1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 1993 by Theodore Ts'o. 4 */ 5 #include <linux/module.h> 6 #include <linux/moduleparam.h> 7 #include <linux/sched.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/file.h> 11 #include <linux/stat.h> 12 #include <linux/errno.h> 13 #include <linux/major.h> 14 #include <linux/wait.h> 15 #include <linux/blkpg.h> 16 #include <linux/init.h> 17 #include <linux/swap.h> 18 #include <linux/slab.h> 19 #include <linux/compat.h> 20 #include <linux/suspend.h> 21 #include <linux/freezer.h> 22 #include <linux/mutex.h> 23 #include <linux/writeback.h> 24 #include <linux/completion.h> 25 #include <linux/highmem.h> 26 #include <linux/splice.h> 27 #include <linux/sysfs.h> 28 #include <linux/miscdevice.h> 29 #include <linux/falloc.h> 30 #include <linux/uio.h> 31 #include <linux/ioprio.h> 32 #include <linux/blk-cgroup.h> 33 #include <linux/sched/mm.h> 34 #include <linux/statfs.h> 35 #include <linux/uaccess.h> 36 #include <linux/blk-mq.h> 37 #include <linux/spinlock.h> 38 #include <uapi/linux/loop.h> 39 40 /* Possible states of device */ 41 enum { 42 Lo_unbound, 43 Lo_bound, 44 Lo_rundown, 45 Lo_deleting, 46 }; 47 48 struct loop_func_table; 49 50 struct loop_device { 51 int lo_number; 52 loff_t lo_offset; 53 loff_t lo_sizelimit; 54 int lo_flags; 55 char lo_file_name[LO_NAME_SIZE]; 56 57 struct file * lo_backing_file; 58 struct block_device *lo_device; 59 60 gfp_t old_gfp_mask; 61 62 spinlock_t lo_lock; 63 int lo_state; 64 spinlock_t lo_work_lock; 65 struct workqueue_struct *workqueue; 66 struct work_struct rootcg_work; 67 struct list_head rootcg_cmd_list; 68 struct list_head idle_worker_list; 69 struct rb_root worker_tree; 70 struct timer_list timer; 71 bool use_dio; 72 bool sysfs_inited; 73 74 struct request_queue *lo_queue; 75 struct blk_mq_tag_set tag_set; 76 struct gendisk *lo_disk; 77 struct mutex lo_mutex; 78 bool idr_visible; 79 }; 80 81 struct loop_cmd { 82 struct list_head list_entry; 83 bool use_aio; /* use AIO interface to handle I/O */ 84 atomic_t ref; /* only for aio */ 85 long ret; 86 struct kiocb iocb; 87 struct bio_vec *bvec; 88 struct cgroup_subsys_state *blkcg_css; 89 struct cgroup_subsys_state *memcg_css; 90 }; 91 92 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ) 93 #define LOOP_DEFAULT_HW_Q_DEPTH 128 94 95 static DEFINE_IDR(loop_index_idr); 96 static DEFINE_MUTEX(loop_ctl_mutex); 97 static DEFINE_MUTEX(loop_validate_mutex); 98 99 /** 100 * loop_global_lock_killable() - take locks for safe loop_validate_file() test 101 * 102 * @lo: struct loop_device 103 * @global: true if @lo is about to bind another "struct loop_device", false otherwise 104 * 105 * Returns 0 on success, -EINTR otherwise. 106 * 107 * Since loop_validate_file() traverses on other "struct loop_device" if 108 * is_loop_device() is true, we need a global lock for serializing concurrent 109 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls. 110 */ 111 static int loop_global_lock_killable(struct loop_device *lo, bool global) 112 { 113 int err; 114 115 if (global) { 116 err = mutex_lock_killable(&loop_validate_mutex); 117 if (err) 118 return err; 119 } 120 err = mutex_lock_killable(&lo->lo_mutex); 121 if (err && global) 122 mutex_unlock(&loop_validate_mutex); 123 return err; 124 } 125 126 /** 127 * loop_global_unlock() - release locks taken by loop_global_lock_killable() 128 * 129 * @lo: struct loop_device 130 * @global: true if @lo was about to bind another "struct loop_device", false otherwise 131 */ 132 static void loop_global_unlock(struct loop_device *lo, bool global) 133 { 134 mutex_unlock(&lo->lo_mutex); 135 if (global) 136 mutex_unlock(&loop_validate_mutex); 137 } 138 139 static int max_part; 140 static int part_shift; 141 142 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 143 { 144 loff_t loopsize; 145 146 /* Compute loopsize in bytes */ 147 loopsize = i_size_read(file->f_mapping->host); 148 if (offset > 0) 149 loopsize -= offset; 150 /* offset is beyond i_size, weird but possible */ 151 if (loopsize < 0) 152 return 0; 153 154 if (sizelimit > 0 && sizelimit < loopsize) 155 loopsize = sizelimit; 156 /* 157 * Unfortunately, if we want to do I/O on the device, 158 * the number of 512-byte sectors has to fit into a sector_t. 159 */ 160 return loopsize >> 9; 161 } 162 163 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 164 { 165 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 166 } 167 168 /* 169 * We support direct I/O only if lo_offset is aligned with the logical I/O size 170 * of backing device, and the logical block size of loop is bigger than that of 171 * the backing device. 172 */ 173 static bool lo_bdev_can_use_dio(struct loop_device *lo, 174 struct block_device *backing_bdev) 175 { 176 unsigned int sb_bsize = bdev_logical_block_size(backing_bdev); 177 178 if (queue_logical_block_size(lo->lo_queue) < sb_bsize) 179 return false; 180 if (lo->lo_offset & (sb_bsize - 1)) 181 return false; 182 return true; 183 } 184 185 static bool lo_can_use_dio(struct loop_device *lo) 186 { 187 struct inode *inode = lo->lo_backing_file->f_mapping->host; 188 189 if (!(lo->lo_backing_file->f_mode & FMODE_CAN_ODIRECT)) 190 return false; 191 192 if (S_ISBLK(inode->i_mode)) 193 return lo_bdev_can_use_dio(lo, I_BDEV(inode)); 194 if (inode->i_sb->s_bdev) 195 return lo_bdev_can_use_dio(lo, inode->i_sb->s_bdev); 196 return true; 197 } 198 199 static void __loop_update_dio(struct loop_device *lo, bool dio) 200 { 201 bool use_dio = dio && lo_can_use_dio(lo); 202 203 if (lo->use_dio == use_dio) 204 return; 205 206 /* flush dirty pages before changing direct IO */ 207 vfs_fsync(lo->lo_backing_file, 0); 208 209 /* 210 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with 211 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup 212 * will get updated by ioctl(LOOP_GET_STATUS) 213 */ 214 if (lo->lo_state == Lo_bound) 215 blk_mq_freeze_queue(lo->lo_queue); 216 lo->use_dio = use_dio; 217 if (use_dio) 218 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 219 else 220 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 221 if (lo->lo_state == Lo_bound) 222 blk_mq_unfreeze_queue(lo->lo_queue); 223 } 224 225 /** 226 * loop_set_size() - sets device size and notifies userspace 227 * @lo: struct loop_device to set the size for 228 * @size: new size of the loop device 229 * 230 * Callers must validate that the size passed into this function fits into 231 * a sector_t, eg using loop_validate_size() 232 */ 233 static void loop_set_size(struct loop_device *lo, loff_t size) 234 { 235 if (!set_capacity_and_notify(lo->lo_disk, size)) 236 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 237 } 238 239 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) 240 { 241 struct iov_iter i; 242 ssize_t bw; 243 244 iov_iter_bvec(&i, ITER_SOURCE, bvec, 1, bvec->bv_len); 245 246 bw = vfs_iter_write(file, &i, ppos, 0); 247 248 if (likely(bw == bvec->bv_len)) 249 return 0; 250 251 printk_ratelimited(KERN_ERR 252 "loop: Write error at byte offset %llu, length %i.\n", 253 (unsigned long long)*ppos, bvec->bv_len); 254 if (bw >= 0) 255 bw = -EIO; 256 return bw; 257 } 258 259 static int lo_write_simple(struct loop_device *lo, struct request *rq, 260 loff_t pos) 261 { 262 struct bio_vec bvec; 263 struct req_iterator iter; 264 int ret = 0; 265 266 rq_for_each_segment(bvec, rq, iter) { 267 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); 268 if (ret < 0) 269 break; 270 cond_resched(); 271 } 272 273 return ret; 274 } 275 276 static int lo_read_simple(struct loop_device *lo, struct request *rq, 277 loff_t pos) 278 { 279 struct bio_vec bvec; 280 struct req_iterator iter; 281 struct iov_iter i; 282 ssize_t len; 283 284 rq_for_each_segment(bvec, rq, iter) { 285 iov_iter_bvec(&i, ITER_DEST, &bvec, 1, bvec.bv_len); 286 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 287 if (len < 0) 288 return len; 289 290 flush_dcache_page(bvec.bv_page); 291 292 if (len != bvec.bv_len) { 293 struct bio *bio; 294 295 __rq_for_each_bio(bio, rq) 296 zero_fill_bio(bio); 297 break; 298 } 299 cond_resched(); 300 } 301 302 return 0; 303 } 304 305 static void loop_clear_limits(struct loop_device *lo, int mode) 306 { 307 struct queue_limits lim = queue_limits_start_update(lo->lo_queue); 308 309 if (mode & FALLOC_FL_ZERO_RANGE) 310 lim.max_write_zeroes_sectors = 0; 311 312 if (mode & FALLOC_FL_PUNCH_HOLE) { 313 lim.max_hw_discard_sectors = 0; 314 lim.discard_granularity = 0; 315 } 316 317 /* 318 * XXX: this updates the queue limits without freezing the queue, which 319 * is against the locking protocol and dangerous. But we can't just 320 * freeze the queue as we're inside the ->queue_rq method here. So this 321 * should move out into a workqueue unless we get the file operations to 322 * advertise if they support specific fallocate operations. 323 */ 324 queue_limits_commit_update(lo->lo_queue, &lim); 325 } 326 327 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos, 328 int mode) 329 { 330 /* 331 * We use fallocate to manipulate the space mappings used by the image 332 * a.k.a. discard/zerorange. 333 */ 334 struct file *file = lo->lo_backing_file; 335 int ret; 336 337 mode |= FALLOC_FL_KEEP_SIZE; 338 339 if (!bdev_max_discard_sectors(lo->lo_device)) 340 return -EOPNOTSUPP; 341 342 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 343 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 344 return -EIO; 345 346 /* 347 * We initially configure the limits in a hope that fallocate is 348 * supported and clear them here if that turns out not to be true. 349 */ 350 if (unlikely(ret == -EOPNOTSUPP)) 351 loop_clear_limits(lo, mode); 352 353 return ret; 354 } 355 356 static int lo_req_flush(struct loop_device *lo, struct request *rq) 357 { 358 int ret = vfs_fsync(lo->lo_backing_file, 0); 359 if (unlikely(ret && ret != -EINVAL)) 360 ret = -EIO; 361 362 return ret; 363 } 364 365 static void lo_complete_rq(struct request *rq) 366 { 367 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 368 blk_status_t ret = BLK_STS_OK; 369 370 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 371 req_op(rq) != REQ_OP_READ) { 372 if (cmd->ret < 0) 373 ret = errno_to_blk_status(cmd->ret); 374 goto end_io; 375 } 376 377 /* 378 * Short READ - if we got some data, advance our request and 379 * retry it. If we got no data, end the rest with EIO. 380 */ 381 if (cmd->ret) { 382 blk_update_request(rq, BLK_STS_OK, cmd->ret); 383 cmd->ret = 0; 384 blk_mq_requeue_request(rq, true); 385 } else { 386 if (cmd->use_aio) { 387 struct bio *bio = rq->bio; 388 389 while (bio) { 390 zero_fill_bio(bio); 391 bio = bio->bi_next; 392 } 393 } 394 ret = BLK_STS_IOERR; 395 end_io: 396 blk_mq_end_request(rq, ret); 397 } 398 } 399 400 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 401 { 402 struct request *rq = blk_mq_rq_from_pdu(cmd); 403 404 if (!atomic_dec_and_test(&cmd->ref)) 405 return; 406 kfree(cmd->bvec); 407 cmd->bvec = NULL; 408 if (likely(!blk_should_fake_timeout(rq->q))) 409 blk_mq_complete_request(rq); 410 } 411 412 static void lo_rw_aio_complete(struct kiocb *iocb, long ret) 413 { 414 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 415 416 cmd->ret = ret; 417 lo_rw_aio_do_completion(cmd); 418 } 419 420 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 421 loff_t pos, int rw) 422 { 423 struct iov_iter iter; 424 struct req_iterator rq_iter; 425 struct bio_vec *bvec; 426 struct request *rq = blk_mq_rq_from_pdu(cmd); 427 struct bio *bio = rq->bio; 428 struct file *file = lo->lo_backing_file; 429 struct bio_vec tmp; 430 unsigned int offset; 431 int nr_bvec = 0; 432 int ret; 433 434 rq_for_each_bvec(tmp, rq, rq_iter) 435 nr_bvec++; 436 437 if (rq->bio != rq->biotail) { 438 439 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), 440 GFP_NOIO); 441 if (!bvec) 442 return -EIO; 443 cmd->bvec = bvec; 444 445 /* 446 * The bios of the request may be started from the middle of 447 * the 'bvec' because of bio splitting, so we can't directly 448 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec 449 * API will take care of all details for us. 450 */ 451 rq_for_each_bvec(tmp, rq, rq_iter) { 452 *bvec = tmp; 453 bvec++; 454 } 455 bvec = cmd->bvec; 456 offset = 0; 457 } else { 458 /* 459 * Same here, this bio may be started from the middle of the 460 * 'bvec' because of bio splitting, so offset from the bvec 461 * must be passed to iov iterator 462 */ 463 offset = bio->bi_iter.bi_bvec_done; 464 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 465 } 466 atomic_set(&cmd->ref, 2); 467 468 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); 469 iter.iov_offset = offset; 470 471 cmd->iocb.ki_pos = pos; 472 cmd->iocb.ki_filp = file; 473 cmd->iocb.ki_complete = lo_rw_aio_complete; 474 cmd->iocb.ki_flags = IOCB_DIRECT; 475 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 476 477 if (rw == ITER_SOURCE) 478 ret = file->f_op->write_iter(&cmd->iocb, &iter); 479 else 480 ret = file->f_op->read_iter(&cmd->iocb, &iter); 481 482 lo_rw_aio_do_completion(cmd); 483 484 if (ret != -EIOCBQUEUED) 485 lo_rw_aio_complete(&cmd->iocb, ret); 486 return 0; 487 } 488 489 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 490 { 491 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 492 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 493 494 /* 495 * lo_write_simple and lo_read_simple should have been covered 496 * by io submit style function like lo_rw_aio(), one blocker 497 * is that lo_read_simple() need to call flush_dcache_page after 498 * the page is written from kernel, and it isn't easy to handle 499 * this in io submit style function which submits all segments 500 * of the req at one time. And direct read IO doesn't need to 501 * run flush_dcache_page(). 502 */ 503 switch (req_op(rq)) { 504 case REQ_OP_FLUSH: 505 return lo_req_flush(lo, rq); 506 case REQ_OP_WRITE_ZEROES: 507 /* 508 * If the caller doesn't want deallocation, call zeroout to 509 * write zeroes the range. Otherwise, punch them out. 510 */ 511 return lo_fallocate(lo, rq, pos, 512 (rq->cmd_flags & REQ_NOUNMAP) ? 513 FALLOC_FL_ZERO_RANGE : 514 FALLOC_FL_PUNCH_HOLE); 515 case REQ_OP_DISCARD: 516 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE); 517 case REQ_OP_WRITE: 518 if (cmd->use_aio) 519 return lo_rw_aio(lo, cmd, pos, ITER_SOURCE); 520 else 521 return lo_write_simple(lo, rq, pos); 522 case REQ_OP_READ: 523 if (cmd->use_aio) 524 return lo_rw_aio(lo, cmd, pos, ITER_DEST); 525 else 526 return lo_read_simple(lo, rq, pos); 527 default: 528 WARN_ON_ONCE(1); 529 return -EIO; 530 } 531 } 532 533 static inline void loop_update_dio(struct loop_device *lo) 534 { 535 __loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) | 536 lo->use_dio); 537 } 538 539 static void loop_reread_partitions(struct loop_device *lo) 540 { 541 int rc; 542 543 mutex_lock(&lo->lo_disk->open_mutex); 544 rc = bdev_disk_changed(lo->lo_disk, false); 545 mutex_unlock(&lo->lo_disk->open_mutex); 546 if (rc) 547 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 548 __func__, lo->lo_number, lo->lo_file_name, rc); 549 } 550 551 static inline int is_loop_device(struct file *file) 552 { 553 struct inode *i = file->f_mapping->host; 554 555 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR; 556 } 557 558 static int loop_validate_file(struct file *file, struct block_device *bdev) 559 { 560 struct inode *inode = file->f_mapping->host; 561 struct file *f = file; 562 563 /* Avoid recursion */ 564 while (is_loop_device(f)) { 565 struct loop_device *l; 566 567 lockdep_assert_held(&loop_validate_mutex); 568 if (f->f_mapping->host->i_rdev == bdev->bd_dev) 569 return -EBADF; 570 571 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data; 572 if (l->lo_state != Lo_bound) 573 return -EINVAL; 574 /* Order wrt setting lo->lo_backing_file in loop_configure(). */ 575 rmb(); 576 f = l->lo_backing_file; 577 } 578 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 579 return -EINVAL; 580 return 0; 581 } 582 583 /* 584 * loop_change_fd switched the backing store of a loopback device to 585 * a new file. This is useful for operating system installers to free up 586 * the original file and in High Availability environments to switch to 587 * an alternative location for the content in case of server meltdown. 588 * This can only work if the loop device is used read-only, and if the 589 * new backing store is the same size and type as the old backing store. 590 */ 591 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 592 unsigned int arg) 593 { 594 struct file *file = fget(arg); 595 struct file *old_file; 596 int error; 597 bool partscan; 598 bool is_loop; 599 600 if (!file) 601 return -EBADF; 602 603 /* suppress uevents while reconfiguring the device */ 604 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 605 606 is_loop = is_loop_device(file); 607 error = loop_global_lock_killable(lo, is_loop); 608 if (error) 609 goto out_putf; 610 error = -ENXIO; 611 if (lo->lo_state != Lo_bound) 612 goto out_err; 613 614 /* the loop device has to be read-only */ 615 error = -EINVAL; 616 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 617 goto out_err; 618 619 error = loop_validate_file(file, bdev); 620 if (error) 621 goto out_err; 622 623 old_file = lo->lo_backing_file; 624 625 error = -EINVAL; 626 627 /* size of the new backing store needs to be the same */ 628 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 629 goto out_err; 630 631 /* and ... switch */ 632 disk_force_media_change(lo->lo_disk); 633 blk_mq_freeze_queue(lo->lo_queue); 634 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 635 lo->lo_backing_file = file; 636 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 637 mapping_set_gfp_mask(file->f_mapping, 638 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 639 loop_update_dio(lo); 640 blk_mq_unfreeze_queue(lo->lo_queue); 641 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 642 loop_global_unlock(lo, is_loop); 643 644 /* 645 * Flush loop_validate_file() before fput(), for l->lo_backing_file 646 * might be pointing at old_file which might be the last reference. 647 */ 648 if (!is_loop) { 649 mutex_lock(&loop_validate_mutex); 650 mutex_unlock(&loop_validate_mutex); 651 } 652 /* 653 * We must drop file reference outside of lo_mutex as dropping 654 * the file ref can take open_mutex which creates circular locking 655 * dependency. 656 */ 657 fput(old_file); 658 if (partscan) 659 loop_reread_partitions(lo); 660 661 error = 0; 662 done: 663 /* enable and uncork uevent now that we are done */ 664 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 665 return error; 666 667 out_err: 668 loop_global_unlock(lo, is_loop); 669 out_putf: 670 fput(file); 671 goto done; 672 } 673 674 /* loop sysfs attributes */ 675 676 static ssize_t loop_attr_show(struct device *dev, char *page, 677 ssize_t (*callback)(struct loop_device *, char *)) 678 { 679 struct gendisk *disk = dev_to_disk(dev); 680 struct loop_device *lo = disk->private_data; 681 682 return callback(lo, page); 683 } 684 685 #define LOOP_ATTR_RO(_name) \ 686 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 687 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 688 struct device_attribute *attr, char *b) \ 689 { \ 690 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 691 } \ 692 static struct device_attribute loop_attr_##_name = \ 693 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 694 695 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 696 { 697 ssize_t ret; 698 char *p = NULL; 699 700 spin_lock_irq(&lo->lo_lock); 701 if (lo->lo_backing_file) 702 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 703 spin_unlock_irq(&lo->lo_lock); 704 705 if (IS_ERR_OR_NULL(p)) 706 ret = PTR_ERR(p); 707 else { 708 ret = strlen(p); 709 memmove(buf, p, ret); 710 buf[ret++] = '\n'; 711 buf[ret] = 0; 712 } 713 714 return ret; 715 } 716 717 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 718 { 719 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset); 720 } 721 722 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 723 { 724 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 725 } 726 727 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 728 { 729 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 730 731 return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0"); 732 } 733 734 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 735 { 736 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 737 738 return sysfs_emit(buf, "%s\n", partscan ? "1" : "0"); 739 } 740 741 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 742 { 743 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 744 745 return sysfs_emit(buf, "%s\n", dio ? "1" : "0"); 746 } 747 748 LOOP_ATTR_RO(backing_file); 749 LOOP_ATTR_RO(offset); 750 LOOP_ATTR_RO(sizelimit); 751 LOOP_ATTR_RO(autoclear); 752 LOOP_ATTR_RO(partscan); 753 LOOP_ATTR_RO(dio); 754 755 static struct attribute *loop_attrs[] = { 756 &loop_attr_backing_file.attr, 757 &loop_attr_offset.attr, 758 &loop_attr_sizelimit.attr, 759 &loop_attr_autoclear.attr, 760 &loop_attr_partscan.attr, 761 &loop_attr_dio.attr, 762 NULL, 763 }; 764 765 static struct attribute_group loop_attribute_group = { 766 .name = "loop", 767 .attrs= loop_attrs, 768 }; 769 770 static void loop_sysfs_init(struct loop_device *lo) 771 { 772 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 773 &loop_attribute_group); 774 } 775 776 static void loop_sysfs_exit(struct loop_device *lo) 777 { 778 if (lo->sysfs_inited) 779 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 780 &loop_attribute_group); 781 } 782 783 static void loop_get_discard_config(struct loop_device *lo, 784 u32 *granularity, u32 *max_discard_sectors) 785 { 786 struct file *file = lo->lo_backing_file; 787 struct inode *inode = file->f_mapping->host; 788 struct kstatfs sbuf; 789 790 /* 791 * If the backing device is a block device, mirror its zeroing 792 * capability. Set the discard sectors to the block device's zeroing 793 * capabilities because loop discards result in blkdev_issue_zeroout(), 794 * not blkdev_issue_discard(). This maintains consistent behavior with 795 * file-backed loop devices: discarded regions read back as zero. 796 */ 797 if (S_ISBLK(inode->i_mode)) { 798 struct block_device *bdev = I_BDEV(inode); 799 800 *max_discard_sectors = bdev_write_zeroes_sectors(bdev); 801 *granularity = bdev_discard_granularity(bdev); 802 803 /* 804 * We use punch hole to reclaim the free space used by the 805 * image a.k.a. discard. 806 */ 807 } else if (file->f_op->fallocate && !vfs_statfs(&file->f_path, &sbuf)) { 808 *max_discard_sectors = UINT_MAX >> 9; 809 *granularity = sbuf.f_bsize; 810 } 811 } 812 813 struct loop_worker { 814 struct rb_node rb_node; 815 struct work_struct work; 816 struct list_head cmd_list; 817 struct list_head idle_list; 818 struct loop_device *lo; 819 struct cgroup_subsys_state *blkcg_css; 820 unsigned long last_ran_at; 821 }; 822 823 static void loop_workfn(struct work_struct *work); 824 825 #ifdef CONFIG_BLK_CGROUP 826 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 827 { 828 return !css || css == blkcg_root_css; 829 } 830 #else 831 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 832 { 833 return !css; 834 } 835 #endif 836 837 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd) 838 { 839 struct rb_node **node, *parent = NULL; 840 struct loop_worker *cur_worker, *worker = NULL; 841 struct work_struct *work; 842 struct list_head *cmd_list; 843 844 spin_lock_irq(&lo->lo_work_lock); 845 846 if (queue_on_root_worker(cmd->blkcg_css)) 847 goto queue_work; 848 849 node = &lo->worker_tree.rb_node; 850 851 while (*node) { 852 parent = *node; 853 cur_worker = container_of(*node, struct loop_worker, rb_node); 854 if (cur_worker->blkcg_css == cmd->blkcg_css) { 855 worker = cur_worker; 856 break; 857 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) { 858 node = &(*node)->rb_left; 859 } else { 860 node = &(*node)->rb_right; 861 } 862 } 863 if (worker) 864 goto queue_work; 865 866 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN); 867 /* 868 * In the event we cannot allocate a worker, just queue on the 869 * rootcg worker and issue the I/O as the rootcg 870 */ 871 if (!worker) { 872 cmd->blkcg_css = NULL; 873 if (cmd->memcg_css) 874 css_put(cmd->memcg_css); 875 cmd->memcg_css = NULL; 876 goto queue_work; 877 } 878 879 worker->blkcg_css = cmd->blkcg_css; 880 css_get(worker->blkcg_css); 881 INIT_WORK(&worker->work, loop_workfn); 882 INIT_LIST_HEAD(&worker->cmd_list); 883 INIT_LIST_HEAD(&worker->idle_list); 884 worker->lo = lo; 885 rb_link_node(&worker->rb_node, parent, node); 886 rb_insert_color(&worker->rb_node, &lo->worker_tree); 887 queue_work: 888 if (worker) { 889 /* 890 * We need to remove from the idle list here while 891 * holding the lock so that the idle timer doesn't 892 * free the worker 893 */ 894 if (!list_empty(&worker->idle_list)) 895 list_del_init(&worker->idle_list); 896 work = &worker->work; 897 cmd_list = &worker->cmd_list; 898 } else { 899 work = &lo->rootcg_work; 900 cmd_list = &lo->rootcg_cmd_list; 901 } 902 list_add_tail(&cmd->list_entry, cmd_list); 903 queue_work(lo->workqueue, work); 904 spin_unlock_irq(&lo->lo_work_lock); 905 } 906 907 static void loop_set_timer(struct loop_device *lo) 908 { 909 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT); 910 } 911 912 static void loop_free_idle_workers(struct loop_device *lo, bool delete_all) 913 { 914 struct loop_worker *pos, *worker; 915 916 spin_lock_irq(&lo->lo_work_lock); 917 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list, 918 idle_list) { 919 if (!delete_all && 920 time_is_after_jiffies(worker->last_ran_at + 921 LOOP_IDLE_WORKER_TIMEOUT)) 922 break; 923 list_del(&worker->idle_list); 924 rb_erase(&worker->rb_node, &lo->worker_tree); 925 css_put(worker->blkcg_css); 926 kfree(worker); 927 } 928 if (!list_empty(&lo->idle_worker_list)) 929 loop_set_timer(lo); 930 spin_unlock_irq(&lo->lo_work_lock); 931 } 932 933 static void loop_free_idle_workers_timer(struct timer_list *timer) 934 { 935 struct loop_device *lo = container_of(timer, struct loop_device, timer); 936 937 return loop_free_idle_workers(lo, false); 938 } 939 940 /** 941 * loop_set_status_from_info - configure device from loop_info 942 * @lo: struct loop_device to configure 943 * @info: struct loop_info64 to configure the device with 944 * 945 * Configures the loop device parameters according to the passed 946 * in loop_info64 configuration. 947 */ 948 static int 949 loop_set_status_from_info(struct loop_device *lo, 950 const struct loop_info64 *info) 951 { 952 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 953 return -EINVAL; 954 955 switch (info->lo_encrypt_type) { 956 case LO_CRYPT_NONE: 957 break; 958 case LO_CRYPT_XOR: 959 pr_warn("support for the xor transformation has been removed.\n"); 960 return -EINVAL; 961 case LO_CRYPT_CRYPTOAPI: 962 pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n"); 963 return -EINVAL; 964 default: 965 return -EINVAL; 966 } 967 968 /* Avoid assigning overflow values */ 969 if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX) 970 return -EOVERFLOW; 971 972 lo->lo_offset = info->lo_offset; 973 lo->lo_sizelimit = info->lo_sizelimit; 974 975 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 976 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 977 return 0; 978 } 979 980 static unsigned int loop_default_blocksize(struct loop_device *lo, 981 struct block_device *backing_bdev) 982 { 983 /* In case of direct I/O, match underlying block size */ 984 if ((lo->lo_backing_file->f_flags & O_DIRECT) && backing_bdev) 985 return bdev_logical_block_size(backing_bdev); 986 return SECTOR_SIZE; 987 } 988 989 static void loop_update_limits(struct loop_device *lo, struct queue_limits *lim, 990 unsigned int bsize) 991 { 992 struct file *file = lo->lo_backing_file; 993 struct inode *inode = file->f_mapping->host; 994 struct block_device *backing_bdev = NULL; 995 u32 granularity = 0, max_discard_sectors = 0; 996 997 if (S_ISBLK(inode->i_mode)) 998 backing_bdev = I_BDEV(inode); 999 else if (inode->i_sb->s_bdev) 1000 backing_bdev = inode->i_sb->s_bdev; 1001 1002 if (!bsize) 1003 bsize = loop_default_blocksize(lo, backing_bdev); 1004 1005 loop_get_discard_config(lo, &granularity, &max_discard_sectors); 1006 1007 lim->logical_block_size = bsize; 1008 lim->physical_block_size = bsize; 1009 lim->io_min = bsize; 1010 lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_ROTATIONAL); 1011 if (file->f_op->fsync && !(lo->lo_flags & LO_FLAGS_READ_ONLY)) 1012 lim->features |= BLK_FEAT_WRITE_CACHE; 1013 if (backing_bdev && !bdev_nonrot(backing_bdev)) 1014 lim->features |= BLK_FEAT_ROTATIONAL; 1015 lim->max_hw_discard_sectors = max_discard_sectors; 1016 lim->max_write_zeroes_sectors = max_discard_sectors; 1017 if (max_discard_sectors) 1018 lim->discard_granularity = granularity; 1019 else 1020 lim->discard_granularity = 0; 1021 } 1022 1023 static int loop_configure(struct loop_device *lo, blk_mode_t mode, 1024 struct block_device *bdev, 1025 const struct loop_config *config) 1026 { 1027 struct file *file = fget(config->fd); 1028 struct address_space *mapping; 1029 struct queue_limits lim; 1030 int error; 1031 loff_t size; 1032 bool partscan; 1033 bool is_loop; 1034 1035 if (!file) 1036 return -EBADF; 1037 is_loop = is_loop_device(file); 1038 1039 /* This is safe, since we have a reference from open(). */ 1040 __module_get(THIS_MODULE); 1041 1042 /* 1043 * If we don't hold exclusive handle for the device, upgrade to it 1044 * here to avoid changing device under exclusive owner. 1045 */ 1046 if (!(mode & BLK_OPEN_EXCL)) { 1047 error = bd_prepare_to_claim(bdev, loop_configure, NULL); 1048 if (error) 1049 goto out_putf; 1050 } 1051 1052 error = loop_global_lock_killable(lo, is_loop); 1053 if (error) 1054 goto out_bdev; 1055 1056 error = -EBUSY; 1057 if (lo->lo_state != Lo_unbound) 1058 goto out_unlock; 1059 1060 error = loop_validate_file(file, bdev); 1061 if (error) 1062 goto out_unlock; 1063 1064 mapping = file->f_mapping; 1065 1066 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) { 1067 error = -EINVAL; 1068 goto out_unlock; 1069 } 1070 1071 error = loop_set_status_from_info(lo, &config->info); 1072 if (error) 1073 goto out_unlock; 1074 lo->lo_flags = config->info.lo_flags; 1075 1076 if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) || 1077 !file->f_op->write_iter) 1078 lo->lo_flags |= LO_FLAGS_READ_ONLY; 1079 1080 if (!lo->workqueue) { 1081 lo->workqueue = alloc_workqueue("loop%d", 1082 WQ_UNBOUND | WQ_FREEZABLE, 1083 0, lo->lo_number); 1084 if (!lo->workqueue) { 1085 error = -ENOMEM; 1086 goto out_unlock; 1087 } 1088 } 1089 1090 /* suppress uevents while reconfiguring the device */ 1091 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 1092 1093 disk_force_media_change(lo->lo_disk); 1094 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0); 1095 1096 lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO; 1097 lo->lo_device = bdev; 1098 lo->lo_backing_file = file; 1099 lo->old_gfp_mask = mapping_gfp_mask(mapping); 1100 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 1101 1102 lim = queue_limits_start_update(lo->lo_queue); 1103 loop_update_limits(lo, &lim, config->block_size); 1104 /* No need to freeze the queue as the device isn't bound yet. */ 1105 error = queue_limits_commit_update(lo->lo_queue, &lim); 1106 if (error) 1107 goto out_unlock; 1108 1109 loop_update_dio(lo); 1110 loop_sysfs_init(lo); 1111 1112 size = get_loop_size(lo, file); 1113 loop_set_size(lo, size); 1114 1115 /* Order wrt reading lo_state in loop_validate_file(). */ 1116 wmb(); 1117 1118 lo->lo_state = Lo_bound; 1119 if (part_shift) 1120 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1121 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 1122 if (partscan) 1123 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1124 1125 /* enable and uncork uevent now that we are done */ 1126 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 1127 1128 loop_global_unlock(lo, is_loop); 1129 if (partscan) 1130 loop_reread_partitions(lo); 1131 1132 if (!(mode & BLK_OPEN_EXCL)) 1133 bd_abort_claiming(bdev, loop_configure); 1134 1135 return 0; 1136 1137 out_unlock: 1138 loop_global_unlock(lo, is_loop); 1139 out_bdev: 1140 if (!(mode & BLK_OPEN_EXCL)) 1141 bd_abort_claiming(bdev, loop_configure); 1142 out_putf: 1143 fput(file); 1144 /* This is safe: open() is still holding a reference. */ 1145 module_put(THIS_MODULE); 1146 return error; 1147 } 1148 1149 static void __loop_clr_fd(struct loop_device *lo) 1150 { 1151 struct queue_limits lim; 1152 struct file *filp; 1153 gfp_t gfp = lo->old_gfp_mask; 1154 1155 spin_lock_irq(&lo->lo_lock); 1156 filp = lo->lo_backing_file; 1157 lo->lo_backing_file = NULL; 1158 spin_unlock_irq(&lo->lo_lock); 1159 1160 lo->lo_device = NULL; 1161 lo->lo_offset = 0; 1162 lo->lo_sizelimit = 0; 1163 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1164 1165 /* 1166 * Reset the block size to the default. 1167 * 1168 * No queue freezing needed because this is called from the final 1169 * ->release call only, so there can't be any outstanding I/O. 1170 */ 1171 lim = queue_limits_start_update(lo->lo_queue); 1172 lim.logical_block_size = SECTOR_SIZE; 1173 lim.physical_block_size = SECTOR_SIZE; 1174 lim.io_min = SECTOR_SIZE; 1175 queue_limits_commit_update(lo->lo_queue, &lim); 1176 1177 invalidate_disk(lo->lo_disk); 1178 loop_sysfs_exit(lo); 1179 /* let user-space know about this change */ 1180 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 1181 mapping_set_gfp_mask(filp->f_mapping, gfp); 1182 /* This is safe: open() is still holding a reference. */ 1183 module_put(THIS_MODULE); 1184 1185 disk_force_media_change(lo->lo_disk); 1186 1187 if (lo->lo_flags & LO_FLAGS_PARTSCAN) { 1188 int err; 1189 1190 /* 1191 * open_mutex has been held already in release path, so don't 1192 * acquire it if this function is called in such case. 1193 * 1194 * If the reread partition isn't from release path, lo_refcnt 1195 * must be at least one and it can only become zero when the 1196 * current holder is released. 1197 */ 1198 err = bdev_disk_changed(lo->lo_disk, false); 1199 if (err) 1200 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", 1201 __func__, lo->lo_number, err); 1202 /* Device is gone, no point in returning error */ 1203 } 1204 1205 /* 1206 * lo->lo_state is set to Lo_unbound here after above partscan has 1207 * finished. There cannot be anybody else entering __loop_clr_fd() as 1208 * Lo_rundown state protects us from all the other places trying to 1209 * change the 'lo' device. 1210 */ 1211 lo->lo_flags = 0; 1212 if (!part_shift) 1213 set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1214 mutex_lock(&lo->lo_mutex); 1215 lo->lo_state = Lo_unbound; 1216 mutex_unlock(&lo->lo_mutex); 1217 1218 /* 1219 * Need not hold lo_mutex to fput backing file. Calling fput holding 1220 * lo_mutex triggers a circular lock dependency possibility warning as 1221 * fput can take open_mutex which is usually taken before lo_mutex. 1222 */ 1223 fput(filp); 1224 } 1225 1226 static int loop_clr_fd(struct loop_device *lo) 1227 { 1228 int err; 1229 1230 /* 1231 * Since lo_ioctl() is called without locks held, it is possible that 1232 * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel. 1233 * 1234 * Therefore, use global lock when setting Lo_rundown state in order to 1235 * make sure that loop_validate_file() will fail if the "struct file" 1236 * which loop_configure()/loop_change_fd() found via fget() was this 1237 * loop device. 1238 */ 1239 err = loop_global_lock_killable(lo, true); 1240 if (err) 1241 return err; 1242 if (lo->lo_state != Lo_bound) { 1243 loop_global_unlock(lo, true); 1244 return -ENXIO; 1245 } 1246 /* 1247 * Mark the device for removing the backing device on last close. 1248 * If we are the only opener, also switch the state to roundown here to 1249 * prevent new openers from coming in. 1250 */ 1251 1252 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1253 if (disk_openers(lo->lo_disk) == 1) 1254 lo->lo_state = Lo_rundown; 1255 loop_global_unlock(lo, true); 1256 1257 return 0; 1258 } 1259 1260 static int 1261 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1262 { 1263 int err; 1264 bool partscan = false; 1265 bool size_changed = false; 1266 1267 err = mutex_lock_killable(&lo->lo_mutex); 1268 if (err) 1269 return err; 1270 if (lo->lo_state != Lo_bound) { 1271 err = -ENXIO; 1272 goto out_unlock; 1273 } 1274 1275 if (lo->lo_offset != info->lo_offset || 1276 lo->lo_sizelimit != info->lo_sizelimit) { 1277 size_changed = true; 1278 sync_blockdev(lo->lo_device); 1279 invalidate_bdev(lo->lo_device); 1280 } 1281 1282 /* I/O needs to be drained before changing lo_offset or lo_sizelimit */ 1283 blk_mq_freeze_queue(lo->lo_queue); 1284 1285 err = loop_set_status_from_info(lo, info); 1286 if (err) 1287 goto out_unfreeze; 1288 1289 partscan = !(lo->lo_flags & LO_FLAGS_PARTSCAN) && 1290 (info->lo_flags & LO_FLAGS_PARTSCAN); 1291 1292 lo->lo_flags &= ~(LOOP_SET_STATUS_SETTABLE_FLAGS | 1293 LOOP_SET_STATUS_CLEARABLE_FLAGS); 1294 lo->lo_flags |= (info->lo_flags & LOOP_SET_STATUS_SETTABLE_FLAGS); 1295 1296 if (size_changed) { 1297 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit, 1298 lo->lo_backing_file); 1299 loop_set_size(lo, new_size); 1300 } 1301 1302 /* update the direct I/O flag if lo_offset changed */ 1303 __loop_update_dio(lo, lo->use_dio); 1304 1305 out_unfreeze: 1306 blk_mq_unfreeze_queue(lo->lo_queue); 1307 if (partscan) 1308 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1309 out_unlock: 1310 mutex_unlock(&lo->lo_mutex); 1311 if (partscan) 1312 loop_reread_partitions(lo); 1313 1314 return err; 1315 } 1316 1317 static int 1318 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1319 { 1320 struct path path; 1321 struct kstat stat; 1322 int ret; 1323 1324 ret = mutex_lock_killable(&lo->lo_mutex); 1325 if (ret) 1326 return ret; 1327 if (lo->lo_state != Lo_bound) { 1328 mutex_unlock(&lo->lo_mutex); 1329 return -ENXIO; 1330 } 1331 1332 memset(info, 0, sizeof(*info)); 1333 info->lo_number = lo->lo_number; 1334 info->lo_offset = lo->lo_offset; 1335 info->lo_sizelimit = lo->lo_sizelimit; 1336 info->lo_flags = lo->lo_flags; 1337 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1338 1339 /* Drop lo_mutex while we call into the filesystem. */ 1340 path = lo->lo_backing_file->f_path; 1341 path_get(&path); 1342 mutex_unlock(&lo->lo_mutex); 1343 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); 1344 if (!ret) { 1345 info->lo_device = huge_encode_dev(stat.dev); 1346 info->lo_inode = stat.ino; 1347 info->lo_rdevice = huge_encode_dev(stat.rdev); 1348 } 1349 path_put(&path); 1350 return ret; 1351 } 1352 1353 static void 1354 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1355 { 1356 memset(info64, 0, sizeof(*info64)); 1357 info64->lo_number = info->lo_number; 1358 info64->lo_device = info->lo_device; 1359 info64->lo_inode = info->lo_inode; 1360 info64->lo_rdevice = info->lo_rdevice; 1361 info64->lo_offset = info->lo_offset; 1362 info64->lo_sizelimit = 0; 1363 info64->lo_flags = info->lo_flags; 1364 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1365 } 1366 1367 static int 1368 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1369 { 1370 memset(info, 0, sizeof(*info)); 1371 info->lo_number = info64->lo_number; 1372 info->lo_device = info64->lo_device; 1373 info->lo_inode = info64->lo_inode; 1374 info->lo_rdevice = info64->lo_rdevice; 1375 info->lo_offset = info64->lo_offset; 1376 info->lo_flags = info64->lo_flags; 1377 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1378 1379 /* error in case values were truncated */ 1380 if (info->lo_device != info64->lo_device || 1381 info->lo_rdevice != info64->lo_rdevice || 1382 info->lo_inode != info64->lo_inode || 1383 info->lo_offset != info64->lo_offset) 1384 return -EOVERFLOW; 1385 1386 return 0; 1387 } 1388 1389 static int 1390 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1391 { 1392 struct loop_info info; 1393 struct loop_info64 info64; 1394 1395 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1396 return -EFAULT; 1397 loop_info64_from_old(&info, &info64); 1398 return loop_set_status(lo, &info64); 1399 } 1400 1401 static int 1402 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1403 { 1404 struct loop_info64 info64; 1405 1406 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1407 return -EFAULT; 1408 return loop_set_status(lo, &info64); 1409 } 1410 1411 static int 1412 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1413 struct loop_info info; 1414 struct loop_info64 info64; 1415 int err; 1416 1417 if (!arg) 1418 return -EINVAL; 1419 err = loop_get_status(lo, &info64); 1420 if (!err) 1421 err = loop_info64_to_old(&info64, &info); 1422 if (!err && copy_to_user(arg, &info, sizeof(info))) 1423 err = -EFAULT; 1424 1425 return err; 1426 } 1427 1428 static int 1429 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1430 struct loop_info64 info64; 1431 int err; 1432 1433 if (!arg) 1434 return -EINVAL; 1435 err = loop_get_status(lo, &info64); 1436 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1437 err = -EFAULT; 1438 1439 return err; 1440 } 1441 1442 static int loop_set_capacity(struct loop_device *lo) 1443 { 1444 loff_t size; 1445 1446 if (unlikely(lo->lo_state != Lo_bound)) 1447 return -ENXIO; 1448 1449 size = get_loop_size(lo, lo->lo_backing_file); 1450 loop_set_size(lo, size); 1451 1452 return 0; 1453 } 1454 1455 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1456 { 1457 int error = -ENXIO; 1458 if (lo->lo_state != Lo_bound) 1459 goto out; 1460 1461 __loop_update_dio(lo, !!arg); 1462 if (lo->use_dio == !!arg) 1463 return 0; 1464 error = -EINVAL; 1465 out: 1466 return error; 1467 } 1468 1469 static int loop_set_block_size(struct loop_device *lo, unsigned long arg) 1470 { 1471 struct queue_limits lim; 1472 int err = 0; 1473 1474 if (lo->lo_state != Lo_bound) 1475 return -ENXIO; 1476 1477 if (lo->lo_queue->limits.logical_block_size == arg) 1478 return 0; 1479 1480 sync_blockdev(lo->lo_device); 1481 invalidate_bdev(lo->lo_device); 1482 1483 lim = queue_limits_start_update(lo->lo_queue); 1484 loop_update_limits(lo, &lim, arg); 1485 1486 blk_mq_freeze_queue(lo->lo_queue); 1487 err = queue_limits_commit_update(lo->lo_queue, &lim); 1488 loop_update_dio(lo); 1489 blk_mq_unfreeze_queue(lo->lo_queue); 1490 1491 return err; 1492 } 1493 1494 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, 1495 unsigned long arg) 1496 { 1497 int err; 1498 1499 err = mutex_lock_killable(&lo->lo_mutex); 1500 if (err) 1501 return err; 1502 switch (cmd) { 1503 case LOOP_SET_CAPACITY: 1504 err = loop_set_capacity(lo); 1505 break; 1506 case LOOP_SET_DIRECT_IO: 1507 err = loop_set_dio(lo, arg); 1508 break; 1509 case LOOP_SET_BLOCK_SIZE: 1510 err = loop_set_block_size(lo, arg); 1511 break; 1512 default: 1513 err = -EINVAL; 1514 } 1515 mutex_unlock(&lo->lo_mutex); 1516 return err; 1517 } 1518 1519 static int lo_ioctl(struct block_device *bdev, blk_mode_t mode, 1520 unsigned int cmd, unsigned long arg) 1521 { 1522 struct loop_device *lo = bdev->bd_disk->private_data; 1523 void __user *argp = (void __user *) arg; 1524 int err; 1525 1526 switch (cmd) { 1527 case LOOP_SET_FD: { 1528 /* 1529 * Legacy case - pass in a zeroed out struct loop_config with 1530 * only the file descriptor set , which corresponds with the 1531 * default parameters we'd have used otherwise. 1532 */ 1533 struct loop_config config; 1534 1535 memset(&config, 0, sizeof(config)); 1536 config.fd = arg; 1537 1538 return loop_configure(lo, mode, bdev, &config); 1539 } 1540 case LOOP_CONFIGURE: { 1541 struct loop_config config; 1542 1543 if (copy_from_user(&config, argp, sizeof(config))) 1544 return -EFAULT; 1545 1546 return loop_configure(lo, mode, bdev, &config); 1547 } 1548 case LOOP_CHANGE_FD: 1549 return loop_change_fd(lo, bdev, arg); 1550 case LOOP_CLR_FD: 1551 return loop_clr_fd(lo); 1552 case LOOP_SET_STATUS: 1553 err = -EPERM; 1554 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1555 err = loop_set_status_old(lo, argp); 1556 break; 1557 case LOOP_GET_STATUS: 1558 return loop_get_status_old(lo, argp); 1559 case LOOP_SET_STATUS64: 1560 err = -EPERM; 1561 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1562 err = loop_set_status64(lo, argp); 1563 break; 1564 case LOOP_GET_STATUS64: 1565 return loop_get_status64(lo, argp); 1566 case LOOP_SET_CAPACITY: 1567 case LOOP_SET_DIRECT_IO: 1568 case LOOP_SET_BLOCK_SIZE: 1569 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN)) 1570 return -EPERM; 1571 fallthrough; 1572 default: 1573 err = lo_simple_ioctl(lo, cmd, arg); 1574 break; 1575 } 1576 1577 return err; 1578 } 1579 1580 #ifdef CONFIG_COMPAT 1581 struct compat_loop_info { 1582 compat_int_t lo_number; /* ioctl r/o */ 1583 compat_dev_t lo_device; /* ioctl r/o */ 1584 compat_ulong_t lo_inode; /* ioctl r/o */ 1585 compat_dev_t lo_rdevice; /* ioctl r/o */ 1586 compat_int_t lo_offset; 1587 compat_int_t lo_encrypt_type; /* obsolete, ignored */ 1588 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1589 compat_int_t lo_flags; /* ioctl r/o */ 1590 char lo_name[LO_NAME_SIZE]; 1591 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1592 compat_ulong_t lo_init[2]; 1593 char reserved[4]; 1594 }; 1595 1596 /* 1597 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1598 * - noinlined to reduce stack space usage in main part of driver 1599 */ 1600 static noinline int 1601 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1602 struct loop_info64 *info64) 1603 { 1604 struct compat_loop_info info; 1605 1606 if (copy_from_user(&info, arg, sizeof(info))) 1607 return -EFAULT; 1608 1609 memset(info64, 0, sizeof(*info64)); 1610 info64->lo_number = info.lo_number; 1611 info64->lo_device = info.lo_device; 1612 info64->lo_inode = info.lo_inode; 1613 info64->lo_rdevice = info.lo_rdevice; 1614 info64->lo_offset = info.lo_offset; 1615 info64->lo_sizelimit = 0; 1616 info64->lo_flags = info.lo_flags; 1617 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1618 return 0; 1619 } 1620 1621 /* 1622 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1623 * - noinlined to reduce stack space usage in main part of driver 1624 */ 1625 static noinline int 1626 loop_info64_to_compat(const struct loop_info64 *info64, 1627 struct compat_loop_info __user *arg) 1628 { 1629 struct compat_loop_info info; 1630 1631 memset(&info, 0, sizeof(info)); 1632 info.lo_number = info64->lo_number; 1633 info.lo_device = info64->lo_device; 1634 info.lo_inode = info64->lo_inode; 1635 info.lo_rdevice = info64->lo_rdevice; 1636 info.lo_offset = info64->lo_offset; 1637 info.lo_flags = info64->lo_flags; 1638 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1639 1640 /* error in case values were truncated */ 1641 if (info.lo_device != info64->lo_device || 1642 info.lo_rdevice != info64->lo_rdevice || 1643 info.lo_inode != info64->lo_inode || 1644 info.lo_offset != info64->lo_offset) 1645 return -EOVERFLOW; 1646 1647 if (copy_to_user(arg, &info, sizeof(info))) 1648 return -EFAULT; 1649 return 0; 1650 } 1651 1652 static int 1653 loop_set_status_compat(struct loop_device *lo, 1654 const struct compat_loop_info __user *arg) 1655 { 1656 struct loop_info64 info64; 1657 int ret; 1658 1659 ret = loop_info64_from_compat(arg, &info64); 1660 if (ret < 0) 1661 return ret; 1662 return loop_set_status(lo, &info64); 1663 } 1664 1665 static int 1666 loop_get_status_compat(struct loop_device *lo, 1667 struct compat_loop_info __user *arg) 1668 { 1669 struct loop_info64 info64; 1670 int err; 1671 1672 if (!arg) 1673 return -EINVAL; 1674 err = loop_get_status(lo, &info64); 1675 if (!err) 1676 err = loop_info64_to_compat(&info64, arg); 1677 return err; 1678 } 1679 1680 static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode, 1681 unsigned int cmd, unsigned long arg) 1682 { 1683 struct loop_device *lo = bdev->bd_disk->private_data; 1684 int err; 1685 1686 switch(cmd) { 1687 case LOOP_SET_STATUS: 1688 err = loop_set_status_compat(lo, 1689 (const struct compat_loop_info __user *)arg); 1690 break; 1691 case LOOP_GET_STATUS: 1692 err = loop_get_status_compat(lo, 1693 (struct compat_loop_info __user *)arg); 1694 break; 1695 case LOOP_SET_CAPACITY: 1696 case LOOP_CLR_FD: 1697 case LOOP_GET_STATUS64: 1698 case LOOP_SET_STATUS64: 1699 case LOOP_CONFIGURE: 1700 arg = (unsigned long) compat_ptr(arg); 1701 fallthrough; 1702 case LOOP_SET_FD: 1703 case LOOP_CHANGE_FD: 1704 case LOOP_SET_BLOCK_SIZE: 1705 case LOOP_SET_DIRECT_IO: 1706 err = lo_ioctl(bdev, mode, cmd, arg); 1707 break; 1708 default: 1709 err = -ENOIOCTLCMD; 1710 break; 1711 } 1712 return err; 1713 } 1714 #endif 1715 1716 static int lo_open(struct gendisk *disk, blk_mode_t mode) 1717 { 1718 struct loop_device *lo = disk->private_data; 1719 int err; 1720 1721 err = mutex_lock_killable(&lo->lo_mutex); 1722 if (err) 1723 return err; 1724 1725 if (lo->lo_state == Lo_deleting || lo->lo_state == Lo_rundown) 1726 err = -ENXIO; 1727 mutex_unlock(&lo->lo_mutex); 1728 return err; 1729 } 1730 1731 static void lo_release(struct gendisk *disk) 1732 { 1733 struct loop_device *lo = disk->private_data; 1734 bool need_clear = false; 1735 1736 if (disk_openers(disk) > 0) 1737 return; 1738 /* 1739 * Clear the backing device information if this is the last close of 1740 * a device that's been marked for auto clear, or on which LOOP_CLR_FD 1741 * has been called. 1742 */ 1743 1744 mutex_lock(&lo->lo_mutex); 1745 if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR)) 1746 lo->lo_state = Lo_rundown; 1747 1748 need_clear = (lo->lo_state == Lo_rundown); 1749 mutex_unlock(&lo->lo_mutex); 1750 1751 if (need_clear) 1752 __loop_clr_fd(lo); 1753 } 1754 1755 static void lo_free_disk(struct gendisk *disk) 1756 { 1757 struct loop_device *lo = disk->private_data; 1758 1759 if (lo->workqueue) 1760 destroy_workqueue(lo->workqueue); 1761 loop_free_idle_workers(lo, true); 1762 timer_shutdown_sync(&lo->timer); 1763 mutex_destroy(&lo->lo_mutex); 1764 kfree(lo); 1765 } 1766 1767 static const struct block_device_operations lo_fops = { 1768 .owner = THIS_MODULE, 1769 .open = lo_open, 1770 .release = lo_release, 1771 .ioctl = lo_ioctl, 1772 #ifdef CONFIG_COMPAT 1773 .compat_ioctl = lo_compat_ioctl, 1774 #endif 1775 .free_disk = lo_free_disk, 1776 }; 1777 1778 /* 1779 * And now the modules code and kernel interface. 1780 */ 1781 1782 /* 1783 * If max_loop is specified, create that many devices upfront. 1784 * This also becomes a hard limit. If max_loop is not specified, 1785 * the default isn't a hard limit (as before commit 85c50197716c 1786 * changed the default value from 0 for max_loop=0 reasons), just 1787 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 1788 * init time. Loop devices can be requested on-demand with the 1789 * /dev/loop-control interface, or be instantiated by accessing 1790 * a 'dead' device node. 1791 */ 1792 static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 1793 1794 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 1795 static bool max_loop_specified; 1796 1797 static int max_loop_param_set_int(const char *val, 1798 const struct kernel_param *kp) 1799 { 1800 int ret; 1801 1802 ret = param_set_int(val, kp); 1803 if (ret < 0) 1804 return ret; 1805 1806 max_loop_specified = true; 1807 return 0; 1808 } 1809 1810 static const struct kernel_param_ops max_loop_param_ops = { 1811 .set = max_loop_param_set_int, 1812 .get = param_get_int, 1813 }; 1814 1815 module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444); 1816 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1817 #else 1818 module_param(max_loop, int, 0444); 1819 MODULE_PARM_DESC(max_loop, "Initial number of loop devices"); 1820 #endif 1821 1822 module_param(max_part, int, 0444); 1823 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1824 1825 static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH; 1826 1827 static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p) 1828 { 1829 int qd, ret; 1830 1831 ret = kstrtoint(s, 0, &qd); 1832 if (ret < 0) 1833 return ret; 1834 if (qd < 1) 1835 return -EINVAL; 1836 hw_queue_depth = qd; 1837 return 0; 1838 } 1839 1840 static const struct kernel_param_ops loop_hw_qdepth_param_ops = { 1841 .set = loop_set_hw_queue_depth, 1842 .get = param_get_int, 1843 }; 1844 1845 device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444); 1846 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH)); 1847 1848 MODULE_DESCRIPTION("Loopback device support"); 1849 MODULE_LICENSE("GPL"); 1850 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1851 1852 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1853 const struct blk_mq_queue_data *bd) 1854 { 1855 struct request *rq = bd->rq; 1856 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1857 struct loop_device *lo = rq->q->queuedata; 1858 1859 blk_mq_start_request(rq); 1860 1861 if (lo->lo_state != Lo_bound) 1862 return BLK_STS_IOERR; 1863 1864 switch (req_op(rq)) { 1865 case REQ_OP_FLUSH: 1866 case REQ_OP_DISCARD: 1867 case REQ_OP_WRITE_ZEROES: 1868 cmd->use_aio = false; 1869 break; 1870 default: 1871 cmd->use_aio = lo->use_dio; 1872 break; 1873 } 1874 1875 /* always use the first bio's css */ 1876 cmd->blkcg_css = NULL; 1877 cmd->memcg_css = NULL; 1878 #ifdef CONFIG_BLK_CGROUP 1879 if (rq->bio) { 1880 cmd->blkcg_css = bio_blkcg_css(rq->bio); 1881 #ifdef CONFIG_MEMCG 1882 if (cmd->blkcg_css) { 1883 cmd->memcg_css = 1884 cgroup_get_e_css(cmd->blkcg_css->cgroup, 1885 &memory_cgrp_subsys); 1886 } 1887 #endif 1888 } 1889 #endif 1890 loop_queue_work(lo, cmd); 1891 1892 return BLK_STS_OK; 1893 } 1894 1895 static void loop_handle_cmd(struct loop_cmd *cmd) 1896 { 1897 struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css; 1898 struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css; 1899 struct request *rq = blk_mq_rq_from_pdu(cmd); 1900 const bool write = op_is_write(req_op(rq)); 1901 struct loop_device *lo = rq->q->queuedata; 1902 int ret = 0; 1903 struct mem_cgroup *old_memcg = NULL; 1904 const bool use_aio = cmd->use_aio; 1905 1906 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1907 ret = -EIO; 1908 goto failed; 1909 } 1910 1911 if (cmd_blkcg_css) 1912 kthread_associate_blkcg(cmd_blkcg_css); 1913 if (cmd_memcg_css) 1914 old_memcg = set_active_memcg( 1915 mem_cgroup_from_css(cmd_memcg_css)); 1916 1917 /* 1918 * do_req_filebacked() may call blk_mq_complete_request() synchronously 1919 * or asynchronously if using aio. Hence, do not touch 'cmd' after 1920 * do_req_filebacked() has returned unless we are sure that 'cmd' has 1921 * not yet been completed. 1922 */ 1923 ret = do_req_filebacked(lo, rq); 1924 1925 if (cmd_blkcg_css) 1926 kthread_associate_blkcg(NULL); 1927 1928 if (cmd_memcg_css) { 1929 set_active_memcg(old_memcg); 1930 css_put(cmd_memcg_css); 1931 } 1932 failed: 1933 /* complete non-aio request */ 1934 if (!use_aio || ret) { 1935 if (ret == -EOPNOTSUPP) 1936 cmd->ret = ret; 1937 else 1938 cmd->ret = ret ? -EIO : 0; 1939 if (likely(!blk_should_fake_timeout(rq->q))) 1940 blk_mq_complete_request(rq); 1941 } 1942 } 1943 1944 static void loop_process_work(struct loop_worker *worker, 1945 struct list_head *cmd_list, struct loop_device *lo) 1946 { 1947 int orig_flags = current->flags; 1948 struct loop_cmd *cmd; 1949 1950 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO; 1951 spin_lock_irq(&lo->lo_work_lock); 1952 while (!list_empty(cmd_list)) { 1953 cmd = container_of( 1954 cmd_list->next, struct loop_cmd, list_entry); 1955 list_del(cmd_list->next); 1956 spin_unlock_irq(&lo->lo_work_lock); 1957 1958 loop_handle_cmd(cmd); 1959 cond_resched(); 1960 1961 spin_lock_irq(&lo->lo_work_lock); 1962 } 1963 1964 /* 1965 * We only add to the idle list if there are no pending cmds 1966 * *and* the worker will not run again which ensures that it 1967 * is safe to free any worker on the idle list 1968 */ 1969 if (worker && !work_pending(&worker->work)) { 1970 worker->last_ran_at = jiffies; 1971 list_add_tail(&worker->idle_list, &lo->idle_worker_list); 1972 loop_set_timer(lo); 1973 } 1974 spin_unlock_irq(&lo->lo_work_lock); 1975 current->flags = orig_flags; 1976 } 1977 1978 static void loop_workfn(struct work_struct *work) 1979 { 1980 struct loop_worker *worker = 1981 container_of(work, struct loop_worker, work); 1982 loop_process_work(worker, &worker->cmd_list, worker->lo); 1983 } 1984 1985 static void loop_rootcg_workfn(struct work_struct *work) 1986 { 1987 struct loop_device *lo = 1988 container_of(work, struct loop_device, rootcg_work); 1989 loop_process_work(NULL, &lo->rootcg_cmd_list, lo); 1990 } 1991 1992 static const struct blk_mq_ops loop_mq_ops = { 1993 .queue_rq = loop_queue_rq, 1994 .complete = lo_complete_rq, 1995 }; 1996 1997 static int loop_add(int i) 1998 { 1999 struct queue_limits lim = { 2000 /* 2001 * Random number picked from the historic block max_sectors cap. 2002 */ 2003 .max_hw_sectors = 2560u, 2004 }; 2005 struct loop_device *lo; 2006 struct gendisk *disk; 2007 int err; 2008 2009 err = -ENOMEM; 2010 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 2011 if (!lo) 2012 goto out; 2013 lo->worker_tree = RB_ROOT; 2014 INIT_LIST_HEAD(&lo->idle_worker_list); 2015 timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE); 2016 lo->lo_state = Lo_unbound; 2017 2018 err = mutex_lock_killable(&loop_ctl_mutex); 2019 if (err) 2020 goto out_free_dev; 2021 2022 /* allocate id, if @id >= 0, we're requesting that specific id */ 2023 if (i >= 0) { 2024 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 2025 if (err == -ENOSPC) 2026 err = -EEXIST; 2027 } else { 2028 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 2029 } 2030 mutex_unlock(&loop_ctl_mutex); 2031 if (err < 0) 2032 goto out_free_dev; 2033 i = err; 2034 2035 lo->tag_set.ops = &loop_mq_ops; 2036 lo->tag_set.nr_hw_queues = 1; 2037 lo->tag_set.queue_depth = hw_queue_depth; 2038 lo->tag_set.numa_node = NUMA_NO_NODE; 2039 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 2040 lo->tag_set.flags = BLK_MQ_F_STACKING | BLK_MQ_F_NO_SCHED_BY_DEFAULT; 2041 lo->tag_set.driver_data = lo; 2042 2043 err = blk_mq_alloc_tag_set(&lo->tag_set); 2044 if (err) 2045 goto out_free_idr; 2046 2047 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, &lim, lo); 2048 if (IS_ERR(disk)) { 2049 err = PTR_ERR(disk); 2050 goto out_cleanup_tags; 2051 } 2052 lo->lo_queue = lo->lo_disk->queue; 2053 2054 /* 2055 * Disable partition scanning by default. The in-kernel partition 2056 * scanning can be requested individually per-device during its 2057 * setup. Userspace can always add and remove partitions from all 2058 * devices. The needed partition minors are allocated from the 2059 * extended minor space, the main loop device numbers will continue 2060 * to match the loop minors, regardless of the number of partitions 2061 * used. 2062 * 2063 * If max_part is given, partition scanning is globally enabled for 2064 * all loop devices. The minors for the main loop devices will be 2065 * multiples of max_part. 2066 * 2067 * Note: Global-for-all-devices, set-only-at-init, read-only module 2068 * parameteters like 'max_loop' and 'max_part' make things needlessly 2069 * complicated, are too static, inflexible and may surprise 2070 * userspace tools. Parameters like this in general should be avoided. 2071 */ 2072 if (!part_shift) 2073 set_bit(GD_SUPPRESS_PART_SCAN, &disk->state); 2074 mutex_init(&lo->lo_mutex); 2075 lo->lo_number = i; 2076 spin_lock_init(&lo->lo_lock); 2077 spin_lock_init(&lo->lo_work_lock); 2078 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn); 2079 INIT_LIST_HEAD(&lo->rootcg_cmd_list); 2080 disk->major = LOOP_MAJOR; 2081 disk->first_minor = i << part_shift; 2082 disk->minors = 1 << part_shift; 2083 disk->fops = &lo_fops; 2084 disk->private_data = lo; 2085 disk->queue = lo->lo_queue; 2086 disk->events = DISK_EVENT_MEDIA_CHANGE; 2087 disk->event_flags = DISK_EVENT_FLAG_UEVENT; 2088 sprintf(disk->disk_name, "loop%d", i); 2089 /* Make this loop device reachable from pathname. */ 2090 err = add_disk(disk); 2091 if (err) 2092 goto out_cleanup_disk; 2093 2094 /* Show this loop device. */ 2095 mutex_lock(&loop_ctl_mutex); 2096 lo->idr_visible = true; 2097 mutex_unlock(&loop_ctl_mutex); 2098 2099 return i; 2100 2101 out_cleanup_disk: 2102 put_disk(disk); 2103 out_cleanup_tags: 2104 blk_mq_free_tag_set(&lo->tag_set); 2105 out_free_idr: 2106 mutex_lock(&loop_ctl_mutex); 2107 idr_remove(&loop_index_idr, i); 2108 mutex_unlock(&loop_ctl_mutex); 2109 out_free_dev: 2110 kfree(lo); 2111 out: 2112 return err; 2113 } 2114 2115 static void loop_remove(struct loop_device *lo) 2116 { 2117 /* Make this loop device unreachable from pathname. */ 2118 del_gendisk(lo->lo_disk); 2119 blk_mq_free_tag_set(&lo->tag_set); 2120 2121 mutex_lock(&loop_ctl_mutex); 2122 idr_remove(&loop_index_idr, lo->lo_number); 2123 mutex_unlock(&loop_ctl_mutex); 2124 2125 put_disk(lo->lo_disk); 2126 } 2127 2128 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2129 static void loop_probe(dev_t dev) 2130 { 2131 int idx = MINOR(dev) >> part_shift; 2132 2133 if (max_loop_specified && max_loop && idx >= max_loop) 2134 return; 2135 loop_add(idx); 2136 } 2137 #else 2138 #define loop_probe NULL 2139 #endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */ 2140 2141 static int loop_control_remove(int idx) 2142 { 2143 struct loop_device *lo; 2144 int ret; 2145 2146 if (idx < 0) { 2147 pr_warn_once("deleting an unspecified loop device is not supported.\n"); 2148 return -EINVAL; 2149 } 2150 2151 /* Hide this loop device for serialization. */ 2152 ret = mutex_lock_killable(&loop_ctl_mutex); 2153 if (ret) 2154 return ret; 2155 lo = idr_find(&loop_index_idr, idx); 2156 if (!lo || !lo->idr_visible) 2157 ret = -ENODEV; 2158 else 2159 lo->idr_visible = false; 2160 mutex_unlock(&loop_ctl_mutex); 2161 if (ret) 2162 return ret; 2163 2164 /* Check whether this loop device can be removed. */ 2165 ret = mutex_lock_killable(&lo->lo_mutex); 2166 if (ret) 2167 goto mark_visible; 2168 if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) { 2169 mutex_unlock(&lo->lo_mutex); 2170 ret = -EBUSY; 2171 goto mark_visible; 2172 } 2173 /* Mark this loop device as no more bound, but not quite unbound yet */ 2174 lo->lo_state = Lo_deleting; 2175 mutex_unlock(&lo->lo_mutex); 2176 2177 loop_remove(lo); 2178 return 0; 2179 2180 mark_visible: 2181 /* Show this loop device again. */ 2182 mutex_lock(&loop_ctl_mutex); 2183 lo->idr_visible = true; 2184 mutex_unlock(&loop_ctl_mutex); 2185 return ret; 2186 } 2187 2188 static int loop_control_get_free(int idx) 2189 { 2190 struct loop_device *lo; 2191 int id, ret; 2192 2193 ret = mutex_lock_killable(&loop_ctl_mutex); 2194 if (ret) 2195 return ret; 2196 idr_for_each_entry(&loop_index_idr, lo, id) { 2197 /* Hitting a race results in creating a new loop device which is harmless. */ 2198 if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound) 2199 goto found; 2200 } 2201 mutex_unlock(&loop_ctl_mutex); 2202 return loop_add(-1); 2203 found: 2204 mutex_unlock(&loop_ctl_mutex); 2205 return id; 2206 } 2207 2208 static long loop_control_ioctl(struct file *file, unsigned int cmd, 2209 unsigned long parm) 2210 { 2211 switch (cmd) { 2212 case LOOP_CTL_ADD: 2213 return loop_add(parm); 2214 case LOOP_CTL_REMOVE: 2215 return loop_control_remove(parm); 2216 case LOOP_CTL_GET_FREE: 2217 return loop_control_get_free(parm); 2218 default: 2219 return -ENOSYS; 2220 } 2221 } 2222 2223 static const struct file_operations loop_ctl_fops = { 2224 .open = nonseekable_open, 2225 .unlocked_ioctl = loop_control_ioctl, 2226 .compat_ioctl = loop_control_ioctl, 2227 .owner = THIS_MODULE, 2228 .llseek = noop_llseek, 2229 }; 2230 2231 static struct miscdevice loop_misc = { 2232 .minor = LOOP_CTRL_MINOR, 2233 .name = "loop-control", 2234 .fops = &loop_ctl_fops, 2235 }; 2236 2237 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2238 MODULE_ALIAS("devname:loop-control"); 2239 2240 static int __init loop_init(void) 2241 { 2242 int i; 2243 int err; 2244 2245 part_shift = 0; 2246 if (max_part > 0) { 2247 part_shift = fls(max_part); 2248 2249 /* 2250 * Adjust max_part according to part_shift as it is exported 2251 * to user space so that user can decide correct minor number 2252 * if [s]he want to create more devices. 2253 * 2254 * Note that -1 is required because partition 0 is reserved 2255 * for the whole disk. 2256 */ 2257 max_part = (1UL << part_shift) - 1; 2258 } 2259 2260 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2261 err = -EINVAL; 2262 goto err_out; 2263 } 2264 2265 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2266 err = -EINVAL; 2267 goto err_out; 2268 } 2269 2270 err = misc_register(&loop_misc); 2271 if (err < 0) 2272 goto err_out; 2273 2274 2275 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) { 2276 err = -EIO; 2277 goto misc_out; 2278 } 2279 2280 /* pre-create number of devices given by config or max_loop */ 2281 for (i = 0; i < max_loop; i++) 2282 loop_add(i); 2283 2284 printk(KERN_INFO "loop: module loaded\n"); 2285 return 0; 2286 2287 misc_out: 2288 misc_deregister(&loop_misc); 2289 err_out: 2290 return err; 2291 } 2292 2293 static void __exit loop_exit(void) 2294 { 2295 struct loop_device *lo; 2296 int id; 2297 2298 unregister_blkdev(LOOP_MAJOR, "loop"); 2299 misc_deregister(&loop_misc); 2300 2301 /* 2302 * There is no need to use loop_ctl_mutex here, for nobody else can 2303 * access loop_index_idr when this module is unloading (unless forced 2304 * module unloading is requested). If this is not a clean unloading, 2305 * we have no means to avoid kernel crash. 2306 */ 2307 idr_for_each_entry(&loop_index_idr, lo, id) 2308 loop_remove(lo); 2309 2310 idr_destroy(&loop_index_idr); 2311 } 2312 2313 module_init(loop_init); 2314 module_exit(loop_exit); 2315 2316 #ifndef MODULE 2317 static int __init max_loop_setup(char *str) 2318 { 2319 max_loop = simple_strtol(str, NULL, 0); 2320 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2321 max_loop_specified = true; 2322 #endif 2323 return 1; 2324 } 2325 2326 __setup("max_loop=", max_loop_setup); 2327 #endif 2328