xref: /linux-6.15/drivers/block/loop.c (revision 5e8d780d)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - [email protected] Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <[email protected]> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, [email protected]
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <[email protected]> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bols�, <[email protected]>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <[email protected]>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <[email protected]>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations prepare_write and/or commit_write are not available on the
44  * backing filesystem.
45  * Anton Altaparmakov, 16 Feb 2005
46  *
47  * Still To Fix:
48  * - Advisory locking is ignored here.
49  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
50  *
51  */
52 
53 #include <linux/config.h>
54 #include <linux/module.h>
55 #include <linux/moduleparam.h>
56 #include <linux/sched.h>
57 #include <linux/fs.h>
58 #include <linux/file.h>
59 #include <linux/stat.h>
60 #include <linux/errno.h>
61 #include <linux/major.h>
62 #include <linux/wait.h>
63 #include <linux/blkdev.h>
64 #include <linux/blkpg.h>
65 #include <linux/init.h>
66 #include <linux/smp_lock.h>
67 #include <linux/swap.h>
68 #include <linux/slab.h>
69 #include <linux/loop.h>
70 #include <linux/suspend.h>
71 #include <linux/writeback.h>
72 #include <linux/buffer_head.h>		/* for invalidate_bdev() */
73 #include <linux/completion.h>
74 #include <linux/highmem.h>
75 #include <linux/gfp.h>
76 
77 #include <asm/uaccess.h>
78 
79 static int max_loop = 8;
80 static struct loop_device *loop_dev;
81 static struct gendisk **disks;
82 
83 /*
84  * Transfer functions
85  */
86 static int transfer_none(struct loop_device *lo, int cmd,
87 			 struct page *raw_page, unsigned raw_off,
88 			 struct page *loop_page, unsigned loop_off,
89 			 int size, sector_t real_block)
90 {
91 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
92 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
93 
94 	if (cmd == READ)
95 		memcpy(loop_buf, raw_buf, size);
96 	else
97 		memcpy(raw_buf, loop_buf, size);
98 
99 	kunmap_atomic(raw_buf, KM_USER0);
100 	kunmap_atomic(loop_buf, KM_USER1);
101 	cond_resched();
102 	return 0;
103 }
104 
105 static int transfer_xor(struct loop_device *lo, int cmd,
106 			struct page *raw_page, unsigned raw_off,
107 			struct page *loop_page, unsigned loop_off,
108 			int size, sector_t real_block)
109 {
110 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
111 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
112 	char *in, *out, *key;
113 	int i, keysize;
114 
115 	if (cmd == READ) {
116 		in = raw_buf;
117 		out = loop_buf;
118 	} else {
119 		in = loop_buf;
120 		out = raw_buf;
121 	}
122 
123 	key = lo->lo_encrypt_key;
124 	keysize = lo->lo_encrypt_key_size;
125 	for (i = 0; i < size; i++)
126 		*out++ = *in++ ^ key[(i & 511) % keysize];
127 
128 	kunmap_atomic(raw_buf, KM_USER0);
129 	kunmap_atomic(loop_buf, KM_USER1);
130 	cond_resched();
131 	return 0;
132 }
133 
134 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
135 {
136 	if (unlikely(info->lo_encrypt_key_size <= 0))
137 		return -EINVAL;
138 	return 0;
139 }
140 
141 static struct loop_func_table none_funcs = {
142 	.number = LO_CRYPT_NONE,
143 	.transfer = transfer_none,
144 };
145 
146 static struct loop_func_table xor_funcs = {
147 	.number = LO_CRYPT_XOR,
148 	.transfer = transfer_xor,
149 	.init = xor_init
150 };
151 
152 /* xfer_funcs[0] is special - its release function is never called */
153 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
154 	&none_funcs,
155 	&xor_funcs
156 };
157 
158 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
159 {
160 	loff_t size, offset, loopsize;
161 
162 	/* Compute loopsize in bytes */
163 	size = i_size_read(file->f_mapping->host);
164 	offset = lo->lo_offset;
165 	loopsize = size - offset;
166 	if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
167 		loopsize = lo->lo_sizelimit;
168 
169 	/*
170 	 * Unfortunately, if we want to do I/O on the device,
171 	 * the number of 512-byte sectors has to fit into a sector_t.
172 	 */
173 	return loopsize >> 9;
174 }
175 
176 static int
177 figure_loop_size(struct loop_device *lo)
178 {
179 	loff_t size = get_loop_size(lo, lo->lo_backing_file);
180 	sector_t x = (sector_t)size;
181 
182 	if (unlikely((loff_t)x != size))
183 		return -EFBIG;
184 
185 	set_capacity(disks[lo->lo_number], x);
186 	return 0;
187 }
188 
189 static inline int
190 lo_do_transfer(struct loop_device *lo, int cmd,
191 	       struct page *rpage, unsigned roffs,
192 	       struct page *lpage, unsigned loffs,
193 	       int size, sector_t rblock)
194 {
195 	if (unlikely(!lo->transfer))
196 		return 0;
197 
198 	return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
199 }
200 
201 /**
202  * do_lo_send_aops - helper for writing data to a loop device
203  *
204  * This is the fast version for backing filesystems which implement the address
205  * space operations prepare_write and commit_write.
206  */
207 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
208 		int bsize, loff_t pos, struct page *page)
209 {
210 	struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
211 	struct address_space *mapping = file->f_mapping;
212 	const struct address_space_operations *aops = mapping->a_ops;
213 	pgoff_t index;
214 	unsigned offset, bv_offs;
215 	int len, ret;
216 
217 	mutex_lock(&mapping->host->i_mutex);
218 	index = pos >> PAGE_CACHE_SHIFT;
219 	offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
220 	bv_offs = bvec->bv_offset;
221 	len = bvec->bv_len;
222 	while (len > 0) {
223 		sector_t IV;
224 		unsigned size;
225 		int transfer_result;
226 
227 		IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
228 		size = PAGE_CACHE_SIZE - offset;
229 		if (size > len)
230 			size = len;
231 		page = grab_cache_page(mapping, index);
232 		if (unlikely(!page))
233 			goto fail;
234 		ret = aops->prepare_write(file, page, offset,
235 					  offset + size);
236 		if (unlikely(ret)) {
237 			if (ret == AOP_TRUNCATED_PAGE) {
238 				page_cache_release(page);
239 				continue;
240 			}
241 			goto unlock;
242 		}
243 		transfer_result = lo_do_transfer(lo, WRITE, page, offset,
244 				bvec->bv_page, bv_offs, size, IV);
245 		if (unlikely(transfer_result)) {
246 			char *kaddr;
247 
248 			/*
249 			 * The transfer failed, but we still write the data to
250 			 * keep prepare/commit calls balanced.
251 			 */
252 			printk(KERN_ERR "loop: transfer error block %llu\n",
253 			       (unsigned long long)index);
254 			kaddr = kmap_atomic(page, KM_USER0);
255 			memset(kaddr + offset, 0, size);
256 			kunmap_atomic(kaddr, KM_USER0);
257 		}
258 		flush_dcache_page(page);
259 		ret = aops->commit_write(file, page, offset,
260 					 offset + size);
261 		if (unlikely(ret)) {
262 			if (ret == AOP_TRUNCATED_PAGE) {
263 				page_cache_release(page);
264 				continue;
265 			}
266 			goto unlock;
267 		}
268 		if (unlikely(transfer_result))
269 			goto unlock;
270 		bv_offs += size;
271 		len -= size;
272 		offset = 0;
273 		index++;
274 		pos += size;
275 		unlock_page(page);
276 		page_cache_release(page);
277 	}
278 	ret = 0;
279 out:
280 	mutex_unlock(&mapping->host->i_mutex);
281 	return ret;
282 unlock:
283 	unlock_page(page);
284 	page_cache_release(page);
285 fail:
286 	ret = -1;
287 	goto out;
288 }
289 
290 /**
291  * __do_lo_send_write - helper for writing data to a loop device
292  *
293  * This helper just factors out common code between do_lo_send_direct_write()
294  * and do_lo_send_write().
295  */
296 static int __do_lo_send_write(struct file *file,
297 		u8 __user *buf, const int len, loff_t pos)
298 {
299 	ssize_t bw;
300 	mm_segment_t old_fs = get_fs();
301 
302 	set_fs(get_ds());
303 	bw = file->f_op->write(file, buf, len, &pos);
304 	set_fs(old_fs);
305 	if (likely(bw == len))
306 		return 0;
307 	printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
308 			(unsigned long long)pos, len);
309 	if (bw >= 0)
310 		bw = -EIO;
311 	return bw;
312 }
313 
314 /**
315  * do_lo_send_direct_write - helper for writing data to a loop device
316  *
317  * This is the fast, non-transforming version for backing filesystems which do
318  * not implement the address space operations prepare_write and commit_write.
319  * It uses the write file operation which should be present on all writeable
320  * filesystems.
321  */
322 static int do_lo_send_direct_write(struct loop_device *lo,
323 		struct bio_vec *bvec, int bsize, loff_t pos, struct page *page)
324 {
325 	ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
326 			(u8 __user *)kmap(bvec->bv_page) + bvec->bv_offset,
327 			bvec->bv_len, pos);
328 	kunmap(bvec->bv_page);
329 	cond_resched();
330 	return bw;
331 }
332 
333 /**
334  * do_lo_send_write - helper for writing data to a loop device
335  *
336  * This is the slow, transforming version for filesystems which do not
337  * implement the address space operations prepare_write and commit_write.  It
338  * uses the write file operation which should be present on all writeable
339  * filesystems.
340  *
341  * Using fops->write is slower than using aops->{prepare,commit}_write in the
342  * transforming case because we need to double buffer the data as we cannot do
343  * the transformations in place as we do not have direct access to the
344  * destination pages of the backing file.
345  */
346 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
347 		int bsize, loff_t pos, struct page *page)
348 {
349 	int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
350 			bvec->bv_offset, bvec->bv_len, pos >> 9);
351 	if (likely(!ret))
352 		return __do_lo_send_write(lo->lo_backing_file,
353 				(u8 __user *)page_address(page), bvec->bv_len,
354 				pos);
355 	printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
356 			"length %i.\n", (unsigned long long)pos, bvec->bv_len);
357 	if (ret > 0)
358 		ret = -EIO;
359 	return ret;
360 }
361 
362 static int lo_send(struct loop_device *lo, struct bio *bio, int bsize,
363 		loff_t pos)
364 {
365 	int (*do_lo_send)(struct loop_device *, struct bio_vec *, int, loff_t,
366 			struct page *page);
367 	struct bio_vec *bvec;
368 	struct page *page = NULL;
369 	int i, ret = 0;
370 
371 	do_lo_send = do_lo_send_aops;
372 	if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
373 		do_lo_send = do_lo_send_direct_write;
374 		if (lo->transfer != transfer_none) {
375 			page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
376 			if (unlikely(!page))
377 				goto fail;
378 			kmap(page);
379 			do_lo_send = do_lo_send_write;
380 		}
381 	}
382 	bio_for_each_segment(bvec, bio, i) {
383 		ret = do_lo_send(lo, bvec, bsize, pos, page);
384 		if (ret < 0)
385 			break;
386 		pos += bvec->bv_len;
387 	}
388 	if (page) {
389 		kunmap(page);
390 		__free_page(page);
391 	}
392 out:
393 	return ret;
394 fail:
395 	printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
396 	ret = -ENOMEM;
397 	goto out;
398 }
399 
400 struct lo_read_data {
401 	struct loop_device *lo;
402 	struct page *page;
403 	unsigned offset;
404 	int bsize;
405 };
406 
407 static int
408 lo_read_actor(read_descriptor_t *desc, struct page *page,
409 	      unsigned long offset, unsigned long size)
410 {
411 	unsigned long count = desc->count;
412 	struct lo_read_data *p = desc->arg.data;
413 	struct loop_device *lo = p->lo;
414 	sector_t IV;
415 
416 	IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
417 
418 	if (size > count)
419 		size = count;
420 
421 	if (lo_do_transfer(lo, READ, page, offset, p->page, p->offset, size, IV)) {
422 		size = 0;
423 		printk(KERN_ERR "loop: transfer error block %ld\n",
424 		       page->index);
425 		desc->error = -EINVAL;
426 	}
427 
428 	flush_dcache_page(p->page);
429 
430 	desc->count = count - size;
431 	desc->written += size;
432 	p->offset += size;
433 	return size;
434 }
435 
436 static int
437 do_lo_receive(struct loop_device *lo,
438 	      struct bio_vec *bvec, int bsize, loff_t pos)
439 {
440 	struct lo_read_data cookie;
441 	struct file *file;
442 	int retval;
443 
444 	cookie.lo = lo;
445 	cookie.page = bvec->bv_page;
446 	cookie.offset = bvec->bv_offset;
447 	cookie.bsize = bsize;
448 	file = lo->lo_backing_file;
449 	retval = file->f_op->sendfile(file, &pos, bvec->bv_len,
450 			lo_read_actor, &cookie);
451 	return (retval < 0)? retval: 0;
452 }
453 
454 static int
455 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
456 {
457 	struct bio_vec *bvec;
458 	int i, ret = 0;
459 
460 	bio_for_each_segment(bvec, bio, i) {
461 		ret = do_lo_receive(lo, bvec, bsize, pos);
462 		if (ret < 0)
463 			break;
464 		pos += bvec->bv_len;
465 	}
466 	return ret;
467 }
468 
469 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
470 {
471 	loff_t pos;
472 	int ret;
473 
474 	pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
475 	if (bio_rw(bio) == WRITE)
476 		ret = lo_send(lo, bio, lo->lo_blocksize, pos);
477 	else
478 		ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
479 	return ret;
480 }
481 
482 /*
483  * Add bio to back of pending list
484  */
485 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
486 {
487 	if (lo->lo_biotail) {
488 		lo->lo_biotail->bi_next = bio;
489 		lo->lo_biotail = bio;
490 	} else
491 		lo->lo_bio = lo->lo_biotail = bio;
492 }
493 
494 /*
495  * Grab first pending buffer
496  */
497 static struct bio *loop_get_bio(struct loop_device *lo)
498 {
499 	struct bio *bio;
500 
501 	if ((bio = lo->lo_bio)) {
502 		if (bio == lo->lo_biotail)
503 			lo->lo_biotail = NULL;
504 		lo->lo_bio = bio->bi_next;
505 		bio->bi_next = NULL;
506 	}
507 
508 	return bio;
509 }
510 
511 static int loop_make_request(request_queue_t *q, struct bio *old_bio)
512 {
513 	struct loop_device *lo = q->queuedata;
514 	int rw = bio_rw(old_bio);
515 
516 	if (rw == READA)
517 		rw = READ;
518 
519 	BUG_ON(!lo || (rw != READ && rw != WRITE));
520 
521 	spin_lock_irq(&lo->lo_lock);
522 	if (lo->lo_state != Lo_bound)
523 		goto out;
524 	if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
525 		goto out;
526 	lo->lo_pending++;
527 	loop_add_bio(lo, old_bio);
528 	spin_unlock_irq(&lo->lo_lock);
529 	complete(&lo->lo_bh_done);
530 	return 0;
531 
532 out:
533 	if (lo->lo_pending == 0)
534 		complete(&lo->lo_bh_done);
535 	spin_unlock_irq(&lo->lo_lock);
536 	bio_io_error(old_bio, old_bio->bi_size);
537 	return 0;
538 }
539 
540 /*
541  * kick off io on the underlying address space
542  */
543 static void loop_unplug(request_queue_t *q)
544 {
545 	struct loop_device *lo = q->queuedata;
546 
547 	clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags);
548 	blk_run_address_space(lo->lo_backing_file->f_mapping);
549 }
550 
551 struct switch_request {
552 	struct file *file;
553 	struct completion wait;
554 };
555 
556 static void do_loop_switch(struct loop_device *, struct switch_request *);
557 
558 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
559 {
560 	if (unlikely(!bio->bi_bdev)) {
561 		do_loop_switch(lo, bio->bi_private);
562 		bio_put(bio);
563 	} else {
564 		int ret = do_bio_filebacked(lo, bio);
565 		bio_endio(bio, bio->bi_size, ret);
566 	}
567 }
568 
569 /*
570  * worker thread that handles reads/writes to file backed loop devices,
571  * to avoid blocking in our make_request_fn. it also does loop decrypting
572  * on reads for block backed loop, as that is too heavy to do from
573  * b_end_io context where irqs may be disabled.
574  */
575 static int loop_thread(void *data)
576 {
577 	struct loop_device *lo = data;
578 	struct bio *bio;
579 
580 	daemonize("loop%d", lo->lo_number);
581 
582 	/*
583 	 * loop can be used in an encrypted device,
584 	 * hence, it mustn't be stopped at all
585 	 * because it could be indirectly used during suspension
586 	 */
587 	current->flags |= PF_NOFREEZE;
588 
589 	set_user_nice(current, -20);
590 
591 	lo->lo_state = Lo_bound;
592 	lo->lo_pending = 1;
593 
594 	/*
595 	 * complete it, we are running
596 	 */
597 	complete(&lo->lo_done);
598 
599 	for (;;) {
600 		int pending;
601 
602 		if (wait_for_completion_interruptible(&lo->lo_bh_done))
603 			continue;
604 
605 		spin_lock_irq(&lo->lo_lock);
606 
607 		/*
608 		 * could be completed because of tear-down, not pending work
609 		 */
610 		if (unlikely(!lo->lo_pending)) {
611 			spin_unlock_irq(&lo->lo_lock);
612 			break;
613 		}
614 
615 		bio = loop_get_bio(lo);
616 		lo->lo_pending--;
617 		pending = lo->lo_pending;
618 		spin_unlock_irq(&lo->lo_lock);
619 
620 		BUG_ON(!bio);
621 		loop_handle_bio(lo, bio);
622 
623 		/*
624 		 * upped both for pending work and tear-down, lo_pending
625 		 * will hit zero then
626 		 */
627 		if (unlikely(!pending))
628 			break;
629 	}
630 
631 	complete(&lo->lo_done);
632 	return 0;
633 }
634 
635 /*
636  * loop_switch performs the hard work of switching a backing store.
637  * First it needs to flush existing IO, it does this by sending a magic
638  * BIO down the pipe. The completion of this BIO does the actual switch.
639  */
640 static int loop_switch(struct loop_device *lo, struct file *file)
641 {
642 	struct switch_request w;
643 	struct bio *bio = bio_alloc(GFP_KERNEL, 1);
644 	if (!bio)
645 		return -ENOMEM;
646 	init_completion(&w.wait);
647 	w.file = file;
648 	bio->bi_private = &w;
649 	bio->bi_bdev = NULL;
650 	loop_make_request(lo->lo_queue, bio);
651 	wait_for_completion(&w.wait);
652 	return 0;
653 }
654 
655 /*
656  * Do the actual switch; called from the BIO completion routine
657  */
658 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
659 {
660 	struct file *file = p->file;
661 	struct file *old_file = lo->lo_backing_file;
662 	struct address_space *mapping = file->f_mapping;
663 
664 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
665 	lo->lo_backing_file = file;
666 	lo->lo_blocksize = mapping->host->i_blksize;
667 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
668 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
669 	complete(&p->wait);
670 }
671 
672 
673 /*
674  * loop_change_fd switched the backing store of a loopback device to
675  * a new file. This is useful for operating system installers to free up
676  * the original file and in High Availability environments to switch to
677  * an alternative location for the content in case of server meltdown.
678  * This can only work if the loop device is used read-only, and if the
679  * new backing store is the same size and type as the old backing store.
680  */
681 static int loop_change_fd(struct loop_device *lo, struct file *lo_file,
682 		       struct block_device *bdev, unsigned int arg)
683 {
684 	struct file	*file, *old_file;
685 	struct inode	*inode;
686 	int		error;
687 
688 	error = -ENXIO;
689 	if (lo->lo_state != Lo_bound)
690 		goto out;
691 
692 	/* the loop device has to be read-only */
693 	error = -EINVAL;
694 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
695 		goto out;
696 
697 	error = -EBADF;
698 	file = fget(arg);
699 	if (!file)
700 		goto out;
701 
702 	inode = file->f_mapping->host;
703 	old_file = lo->lo_backing_file;
704 
705 	error = -EINVAL;
706 
707 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
708 		goto out_putf;
709 
710 	/* new backing store needs to support loop (eg sendfile) */
711 	if (!inode->i_fop->sendfile)
712 		goto out_putf;
713 
714 	/* size of the new backing store needs to be the same */
715 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
716 		goto out_putf;
717 
718 	/* and ... switch */
719 	error = loop_switch(lo, file);
720 	if (error)
721 		goto out_putf;
722 
723 	fput(old_file);
724 	return 0;
725 
726  out_putf:
727 	fput(file);
728  out:
729 	return error;
730 }
731 
732 static inline int is_loop_device(struct file *file)
733 {
734 	struct inode *i = file->f_mapping->host;
735 
736 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
737 }
738 
739 static int loop_set_fd(struct loop_device *lo, struct file *lo_file,
740 		       struct block_device *bdev, unsigned int arg)
741 {
742 	struct file	*file, *f;
743 	struct inode	*inode;
744 	struct address_space *mapping;
745 	unsigned lo_blocksize;
746 	int		lo_flags = 0;
747 	int		error;
748 	loff_t		size;
749 
750 	/* This is safe, since we have a reference from open(). */
751 	__module_get(THIS_MODULE);
752 
753 	error = -EBADF;
754 	file = fget(arg);
755 	if (!file)
756 		goto out;
757 
758 	error = -EBUSY;
759 	if (lo->lo_state != Lo_unbound)
760 		goto out_putf;
761 
762 	/* Avoid recursion */
763 	f = file;
764 	while (is_loop_device(f)) {
765 		struct loop_device *l;
766 
767 		if (f->f_mapping->host->i_rdev == lo_file->f_mapping->host->i_rdev)
768 			goto out_putf;
769 
770 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
771 		if (l->lo_state == Lo_unbound) {
772 			error = -EINVAL;
773 			goto out_putf;
774 		}
775 		f = l->lo_backing_file;
776 	}
777 
778 	mapping = file->f_mapping;
779 	inode = mapping->host;
780 
781 	if (!(file->f_mode & FMODE_WRITE))
782 		lo_flags |= LO_FLAGS_READ_ONLY;
783 
784 	error = -EINVAL;
785 	if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
786 		const struct address_space_operations *aops = mapping->a_ops;
787 		/*
788 		 * If we can't read - sorry. If we only can't write - well,
789 		 * it's going to be read-only.
790 		 */
791 		if (!file->f_op->sendfile)
792 			goto out_putf;
793 		if (aops->prepare_write && aops->commit_write)
794 			lo_flags |= LO_FLAGS_USE_AOPS;
795 		if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
796 			lo_flags |= LO_FLAGS_READ_ONLY;
797 
798 		lo_blocksize = inode->i_blksize;
799 		error = 0;
800 	} else {
801 		goto out_putf;
802 	}
803 
804 	size = get_loop_size(lo, file);
805 
806 	if ((loff_t)(sector_t)size != size) {
807 		error = -EFBIG;
808 		goto out_putf;
809 	}
810 
811 	if (!(lo_file->f_mode & FMODE_WRITE))
812 		lo_flags |= LO_FLAGS_READ_ONLY;
813 
814 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
815 
816 	lo->lo_blocksize = lo_blocksize;
817 	lo->lo_device = bdev;
818 	lo->lo_flags = lo_flags;
819 	lo->lo_backing_file = file;
820 	lo->transfer = transfer_none;
821 	lo->ioctl = NULL;
822 	lo->lo_sizelimit = 0;
823 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
824 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
825 
826 	lo->lo_bio = lo->lo_biotail = NULL;
827 
828 	/*
829 	 * set queue make_request_fn, and add limits based on lower level
830 	 * device
831 	 */
832 	blk_queue_make_request(lo->lo_queue, loop_make_request);
833 	lo->lo_queue->queuedata = lo;
834 	lo->lo_queue->unplug_fn = loop_unplug;
835 
836 	set_capacity(disks[lo->lo_number], size);
837 	bd_set_size(bdev, size << 9);
838 
839 	set_blocksize(bdev, lo_blocksize);
840 
841 	error = kernel_thread(loop_thread, lo, CLONE_KERNEL);
842 	if (error < 0)
843 		goto out_putf;
844 	wait_for_completion(&lo->lo_done);
845 	return 0;
846 
847  out_putf:
848 	fput(file);
849  out:
850 	/* This is safe: open() is still holding a reference. */
851 	module_put(THIS_MODULE);
852 	return error;
853 }
854 
855 static int
856 loop_release_xfer(struct loop_device *lo)
857 {
858 	int err = 0;
859 	struct loop_func_table *xfer = lo->lo_encryption;
860 
861 	if (xfer) {
862 		if (xfer->release)
863 			err = xfer->release(lo);
864 		lo->transfer = NULL;
865 		lo->lo_encryption = NULL;
866 		module_put(xfer->owner);
867 	}
868 	return err;
869 }
870 
871 static int
872 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
873 	       const struct loop_info64 *i)
874 {
875 	int err = 0;
876 
877 	if (xfer) {
878 		struct module *owner = xfer->owner;
879 
880 		if (!try_module_get(owner))
881 			return -EINVAL;
882 		if (xfer->init)
883 			err = xfer->init(lo, i);
884 		if (err)
885 			module_put(owner);
886 		else
887 			lo->lo_encryption = xfer;
888 	}
889 	return err;
890 }
891 
892 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
893 {
894 	struct file *filp = lo->lo_backing_file;
895 	gfp_t gfp = lo->old_gfp_mask;
896 
897 	if (lo->lo_state != Lo_bound)
898 		return -ENXIO;
899 
900 	if (lo->lo_refcnt > 1)	/* we needed one fd for the ioctl */
901 		return -EBUSY;
902 
903 	if (filp == NULL)
904 		return -EINVAL;
905 
906 	spin_lock_irq(&lo->lo_lock);
907 	lo->lo_state = Lo_rundown;
908 	lo->lo_pending--;
909 	if (!lo->lo_pending)
910 		complete(&lo->lo_bh_done);
911 	spin_unlock_irq(&lo->lo_lock);
912 
913 	wait_for_completion(&lo->lo_done);
914 
915 	lo->lo_backing_file = NULL;
916 
917 	loop_release_xfer(lo);
918 	lo->transfer = NULL;
919 	lo->ioctl = NULL;
920 	lo->lo_device = NULL;
921 	lo->lo_encryption = NULL;
922 	lo->lo_offset = 0;
923 	lo->lo_sizelimit = 0;
924 	lo->lo_encrypt_key_size = 0;
925 	lo->lo_flags = 0;
926 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
927 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
928 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
929 	invalidate_bdev(bdev, 0);
930 	set_capacity(disks[lo->lo_number], 0);
931 	bd_set_size(bdev, 0);
932 	mapping_set_gfp_mask(filp->f_mapping, gfp);
933 	lo->lo_state = Lo_unbound;
934 	fput(filp);
935 	/* This is safe: open() is still holding a reference. */
936 	module_put(THIS_MODULE);
937 	return 0;
938 }
939 
940 static int
941 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
942 {
943 	int err;
944 	struct loop_func_table *xfer;
945 
946 	if (lo->lo_encrypt_key_size && lo->lo_key_owner != current->uid &&
947 	    !capable(CAP_SYS_ADMIN))
948 		return -EPERM;
949 	if (lo->lo_state != Lo_bound)
950 		return -ENXIO;
951 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
952 		return -EINVAL;
953 
954 	err = loop_release_xfer(lo);
955 	if (err)
956 		return err;
957 
958 	if (info->lo_encrypt_type) {
959 		unsigned int type = info->lo_encrypt_type;
960 
961 		if (type >= MAX_LO_CRYPT)
962 			return -EINVAL;
963 		xfer = xfer_funcs[type];
964 		if (xfer == NULL)
965 			return -EINVAL;
966 	} else
967 		xfer = NULL;
968 
969 	err = loop_init_xfer(lo, xfer, info);
970 	if (err)
971 		return err;
972 
973 	if (lo->lo_offset != info->lo_offset ||
974 	    lo->lo_sizelimit != info->lo_sizelimit) {
975 		lo->lo_offset = info->lo_offset;
976 		lo->lo_sizelimit = info->lo_sizelimit;
977 		if (figure_loop_size(lo))
978 			return -EFBIG;
979 	}
980 
981 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
982 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
983 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
984 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
985 
986 	if (!xfer)
987 		xfer = &none_funcs;
988 	lo->transfer = xfer->transfer;
989 	lo->ioctl = xfer->ioctl;
990 
991 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
992 	lo->lo_init[0] = info->lo_init[0];
993 	lo->lo_init[1] = info->lo_init[1];
994 	if (info->lo_encrypt_key_size) {
995 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
996 		       info->lo_encrypt_key_size);
997 		lo->lo_key_owner = current->uid;
998 	}
999 
1000 	return 0;
1001 }
1002 
1003 static int
1004 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1005 {
1006 	struct file *file = lo->lo_backing_file;
1007 	struct kstat stat;
1008 	int error;
1009 
1010 	if (lo->lo_state != Lo_bound)
1011 		return -ENXIO;
1012 	error = vfs_getattr(file->f_vfsmnt, file->f_dentry, &stat);
1013 	if (error)
1014 		return error;
1015 	memset(info, 0, sizeof(*info));
1016 	info->lo_number = lo->lo_number;
1017 	info->lo_device = huge_encode_dev(stat.dev);
1018 	info->lo_inode = stat.ino;
1019 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1020 	info->lo_offset = lo->lo_offset;
1021 	info->lo_sizelimit = lo->lo_sizelimit;
1022 	info->lo_flags = lo->lo_flags;
1023 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1024 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1025 	info->lo_encrypt_type =
1026 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1027 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1028 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1029 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1030 		       lo->lo_encrypt_key_size);
1031 	}
1032 	return 0;
1033 }
1034 
1035 static void
1036 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1037 {
1038 	memset(info64, 0, sizeof(*info64));
1039 	info64->lo_number = info->lo_number;
1040 	info64->lo_device = info->lo_device;
1041 	info64->lo_inode = info->lo_inode;
1042 	info64->lo_rdevice = info->lo_rdevice;
1043 	info64->lo_offset = info->lo_offset;
1044 	info64->lo_sizelimit = 0;
1045 	info64->lo_encrypt_type = info->lo_encrypt_type;
1046 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1047 	info64->lo_flags = info->lo_flags;
1048 	info64->lo_init[0] = info->lo_init[0];
1049 	info64->lo_init[1] = info->lo_init[1];
1050 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1051 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1052 	else
1053 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1054 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1055 }
1056 
1057 static int
1058 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1059 {
1060 	memset(info, 0, sizeof(*info));
1061 	info->lo_number = info64->lo_number;
1062 	info->lo_device = info64->lo_device;
1063 	info->lo_inode = info64->lo_inode;
1064 	info->lo_rdevice = info64->lo_rdevice;
1065 	info->lo_offset = info64->lo_offset;
1066 	info->lo_encrypt_type = info64->lo_encrypt_type;
1067 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1068 	info->lo_flags = info64->lo_flags;
1069 	info->lo_init[0] = info64->lo_init[0];
1070 	info->lo_init[1] = info64->lo_init[1];
1071 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1072 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1073 	else
1074 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1075 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1076 
1077 	/* error in case values were truncated */
1078 	if (info->lo_device != info64->lo_device ||
1079 	    info->lo_rdevice != info64->lo_rdevice ||
1080 	    info->lo_inode != info64->lo_inode ||
1081 	    info->lo_offset != info64->lo_offset)
1082 		return -EOVERFLOW;
1083 
1084 	return 0;
1085 }
1086 
1087 static int
1088 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1089 {
1090 	struct loop_info info;
1091 	struct loop_info64 info64;
1092 
1093 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1094 		return -EFAULT;
1095 	loop_info64_from_old(&info, &info64);
1096 	return loop_set_status(lo, &info64);
1097 }
1098 
1099 static int
1100 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1101 {
1102 	struct loop_info64 info64;
1103 
1104 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1105 		return -EFAULT;
1106 	return loop_set_status(lo, &info64);
1107 }
1108 
1109 static int
1110 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1111 	struct loop_info info;
1112 	struct loop_info64 info64;
1113 	int err = 0;
1114 
1115 	if (!arg)
1116 		err = -EINVAL;
1117 	if (!err)
1118 		err = loop_get_status(lo, &info64);
1119 	if (!err)
1120 		err = loop_info64_to_old(&info64, &info);
1121 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1122 		err = -EFAULT;
1123 
1124 	return err;
1125 }
1126 
1127 static int
1128 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1129 	struct loop_info64 info64;
1130 	int err = 0;
1131 
1132 	if (!arg)
1133 		err = -EINVAL;
1134 	if (!err)
1135 		err = loop_get_status(lo, &info64);
1136 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1137 		err = -EFAULT;
1138 
1139 	return err;
1140 }
1141 
1142 static int lo_ioctl(struct inode * inode, struct file * file,
1143 	unsigned int cmd, unsigned long arg)
1144 {
1145 	struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1146 	int err;
1147 
1148 	mutex_lock(&lo->lo_ctl_mutex);
1149 	switch (cmd) {
1150 	case LOOP_SET_FD:
1151 		err = loop_set_fd(lo, file, inode->i_bdev, arg);
1152 		break;
1153 	case LOOP_CHANGE_FD:
1154 		err = loop_change_fd(lo, file, inode->i_bdev, arg);
1155 		break;
1156 	case LOOP_CLR_FD:
1157 		err = loop_clr_fd(lo, inode->i_bdev);
1158 		break;
1159 	case LOOP_SET_STATUS:
1160 		err = loop_set_status_old(lo, (struct loop_info __user *) arg);
1161 		break;
1162 	case LOOP_GET_STATUS:
1163 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1164 		break;
1165 	case LOOP_SET_STATUS64:
1166 		err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
1167 		break;
1168 	case LOOP_GET_STATUS64:
1169 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1170 		break;
1171 	default:
1172 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1173 	}
1174 	mutex_unlock(&lo->lo_ctl_mutex);
1175 	return err;
1176 }
1177 
1178 static int lo_open(struct inode *inode, struct file *file)
1179 {
1180 	struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1181 
1182 	mutex_lock(&lo->lo_ctl_mutex);
1183 	lo->lo_refcnt++;
1184 	mutex_unlock(&lo->lo_ctl_mutex);
1185 
1186 	return 0;
1187 }
1188 
1189 static int lo_release(struct inode *inode, struct file *file)
1190 {
1191 	struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1192 
1193 	mutex_lock(&lo->lo_ctl_mutex);
1194 	--lo->lo_refcnt;
1195 	mutex_unlock(&lo->lo_ctl_mutex);
1196 
1197 	return 0;
1198 }
1199 
1200 static struct block_device_operations lo_fops = {
1201 	.owner =	THIS_MODULE,
1202 	.open =		lo_open,
1203 	.release =	lo_release,
1204 	.ioctl =	lo_ioctl,
1205 };
1206 
1207 /*
1208  * And now the modules code and kernel interface.
1209  */
1210 module_param(max_loop, int, 0);
1211 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices (1-256)");
1212 MODULE_LICENSE("GPL");
1213 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1214 
1215 int loop_register_transfer(struct loop_func_table *funcs)
1216 {
1217 	unsigned int n = funcs->number;
1218 
1219 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1220 		return -EINVAL;
1221 	xfer_funcs[n] = funcs;
1222 	return 0;
1223 }
1224 
1225 int loop_unregister_transfer(int number)
1226 {
1227 	unsigned int n = number;
1228 	struct loop_device *lo;
1229 	struct loop_func_table *xfer;
1230 
1231 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1232 		return -EINVAL;
1233 
1234 	xfer_funcs[n] = NULL;
1235 
1236 	for (lo = &loop_dev[0]; lo < &loop_dev[max_loop]; lo++) {
1237 		mutex_lock(&lo->lo_ctl_mutex);
1238 
1239 		if (lo->lo_encryption == xfer)
1240 			loop_release_xfer(lo);
1241 
1242 		mutex_unlock(&lo->lo_ctl_mutex);
1243 	}
1244 
1245 	return 0;
1246 }
1247 
1248 EXPORT_SYMBOL(loop_register_transfer);
1249 EXPORT_SYMBOL(loop_unregister_transfer);
1250 
1251 static int __init loop_init(void)
1252 {
1253 	int	i;
1254 
1255 	if (max_loop < 1 || max_loop > 256) {
1256 		printk(KERN_WARNING "loop: invalid max_loop (must be between"
1257 				    " 1 and 256), using default (8)\n");
1258 		max_loop = 8;
1259 	}
1260 
1261 	if (register_blkdev(LOOP_MAJOR, "loop"))
1262 		return -EIO;
1263 
1264 	loop_dev = kmalloc(max_loop * sizeof(struct loop_device), GFP_KERNEL);
1265 	if (!loop_dev)
1266 		goto out_mem1;
1267 	memset(loop_dev, 0, max_loop * sizeof(struct loop_device));
1268 
1269 	disks = kmalloc(max_loop * sizeof(struct gendisk *), GFP_KERNEL);
1270 	if (!disks)
1271 		goto out_mem2;
1272 
1273 	for (i = 0; i < max_loop; i++) {
1274 		disks[i] = alloc_disk(1);
1275 		if (!disks[i])
1276 			goto out_mem3;
1277 	}
1278 
1279 	for (i = 0; i < max_loop; i++) {
1280 		struct loop_device *lo = &loop_dev[i];
1281 		struct gendisk *disk = disks[i];
1282 
1283 		memset(lo, 0, sizeof(*lo));
1284 		lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1285 		if (!lo->lo_queue)
1286 			goto out_mem4;
1287 		mutex_init(&lo->lo_ctl_mutex);
1288 		init_completion(&lo->lo_done);
1289 		init_completion(&lo->lo_bh_done);
1290 		lo->lo_number = i;
1291 		spin_lock_init(&lo->lo_lock);
1292 		disk->major = LOOP_MAJOR;
1293 		disk->first_minor = i;
1294 		disk->fops = &lo_fops;
1295 		sprintf(disk->disk_name, "loop%d", i);
1296 		disk->private_data = lo;
1297 		disk->queue = lo->lo_queue;
1298 	}
1299 
1300 	/* We cannot fail after we call this, so another loop!*/
1301 	for (i = 0; i < max_loop; i++)
1302 		add_disk(disks[i]);
1303 	printk(KERN_INFO "loop: loaded (max %d devices)\n", max_loop);
1304 	return 0;
1305 
1306 out_mem4:
1307 	while (i--)
1308 		blk_cleanup_queue(loop_dev[i].lo_queue);
1309 	i = max_loop;
1310 out_mem3:
1311 	while (i--)
1312 		put_disk(disks[i]);
1313 	kfree(disks);
1314 out_mem2:
1315 	kfree(loop_dev);
1316 out_mem1:
1317 	unregister_blkdev(LOOP_MAJOR, "loop");
1318 	printk(KERN_ERR "loop: ran out of memory\n");
1319 	return -ENOMEM;
1320 }
1321 
1322 static void loop_exit(void)
1323 {
1324 	int i;
1325 
1326 	for (i = 0; i < max_loop; i++) {
1327 		del_gendisk(disks[i]);
1328 		blk_cleanup_queue(loop_dev[i].lo_queue);
1329 		put_disk(disks[i]);
1330 	}
1331 	if (unregister_blkdev(LOOP_MAJOR, "loop"))
1332 		printk(KERN_WARNING "loop: cannot unregister blkdev\n");
1333 
1334 	kfree(disks);
1335 	kfree(loop_dev);
1336 }
1337 
1338 module_init(loop_init);
1339 module_exit(loop_exit);
1340 
1341 #ifndef MODULE
1342 static int __init max_loop_setup(char *str)
1343 {
1344 	max_loop = simple_strtol(str, NULL, 0);
1345 	return 1;
1346 }
1347 
1348 __setup("max_loop=", max_loop_setup);
1349 #endif
1350