xref: /linux-6.15/drivers/block/loop.c (revision 4dc7ccf7)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - [email protected] Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <[email protected]> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, [email protected]
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <[email protected]> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <[email protected]>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <[email protected]>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <[email protected]>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/loop.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/writeback.h>
71 #include <linux/buffer_head.h>		/* for invalidate_bdev() */
72 #include <linux/completion.h>
73 #include <linux/highmem.h>
74 #include <linux/kthread.h>
75 #include <linux/splice.h>
76 
77 #include <asm/uaccess.h>
78 
79 static LIST_HEAD(loop_devices);
80 static DEFINE_MUTEX(loop_devices_mutex);
81 
82 static int max_part;
83 static int part_shift;
84 
85 /*
86  * Transfer functions
87  */
88 static int transfer_none(struct loop_device *lo, int cmd,
89 			 struct page *raw_page, unsigned raw_off,
90 			 struct page *loop_page, unsigned loop_off,
91 			 int size, sector_t real_block)
92 {
93 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
94 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
95 
96 	if (cmd == READ)
97 		memcpy(loop_buf, raw_buf, size);
98 	else
99 		memcpy(raw_buf, loop_buf, size);
100 
101 	kunmap_atomic(raw_buf, KM_USER0);
102 	kunmap_atomic(loop_buf, KM_USER1);
103 	cond_resched();
104 	return 0;
105 }
106 
107 static int transfer_xor(struct loop_device *lo, int cmd,
108 			struct page *raw_page, unsigned raw_off,
109 			struct page *loop_page, unsigned loop_off,
110 			int size, sector_t real_block)
111 {
112 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
113 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
114 	char *in, *out, *key;
115 	int i, keysize;
116 
117 	if (cmd == READ) {
118 		in = raw_buf;
119 		out = loop_buf;
120 	} else {
121 		in = loop_buf;
122 		out = raw_buf;
123 	}
124 
125 	key = lo->lo_encrypt_key;
126 	keysize = lo->lo_encrypt_key_size;
127 	for (i = 0; i < size; i++)
128 		*out++ = *in++ ^ key[(i & 511) % keysize];
129 
130 	kunmap_atomic(raw_buf, KM_USER0);
131 	kunmap_atomic(loop_buf, KM_USER1);
132 	cond_resched();
133 	return 0;
134 }
135 
136 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
137 {
138 	if (unlikely(info->lo_encrypt_key_size <= 0))
139 		return -EINVAL;
140 	return 0;
141 }
142 
143 static struct loop_func_table none_funcs = {
144 	.number = LO_CRYPT_NONE,
145 	.transfer = transfer_none,
146 };
147 
148 static struct loop_func_table xor_funcs = {
149 	.number = LO_CRYPT_XOR,
150 	.transfer = transfer_xor,
151 	.init = xor_init
152 };
153 
154 /* xfer_funcs[0] is special - its release function is never called */
155 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
156 	&none_funcs,
157 	&xor_funcs
158 };
159 
160 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
161 {
162 	loff_t size, offset, loopsize;
163 
164 	/* Compute loopsize in bytes */
165 	size = i_size_read(file->f_mapping->host);
166 	offset = lo->lo_offset;
167 	loopsize = size - offset;
168 	if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
169 		loopsize = lo->lo_sizelimit;
170 
171 	/*
172 	 * Unfortunately, if we want to do I/O on the device,
173 	 * the number of 512-byte sectors has to fit into a sector_t.
174 	 */
175 	return loopsize >> 9;
176 }
177 
178 static int
179 figure_loop_size(struct loop_device *lo)
180 {
181 	loff_t size = get_loop_size(lo, lo->lo_backing_file);
182 	sector_t x = (sector_t)size;
183 
184 	if (unlikely((loff_t)x != size))
185 		return -EFBIG;
186 
187 	set_capacity(lo->lo_disk, x);
188 	return 0;
189 }
190 
191 static inline int
192 lo_do_transfer(struct loop_device *lo, int cmd,
193 	       struct page *rpage, unsigned roffs,
194 	       struct page *lpage, unsigned loffs,
195 	       int size, sector_t rblock)
196 {
197 	if (unlikely(!lo->transfer))
198 		return 0;
199 
200 	return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
201 }
202 
203 /**
204  * do_lo_send_aops - helper for writing data to a loop device
205  *
206  * This is the fast version for backing filesystems which implement the address
207  * space operations write_begin and write_end.
208  */
209 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
210 		loff_t pos, struct page *unused)
211 {
212 	struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
213 	struct address_space *mapping = file->f_mapping;
214 	pgoff_t index;
215 	unsigned offset, bv_offs;
216 	int len, ret;
217 
218 	mutex_lock(&mapping->host->i_mutex);
219 	index = pos >> PAGE_CACHE_SHIFT;
220 	offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
221 	bv_offs = bvec->bv_offset;
222 	len = bvec->bv_len;
223 	while (len > 0) {
224 		sector_t IV;
225 		unsigned size, copied;
226 		int transfer_result;
227 		struct page *page;
228 		void *fsdata;
229 
230 		IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
231 		size = PAGE_CACHE_SIZE - offset;
232 		if (size > len)
233 			size = len;
234 
235 		ret = pagecache_write_begin(file, mapping, pos, size, 0,
236 							&page, &fsdata);
237 		if (ret)
238 			goto fail;
239 
240 		transfer_result = lo_do_transfer(lo, WRITE, page, offset,
241 				bvec->bv_page, bv_offs, size, IV);
242 		copied = size;
243 		if (unlikely(transfer_result))
244 			copied = 0;
245 
246 		ret = pagecache_write_end(file, mapping, pos, size, copied,
247 							page, fsdata);
248 		if (ret < 0 || ret != copied)
249 			goto fail;
250 
251 		if (unlikely(transfer_result))
252 			goto fail;
253 
254 		bv_offs += copied;
255 		len -= copied;
256 		offset = 0;
257 		index++;
258 		pos += copied;
259 	}
260 	ret = 0;
261 out:
262 	mutex_unlock(&mapping->host->i_mutex);
263 	return ret;
264 fail:
265 	ret = -1;
266 	goto out;
267 }
268 
269 /**
270  * __do_lo_send_write - helper for writing data to a loop device
271  *
272  * This helper just factors out common code between do_lo_send_direct_write()
273  * and do_lo_send_write().
274  */
275 static int __do_lo_send_write(struct file *file,
276 		u8 *buf, const int len, loff_t pos)
277 {
278 	ssize_t bw;
279 	mm_segment_t old_fs = get_fs();
280 
281 	set_fs(get_ds());
282 	bw = file->f_op->write(file, buf, len, &pos);
283 	set_fs(old_fs);
284 	if (likely(bw == len))
285 		return 0;
286 	printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
287 			(unsigned long long)pos, len);
288 	if (bw >= 0)
289 		bw = -EIO;
290 	return bw;
291 }
292 
293 /**
294  * do_lo_send_direct_write - helper for writing data to a loop device
295  *
296  * This is the fast, non-transforming version for backing filesystems which do
297  * not implement the address space operations write_begin and write_end.
298  * It uses the write file operation which should be present on all writeable
299  * filesystems.
300  */
301 static int do_lo_send_direct_write(struct loop_device *lo,
302 		struct bio_vec *bvec, loff_t pos, struct page *page)
303 {
304 	ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
305 			kmap(bvec->bv_page) + bvec->bv_offset,
306 			bvec->bv_len, pos);
307 	kunmap(bvec->bv_page);
308 	cond_resched();
309 	return bw;
310 }
311 
312 /**
313  * do_lo_send_write - helper for writing data to a loop device
314  *
315  * This is the slow, transforming version for filesystems which do not
316  * implement the address space operations write_begin and write_end.  It
317  * uses the write file operation which should be present on all writeable
318  * filesystems.
319  *
320  * Using fops->write is slower than using aops->{prepare,commit}_write in the
321  * transforming case because we need to double buffer the data as we cannot do
322  * the transformations in place as we do not have direct access to the
323  * destination pages of the backing file.
324  */
325 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
326 		loff_t pos, struct page *page)
327 {
328 	int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
329 			bvec->bv_offset, bvec->bv_len, pos >> 9);
330 	if (likely(!ret))
331 		return __do_lo_send_write(lo->lo_backing_file,
332 				page_address(page), bvec->bv_len,
333 				pos);
334 	printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
335 			"length %i.\n", (unsigned long long)pos, bvec->bv_len);
336 	if (ret > 0)
337 		ret = -EIO;
338 	return ret;
339 }
340 
341 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
342 {
343 	int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
344 			struct page *page);
345 	struct bio_vec *bvec;
346 	struct page *page = NULL;
347 	int i, ret = 0;
348 
349 	do_lo_send = do_lo_send_aops;
350 	if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
351 		do_lo_send = do_lo_send_direct_write;
352 		if (lo->transfer != transfer_none) {
353 			page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
354 			if (unlikely(!page))
355 				goto fail;
356 			kmap(page);
357 			do_lo_send = do_lo_send_write;
358 		}
359 	}
360 	bio_for_each_segment(bvec, bio, i) {
361 		ret = do_lo_send(lo, bvec, pos, page);
362 		if (ret < 0)
363 			break;
364 		pos += bvec->bv_len;
365 	}
366 	if (page) {
367 		kunmap(page);
368 		__free_page(page);
369 	}
370 out:
371 	return ret;
372 fail:
373 	printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
374 	ret = -ENOMEM;
375 	goto out;
376 }
377 
378 struct lo_read_data {
379 	struct loop_device *lo;
380 	struct page *page;
381 	unsigned offset;
382 	int bsize;
383 };
384 
385 static int
386 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
387 		struct splice_desc *sd)
388 {
389 	struct lo_read_data *p = sd->u.data;
390 	struct loop_device *lo = p->lo;
391 	struct page *page = buf->page;
392 	sector_t IV;
393 	int size, ret;
394 
395 	ret = buf->ops->confirm(pipe, buf);
396 	if (unlikely(ret))
397 		return ret;
398 
399 	IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
400 							(buf->offset >> 9);
401 	size = sd->len;
402 	if (size > p->bsize)
403 		size = p->bsize;
404 
405 	if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
406 		printk(KERN_ERR "loop: transfer error block %ld\n",
407 		       page->index);
408 		size = -EINVAL;
409 	}
410 
411 	flush_dcache_page(p->page);
412 
413 	if (size > 0)
414 		p->offset += size;
415 
416 	return size;
417 }
418 
419 static int
420 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
421 {
422 	return __splice_from_pipe(pipe, sd, lo_splice_actor);
423 }
424 
425 static int
426 do_lo_receive(struct loop_device *lo,
427 	      struct bio_vec *bvec, int bsize, loff_t pos)
428 {
429 	struct lo_read_data cookie;
430 	struct splice_desc sd;
431 	struct file *file;
432 	long retval;
433 
434 	cookie.lo = lo;
435 	cookie.page = bvec->bv_page;
436 	cookie.offset = bvec->bv_offset;
437 	cookie.bsize = bsize;
438 
439 	sd.len = 0;
440 	sd.total_len = bvec->bv_len;
441 	sd.flags = 0;
442 	sd.pos = pos;
443 	sd.u.data = &cookie;
444 
445 	file = lo->lo_backing_file;
446 	retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
447 
448 	if (retval < 0)
449 		return retval;
450 
451 	return 0;
452 }
453 
454 static int
455 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
456 {
457 	struct bio_vec *bvec;
458 	int i, ret = 0;
459 
460 	bio_for_each_segment(bvec, bio, i) {
461 		ret = do_lo_receive(lo, bvec, bsize, pos);
462 		if (ret < 0)
463 			break;
464 		pos += bvec->bv_len;
465 	}
466 	return ret;
467 }
468 
469 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
470 {
471 	loff_t pos;
472 	int ret;
473 
474 	pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
475 
476 	if (bio_rw(bio) == WRITE) {
477 		bool barrier = bio_rw_flagged(bio, BIO_RW_BARRIER);
478 		struct file *file = lo->lo_backing_file;
479 
480 		if (barrier) {
481 			if (unlikely(!file->f_op->fsync)) {
482 				ret = -EOPNOTSUPP;
483 				goto out;
484 			}
485 
486 			ret = vfs_fsync(file, file->f_path.dentry, 0);
487 			if (unlikely(ret)) {
488 				ret = -EIO;
489 				goto out;
490 			}
491 		}
492 
493 		ret = lo_send(lo, bio, pos);
494 
495 		if (barrier && !ret) {
496 			ret = vfs_fsync(file, file->f_path.dentry, 0);
497 			if (unlikely(ret))
498 				ret = -EIO;
499 		}
500 	} else
501 		ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
502 
503 out:
504 	return ret;
505 }
506 
507 /*
508  * Add bio to back of pending list
509  */
510 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
511 {
512 	bio_list_add(&lo->lo_bio_list, bio);
513 }
514 
515 /*
516  * Grab first pending buffer
517  */
518 static struct bio *loop_get_bio(struct loop_device *lo)
519 {
520 	return bio_list_pop(&lo->lo_bio_list);
521 }
522 
523 static int loop_make_request(struct request_queue *q, struct bio *old_bio)
524 {
525 	struct loop_device *lo = q->queuedata;
526 	int rw = bio_rw(old_bio);
527 
528 	if (rw == READA)
529 		rw = READ;
530 
531 	BUG_ON(!lo || (rw != READ && rw != WRITE));
532 
533 	spin_lock_irq(&lo->lo_lock);
534 	if (lo->lo_state != Lo_bound)
535 		goto out;
536 	if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
537 		goto out;
538 	loop_add_bio(lo, old_bio);
539 	wake_up(&lo->lo_event);
540 	spin_unlock_irq(&lo->lo_lock);
541 	return 0;
542 
543 out:
544 	spin_unlock_irq(&lo->lo_lock);
545 	bio_io_error(old_bio);
546 	return 0;
547 }
548 
549 /*
550  * kick off io on the underlying address space
551  */
552 static void loop_unplug(struct request_queue *q)
553 {
554 	struct loop_device *lo = q->queuedata;
555 
556 	queue_flag_clear_unlocked(QUEUE_FLAG_PLUGGED, q);
557 	blk_run_address_space(lo->lo_backing_file->f_mapping);
558 }
559 
560 struct switch_request {
561 	struct file *file;
562 	struct completion wait;
563 };
564 
565 static void do_loop_switch(struct loop_device *, struct switch_request *);
566 
567 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
568 {
569 	if (unlikely(!bio->bi_bdev)) {
570 		do_loop_switch(lo, bio->bi_private);
571 		bio_put(bio);
572 	} else {
573 		int ret = do_bio_filebacked(lo, bio);
574 		bio_endio(bio, ret);
575 	}
576 }
577 
578 /*
579  * worker thread that handles reads/writes to file backed loop devices,
580  * to avoid blocking in our make_request_fn. it also does loop decrypting
581  * on reads for block backed loop, as that is too heavy to do from
582  * b_end_io context where irqs may be disabled.
583  *
584  * Loop explanation:  loop_clr_fd() sets lo_state to Lo_rundown before
585  * calling kthread_stop().  Therefore once kthread_should_stop() is
586  * true, make_request will not place any more requests.  Therefore
587  * once kthread_should_stop() is true and lo_bio is NULL, we are
588  * done with the loop.
589  */
590 static int loop_thread(void *data)
591 {
592 	struct loop_device *lo = data;
593 	struct bio *bio;
594 
595 	set_user_nice(current, -20);
596 
597 	while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) {
598 
599 		wait_event_interruptible(lo->lo_event,
600 				!bio_list_empty(&lo->lo_bio_list) ||
601 				kthread_should_stop());
602 
603 		if (bio_list_empty(&lo->lo_bio_list))
604 			continue;
605 		spin_lock_irq(&lo->lo_lock);
606 		bio = loop_get_bio(lo);
607 		spin_unlock_irq(&lo->lo_lock);
608 
609 		BUG_ON(!bio);
610 		loop_handle_bio(lo, bio);
611 	}
612 
613 	return 0;
614 }
615 
616 /*
617  * loop_switch performs the hard work of switching a backing store.
618  * First it needs to flush existing IO, it does this by sending a magic
619  * BIO down the pipe. The completion of this BIO does the actual switch.
620  */
621 static int loop_switch(struct loop_device *lo, struct file *file)
622 {
623 	struct switch_request w;
624 	struct bio *bio = bio_alloc(GFP_KERNEL, 0);
625 	if (!bio)
626 		return -ENOMEM;
627 	init_completion(&w.wait);
628 	w.file = file;
629 	bio->bi_private = &w;
630 	bio->bi_bdev = NULL;
631 	loop_make_request(lo->lo_queue, bio);
632 	wait_for_completion(&w.wait);
633 	return 0;
634 }
635 
636 /*
637  * Helper to flush the IOs in loop, but keeping loop thread running
638  */
639 static int loop_flush(struct loop_device *lo)
640 {
641 	/* loop not yet configured, no running thread, nothing to flush */
642 	if (!lo->lo_thread)
643 		return 0;
644 
645 	return loop_switch(lo, NULL);
646 }
647 
648 /*
649  * Do the actual switch; called from the BIO completion routine
650  */
651 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
652 {
653 	struct file *file = p->file;
654 	struct file *old_file = lo->lo_backing_file;
655 	struct address_space *mapping;
656 
657 	/* if no new file, only flush of queued bios requested */
658 	if (!file)
659 		goto out;
660 
661 	mapping = file->f_mapping;
662 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
663 	lo->lo_backing_file = file;
664 	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
665 		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
666 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
667 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
668 out:
669 	complete(&p->wait);
670 }
671 
672 
673 /*
674  * loop_change_fd switched the backing store of a loopback device to
675  * a new file. This is useful for operating system installers to free up
676  * the original file and in High Availability environments to switch to
677  * an alternative location for the content in case of server meltdown.
678  * This can only work if the loop device is used read-only, and if the
679  * new backing store is the same size and type as the old backing store.
680  */
681 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
682 			  unsigned int arg)
683 {
684 	struct file	*file, *old_file;
685 	struct inode	*inode;
686 	int		error;
687 
688 	error = -ENXIO;
689 	if (lo->lo_state != Lo_bound)
690 		goto out;
691 
692 	/* the loop device has to be read-only */
693 	error = -EINVAL;
694 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
695 		goto out;
696 
697 	error = -EBADF;
698 	file = fget(arg);
699 	if (!file)
700 		goto out;
701 
702 	inode = file->f_mapping->host;
703 	old_file = lo->lo_backing_file;
704 
705 	error = -EINVAL;
706 
707 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
708 		goto out_putf;
709 
710 	/* size of the new backing store needs to be the same */
711 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
712 		goto out_putf;
713 
714 	/* and ... switch */
715 	error = loop_switch(lo, file);
716 	if (error)
717 		goto out_putf;
718 
719 	fput(old_file);
720 	if (max_part > 0)
721 		ioctl_by_bdev(bdev, BLKRRPART, 0);
722 	return 0;
723 
724  out_putf:
725 	fput(file);
726  out:
727 	return error;
728 }
729 
730 static inline int is_loop_device(struct file *file)
731 {
732 	struct inode *i = file->f_mapping->host;
733 
734 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
735 }
736 
737 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
738 		       struct block_device *bdev, unsigned int arg)
739 {
740 	struct file	*file, *f;
741 	struct inode	*inode;
742 	struct address_space *mapping;
743 	unsigned lo_blocksize;
744 	int		lo_flags = 0;
745 	int		error;
746 	loff_t		size;
747 
748 	/* This is safe, since we have a reference from open(). */
749 	__module_get(THIS_MODULE);
750 
751 	error = -EBADF;
752 	file = fget(arg);
753 	if (!file)
754 		goto out;
755 
756 	error = -EBUSY;
757 	if (lo->lo_state != Lo_unbound)
758 		goto out_putf;
759 
760 	/* Avoid recursion */
761 	f = file;
762 	while (is_loop_device(f)) {
763 		struct loop_device *l;
764 
765 		if (f->f_mapping->host->i_bdev == bdev)
766 			goto out_putf;
767 
768 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
769 		if (l->lo_state == Lo_unbound) {
770 			error = -EINVAL;
771 			goto out_putf;
772 		}
773 		f = l->lo_backing_file;
774 	}
775 
776 	mapping = file->f_mapping;
777 	inode = mapping->host;
778 
779 	if (!(file->f_mode & FMODE_WRITE))
780 		lo_flags |= LO_FLAGS_READ_ONLY;
781 
782 	error = -EINVAL;
783 	if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
784 		const struct address_space_operations *aops = mapping->a_ops;
785 
786 		if (aops->write_begin)
787 			lo_flags |= LO_FLAGS_USE_AOPS;
788 		if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
789 			lo_flags |= LO_FLAGS_READ_ONLY;
790 
791 		lo_blocksize = S_ISBLK(inode->i_mode) ?
792 			inode->i_bdev->bd_block_size : PAGE_SIZE;
793 
794 		error = 0;
795 	} else {
796 		goto out_putf;
797 	}
798 
799 	size = get_loop_size(lo, file);
800 
801 	if ((loff_t)(sector_t)size != size) {
802 		error = -EFBIG;
803 		goto out_putf;
804 	}
805 
806 	if (!(mode & FMODE_WRITE))
807 		lo_flags |= LO_FLAGS_READ_ONLY;
808 
809 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
810 
811 	lo->lo_blocksize = lo_blocksize;
812 	lo->lo_device = bdev;
813 	lo->lo_flags = lo_flags;
814 	lo->lo_backing_file = file;
815 	lo->transfer = transfer_none;
816 	lo->ioctl = NULL;
817 	lo->lo_sizelimit = 0;
818 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
819 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
820 
821 	bio_list_init(&lo->lo_bio_list);
822 
823 	/*
824 	 * set queue make_request_fn, and add limits based on lower level
825 	 * device
826 	 */
827 	blk_queue_make_request(lo->lo_queue, loop_make_request);
828 	lo->lo_queue->queuedata = lo;
829 	lo->lo_queue->unplug_fn = loop_unplug;
830 
831 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
832 		blk_queue_ordered(lo->lo_queue, QUEUE_ORDERED_DRAIN, NULL);
833 
834 	set_capacity(lo->lo_disk, size);
835 	bd_set_size(bdev, size << 9);
836 
837 	set_blocksize(bdev, lo_blocksize);
838 
839 	lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
840 						lo->lo_number);
841 	if (IS_ERR(lo->lo_thread)) {
842 		error = PTR_ERR(lo->lo_thread);
843 		goto out_clr;
844 	}
845 	lo->lo_state = Lo_bound;
846 	wake_up_process(lo->lo_thread);
847 	if (max_part > 0)
848 		ioctl_by_bdev(bdev, BLKRRPART, 0);
849 	return 0;
850 
851 out_clr:
852 	lo->lo_thread = NULL;
853 	lo->lo_device = NULL;
854 	lo->lo_backing_file = NULL;
855 	lo->lo_flags = 0;
856 	set_capacity(lo->lo_disk, 0);
857 	invalidate_bdev(bdev);
858 	bd_set_size(bdev, 0);
859 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
860 	lo->lo_state = Lo_unbound;
861  out_putf:
862 	fput(file);
863  out:
864 	/* This is safe: open() is still holding a reference. */
865 	module_put(THIS_MODULE);
866 	return error;
867 }
868 
869 static int
870 loop_release_xfer(struct loop_device *lo)
871 {
872 	int err = 0;
873 	struct loop_func_table *xfer = lo->lo_encryption;
874 
875 	if (xfer) {
876 		if (xfer->release)
877 			err = xfer->release(lo);
878 		lo->transfer = NULL;
879 		lo->lo_encryption = NULL;
880 		module_put(xfer->owner);
881 	}
882 	return err;
883 }
884 
885 static int
886 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
887 	       const struct loop_info64 *i)
888 {
889 	int err = 0;
890 
891 	if (xfer) {
892 		struct module *owner = xfer->owner;
893 
894 		if (!try_module_get(owner))
895 			return -EINVAL;
896 		if (xfer->init)
897 			err = xfer->init(lo, i);
898 		if (err)
899 			module_put(owner);
900 		else
901 			lo->lo_encryption = xfer;
902 	}
903 	return err;
904 }
905 
906 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
907 {
908 	struct file *filp = lo->lo_backing_file;
909 	gfp_t gfp = lo->old_gfp_mask;
910 
911 	if (lo->lo_state != Lo_bound)
912 		return -ENXIO;
913 
914 	if (lo->lo_refcnt > 1)	/* we needed one fd for the ioctl */
915 		return -EBUSY;
916 
917 	if (filp == NULL)
918 		return -EINVAL;
919 
920 	spin_lock_irq(&lo->lo_lock);
921 	lo->lo_state = Lo_rundown;
922 	spin_unlock_irq(&lo->lo_lock);
923 
924 	kthread_stop(lo->lo_thread);
925 
926 	lo->lo_queue->unplug_fn = NULL;
927 	lo->lo_backing_file = NULL;
928 
929 	loop_release_xfer(lo);
930 	lo->transfer = NULL;
931 	lo->ioctl = NULL;
932 	lo->lo_device = NULL;
933 	lo->lo_encryption = NULL;
934 	lo->lo_offset = 0;
935 	lo->lo_sizelimit = 0;
936 	lo->lo_encrypt_key_size = 0;
937 	lo->lo_flags = 0;
938 	lo->lo_thread = NULL;
939 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
940 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
941 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
942 	if (bdev)
943 		invalidate_bdev(bdev);
944 	set_capacity(lo->lo_disk, 0);
945 	if (bdev)
946 		bd_set_size(bdev, 0);
947 	mapping_set_gfp_mask(filp->f_mapping, gfp);
948 	lo->lo_state = Lo_unbound;
949 	/* This is safe: open() is still holding a reference. */
950 	module_put(THIS_MODULE);
951 	if (max_part > 0 && bdev)
952 		ioctl_by_bdev(bdev, BLKRRPART, 0);
953 	mutex_unlock(&lo->lo_ctl_mutex);
954 	/*
955 	 * Need not hold lo_ctl_mutex to fput backing file.
956 	 * Calling fput holding lo_ctl_mutex triggers a circular
957 	 * lock dependency possibility warning as fput can take
958 	 * bd_mutex which is usually taken before lo_ctl_mutex.
959 	 */
960 	fput(filp);
961 	return 0;
962 }
963 
964 static int
965 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
966 {
967 	int err;
968 	struct loop_func_table *xfer;
969 	uid_t uid = current_uid();
970 
971 	if (lo->lo_encrypt_key_size &&
972 	    lo->lo_key_owner != uid &&
973 	    !capable(CAP_SYS_ADMIN))
974 		return -EPERM;
975 	if (lo->lo_state != Lo_bound)
976 		return -ENXIO;
977 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
978 		return -EINVAL;
979 
980 	err = loop_release_xfer(lo);
981 	if (err)
982 		return err;
983 
984 	if (info->lo_encrypt_type) {
985 		unsigned int type = info->lo_encrypt_type;
986 
987 		if (type >= MAX_LO_CRYPT)
988 			return -EINVAL;
989 		xfer = xfer_funcs[type];
990 		if (xfer == NULL)
991 			return -EINVAL;
992 	} else
993 		xfer = NULL;
994 
995 	err = loop_init_xfer(lo, xfer, info);
996 	if (err)
997 		return err;
998 
999 	if (lo->lo_offset != info->lo_offset ||
1000 	    lo->lo_sizelimit != info->lo_sizelimit) {
1001 		lo->lo_offset = info->lo_offset;
1002 		lo->lo_sizelimit = info->lo_sizelimit;
1003 		if (figure_loop_size(lo))
1004 			return -EFBIG;
1005 	}
1006 
1007 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1008 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1009 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1010 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1011 
1012 	if (!xfer)
1013 		xfer = &none_funcs;
1014 	lo->transfer = xfer->transfer;
1015 	lo->ioctl = xfer->ioctl;
1016 
1017 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1018 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1019 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1020 
1021 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1022 	lo->lo_init[0] = info->lo_init[0];
1023 	lo->lo_init[1] = info->lo_init[1];
1024 	if (info->lo_encrypt_key_size) {
1025 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1026 		       info->lo_encrypt_key_size);
1027 		lo->lo_key_owner = uid;
1028 	}
1029 
1030 	return 0;
1031 }
1032 
1033 static int
1034 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1035 {
1036 	struct file *file = lo->lo_backing_file;
1037 	struct kstat stat;
1038 	int error;
1039 
1040 	if (lo->lo_state != Lo_bound)
1041 		return -ENXIO;
1042 	error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1043 	if (error)
1044 		return error;
1045 	memset(info, 0, sizeof(*info));
1046 	info->lo_number = lo->lo_number;
1047 	info->lo_device = huge_encode_dev(stat.dev);
1048 	info->lo_inode = stat.ino;
1049 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1050 	info->lo_offset = lo->lo_offset;
1051 	info->lo_sizelimit = lo->lo_sizelimit;
1052 	info->lo_flags = lo->lo_flags;
1053 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1054 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1055 	info->lo_encrypt_type =
1056 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1057 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1058 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1059 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1060 		       lo->lo_encrypt_key_size);
1061 	}
1062 	return 0;
1063 }
1064 
1065 static void
1066 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1067 {
1068 	memset(info64, 0, sizeof(*info64));
1069 	info64->lo_number = info->lo_number;
1070 	info64->lo_device = info->lo_device;
1071 	info64->lo_inode = info->lo_inode;
1072 	info64->lo_rdevice = info->lo_rdevice;
1073 	info64->lo_offset = info->lo_offset;
1074 	info64->lo_sizelimit = 0;
1075 	info64->lo_encrypt_type = info->lo_encrypt_type;
1076 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1077 	info64->lo_flags = info->lo_flags;
1078 	info64->lo_init[0] = info->lo_init[0];
1079 	info64->lo_init[1] = info->lo_init[1];
1080 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1081 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1082 	else
1083 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1084 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1085 }
1086 
1087 static int
1088 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1089 {
1090 	memset(info, 0, sizeof(*info));
1091 	info->lo_number = info64->lo_number;
1092 	info->lo_device = info64->lo_device;
1093 	info->lo_inode = info64->lo_inode;
1094 	info->lo_rdevice = info64->lo_rdevice;
1095 	info->lo_offset = info64->lo_offset;
1096 	info->lo_encrypt_type = info64->lo_encrypt_type;
1097 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1098 	info->lo_flags = info64->lo_flags;
1099 	info->lo_init[0] = info64->lo_init[0];
1100 	info->lo_init[1] = info64->lo_init[1];
1101 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1102 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1103 	else
1104 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1105 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1106 
1107 	/* error in case values were truncated */
1108 	if (info->lo_device != info64->lo_device ||
1109 	    info->lo_rdevice != info64->lo_rdevice ||
1110 	    info->lo_inode != info64->lo_inode ||
1111 	    info->lo_offset != info64->lo_offset)
1112 		return -EOVERFLOW;
1113 
1114 	return 0;
1115 }
1116 
1117 static int
1118 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1119 {
1120 	struct loop_info info;
1121 	struct loop_info64 info64;
1122 
1123 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1124 		return -EFAULT;
1125 	loop_info64_from_old(&info, &info64);
1126 	return loop_set_status(lo, &info64);
1127 }
1128 
1129 static int
1130 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1131 {
1132 	struct loop_info64 info64;
1133 
1134 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1135 		return -EFAULT;
1136 	return loop_set_status(lo, &info64);
1137 }
1138 
1139 static int
1140 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1141 	struct loop_info info;
1142 	struct loop_info64 info64;
1143 	int err = 0;
1144 
1145 	if (!arg)
1146 		err = -EINVAL;
1147 	if (!err)
1148 		err = loop_get_status(lo, &info64);
1149 	if (!err)
1150 		err = loop_info64_to_old(&info64, &info);
1151 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1152 		err = -EFAULT;
1153 
1154 	return err;
1155 }
1156 
1157 static int
1158 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1159 	struct loop_info64 info64;
1160 	int err = 0;
1161 
1162 	if (!arg)
1163 		err = -EINVAL;
1164 	if (!err)
1165 		err = loop_get_status(lo, &info64);
1166 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1167 		err = -EFAULT;
1168 
1169 	return err;
1170 }
1171 
1172 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1173 {
1174 	int err;
1175 	sector_t sec;
1176 	loff_t sz;
1177 
1178 	err = -ENXIO;
1179 	if (unlikely(lo->lo_state != Lo_bound))
1180 		goto out;
1181 	err = figure_loop_size(lo);
1182 	if (unlikely(err))
1183 		goto out;
1184 	sec = get_capacity(lo->lo_disk);
1185 	/* the width of sector_t may be narrow for bit-shift */
1186 	sz = sec;
1187 	sz <<= 9;
1188 	mutex_lock(&bdev->bd_mutex);
1189 	bd_set_size(bdev, sz);
1190 	mutex_unlock(&bdev->bd_mutex);
1191 
1192  out:
1193 	return err;
1194 }
1195 
1196 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1197 	unsigned int cmd, unsigned long arg)
1198 {
1199 	struct loop_device *lo = bdev->bd_disk->private_data;
1200 	int err;
1201 
1202 	mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1203 	switch (cmd) {
1204 	case LOOP_SET_FD:
1205 		err = loop_set_fd(lo, mode, bdev, arg);
1206 		break;
1207 	case LOOP_CHANGE_FD:
1208 		err = loop_change_fd(lo, bdev, arg);
1209 		break;
1210 	case LOOP_CLR_FD:
1211 		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1212 		err = loop_clr_fd(lo, bdev);
1213 		if (!err)
1214 			goto out_unlocked;
1215 		break;
1216 	case LOOP_SET_STATUS:
1217 		err = loop_set_status_old(lo, (struct loop_info __user *) arg);
1218 		break;
1219 	case LOOP_GET_STATUS:
1220 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1221 		break;
1222 	case LOOP_SET_STATUS64:
1223 		err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
1224 		break;
1225 	case LOOP_GET_STATUS64:
1226 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1227 		break;
1228 	case LOOP_SET_CAPACITY:
1229 		err = -EPERM;
1230 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1231 			err = loop_set_capacity(lo, bdev);
1232 		break;
1233 	default:
1234 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1235 	}
1236 	mutex_unlock(&lo->lo_ctl_mutex);
1237 
1238 out_unlocked:
1239 	return err;
1240 }
1241 
1242 #ifdef CONFIG_COMPAT
1243 struct compat_loop_info {
1244 	compat_int_t	lo_number;      /* ioctl r/o */
1245 	compat_dev_t	lo_device;      /* ioctl r/o */
1246 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1247 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1248 	compat_int_t	lo_offset;
1249 	compat_int_t	lo_encrypt_type;
1250 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1251 	compat_int_t	lo_flags;       /* ioctl r/o */
1252 	char		lo_name[LO_NAME_SIZE];
1253 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1254 	compat_ulong_t	lo_init[2];
1255 	char		reserved[4];
1256 };
1257 
1258 /*
1259  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1260  * - noinlined to reduce stack space usage in main part of driver
1261  */
1262 static noinline int
1263 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1264 			struct loop_info64 *info64)
1265 {
1266 	struct compat_loop_info info;
1267 
1268 	if (copy_from_user(&info, arg, sizeof(info)))
1269 		return -EFAULT;
1270 
1271 	memset(info64, 0, sizeof(*info64));
1272 	info64->lo_number = info.lo_number;
1273 	info64->lo_device = info.lo_device;
1274 	info64->lo_inode = info.lo_inode;
1275 	info64->lo_rdevice = info.lo_rdevice;
1276 	info64->lo_offset = info.lo_offset;
1277 	info64->lo_sizelimit = 0;
1278 	info64->lo_encrypt_type = info.lo_encrypt_type;
1279 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1280 	info64->lo_flags = info.lo_flags;
1281 	info64->lo_init[0] = info.lo_init[0];
1282 	info64->lo_init[1] = info.lo_init[1];
1283 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1284 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1285 	else
1286 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1287 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1288 	return 0;
1289 }
1290 
1291 /*
1292  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1293  * - noinlined to reduce stack space usage in main part of driver
1294  */
1295 static noinline int
1296 loop_info64_to_compat(const struct loop_info64 *info64,
1297 		      struct compat_loop_info __user *arg)
1298 {
1299 	struct compat_loop_info info;
1300 
1301 	memset(&info, 0, sizeof(info));
1302 	info.lo_number = info64->lo_number;
1303 	info.lo_device = info64->lo_device;
1304 	info.lo_inode = info64->lo_inode;
1305 	info.lo_rdevice = info64->lo_rdevice;
1306 	info.lo_offset = info64->lo_offset;
1307 	info.lo_encrypt_type = info64->lo_encrypt_type;
1308 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1309 	info.lo_flags = info64->lo_flags;
1310 	info.lo_init[0] = info64->lo_init[0];
1311 	info.lo_init[1] = info64->lo_init[1];
1312 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1313 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1314 	else
1315 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1316 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1317 
1318 	/* error in case values were truncated */
1319 	if (info.lo_device != info64->lo_device ||
1320 	    info.lo_rdevice != info64->lo_rdevice ||
1321 	    info.lo_inode != info64->lo_inode ||
1322 	    info.lo_offset != info64->lo_offset ||
1323 	    info.lo_init[0] != info64->lo_init[0] ||
1324 	    info.lo_init[1] != info64->lo_init[1])
1325 		return -EOVERFLOW;
1326 
1327 	if (copy_to_user(arg, &info, sizeof(info)))
1328 		return -EFAULT;
1329 	return 0;
1330 }
1331 
1332 static int
1333 loop_set_status_compat(struct loop_device *lo,
1334 		       const struct compat_loop_info __user *arg)
1335 {
1336 	struct loop_info64 info64;
1337 	int ret;
1338 
1339 	ret = loop_info64_from_compat(arg, &info64);
1340 	if (ret < 0)
1341 		return ret;
1342 	return loop_set_status(lo, &info64);
1343 }
1344 
1345 static int
1346 loop_get_status_compat(struct loop_device *lo,
1347 		       struct compat_loop_info __user *arg)
1348 {
1349 	struct loop_info64 info64;
1350 	int err = 0;
1351 
1352 	if (!arg)
1353 		err = -EINVAL;
1354 	if (!err)
1355 		err = loop_get_status(lo, &info64);
1356 	if (!err)
1357 		err = loop_info64_to_compat(&info64, arg);
1358 	return err;
1359 }
1360 
1361 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1362 			   unsigned int cmd, unsigned long arg)
1363 {
1364 	struct loop_device *lo = bdev->bd_disk->private_data;
1365 	int err;
1366 
1367 	switch(cmd) {
1368 	case LOOP_SET_STATUS:
1369 		mutex_lock(&lo->lo_ctl_mutex);
1370 		err = loop_set_status_compat(
1371 			lo, (const struct compat_loop_info __user *) arg);
1372 		mutex_unlock(&lo->lo_ctl_mutex);
1373 		break;
1374 	case LOOP_GET_STATUS:
1375 		mutex_lock(&lo->lo_ctl_mutex);
1376 		err = loop_get_status_compat(
1377 			lo, (struct compat_loop_info __user *) arg);
1378 		mutex_unlock(&lo->lo_ctl_mutex);
1379 		break;
1380 	case LOOP_SET_CAPACITY:
1381 	case LOOP_CLR_FD:
1382 	case LOOP_GET_STATUS64:
1383 	case LOOP_SET_STATUS64:
1384 		arg = (unsigned long) compat_ptr(arg);
1385 	case LOOP_SET_FD:
1386 	case LOOP_CHANGE_FD:
1387 		err = lo_ioctl(bdev, mode, cmd, arg);
1388 		break;
1389 	default:
1390 		err = -ENOIOCTLCMD;
1391 		break;
1392 	}
1393 	return err;
1394 }
1395 #endif
1396 
1397 static int lo_open(struct block_device *bdev, fmode_t mode)
1398 {
1399 	struct loop_device *lo = bdev->bd_disk->private_data;
1400 
1401 	mutex_lock(&lo->lo_ctl_mutex);
1402 	lo->lo_refcnt++;
1403 	mutex_unlock(&lo->lo_ctl_mutex);
1404 
1405 	return 0;
1406 }
1407 
1408 static int lo_release(struct gendisk *disk, fmode_t mode)
1409 {
1410 	struct loop_device *lo = disk->private_data;
1411 	int err;
1412 
1413 	mutex_lock(&lo->lo_ctl_mutex);
1414 
1415 	if (--lo->lo_refcnt)
1416 		goto out;
1417 
1418 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1419 		/*
1420 		 * In autoclear mode, stop the loop thread
1421 		 * and remove configuration after last close.
1422 		 */
1423 		err = loop_clr_fd(lo, NULL);
1424 		if (!err)
1425 			goto out_unlocked;
1426 	} else {
1427 		/*
1428 		 * Otherwise keep thread (if running) and config,
1429 		 * but flush possible ongoing bios in thread.
1430 		 */
1431 		loop_flush(lo);
1432 	}
1433 
1434 out:
1435 	mutex_unlock(&lo->lo_ctl_mutex);
1436 out_unlocked:
1437 	return 0;
1438 }
1439 
1440 static const struct block_device_operations lo_fops = {
1441 	.owner =	THIS_MODULE,
1442 	.open =		lo_open,
1443 	.release =	lo_release,
1444 	.ioctl =	lo_ioctl,
1445 #ifdef CONFIG_COMPAT
1446 	.compat_ioctl =	lo_compat_ioctl,
1447 #endif
1448 };
1449 
1450 /*
1451  * And now the modules code and kernel interface.
1452  */
1453 static int max_loop;
1454 module_param(max_loop, int, 0);
1455 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1456 module_param(max_part, int, 0);
1457 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1458 MODULE_LICENSE("GPL");
1459 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1460 
1461 int loop_register_transfer(struct loop_func_table *funcs)
1462 {
1463 	unsigned int n = funcs->number;
1464 
1465 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1466 		return -EINVAL;
1467 	xfer_funcs[n] = funcs;
1468 	return 0;
1469 }
1470 
1471 int loop_unregister_transfer(int number)
1472 {
1473 	unsigned int n = number;
1474 	struct loop_device *lo;
1475 	struct loop_func_table *xfer;
1476 
1477 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1478 		return -EINVAL;
1479 
1480 	xfer_funcs[n] = NULL;
1481 
1482 	list_for_each_entry(lo, &loop_devices, lo_list) {
1483 		mutex_lock(&lo->lo_ctl_mutex);
1484 
1485 		if (lo->lo_encryption == xfer)
1486 			loop_release_xfer(lo);
1487 
1488 		mutex_unlock(&lo->lo_ctl_mutex);
1489 	}
1490 
1491 	return 0;
1492 }
1493 
1494 EXPORT_SYMBOL(loop_register_transfer);
1495 EXPORT_SYMBOL(loop_unregister_transfer);
1496 
1497 static struct loop_device *loop_alloc(int i)
1498 {
1499 	struct loop_device *lo;
1500 	struct gendisk *disk;
1501 
1502 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1503 	if (!lo)
1504 		goto out;
1505 
1506 	lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1507 	if (!lo->lo_queue)
1508 		goto out_free_dev;
1509 
1510 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1511 	if (!disk)
1512 		goto out_free_queue;
1513 
1514 	mutex_init(&lo->lo_ctl_mutex);
1515 	lo->lo_number		= i;
1516 	lo->lo_thread		= NULL;
1517 	init_waitqueue_head(&lo->lo_event);
1518 	spin_lock_init(&lo->lo_lock);
1519 	disk->major		= LOOP_MAJOR;
1520 	disk->first_minor	= i << part_shift;
1521 	disk->fops		= &lo_fops;
1522 	disk->private_data	= lo;
1523 	disk->queue		= lo->lo_queue;
1524 	sprintf(disk->disk_name, "loop%d", i);
1525 	return lo;
1526 
1527 out_free_queue:
1528 	blk_cleanup_queue(lo->lo_queue);
1529 out_free_dev:
1530 	kfree(lo);
1531 out:
1532 	return NULL;
1533 }
1534 
1535 static void loop_free(struct loop_device *lo)
1536 {
1537 	blk_cleanup_queue(lo->lo_queue);
1538 	put_disk(lo->lo_disk);
1539 	list_del(&lo->lo_list);
1540 	kfree(lo);
1541 }
1542 
1543 static struct loop_device *loop_init_one(int i)
1544 {
1545 	struct loop_device *lo;
1546 
1547 	list_for_each_entry(lo, &loop_devices, lo_list) {
1548 		if (lo->lo_number == i)
1549 			return lo;
1550 	}
1551 
1552 	lo = loop_alloc(i);
1553 	if (lo) {
1554 		add_disk(lo->lo_disk);
1555 		list_add_tail(&lo->lo_list, &loop_devices);
1556 	}
1557 	return lo;
1558 }
1559 
1560 static void loop_del_one(struct loop_device *lo)
1561 {
1562 	del_gendisk(lo->lo_disk);
1563 	loop_free(lo);
1564 }
1565 
1566 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1567 {
1568 	struct loop_device *lo;
1569 	struct kobject *kobj;
1570 
1571 	mutex_lock(&loop_devices_mutex);
1572 	lo = loop_init_one(dev & MINORMASK);
1573 	kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM);
1574 	mutex_unlock(&loop_devices_mutex);
1575 
1576 	*part = 0;
1577 	return kobj;
1578 }
1579 
1580 static int __init loop_init(void)
1581 {
1582 	int i, nr;
1583 	unsigned long range;
1584 	struct loop_device *lo, *next;
1585 
1586 	/*
1587 	 * loop module now has a feature to instantiate underlying device
1588 	 * structure on-demand, provided that there is an access dev node.
1589 	 * However, this will not work well with user space tool that doesn't
1590 	 * know about such "feature".  In order to not break any existing
1591 	 * tool, we do the following:
1592 	 *
1593 	 * (1) if max_loop is specified, create that many upfront, and this
1594 	 *     also becomes a hard limit.
1595 	 * (2) if max_loop is not specified, create 8 loop device on module
1596 	 *     load, user can further extend loop device by create dev node
1597 	 *     themselves and have kernel automatically instantiate actual
1598 	 *     device on-demand.
1599 	 */
1600 
1601 	part_shift = 0;
1602 	if (max_part > 0)
1603 		part_shift = fls(max_part);
1604 
1605 	if (max_loop > 1UL << (MINORBITS - part_shift))
1606 		return -EINVAL;
1607 
1608 	if (max_loop) {
1609 		nr = max_loop;
1610 		range = max_loop;
1611 	} else {
1612 		nr = 8;
1613 		range = 1UL << (MINORBITS - part_shift);
1614 	}
1615 
1616 	if (register_blkdev(LOOP_MAJOR, "loop"))
1617 		return -EIO;
1618 
1619 	for (i = 0; i < nr; i++) {
1620 		lo = loop_alloc(i);
1621 		if (!lo)
1622 			goto Enomem;
1623 		list_add_tail(&lo->lo_list, &loop_devices);
1624 	}
1625 
1626 	/* point of no return */
1627 
1628 	list_for_each_entry(lo, &loop_devices, lo_list)
1629 		add_disk(lo->lo_disk);
1630 
1631 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1632 				  THIS_MODULE, loop_probe, NULL, NULL);
1633 
1634 	printk(KERN_INFO "loop: module loaded\n");
1635 	return 0;
1636 
1637 Enomem:
1638 	printk(KERN_INFO "loop: out of memory\n");
1639 
1640 	list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1641 		loop_free(lo);
1642 
1643 	unregister_blkdev(LOOP_MAJOR, "loop");
1644 	return -ENOMEM;
1645 }
1646 
1647 static void __exit loop_exit(void)
1648 {
1649 	unsigned long range;
1650 	struct loop_device *lo, *next;
1651 
1652 	range = max_loop ? max_loop :  1UL << (MINORBITS - part_shift);
1653 
1654 	list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1655 		loop_del_one(lo);
1656 
1657 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1658 	unregister_blkdev(LOOP_MAJOR, "loop");
1659 }
1660 
1661 module_init(loop_init);
1662 module_exit(loop_exit);
1663 
1664 #ifndef MODULE
1665 static int __init max_loop_setup(char *str)
1666 {
1667 	max_loop = simple_strtol(str, NULL, 0);
1668 	return 1;
1669 }
1670 
1671 __setup("max_loop=", max_loop_setup);
1672 #endif
1673