1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - [email protected] Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <[email protected]> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, [email protected] 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <[email protected]> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <[email protected]>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <[email protected]>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <[email protected]>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/pagemap.h> 57 #include <linux/file.h> 58 #include <linux/stat.h> 59 #include <linux/errno.h> 60 #include <linux/major.h> 61 #include <linux/wait.h> 62 #include <linux/blkdev.h> 63 #include <linux/blkpg.h> 64 #include <linux/init.h> 65 #include <linux/swap.h> 66 #include <linux/slab.h> 67 #include <linux/compat.h> 68 #include <linux/suspend.h> 69 #include <linux/freezer.h> 70 #include <linux/mutex.h> 71 #include <linux/writeback.h> 72 #include <linux/completion.h> 73 #include <linux/highmem.h> 74 #include <linux/splice.h> 75 #include <linux/sysfs.h> 76 #include <linux/miscdevice.h> 77 #include <linux/falloc.h> 78 #include <linux/uio.h> 79 #include <linux/ioprio.h> 80 #include <linux/blk-cgroup.h> 81 #include <linux/sched/mm.h> 82 83 #include "loop.h" 84 85 #include <linux/uaccess.h> 86 87 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ) 88 #define LOOP_DEFAULT_HW_Q_DEPTH (128) 89 90 static DEFINE_IDR(loop_index_idr); 91 static DEFINE_MUTEX(loop_ctl_mutex); 92 static DEFINE_MUTEX(loop_validate_mutex); 93 94 /** 95 * loop_global_lock_killable() - take locks for safe loop_validate_file() test 96 * 97 * @lo: struct loop_device 98 * @global: true if @lo is about to bind another "struct loop_device", false otherwise 99 * 100 * Returns 0 on success, -EINTR otherwise. 101 * 102 * Since loop_validate_file() traverses on other "struct loop_device" if 103 * is_loop_device() is true, we need a global lock for serializing concurrent 104 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls. 105 */ 106 static int loop_global_lock_killable(struct loop_device *lo, bool global) 107 { 108 int err; 109 110 if (global) { 111 err = mutex_lock_killable(&loop_validate_mutex); 112 if (err) 113 return err; 114 } 115 err = mutex_lock_killable(&lo->lo_mutex); 116 if (err && global) 117 mutex_unlock(&loop_validate_mutex); 118 return err; 119 } 120 121 /** 122 * loop_global_unlock() - release locks taken by loop_global_lock_killable() 123 * 124 * @lo: struct loop_device 125 * @global: true if @lo was about to bind another "struct loop_device", false otherwise 126 */ 127 static void loop_global_unlock(struct loop_device *lo, bool global) 128 { 129 mutex_unlock(&lo->lo_mutex); 130 if (global) 131 mutex_unlock(&loop_validate_mutex); 132 } 133 134 static int max_part; 135 static int part_shift; 136 137 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 138 { 139 loff_t loopsize; 140 141 /* Compute loopsize in bytes */ 142 loopsize = i_size_read(file->f_mapping->host); 143 if (offset > 0) 144 loopsize -= offset; 145 /* offset is beyond i_size, weird but possible */ 146 if (loopsize < 0) 147 return 0; 148 149 if (sizelimit > 0 && sizelimit < loopsize) 150 loopsize = sizelimit; 151 /* 152 * Unfortunately, if we want to do I/O on the device, 153 * the number of 512-byte sectors has to fit into a sector_t. 154 */ 155 return loopsize >> 9; 156 } 157 158 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 159 { 160 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 161 } 162 163 static void __loop_update_dio(struct loop_device *lo, bool dio) 164 { 165 struct file *file = lo->lo_backing_file; 166 struct address_space *mapping = file->f_mapping; 167 struct inode *inode = mapping->host; 168 unsigned short sb_bsize = 0; 169 unsigned dio_align = 0; 170 bool use_dio; 171 172 if (inode->i_sb->s_bdev) { 173 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 174 dio_align = sb_bsize - 1; 175 } 176 177 /* 178 * We support direct I/O only if lo_offset is aligned with the 179 * logical I/O size of backing device, and the logical block 180 * size of loop is bigger than the backing device's. 181 * 182 * TODO: the above condition may be loosed in the future, and 183 * direct I/O may be switched runtime at that time because most 184 * of requests in sane applications should be PAGE_SIZE aligned 185 */ 186 if (dio) { 187 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize && 188 !(lo->lo_offset & dio_align) && 189 mapping->a_ops->direct_IO) 190 use_dio = true; 191 else 192 use_dio = false; 193 } else { 194 use_dio = false; 195 } 196 197 if (lo->use_dio == use_dio) 198 return; 199 200 /* flush dirty pages before changing direct IO */ 201 vfs_fsync(file, 0); 202 203 /* 204 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with 205 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup 206 * will get updated by ioctl(LOOP_GET_STATUS) 207 */ 208 if (lo->lo_state == Lo_bound) 209 blk_mq_freeze_queue(lo->lo_queue); 210 lo->use_dio = use_dio; 211 if (use_dio) { 212 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue); 213 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 214 } else { 215 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 216 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 217 } 218 if (lo->lo_state == Lo_bound) 219 blk_mq_unfreeze_queue(lo->lo_queue); 220 } 221 222 /** 223 * loop_set_size() - sets device size and notifies userspace 224 * @lo: struct loop_device to set the size for 225 * @size: new size of the loop device 226 * 227 * Callers must validate that the size passed into this function fits into 228 * a sector_t, eg using loop_validate_size() 229 */ 230 static void loop_set_size(struct loop_device *lo, loff_t size) 231 { 232 if (!set_capacity_and_notify(lo->lo_disk, size)) 233 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 234 } 235 236 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) 237 { 238 struct iov_iter i; 239 ssize_t bw; 240 241 iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len); 242 243 file_start_write(file); 244 bw = vfs_iter_write(file, &i, ppos, 0); 245 file_end_write(file); 246 247 if (likely(bw == bvec->bv_len)) 248 return 0; 249 250 printk_ratelimited(KERN_ERR 251 "loop: Write error at byte offset %llu, length %i.\n", 252 (unsigned long long)*ppos, bvec->bv_len); 253 if (bw >= 0) 254 bw = -EIO; 255 return bw; 256 } 257 258 static int lo_write_simple(struct loop_device *lo, struct request *rq, 259 loff_t pos) 260 { 261 struct bio_vec bvec; 262 struct req_iterator iter; 263 int ret = 0; 264 265 rq_for_each_segment(bvec, rq, iter) { 266 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); 267 if (ret < 0) 268 break; 269 cond_resched(); 270 } 271 272 return ret; 273 } 274 275 static int lo_read_simple(struct loop_device *lo, struct request *rq, 276 loff_t pos) 277 { 278 struct bio_vec bvec; 279 struct req_iterator iter; 280 struct iov_iter i; 281 ssize_t len; 282 283 rq_for_each_segment(bvec, rq, iter) { 284 iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len); 285 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 286 if (len < 0) 287 return len; 288 289 flush_dcache_page(bvec.bv_page); 290 291 if (len != bvec.bv_len) { 292 struct bio *bio; 293 294 __rq_for_each_bio(bio, rq) 295 zero_fill_bio(bio); 296 break; 297 } 298 cond_resched(); 299 } 300 301 return 0; 302 } 303 304 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos, 305 int mode) 306 { 307 /* 308 * We use fallocate to manipulate the space mappings used by the image 309 * a.k.a. discard/zerorange. 310 */ 311 struct file *file = lo->lo_backing_file; 312 int ret; 313 314 mode |= FALLOC_FL_KEEP_SIZE; 315 316 if (!blk_queue_discard(lo->lo_queue)) { 317 ret = -EOPNOTSUPP; 318 goto out; 319 } 320 321 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 322 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 323 ret = -EIO; 324 out: 325 return ret; 326 } 327 328 static int lo_req_flush(struct loop_device *lo, struct request *rq) 329 { 330 int ret = vfs_fsync(lo->lo_backing_file, 0); 331 if (unlikely(ret && ret != -EINVAL)) 332 ret = -EIO; 333 334 return ret; 335 } 336 337 static void lo_complete_rq(struct request *rq) 338 { 339 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 340 blk_status_t ret = BLK_STS_OK; 341 342 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 343 req_op(rq) != REQ_OP_READ) { 344 if (cmd->ret < 0) 345 ret = errno_to_blk_status(cmd->ret); 346 goto end_io; 347 } 348 349 /* 350 * Short READ - if we got some data, advance our request and 351 * retry it. If we got no data, end the rest with EIO. 352 */ 353 if (cmd->ret) { 354 blk_update_request(rq, BLK_STS_OK, cmd->ret); 355 cmd->ret = 0; 356 blk_mq_requeue_request(rq, true); 357 } else { 358 if (cmd->use_aio) { 359 struct bio *bio = rq->bio; 360 361 while (bio) { 362 zero_fill_bio(bio); 363 bio = bio->bi_next; 364 } 365 } 366 ret = BLK_STS_IOERR; 367 end_io: 368 blk_mq_end_request(rq, ret); 369 } 370 } 371 372 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 373 { 374 struct request *rq = blk_mq_rq_from_pdu(cmd); 375 376 if (!atomic_dec_and_test(&cmd->ref)) 377 return; 378 kfree(cmd->bvec); 379 cmd->bvec = NULL; 380 if (likely(!blk_should_fake_timeout(rq->q))) 381 blk_mq_complete_request(rq); 382 } 383 384 static void lo_rw_aio_complete(struct kiocb *iocb, long ret) 385 { 386 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 387 388 cmd->ret = ret; 389 lo_rw_aio_do_completion(cmd); 390 } 391 392 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 393 loff_t pos, bool rw) 394 { 395 struct iov_iter iter; 396 struct req_iterator rq_iter; 397 struct bio_vec *bvec; 398 struct request *rq = blk_mq_rq_from_pdu(cmd); 399 struct bio *bio = rq->bio; 400 struct file *file = lo->lo_backing_file; 401 struct bio_vec tmp; 402 unsigned int offset; 403 int nr_bvec = 0; 404 int ret; 405 406 rq_for_each_bvec(tmp, rq, rq_iter) 407 nr_bvec++; 408 409 if (rq->bio != rq->biotail) { 410 411 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), 412 GFP_NOIO); 413 if (!bvec) 414 return -EIO; 415 cmd->bvec = bvec; 416 417 /* 418 * The bios of the request may be started from the middle of 419 * the 'bvec' because of bio splitting, so we can't directly 420 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec 421 * API will take care of all details for us. 422 */ 423 rq_for_each_bvec(tmp, rq, rq_iter) { 424 *bvec = tmp; 425 bvec++; 426 } 427 bvec = cmd->bvec; 428 offset = 0; 429 } else { 430 /* 431 * Same here, this bio may be started from the middle of the 432 * 'bvec' because of bio splitting, so offset from the bvec 433 * must be passed to iov iterator 434 */ 435 offset = bio->bi_iter.bi_bvec_done; 436 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 437 } 438 atomic_set(&cmd->ref, 2); 439 440 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); 441 iter.iov_offset = offset; 442 443 cmd->iocb.ki_pos = pos; 444 cmd->iocb.ki_filp = file; 445 cmd->iocb.ki_complete = lo_rw_aio_complete; 446 cmd->iocb.ki_flags = IOCB_DIRECT; 447 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 448 449 if (rw == WRITE) 450 ret = call_write_iter(file, &cmd->iocb, &iter); 451 else 452 ret = call_read_iter(file, &cmd->iocb, &iter); 453 454 lo_rw_aio_do_completion(cmd); 455 456 if (ret != -EIOCBQUEUED) 457 lo_rw_aio_complete(&cmd->iocb, ret); 458 return 0; 459 } 460 461 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 462 { 463 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 464 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 465 466 /* 467 * lo_write_simple and lo_read_simple should have been covered 468 * by io submit style function like lo_rw_aio(), one blocker 469 * is that lo_read_simple() need to call flush_dcache_page after 470 * the page is written from kernel, and it isn't easy to handle 471 * this in io submit style function which submits all segments 472 * of the req at one time. And direct read IO doesn't need to 473 * run flush_dcache_page(). 474 */ 475 switch (req_op(rq)) { 476 case REQ_OP_FLUSH: 477 return lo_req_flush(lo, rq); 478 case REQ_OP_WRITE_ZEROES: 479 /* 480 * If the caller doesn't want deallocation, call zeroout to 481 * write zeroes the range. Otherwise, punch them out. 482 */ 483 return lo_fallocate(lo, rq, pos, 484 (rq->cmd_flags & REQ_NOUNMAP) ? 485 FALLOC_FL_ZERO_RANGE : 486 FALLOC_FL_PUNCH_HOLE); 487 case REQ_OP_DISCARD: 488 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE); 489 case REQ_OP_WRITE: 490 if (cmd->use_aio) 491 return lo_rw_aio(lo, cmd, pos, WRITE); 492 else 493 return lo_write_simple(lo, rq, pos); 494 case REQ_OP_READ: 495 if (cmd->use_aio) 496 return lo_rw_aio(lo, cmd, pos, READ); 497 else 498 return lo_read_simple(lo, rq, pos); 499 default: 500 WARN_ON_ONCE(1); 501 return -EIO; 502 } 503 } 504 505 static inline void loop_update_dio(struct loop_device *lo) 506 { 507 __loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) | 508 lo->use_dio); 509 } 510 511 static void loop_reread_partitions(struct loop_device *lo) 512 { 513 int rc; 514 515 mutex_lock(&lo->lo_disk->open_mutex); 516 rc = bdev_disk_changed(lo->lo_disk, false); 517 mutex_unlock(&lo->lo_disk->open_mutex); 518 if (rc) 519 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 520 __func__, lo->lo_number, lo->lo_file_name, rc); 521 } 522 523 static inline int is_loop_device(struct file *file) 524 { 525 struct inode *i = file->f_mapping->host; 526 527 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR; 528 } 529 530 static int loop_validate_file(struct file *file, struct block_device *bdev) 531 { 532 struct inode *inode = file->f_mapping->host; 533 struct file *f = file; 534 535 /* Avoid recursion */ 536 while (is_loop_device(f)) { 537 struct loop_device *l; 538 539 lockdep_assert_held(&loop_validate_mutex); 540 if (f->f_mapping->host->i_rdev == bdev->bd_dev) 541 return -EBADF; 542 543 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data; 544 if (l->lo_state != Lo_bound) 545 return -EINVAL; 546 /* Order wrt setting lo->lo_backing_file in loop_configure(). */ 547 rmb(); 548 f = l->lo_backing_file; 549 } 550 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 551 return -EINVAL; 552 return 0; 553 } 554 555 /* 556 * loop_change_fd switched the backing store of a loopback device to 557 * a new file. This is useful for operating system installers to free up 558 * the original file and in High Availability environments to switch to 559 * an alternative location for the content in case of server meltdown. 560 * This can only work if the loop device is used read-only, and if the 561 * new backing store is the same size and type as the old backing store. 562 */ 563 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 564 unsigned int arg) 565 { 566 struct file *file = fget(arg); 567 struct file *old_file; 568 int error; 569 bool partscan; 570 bool is_loop; 571 572 if (!file) 573 return -EBADF; 574 is_loop = is_loop_device(file); 575 error = loop_global_lock_killable(lo, is_loop); 576 if (error) 577 goto out_putf; 578 error = -ENXIO; 579 if (lo->lo_state != Lo_bound) 580 goto out_err; 581 582 /* the loop device has to be read-only */ 583 error = -EINVAL; 584 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 585 goto out_err; 586 587 error = loop_validate_file(file, bdev); 588 if (error) 589 goto out_err; 590 591 old_file = lo->lo_backing_file; 592 593 error = -EINVAL; 594 595 /* size of the new backing store needs to be the same */ 596 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 597 goto out_err; 598 599 /* and ... switch */ 600 disk_force_media_change(lo->lo_disk, DISK_EVENT_MEDIA_CHANGE); 601 blk_mq_freeze_queue(lo->lo_queue); 602 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 603 lo->lo_backing_file = file; 604 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 605 mapping_set_gfp_mask(file->f_mapping, 606 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 607 loop_update_dio(lo); 608 blk_mq_unfreeze_queue(lo->lo_queue); 609 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 610 loop_global_unlock(lo, is_loop); 611 612 /* 613 * Flush loop_validate_file() before fput(), for l->lo_backing_file 614 * might be pointing at old_file which might be the last reference. 615 */ 616 if (!is_loop) { 617 mutex_lock(&loop_validate_mutex); 618 mutex_unlock(&loop_validate_mutex); 619 } 620 /* 621 * We must drop file reference outside of lo_mutex as dropping 622 * the file ref can take open_mutex which creates circular locking 623 * dependency. 624 */ 625 fput(old_file); 626 if (partscan) 627 loop_reread_partitions(lo); 628 return 0; 629 630 out_err: 631 loop_global_unlock(lo, is_loop); 632 out_putf: 633 fput(file); 634 return error; 635 } 636 637 /* loop sysfs attributes */ 638 639 static ssize_t loop_attr_show(struct device *dev, char *page, 640 ssize_t (*callback)(struct loop_device *, char *)) 641 { 642 struct gendisk *disk = dev_to_disk(dev); 643 struct loop_device *lo = disk->private_data; 644 645 return callback(lo, page); 646 } 647 648 #define LOOP_ATTR_RO(_name) \ 649 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 650 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 651 struct device_attribute *attr, char *b) \ 652 { \ 653 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 654 } \ 655 static struct device_attribute loop_attr_##_name = \ 656 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 657 658 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 659 { 660 ssize_t ret; 661 char *p = NULL; 662 663 spin_lock_irq(&lo->lo_lock); 664 if (lo->lo_backing_file) 665 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 666 spin_unlock_irq(&lo->lo_lock); 667 668 if (IS_ERR_OR_NULL(p)) 669 ret = PTR_ERR(p); 670 else { 671 ret = strlen(p); 672 memmove(buf, p, ret); 673 buf[ret++] = '\n'; 674 buf[ret] = 0; 675 } 676 677 return ret; 678 } 679 680 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 681 { 682 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset); 683 } 684 685 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 686 { 687 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 688 } 689 690 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 691 { 692 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 693 694 return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0"); 695 } 696 697 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 698 { 699 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 700 701 return sysfs_emit(buf, "%s\n", partscan ? "1" : "0"); 702 } 703 704 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 705 { 706 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 707 708 return sysfs_emit(buf, "%s\n", dio ? "1" : "0"); 709 } 710 711 LOOP_ATTR_RO(backing_file); 712 LOOP_ATTR_RO(offset); 713 LOOP_ATTR_RO(sizelimit); 714 LOOP_ATTR_RO(autoclear); 715 LOOP_ATTR_RO(partscan); 716 LOOP_ATTR_RO(dio); 717 718 static struct attribute *loop_attrs[] = { 719 &loop_attr_backing_file.attr, 720 &loop_attr_offset.attr, 721 &loop_attr_sizelimit.attr, 722 &loop_attr_autoclear.attr, 723 &loop_attr_partscan.attr, 724 &loop_attr_dio.attr, 725 NULL, 726 }; 727 728 static struct attribute_group loop_attribute_group = { 729 .name = "loop", 730 .attrs= loop_attrs, 731 }; 732 733 static void loop_sysfs_init(struct loop_device *lo) 734 { 735 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 736 &loop_attribute_group); 737 } 738 739 static void loop_sysfs_exit(struct loop_device *lo) 740 { 741 if (lo->sysfs_inited) 742 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 743 &loop_attribute_group); 744 } 745 746 static void loop_config_discard(struct loop_device *lo) 747 { 748 struct file *file = lo->lo_backing_file; 749 struct inode *inode = file->f_mapping->host; 750 struct request_queue *q = lo->lo_queue; 751 u32 granularity, max_discard_sectors; 752 753 /* 754 * If the backing device is a block device, mirror its zeroing 755 * capability. Set the discard sectors to the block device's zeroing 756 * capabilities because loop discards result in blkdev_issue_zeroout(), 757 * not blkdev_issue_discard(). This maintains consistent behavior with 758 * file-backed loop devices: discarded regions read back as zero. 759 */ 760 if (S_ISBLK(inode->i_mode)) { 761 struct request_queue *backingq = bdev_get_queue(I_BDEV(inode)); 762 763 max_discard_sectors = backingq->limits.max_write_zeroes_sectors; 764 granularity = backingq->limits.discard_granularity ?: 765 queue_physical_block_size(backingq); 766 767 /* 768 * We use punch hole to reclaim the free space used by the 769 * image a.k.a. discard. 770 */ 771 } else if (!file->f_op->fallocate) { 772 max_discard_sectors = 0; 773 granularity = 0; 774 775 } else { 776 max_discard_sectors = UINT_MAX >> 9; 777 granularity = inode->i_sb->s_blocksize; 778 } 779 780 if (max_discard_sectors) { 781 q->limits.discard_granularity = granularity; 782 blk_queue_max_discard_sectors(q, max_discard_sectors); 783 blk_queue_max_write_zeroes_sectors(q, max_discard_sectors); 784 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 785 } else { 786 q->limits.discard_granularity = 0; 787 blk_queue_max_discard_sectors(q, 0); 788 blk_queue_max_write_zeroes_sectors(q, 0); 789 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 790 } 791 q->limits.discard_alignment = 0; 792 } 793 794 struct loop_worker { 795 struct rb_node rb_node; 796 struct work_struct work; 797 struct list_head cmd_list; 798 struct list_head idle_list; 799 struct loop_device *lo; 800 struct cgroup_subsys_state *blkcg_css; 801 unsigned long last_ran_at; 802 }; 803 804 static void loop_workfn(struct work_struct *work); 805 static void loop_rootcg_workfn(struct work_struct *work); 806 static void loop_free_idle_workers(struct timer_list *timer); 807 808 #ifdef CONFIG_BLK_CGROUP 809 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 810 { 811 return !css || css == blkcg_root_css; 812 } 813 #else 814 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 815 { 816 return !css; 817 } 818 #endif 819 820 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd) 821 { 822 struct rb_node **node, *parent = NULL; 823 struct loop_worker *cur_worker, *worker = NULL; 824 struct work_struct *work; 825 struct list_head *cmd_list; 826 827 spin_lock_irq(&lo->lo_work_lock); 828 829 if (queue_on_root_worker(cmd->blkcg_css)) 830 goto queue_work; 831 832 node = &lo->worker_tree.rb_node; 833 834 while (*node) { 835 parent = *node; 836 cur_worker = container_of(*node, struct loop_worker, rb_node); 837 if (cur_worker->blkcg_css == cmd->blkcg_css) { 838 worker = cur_worker; 839 break; 840 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) { 841 node = &(*node)->rb_left; 842 } else { 843 node = &(*node)->rb_right; 844 } 845 } 846 if (worker) 847 goto queue_work; 848 849 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN); 850 /* 851 * In the event we cannot allocate a worker, just queue on the 852 * rootcg worker and issue the I/O as the rootcg 853 */ 854 if (!worker) { 855 cmd->blkcg_css = NULL; 856 if (cmd->memcg_css) 857 css_put(cmd->memcg_css); 858 cmd->memcg_css = NULL; 859 goto queue_work; 860 } 861 862 worker->blkcg_css = cmd->blkcg_css; 863 css_get(worker->blkcg_css); 864 INIT_WORK(&worker->work, loop_workfn); 865 INIT_LIST_HEAD(&worker->cmd_list); 866 INIT_LIST_HEAD(&worker->idle_list); 867 worker->lo = lo; 868 rb_link_node(&worker->rb_node, parent, node); 869 rb_insert_color(&worker->rb_node, &lo->worker_tree); 870 queue_work: 871 if (worker) { 872 /* 873 * We need to remove from the idle list here while 874 * holding the lock so that the idle timer doesn't 875 * free the worker 876 */ 877 if (!list_empty(&worker->idle_list)) 878 list_del_init(&worker->idle_list); 879 work = &worker->work; 880 cmd_list = &worker->cmd_list; 881 } else { 882 work = &lo->rootcg_work; 883 cmd_list = &lo->rootcg_cmd_list; 884 } 885 list_add_tail(&cmd->list_entry, cmd_list); 886 queue_work(lo->workqueue, work); 887 spin_unlock_irq(&lo->lo_work_lock); 888 } 889 890 static void loop_update_rotational(struct loop_device *lo) 891 { 892 struct file *file = lo->lo_backing_file; 893 struct inode *file_inode = file->f_mapping->host; 894 struct block_device *file_bdev = file_inode->i_sb->s_bdev; 895 struct request_queue *q = lo->lo_queue; 896 bool nonrot = true; 897 898 /* not all filesystems (e.g. tmpfs) have a sb->s_bdev */ 899 if (file_bdev) 900 nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev)); 901 902 if (nonrot) 903 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 904 else 905 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 906 } 907 908 /** 909 * loop_set_status_from_info - configure device from loop_info 910 * @lo: struct loop_device to configure 911 * @info: struct loop_info64 to configure the device with 912 * 913 * Configures the loop device parameters according to the passed 914 * in loop_info64 configuration. 915 */ 916 static int 917 loop_set_status_from_info(struct loop_device *lo, 918 const struct loop_info64 *info) 919 { 920 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 921 return -EINVAL; 922 923 switch (info->lo_encrypt_type) { 924 case LO_CRYPT_NONE: 925 break; 926 case LO_CRYPT_XOR: 927 pr_warn("support for the xor transformation has been removed.\n"); 928 return -EINVAL; 929 case LO_CRYPT_CRYPTOAPI: 930 pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n"); 931 return -EINVAL; 932 default: 933 return -EINVAL; 934 } 935 936 lo->lo_offset = info->lo_offset; 937 lo->lo_sizelimit = info->lo_sizelimit; 938 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 939 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 940 lo->lo_flags = info->lo_flags; 941 return 0; 942 } 943 944 static int loop_configure(struct loop_device *lo, fmode_t mode, 945 struct block_device *bdev, 946 const struct loop_config *config) 947 { 948 struct file *file = fget(config->fd); 949 struct inode *inode; 950 struct address_space *mapping; 951 int error; 952 loff_t size; 953 bool partscan; 954 unsigned short bsize; 955 bool is_loop; 956 957 if (!file) 958 return -EBADF; 959 is_loop = is_loop_device(file); 960 961 /* This is safe, since we have a reference from open(). */ 962 __module_get(THIS_MODULE); 963 964 /* 965 * If we don't hold exclusive handle for the device, upgrade to it 966 * here to avoid changing device under exclusive owner. 967 */ 968 if (!(mode & FMODE_EXCL)) { 969 error = bd_prepare_to_claim(bdev, loop_configure); 970 if (error) 971 goto out_putf; 972 } 973 974 error = loop_global_lock_killable(lo, is_loop); 975 if (error) 976 goto out_bdev; 977 978 error = -EBUSY; 979 if (lo->lo_state != Lo_unbound) 980 goto out_unlock; 981 982 error = loop_validate_file(file, bdev); 983 if (error) 984 goto out_unlock; 985 986 mapping = file->f_mapping; 987 inode = mapping->host; 988 989 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) { 990 error = -EINVAL; 991 goto out_unlock; 992 } 993 994 if (config->block_size) { 995 error = blk_validate_block_size(config->block_size); 996 if (error) 997 goto out_unlock; 998 } 999 1000 error = loop_set_status_from_info(lo, &config->info); 1001 if (error) 1002 goto out_unlock; 1003 1004 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) || 1005 !file->f_op->write_iter) 1006 lo->lo_flags |= LO_FLAGS_READ_ONLY; 1007 1008 lo->workqueue = alloc_workqueue("loop%d", 1009 WQ_UNBOUND | WQ_FREEZABLE, 1010 0, 1011 lo->lo_number); 1012 if (!lo->workqueue) { 1013 error = -ENOMEM; 1014 goto out_unlock; 1015 } 1016 1017 disk_force_media_change(lo->lo_disk, DISK_EVENT_MEDIA_CHANGE); 1018 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0); 1019 1020 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn); 1021 INIT_LIST_HEAD(&lo->rootcg_cmd_list); 1022 INIT_LIST_HEAD(&lo->idle_worker_list); 1023 lo->worker_tree = RB_ROOT; 1024 timer_setup(&lo->timer, loop_free_idle_workers, 1025 TIMER_DEFERRABLE); 1026 lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO; 1027 lo->lo_device = bdev; 1028 lo->lo_backing_file = file; 1029 lo->old_gfp_mask = mapping_gfp_mask(mapping); 1030 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 1031 1032 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 1033 blk_queue_write_cache(lo->lo_queue, true, false); 1034 1035 if (config->block_size) 1036 bsize = config->block_size; 1037 else if ((lo->lo_backing_file->f_flags & O_DIRECT) && inode->i_sb->s_bdev) 1038 /* In case of direct I/O, match underlying block size */ 1039 bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 1040 else 1041 bsize = 512; 1042 1043 blk_queue_logical_block_size(lo->lo_queue, bsize); 1044 blk_queue_physical_block_size(lo->lo_queue, bsize); 1045 blk_queue_io_min(lo->lo_queue, bsize); 1046 1047 loop_config_discard(lo); 1048 loop_update_rotational(lo); 1049 loop_update_dio(lo); 1050 loop_sysfs_init(lo); 1051 1052 size = get_loop_size(lo, file); 1053 loop_set_size(lo, size); 1054 1055 /* Order wrt reading lo_state in loop_validate_file(). */ 1056 wmb(); 1057 1058 lo->lo_state = Lo_bound; 1059 if (part_shift) 1060 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1061 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 1062 if (partscan) 1063 lo->lo_disk->flags &= ~GENHD_FL_NO_PART; 1064 1065 loop_global_unlock(lo, is_loop); 1066 if (partscan) 1067 loop_reread_partitions(lo); 1068 if (!(mode & FMODE_EXCL)) 1069 bd_abort_claiming(bdev, loop_configure); 1070 return 0; 1071 1072 out_unlock: 1073 loop_global_unlock(lo, is_loop); 1074 out_bdev: 1075 if (!(mode & FMODE_EXCL)) 1076 bd_abort_claiming(bdev, loop_configure); 1077 out_putf: 1078 fput(file); 1079 /* This is safe: open() is still holding a reference. */ 1080 module_put(THIS_MODULE); 1081 return error; 1082 } 1083 1084 static void __loop_clr_fd(struct loop_device *lo) 1085 { 1086 struct file *filp; 1087 gfp_t gfp = lo->old_gfp_mask; 1088 struct loop_worker *pos, *worker; 1089 1090 /* 1091 * Flush loop_configure() and loop_change_fd(). It is acceptable for 1092 * loop_validate_file() to succeed, for actual clear operation has not 1093 * started yet. 1094 */ 1095 mutex_lock(&loop_validate_mutex); 1096 mutex_unlock(&loop_validate_mutex); 1097 /* 1098 * loop_validate_file() now fails because l->lo_state != Lo_bound 1099 * became visible. 1100 */ 1101 1102 /* 1103 * Since this function is called upon "ioctl(LOOP_CLR_FD)" xor "close() 1104 * after ioctl(LOOP_CLR_FD)", it is a sign of something going wrong if 1105 * lo->lo_state has changed while waiting for lo->lo_mutex. 1106 */ 1107 mutex_lock(&lo->lo_mutex); 1108 BUG_ON(lo->lo_state != Lo_rundown); 1109 mutex_unlock(&lo->lo_mutex); 1110 1111 if (test_bit(QUEUE_FLAG_WC, &lo->lo_queue->queue_flags)) 1112 blk_queue_write_cache(lo->lo_queue, false, false); 1113 1114 /* freeze request queue during the transition */ 1115 blk_mq_freeze_queue(lo->lo_queue); 1116 1117 destroy_workqueue(lo->workqueue); 1118 spin_lock_irq(&lo->lo_work_lock); 1119 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list, 1120 idle_list) { 1121 list_del(&worker->idle_list); 1122 rb_erase(&worker->rb_node, &lo->worker_tree); 1123 css_put(worker->blkcg_css); 1124 kfree(worker); 1125 } 1126 spin_unlock_irq(&lo->lo_work_lock); 1127 del_timer_sync(&lo->timer); 1128 1129 spin_lock_irq(&lo->lo_lock); 1130 filp = lo->lo_backing_file; 1131 lo->lo_backing_file = NULL; 1132 spin_unlock_irq(&lo->lo_lock); 1133 1134 lo->lo_device = NULL; 1135 lo->lo_offset = 0; 1136 lo->lo_sizelimit = 0; 1137 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1138 blk_queue_logical_block_size(lo->lo_queue, 512); 1139 blk_queue_physical_block_size(lo->lo_queue, 512); 1140 blk_queue_io_min(lo->lo_queue, 512); 1141 invalidate_disk(lo->lo_disk); 1142 loop_sysfs_exit(lo); 1143 /* let user-space know about this change */ 1144 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 1145 mapping_set_gfp_mask(filp->f_mapping, gfp); 1146 blk_mq_unfreeze_queue(lo->lo_queue); 1147 1148 disk_force_media_change(lo->lo_disk, DISK_EVENT_MEDIA_CHANGE); 1149 1150 if (lo->lo_flags & LO_FLAGS_PARTSCAN) { 1151 int err; 1152 1153 mutex_lock(&lo->lo_disk->open_mutex); 1154 err = bdev_disk_changed(lo->lo_disk, false); 1155 mutex_unlock(&lo->lo_disk->open_mutex); 1156 if (err) 1157 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", 1158 __func__, lo->lo_number, err); 1159 /* Device is gone, no point in returning error */ 1160 } 1161 1162 lo->lo_flags = 0; 1163 if (!part_shift) 1164 lo->lo_disk->flags |= GENHD_FL_NO_PART; 1165 1166 fput(filp); 1167 } 1168 1169 static void loop_rundown_completed(struct loop_device *lo) 1170 { 1171 mutex_lock(&lo->lo_mutex); 1172 lo->lo_state = Lo_unbound; 1173 mutex_unlock(&lo->lo_mutex); 1174 module_put(THIS_MODULE); 1175 } 1176 1177 static void loop_rundown_workfn(struct work_struct *work) 1178 { 1179 struct loop_device *lo = container_of(work, struct loop_device, 1180 rundown_work); 1181 struct block_device *bdev = lo->lo_device; 1182 struct gendisk *disk = lo->lo_disk; 1183 1184 __loop_clr_fd(lo); 1185 kobject_put(&bdev->bd_device.kobj); 1186 module_put(disk->fops->owner); 1187 loop_rundown_completed(lo); 1188 } 1189 1190 static void loop_schedule_rundown(struct loop_device *lo) 1191 { 1192 struct block_device *bdev = lo->lo_device; 1193 struct gendisk *disk = lo->lo_disk; 1194 1195 __module_get(disk->fops->owner); 1196 kobject_get(&bdev->bd_device.kobj); 1197 INIT_WORK(&lo->rundown_work, loop_rundown_workfn); 1198 queue_work(system_long_wq, &lo->rundown_work); 1199 } 1200 1201 static int loop_clr_fd(struct loop_device *lo) 1202 { 1203 int err; 1204 1205 err = mutex_lock_killable(&lo->lo_mutex); 1206 if (err) 1207 return err; 1208 if (lo->lo_state != Lo_bound) { 1209 mutex_unlock(&lo->lo_mutex); 1210 return -ENXIO; 1211 } 1212 /* 1213 * If we've explicitly asked to tear down the loop device, 1214 * and it has an elevated reference count, set it for auto-teardown when 1215 * the last reference goes away. This stops $!~#$@ udev from 1216 * preventing teardown because it decided that it needs to run blkid on 1217 * the loopback device whenever they appear. xfstests is notorious for 1218 * failing tests because blkid via udev races with a losetup 1219 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d 1220 * command to fail with EBUSY. 1221 */ 1222 if (atomic_read(&lo->lo_refcnt) > 1) { 1223 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1224 mutex_unlock(&lo->lo_mutex); 1225 return 0; 1226 } 1227 lo->lo_state = Lo_rundown; 1228 mutex_unlock(&lo->lo_mutex); 1229 1230 __loop_clr_fd(lo); 1231 loop_rundown_completed(lo); 1232 return 0; 1233 } 1234 1235 static int 1236 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1237 { 1238 int err; 1239 int prev_lo_flags; 1240 bool partscan = false; 1241 bool size_changed = false; 1242 1243 err = mutex_lock_killable(&lo->lo_mutex); 1244 if (err) 1245 return err; 1246 if (lo->lo_state != Lo_bound) { 1247 err = -ENXIO; 1248 goto out_unlock; 1249 } 1250 1251 if (lo->lo_offset != info->lo_offset || 1252 lo->lo_sizelimit != info->lo_sizelimit) { 1253 size_changed = true; 1254 sync_blockdev(lo->lo_device); 1255 invalidate_bdev(lo->lo_device); 1256 } 1257 1258 /* I/O need to be drained during transfer transition */ 1259 blk_mq_freeze_queue(lo->lo_queue); 1260 1261 if (size_changed && lo->lo_device->bd_inode->i_mapping->nrpages) { 1262 /* If any pages were dirtied after invalidate_bdev(), try again */ 1263 err = -EAGAIN; 1264 pr_warn("%s: loop%d (%s) still has dirty pages (nrpages=%lu)\n", 1265 __func__, lo->lo_number, lo->lo_file_name, 1266 lo->lo_device->bd_inode->i_mapping->nrpages); 1267 goto out_unfreeze; 1268 } 1269 1270 prev_lo_flags = lo->lo_flags; 1271 1272 err = loop_set_status_from_info(lo, info); 1273 if (err) 1274 goto out_unfreeze; 1275 1276 /* Mask out flags that can't be set using LOOP_SET_STATUS. */ 1277 lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS; 1278 /* For those flags, use the previous values instead */ 1279 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS; 1280 /* For flags that can't be cleared, use previous values too */ 1281 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS; 1282 1283 if (size_changed) { 1284 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit, 1285 lo->lo_backing_file); 1286 loop_set_size(lo, new_size); 1287 } 1288 1289 loop_config_discard(lo); 1290 1291 /* update dio if lo_offset or transfer is changed */ 1292 __loop_update_dio(lo, lo->use_dio); 1293 1294 out_unfreeze: 1295 blk_mq_unfreeze_queue(lo->lo_queue); 1296 1297 if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) && 1298 !(prev_lo_flags & LO_FLAGS_PARTSCAN)) { 1299 lo->lo_disk->flags &= ~GENHD_FL_NO_PART; 1300 partscan = true; 1301 } 1302 out_unlock: 1303 mutex_unlock(&lo->lo_mutex); 1304 if (partscan) 1305 loop_reread_partitions(lo); 1306 1307 return err; 1308 } 1309 1310 static int 1311 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1312 { 1313 struct path path; 1314 struct kstat stat; 1315 int ret; 1316 1317 ret = mutex_lock_killable(&lo->lo_mutex); 1318 if (ret) 1319 return ret; 1320 if (lo->lo_state != Lo_bound) { 1321 mutex_unlock(&lo->lo_mutex); 1322 return -ENXIO; 1323 } 1324 1325 memset(info, 0, sizeof(*info)); 1326 info->lo_number = lo->lo_number; 1327 info->lo_offset = lo->lo_offset; 1328 info->lo_sizelimit = lo->lo_sizelimit; 1329 info->lo_flags = lo->lo_flags; 1330 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1331 1332 /* Drop lo_mutex while we call into the filesystem. */ 1333 path = lo->lo_backing_file->f_path; 1334 path_get(&path); 1335 mutex_unlock(&lo->lo_mutex); 1336 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); 1337 if (!ret) { 1338 info->lo_device = huge_encode_dev(stat.dev); 1339 info->lo_inode = stat.ino; 1340 info->lo_rdevice = huge_encode_dev(stat.rdev); 1341 } 1342 path_put(&path); 1343 return ret; 1344 } 1345 1346 static void 1347 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1348 { 1349 memset(info64, 0, sizeof(*info64)); 1350 info64->lo_number = info->lo_number; 1351 info64->lo_device = info->lo_device; 1352 info64->lo_inode = info->lo_inode; 1353 info64->lo_rdevice = info->lo_rdevice; 1354 info64->lo_offset = info->lo_offset; 1355 info64->lo_sizelimit = 0; 1356 info64->lo_flags = info->lo_flags; 1357 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1358 } 1359 1360 static int 1361 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1362 { 1363 memset(info, 0, sizeof(*info)); 1364 info->lo_number = info64->lo_number; 1365 info->lo_device = info64->lo_device; 1366 info->lo_inode = info64->lo_inode; 1367 info->lo_rdevice = info64->lo_rdevice; 1368 info->lo_offset = info64->lo_offset; 1369 info->lo_flags = info64->lo_flags; 1370 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1371 1372 /* error in case values were truncated */ 1373 if (info->lo_device != info64->lo_device || 1374 info->lo_rdevice != info64->lo_rdevice || 1375 info->lo_inode != info64->lo_inode || 1376 info->lo_offset != info64->lo_offset) 1377 return -EOVERFLOW; 1378 1379 return 0; 1380 } 1381 1382 static int 1383 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1384 { 1385 struct loop_info info; 1386 struct loop_info64 info64; 1387 1388 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1389 return -EFAULT; 1390 loop_info64_from_old(&info, &info64); 1391 return loop_set_status(lo, &info64); 1392 } 1393 1394 static int 1395 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1396 { 1397 struct loop_info64 info64; 1398 1399 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1400 return -EFAULT; 1401 return loop_set_status(lo, &info64); 1402 } 1403 1404 static int 1405 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1406 struct loop_info info; 1407 struct loop_info64 info64; 1408 int err; 1409 1410 if (!arg) 1411 return -EINVAL; 1412 err = loop_get_status(lo, &info64); 1413 if (!err) 1414 err = loop_info64_to_old(&info64, &info); 1415 if (!err && copy_to_user(arg, &info, sizeof(info))) 1416 err = -EFAULT; 1417 1418 return err; 1419 } 1420 1421 static int 1422 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1423 struct loop_info64 info64; 1424 int err; 1425 1426 if (!arg) 1427 return -EINVAL; 1428 err = loop_get_status(lo, &info64); 1429 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1430 err = -EFAULT; 1431 1432 return err; 1433 } 1434 1435 static int loop_set_capacity(struct loop_device *lo) 1436 { 1437 loff_t size; 1438 1439 if (unlikely(lo->lo_state != Lo_bound)) 1440 return -ENXIO; 1441 1442 size = get_loop_size(lo, lo->lo_backing_file); 1443 loop_set_size(lo, size); 1444 1445 return 0; 1446 } 1447 1448 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1449 { 1450 int error = -ENXIO; 1451 if (lo->lo_state != Lo_bound) 1452 goto out; 1453 1454 __loop_update_dio(lo, !!arg); 1455 if (lo->use_dio == !!arg) 1456 return 0; 1457 error = -EINVAL; 1458 out: 1459 return error; 1460 } 1461 1462 static int loop_set_block_size(struct loop_device *lo, unsigned long arg) 1463 { 1464 int err = 0; 1465 1466 if (lo->lo_state != Lo_bound) 1467 return -ENXIO; 1468 1469 err = blk_validate_block_size(arg); 1470 if (err) 1471 return err; 1472 1473 if (lo->lo_queue->limits.logical_block_size == arg) 1474 return 0; 1475 1476 sync_blockdev(lo->lo_device); 1477 invalidate_bdev(lo->lo_device); 1478 1479 blk_mq_freeze_queue(lo->lo_queue); 1480 1481 /* invalidate_bdev should have truncated all the pages */ 1482 if (lo->lo_device->bd_inode->i_mapping->nrpages) { 1483 err = -EAGAIN; 1484 pr_warn("%s: loop%d (%s) still has dirty pages (nrpages=%lu)\n", 1485 __func__, lo->lo_number, lo->lo_file_name, 1486 lo->lo_device->bd_inode->i_mapping->nrpages); 1487 goto out_unfreeze; 1488 } 1489 1490 blk_queue_logical_block_size(lo->lo_queue, arg); 1491 blk_queue_physical_block_size(lo->lo_queue, arg); 1492 blk_queue_io_min(lo->lo_queue, arg); 1493 loop_update_dio(lo); 1494 out_unfreeze: 1495 blk_mq_unfreeze_queue(lo->lo_queue); 1496 1497 return err; 1498 } 1499 1500 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, 1501 unsigned long arg) 1502 { 1503 int err; 1504 1505 err = mutex_lock_killable(&lo->lo_mutex); 1506 if (err) 1507 return err; 1508 switch (cmd) { 1509 case LOOP_SET_CAPACITY: 1510 err = loop_set_capacity(lo); 1511 break; 1512 case LOOP_SET_DIRECT_IO: 1513 err = loop_set_dio(lo, arg); 1514 break; 1515 case LOOP_SET_BLOCK_SIZE: 1516 err = loop_set_block_size(lo, arg); 1517 break; 1518 default: 1519 err = -EINVAL; 1520 } 1521 mutex_unlock(&lo->lo_mutex); 1522 return err; 1523 } 1524 1525 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1526 unsigned int cmd, unsigned long arg) 1527 { 1528 struct loop_device *lo = bdev->bd_disk->private_data; 1529 void __user *argp = (void __user *) arg; 1530 int err; 1531 1532 switch (cmd) { 1533 case LOOP_SET_FD: { 1534 /* 1535 * Legacy case - pass in a zeroed out struct loop_config with 1536 * only the file descriptor set , which corresponds with the 1537 * default parameters we'd have used otherwise. 1538 */ 1539 struct loop_config config; 1540 1541 memset(&config, 0, sizeof(config)); 1542 config.fd = arg; 1543 1544 return loop_configure(lo, mode, bdev, &config); 1545 } 1546 case LOOP_CONFIGURE: { 1547 struct loop_config config; 1548 1549 if (copy_from_user(&config, argp, sizeof(config))) 1550 return -EFAULT; 1551 1552 return loop_configure(lo, mode, bdev, &config); 1553 } 1554 case LOOP_CHANGE_FD: 1555 return loop_change_fd(lo, bdev, arg); 1556 case LOOP_CLR_FD: 1557 return loop_clr_fd(lo); 1558 case LOOP_SET_STATUS: 1559 err = -EPERM; 1560 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) { 1561 err = loop_set_status_old(lo, argp); 1562 } 1563 break; 1564 case LOOP_GET_STATUS: 1565 return loop_get_status_old(lo, argp); 1566 case LOOP_SET_STATUS64: 1567 err = -EPERM; 1568 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) { 1569 err = loop_set_status64(lo, argp); 1570 } 1571 break; 1572 case LOOP_GET_STATUS64: 1573 return loop_get_status64(lo, argp); 1574 case LOOP_SET_CAPACITY: 1575 case LOOP_SET_DIRECT_IO: 1576 case LOOP_SET_BLOCK_SIZE: 1577 if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN)) 1578 return -EPERM; 1579 fallthrough; 1580 default: 1581 err = lo_simple_ioctl(lo, cmd, arg); 1582 break; 1583 } 1584 1585 return err; 1586 } 1587 1588 #ifdef CONFIG_COMPAT 1589 struct compat_loop_info { 1590 compat_int_t lo_number; /* ioctl r/o */ 1591 compat_dev_t lo_device; /* ioctl r/o */ 1592 compat_ulong_t lo_inode; /* ioctl r/o */ 1593 compat_dev_t lo_rdevice; /* ioctl r/o */ 1594 compat_int_t lo_offset; 1595 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1596 compat_int_t lo_flags; /* ioctl r/o */ 1597 char lo_name[LO_NAME_SIZE]; 1598 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1599 compat_ulong_t lo_init[2]; 1600 char reserved[4]; 1601 }; 1602 1603 /* 1604 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1605 * - noinlined to reduce stack space usage in main part of driver 1606 */ 1607 static noinline int 1608 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1609 struct loop_info64 *info64) 1610 { 1611 struct compat_loop_info info; 1612 1613 if (copy_from_user(&info, arg, sizeof(info))) 1614 return -EFAULT; 1615 1616 memset(info64, 0, sizeof(*info64)); 1617 info64->lo_number = info.lo_number; 1618 info64->lo_device = info.lo_device; 1619 info64->lo_inode = info.lo_inode; 1620 info64->lo_rdevice = info.lo_rdevice; 1621 info64->lo_offset = info.lo_offset; 1622 info64->lo_sizelimit = 0; 1623 info64->lo_flags = info.lo_flags; 1624 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1625 return 0; 1626 } 1627 1628 /* 1629 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1630 * - noinlined to reduce stack space usage in main part of driver 1631 */ 1632 static noinline int 1633 loop_info64_to_compat(const struct loop_info64 *info64, 1634 struct compat_loop_info __user *arg) 1635 { 1636 struct compat_loop_info info; 1637 1638 memset(&info, 0, sizeof(info)); 1639 info.lo_number = info64->lo_number; 1640 info.lo_device = info64->lo_device; 1641 info.lo_inode = info64->lo_inode; 1642 info.lo_rdevice = info64->lo_rdevice; 1643 info.lo_offset = info64->lo_offset; 1644 info.lo_flags = info64->lo_flags; 1645 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1646 1647 /* error in case values were truncated */ 1648 if (info.lo_device != info64->lo_device || 1649 info.lo_rdevice != info64->lo_rdevice || 1650 info.lo_inode != info64->lo_inode || 1651 info.lo_offset != info64->lo_offset) 1652 return -EOVERFLOW; 1653 1654 if (copy_to_user(arg, &info, sizeof(info))) 1655 return -EFAULT; 1656 return 0; 1657 } 1658 1659 static int 1660 loop_set_status_compat(struct loop_device *lo, 1661 const struct compat_loop_info __user *arg) 1662 { 1663 struct loop_info64 info64; 1664 int ret; 1665 1666 ret = loop_info64_from_compat(arg, &info64); 1667 if (ret < 0) 1668 return ret; 1669 return loop_set_status(lo, &info64); 1670 } 1671 1672 static int 1673 loop_get_status_compat(struct loop_device *lo, 1674 struct compat_loop_info __user *arg) 1675 { 1676 struct loop_info64 info64; 1677 int err; 1678 1679 if (!arg) 1680 return -EINVAL; 1681 err = loop_get_status(lo, &info64); 1682 if (!err) 1683 err = loop_info64_to_compat(&info64, arg); 1684 return err; 1685 } 1686 1687 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1688 unsigned int cmd, unsigned long arg) 1689 { 1690 struct loop_device *lo = bdev->bd_disk->private_data; 1691 int err; 1692 1693 switch(cmd) { 1694 case LOOP_SET_STATUS: 1695 err = loop_set_status_compat(lo, 1696 (const struct compat_loop_info __user *)arg); 1697 break; 1698 case LOOP_GET_STATUS: 1699 err = loop_get_status_compat(lo, 1700 (struct compat_loop_info __user *)arg); 1701 break; 1702 case LOOP_SET_CAPACITY: 1703 case LOOP_CLR_FD: 1704 case LOOP_GET_STATUS64: 1705 case LOOP_SET_STATUS64: 1706 case LOOP_CONFIGURE: 1707 arg = (unsigned long) compat_ptr(arg); 1708 fallthrough; 1709 case LOOP_SET_FD: 1710 case LOOP_CHANGE_FD: 1711 case LOOP_SET_BLOCK_SIZE: 1712 case LOOP_SET_DIRECT_IO: 1713 err = lo_ioctl(bdev, mode, cmd, arg); 1714 break; 1715 default: 1716 err = -ENOIOCTLCMD; 1717 break; 1718 } 1719 return err; 1720 } 1721 #endif 1722 1723 static int lo_open(struct block_device *bdev, fmode_t mode) 1724 { 1725 struct loop_device *lo = bdev->bd_disk->private_data; 1726 int err; 1727 1728 err = mutex_lock_killable(&lo->lo_mutex); 1729 if (err) 1730 return err; 1731 if (lo->lo_state == Lo_deleting) 1732 err = -ENXIO; 1733 else 1734 atomic_inc(&lo->lo_refcnt); 1735 mutex_unlock(&lo->lo_mutex); 1736 return err; 1737 } 1738 1739 static void lo_release(struct gendisk *disk, fmode_t mode) 1740 { 1741 struct loop_device *lo = disk->private_data; 1742 1743 mutex_lock(&lo->lo_mutex); 1744 if (atomic_dec_return(&lo->lo_refcnt)) 1745 goto out_unlock; 1746 1747 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1748 if (lo->lo_state != Lo_bound) 1749 goto out_unlock; 1750 lo->lo_state = Lo_rundown; 1751 mutex_unlock(&lo->lo_mutex); 1752 /* 1753 * In autoclear mode, stop the loop thread 1754 * and remove configuration after last close. 1755 */ 1756 loop_schedule_rundown(lo); 1757 return; 1758 } else if (lo->lo_state == Lo_bound) { 1759 /* 1760 * Otherwise keep thread (if running) and config, 1761 * but flush possible ongoing bios in thread. 1762 */ 1763 blk_mq_freeze_queue(lo->lo_queue); 1764 blk_mq_unfreeze_queue(lo->lo_queue); 1765 } 1766 1767 out_unlock: 1768 mutex_unlock(&lo->lo_mutex); 1769 } 1770 1771 static const struct block_device_operations lo_fops = { 1772 .owner = THIS_MODULE, 1773 .open = lo_open, 1774 .release = lo_release, 1775 .ioctl = lo_ioctl, 1776 #ifdef CONFIG_COMPAT 1777 .compat_ioctl = lo_compat_ioctl, 1778 #endif 1779 }; 1780 1781 /* 1782 * And now the modules code and kernel interface. 1783 */ 1784 static int max_loop; 1785 module_param(max_loop, int, 0444); 1786 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1787 module_param(max_part, int, 0444); 1788 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1789 1790 static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH; 1791 1792 static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p) 1793 { 1794 int ret = kstrtoint(s, 10, &hw_queue_depth); 1795 1796 return (ret || (hw_queue_depth < 1)) ? -EINVAL : 0; 1797 } 1798 1799 static const struct kernel_param_ops loop_hw_qdepth_param_ops = { 1800 .set = loop_set_hw_queue_depth, 1801 .get = param_get_int, 1802 }; 1803 1804 device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444); 1805 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 128"); 1806 1807 MODULE_LICENSE("GPL"); 1808 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1809 1810 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1811 const struct blk_mq_queue_data *bd) 1812 { 1813 struct request *rq = bd->rq; 1814 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1815 struct loop_device *lo = rq->q->queuedata; 1816 1817 blk_mq_start_request(rq); 1818 1819 if (lo->lo_state != Lo_bound) 1820 return BLK_STS_IOERR; 1821 1822 switch (req_op(rq)) { 1823 case REQ_OP_FLUSH: 1824 case REQ_OP_DISCARD: 1825 case REQ_OP_WRITE_ZEROES: 1826 cmd->use_aio = false; 1827 break; 1828 default: 1829 cmd->use_aio = lo->use_dio; 1830 break; 1831 } 1832 1833 /* always use the first bio's css */ 1834 cmd->blkcg_css = NULL; 1835 cmd->memcg_css = NULL; 1836 #ifdef CONFIG_BLK_CGROUP 1837 if (rq->bio && rq->bio->bi_blkg) { 1838 cmd->blkcg_css = &bio_blkcg(rq->bio)->css; 1839 #ifdef CONFIG_MEMCG 1840 cmd->memcg_css = 1841 cgroup_get_e_css(cmd->blkcg_css->cgroup, 1842 &memory_cgrp_subsys); 1843 #endif 1844 } 1845 #endif 1846 loop_queue_work(lo, cmd); 1847 1848 return BLK_STS_OK; 1849 } 1850 1851 static void loop_handle_cmd(struct loop_cmd *cmd) 1852 { 1853 struct request *rq = blk_mq_rq_from_pdu(cmd); 1854 const bool write = op_is_write(req_op(rq)); 1855 struct loop_device *lo = rq->q->queuedata; 1856 int ret = 0; 1857 struct mem_cgroup *old_memcg = NULL; 1858 1859 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1860 ret = -EIO; 1861 goto failed; 1862 } 1863 1864 if (cmd->blkcg_css) 1865 kthread_associate_blkcg(cmd->blkcg_css); 1866 if (cmd->memcg_css) 1867 old_memcg = set_active_memcg( 1868 mem_cgroup_from_css(cmd->memcg_css)); 1869 1870 ret = do_req_filebacked(lo, rq); 1871 1872 if (cmd->blkcg_css) 1873 kthread_associate_blkcg(NULL); 1874 1875 if (cmd->memcg_css) { 1876 set_active_memcg(old_memcg); 1877 css_put(cmd->memcg_css); 1878 } 1879 failed: 1880 /* complete non-aio request */ 1881 if (!cmd->use_aio || ret) { 1882 if (ret == -EOPNOTSUPP) 1883 cmd->ret = ret; 1884 else 1885 cmd->ret = ret ? -EIO : 0; 1886 if (likely(!blk_should_fake_timeout(rq->q))) 1887 blk_mq_complete_request(rq); 1888 } 1889 } 1890 1891 static void loop_set_timer(struct loop_device *lo) 1892 { 1893 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT); 1894 } 1895 1896 static void loop_process_work(struct loop_worker *worker, 1897 struct list_head *cmd_list, struct loop_device *lo) 1898 { 1899 int orig_flags = current->flags; 1900 struct loop_cmd *cmd; 1901 1902 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO; 1903 spin_lock_irq(&lo->lo_work_lock); 1904 while (!list_empty(cmd_list)) { 1905 cmd = container_of( 1906 cmd_list->next, struct loop_cmd, list_entry); 1907 list_del(cmd_list->next); 1908 spin_unlock_irq(&lo->lo_work_lock); 1909 1910 loop_handle_cmd(cmd); 1911 cond_resched(); 1912 1913 spin_lock_irq(&lo->lo_work_lock); 1914 } 1915 1916 /* 1917 * We only add to the idle list if there are no pending cmds 1918 * *and* the worker will not run again which ensures that it 1919 * is safe to free any worker on the idle list 1920 */ 1921 if (worker && !work_pending(&worker->work)) { 1922 worker->last_ran_at = jiffies; 1923 list_add_tail(&worker->idle_list, &lo->idle_worker_list); 1924 loop_set_timer(lo); 1925 } 1926 spin_unlock_irq(&lo->lo_work_lock); 1927 current->flags = orig_flags; 1928 } 1929 1930 static void loop_workfn(struct work_struct *work) 1931 { 1932 struct loop_worker *worker = 1933 container_of(work, struct loop_worker, work); 1934 loop_process_work(worker, &worker->cmd_list, worker->lo); 1935 } 1936 1937 static void loop_rootcg_workfn(struct work_struct *work) 1938 { 1939 struct loop_device *lo = 1940 container_of(work, struct loop_device, rootcg_work); 1941 loop_process_work(NULL, &lo->rootcg_cmd_list, lo); 1942 } 1943 1944 static void loop_free_idle_workers(struct timer_list *timer) 1945 { 1946 struct loop_device *lo = container_of(timer, struct loop_device, timer); 1947 struct loop_worker *pos, *worker; 1948 1949 spin_lock_irq(&lo->lo_work_lock); 1950 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list, 1951 idle_list) { 1952 if (time_is_after_jiffies(worker->last_ran_at + 1953 LOOP_IDLE_WORKER_TIMEOUT)) 1954 break; 1955 list_del(&worker->idle_list); 1956 rb_erase(&worker->rb_node, &lo->worker_tree); 1957 css_put(worker->blkcg_css); 1958 kfree(worker); 1959 } 1960 if (!list_empty(&lo->idle_worker_list)) 1961 loop_set_timer(lo); 1962 spin_unlock_irq(&lo->lo_work_lock); 1963 } 1964 1965 static const struct blk_mq_ops loop_mq_ops = { 1966 .queue_rq = loop_queue_rq, 1967 .complete = lo_complete_rq, 1968 }; 1969 1970 static int loop_add(int i) 1971 { 1972 struct loop_device *lo; 1973 struct gendisk *disk; 1974 int err; 1975 1976 err = -ENOMEM; 1977 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1978 if (!lo) 1979 goto out; 1980 lo->lo_state = Lo_unbound; 1981 1982 err = mutex_lock_killable(&loop_ctl_mutex); 1983 if (err) 1984 goto out_free_dev; 1985 1986 /* allocate id, if @id >= 0, we're requesting that specific id */ 1987 if (i >= 0) { 1988 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 1989 if (err == -ENOSPC) 1990 err = -EEXIST; 1991 } else { 1992 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 1993 } 1994 mutex_unlock(&loop_ctl_mutex); 1995 if (err < 0) 1996 goto out_free_dev; 1997 i = err; 1998 1999 lo->tag_set.ops = &loop_mq_ops; 2000 lo->tag_set.nr_hw_queues = 1; 2001 lo->tag_set.queue_depth = hw_queue_depth; 2002 lo->tag_set.numa_node = NUMA_NO_NODE; 2003 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 2004 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING | 2005 BLK_MQ_F_NO_SCHED_BY_DEFAULT; 2006 lo->tag_set.driver_data = lo; 2007 2008 err = blk_mq_alloc_tag_set(&lo->tag_set); 2009 if (err) 2010 goto out_free_idr; 2011 2012 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, lo); 2013 if (IS_ERR(disk)) { 2014 err = PTR_ERR(disk); 2015 goto out_cleanup_tags; 2016 } 2017 lo->lo_queue = lo->lo_disk->queue; 2018 2019 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS); 2020 2021 /* 2022 * By default, we do buffer IO, so it doesn't make sense to enable 2023 * merge because the I/O submitted to backing file is handled page by 2024 * page. For directio mode, merge does help to dispatch bigger request 2025 * to underlayer disk. We will enable merge once directio is enabled. 2026 */ 2027 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 2028 2029 /* 2030 * Disable partition scanning by default. The in-kernel partition 2031 * scanning can be requested individually per-device during its 2032 * setup. Userspace can always add and remove partitions from all 2033 * devices. The needed partition minors are allocated from the 2034 * extended minor space, the main loop device numbers will continue 2035 * to match the loop minors, regardless of the number of partitions 2036 * used. 2037 * 2038 * If max_part is given, partition scanning is globally enabled for 2039 * all loop devices. The minors for the main loop devices will be 2040 * multiples of max_part. 2041 * 2042 * Note: Global-for-all-devices, set-only-at-init, read-only module 2043 * parameteters like 'max_loop' and 'max_part' make things needlessly 2044 * complicated, are too static, inflexible and may surprise 2045 * userspace tools. Parameters like this in general should be avoided. 2046 */ 2047 if (!part_shift) 2048 disk->flags |= GENHD_FL_NO_PART; 2049 atomic_set(&lo->lo_refcnt, 0); 2050 mutex_init(&lo->lo_mutex); 2051 lo->lo_number = i; 2052 spin_lock_init(&lo->lo_lock); 2053 spin_lock_init(&lo->lo_work_lock); 2054 disk->major = LOOP_MAJOR; 2055 disk->first_minor = i << part_shift; 2056 disk->minors = 1 << part_shift; 2057 disk->fops = &lo_fops; 2058 disk->private_data = lo; 2059 disk->queue = lo->lo_queue; 2060 disk->events = DISK_EVENT_MEDIA_CHANGE; 2061 disk->event_flags = DISK_EVENT_FLAG_UEVENT; 2062 sprintf(disk->disk_name, "loop%d", i); 2063 /* Make this loop device reachable from pathname. */ 2064 err = add_disk(disk); 2065 if (err) 2066 goto out_cleanup_disk; 2067 2068 /* Show this loop device. */ 2069 mutex_lock(&loop_ctl_mutex); 2070 lo->idr_visible = true; 2071 mutex_unlock(&loop_ctl_mutex); 2072 2073 return i; 2074 2075 out_cleanup_disk: 2076 blk_cleanup_disk(disk); 2077 out_cleanup_tags: 2078 blk_mq_free_tag_set(&lo->tag_set); 2079 out_free_idr: 2080 mutex_lock(&loop_ctl_mutex); 2081 idr_remove(&loop_index_idr, i); 2082 mutex_unlock(&loop_ctl_mutex); 2083 out_free_dev: 2084 kfree(lo); 2085 out: 2086 return err; 2087 } 2088 2089 static void loop_remove(struct loop_device *lo) 2090 { 2091 /* Make this loop device unreachable from pathname. */ 2092 del_gendisk(lo->lo_disk); 2093 blk_cleanup_disk(lo->lo_disk); 2094 blk_mq_free_tag_set(&lo->tag_set); 2095 mutex_lock(&loop_ctl_mutex); 2096 idr_remove(&loop_index_idr, lo->lo_number); 2097 mutex_unlock(&loop_ctl_mutex); 2098 /* There is no route which can find this loop device. */ 2099 mutex_destroy(&lo->lo_mutex); 2100 kfree(lo); 2101 } 2102 2103 static void loop_probe(dev_t dev) 2104 { 2105 int idx = MINOR(dev) >> part_shift; 2106 2107 if (max_loop && idx >= max_loop) 2108 return; 2109 loop_add(idx); 2110 } 2111 2112 static int loop_control_remove(int idx) 2113 { 2114 struct loop_device *lo; 2115 int ret; 2116 2117 if (idx < 0) { 2118 pr_warn_once("deleting an unspecified loop device is not supported.\n"); 2119 return -EINVAL; 2120 } 2121 2122 /* Hide this loop device for serialization. */ 2123 ret = mutex_lock_killable(&loop_ctl_mutex); 2124 if (ret) 2125 return ret; 2126 lo = idr_find(&loop_index_idr, idx); 2127 if (!lo || !lo->idr_visible) 2128 ret = -ENODEV; 2129 else 2130 lo->idr_visible = false; 2131 mutex_unlock(&loop_ctl_mutex); 2132 if (ret) 2133 return ret; 2134 2135 /* Check whether this loop device can be removed. */ 2136 ret = mutex_lock_killable(&lo->lo_mutex); 2137 if (ret) 2138 goto mark_visible; 2139 if (lo->lo_state != Lo_unbound || 2140 atomic_read(&lo->lo_refcnt) > 0) { 2141 mutex_unlock(&lo->lo_mutex); 2142 ret = -EBUSY; 2143 goto mark_visible; 2144 } 2145 /* Mark this loop device no longer open()-able. */ 2146 lo->lo_state = Lo_deleting; 2147 mutex_unlock(&lo->lo_mutex); 2148 2149 loop_remove(lo); 2150 return 0; 2151 2152 mark_visible: 2153 /* Show this loop device again. */ 2154 mutex_lock(&loop_ctl_mutex); 2155 lo->idr_visible = true; 2156 mutex_unlock(&loop_ctl_mutex); 2157 return ret; 2158 } 2159 2160 static int loop_control_get_free(int idx) 2161 { 2162 struct loop_device *lo; 2163 int id, ret; 2164 2165 ret = mutex_lock_killable(&loop_ctl_mutex); 2166 if (ret) 2167 return ret; 2168 idr_for_each_entry(&loop_index_idr, lo, id) { 2169 /* Hitting a race results in creating a new loop device which is harmless. */ 2170 if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound) 2171 goto found; 2172 } 2173 mutex_unlock(&loop_ctl_mutex); 2174 return loop_add(-1); 2175 found: 2176 mutex_unlock(&loop_ctl_mutex); 2177 return id; 2178 } 2179 2180 static long loop_control_ioctl(struct file *file, unsigned int cmd, 2181 unsigned long parm) 2182 { 2183 switch (cmd) { 2184 case LOOP_CTL_ADD: 2185 return loop_add(parm); 2186 case LOOP_CTL_REMOVE: 2187 return loop_control_remove(parm); 2188 case LOOP_CTL_GET_FREE: 2189 return loop_control_get_free(parm); 2190 default: 2191 return -ENOSYS; 2192 } 2193 } 2194 2195 static const struct file_operations loop_ctl_fops = { 2196 .open = nonseekable_open, 2197 .unlocked_ioctl = loop_control_ioctl, 2198 .compat_ioctl = loop_control_ioctl, 2199 .owner = THIS_MODULE, 2200 .llseek = noop_llseek, 2201 }; 2202 2203 static struct miscdevice loop_misc = { 2204 .minor = LOOP_CTRL_MINOR, 2205 .name = "loop-control", 2206 .fops = &loop_ctl_fops, 2207 }; 2208 2209 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2210 MODULE_ALIAS("devname:loop-control"); 2211 2212 static int __init loop_init(void) 2213 { 2214 int i, nr; 2215 int err; 2216 2217 part_shift = 0; 2218 if (max_part > 0) { 2219 part_shift = fls(max_part); 2220 2221 /* 2222 * Adjust max_part according to part_shift as it is exported 2223 * to user space so that user can decide correct minor number 2224 * if [s]he want to create more devices. 2225 * 2226 * Note that -1 is required because partition 0 is reserved 2227 * for the whole disk. 2228 */ 2229 max_part = (1UL << part_shift) - 1; 2230 } 2231 2232 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2233 err = -EINVAL; 2234 goto err_out; 2235 } 2236 2237 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2238 err = -EINVAL; 2239 goto err_out; 2240 } 2241 2242 /* 2243 * If max_loop is specified, create that many devices upfront. 2244 * This also becomes a hard limit. If max_loop is not specified, 2245 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 2246 * init time. Loop devices can be requested on-demand with the 2247 * /dev/loop-control interface, or be instantiated by accessing 2248 * a 'dead' device node. 2249 */ 2250 if (max_loop) 2251 nr = max_loop; 2252 else 2253 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 2254 2255 err = misc_register(&loop_misc); 2256 if (err < 0) 2257 goto err_out; 2258 2259 2260 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) { 2261 err = -EIO; 2262 goto misc_out; 2263 } 2264 2265 /* pre-create number of devices given by config or max_loop */ 2266 for (i = 0; i < nr; i++) 2267 loop_add(i); 2268 2269 printk(KERN_INFO "loop: module loaded\n"); 2270 return 0; 2271 2272 misc_out: 2273 misc_deregister(&loop_misc); 2274 err_out: 2275 return err; 2276 } 2277 2278 static void __exit loop_exit(void) 2279 { 2280 struct loop_device *lo; 2281 int id; 2282 2283 unregister_blkdev(LOOP_MAJOR, "loop"); 2284 misc_deregister(&loop_misc); 2285 2286 /* 2287 * There is no need to use loop_ctl_mutex here, for nobody else can 2288 * access loop_index_idr when this module is unloading (unless forced 2289 * module unloading is requested). If this is not a clean unloading, 2290 * we have no means to avoid kernel crash. 2291 */ 2292 idr_for_each_entry(&loop_index_idr, lo, id) 2293 loop_remove(lo); 2294 2295 idr_destroy(&loop_index_idr); 2296 } 2297 2298 module_init(loop_init); 2299 module_exit(loop_exit); 2300 2301 #ifndef MODULE 2302 static int __init max_loop_setup(char *str) 2303 { 2304 max_loop = simple_strtol(str, NULL, 0); 2305 return 1; 2306 } 2307 2308 __setup("max_loop=", max_loop_setup); 2309 #endif 2310