loop_specified && max_loop && idx >= max_loop)
2131 		return;
2132 	loop_add(idx);
2133 }
2134 #else
2135 #define loop_probe NULL
2136 #endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */
2137 
2138 static int loop_control_remove(int idx)
2139 {
2140 	struct loop_device *lo;
2141 	int ret;
2142 
2143 	if (idx < 0) {
2144 		pr_warn_once("deleting an unspecified loop device is not supported.\n");
2145 		return -EINVAL;
2146 	}
2147 
2148 	/* Hide this loop device for serialization. */
2149 	ret = mutex_lock_killable(&loop_ctl_mutex);
2150 	if (ret)
2151 		return ret;
2152 	lo = idr_find(&loop_index_idr, idx);
2153 	if (!lo || !lo->idr_visible)
2154 		ret = -ENODEV;
2155 	else
2156 		lo->idr_visible = false;
2157 	mutex_unlock(&loop_ctl_mutex);
2158 	if (ret)
2159 		return ret;
2160 
2161 	/* Check whether this loop device can be removed. */
2162 	ret = mutex_lock_killable(&lo->lo_mutex);
2163 	if (ret)
2164 		goto mark_visible;
2165 	if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) {
2166 		mutex_unlock(&lo->lo_mutex);
2167 		ret = -EBUSY;
2168 		goto mark_visible;
2169 	}
2170 	/* Mark this loop device as no more bound, but not quite unbound yet */
2171 	lo->lo_state = Lo_deleting;
2172 	mutex_unlock(&lo->lo_mutex);
2173 
2174 	loop_remove(lo);
2175 	return 0;
2176 
2177 mark_visible:
2178 	/* Show this loop device again. */
2179 	mutex_lock(&loop_ctl_mutex);
2180 	lo->idr_visible = true;
2181 	mutex_unlock(&loop_ctl_mutex);
2182 	return ret;
2183 }
2184 
2185 static int loop_control_get_free(int idx)
2186 {
2187 	struct loop_device *lo;
2188 	int id, ret;
2189 
2190 	ret = mutex_lock_killable(&loop_ctl_mutex);
2191 	if (ret)
2192 		return ret;
2193 	idr_for_each_entry(&loop_index_idr, lo, id) {
2194 		/* Hitting a race results in creating a new loop device which is harmless. */
2195 		if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound)
2196 			goto found;
2197 	}
2198 	mutex_unlock(&loop_ctl_mutex);
2199 	return loop_add(-1);
2200 found:
2201 	mutex_unlock(&loop_ctl_mutex);
2202 	return id;
2203 }
2204 
2205 static long loop_control_ioctl(struct file *file, unsigned int cmd,
2206 			       unsigned long parm)
2207 {
2208 	switch (cmd) {
2209 	case LOOP_CTL_ADD:
2210 		return loop_add(parm);
2211 	case LOOP_CTL_REMOVE:
2212 		return loop_control_remove(parm);
2213 	case LOOP_CTL_GET_FREE:
2214 		return loop_control_get_free(parm);
2215 	default:
2216 		return -ENOSYS;
2217 	}
2218 }
2219 
2220 static const struct file_operations loop_ctl_fops = {
2221 	.open		= nonseekable_open,
2222 	.unlocked_ioctl	= loop_control_ioctl,
2223 	.compat_ioctl	= loop_control_ioctl,
2224 	.owner		= THIS_MODULE,
2225 	.llseek		= noop_llseek,
2226 };
2227 
2228 static struct miscdevice loop_misc = {
2229 	.minor		= LOOP_CTRL_MINOR,
2230 	.name		= "loop-control",
2231 	.fops		= &loop_ctl_fops,
2232 };
2233 
2234 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2235 MODULE_ALIAS("devname:loop-control");
2236 
2237 static int __init loop_init(void)
2238 {
2239 	int i;
2240 	int err;
2241 
2242 	part_shift = 0;
2243 	if (max_part > 0) {
2244 		part_shift = fls(max_part);
2245 
2246 		/*
2247 		 * Adjust max_part according to part_shift as it is exported
2248 		 * to user space so that user can decide correct minor number
2249 		 * if [s]he want to create more devices.
2250 		 *
2251 		 * Note that -1 is required because partition 0 is reserved
2252 		 * for the whole disk.
2253 		 */
2254 		max_part = (1UL << part_shift) - 1;
2255 	}
2256 
2257 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
2258 		err = -EINVAL;
2259 		goto err_out;
2260 	}
2261 
2262 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
2263 		err = -EINVAL;
2264 		goto err_out;
2265 	}
2266 
2267 	err = misc_register(&loop_misc);
2268 	if (err < 0)
2269 		goto err_out;
2270 
2271 
2272 	if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) {
2273 		err = -EIO;
2274 		goto misc_out;
2275 	}
2276 
2277 	/* pre-create number of devices given by config or max_loop */
2278 	for (i = 0; i < max_loop; i++)
2279 		loop_add(i);
2280 
2281 	printk(KERN_INFO "loop: module loaded\n");
2282 	return 0;
2283 
2284 misc_out:
2285 	misc_deregister(&loop_misc);
2286 err_out:
2287 	return err;
2288 }
2289 
2290 static void __exit loop_exit(void)
2291 {
2292 	struct loop_device *lo;
2293 	int id;
2294 
2295 	unregister_blkdev(LOOP_MAJOR, "loop");
2296 	misc_deregister(&loop_misc);
2297 
2298 	/*
2299 	 * There is no need to use loop_ctl_mutex here, for nobody else can
2300 	 * access loop_index_idr when this module is unloading (unless forced
2301 	 * module unloading is requested). If this is not a clean unloading,
2302 	 * we have no means to avoid kernel crash.
2303 	 */
2304 	idr_for_each_entry(&loop_index_idr, lo, id)
2305 		loop_remove(lo);
2306 
2307 	idr_destroy(&loop_index_idr);
2308 }
2309 
2310 module_init(loop_init);
2311 module_exit(loop_exit);
2312 
2313 #ifndef MODULE
2314 static int __init max_loop_setup(char *str)
2315 {
2316 	max_loop = simple_strtol(str, NULL, 0);
2317 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
2318 	max_loop_specified = true;
2319 #endif
2320 	return 1;
2321 }
2322 
2323 __setup("max_loop=", max_loop_setup);
2324 #endif
2325