1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 1993 by Theodore Ts'o. 4 */ 5 #include <linux/module.h> 6 #include <linux/moduleparam.h> 7 #include <linux/sched.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/file.h> 11 #include <linux/stat.h> 12 #include <linux/errno.h> 13 #include <linux/major.h> 14 #include <linux/wait.h> 15 #include <linux/blkpg.h> 16 #include <linux/init.h> 17 #include <linux/swap.h> 18 #include <linux/slab.h> 19 #include <linux/compat.h> 20 #include <linux/suspend.h> 21 #include <linux/freezer.h> 22 #include <linux/mutex.h> 23 #include <linux/writeback.h> 24 #include <linux/completion.h> 25 #include <linux/highmem.h> 26 #include <linux/splice.h> 27 #include <linux/sysfs.h> 28 #include <linux/miscdevice.h> 29 #include <linux/falloc.h> 30 #include <linux/uio.h> 31 #include <linux/ioprio.h> 32 #include <linux/blk-cgroup.h> 33 #include <linux/sched/mm.h> 34 #include <linux/statfs.h> 35 #include <linux/uaccess.h> 36 #include <linux/blk-mq.h> 37 #include <linux/spinlock.h> 38 #include <uapi/linux/loop.h> 39 40 /* Possible states of device */ 41 enum { 42 Lo_unbound, 43 Lo_bound, 44 Lo_rundown, 45 Lo_deleting, 46 }; 47 48 struct loop_device { 49 int lo_number; 50 loff_t lo_offset; 51 loff_t lo_sizelimit; 52 int lo_flags; 53 char lo_file_name[LO_NAME_SIZE]; 54 55 struct file *lo_backing_file; 56 unsigned int lo_min_dio_size; 57 struct block_device *lo_device; 58 59 gfp_t old_gfp_mask; 60 61 spinlock_t lo_lock; 62 int lo_state; 63 spinlock_t lo_work_lock; 64 struct workqueue_struct *workqueue; 65 struct work_struct rootcg_work; 66 struct list_head rootcg_cmd_list; 67 struct list_head idle_worker_list; 68 struct rb_root worker_tree; 69 struct timer_list timer; 70 bool sysfs_inited; 71 72 struct request_queue *lo_queue; 73 struct blk_mq_tag_set tag_set; 74 struct gendisk *lo_disk; 75 struct mutex lo_mutex; 76 bool idr_visible; 77 }; 78 79 struct loop_cmd { 80 struct list_head list_entry; 81 bool use_aio; /* use AIO interface to handle I/O */ 82 atomic_t ref; /* only for aio */ 83 long ret; 84 struct kiocb iocb; 85 struct bio_vec *bvec; 86 struct cgroup_subsys_state *blkcg_css; 87 struct cgroup_subsys_state *memcg_css; 88 }; 89 90 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ) 91 #define LOOP_DEFAULT_HW_Q_DEPTH 128 92 93 static DEFINE_IDR(loop_index_idr); 94 static DEFINE_MUTEX(loop_ctl_mutex); 95 static DEFINE_MUTEX(loop_validate_mutex); 96 97 /** 98 * loop_global_lock_killable() - take locks for safe loop_validate_file() test 99 * 100 * @lo: struct loop_device 101 * @global: true if @lo is about to bind another "struct loop_device", false otherwise 102 * 103 * Returns 0 on success, -EINTR otherwise. 104 * 105 * Since loop_validate_file() traverses on other "struct loop_device" if 106 * is_loop_device() is true, we need a global lock for serializing concurrent 107 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls. 108 */ 109 static int loop_global_lock_killable(struct loop_device *lo, bool global) 110 { 111 int err; 112 113 if (global) { 114 err = mutex_lock_killable(&loop_validate_mutex); 115 if (err) 116 return err; 117 } 118 err = mutex_lock_killable(&lo->lo_mutex); 119 if (err && global) 120 mutex_unlock(&loop_validate_mutex); 121 return err; 122 } 123 124 /** 125 * loop_global_unlock() - release locks taken by loop_global_lock_killable() 126 * 127 * @lo: struct loop_device 128 * @global: true if @lo was about to bind another "struct loop_device", false otherwise 129 */ 130 static void loop_global_unlock(struct loop_device *lo, bool global) 131 { 132 mutex_unlock(&lo->lo_mutex); 133 if (global) 134 mutex_unlock(&loop_validate_mutex); 135 } 136 137 static int max_part; 138 static int part_shift; 139 140 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 141 { 142 loff_t loopsize; 143 144 /* Compute loopsize in bytes */ 145 loopsize = i_size_read(file->f_mapping->host); 146 if (offset > 0) 147 loopsize -= offset; 148 /* offset is beyond i_size, weird but possible */ 149 if (loopsize < 0) 150 return 0; 151 152 if (sizelimit > 0 && sizelimit < loopsize) 153 loopsize = sizelimit; 154 /* 155 * Unfortunately, if we want to do I/O on the device, 156 * the number of 512-byte sectors has to fit into a sector_t. 157 */ 158 return loopsize >> 9; 159 } 160 161 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 162 { 163 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 164 } 165 166 /* 167 * We support direct I/O only if lo_offset is aligned with the logical I/O size 168 * of backing device, and the logical block size of loop is bigger than that of 169 * the backing device. 170 */ 171 static bool lo_can_use_dio(struct loop_device *lo) 172 { 173 if (!(lo->lo_backing_file->f_mode & FMODE_CAN_ODIRECT)) 174 return false; 175 if (queue_logical_block_size(lo->lo_queue) < lo->lo_min_dio_size) 176 return false; 177 if (lo->lo_offset & (lo->lo_min_dio_size - 1)) 178 return false; 179 return true; 180 } 181 182 /* 183 * Direct I/O can be enabled either by using an O_DIRECT file descriptor, or by 184 * passing in the LO_FLAGS_DIRECT_IO flag from userspace. It will be silently 185 * disabled when the device block size is too small or the offset is unaligned. 186 * 187 * loop_get_status will always report the effective LO_FLAGS_DIRECT_IO flag and 188 * not the originally passed in one. 189 */ 190 static inline void loop_update_dio(struct loop_device *lo) 191 { 192 lockdep_assert_held(&lo->lo_mutex); 193 WARN_ON_ONCE(lo->lo_state == Lo_bound && 194 lo->lo_queue->mq_freeze_depth == 0); 195 196 if ((lo->lo_flags & LO_FLAGS_DIRECT_IO) && !lo_can_use_dio(lo)) 197 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 198 } 199 200 /** 201 * loop_set_size() - sets device size and notifies userspace 202 * @lo: struct loop_device to set the size for 203 * @size: new size of the loop device 204 * 205 * Callers must validate that the size passed into this function fits into 206 * a sector_t, eg using loop_validate_size() 207 */ 208 static void loop_set_size(struct loop_device *lo, loff_t size) 209 { 210 if (!set_capacity_and_notify(lo->lo_disk, size)) 211 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 212 } 213 214 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) 215 { 216 struct iov_iter i; 217 ssize_t bw; 218 219 iov_iter_bvec(&i, ITER_SOURCE, bvec, 1, bvec->bv_len); 220 221 bw = vfs_iter_write(file, &i, ppos, 0); 222 223 if (likely(bw == bvec->bv_len)) 224 return 0; 225 226 printk_ratelimited(KERN_ERR 227 "loop: Write error at byte offset %llu, length %i.\n", 228 (unsigned long long)*ppos, bvec->bv_len); 229 if (bw >= 0) 230 bw = -EIO; 231 return bw; 232 } 233 234 static int lo_write_simple(struct loop_device *lo, struct request *rq, 235 loff_t pos) 236 { 237 struct bio_vec bvec; 238 struct req_iterator iter; 239 int ret = 0; 240 241 rq_for_each_segment(bvec, rq, iter) { 242 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); 243 if (ret < 0) 244 break; 245 cond_resched(); 246 } 247 248 return ret; 249 } 250 251 static int lo_read_simple(struct loop_device *lo, struct request *rq, 252 loff_t pos) 253 { 254 struct bio_vec bvec; 255 struct req_iterator iter; 256 struct iov_iter i; 257 ssize_t len; 258 259 rq_for_each_segment(bvec, rq, iter) { 260 iov_iter_bvec(&i, ITER_DEST, &bvec, 1, bvec.bv_len); 261 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 262 if (len < 0) 263 return len; 264 265 flush_dcache_page(bvec.bv_page); 266 267 if (len != bvec.bv_len) { 268 struct bio *bio; 269 270 __rq_for_each_bio(bio, rq) 271 zero_fill_bio(bio); 272 break; 273 } 274 cond_resched(); 275 } 276 277 return 0; 278 } 279 280 static void loop_clear_limits(struct loop_device *lo, int mode) 281 { 282 struct queue_limits lim = queue_limits_start_update(lo->lo_queue); 283 284 if (mode & FALLOC_FL_ZERO_RANGE) 285 lim.max_write_zeroes_sectors = 0; 286 287 if (mode & FALLOC_FL_PUNCH_HOLE) { 288 lim.max_hw_discard_sectors = 0; 289 lim.discard_granularity = 0; 290 } 291 292 /* 293 * XXX: this updates the queue limits without freezing the queue, which 294 * is against the locking protocol and dangerous. But we can't just 295 * freeze the queue as we're inside the ->queue_rq method here. So this 296 * should move out into a workqueue unless we get the file operations to 297 * advertise if they support specific fallocate operations. 298 */ 299 queue_limits_commit_update(lo->lo_queue, &lim); 300 } 301 302 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos, 303 int mode) 304 { 305 /* 306 * We use fallocate to manipulate the space mappings used by the image 307 * a.k.a. discard/zerorange. 308 */ 309 struct file *file = lo->lo_backing_file; 310 int ret; 311 312 mode |= FALLOC_FL_KEEP_SIZE; 313 314 if (!bdev_max_discard_sectors(lo->lo_device)) 315 return -EOPNOTSUPP; 316 317 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 318 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 319 return -EIO; 320 321 /* 322 * We initially configure the limits in a hope that fallocate is 323 * supported and clear them here if that turns out not to be true. 324 */ 325 if (unlikely(ret == -EOPNOTSUPP)) 326 loop_clear_limits(lo, mode); 327 328 return ret; 329 } 330 331 static int lo_req_flush(struct loop_device *lo, struct request *rq) 332 { 333 int ret = vfs_fsync(lo->lo_backing_file, 0); 334 if (unlikely(ret && ret != -EINVAL)) 335 ret = -EIO; 336 337 return ret; 338 } 339 340 static void lo_complete_rq(struct request *rq) 341 { 342 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 343 blk_status_t ret = BLK_STS_OK; 344 345 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 346 req_op(rq) != REQ_OP_READ) { 347 if (cmd->ret < 0) 348 ret = errno_to_blk_status(cmd->ret); 349 goto end_io; 350 } 351 352 /* 353 * Short READ - if we got some data, advance our request and 354 * retry it. If we got no data, end the rest with EIO. 355 */ 356 if (cmd->ret) { 357 blk_update_request(rq, BLK_STS_OK, cmd->ret); 358 cmd->ret = 0; 359 blk_mq_requeue_request(rq, true); 360 } else { 361 if (cmd->use_aio) { 362 struct bio *bio = rq->bio; 363 364 while (bio) { 365 zero_fill_bio(bio); 366 bio = bio->bi_next; 367 } 368 } 369 ret = BLK_STS_IOERR; 370 end_io: 371 blk_mq_end_request(rq, ret); 372 } 373 } 374 375 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 376 { 377 struct request *rq = blk_mq_rq_from_pdu(cmd); 378 379 if (!atomic_dec_and_test(&cmd->ref)) 380 return; 381 kfree(cmd->bvec); 382 cmd->bvec = NULL; 383 if (likely(!blk_should_fake_timeout(rq->q))) 384 blk_mq_complete_request(rq); 385 } 386 387 static void lo_rw_aio_complete(struct kiocb *iocb, long ret) 388 { 389 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 390 391 cmd->ret = ret; 392 lo_rw_aio_do_completion(cmd); 393 } 394 395 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 396 loff_t pos, int rw) 397 { 398 struct iov_iter iter; 399 struct req_iterator rq_iter; 400 struct bio_vec *bvec; 401 struct request *rq = blk_mq_rq_from_pdu(cmd); 402 struct bio *bio = rq->bio; 403 struct file *file = lo->lo_backing_file; 404 struct bio_vec tmp; 405 unsigned int offset; 406 int nr_bvec = 0; 407 int ret; 408 409 rq_for_each_bvec(tmp, rq, rq_iter) 410 nr_bvec++; 411 412 if (rq->bio != rq->biotail) { 413 414 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), 415 GFP_NOIO); 416 if (!bvec) 417 return -EIO; 418 cmd->bvec = bvec; 419 420 /* 421 * The bios of the request may be started from the middle of 422 * the 'bvec' because of bio splitting, so we can't directly 423 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec 424 * API will take care of all details for us. 425 */ 426 rq_for_each_bvec(tmp, rq, rq_iter) { 427 *bvec = tmp; 428 bvec++; 429 } 430 bvec = cmd->bvec; 431 offset = 0; 432 } else { 433 /* 434 * Same here, this bio may be started from the middle of the 435 * 'bvec' because of bio splitting, so offset from the bvec 436 * must be passed to iov iterator 437 */ 438 offset = bio->bi_iter.bi_bvec_done; 439 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 440 } 441 atomic_set(&cmd->ref, 2); 442 443 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); 444 iter.iov_offset = offset; 445 446 cmd->iocb.ki_pos = pos; 447 cmd->iocb.ki_filp = file; 448 cmd->iocb.ki_complete = lo_rw_aio_complete; 449 cmd->iocb.ki_flags = IOCB_DIRECT; 450 cmd->iocb.ki_ioprio = req_get_ioprio(rq); 451 452 if (rw == ITER_SOURCE) 453 ret = file->f_op->write_iter(&cmd->iocb, &iter); 454 else 455 ret = file->f_op->read_iter(&cmd->iocb, &iter); 456 457 lo_rw_aio_do_completion(cmd); 458 459 if (ret != -EIOCBQUEUED) 460 lo_rw_aio_complete(&cmd->iocb, ret); 461 return 0; 462 } 463 464 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 465 { 466 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 467 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 468 469 /* 470 * lo_write_simple and lo_read_simple should have been covered 471 * by io submit style function like lo_rw_aio(), one blocker 472 * is that lo_read_simple() need to call flush_dcache_page after 473 * the page is written from kernel, and it isn't easy to handle 474 * this in io submit style function which submits all segments 475 * of the req at one time. And direct read IO doesn't need to 476 * run flush_dcache_page(). 477 */ 478 switch (req_op(rq)) { 479 case REQ_OP_FLUSH: 480 return lo_req_flush(lo, rq); 481 case REQ_OP_WRITE_ZEROES: 482 /* 483 * If the caller doesn't want deallocation, call zeroout to 484 * write zeroes the range. Otherwise, punch them out. 485 */ 486 return lo_fallocate(lo, rq, pos, 487 (rq->cmd_flags & REQ_NOUNMAP) ? 488 FALLOC_FL_ZERO_RANGE : 489 FALLOC_FL_PUNCH_HOLE); 490 case REQ_OP_DISCARD: 491 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE); 492 case REQ_OP_WRITE: 493 if (cmd->use_aio) 494 return lo_rw_aio(lo, cmd, pos, ITER_SOURCE); 495 else 496 return lo_write_simple(lo, rq, pos); 497 case REQ_OP_READ: 498 if (cmd->use_aio) 499 return lo_rw_aio(lo, cmd, pos, ITER_DEST); 500 else 501 return lo_read_simple(lo, rq, pos); 502 default: 503 WARN_ON_ONCE(1); 504 return -EIO; 505 } 506 } 507 508 static void loop_reread_partitions(struct loop_device *lo) 509 { 510 int rc; 511 512 mutex_lock(&lo->lo_disk->open_mutex); 513 rc = bdev_disk_changed(lo->lo_disk, false); 514 mutex_unlock(&lo->lo_disk->open_mutex); 515 if (rc) 516 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 517 __func__, lo->lo_number, lo->lo_file_name, rc); 518 } 519 520 static unsigned int loop_query_min_dio_size(struct loop_device *lo) 521 { 522 struct file *file = lo->lo_backing_file; 523 struct block_device *sb_bdev = file->f_mapping->host->i_sb->s_bdev; 524 struct kstat st; 525 526 /* 527 * Use the minimal dio alignment of the file system if provided. 528 */ 529 if (!vfs_getattr(&file->f_path, &st, STATX_DIOALIGN, 0) && 530 (st.result_mask & STATX_DIOALIGN)) 531 return st.dio_offset_align; 532 533 /* 534 * In a perfect world this wouldn't be needed, but as of Linux 6.13 only 535 * a handful of file systems support the STATX_DIOALIGN flag. 536 */ 537 if (sb_bdev) 538 return bdev_logical_block_size(sb_bdev); 539 return SECTOR_SIZE; 540 } 541 542 static inline int is_loop_device(struct file *file) 543 { 544 struct inode *i = file->f_mapping->host; 545 546 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR; 547 } 548 549 static int loop_validate_file(struct file *file, struct block_device *bdev) 550 { 551 struct inode *inode = file->f_mapping->host; 552 struct file *f = file; 553 554 /* Avoid recursion */ 555 while (is_loop_device(f)) { 556 struct loop_device *l; 557 558 lockdep_assert_held(&loop_validate_mutex); 559 if (f->f_mapping->host->i_rdev == bdev->bd_dev) 560 return -EBADF; 561 562 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data; 563 if (l->lo_state != Lo_bound) 564 return -EINVAL; 565 /* Order wrt setting lo->lo_backing_file in loop_configure(). */ 566 rmb(); 567 f = l->lo_backing_file; 568 } 569 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 570 return -EINVAL; 571 return 0; 572 } 573 574 static void loop_assign_backing_file(struct loop_device *lo, struct file *file) 575 { 576 lo->lo_backing_file = file; 577 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 578 mapping_set_gfp_mask(file->f_mapping, 579 lo->old_gfp_mask & ~(__GFP_IO | __GFP_FS)); 580 if (lo->lo_backing_file->f_flags & O_DIRECT) 581 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 582 lo->lo_min_dio_size = loop_query_min_dio_size(lo); 583 } 584 585 /* 586 * loop_change_fd switched the backing store of a loopback device to 587 * a new file. This is useful for operating system installers to free up 588 * the original file and in High Availability environments to switch to 589 * an alternative location for the content in case of server meltdown. 590 * This can only work if the loop device is used read-only, and if the 591 * new backing store is the same size and type as the old backing store. 592 */ 593 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 594 unsigned int arg) 595 { 596 struct file *file = fget(arg); 597 struct file *old_file; 598 unsigned int memflags; 599 int error; 600 bool partscan; 601 bool is_loop; 602 603 if (!file) 604 return -EBADF; 605 606 /* suppress uevents while reconfiguring the device */ 607 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 608 609 is_loop = is_loop_device(file); 610 error = loop_global_lock_killable(lo, is_loop); 611 if (error) 612 goto out_putf; 613 error = -ENXIO; 614 if (lo->lo_state != Lo_bound) 615 goto out_err; 616 617 /* the loop device has to be read-only */ 618 error = -EINVAL; 619 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 620 goto out_err; 621 622 error = loop_validate_file(file, bdev); 623 if (error) 624 goto out_err; 625 626 old_file = lo->lo_backing_file; 627 628 error = -EINVAL; 629 630 /* size of the new backing store needs to be the same */ 631 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 632 goto out_err; 633 634 /* 635 * We might switch to direct I/O mode for the loop device, write back 636 * all dirty data the page cache now that so that the individual I/O 637 * operations don't have to do that. 638 */ 639 vfs_fsync(file, 0); 640 641 /* and ... switch */ 642 disk_force_media_change(lo->lo_disk); 643 memflags = blk_mq_freeze_queue(lo->lo_queue); 644 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 645 loop_assign_backing_file(lo, file); 646 loop_update_dio(lo); 647 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 648 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 649 loop_global_unlock(lo, is_loop); 650 651 /* 652 * Flush loop_validate_file() before fput(), for l->lo_backing_file 653 * might be pointing at old_file which might be the last reference. 654 */ 655 if (!is_loop) { 656 mutex_lock(&loop_validate_mutex); 657 mutex_unlock(&loop_validate_mutex); 658 } 659 /* 660 * We must drop file reference outside of lo_mutex as dropping 661 * the file ref can take open_mutex which creates circular locking 662 * dependency. 663 */ 664 fput(old_file); 665 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 666 if (partscan) 667 loop_reread_partitions(lo); 668 669 error = 0; 670 done: 671 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 672 return error; 673 674 out_err: 675 loop_global_unlock(lo, is_loop); 676 out_putf: 677 fput(file); 678 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 679 goto done; 680 } 681 682 /* loop sysfs attributes */ 683 684 static ssize_t loop_attr_show(struct device *dev, char *page, 685 ssize_t (*callback)(struct loop_device *, char *)) 686 { 687 struct gendisk *disk = dev_to_disk(dev); 688 struct loop_device *lo = disk->private_data; 689 690 return callback(lo, page); 691 } 692 693 #define LOOP_ATTR_RO(_name) \ 694 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 695 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 696 struct device_attribute *attr, char *b) \ 697 { \ 698 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 699 } \ 700 static struct device_attribute loop_attr_##_name = \ 701 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 702 703 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 704 { 705 ssize_t ret; 706 char *p = NULL; 707 708 spin_lock_irq(&lo->lo_lock); 709 if (lo->lo_backing_file) 710 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 711 spin_unlock_irq(&lo->lo_lock); 712 713 if (IS_ERR_OR_NULL(p)) 714 ret = PTR_ERR(p); 715 else { 716 ret = strlen(p); 717 memmove(buf, p, ret); 718 buf[ret++] = '\n'; 719 buf[ret] = 0; 720 } 721 722 return ret; 723 } 724 725 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 726 { 727 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset); 728 } 729 730 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 731 { 732 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 733 } 734 735 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 736 { 737 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 738 739 return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0"); 740 } 741 742 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 743 { 744 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 745 746 return sysfs_emit(buf, "%s\n", partscan ? "1" : "0"); 747 } 748 749 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 750 { 751 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 752 753 return sysfs_emit(buf, "%s\n", dio ? "1" : "0"); 754 } 755 756 LOOP_ATTR_RO(backing_file); 757 LOOP_ATTR_RO(offset); 758 LOOP_ATTR_RO(sizelimit); 759 LOOP_ATTR_RO(autoclear); 760 LOOP_ATTR_RO(partscan); 761 LOOP_ATTR_RO(dio); 762 763 static struct attribute *loop_attrs[] = { 764 &loop_attr_backing_file.attr, 765 &loop_attr_offset.attr, 766 &loop_attr_sizelimit.attr, 767 &loop_attr_autoclear.attr, 768 &loop_attr_partscan.attr, 769 &loop_attr_dio.attr, 770 NULL, 771 }; 772 773 static struct attribute_group loop_attribute_group = { 774 .name = "loop", 775 .attrs= loop_attrs, 776 }; 777 778 static void loop_sysfs_init(struct loop_device *lo) 779 { 780 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 781 &loop_attribute_group); 782 } 783 784 static void loop_sysfs_exit(struct loop_device *lo) 785 { 786 if (lo->sysfs_inited) 787 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 788 &loop_attribute_group); 789 } 790 791 static void loop_get_discard_config(struct loop_device *lo, 792 u32 *granularity, u32 *max_discard_sectors) 793 { 794 struct file *file = lo->lo_backing_file; 795 struct inode *inode = file->f_mapping->host; 796 struct kstatfs sbuf; 797 798 /* 799 * If the backing device is a block device, mirror its zeroing 800 * capability. Set the discard sectors to the block device's zeroing 801 * capabilities because loop discards result in blkdev_issue_zeroout(), 802 * not blkdev_issue_discard(). This maintains consistent behavior with 803 * file-backed loop devices: discarded regions read back as zero. 804 */ 805 if (S_ISBLK(inode->i_mode)) { 806 struct block_device *bdev = I_BDEV(inode); 807 808 *max_discard_sectors = bdev_write_zeroes_sectors(bdev); 809 *granularity = bdev_discard_granularity(bdev); 810 811 /* 812 * We use punch hole to reclaim the free space used by the 813 * image a.k.a. discard. 814 */ 815 } else if (file->f_op->fallocate && !vfs_statfs(&file->f_path, &sbuf)) { 816 *max_discard_sectors = UINT_MAX >> 9; 817 *granularity = sbuf.f_bsize; 818 } 819 } 820 821 struct loop_worker { 822 struct rb_node rb_node; 823 struct work_struct work; 824 struct list_head cmd_list; 825 struct list_head idle_list; 826 struct loop_device *lo; 827 struct cgroup_subsys_state *blkcg_css; 828 unsigned long last_ran_at; 829 }; 830 831 static void loop_workfn(struct work_struct *work); 832 833 #ifdef CONFIG_BLK_CGROUP 834 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 835 { 836 return !css || css == blkcg_root_css; 837 } 838 #else 839 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 840 { 841 return !css; 842 } 843 #endif 844 845 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd) 846 { 847 struct rb_node **node, *parent = NULL; 848 struct loop_worker *cur_worker, *worker = NULL; 849 struct work_struct *work; 850 struct list_head *cmd_list; 851 852 spin_lock_irq(&lo->lo_work_lock); 853 854 if (queue_on_root_worker(cmd->blkcg_css)) 855 goto queue_work; 856 857 node = &lo->worker_tree.rb_node; 858 859 while (*node) { 860 parent = *node; 861 cur_worker = container_of(*node, struct loop_worker, rb_node); 862 if (cur_worker->blkcg_css == cmd->blkcg_css) { 863 worker = cur_worker; 864 break; 865 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) { 866 node = &(*node)->rb_left; 867 } else { 868 node = &(*node)->rb_right; 869 } 870 } 871 if (worker) 872 goto queue_work; 873 874 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN); 875 /* 876 * In the event we cannot allocate a worker, just queue on the 877 * rootcg worker and issue the I/O as the rootcg 878 */ 879 if (!worker) { 880 cmd->blkcg_css = NULL; 881 if (cmd->memcg_css) 882 css_put(cmd->memcg_css); 883 cmd->memcg_css = NULL; 884 goto queue_work; 885 } 886 887 worker->blkcg_css = cmd->blkcg_css; 888 css_get(worker->blkcg_css); 889 INIT_WORK(&worker->work, loop_workfn); 890 INIT_LIST_HEAD(&worker->cmd_list); 891 INIT_LIST_HEAD(&worker->idle_list); 892 worker->lo = lo; 893 rb_link_node(&worker->rb_node, parent, node); 894 rb_insert_color(&worker->rb_node, &lo->worker_tree); 895 queue_work: 896 if (worker) { 897 /* 898 * We need to remove from the idle list here while 899 * holding the lock so that the idle timer doesn't 900 * free the worker 901 */ 902 if (!list_empty(&worker->idle_list)) 903 list_del_init(&worker->idle_list); 904 work = &worker->work; 905 cmd_list = &worker->cmd_list; 906 } else { 907 work = &lo->rootcg_work; 908 cmd_list = &lo->rootcg_cmd_list; 909 } 910 list_add_tail(&cmd->list_entry, cmd_list); 911 queue_work(lo->workqueue, work); 912 spin_unlock_irq(&lo->lo_work_lock); 913 } 914 915 static void loop_set_timer(struct loop_device *lo) 916 { 917 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT); 918 } 919 920 static void loop_free_idle_workers(struct loop_device *lo, bool delete_all) 921 { 922 struct loop_worker *pos, *worker; 923 924 spin_lock_irq(&lo->lo_work_lock); 925 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list, 926 idle_list) { 927 if (!delete_all && 928 time_is_after_jiffies(worker->last_ran_at + 929 LOOP_IDLE_WORKER_TIMEOUT)) 930 break; 931 list_del(&worker->idle_list); 932 rb_erase(&worker->rb_node, &lo->worker_tree); 933 css_put(worker->blkcg_css); 934 kfree(worker); 935 } 936 if (!list_empty(&lo->idle_worker_list)) 937 loop_set_timer(lo); 938 spin_unlock_irq(&lo->lo_work_lock); 939 } 940 941 static void loop_free_idle_workers_timer(struct timer_list *timer) 942 { 943 struct loop_device *lo = container_of(timer, struct loop_device, timer); 944 945 return loop_free_idle_workers(lo, false); 946 } 947 948 /** 949 * loop_set_status_from_info - configure device from loop_info 950 * @lo: struct loop_device to configure 951 * @info: struct loop_info64 to configure the device with 952 * 953 * Configures the loop device parameters according to the passed 954 * in loop_info64 configuration. 955 */ 956 static int 957 loop_set_status_from_info(struct loop_device *lo, 958 const struct loop_info64 *info) 959 { 960 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 961 return -EINVAL; 962 963 switch (info->lo_encrypt_type) { 964 case LO_CRYPT_NONE: 965 break; 966 case LO_CRYPT_XOR: 967 pr_warn("support for the xor transformation has been removed.\n"); 968 return -EINVAL; 969 case LO_CRYPT_CRYPTOAPI: 970 pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n"); 971 return -EINVAL; 972 default: 973 return -EINVAL; 974 } 975 976 /* Avoid assigning overflow values */ 977 if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX) 978 return -EOVERFLOW; 979 980 lo->lo_offset = info->lo_offset; 981 lo->lo_sizelimit = info->lo_sizelimit; 982 983 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 984 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 985 return 0; 986 } 987 988 static unsigned int loop_default_blocksize(struct loop_device *lo) 989 { 990 /* In case of direct I/O, match underlying minimum I/O size */ 991 if (lo->lo_flags & LO_FLAGS_DIRECT_IO) 992 return lo->lo_min_dio_size; 993 return SECTOR_SIZE; 994 } 995 996 static void loop_update_limits(struct loop_device *lo, struct queue_limits *lim, 997 unsigned int bsize) 998 { 999 struct file *file = lo->lo_backing_file; 1000 struct inode *inode = file->f_mapping->host; 1001 struct block_device *backing_bdev = NULL; 1002 u32 granularity = 0, max_discard_sectors = 0; 1003 1004 if (S_ISBLK(inode->i_mode)) 1005 backing_bdev = I_BDEV(inode); 1006 else if (inode->i_sb->s_bdev) 1007 backing_bdev = inode->i_sb->s_bdev; 1008 1009 if (!bsize) 1010 bsize = loop_default_blocksize(lo); 1011 1012 loop_get_discard_config(lo, &granularity, &max_discard_sectors); 1013 1014 lim->logical_block_size = bsize; 1015 lim->physical_block_size = bsize; 1016 lim->io_min = bsize; 1017 lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_ROTATIONAL); 1018 if (file->f_op->fsync && !(lo->lo_flags & LO_FLAGS_READ_ONLY)) 1019 lim->features |= BLK_FEAT_WRITE_CACHE; 1020 if (backing_bdev && !bdev_nonrot(backing_bdev)) 1021 lim->features |= BLK_FEAT_ROTATIONAL; 1022 lim->max_hw_discard_sectors = max_discard_sectors; 1023 lim->max_write_zeroes_sectors = max_discard_sectors; 1024 if (max_discard_sectors) 1025 lim->discard_granularity = granularity; 1026 else 1027 lim->discard_granularity = 0; 1028 } 1029 1030 static int loop_configure(struct loop_device *lo, blk_mode_t mode, 1031 struct block_device *bdev, 1032 const struct loop_config *config) 1033 { 1034 struct file *file = fget(config->fd); 1035 struct queue_limits lim; 1036 int error; 1037 loff_t size; 1038 bool partscan; 1039 bool is_loop; 1040 1041 if (!file) 1042 return -EBADF; 1043 is_loop = is_loop_device(file); 1044 1045 /* This is safe, since we have a reference from open(). */ 1046 __module_get(THIS_MODULE); 1047 1048 /* 1049 * If we don't hold exclusive handle for the device, upgrade to it 1050 * here to avoid changing device under exclusive owner. 1051 */ 1052 if (!(mode & BLK_OPEN_EXCL)) { 1053 error = bd_prepare_to_claim(bdev, loop_configure, NULL); 1054 if (error) 1055 goto out_putf; 1056 } 1057 1058 error = loop_global_lock_killable(lo, is_loop); 1059 if (error) 1060 goto out_bdev; 1061 1062 error = -EBUSY; 1063 if (lo->lo_state != Lo_unbound) 1064 goto out_unlock; 1065 1066 error = loop_validate_file(file, bdev); 1067 if (error) 1068 goto out_unlock; 1069 1070 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) { 1071 error = -EINVAL; 1072 goto out_unlock; 1073 } 1074 1075 error = loop_set_status_from_info(lo, &config->info); 1076 if (error) 1077 goto out_unlock; 1078 lo->lo_flags = config->info.lo_flags; 1079 1080 if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) || 1081 !file->f_op->write_iter) 1082 lo->lo_flags |= LO_FLAGS_READ_ONLY; 1083 1084 if (!lo->workqueue) { 1085 lo->workqueue = alloc_workqueue("loop%d", 1086 WQ_UNBOUND | WQ_FREEZABLE, 1087 0, lo->lo_number); 1088 if (!lo->workqueue) { 1089 error = -ENOMEM; 1090 goto out_unlock; 1091 } 1092 } 1093 1094 /* suppress uevents while reconfiguring the device */ 1095 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 1096 1097 disk_force_media_change(lo->lo_disk); 1098 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0); 1099 1100 lo->lo_device = bdev; 1101 loop_assign_backing_file(lo, file); 1102 1103 lim = queue_limits_start_update(lo->lo_queue); 1104 loop_update_limits(lo, &lim, config->block_size); 1105 /* No need to freeze the queue as the device isn't bound yet. */ 1106 error = queue_limits_commit_update(lo->lo_queue, &lim); 1107 if (error) 1108 goto out_unlock; 1109 1110 /* 1111 * We might switch to direct I/O mode for the loop device, write back 1112 * all dirty data the page cache now that so that the individual I/O 1113 * operations don't have to do that. 1114 */ 1115 vfs_fsync(file, 0); 1116 1117 loop_update_dio(lo); 1118 loop_sysfs_init(lo); 1119 1120 size = get_loop_size(lo, file); 1121 loop_set_size(lo, size); 1122 1123 /* Order wrt reading lo_state in loop_validate_file(). */ 1124 wmb(); 1125 1126 lo->lo_state = Lo_bound; 1127 if (part_shift) 1128 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1129 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 1130 if (partscan) 1131 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1132 1133 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 1134 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 1135 1136 loop_global_unlock(lo, is_loop); 1137 if (partscan) 1138 loop_reread_partitions(lo); 1139 1140 if (!(mode & BLK_OPEN_EXCL)) 1141 bd_abort_claiming(bdev, loop_configure); 1142 1143 return 0; 1144 1145 out_unlock: 1146 loop_global_unlock(lo, is_loop); 1147 out_bdev: 1148 if (!(mode & BLK_OPEN_EXCL)) 1149 bd_abort_claiming(bdev, loop_configure); 1150 out_putf: 1151 fput(file); 1152 /* This is safe: open() is still holding a reference. */ 1153 module_put(THIS_MODULE); 1154 return error; 1155 } 1156 1157 static void __loop_clr_fd(struct loop_device *lo) 1158 { 1159 struct queue_limits lim; 1160 struct file *filp; 1161 gfp_t gfp = lo->old_gfp_mask; 1162 1163 spin_lock_irq(&lo->lo_lock); 1164 filp = lo->lo_backing_file; 1165 lo->lo_backing_file = NULL; 1166 spin_unlock_irq(&lo->lo_lock); 1167 1168 lo->lo_device = NULL; 1169 lo->lo_offset = 0; 1170 lo->lo_sizelimit = 0; 1171 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1172 1173 /* 1174 * Reset the block size to the default. 1175 * 1176 * No queue freezing needed because this is called from the final 1177 * ->release call only, so there can't be any outstanding I/O. 1178 */ 1179 lim = queue_limits_start_update(lo->lo_queue); 1180 lim.logical_block_size = SECTOR_SIZE; 1181 lim.physical_block_size = SECTOR_SIZE; 1182 lim.io_min = SECTOR_SIZE; 1183 queue_limits_commit_update(lo->lo_queue, &lim); 1184 1185 invalidate_disk(lo->lo_disk); 1186 loop_sysfs_exit(lo); 1187 /* let user-space know about this change */ 1188 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 1189 mapping_set_gfp_mask(filp->f_mapping, gfp); 1190 /* This is safe: open() is still holding a reference. */ 1191 module_put(THIS_MODULE); 1192 1193 disk_force_media_change(lo->lo_disk); 1194 1195 if (lo->lo_flags & LO_FLAGS_PARTSCAN) { 1196 int err; 1197 1198 /* 1199 * open_mutex has been held already in release path, so don't 1200 * acquire it if this function is called in such case. 1201 * 1202 * If the reread partition isn't from release path, lo_refcnt 1203 * must be at least one and it can only become zero when the 1204 * current holder is released. 1205 */ 1206 err = bdev_disk_changed(lo->lo_disk, false); 1207 if (err) 1208 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", 1209 __func__, lo->lo_number, err); 1210 /* Device is gone, no point in returning error */ 1211 } 1212 1213 /* 1214 * lo->lo_state is set to Lo_unbound here after above partscan has 1215 * finished. There cannot be anybody else entering __loop_clr_fd() as 1216 * Lo_rundown state protects us from all the other places trying to 1217 * change the 'lo' device. 1218 */ 1219 lo->lo_flags = 0; 1220 if (!part_shift) 1221 set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1222 mutex_lock(&lo->lo_mutex); 1223 lo->lo_state = Lo_unbound; 1224 mutex_unlock(&lo->lo_mutex); 1225 1226 /* 1227 * Need not hold lo_mutex to fput backing file. Calling fput holding 1228 * lo_mutex triggers a circular lock dependency possibility warning as 1229 * fput can take open_mutex which is usually taken before lo_mutex. 1230 */ 1231 fput(filp); 1232 } 1233 1234 static int loop_clr_fd(struct loop_device *lo) 1235 { 1236 int err; 1237 1238 /* 1239 * Since lo_ioctl() is called without locks held, it is possible that 1240 * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel. 1241 * 1242 * Therefore, use global lock when setting Lo_rundown state in order to 1243 * make sure that loop_validate_file() will fail if the "struct file" 1244 * which loop_configure()/loop_change_fd() found via fget() was this 1245 * loop device. 1246 */ 1247 err = loop_global_lock_killable(lo, true); 1248 if (err) 1249 return err; 1250 if (lo->lo_state != Lo_bound) { 1251 loop_global_unlock(lo, true); 1252 return -ENXIO; 1253 } 1254 /* 1255 * Mark the device for removing the backing device on last close. 1256 * If we are the only opener, also switch the state to roundown here to 1257 * prevent new openers from coming in. 1258 */ 1259 1260 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1261 if (disk_openers(lo->lo_disk) == 1) 1262 lo->lo_state = Lo_rundown; 1263 loop_global_unlock(lo, true); 1264 1265 return 0; 1266 } 1267 1268 static int 1269 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1270 { 1271 int err; 1272 bool partscan = false; 1273 bool size_changed = false; 1274 unsigned int memflags; 1275 1276 err = mutex_lock_killable(&lo->lo_mutex); 1277 if (err) 1278 return err; 1279 if (lo->lo_state != Lo_bound) { 1280 err = -ENXIO; 1281 goto out_unlock; 1282 } 1283 1284 if (lo->lo_offset != info->lo_offset || 1285 lo->lo_sizelimit != info->lo_sizelimit) { 1286 size_changed = true; 1287 sync_blockdev(lo->lo_device); 1288 invalidate_bdev(lo->lo_device); 1289 } 1290 1291 /* I/O needs to be drained before changing lo_offset or lo_sizelimit */ 1292 memflags = blk_mq_freeze_queue(lo->lo_queue); 1293 1294 err = loop_set_status_from_info(lo, info); 1295 if (err) 1296 goto out_unfreeze; 1297 1298 partscan = !(lo->lo_flags & LO_FLAGS_PARTSCAN) && 1299 (info->lo_flags & LO_FLAGS_PARTSCAN); 1300 1301 lo->lo_flags &= ~LOOP_SET_STATUS_CLEARABLE_FLAGS; 1302 lo->lo_flags |= (info->lo_flags & LOOP_SET_STATUS_SETTABLE_FLAGS); 1303 1304 if (size_changed) { 1305 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit, 1306 lo->lo_backing_file); 1307 loop_set_size(lo, new_size); 1308 } 1309 1310 /* update the direct I/O flag if lo_offset changed */ 1311 loop_update_dio(lo); 1312 1313 out_unfreeze: 1314 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1315 if (partscan) 1316 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1317 out_unlock: 1318 mutex_unlock(&lo->lo_mutex); 1319 if (partscan) 1320 loop_reread_partitions(lo); 1321 1322 return err; 1323 } 1324 1325 static int 1326 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1327 { 1328 struct path path; 1329 struct kstat stat; 1330 int ret; 1331 1332 ret = mutex_lock_killable(&lo->lo_mutex); 1333 if (ret) 1334 return ret; 1335 if (lo->lo_state != Lo_bound) { 1336 mutex_unlock(&lo->lo_mutex); 1337 return -ENXIO; 1338 } 1339 1340 memset(info, 0, sizeof(*info)); 1341 info->lo_number = lo->lo_number; 1342 info->lo_offset = lo->lo_offset; 1343 info->lo_sizelimit = lo->lo_sizelimit; 1344 info->lo_flags = lo->lo_flags; 1345 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1346 1347 /* Drop lo_mutex while we call into the filesystem. */ 1348 path = lo->lo_backing_file->f_path; 1349 path_get(&path); 1350 mutex_unlock(&lo->lo_mutex); 1351 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); 1352 if (!ret) { 1353 info->lo_device = huge_encode_dev(stat.dev); 1354 info->lo_inode = stat.ino; 1355 info->lo_rdevice = huge_encode_dev(stat.rdev); 1356 } 1357 path_put(&path); 1358 return ret; 1359 } 1360 1361 static void 1362 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1363 { 1364 memset(info64, 0, sizeof(*info64)); 1365 info64->lo_number = info->lo_number; 1366 info64->lo_device = info->lo_device; 1367 info64->lo_inode = info->lo_inode; 1368 info64->lo_rdevice = info->lo_rdevice; 1369 info64->lo_offset = info->lo_offset; 1370 info64->lo_sizelimit = 0; 1371 info64->lo_flags = info->lo_flags; 1372 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1373 } 1374 1375 static int 1376 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1377 { 1378 memset(info, 0, sizeof(*info)); 1379 info->lo_number = info64->lo_number; 1380 info->lo_device = info64->lo_device; 1381 info->lo_inode = info64->lo_inode; 1382 info->lo_rdevice = info64->lo_rdevice; 1383 info->lo_offset = info64->lo_offset; 1384 info->lo_flags = info64->lo_flags; 1385 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1386 1387 /* error in case values were truncated */ 1388 if (info->lo_device != info64->lo_device || 1389 info->lo_rdevice != info64->lo_rdevice || 1390 info->lo_inode != info64->lo_inode || 1391 info->lo_offset != info64->lo_offset) 1392 return -EOVERFLOW; 1393 1394 return 0; 1395 } 1396 1397 static int 1398 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1399 { 1400 struct loop_info info; 1401 struct loop_info64 info64; 1402 1403 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1404 return -EFAULT; 1405 loop_info64_from_old(&info, &info64); 1406 return loop_set_status(lo, &info64); 1407 } 1408 1409 static int 1410 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1411 { 1412 struct loop_info64 info64; 1413 1414 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1415 return -EFAULT; 1416 return loop_set_status(lo, &info64); 1417 } 1418 1419 static int 1420 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1421 struct loop_info info; 1422 struct loop_info64 info64; 1423 int err; 1424 1425 if (!arg) 1426 return -EINVAL; 1427 err = loop_get_status(lo, &info64); 1428 if (!err) 1429 err = loop_info64_to_old(&info64, &info); 1430 if (!err && copy_to_user(arg, &info, sizeof(info))) 1431 err = -EFAULT; 1432 1433 return err; 1434 } 1435 1436 static int 1437 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1438 struct loop_info64 info64; 1439 int err; 1440 1441 if (!arg) 1442 return -EINVAL; 1443 err = loop_get_status(lo, &info64); 1444 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1445 err = -EFAULT; 1446 1447 return err; 1448 } 1449 1450 static int loop_set_capacity(struct loop_device *lo) 1451 { 1452 loff_t size; 1453 1454 if (unlikely(lo->lo_state != Lo_bound)) 1455 return -ENXIO; 1456 1457 size = get_loop_size(lo, lo->lo_backing_file); 1458 loop_set_size(lo, size); 1459 1460 return 0; 1461 } 1462 1463 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1464 { 1465 bool use_dio = !!arg; 1466 unsigned int memflags; 1467 1468 if (lo->lo_state != Lo_bound) 1469 return -ENXIO; 1470 if (use_dio == !!(lo->lo_flags & LO_FLAGS_DIRECT_IO)) 1471 return 0; 1472 1473 if (use_dio) { 1474 if (!lo_can_use_dio(lo)) 1475 return -EINVAL; 1476 /* flush dirty pages before starting to use direct I/O */ 1477 vfs_fsync(lo->lo_backing_file, 0); 1478 } 1479 1480 memflags = blk_mq_freeze_queue(lo->lo_queue); 1481 if (use_dio) 1482 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 1483 else 1484 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 1485 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1486 return 0; 1487 } 1488 1489 static int loop_set_block_size(struct loop_device *lo, unsigned long arg) 1490 { 1491 struct queue_limits lim; 1492 unsigned int memflags; 1493 int err = 0; 1494 1495 if (lo->lo_state != Lo_bound) 1496 return -ENXIO; 1497 1498 if (lo->lo_queue->limits.logical_block_size == arg) 1499 return 0; 1500 1501 sync_blockdev(lo->lo_device); 1502 invalidate_bdev(lo->lo_device); 1503 1504 lim = queue_limits_start_update(lo->lo_queue); 1505 loop_update_limits(lo, &lim, arg); 1506 1507 memflags = blk_mq_freeze_queue(lo->lo_queue); 1508 err = queue_limits_commit_update(lo->lo_queue, &lim); 1509 loop_update_dio(lo); 1510 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1511 1512 return err; 1513 } 1514 1515 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, 1516 unsigned long arg) 1517 { 1518 int err; 1519 1520 err = mutex_lock_killable(&lo->lo_mutex); 1521 if (err) 1522 return err; 1523 switch (cmd) { 1524 case LOOP_SET_CAPACITY: 1525 err = loop_set_capacity(lo); 1526 break; 1527 case LOOP_SET_DIRECT_IO: 1528 err = loop_set_dio(lo, arg); 1529 break; 1530 case LOOP_SET_BLOCK_SIZE: 1531 err = loop_set_block_size(lo, arg); 1532 break; 1533 default: 1534 err = -EINVAL; 1535 } 1536 mutex_unlock(&lo->lo_mutex); 1537 return err; 1538 } 1539 1540 static int lo_ioctl(struct block_device *bdev, blk_mode_t mode, 1541 unsigned int cmd, unsigned long arg) 1542 { 1543 struct loop_device *lo = bdev->bd_disk->private_data; 1544 void __user *argp = (void __user *) arg; 1545 int err; 1546 1547 switch (cmd) { 1548 case LOOP_SET_FD: { 1549 /* 1550 * Legacy case - pass in a zeroed out struct loop_config with 1551 * only the file descriptor set , which corresponds with the 1552 * default parameters we'd have used otherwise. 1553 */ 1554 struct loop_config config; 1555 1556 memset(&config, 0, sizeof(config)); 1557 config.fd = arg; 1558 1559 return loop_configure(lo, mode, bdev, &config); 1560 } 1561 case LOOP_CONFIGURE: { 1562 struct loop_config config; 1563 1564 if (copy_from_user(&config, argp, sizeof(config))) 1565 return -EFAULT; 1566 1567 return loop_configure(lo, mode, bdev, &config); 1568 } 1569 case LOOP_CHANGE_FD: 1570 return loop_change_fd(lo, bdev, arg); 1571 case LOOP_CLR_FD: 1572 return loop_clr_fd(lo); 1573 case LOOP_SET_STATUS: 1574 err = -EPERM; 1575 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1576 err = loop_set_status_old(lo, argp); 1577 break; 1578 case LOOP_GET_STATUS: 1579 return loop_get_status_old(lo, argp); 1580 case LOOP_SET_STATUS64: 1581 err = -EPERM; 1582 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1583 err = loop_set_status64(lo, argp); 1584 break; 1585 case LOOP_GET_STATUS64: 1586 return loop_get_status64(lo, argp); 1587 case LOOP_SET_CAPACITY: 1588 case LOOP_SET_DIRECT_IO: 1589 case LOOP_SET_BLOCK_SIZE: 1590 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN)) 1591 return -EPERM; 1592 fallthrough; 1593 default: 1594 err = lo_simple_ioctl(lo, cmd, arg); 1595 break; 1596 } 1597 1598 return err; 1599 } 1600 1601 #ifdef CONFIG_COMPAT 1602 struct compat_loop_info { 1603 compat_int_t lo_number; /* ioctl r/o */ 1604 compat_dev_t lo_device; /* ioctl r/o */ 1605 compat_ulong_t lo_inode; /* ioctl r/o */ 1606 compat_dev_t lo_rdevice; /* ioctl r/o */ 1607 compat_int_t lo_offset; 1608 compat_int_t lo_encrypt_type; /* obsolete, ignored */ 1609 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1610 compat_int_t lo_flags; /* ioctl r/o */ 1611 char lo_name[LO_NAME_SIZE]; 1612 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1613 compat_ulong_t lo_init[2]; 1614 char reserved[4]; 1615 }; 1616 1617 /* 1618 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1619 * - noinlined to reduce stack space usage in main part of driver 1620 */ 1621 static noinline int 1622 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1623 struct loop_info64 *info64) 1624 { 1625 struct compat_loop_info info; 1626 1627 if (copy_from_user(&info, arg, sizeof(info))) 1628 return -EFAULT; 1629 1630 memset(info64, 0, sizeof(*info64)); 1631 info64->lo_number = info.lo_number; 1632 info64->lo_device = info.lo_device; 1633 info64->lo_inode = info.lo_inode; 1634 info64->lo_rdevice = info.lo_rdevice; 1635 info64->lo_offset = info.lo_offset; 1636 info64->lo_sizelimit = 0; 1637 info64->lo_flags = info.lo_flags; 1638 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1639 return 0; 1640 } 1641 1642 /* 1643 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1644 * - noinlined to reduce stack space usage in main part of driver 1645 */ 1646 static noinline int 1647 loop_info64_to_compat(const struct loop_info64 *info64, 1648 struct compat_loop_info __user *arg) 1649 { 1650 struct compat_loop_info info; 1651 1652 memset(&info, 0, sizeof(info)); 1653 info.lo_number = info64->lo_number; 1654 info.lo_device = info64->lo_device; 1655 info.lo_inode = info64->lo_inode; 1656 info.lo_rdevice = info64->lo_rdevice; 1657 info.lo_offset = info64->lo_offset; 1658 info.lo_flags = info64->lo_flags; 1659 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1660 1661 /* error in case values were truncated */ 1662 if (info.lo_device != info64->lo_device || 1663 info.lo_rdevice != info64->lo_rdevice || 1664 info.lo_inode != info64->lo_inode || 1665 info.lo_offset != info64->lo_offset) 1666 return -EOVERFLOW; 1667 1668 if (copy_to_user(arg, &info, sizeof(info))) 1669 return -EFAULT; 1670 return 0; 1671 } 1672 1673 static int 1674 loop_set_status_compat(struct loop_device *lo, 1675 const struct compat_loop_info __user *arg) 1676 { 1677 struct loop_info64 info64; 1678 int ret; 1679 1680 ret = loop_info64_from_compat(arg, &info64); 1681 if (ret < 0) 1682 return ret; 1683 return loop_set_status(lo, &info64); 1684 } 1685 1686 static int 1687 loop_get_status_compat(struct loop_device *lo, 1688 struct compat_loop_info __user *arg) 1689 { 1690 struct loop_info64 info64; 1691 int err; 1692 1693 if (!arg) 1694 return -EINVAL; 1695 err = loop_get_status(lo, &info64); 1696 if (!err) 1697 err = loop_info64_to_compat(&info64, arg); 1698 return err; 1699 } 1700 1701 static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode, 1702 unsigned int cmd, unsigned long arg) 1703 { 1704 struct loop_device *lo = bdev->bd_disk->private_data; 1705 int err; 1706 1707 switch(cmd) { 1708 case LOOP_SET_STATUS: 1709 err = loop_set_status_compat(lo, 1710 (const struct compat_loop_info __user *)arg); 1711 break; 1712 case LOOP_GET_STATUS: 1713 err = loop_get_status_compat(lo, 1714 (struct compat_loop_info __user *)arg); 1715 break; 1716 case LOOP_SET_CAPACITY: 1717 case LOOP_CLR_FD: 1718 case LOOP_GET_STATUS64: 1719 case LOOP_SET_STATUS64: 1720 case LOOP_CONFIGURE: 1721 arg = (unsigned long) compat_ptr(arg); 1722 fallthrough; 1723 case LOOP_SET_FD: 1724 case LOOP_CHANGE_FD: 1725 case LOOP_SET_BLOCK_SIZE: 1726 case LOOP_SET_DIRECT_IO: 1727 err = lo_ioctl(bdev, mode, cmd, arg); 1728 break; 1729 default: 1730 err = -ENOIOCTLCMD; 1731 break; 1732 } 1733 return err; 1734 } 1735 #endif 1736 1737 static int lo_open(struct gendisk *disk, blk_mode_t mode) 1738 { 1739 struct loop_device *lo = disk->private_data; 1740 int err; 1741 1742 err = mutex_lock_killable(&lo->lo_mutex); 1743 if (err) 1744 return err; 1745 1746 if (lo->lo_state == Lo_deleting || lo->lo_state == Lo_rundown) 1747 err = -ENXIO; 1748 mutex_unlock(&lo->lo_mutex); 1749 return err; 1750 } 1751 1752 static void lo_release(struct gendisk *disk) 1753 { 1754 struct loop_device *lo = disk->private_data; 1755 bool need_clear = false; 1756 1757 if (disk_openers(disk) > 0) 1758 return; 1759 /* 1760 * Clear the backing device information if this is the last close of 1761 * a device that's been marked for auto clear, or on which LOOP_CLR_FD 1762 * has been called. 1763 */ 1764 1765 mutex_lock(&lo->lo_mutex); 1766 if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR)) 1767 lo->lo_state = Lo_rundown; 1768 1769 need_clear = (lo->lo_state == Lo_rundown); 1770 mutex_unlock(&lo->lo_mutex); 1771 1772 if (need_clear) 1773 __loop_clr_fd(lo); 1774 } 1775 1776 static void lo_free_disk(struct gendisk *disk) 1777 { 1778 struct loop_device *lo = disk->private_data; 1779 1780 if (lo->workqueue) 1781 destroy_workqueue(lo->workqueue); 1782 loop_free_idle_workers(lo, true); 1783 timer_shutdown_sync(&lo->timer); 1784 mutex_destroy(&lo->lo_mutex); 1785 kfree(lo); 1786 } 1787 1788 static const struct block_device_operations lo_fops = { 1789 .owner = THIS_MODULE, 1790 .open = lo_open, 1791 .release = lo_release, 1792 .ioctl = lo_ioctl, 1793 #ifdef CONFIG_COMPAT 1794 .compat_ioctl = lo_compat_ioctl, 1795 #endif 1796 .free_disk = lo_free_disk, 1797 }; 1798 1799 /* 1800 * And now the modules code and kernel interface. 1801 */ 1802 1803 /* 1804 * If max_loop is specified, create that many devices upfront. 1805 * This also becomes a hard limit. If max_loop is not specified, 1806 * the default isn't a hard limit (as before commit 85c50197716c 1807 * changed the default value from 0 for max_loop=0 reasons), just 1808 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 1809 * init time. Loop devices can be requested on-demand with the 1810 * /dev/loop-control interface, or be instantiated by accessing 1811 * a 'dead' device node. 1812 */ 1813 static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 1814 1815 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 1816 static bool max_loop_specified; 1817 1818 static int max_loop_param_set_int(const char *val, 1819 const struct kernel_param *kp) 1820 { 1821 int ret; 1822 1823 ret = param_set_int(val, kp); 1824 if (ret < 0) 1825 return ret; 1826 1827 max_loop_specified = true; 1828 return 0; 1829 } 1830 1831 static const struct kernel_param_ops max_loop_param_ops = { 1832 .set = max_loop_param_set_int, 1833 .get = param_get_int, 1834 }; 1835 1836 module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444); 1837 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1838 #else 1839 module_param(max_loop, int, 0444); 1840 MODULE_PARM_DESC(max_loop, "Initial number of loop devices"); 1841 #endif 1842 1843 module_param(max_part, int, 0444); 1844 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1845 1846 static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH; 1847 1848 static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p) 1849 { 1850 int qd, ret; 1851 1852 ret = kstrtoint(s, 0, &qd); 1853 if (ret < 0) 1854 return ret; 1855 if (qd < 1) 1856 return -EINVAL; 1857 hw_queue_depth = qd; 1858 return 0; 1859 } 1860 1861 static const struct kernel_param_ops loop_hw_qdepth_param_ops = { 1862 .set = loop_set_hw_queue_depth, 1863 .get = param_get_int, 1864 }; 1865 1866 device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444); 1867 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH)); 1868 1869 MODULE_DESCRIPTION("Loopback device support"); 1870 MODULE_LICENSE("GPL"); 1871 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1872 1873 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1874 const struct blk_mq_queue_data *bd) 1875 { 1876 struct request *rq = bd->rq; 1877 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1878 struct loop_device *lo = rq->q->queuedata; 1879 1880 blk_mq_start_request(rq); 1881 1882 if (lo->lo_state != Lo_bound) 1883 return BLK_STS_IOERR; 1884 1885 switch (req_op(rq)) { 1886 case REQ_OP_FLUSH: 1887 case REQ_OP_DISCARD: 1888 case REQ_OP_WRITE_ZEROES: 1889 cmd->use_aio = false; 1890 break; 1891 default: 1892 cmd->use_aio = lo->lo_flags & LO_FLAGS_DIRECT_IO; 1893 break; 1894 } 1895 1896 /* always use the first bio's css */ 1897 cmd->blkcg_css = NULL; 1898 cmd->memcg_css = NULL; 1899 #ifdef CONFIG_BLK_CGROUP 1900 if (rq->bio) { 1901 cmd->blkcg_css = bio_blkcg_css(rq->bio); 1902 #ifdef CONFIG_MEMCG 1903 if (cmd->blkcg_css) { 1904 cmd->memcg_css = 1905 cgroup_get_e_css(cmd->blkcg_css->cgroup, 1906 &memory_cgrp_subsys); 1907 } 1908 #endif 1909 } 1910 #endif 1911 loop_queue_work(lo, cmd); 1912 1913 return BLK_STS_OK; 1914 } 1915 1916 static void loop_handle_cmd(struct loop_cmd *cmd) 1917 { 1918 struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css; 1919 struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css; 1920 struct request *rq = blk_mq_rq_from_pdu(cmd); 1921 const bool write = op_is_write(req_op(rq)); 1922 struct loop_device *lo = rq->q->queuedata; 1923 int ret = 0; 1924 struct mem_cgroup *old_memcg = NULL; 1925 const bool use_aio = cmd->use_aio; 1926 1927 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1928 ret = -EIO; 1929 goto failed; 1930 } 1931 1932 if (cmd_blkcg_css) 1933 kthread_associate_blkcg(cmd_blkcg_css); 1934 if (cmd_memcg_css) 1935 old_memcg = set_active_memcg( 1936 mem_cgroup_from_css(cmd_memcg_css)); 1937 1938 /* 1939 * do_req_filebacked() may call blk_mq_complete_request() synchronously 1940 * or asynchronously if using aio. Hence, do not touch 'cmd' after 1941 * do_req_filebacked() has returned unless we are sure that 'cmd' has 1942 * not yet been completed. 1943 */ 1944 ret = do_req_filebacked(lo, rq); 1945 1946 if (cmd_blkcg_css) 1947 kthread_associate_blkcg(NULL); 1948 1949 if (cmd_memcg_css) { 1950 set_active_memcg(old_memcg); 1951 css_put(cmd_memcg_css); 1952 } 1953 failed: 1954 /* complete non-aio request */ 1955 if (!use_aio || ret) { 1956 if (ret == -EOPNOTSUPP) 1957 cmd->ret = ret; 1958 else 1959 cmd->ret = ret ? -EIO : 0; 1960 if (likely(!blk_should_fake_timeout(rq->q))) 1961 blk_mq_complete_request(rq); 1962 } 1963 } 1964 1965 static void loop_process_work(struct loop_worker *worker, 1966 struct list_head *cmd_list, struct loop_device *lo) 1967 { 1968 int orig_flags = current->flags; 1969 struct loop_cmd *cmd; 1970 1971 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO; 1972 spin_lock_irq(&lo->lo_work_lock); 1973 while (!list_empty(cmd_list)) { 1974 cmd = container_of( 1975 cmd_list->next, struct loop_cmd, list_entry); 1976 list_del(cmd_list->next); 1977 spin_unlock_irq(&lo->lo_work_lock); 1978 1979 loop_handle_cmd(cmd); 1980 cond_resched(); 1981 1982 spin_lock_irq(&lo->lo_work_lock); 1983 } 1984 1985 /* 1986 * We only add to the idle list if there are no pending cmds 1987 * *and* the worker will not run again which ensures that it 1988 * is safe to free any worker on the idle list 1989 */ 1990 if (worker && !work_pending(&worker->work)) { 1991 worker->last_ran_at = jiffies; 1992 list_add_tail(&worker->idle_list, &lo->idle_worker_list); 1993 loop_set_timer(lo); 1994 } 1995 spin_unlock_irq(&lo->lo_work_lock); 1996 current->flags = orig_flags; 1997 } 1998 1999 static void loop_workfn(struct work_struct *work) 2000 { 2001 struct loop_worker *worker = 2002 container_of(work, struct loop_worker, work); 2003 loop_process_work(worker, &worker->cmd_list, worker->lo); 2004 } 2005 2006 static void loop_rootcg_workfn(struct work_struct *work) 2007 { 2008 struct loop_device *lo = 2009 container_of(work, struct loop_device, rootcg_work); 2010 loop_process_work(NULL, &lo->rootcg_cmd_list, lo); 2011 } 2012 2013 static const struct blk_mq_ops loop_mq_ops = { 2014 .queue_rq = loop_queue_rq, 2015 .complete = lo_complete_rq, 2016 }; 2017 2018 static int loop_add(int i) 2019 { 2020 struct queue_limits lim = { 2021 /* 2022 * Random number picked from the historic block max_sectors cap. 2023 */ 2024 .max_hw_sectors = 2560u, 2025 }; 2026 struct loop_device *lo; 2027 struct gendisk *disk; 2028 int err; 2029 2030 err = -ENOMEM; 2031 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 2032 if (!lo) 2033 goto out; 2034 lo->worker_tree = RB_ROOT; 2035 INIT_LIST_HEAD(&lo->idle_worker_list); 2036 timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE); 2037 lo->lo_state = Lo_unbound; 2038 2039 err = mutex_lock_killable(&loop_ctl_mutex); 2040 if (err) 2041 goto out_free_dev; 2042 2043 /* allocate id, if @id >= 0, we're requesting that specific id */ 2044 if (i >= 0) { 2045 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 2046 if (err == -ENOSPC) 2047 err = -EEXIST; 2048 } else { 2049 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 2050 } 2051 mutex_unlock(&loop_ctl_mutex); 2052 if (err < 0) 2053 goto out_free_dev; 2054 i = err; 2055 2056 lo->tag_set.ops = &loop_mq_ops; 2057 lo->tag_set.nr_hw_queues = 1; 2058 lo->tag_set.queue_depth = hw_queue_depth; 2059 lo->tag_set.numa_node = NUMA_NO_NODE; 2060 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 2061 lo->tag_set.flags = BLK_MQ_F_STACKING | BLK_MQ_F_NO_SCHED_BY_DEFAULT; 2062 lo->tag_set.driver_data = lo; 2063 2064 err = blk_mq_alloc_tag_set(&lo->tag_set); 2065 if (err) 2066 goto out_free_idr; 2067 2068 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, &lim, lo); 2069 if (IS_ERR(disk)) { 2070 err = PTR_ERR(disk); 2071 goto out_cleanup_tags; 2072 } 2073 lo->lo_queue = lo->lo_disk->queue; 2074 2075 /* 2076 * Disable partition scanning by default. The in-kernel partition 2077 * scanning can be requested individually per-device during its 2078 * setup. Userspace can always add and remove partitions from all 2079 * devices. The needed partition minors are allocated from the 2080 * extended minor space, the main loop device numbers will continue 2081 * to match the loop minors, regardless of the number of partitions 2082 * used. 2083 * 2084 * If max_part is given, partition scanning is globally enabled for 2085 * all loop devices. The minors for the main loop devices will be 2086 * multiples of max_part. 2087 * 2088 * Note: Global-for-all-devices, set-only-at-init, read-only module 2089 * parameteters like 'max_loop' and 'max_part' make things needlessly 2090 * complicated, are too static, inflexible and may surprise 2091 * userspace tools. Parameters like this in general should be avoided. 2092 */ 2093 if (!part_shift) 2094 set_bit(GD_SUPPRESS_PART_SCAN, &disk->state); 2095 mutex_init(&lo->lo_mutex); 2096 lo->lo_number = i; 2097 spin_lock_init(&lo->lo_lock); 2098 spin_lock_init(&lo->lo_work_lock); 2099 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn); 2100 INIT_LIST_HEAD(&lo->rootcg_cmd_list); 2101 disk->major = LOOP_MAJOR; 2102 disk->first_minor = i << part_shift; 2103 disk->minors = 1 << part_shift; 2104 disk->fops = &lo_fops; 2105 disk->private_data = lo; 2106 disk->queue = lo->lo_queue; 2107 disk->events = DISK_EVENT_MEDIA_CHANGE; 2108 disk->event_flags = DISK_EVENT_FLAG_UEVENT; 2109 sprintf(disk->disk_name, "loop%d", i); 2110 /* Make this loop device reachable from pathname. */ 2111 err = add_disk(disk); 2112 if (err) 2113 goto out_cleanup_disk; 2114 2115 /* Show this loop device. */ 2116 mutex_lock(&loop_ctl_mutex); 2117 lo->idr_visible = true; 2118 mutex_unlock(&loop_ctl_mutex); 2119 2120 return i; 2121 2122 out_cleanup_disk: 2123 put_disk(disk); 2124 out_cleanup_tags: 2125 blk_mq_free_tag_set(&lo->tag_set); 2126 out_free_idr: 2127 mutex_lock(&loop_ctl_mutex); 2128 idr_remove(&loop_index_idr, i); 2129 mutex_unlock(&loop_ctl_mutex); 2130 out_free_dev: 2131 kfree(lo); 2132 out: 2133 return err; 2134 } 2135 2136 static void loop_remove(struct loop_device *lo) 2137 { 2138 /* Make this loop device unreachable from pathname. */ 2139 del_gendisk(lo->lo_disk); 2140 blk_mq_free_tag_set(&lo->tag_set); 2141 2142 mutex_lock(&loop_ctl_mutex); 2143 idr_remove(&loop_index_idr, lo->lo_number); 2144 mutex_unlock(&loop_ctl_mutex); 2145 2146 put_disk(lo->lo_disk); 2147 } 2148 2149 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2150 static void loop_probe(dev_t dev) 2151 { 2152 int idx = MINOR(dev) >> part_shift; 2153 2154 if (max_loop_specified && max_loop && idx >= max_loop) 2155 return; 2156 loop_add(idx); 2157 } 2158 #else 2159 #define loop_probe NULL 2160 #endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */ 2161 2162 static int loop_control_remove(int idx) 2163 { 2164 struct loop_device *lo; 2165 int ret; 2166 2167 if (idx < 0) { 2168 pr_warn_once("deleting an unspecified loop device is not supported.\n"); 2169 return -EINVAL; 2170 } 2171 2172 /* Hide this loop device for serialization. */ 2173 ret = mutex_lock_killable(&loop_ctl_mutex); 2174 if (ret) 2175 return ret; 2176 lo = idr_find(&loop_index_idr, idx); 2177 if (!lo || !lo->idr_visible) 2178 ret = -ENODEV; 2179 else 2180 lo->idr_visible = false; 2181 mutex_unlock(&loop_ctl_mutex); 2182 if (ret) 2183 return ret; 2184 2185 /* Check whether this loop device can be removed. */ 2186 ret = mutex_lock_killable(&lo->lo_mutex); 2187 if (ret) 2188 goto mark_visible; 2189 if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) { 2190 mutex_unlock(&lo->lo_mutex); 2191 ret = -EBUSY; 2192 goto mark_visible; 2193 } 2194 /* Mark this loop device as no more bound, but not quite unbound yet */ 2195 lo->lo_state = Lo_deleting; 2196 mutex_unlock(&lo->lo_mutex); 2197 2198 loop_remove(lo); 2199 return 0; 2200 2201 mark_visible: 2202 /* Show this loop device again. */ 2203 mutex_lock(&loop_ctl_mutex); 2204 lo->idr_visible = true; 2205 mutex_unlock(&loop_ctl_mutex); 2206 return ret; 2207 } 2208 2209 static int loop_control_get_free(int idx) 2210 { 2211 struct loop_device *lo; 2212 int id, ret; 2213 2214 ret = mutex_lock_killable(&loop_ctl_mutex); 2215 if (ret) 2216 return ret; 2217 idr_for_each_entry(&loop_index_idr, lo, id) { 2218 /* Hitting a race results in creating a new loop device which is harmless. */ 2219 if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound) 2220 goto found; 2221 } 2222 mutex_unlock(&loop_ctl_mutex); 2223 return loop_add(-1); 2224 found: 2225 mutex_unlock(&loop_ctl_mutex); 2226 return id; 2227 } 2228 2229 static long loop_control_ioctl(struct file *file, unsigned int cmd, 2230 unsigned long parm) 2231 { 2232 switch (cmd) { 2233 case LOOP_CTL_ADD: 2234 return loop_add(parm); 2235 case LOOP_CTL_REMOVE: 2236 return loop_control_remove(parm); 2237 case LOOP_CTL_GET_FREE: 2238 return loop_control_get_free(parm); 2239 default: 2240 return -ENOSYS; 2241 } 2242 } 2243 2244 static const struct file_operations loop_ctl_fops = { 2245 .open = nonseekable_open, 2246 .unlocked_ioctl = loop_control_ioctl, 2247 .compat_ioctl = loop_control_ioctl, 2248 .owner = THIS_MODULE, 2249 .llseek = noop_llseek, 2250 }; 2251 2252 static struct miscdevice loop_misc = { 2253 .minor = LOOP_CTRL_MINOR, 2254 .name = "loop-control", 2255 .fops = &loop_ctl_fops, 2256 }; 2257 2258 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2259 MODULE_ALIAS("devname:loop-control"); 2260 2261 static int __init loop_init(void) 2262 { 2263 int i; 2264 int err; 2265 2266 part_shift = 0; 2267 if (max_part > 0) { 2268 part_shift = fls(max_part); 2269 2270 /* 2271 * Adjust max_part according to part_shift as it is exported 2272 * to user space so that user can decide correct minor number 2273 * if [s]he want to create more devices. 2274 * 2275 * Note that -1 is required because partition 0 is reserved 2276 * for the whole disk. 2277 */ 2278 max_part = (1UL << part_shift) - 1; 2279 } 2280 2281 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2282 err = -EINVAL; 2283 goto err_out; 2284 } 2285 2286 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2287 err = -EINVAL; 2288 goto err_out; 2289 } 2290 2291 err = misc_register(&loop_misc); 2292 if (err < 0) 2293 goto err_out; 2294 2295 2296 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) { 2297 err = -EIO; 2298 goto misc_out; 2299 } 2300 2301 /* pre-create number of devices given by config or max_loop */ 2302 for (i = 0; i < max_loop; i++) 2303 loop_add(i); 2304 2305 printk(KERN_INFO "loop: module loaded\n"); 2306 return 0; 2307 2308 misc_out: 2309 misc_deregister(&loop_misc); 2310 err_out: 2311 return err; 2312 } 2313 2314 static void __exit loop_exit(void) 2315 { 2316 struct loop_device *lo; 2317 int id; 2318 2319 unregister_blkdev(LOOP_MAJOR, "loop"); 2320 misc_deregister(&loop_misc); 2321 2322 /* 2323 * There is no need to use loop_ctl_mutex here, for nobody else can 2324 * access loop_index_idr when this module is unloading (unless forced 2325 * module unloading is requested). If this is not a clean unloading, 2326 * we have no means to avoid kernel crash. 2327 */ 2328 idr_for_each_entry(&loop_index_idr, lo, id) 2329 loop_remove(lo); 2330 2331 idr_destroy(&loop_index_idr); 2332 } 2333 2334 module_init(loop_init); 2335 module_exit(loop_exit); 2336 2337 #ifndef MODULE 2338 static int __init max_loop_setup(char *str) 2339 { 2340 max_loop = simple_strtol(str, NULL, 0); 2341 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2342 max_loop_specified = true; 2343 #endif 2344 return 1; 2345 } 2346 2347 __setup("max_loop=", max_loop_setup); 2348 #endif 2349